HOMOMORPHIC CRYPTOSYSTEMS AND THEIR
APPLICATIONS

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften
dem Fachbereich Mathematik

der Universitat Dortmund vorgelegt

von

Dorte K. Rappe

2. August 2004

Erster Gutachter: Prof. E. Becker
Zweiter Gutachter: Prof. J. Patarin

to my parents

Acknowledgement

The work I present in this thesis would not have been possible without the support

of several people whom I would like to thank here.

First of all T would like to thank my supervisor Prof. Eberhard Becker for support-
ing me all the time by his advise and by giving me the freedom to explore several
opportunities.

[am grateful to my thesis committee and to Prof. Jacques Patarin for being my ex-
ternal referee, for inviting me to continue my research at the University of Versailles
and for offering me funding.

I owe thanks to my graduate school “Mathematische und ingenieurwissenschaftliche
Methoden fiir sichere Dateniibertragung und Informationsvermittlung” and the Deu-
tsche Forschungsgemeinschaft (DFG) for financial support. They gave me the pos-
sibility to focus on my research, to meet experts by visiting conferences and to do
part of my research in foreign countries.

I would especially like to thank Prof. Ivan Damgard and Prof. Ronald Cramer for
supervising me during my time in Arhus, for many helpful comments, always having
time for me and to answer my questions, and for having the idea of considering the
ECPS and branching programs. Additionally, I thank the European Union for their
financial support.

Furthermore, I would like to thank Steven Galbraith for helpful discussions about
the elliptic curve Paillier scheme. I thank Matthias Krause, Annegret Weng, Ralf
Gerkmann and my colleagues at the BSI for fruitful discussions.

Besides that I thank my colleagues, John Malone-Lee, my boyfriend André and all
the others for carefully reading my thesis and correcting my English.

Finally, but most important I thank my parents and all my good friends for being
there for me. I owe special thanks to André for always staying at my side and always

supporting me especially by coming with me to Denmark.
Thank you all!

Dorte Rappe

Contents

1 Introduction 1
2 Homomorphic Cryptosystems 5
2.1 Algebraically Homomorphic Cryptosystems 10
2.2 Applications and Properties of Homomorphic Cryptosystems 15

3 Computing with Encrypted Data and Encrypted Functions 21
3.1 Branching Programs L 0. 22
3.2 Computing with Encrypted Data 26
3.3 Computing with Encrypted Functions 36
3.4 Key Swapping 41
3.4.1 Examples L 43

4 A Threshold Version of the Elliptic Curve Paillier Scheme and its

Applications 48
4.1 Introduction to Elliptic Curves over Rings Z/nsz 50
4.2 'The Elliptic Curve Paillier Scheme 53
4.3 A Generalisation of the Elliptic Curve Paillier Scheme 56

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme Y4

i

4.5

4.6

4.7

4.8

4.4.1 A Length-Flexible Variant
Auxiliary Protocols
4.5.1 X-Protocols
4.5.2 Protocol for the Equality of Discrete Logarithms
4.5.3 Check of Ciphertextness
4.5.4 Proof of Correct Multiplication
4.5.5 Proof of Plaintext Knowledge
4.5.6 1l-out-of-2 Protocol oL
Application to Multiparty Computation
Application to Electronic Voting
Application to Commitment Schemes
4.8.1 Mixed Commitments

4.8.2 Special Mixed Commitment Schemes Based on ¢ One-Way

Homomorphisms

4.8.3 The ECPS as an Example for a ¢ One-Way Homomorphism

5 Conclusions and Open Questions

Bibliography

Index

il

92

95

97

105

Chapter 1
Introduction

The demand for privacy of digital data and of more complex structures like algo-
rithms has become stronger during the last few years. This goes hand in hand
with the growth of communication networks like the Internet and the vastly grow-
ing number of electronic devices. On the one hand these devices enable a great
variety of attacks on digital goods and on the other hand they are vulnerable to
attacks such as the manipulation or destruction of data and the theft of sensitive
information. For storing and reading data securely there exist several possibilities
to guarantee privacy such as data encryption and tamper resistent hardware. The
problem becomes more complex when asking for the possibility to compute (pub-
licly) with private data or to modify functions or algorithms in such a way that
they are still executable while their privacy is ensured. This is where homomorphic
cryptosystems can be used since they enable computations with encrypted data.
In 1978 Rivest et al. [73] were the first to ask (implicitly) for homomorphic encryp-
tion schemes. Unfortunately their “privacy homomorphisms” were broken a couple
of years later by Brickell and Yacobi [15].

The question rose again in 1991 when Feigenbaum and Merritt [38] asked: “Is there
an encryption function E() such that both E(x +y) and E(xy) are easy to compute
from E(x) and E(y)?” They were asking explicitly for so called algebraically homo-
morphic encryption schemes. Unfortunately, there has been little progress made in
determining whether such encryption schemes exist that are efficient and secure, al-

though it is one of the crucial open problems in cryptography. We cannot settle this

Introduction 2

question here but we prove that it is possible to obtain algebraically homomorphic
cryptosystems given a homomorphic cryptosystem on a special non-abelian group.
This may be viewed as a first step in answering the above question; However, in this
thesis we do not consider this problem in more detail. Instead we mainly focus on

applications of homomorphic cryptosystems.

Main Results

This thesis is organised into three main parts. In the first part we consider alge-
braically homomorphic schemes since they are of pivotal importance in designing
powerful cryptographic protocols. However, as we already mentioned it is not clear
vet whether such (efficient and secure) schemes even exist. The first contribution
of this thesis is a new approach to the problem: constructing algebraically homo-
morphic cryptosystems from encryption schemes that are homomorphic on special
non-abelian groups (see Section 2.1). Based on a construction of Ben-Or and Cleve
[10] and a fact from projective geometry we observe that an algebraically homomor-
phic encryption scheme can be constructed from a homomorphic encryption scheme
on the symmetric group on seven elements. Hence, the search for algebraically
homomorphic schemes can be reduced to the search for homomorphic schemes on
special non-abelian groups.

In the second part we analyse possible applications of algebraically homomorphic
schemes. Owing to the lack of such schemes we design solutions based on homo-
morphic schemes only. Clearly, these cannot be as powerful as solutions based on
algebraically homomorphic schemes. Nevertheless, we present as a second contri-
bution a provably secure, non-interactive solution for encrypting functions given by
polynomial branching programs and for encrypting data that is computed by such
functions (see Chapter 3). This is an enlargement of the set of encryptable and still
executable functions. We are now able to encrypt functions from the more general
class of polynomial branching programs instead of functions represented by NC*
circuits. Thus it is an improvement of one of the main applications of homomor-
phic cryptosystems. Furthermore, we introduce a new property that offers more

possibilities concerning computations with encrypted data and encrypted functions,

Introduction 3

respectively. We demonstrate examples of homomorphic schemes having this prop-
erty that we call key swapping.

In the third part we describe an example of a homomorphic scheme that allows for
realising the solutions presented in the previous parts. We generalise this scheme
to obtain a wide variety of applications. More concretely, as a final contribution
we develop a threshold decryption version of the elliptic curve Paillier scheme [42].
This version can be proven to be as secure as a centralised scheme with a trusted
player who performs the decryption, i.e., it can be proven to be semantically secure
against a static adversary in the random oracle model. We construct this threshold
scheme in such a way that it is especially suited for several applications. Based on
our new scheme we present various protocols that are the first elliptic curve ver-
sions of this kind. These protocols build the main tool for applying our scheme to
different scenarios such as multiparty computation and voting schemes. Finally, by
modifying the original elliptic curve Paillier scheme we are able to base a special

mixed commitment scheme on it.

Outline of this Thesis

We begin with an introduction to homomorphic cryptosystems in Chapter 2 where
we provide definitions and explain the relationship between homomorphic and al-
gebraically homomorphic encryption schemes in Section 2.1, and briefly introduce

some of the main applications in Section 2.2.

In Chapter 3 we present an improved solution to one of the main applications of
homomorphic cryptosystems “computing with encrypted data” in Section 3.2 and
closely related “computing with encrypted functions” in Section 3.3. After quickly
introducing these issues we proceed with describing the concept of branching pro-
grams. We then present two provably secure and non-interactive protocols with
zero-error that allow computation with encrypted data and functions, respectively.
Finally, we define a new property of homomorphic schemes that we call key swap-
ping. We demonstrate why this property is useful in the context of computations
with encrypted data and functions. Furthermore, we give two examples of homo-

morphic schemes that support key swapping.

Introduction 4

In Chapter 4 we present a scheme that has exactly the properties needed for our
solution presented in Chapter 3: Galbraith’s elliptic curve Paillier scheme [42]. We
begin with summarising this semantically secure, probabilistic, additively homomor-
phic scheme and its generalisation by Galbraith. Thereafter we construct a further
semantically secure generalisation in Section 4.4, namely a threshold decryption ver-
sion as well as a length-flexible variant. This threshold cryptosystem is built in such
a way that it is suitable for important applications. Subsequently, we design several
auxiliary protocols in Section 4.5 to provide the basis for applications of our gener-
alised elliptic curve Paillier scheme. These applications are considered in Sections
4.6, 4.7, and 4.8. They include a multiparty protocol, a protocol for electronic vot-
ing, and a commitment scheme for which we have to slightly modify the underlying

elliptic curve Paillier scheme.

Finally, in Chapter 5 we conclude this work and give an outlook on further questions

that are of interest.

Chapter 2
Homomorphic Cryptosystems

During the last few years homomorphic encryption schemes have been studied ex-
tensively since they have become more and more important in many different cryp-
tographic protocols such as, e. g., voting protocols. In this chapter we introduce ho-
momorphic cryptosystems in three steps (“what”, “how”, and “why”) that reflect the
main aspects. We start by defining homomorphic cryptosystems and algebraically
homomorphic cryptosystems. Then we develop a method to construct algebraically
homomorphic schemes given special homomorphic schemes. Finally, we describe
applications of homomorphic schemes. A general and more detailed introduction to

homomorphic cryptosystems can be found in [72].

Definition 2.0.1. Let the message space (M, o) be a finite (semi-)group, and let o
be the security parameter. A homomorphic public-key encryption scheme (or homo-
morphic cryptosystem) on M is a quadruple (K, E, D, A) of probabilistic, expected

polynomial time algorithms, satisfying:

Key Generation: On input 17 the algorithm K outputs an encryption/decryption
key pair (k., kq) = k € K where K denotes the key space.'

Encryption: On inputs 17, k., and an element m € M the encryption algorithm
FE outputs a ciphertext ¢ € C where C denotes the ciphertext space.

1 Usually, we are interested in the running time of the algorithm K as a function of o rather
than log o, i. e., we want to allow expected polynomial time in the security parameter o to generate
a key. Therefore, technically we need to think of K as being given ¢ in unary notation. This is
denoted by 1°.

Homomorphic Cryptosystems 6

Decryption: The decryption algorithm D is deterministic. On inputs 17, k, and
an element ¢ € C it outputs an element in the message space M so that for all
m € M it holds: if ¢ = E(17, k., m) then Prob[D(17, k,c) # m] is negligible,
i.e., it holds that Prob[D(17,k,¢c) # m] < 27°.

Homomorphic Property: A is an algorithm that on inputs 17, k., and elements
c1,c € C outputs an element c3 € C so that for all mqy, ms € M it holds: if

ms = my omy and ¢; = E(17, k., my),co = E(1°, k., m3) then
PI‘Ob[D(A(lU,]fe, Cq1, CQ))] 7é mg]
is negligible.

Informally speaking, a homomorphic cryptosystem is a cryptosystem with the addi-
tional property that there exists an efficient algorithm to compute an encryption of
the sum or the product, of two messages given the public key and the encryptions

of the messages but not the messages themselves.

If M is an additive (semi-)group then the scheme is called additively homomorphic
and the algorithm A is called Add. Otherwise the scheme is called multiplicatively
homomorphic and the algorithm A is called Mult.

Remark 2.0.2.

1. Note that for a homomorphic encryption scheme to be efficient it is crucial to
make sure that the size of the ciphertexts remains polynomially bounded in

the security parameter o during repeated computations.

2. The security aspects, definitions, and models of homomorphic cryptosystems

are the same as usually for cryptosystems.

If the encryption algorithm £ gets as additional input a uniform random number
r of a set Z, the encryption scheme is called probabilistic otherwise it is called de-
terministic. Hence if a cryptosystem is probabilistic there belong several different

ciphertexts to one message depending on the random number r» € Z. But note that

Homomorphic Cryptosystems 7

as before the decryption algorithm remains deterministic, i.e. there is just one mes-
sage belonging to a given ciphertext. (See below Example 2.0.4.) Furthermore, in a
probabilistic, homomorphic cryptosystem the algorithm A should be probabilistic,
too to hide the input ciphertexts. For instance, this can be realised by applying
a blinding algorithm (see Definition 2.0.7) on a (deterministic) computation of the

encryption of the product and of the sum, respectively.

Notation 2.0.3. In the following we will omit the security parameter ¢ and the
public key in the description of the algorithms. We will write Ejy_(m) or E(m) for
E(1°,k.,m) and Dy(c) or D(c) for D(1°, k, ¢) when no misunderstanding is possible.
If the scheme is probabilistic we will also write Ey_(m) or E(m) as well as Ey_(m,r)

or E(m,r) for E(1°, k., m,r). Furthermore, we will write
A(E(m), E(m')) = E(mom)

to denote that the algorithm A (either Add or Mult) is applied on two encryptions
of the messages m, m’ € (M, o) and outputs an encryption of m om/, i.e., it holds
that

D(A(17, ke, Ex,(m), Ex,(m'))) =mom/

except with negligible probability.

Example 2.0.4. Here we give an example of a deterministic, multiplicatively ho-
momorphic scheme and an example for a probabilistic, additively homomorphic

scheme.

1. The classical RSA scheme [74] is an example of a deterministic, multiplicatively
homomorphic cryptosystem on M = (Z/N7, -), where N is the product of two
large primes. As ciphertext space we have C = (Z/N7,-) and as key space we
have K = {(ke, kq) = (N, e),d) | N = pg,ed = 1 mod ¢(N)}. The encryption
of a message m € M is defined as Ejy_(m) := m® mod N and for decryption of
a ciphertext Ej_(m) = ¢ € C we compute Dy_j,(c) := ¢ mod N = m mod N.

Obviously, the encryption of the product of two messages can be efficiently

Homomorphic Cryptosystems 8

computed by multiplying the corresponding ciphertexts, i.e.,

Er.(my-my) = (myms)® mod N
= (m;° mod N)(ms® mod N)
= Ey.(m1) - By, (m2)

where my, ms € M. Hence, the algorithm Mult can easily be implemented as
Mult(Ey, (mq), Ex, (ms2)) := Ey, (mq) - E, (ma).

Usually in the RSA scheme as well as in most schemes based on the difficulty
of factoring the security parameter o is the bit length of N. For instance,

o = 1024 is a common security parameter.

2. The Goldwasser-Micali scheme, proposed in [45] is an example of a probabilis-
tic, additively homomorphic cryptosystem on M = (Z/27,,4) with C = Z =
(Z/N7)* where N = pq is the product of two large primes. We have

a a

= (ke ba) = (N0, () | ¥ = pra e vz (2] = (4) = -1,

Since this scheme is probabilistic, the encryption algorithm gets as additional

input a random value r € Z. We define Ey_(m,r) := a™r* mod N and

0, if ¢ is a square

Dk gy () = {

1, else
It holds that

Ey. (m1,71) - By, (ma, o) = Ey (mq + ma, r179).
Thus the algorithm Add can be efficiently implemented e. g. as

Add(Ey, (mqy,11), Ex, (ma,19),13) = Ei (mq,71) - Eg, (Mo, 19) - r3? mod N
————
Eke(077‘3)
= Ei (mq + ma,mrars)

Homomorphic Cryptosystems 9

where my, my € M and 1,7, 73 € Z. Note that as ready mentioned this algo-
rithm should be probabilistic, i. e., it obtains a random number r3 as additional

input.

A public-key homomorphic encryption scheme on a (semi-)ring (M, +,-) can be
defined in an analogous manner. Such schemes consist of two algorithms Add and
Mult for the homomorphic property instead of one algorithm A, i.e., it is addi-
tively and multiplicatively homomorphic at the same time. Such schemes are called

algebraically homomorphic.

Definition 2.0.5. An additively homomorphic encryption scheme on a (semi-)ring
(M, +,-) is called scalar homomorphic if there exists a probabilistic, expected poly-
nomial time algorithm Mixed-Mult that on inputs 17, k., s € M and an element
¢ € C outputs an element ¢ € C so that for all m € M it holds that: if m’ =s-m
and ¢ = F(19, k., m) then Prob[D(Mixed-Mult(17, k., s, ¢)) # m/] is negligible.

Thus in a scalar homomorphic scheme it is possible to compute an encryption
E(1% ke, s-m) = E(17, k., m') of a product of two messages s,m € M given the
public key k. and an encryption ¢ = F(17,k.,m) of one message m and the other

message s as a plaintext.

Obviously any scheme that is algebraically homomorphic is scalar homomorphic,

too.
Notation 2.0.6. We will denote by
Mixed-Mult(m, E(m')) = E(mm/)
if
D(Mixed-Mult (17, k., m, Ey,_(m')) = m -m/
holds except with negligible probability.

Definition 2.0.7. A blinding algorithm is a probabilistic, polynomial time algo-
rithm, which on inputs 17, k., and ¢ € Ey_ (m,r) where r € Z is randomly chosen
outputs another encryption ¢ € Ej_ (m,r’) of m where ' € Z is chosen uniformly

at random.

2.1 Algebraically Homomorphic Cryptosystems 10

For instance, in a probabilistic, homomorphic cryptosystem on (M, o) the blinding
algorithm can be realised by applying the algorithm A on the ciphertext ¢ and an
encryption of the identity element in M.

Remark 2.0.8. If M is isomorphic to Z/,7 if M is finite, or to Z otherwise,
then the algorithm Mixed-Mult can easily be implemented using a double and add
algorithm. This is combined with a blinding algorithm if the scheme is probabilistic
[24]. Hence, every additively homomorphic cryptosystem on Z/,7, or Z is also scalar

homomorphic and the algorithm Mixed-Mult can be efficiently implemented (see
also [75]).

Remark 2.0.9. Since most of the existing additively homomorphic cryptosystems
(e.g., [44, 7,62, 65, 67, 77, 31, 42]) are defined on Z/,7, for some n € N the algorithm

Mixed-Mult can in general be implemented efficiently.?

2.1 Algebraically Homomorphic Cryptosystems

As already mentioned the existence of an efficient and secure algebraically homo-
morphic cryptosystem has been a long standing open question. In this section we
first present related work considering this problem. Thereafter we describe the rela-
tionship between algebraically homomorphic schemes and homomorphic schemes on
special non-abelian groups. More precisely, we prove that a homomorphic encryption
scheme on the non-abelian group (S7,-), the symmetric group on seven elements,
allows to construct an algebraically homomorphic encryption scheme on (Fg, +,).
An algebraically homomorphic encryption scheme on (FFy, +,) can also be obtained
from a homomorphic encryption scheme on the special linear group (SL(3,2),) over
[Fy. Furthermore, using coding theory an algebraically homomorphic encryption on
an arbitrary finite ring or field could be obtained given a homomorphic encryption
scheme on one of these non-abelian groups. These observations could be a first step
to solve the problem whether efficient and secure algebraically homomorphic schemes
exist. Many authors have tried to solve this problem. In 1996, Boneh and Lipton

have proven that under a reasonable assumption every deterministic, algebraically

2We denote by N the set of positive integers.

2.1 Algebraically Homomorphic Cryptosystems 11

homomorphic cryptosystem can be broken in sub-exponential time [13]. This may
be seen as a negativ result concerning the existence although most existing cryp-
tosystem, e.g., the RSA scheme (see Example 2.0.4) or the ElGamal scheme (see
Section 3.4.1), can be broken in sub-exponential time, too. Furthermore, if we are
seeking for algebraically homomorphic public-key schemes on small fields or rings
such as M = Fy, obviously such a scheme has to be probabilistic to be secure.
Other authors have tried to find candidates for algebraically homomorphic schemes.
In 1993, Fellows and Koblitz presented an algebraic public-key cryptosystem called
Polly Cracker [39]. It is algebraically homomorphic and provably secure. Unfortu-
nately, the scheme has a number of difficulties and is not efficient concerning the
ciphertext length. Firstly, Polly Cracker is a polynomial-based system. Therefore,
computing an encryption of the product E(m; - ms) of two messages m; and msy by
multiplying the corresponding ciphertext polynomials E(m;) and E(ms), leads to
an exponential blowup in the number of monomials. Hence, during repeated com-
putations there is an exponential blowup in the ciphertext length.

Secondly, all existing instantiations of Polly Cracker suffer from further drawbacks
(see e.g., [59]). They are either insecure since they succumb to certain attacks,
they are too inefficient to be practical, or they loose the algebraically homomor-
phic property. Hence it is far from clear how such kind of schemes could be turned
into efficient and secure algebraically homomorphic encryption schemes. A detailed

analysis and description of these schemes can be found in [61].

In 2002, J. Domingo-Ferrer [36] developed a probabilistic, algebraically homomor-
phic secret-key cryptosystem. But as before this scheme is not efficient since there
is an exponential blowup in the ciphertext length during repeated multiplications.

Furthermore, it was recently broken by Wagner and Bao (81, 3].

Thus considering homomorphic encryption schemes on groups instead of rings seems
more promising to solve the presented question. It brings us closer to structures
that have been successfully used in cryptography. The following theorem shows
that indeed the search for algebraically homomorphic schemes can be reduced to

the search for homomorphic schemes on special non-abelian groups.

Theorem 2.1.1. The following statements are equivalent:

1. There exists an algebraically homomorphic encryption scheme on (Fa, +,-).

2.1 Algebraically Homomorphic Cryptosystems 12

2. There ezists a homomorphic encryption scheme on the symmetric group (Sz,-).

The following proof is based on an idea of Tomas Sander.

Proof. 1 = 2 This direction of the proof follows immediately and it holds for an
arbitrary finite group since operations of finite groups can always be implemented
by Boolean circuits. Let S; be represented as a subset of {0, 1}, where e.g. [= 21
can be chosen?, and let C be a circuit with addition and multiplication gates that
takes as inputs the binary representations of elements my, my € S; and outputs the
binary representation of m;msy. If we have an algebraically homomorphic encryption
scheme (K, E, D, Add, Mult) on (Fy, 4+, -) then we can define a homomorphic scheme
(K,E,D, l\/AEI/t) on S; by defining E(m) = (E(so), ..., E(si_1)) where (so,...,51)
denotes the binary representation of m. Mult is constructed by substituting the
addition gates in C' by Add and the multiplication gates by Mult. K and D are

defined in the obvious way.

2 = 1 The proof has two steps. First we use a construction of Ben-Or and Cleve
[10] to show that the field (Fg,+,:) can be encoded in the special linear group
(SL(3,2),-) over Fy. Then we apply a theorem from projective geometry to show
that (SL(3,2),-) is a subgroup of S;. This proves the claim.

We map
encoding
<F2>+7) - SL(372)
1 0 =z
r e 01 0 | =:Mx)
0 01
It is easy to see that:
1. M(x)M(y) = M(x +vy)
2. 3T € SL(3,2) :
0
TM(z)T'=|[0 1 z | and
01

3Since log,(7!) &~ 12.3, the minimal possible number of bits is [= 13.

2.1 Algebraically Homomorphic Cryptosystems 13

385 e€SL(3,2):

N
=
S
S~—

n

L
|
o o ~
o~ =
=)

_ o O
o o =
o = o
_ 8 O

where [A, B] denotes the commutator of the matrices A and B.

Therefore the operations + and - in Fy can be performed on M (0) and M(1) using
the constants S and 7', and the multiplication in the group SL(3,2). Given a
homomorphic encryption scheme (K, F, D, Mult) on (SL(3,2),-) we can thus easily
construct an algebraically homomorphic scheme on (Fg, +, -) using E(S), E(T), and
the algorithm Mult.

We now use the fact that SL(3,2) is the group of collineations on the projective
plane over Fy (see e.g. [52]). As this plane has 7 points, SL(3,2) can be embedded

in S7, which concludes the proof. O

Remark 2.1.2. An analysis of the proof of Theorem 2.1.1 shows that using the
described construction the matrices S, 7', and M (x) are necessary for the encoding.
We have

(M(1),8,T) = SL(3,2).

Hence, there is no proper subgroup of SL(3,2) that can be used to encode Fy in
the above way. We additionally note that S; is the smallest symmetric group in
which SL(3,2) can be embedded since SL(3,2) contains an element of order 7. For

instance, the following element has order 7:

— o o
—_ = O
o = =

An interesting question is whether there are “smaller” or “simpler” groups than S;

2.1 Algebraically Homomorphic Cryptosystems 14

and SL(3,2) that allow to encode the field Fy.

From the proof of Theorem 2.1.1 we obtain directly the following corollary.

Corollary 2.1.3. The following statements are equivalent:

1. There exists an algebraically homomorphic encryption scheme on (Fg, +, -).

2. There exists a homomorphic encryption scheme on the special linear group

(SL(3,2),-).

Remark 2.1.4. In exactly the same way as in the proof of Theorem 2.1.1 it is
possible to encode the finite field (IF,, +,-) in the special linear group (SL(3,p),-).

Homomorphic encryption schemes on groups have been extensively studied. For
instance, we have homomorphic schemes on groups (Z/p7, +), for M being a smooth
number (e. g., [45, 8, 62]), for M = pq being an RSA modulus [67, 42|, and for groups
((Z/n7z)*,-) where N is an RSA modulus. All known efficient and secure schemes
today are homomorphic on abelian groups, however S; and SL(3,2) are non-abelian.
Sander, Young and Yung [77] had asked explicitly whether there is a homomorphic
encryption scheme on non-abelian groups. The reduction above motivates that this
is indeed an important question and that non-abelian groups should be studied from
this perspective.

Unfortunately, we can not describe an efficient homomorphic encryption scheme on
a non-abelian group here either. Although non-abelian groups had been previously
used to construct encryption schemes (|58, 66, 82, 49|) the resulting schemes were
not homomorphic in the sense that we need for computing efficiently on encrypted
data (see Chapter 3).

In [49] Grigoriev and Ponomarenko propose a new definition of homomorphic cryp-
tosystems on which they base a method to construct homomorphic cryptosystems
over arbitrary finite groups including non-abelian groups. Their construction method
is based on the fact that every finite group is an epimorphic image of a free product
of finite cyclic groups. It uses existing homomorphic encryption schemes on finite
cyclic groups as building blocks to obtain homomorphic encryption schemes on arbi-

trary finite groups. Since the ciphertext space of the so obtained encryption scheme

2.2 Applications and Properties of Homomorphic Cryptosystems 15

is a free product of groups an exponential blowup of the ciphertext lengths during
repeated computations follows. The reason is that the length of the product of two
elements = and y of a free product is in general the sum of the length of z and
the length of y. Hence their technique suffers from the same drawback as before
and thus does not lead to an efficient cryptosystem. Note that using this construc-
tion it is possible to construct a homomorphic encryption scheme on the symmetric
group S7 and on the special linear group SL(3,2). If we combine this with Theorem
2.1.1 we can construct an algebraically homomorphic cryptosystem on the finite field
(Fy, +,). Unfortunately, the exponential blowup owing to the construction method
in the homomorphic encryption scheme on S; and on SL(3,2), respectively, would
lead to an exponential blowup in [Fy and hence leaves the question open if an efficient

algebraically homomorphic cryptosystem on Fy exists.

In [50] Grigoriev and Ponomarenko propose another method to encrypt arbitrary
finite groups homomorphically. This method is based on the difficulty of the mem-
bership problem for groups of integer matrices, while in [49] it is based on the
difficulty of factoring. However, as before this scheme is not efficient. Furthermore,
in [50] an algebraically homomorphic cryptosystem over finite commutative rings is

proposed, but owing to its immense size it is infeasible to implement.

2.2 Applications and Properties of Homomorphic

Cryptosystems

An inherent drawback of homomorphic cryptosystems is that attacks might ex-
ploit their additional structure. For instance, using plain RSA [74| for signing, the
multiplication of two signatures yields a valid signature of the product of the two
corresponding messages. Although there are many ways to avoid such attacks for
instance by the application of hash functions, the use of redundancy or probabilistic
schemes, this potential weakness leads us to the question why homomorphic schemes
are used in some situations instead of conventional cryptosystems. The main reason
for the interest in homomorphic cryptosystems is its wide application scope. There

are theoretical as well as practical applications in different areas of cryptography.

2.2 Applications and Properties of Homomorphic Cryptosystems 16

In the following we list some of the main applications and properties of homomor-
phic schemes and summarise the idea behind them. We will describe some of these

applications in more detail throughout the following chapters.

e Protection of mobile agents:
One of the most interesting and demanding application of homomorphic cryp-
tosystems is the protection of mobile agents. As it was shown in Theorem 2.1.1
a homomorphic encryption scheme on a special non-abelian group would lead
to an algebraically homomorphic cryptosystem on the finite field Fy. Since
all conventional computer architectures are based on binary strings and only
require multiplication and addition, such homomorphic cryptosystems would
offer the possibility to encrypt a whole program so that it is still executable.
Hence, it could be used to protect mobile agents against malicious hosts by

encrypting them. More details about this idea can be found in [76].

— Computing with encrypted functions:

This is a special case of the protection of mobile agents. In such scenar-
ios a secret function is publicly evaluated in such a way that the function
remains secret. Using homomorphic cryptosystems the encrypted func-
tion can be evaluated which guarantees its privacy. This will be further

discussed in the next chapter.

— Computing with encrypted data:
Homomorphic schemes offer the possibility to compute publicly with se-
cret data such that it remains secret. This can be done by encrypting the
data in advance and then exploiting the homomorphic property to com-
pute with encrypted data. The area “computing with encrypted data”
can be shown to be equivalent to the case of “computing with encrypted
functions”. The idea behind it will be further explained in the following

chapter.

e Multiparty computation:
In multiparty computation schemes several parties want to compute a com-
mon, public function on their inputs while keeping their individual inputs

private. This belongs to the area of “computing with encrypted data”. Usually

2.2 Applications and Properties of Homomorphic Cryptosystems 17

in multiparty computation protocols we have a set of n > 2 players whereas
in computing with encrypted data scenarios n = 2. Furthermore, in multi-
party computation protocols the function that should be computed is publicly
known, whereas in the area of “computing with encrypted data” it is a private
input of one party. A protocol for multiparty computations will be given in
Section 4.6.

e Secret sharing schemes:
In a secret sharing scheme several parties share a secret so that no party can
reconstruct the secret by itself, but if many parties cooperate they are able to
reconstruct it. Here, the homomorphic property implies that the composition

of the secrets’ shares are shares of the secrets’ composition.

e Threshold schemes:
Secret sharing schemes and multiparty computation schemes are examples of
threshold schemes that are based on the homomorphic property. An example

of a threshold decryption scheme is given in Chapter 4.

e Zero-knowledge proofs:
This is a fundamental primitive of cryptographic protocols and thus an exam-
ple of a theoretical application of homomorphic cryptosystems. Zero-knowledge
proofs are used to prove knowledge of some private information. For instance,
consider the case where a user has to prove his identity to a host by logging in
with his account and private password. Obviously, in such a protocol the user
wants his private information (i. e., his password) to stay private and not to be
leaked during the protocol. Zero-knowledge proofs guarantee that the protocol
communicates exactly the knowledge that was intended, and no (zero) extra
knowledge. An example of an honest-verifier zero-knowledge proof that uses
the homomorphic property is given in Section 4.5.3. For further examples of

zero-knowledge proofs using the homomorphic property see [22].

e Election schemes:
In election schemes the homomorphic property provides a tool to obtain the
tally given the encrypted votes without decrypting the individual votes. In

Section 4.7 we will explain this further.

2.2 Applications and Properties of Homomorphic Cryptosystems 18

e Watermarking and fingerprinting schemes:

Digital watermarking and fingerprinting schemes embed additional informa-
tion into digital data. The homomorphic property is used to add a mark
to previously encrypted data. In general watermarks are used to identify the
owner /seller of digital goods to ensure the copyright. In fingerprinting schemes
the person who buys the data should be identifiable by the merchant to ensure
that data is not illegally redistributed. Further properties of such schemes can
be found in [70] or [2].

e Oblivious transfer:
Oblivious transfer is another cryptographic primitive. Usually in a two-party
1-out-of-2 oblivious transfer protocol the first party sends a bit to the second
party in such a way that the second party receives it with probability 1/2,
without the first party knowing whether or not the second party received the
bit. An example of such a protocol that uses the homomorphic property can
be found in [60].

e Commitment schemes:
Commitment schemes are another fundamental primitive of cryptographic pro-
tocol theory. In a commitment scheme a player makes a commitment. He is
able to choose a value from some set and commit to his choice such that he
can no longer change his mind. He does not have to reveal his choice al-
though he may do so at some later point. Commitment schemes that use the

homomorphic property will be introduced in Section 4.8.

e Lottery protocols:

Usually in a cryptographic lottery a number pointing to the winning ticket has
to be jointly and randomly chosen by all participants. Using a homomorphic
encryption scheme this can be realized as follows: Each player chooses a ran-
dom number which he encrypts. Then using the homomorphic property the
encryption of the sum of the random values can be efficiently computed. The
combination of this and a threshold decryption scheme (like e.g. proposed in
Section 4.4) leads to the desired functionality. See [41] for further details.

2.2 Applications and Properties of Homomorphic Cryptosystems 19

o Mix-nets:
Mix-nets are protocols that provide anonymity for senders by collecting en-
crypted messages from several users. For instance, one can consider mix-nets
that collect ciphertexts and output the corresponding plaintexts in a randomly
permuted order. In such a scenario privacy is obtained by requiring that the
permutation, matching inputs to outputs, is secret to anyone except the mix-
net. In particular, determining a correct input/output pair, i.e., a ciphertext
with corresponding plaintext, should not be more effective then guessing one
at random. A desirable property to build such mix-nets is re-encryption. As
will be mentioned below, this is provided by the use of homomorphic cryp-

tosystems as building block. For instance, see [48] and [31] for details.

Examples of useful properties of homomorphic schemes are the following:

e Re-randomizable encryption/re-encryption:

Re-randomizable cryptosystems (see e. g. [51]) are probabilistic cryptosystems
with the additional property that given the public key k. and an encryption
Ek (m,r) of a message m € M under the public key k. and a random number
r € Z it is possible to efficiently convert Ej_(m,r) into another encryption
Ex, (m,7") that is perfectly indistinguishable from a “fresh” encryption of m
under the public key k.. This property is also called re-encryption.

Obviously every probabilistic homomorphic cryptosystem is re-randomizable:
Without loss of generality we assume that the cryptosystem is additively ho-
momorphic. Given Ej (m,r) and the public key k. we can compute Ej, (0, ")

for a random number " and hence compute
Add(Ey, (m, 1), By, (0,7") = By (m +0,r") = Ey (m, '),

with 7’ being an appropriate random number. Note that this is exactly what

a blinding algorithm (see Definition 2.0.7) does.

e Random self-reducibility:
Along with the possibility of re-encryption comes the property of random

self-reducibility concerning the problem of computing the plaintext from the

2.2 Applications and Properties of Homomorphic Cryptosystems 20

ciphertext. A cryptosystem is called random self-reducible if any algorithm
that can break a non-trivial fraction of ciphertexts can also break a random
instance with significant probability. This property is further discussed in e. g.
[32] or [77].

e Verifiable encryptions/fair encryptions:
If an encryption is verifiable it provides a mechanism to check the correctness
of encrypted data without compromising secrecy. For instance, this is use-
ful in voting schemes to convince any observer that the encrypted name of a
candidate, i.e., the encrypted vote is indeed in the list of candidates. A cryp-
tosystem with this property that is based on homomorphic encryptions can
be found in [71] (see also Section 4.7). Note that in the literature verifiable

encryptions are also called fair encryptions.

Chapter 3

Computing with Encrypted Data
and Encrypted Functions

The search for an efficient algebraically homomorphic cryptosystem is a long stand-
ing open problem. A major motivation is the protection of mobile agents and the
secure computation with encrypted functions or encrypted data as already men-
tioned in Section 2.2. Until now no efficient algebraically homomorphic scheme has
been found. All candidates for those schemes suffer from the same drawback (see
Section 2.1): they have to deal with an exponential blowup in the ciphertext length
during repeated multiplication. This is the main reason why their application scope
is restricted to functions that can be implemented by NC! circuits, i. e., circuits of
logarithmic depth. Thus other methods are needed to enable secure computations.
We come up with a new approach for this problem. Instead of developing a new
scheme or considering circuits we take a closer look at branching programs as a
computational model for functions. Using existing efficient additively homomorphic
cryptosystems like Paillier’s cryptosystem [67] provides a tool to encrypt branching
programs in order to enable secure computations. Thus in this chapter we suggest a
provably secure and non-interactive method to compute with encrypted data and en-
crypted functions that are given by polynomial branching programs. This is the first
solution using branching programs we are aware of. Furthermore, it is an enlarge-
ment of the class of functions that are encryptable efficiently and non-interactively,

in such a way that they are still executable, from NC" to polynomial branching

3.1 Branching Programs 22

programs [4]. Moreover, we define a new property of homomorphic cryptosystems
that we call key swapping. This property offers new possibilities in “computing with
encrypted data” and “computing with encrypted functions” scenarios. Finally, we

present two examples of homomorphic schemes supporting key swapping.

3.1 Branching Programs

In this section we introduce the basic concepts of branching programs that we will
need in the following. The definition we present was recently introduced by Cramer
et al. in [26]. It refers to branching programs over arbitrary rings. It includes the
notion usually given in literature, e.g., in [83] as a special case. Therefore the new
definition is more powerful which induces that known facts still hold for the new

definition and that bounds might be improved.

Definition 3.1.1. A branching program of size A on inputs z1,...,x, € R", where
R is an arbitrary ring, is a quadruple BP = (G,w,s,t) where G = (V,E) is a
directed acyclic graph with V' being the set of vertices and E being the set of edges,
w is a labelling function and s and ¢ are two special vertices of the graph.

We may assume that V' = {s = 1,...,t = A} and that for each edge (i,j) € E it
holds that ¢ < j. Let w assign to each edge a degree-1 polynomial over R in the

input variables, i.e.,

w(i,j) = Zalkxk + b, ap,bp e Rand 1 <[< A2,
k=1
For each directed path ¢ = (i1, s, . .., i) from iy to i) in G, the weight of ¢ is defined
to be the product w(iy,iz) - w(iz,i3) - - - w(ig_1,). W(i,j) denotes the total weight
of all directed paths from i to j for i < j (viewed as a function of z = (z1,...,2,)).
That is

k—1
W(i.j) =Y 11 wlim:ims1)
#(i,5) m=1

where ¢ = i; and j = i and ¢(4,j) denotes a path from i to j.

3.1 Branching Programs 23

The function f: R® — R computed by a branching program BP is defined by
flz) = WL A)(x) = W (s, t)(x).

Example 3.1.2. Let R be a commutative ring with 1. As an example of a branch-
ing program of size 5 on inputs w1, xs,r3, x4 consider the following graph, where

Ty, X2,T3,Ty4,a, be R

We have
w(l,2) =z, w(2,3) =x3, w(3,5) =a+ x4, w(l,4) = x4, w(4,5) = x9 + bxs.
Hence, the weight of the path ¢ = (1,4,5) is defined to be
w(l,4)w(4,5) = x4 - (x9 + bx3).

The total weight W (i, j) equals zix3(a + x4) + z4(x9 + bzr3) and thus the function
computed by BP is

f(x) = z123(a + z4) + x4(22 + b23).

If R is a commutative ring with 1, the computation of f(x) can be mapped to the

computation of the determinant of a matrix in the following way (see e.g. [53]):

Let « = (x1,...,2,) € R™ There is an adjacency matrix H(x) belonging to
each branching program BP = (G,w,s,t) where G = (V| E). If we assume that
V ={s=1,...,t = A} and that for each edge (i,j) € E it holds that i < j, then
H(z) is an A X A matrix where entry (i,) equals 0 if (i,7) ¢ E and w(i, j) other-
wise. Since G is a directed acyclic graph H(zx) is an upper triangular matrix which
is nilpotent. If r is the number of edges of the longest path from s = 1tot = A
then H(z)"™ = 0. When no misunderstanding is possible we will write H instead
of H(x).

Let k-path denote a path that consists of exactly k edges. The entry (i,j) of the

3.1 Branching Programs 24

power H* equals the total weight of all directed k-paths from i to j. Hence,

H* = i HF = Z H*
k=0 k=0

is the matrix whose (7,7) entry equals W (i, 7). Since H" "' = 0 we obtain that

(I-H)H*=H(I-H)=) H'-) H"' =H'=1
k=0

k=0
= H*=(I—-H)"

Furthermore, the upper right entry (1,\) = (s,t) of H*, denoted by Hj ,, equals
W (1,\)(x). This determines the output f(z) of the function f: R" — R computed
by BP. To compute the entry (1,\) of H* we can apply Cramer’s rule. Hence

det M

Hiy =W =(I-H) ia= PUAHM,

where M denotes the submatrix of I — H obtained by deleting the first column and
the last (A-th) row. Since H is an upper triangular matrix we have det(/ — H)=1.

Hence
Hiy = (=D)M'det M = f(x).

Remark 3.1.3. If f is a Boolean function then this determinant equals either 0 or
1, i.e., to compute the function value it is sufficient to decide if the matrix M is of
full rank.

Example 3.1.4. The adjacency matrix of the graph of Example 3.1.2 looks as

follows:
0 1 0 a4 0
0 0 z3 O 0
H=10 0 0 0 a+4mxy
0 0 0 0 x9+40bxs
0 0 0 O 0

3.1 Branching Programs 25

0 0 zxz 0 zy(xe+ bxs)

00 0 0 z3(at+my)
=H=]100 0 0 0 ,
00 0 0 0
00 0 0 0
0 0 0 0 zxs(a+mxy)

00 0O 0
H'=10000 0 JHY=0.

0000 0

00 0O 0

Since H* := Y H*, it follows that

Hi s =W(1,5)(7) = z123(a + 24) + 24(72 + bx3) = f(7).

The reason to look closer at branching programs is that every function f can be com-
puted by a branching program, and many "natural" function families (in particular
regular languages) can be computed by linear-size branching programs. Further-
more, the branching program size is no larger than the corresponding formula size
of f [26]. However, polynomial-size branching programs are probably not powerful
enough to efficiently compute all polynomial-time computable functions. This is
owing to the fact that the power of polynomial-size branching programs coincides

with that of different variants of log-space computation [54].

Remark 3.1.5. The upper bound for the size of branching programs computing
Boolean functions f : {0,1}" — {0, 1} is exponential. For special classes of functions
a smaller bound can be proven. An example of functions that can be computed by
linear-size branching programs are Boolean functions f(z) =1+3 ;¢ . [Lics @i
Hence, f(z) = [[;_,(1 + z;) and there exists a branching program of size n + 1

computing f.

Example 3.1.6. Let

f(xl,l’g,l'g) =14+ Z H:CZ = 1+l’1 + X9 + X3+ XT1T2 + X1T3 + ToT3 + T1XT2T3,
JC{1,2,3} i€J

3.2 Computing with Encrypted Data 26

where z; € {0,1} for 1 <7 < 3. Then

f(l‘1,$2,$3) = 1+£L’2+$3+$2$3+$1(1+x2+33'3+.T233'3)
= <1+SL’2+1’3+JI21’3)(1+(E1)
= (I+zs+a(l+z3)(1+z) = ((1+23)(1 4+ 22))(1 + 21).

The following branching program of size 4 computes f:

. I+x, . 1+x, . 1+x5 .

Remark 3.1.7. An interesting application of branching programs - namely the
construction of so-called randomizing polynomials - was introduced in [54, 55| and
further generalised in [26]. These randomizing polynomials are a representation
of functions by low-degree polynomials which is especially useful for the design of

secure multiparty computation protocols.

3.2 Computing with Encrypted Data

In this section we consider an important application of homomorphic cryptosystems:
computing with encrypted data. We first give an introduction to this problem by
describing it and giving examples. Then we develop a protocol that solves the
underlying problem. Our protocol is non-interactive, efficient for polynomial-size
branching programs, and provably secure. It is an improvement to known solutions

in the literature.

Consider the following Scenario 1. It was introduced as secure circuit evaluation
in [1] (see also [85, 46]) and it can be found in the literature with several different
notions, e.g., in [77, 16]. Note that in Section 3.3 we consider a scenario known as

computing with encrypted functions, that is equivalent to Scenario 1.

Scenario 1:
Alice has a function f : R® — R that she does not want to reveal and some
secret inputs x1,...,x; € R¥. Bob has some secret inputs v, ..., ¥, € R™ where

k +m = n. Alice is willing to compute f(z1,..., %k, Y1, --,Ym) = f(x,y) on her

3.2 Computing with Encrypted Data 27

inputs z;,1 < i < k and Bob’s secret inputs y;,1 < j < m so that only Bob learns
the output of the function. Bob and Alice should learn nothing about the other ones

input values besides the information that the output reveals.

Variants:

1. For some applications we could think about f being a public function (see e. g.

|85, 46]). The solution given below can also be used to solve this scenario.
2. In some cases Alice should learn the output, too.

3. Only Alice should learn the output f(z).

Remark 3.2.1. Obviously Alice’s inputs can also be seen as a fixed part of her

function f. Hence k = 0 is also possible.

Example 3.2.2. Now we give examples of the above scenario and its variants.

1. As an example of Scenario 1 we could think about Alice having an efficient
algorithm for factoring that she uses to earn money with and thus wants to
keep private. Bob has an input that he wants to have factorized. Alice offers

Bob to factor his input for money.

2. As a typical example of the first variant we could think about Alice wanting

to sell her computing power to Bob for a public algorithm.

3. If f is public - as in Variant 1 - and both Alice and Bob should learn the
output - as in Variant 2 - we have the scenario usually considered in 2-party
computation protocols. As an example we consider f as being the function
that computes the maximum of two inputs. Alice and Bob now use f in order
to decide who of them earns more money. Multiparty computation solutions
for such a scenario differ from our solution since in the former one the roles
of Alice and Bob are usually symmetric, i.e., the computations they have to
perform are nearly the same. See Section 4.6 for such a multiparty computation

protocol and further details.

4. Alice wanting to do a consumer-opinion poll is an example of Variant 3. Here,
Alice collects input values of Bob (and other entities) to evaluate them pri-

vately.

3.2 Computing with Encrypted Data 28

Clearly Scenario 1 can be solved with general protocols for secure function evaluation
(see e.g., |85, 46]). However, we would like to have a solution that is non-interactive,
i.e., Alice and Bob should have only one round of data exchange and should not
have to communicate further during the evaluation of the function. Furthermore,
it would be optimal to provide a solution in which the workload that Alice has to
perform depends only on the efficiency of the underlying encryption scheme, but not
on the “size” of f, i.e., the size of a circuit computing f.

Some non-interactive solutions have been described in the literature, see e. g. [77, 16].
However, none of them offers independency of the “size” of f. The best known non-
interactive solution to our scenario is described by Sander et al. in [77]. They
described a protocol using novel constructions which requires only one round of in-
teraction to evaluate NC! circuits and which gives Bob computational privacy for
his input y and Alice information-theoretic privacy for her function f. However
Alice’s workload depends exponentially on the depth d of the circuit C. Therefore,
this solution is bounded to circuits of logarithmic depth - known as NC! circuit.
Obviously, a natural candidate to solve both requirements (no interaction and in-
dependency of the size of f) would be a probabilistic, algebraically homomorphic
encryption scheme since it provides a tool for computations on encrypted data. How-
ever, an efficient and secure algebraically homomorphic scheme has not been found
yet. As already mentioned in Section 2.1 all known schemes have to deal with an
exponential blowup during repeated computations. That is why their application
scope is restricted to functions that can be implemented by NC* circuit. In [5] it was
proven that any Boolean circuit of logarithmic depth can be efficiently simulated by
a circuit over an arbitrary finite nonsolvable group. Hence the proposed encryptions
of non-abelian groups of Grigoriev et al. in [49, 50| (see Section 2.1) can be applied
to obtain encryptions of NC* circuits. However owing to the exponential blowup of
their scheme they cannot do any better than NC! circuits. Thus, another approach

is necessary to enlarge the class of encryptable functions.

Our solution presented below for Scenario 1 is based on an idea of Ronald Cramer.
It has two ingredients. We assume that the function f is given by a branching
program in the form of the corresponding adjacency matrix. Then we encrypt that
matrix using a probabilistic, additively and scalar homomorphic encryption scheme

(see Chapter 4 for an example).

3.2 Computing with Encrypted Data 29

To prove the security of our solution formally we have to guarantee that R is a finite
field, although in practice we usually may assume that the ring Z/N7 where N is the
product of two large primes behaves like a finite field (see Remark 3.2.3). Thus we
restrict the considered scenario to the case where the function f : R® — R is defined
on a finite field R. Furthermore, since all known efficient additively homomorphic
encryption schemes are defined on Z/;7 for some k € N it is wise to restrict R to
being a prime field. Thus we may use probabilistic, additively homomorphic cryp-
tosystems as the Goldwasser-Micali scheme [45] on M = (Z/27,,+), or schemes as
the Okamoto-Uchiyama scheme [65] on M = (Z/y7,+) with p being prime. If addi-
tively and scalar homomorphic cryptosystems will be developed on arbitrary finite

fields - rather than prime fields - then our solution can immediately be generalised.

Remark 3.2.3. Tt is also possible to consider functions f : R" — R where R = Z/N7,
and N = pq is the product of two large primes. Given x € Z/N7 the probability
that ged(x, N) =1 is % = [Ln1 - }D) =(1- %)(1 - %) Since this probability
is negligibly close to 1, almost all elements are invertible. Thus, in practice we may
assume that Z/nN7 behaves like a finite field. However, in this case the security
of our protocol can not be formally proven. Examples of probabilistic, additively
homomorphic schemes with M = Z/nN7 are Paillier’s scheme [67] and the elliptic

curve Paillier scheme [42] which we will describe in Section 4.2.

Notation 3.2.4. Let M be a matrix over the message space M and Eg : M — C be
an encryption function under a public key k. = B. The notation Fz(M) means that
E'p is applied on each entry of M and that the result is written in a matrix again.
When applying the algorithms Add or Mixed-Mult on such ciphertext matrices, we

apply them on each entry separately.

For a better understanding we first give a basic version of our solution, and then

improve its efficiency afterwards.

Basic Solution:

1. Bob encrypts his input values y;,1 < j < m with his public key B using a
probabilistic, additively homomorphic encryption scheme E : M — C where
M = (R,+) and R is a prime field. We denote such encryptions by Ep(y;)

where 1 < 7 < m. Bob sends these encryptions to Alice.

3.2 Computing with Encrypted Data 30

2. To compute an output f(z,y) that can only be read by Bob given his encrypted

inputs Ep(y;),1 < j < m and Alice’s inputs z;,1 < i < k, Alice does the

following:

(a)

Let BP = (G,w,1 = s, A = t) be a branching program of size A com-
puting Alice’s function f. Let H be the corresponding A x A adjacency
matrix. The entries of H are degree-1 polynomials over R in the input
variables z; and y;, i. e., they equal Z?Zl a;zi +b, a,bp € R, 1 <1<\
where 2z, € {z;,y;]1 <i<k,1<j<m}, 1 <h<n (see Section 3.1).

Alice deletes the first column and the last row of H and obtains a matrix
H~. She replaces each entry > " a;z + b of H- with its encrypted
entry Eg(>_" a;z + by) to obtain an encrypted matrix E(H ™). Note
that this can be done owing to the homomorphic property of the encryp-
tion scheme: If z, € {z;|]1 < i < k}, i.e., if the entry of the matrix H~
is a polynomial in her input, then Alice is able to compute Ep(a;,z2p)
directly using Bob’s public key B. Note that Alice knows a;, as part
of her function f. If z, € {y;|1 < j < m}, i.e., the entry depends on
Bob’s input, then given encryptions Ep(y;) of Bob’s inputs an encryp-
tion Ep(ajpz,) can be computed using the algorithm Mixed-Mult of the

encryption scheme to obtain
Mixed—Mult(alh, EB(yJ)) = EB(alhyj) = EB((lthh),

for1 < h <n, 1 <1<). Then given the encryptions Eg(ay,zs)
she encrypts each b; and uses the algorithm Add to get an encryption
Ep(> 7" | @iz + b). Thus she is able to compute an encryption E(H™)

of her (reduced) adjacency matrix (see Section 3.1).

Alice deletes the first column and the last row of the A x \ identity matrix
I to obtain the matrix /~. Then she computes an encryption Fg(I~) of

I~ by encrypting each entry 0 and 1 using Bob’s public key.

Due to the homomorphic property of the encryption scheme Alice is able
to compute Ep(I~ — H™) =: Eg(M) entry by entry (see Section 3.1)

3.2 Computing with Encrypted Data 31

(e)

Add(Eg(I7), Mixed-Mult(—1, Eg(H™))) = Eg(I~ — H™) = Eg(M)

where the algorithms Add and Mixed-Mult are applied on each entry.

To blind, i. e., to hide the entries (Eg(M));; of this matrix, Alice chooses
two random (A — 1) x (A — 1) matrices S, T over R, so that det(S) and
det(T") are units in R. If f is not a Boolean function then Alice chooses
S, T with det(S) = (det(T"))~!. Then she computes Eg(S - M -T) Due to
the additively and scalar homomorphic property of the encryption scheme

this computation can be done: It is

(Ep(SMT)); Zzszk My - tj) = Zzszk b M)

Alice uses the algorithm Mixed-Mult to compute the values
MiXGd—Mult(S@k . tl,ja EB(ka)) = EB(Si,k . tl,j . mk’l).

Note that Alice knows the values (s;) - ;) € R. Then she uses the
algorithm Add to obtain Eg(SMT)); ;. Since R is a field Eg(S - M - T)
is an encryption of a random matrix of the same rank as M (see Lemma
3.2.7).

Alice sends the encryption Eg(S - M -T') to Bob.

3. To obtain f(x,y) Bob uses his secret key to decrypt the entries of Eg(SMT)
and thus he obtains SMT'.

If f is a Boolean function it is sufficient to compute the rank of this decrypted

matrix using an efficient algorithm. If it equals A — 1, the output of f(z,y)

equals 1, otherwise 0 (see Remark 3.1.3).

If f was defined over a prime field Z/,7 with p # 2 then Bob applies an efficient

algorithm to compute

det SMT = det M = (-1)**'(I — H){} = f(=)

3.2 Computing with Encrypted Data 32

to obtain the output of the function (see Section 3.1). Note that it holds that
det(S) = (det(T)) ™.

Remark 3.2.5. If Fg(M) was nonsingular then one random nonsingular matrix
would have been sufficient in Step 2d to blind the entries (Eg(M));;, but since
Alice does not know the secret key, she is not able to decrypt and to compute the

rank.

The following image summarises the idea of our solution:

Alice Bob
f,x=(Xp5 Xg) ©) Y=(Yies Ym)
%)
f(x, Eg(y)) = Eg(f(x,y)) E,(f(x.y) > Dy (Ep(f(x,y) = f(x,y)

Figure 3.1: Computing with encrypted data

In other words the basic idea of our solution is the following: Alice has a private
function f and a private input x. Bob has a private input y that he encrypts using
his public key B and sends the encryption to Alice. She evaluates her function f
on her private input and Bob’s encrypted input. She modifies the result to hide
her function and obtains an encrypted “function value” Eg(f(z,y)). She sends this
value back to Bob. He is now able to decrypt it using his secret key and to compute
the output f(z,y).

Remark 3.2.6. A similar solution can be given for counting and counting modulo-p
branching programs. These branching programs compute functions f : {0,1}" — N
and f:{0,1}" — Z/p7, respectively (see [53, 54| and [55] for definitions).

To improve efficiency of our solution we slightly modify it in the following way:
We keep the cleartext values as long as possible to reduce the computational com-
plexity since usually additions and multiplications of cleartext values are more effi-

cient than the usage of the algorithms Add and Mixed-Mult on encrypted values.

3.2 Computing with Encrypted Data 33

Improved solution:

1. As before Bob encrypts his inputs y;,1 < j < m with his public key using

a probabilistic, additively homomorphic encryption scheme, and sends these

encryptions Ep(y;) to Alice.

2. To compute an output f(x,y) that can only be read by Bob given the encrypted

inputs Ep(y;), 1 < j < m and Alice’s inputs z;, 1 < i < k, Alice now does

the following:

(a)

First, Alice deletes the first column and the last row of the adjacency
matrix H and obtains a matrix H~. Then she replaces every addend
aipzn, where z, € {y;|1 < j < m} of the entry """ | a;z; + b in H~ with
its encrypted entry Ep(a;,zp,) using Bob’s public key and the algorithm
Mixed-Mult. Alice keeps the addends b, and the addends a;,z, where
z, € {x;]1 < i < k} as they are. Denote by Ep(H~) the matrix she
obtains. Since this matrix is not entirely encrypted we do not denote it
by Eg(H™).

Alice deletes the first column and the last row of the A x A identity matrix

I to obtain the matrix 1.

Then she computes Eg(I~ — (H™)) = Eg(M) entry by entry. This is
done by using the algorithms Add and Mixed-Mult to compute the en-
crypted values whereas the remaining cleartext values in this matrix can
be computed directly. Thus some of the matrix’s entries are encrypted,

some are partly encrypted and the remaining entries are cleartext values.

To blind her matrix H Alice chooses two random (A—1) x (A—1) matrices
S, T over R, so that det(S) and det(T") are units in R with det(S) =
(det(T))~!. She can now compute Ez(SMT): As before we have

(EB(SMT))ZJ = EB(Z Z SiJg . tw‘ . ka).
l k

Now some of the values my,; € E (M) are encrypted and others are partly

encrypted or cleartext values. To compute (Ep(SMT));; she computes

3.2 Computing with Encrypted Data 34

the products and sums of the cleartext values and uses the algorithms
Mixed-Mult and Add to compute the other products and sums. After
that she encrypts the remaining cleartext values of this matrix and uses
the algorithm Add to obtain the same matrix Eg(SMT) as in the above

basic solution.

(e) She sends Ep(SMT) to Bob.

3. Bob does the same as above to obtain f(z,y).

Efficiency:

Considering the communication complexity our protocol is optimal since it is non-
interactive, i. e., it needs just one round of communication. Concerning the computa-
tional complexity it depends mainly on the size of the underlying branching program
as well as on the efficiency of the homomorphic cryptosystem. Further computations
like the selection of random matrices in Step 2d or the computation of the deter-
minant or rank in Step 3 can be done efficiently. Obviously, the efficiency of this
protocol is restricted to functions that are computable by polynomial-size branching
programs. The class of such functions that are computable by branching programs
of polynomial size includes the class of NC* functions. Since known results in the
literature are restricted to NC* functions, our result is an improvement (see e.g.

[77]).

Correctness:

The correctness of our protocol follows immediately from the results presented in
Section 3.1, from the properties of the algorithms Add and Mixed-Mult, from the
multiplicativity of the determinant, i.e., det SMT = det S - det M - detT" as well as
from the fact that multiplication by random nonsingular matrices does not change
the rank.

Security:

One possible “attack” that Alice is able to perform is denial of service, by not send-
ing any value back to Bob. However, in scenarios where Alice wants to get paid for
sending Bob the encrypted output, this attack is unlikely.

Another attack would be that Alice sends a wrong result to Bob. This is a gen-

eral problem of such protocols although in many scenarios Bob is able to verify the

3.2 Computing with Encrypted Data 35

correctness of the output. To avoid such an attack Bob could ask Alice for a zero-
knowledge proof to verify the correctness of her computation (see Remark 3.3.4).
What we consider here is security concerning the privacy of Bob’s inputs and Alice’s
function (and her inputs as part of her function). It follows immediately that the
privacy of Bob’s inputs is equivalent to the security of the underlying encryption
scheme since Alice only obtains Bob’s encrypted inputs. If the homomorphic cryp-
tosystem is semantically secure such as, e. g. Paillier’s scheme, then Alice is not able
to gain any information about Bob’s inputs. Furthermore, since Alice is not able
to decrypt the entries of the matrices, she is not able to compute the rank or the
determinant of SMT and thus of M, i.e., she is not able to compute the output
flz,y).

Bob receives an encryption of a random matrix SMT of a fixed rank and of a fixed
determinant. Hence he is not able to derive any information about the adjacency
matrix H and thus about Alice’s function f - except its size. (Note that we can
also provide a protocol in which he only gets to know un upper bound of this size,
see Section 3.3). Furthermore, he is not able to decide which entries belong to Al-
ice’s inputs. This argument why Alice’s function remains private will be further

formalized in the following.

We establish the privacy of Alice’s function through the following lemma. It shows
that the matrix Fg(S - M - T) that Alice obtains after blinding her matrix is an
encryption of a random matrix that has the same rank and the same determinant
as M. The entries of this matrix Eg(SMT) are the only values that Bob receives
from Alice. Hence, if this matrix is an encryption of a random matrix, Bob is not

able to gain any extra information about Alice’s function - except its size.

Lemma 3.2.7. Let M be a n xn matrix over F, and let S and 7" be uniform-random
nonsingular n x n matrices with det(7")-det(S) = 1 over F,. Then for fixed M each
possible matrix SMT occurs with the same probability.

Proof. Consider the group G = {(S,T) | det(T")-det(S) = 1} € GL(n,q) xGL(n,q).
This group operates on the set M := {M | M is a n x n matrix over F,} as M —
S - M -T. Note that this operation does not change the determinant and rank of
M € M. Consider the supgroup Gy of G with Gy = {(S,T7) € G | SMT = M}

3.3 Computing with Encrypted Functions 36

and for M € M the subset G.M := {SMT | (S,T) € G} of M. Then the mapping
G/Gy — G.M, (5,T) Gy +— SMT

is a bijection. Due to the equipotency of the orbits G.M and the uniform distribution
of S and T the claim follows. O

In our protocol it is essential that the homomorphic scheme is probabilistic which
guarantees privacy for Bob’s input since Alice is not able to compare different en-
cryptions. This condition is already included in our security analysis above since we
require a semantically secure encryption scheme. Hence, our protocol is as secure

as the probabilistic, homomorphic cryptosystem used.

Remark 3.2.8. If f is a polynomial of degree d that Alice wants to hide, she should
not output more than d values to Bob (or someone else). Otherwise Bob could use

the function values to obtain Alice’s polynomial by Lagrange’s interpolation.

3.3 Computing with Encrypted Functions

We now have a closer look at the closely related problem called computing with

encrypted functions. The scenario is the following:

Scenario 2:

Alice has a function f : R — R and Bob has a secret input z = (x1,...,2,). Bob
is willing to compute f(z) locally on his input z in such a way that only Alice learns
the output of the function. Bob and Alice should learn nothing about the other ones
input besides that what the output reveals. In particular, Alice’s function should

remain secret.

Note that depending on the function f the output f(z) could reveal the entire input

x.
It is also possible to consider the following two variants of this scenario:

Variants:

1. Only Bob should learn the output f(x).

3.3 Computing with Encrypted Functions 37

2. Alice and Bob should learn the output f(z).

Example 3.3.1.

1. As an example of Scenario 2 we could think about a mobile agent f that
collects data x. In this case we would think about Bob’s input x as publicly
known. For instance, Alice wants to book a flight and searches for the cheapest
flight at her desired time. For this purpose she sends a mobile agent to the
servers of different airlines who collects the appropriate data to find out the
cheapest flight. After that it returns to Alice. To protect such an agent against
malicious hosts it is encrypted. See [76] for further details.

If the mobile agent also tells the airline servers the cheapest flight, Variant 2

is implemented.

2. As an example of Variant 1 of Scenario 2 we could think about an efficient
algorithm for factoring that Alice wants to sell to Bob without providing him
with the algorithm. In contrast to Example 3.2.2 this time it should be Bob

who performs most of the computations.

A similar scenario was mentioned by several authors, but with slightly different
notions. For instance, Abadi and Feigenbaum [1] considered a circuit that imple-
ments the function f instead of considering f itself. Such a scenario is called secure
circuit evaluation. Furthermore, Abadi and Feigenbaum pointed to the following
relation between computing with encrypted data (see Scenario 1) and computing

with encrypted functions (see Scenario 2):

“It 1s also clear from this description that the distinction between “data” and “cir-
cuits” is unnecessary. If [Alice] has the ability to hide a circuit, then [she] can also
hide some private data, simply by “hardwiring” it into the circuit. Conversely, in
protocols in which [Alice] has the ability to hide data, [she] can also hide a circuit
through a detour: [Alice] can run the protocol, take the circuit for f to be a universal

circuit, and use an encoding of the circuit [she] wants to hide as input.”

Since we consider branching programs as a computational model for functions in-
stead of circuits, this result can not directly be applied to our case. Furthermore, a

“universal branching program” has not been defined yet.

3.3 Computing with Encrypted Functions 38

We solve Scenario 2 for functions f : R* — R, where R is a prime field in the fol-
lowing way. Note that as before in practice our solution can be generalised to rings

R = Z/N7, where N = pq but where there is no formal proof of security known.

Solution:

1. Alice encrypts the adjacency matrix H belonging to the branching program
that computes the function f. To do so, she uses a probabilistic, additively
and scalar homomorphic encryption scheme on R and encrypts the entries of

H using her public key A. She obtains a “matrix”

0 E(a;?),...,E(a}?),E(bs) ... E(a;™),...,E(al?), E(by)
0 0 ‘

where w(i, j) = Y3_, ai’), + b;i; and X is the size of the branching program.
If (4,7) is not an edge in G she sets ai’j =0b;; =0 for 1 <k <n and encrypts
these values.

Alice sends E4(H) to Bob. Hence, Bob gets to know the size of the branching
program. If we only want him to learn an upper bound of the size then we
can use the matrices U and N defined below in Remark 3.3.2 instead of the
matrices H and M.

2. Bob uses the algorithms Add and Mixed-Mult to compute the matrix

0 E(C0 a7 mi+big) ... E(XL ai @ +biy)
0 0 ' :

: : ECN a) e+ by 1)
0 0 . 0

where x = (z1,...,2,) is his private input. He then computes an encryption
EA(I) of the (A —1) x (A — 1) identity matrix [using Alice’s public key. Let
E4(H(z)~) denote the matrix obtained by deleting the first column and the

3.3 Computing with Encrypted Functions 39

last row of E4(H (x)). Bob is now able to compute
EA(M)=FE4s(I —H(z)") =Add(E4(I), Mixed-Mult(—1, E4(H(z)7))).

To blind the entries of E4(M) and thus to hide his secret input x he chooses
two random nonsingular (A — 1) x (A — 1) matrices S, T over R with det(S) =
(det(T))~! and computes E4(S - M - T). As already described in Section 3.2
this computation can be done using the algorithms Add and Mixed-Mult of
the underlying encryption scheme. Bob sends E4(S - M - T) to Alice.

3. To obtain f(z) Alice has to compute (—1)**! multiplied with the determinant
or if f is Boolean the rank of the decryption of the matrix E4(S - M - T'): She
uses her secret key to decrypt the entries and applies an efficient algorithm

that computes the determinant and rank, respectively.

The image visualizes the idea of our protocol:

Alice Bob

f
EA(f)

DAEA(T))= 1(x) < EA(T(X) Ea(f)X)= BA(F(X))

Figure 3.2: Computing with encrypted functions

Hence, the basic idea of our solution is as follows: Alice has a function f that
she encrypts with her public key A and sends the encryption E4(f) to Bob. Bob
evaluates this encrypted function on his secret input z in such a way that he obtains
an encryption E4(f(z)). Furthermore, he blinds his input and sends the result back
to Alice. Alice is now able to decrypt it using her secret key and to compute the

output of her function f(z).

3.3 Computing with Encrypted Functions 40

Remark 3.3.2. Define a matrix

U:<0 0>’
O H

where H is the adjacency matrix belonging to a branching program that computes
the function f, and O is a r X r zero-matrix. If H is a A X A\ matrix then U is a
(r 4+ A) x (r + A) matrix. Since H is nilpotent U is nilpotent, too. It holds that

O H

and we define U* := Y 7 U*. As before (see Section 3.1) we have U* = (I — U)™*
and det(I—U) = 1. Since the entry (1, \) of H* = Y H* equals the entry (r+1,7+\)

of U*, we have

det N

= QI — 1) =det N = f(z),

r1ran = W(LA)(z)
where N denotes the submatrix of I — U obtained by deleting the (r 4 1)-th column
and the (r + A)-th row. Therefore, the function value f(z) can be determined by
computing the determinant of a larger sized matrix N instead of computing the
determinant of M (multiplied by (—1)"t**1). Hence, instead of using H Alice could
also use the matrix U in our protocol. When encrypting U she would encrypt the
whole upper triangular matrix, i.e., including the zeros in the upper triangular
matrix of U. Then Bob has to compute an encryption of N instead of M and has
to change the sizes of the matrices S and 1" adequately.
The advantage of using U and N instead of H and M is that Bob just learns an
upper bound for the branching program size and not the exact size. Of course, this is

at the cost of additional computing power since the matrices are larger than before.

Remark 3.3.3. In [26] Cramer et al. proposed a way to garble branching programs
which are defined over arbitrary rings. Their technique can also be applied to our
protocol. Since a garbled branching program has a full matrix instead of an upper
triangular matrix as adjacency matrix this would lead to a less efficient protocol

with a slightly changed semantic. Therefore this technique should not be used in

3.4 Key Swapping 41

our protocol.

Security, Correctness, Efficiency:

The correctness, efficiency and security analysis of this protocol is exactly the same
as of the one in Section 3.2. Hence, as before our protocol is provably secure,
non-interactive and efficient for polynomial-size branching programs. This is an

improvement to known result in the literature.

Remark 3.3.4.

1. It is sufficient if the encryption algorithm FE is a symmetric algorithm and
remains secret. For the computations Bob only needs the algorithms Add and
Mixed-Mult. Note that if £/ is symmetric then Alice has to send an encryption
E(I) of the identity matrix I, too.

2. Alice could ask Bob for proving, e.g. in zero-knowledge fashion (see Section
4.5.1), that he knows his input x, that z is a valid input, and that the function
E(f) evaluated on = equals E(f(x)). See [22] for such protocols.

3.4 Key Swapping

In this section we introduce a new property that we call key swapping. We shortly
demonstrate why this property of cryptosystems is useful, especially in the context
of this chapter. Furthermore, we show that there already exist multiplicatively as

well as additively homomorphic, probabilistic cryptosystems having this property.

Definition 3.4.1. Given a cryptosystem (K, F,D,A) on the message space M
where for the ciphertext space it holds that C C M. Let Ej_(m) denote an en-
cryption of a message m € M encrypted with a public key k.. Let a be the public
key of a party A and b be the public key of another party B. The cryptosystem
is called key swapping if there exists an efficient algorithm Key-Swap that given an

encryption E,(Ey(m)) computes an encryption Ey(E,(m)).

A probabilistic, additively and scalar homomorphic encryption scheme that satisfies

key swapping could be used to solve the following Variant 1 of Scenario 2:

3.4 Key Swapping 42

Alice has a function f : R” — R and Bob has an input x € R for f that he wants
to evaluate. Bob and Alice should learn nothing about the other ones inputs, i.e., f
and x should remain secret and only Bob should learn the output f(x). Furthermore,

Bob should do most part of the computation on his own.

Given a probabilistic, additively and scalar homomorphic cryptosystem that satis-
fies key swapping, a solution similar to the ones described in Section 3.2 and Section

3.3 can easily be given. The idea is displayed in the following figure:

Alice Bob

fw X

_ - ()= Ey(f(x))

D (Ey(By(f(X) = Ey(f(x)) T B (oo BB
Bt Dy(Ey(f(0) = f(x)

Figure 3.3: Key swapping

Alice encrypts her function f (i.e., the corresponding branching program) by her
public key a. She sends the encryption E,(f) to Bob, who evaluates it on his input
x to obtain E,(f(x)). He uses his public key b to encrypt the result E,(f(x)) and
obtains Ey(E,(f(x))) = E,(Ey(f(z))) which he sends back to Alice. Alice now uses
her secret key to decrypt it and obtains E,(f(x)) which she sends back to Bob who
is able to decrypt it and to obtain the desired function value f(x).

Obviously Variant 3 of Scenario 1 can be solved analogously.

Remark 3.4.2. Another possibility to solve these scenarios is the following: Given
a function f : R® — R where R is a finite ring. To hide the function value f(z) for
x = (x1,...,2,) € R" we may compute f(z)+ r where r € R is chosen at random.
Then f(x) 4+ r is a random value in R, too.

For instance, in Variant 1 of Scenario 2 Alice could encrypt her function f with
a homomorphic cryptosystem using her public key a and send E,(f) to Bob. If
E,(f)(x) = E.(f(x)) holds, Bob can evaluate the function on his private input x.

Furthermore, he can choose a random value r and compute Add(FE,(f(x)), Eq(r)) =

3.4 Key Swapping 43

E.(f(z) + 7). If he sends this to Alice she is able to decrypt it to obtain f(x) 4 r
which is a random value. If she sends it back to Bob he is able to subtract r to
obtain the function value f(x).

In an analogous manner Variant 3 of Scenario 1 can be solved. There Bob encrypts
his input « with a homomorphic cryptosystem using his public key b and sends the
result E,(x) to Alice. If f(Ey(z)) = Ep(f(x)) holds, Alice can evaluate f(x) + r,
where she chooses r at random, on Ej(z) to obtain E,(f(z) + r). If she sends this
value back to Bob he is able to decrypt it in order to obtain f(z)+ r which is again
a random value. If he sends f(z) + r back to Alice she can subtract her secret,

random value r to obtain the output f(z).

3.4.1 Examples

In this section we present two examples of homomorphic schemes that satisfy key

swapping.

The ElGamal Scheme

The ElGamal scheme [37] was first published in 1984. It is based on the difficulty
of the computation of discrete logarithms. It is a popular example of a probabilis-
tic, multiplicatively homomorphic public-key scheme. Furthermore, it supports key

swapping as we will show below.
The ElGamal cryptosystem works as follows:

Key Generation:

o Generate a large random prime p and a generator g of the multiplicative group
(Z/pz)".

e Select a random integer ;1 < x < p — 2 and compute y = ¢° mod p.

The public key of A is a = (p, g,y) and the secret key is x.

3.4 Key Swapping 44

Encryption:
To encrypt a message m € M = (Z/p7,)* select a random integer 1 < r < p —2 and
compute
¢ = (7,0) = (¢" mod p, m -y" mod p) =: Ey(m,r).
Decryption:

To decrypt E,(m,r) = (v,0) € C where C = (Z/p7)* X (Z/p7,)* compute

—x p—1—x

v =1 =g “"mod p

then
m = (y"%)-d mod p.

Homomorphic Property:

This scheme is multiplicatively homomorphic: If
Eu(my,m1) = (71,01) = (9" mod p,m; - y™ mod p)

and

Eq.(ma,r2) = (72,02) = (¢" mod p, ms - y™ mod p)

then

r1+72 ri+r2

E.(my,1m1)-Eq(ma,) := (g mod p, my -ma-y') mod p) = E,(my-mg, r1+73).
Hence the algorithm Mult can simply be implemented by multiplying the corre-

sponding plaintexts and using a blinding algorithm (see Definition 2.0.7).

Key Swapping:

Given the public keys a = (p,g,y) of a party A and b = (p,¢’,y’) of a party B
where y = ¢® mod p and 3/ = ¢ * mod p with corresponding secret keys z and 2/,
respectively. Note that the prime p should be the same in both keys, i.e., we are
working in the same group, but the generator g may be chosen differently. We
first have to define the encryption under the public key b of a given ciphertext

¢ = (¢" mod p,m - y" mod p) = E,(m,r), i.e., we have to extend the message space

3.4 Key Swapping 45

from (Z/pz)* to (Z/pz)* x (Z/pz)*:

Ey(c,r") = Ey(Ey(m,r),r") = Eu((¢" mod p,m -y mod p),r’)
" mod p,¢" mod p,m - y"y" mod P)

gl
¢" mod p,¢g" mod p,m - g""gmw mod p).

(T‘
7(’

Now we can define the algorithm Key-Swap:

Key-Swap(E, (Ey(m,r')),r) = Key-Swap(g” mod p,¢"" mod p,m - ¢°"¢"*" mod p)
xr /I/T/

= (g'rl mod p,g" mod p,m - g*"g mod p)
= Ey(E,(m,r),7").

So, given E,(Ey(m,r’),r) the algorithm Key-Swap just swaps the first two coordi-
nates of this triple to obtain E,(E,(m,r),r"). This can obviously be done extremly
efficiently.

Given an encryption Ey(E,(m,r),r’) the corresponding secret key to the public key b
can be used to obtain E,(m,r). This is straightforward. An analysis of the security
of the ElGamal scheme and further details can be found in [37].

The Damgéard-Jurik Scheme

Now we give another example of an encryption scheme that is key swapping. This
time it is a probabilistic, additively and scalar homomorphic cryptosystem and hence
can be used to solve the scenarios presented in the last sections. It was recently
published by I. Damgard and M. Jurik [31]. The scheme works as follows:

Key Generation:

e Choose an RSA modulus N = pg = (2p' + 1)(2¢' + 1) with primes p,p’, q, ¢

e Select an element g € @)y where (Qn denotes the group of all squares in

(Z/Nz7.)*. Choose a € Z/r7,, where T = p'q' = |Qn]|.

e Compute h = g® mod N.

3.4 Key Swapping 46

The public key is a := (N, g, h) and the secret key is a.

Encryption:
To encrypt a message m, choose an integer s > 0 so that m € Z/Ns7, and choose a

random 7 € Z/p7, where n = 4°62_ The ciphertext is
E,(m,r) = (¢" mod N, (h" mod N) (N +1)™ mod N**') =: (G, H).
Let L, denote a function with
Ly((N +1)™ mod N**!) = m mod N*.

An algorithm that computes this function, i. e., that calculates the discrete logarithm
with respect to the element (N + 1) is described in [30].

Decryption:
Given a ciphertext ¢ = (G, H) = E,(m,r), s can be deduced from the length of ¢ or

it is attached to the encryption. Then the message m can be found as

m = Ly(H(G*mod N)™™")
= L,((¢°" mod N)V (N +1)"(¢"* mod N)™ ")
= Ly((N+1)™ mod N**1).

Homomorphic Property:
This scheme is additively homomorphic since given E,(mq,7) and E,(mg,rs) we

can compute

E,(mi+mg,r1+75) = (¢ mod N, (K" mod N)V' (N + 1)™*+™2 mod N*)

= Ea(mbrl) 'Ea(mQ,TQ).

Hence the algorithm Add can efficiently be implemented by multiplying the input
ciphertexts and applying a blinding algorithm.

Key Swapping:
Given the public keys a := (N, g, h) where h = g% and b := (N, ¢’, h) where h/ = ¢’
with corresponding private keys a and 3, respectively. Note that N = pg must

3.4 Key Swapping 47

be the same for both public keys. Then the Damgard-Jurik scheme satisfies key
swapping:
We first have to define an encryption of a ciphertext, i.e. we have to enlarge the

message Space:

E.(Ey(m,r"),7) = Eu(¢" mod N, (k" mod N)N"(N + 1)™ mod N**')
= (¢" mod N, ¢" mod N, (h"R" mod N)¥ (N + 1)™ mod N**1).

Then
Ey(E,(m,r),r") = (¢" mod N, ¢" mod N, (h"h"" mod N)™*(N + 1)™ mod N**).

Hence, given E,(E,(m,r’),r) the algorithm Key-Swap can swap the first two co-
ordinates of this triple to compute E,(E,(m,r),r"). To obtain E,(m,r) given an

encryption

Ey(E,(m,r),”") = (¢" mod N,g" mod N, (hrh”"/ mod N) (N +1)™ mod N**1)
= (F,G,I)

we compute

I(G*mod N)™ = (K" mod N)¥ (N + 1)™ mod N**'(¢* mod N)~ '
= (¢*"h" mod N)M(N +1)™ mod N**'(¢*" mod N)~V"

(K" mod N)M (N + 1)™ mod N**!

(¢ mod N)N'(N + 1)™ mod N**!

I
=

Hence (F,H) = E,(m,r) is the desired decryption.

Further properties of this scheme and a proof for its semantic security under two

reasonable assumptions are given in [31].

Chapter 4

A Threshold Version of the Elliptic
Curve Paillier Scheme and its

Applications

The Paillier scheme [67] is an example of a very efficient, probabilistic, additively and
scalar homomorphic encryption scheme based on arithmetics in the ring of integers
modulo N? where N is the product of two large primes. It was published in 1999
and analysed and extended by several authors (such as |31, 19, 30, 18, 20]). One
of these extensions is the elliptic curve Paillier scheme, ECPS for short, which was
recently published by S. Galbraith [42]. The ECPS is a generalisation of Paillier’s
encryption scheme from the integers modulo a square to elliptic curves over rings.
Paillier himself tried to generalise his scheme to the elliptic curve setting by using
anomalous elliptic curves over rings [68], but Galbraith found security flaws in this
generalisation [42] whereas the ECPS can be proven semantically secure relative to
a new defined problem. In the same way as [. Damgard and M. Jurik managed to
generalise the original Paillier scheme to higher modules to enable a wider applica-
tion scope Galbraith developed a generalisation of the elliptic curve Paillier scheme
(see |42]).

The Paillier scheme, the new elliptic curve version by Galbraith as well as his fur-
ther generalisation are examples for probabilistic, additively homomorphic cryp-

tosystems, which are also scalar homomorphic, i.e., they have the properties that

A Threshold Version of the Elliptic Curve Paillier Scheme and its Applications 49

are necessary for the solutions to the scenarios presented in the last chapter.

The performance of the ECPS and of its generalisation are by far slower than the
original Paillier scheme together with the generalisation of Damgard and Jurik since
they operate on elliptic curves modulo large numbers. Hence, the elliptic curve ver-
sion is mainly of theoretical interest. One interesting point is that the elliptic curve
version is based on a slightly different assumption than Paillier’s original version.

This assumption may also hold even if the original Paillier assumption were broken.

In this chapter we begin with giving a short introduction to elliptic curves over
rings to recall the basic facts that are needed for the following schemes. Then,
after summarising the ECPS and Galbraith’s generalisation we develop a further
generalisation of the ECPS: We will construct a threshold decryption version in an
analogous manner as Damgard and Jurik did based on Paillier’s scheme [30]. Thus
our new threshold ECPS is a threshold version of the ECPS on one side and an
elliptic curve version of the threshold Paillier scheme by Damgard and Jurik on the

other side.

Paillier — ECPS

! !
Threshold Paillier — Threshold ECPS

Our threshold version allows any subset of k out of ¢ players to decrypt a ciphertext
correctly and efficiently while it disallows any subset of less than k& players to obtain
any information about the message. Based on our threshold version we are able to
describe various applications in a similar way as it was done based on the threshold
version of Paillier’s scheme (see [31, 24, 32, 33|).

First we explain how a length-flexible variant of the generalised ECPS can be con-
structed, i.e., a variant that allows to determine the size of the ciphertext during
encryption. This is a useful tool for different applications such as mix-nets. Further-
more, we show how the threshold ECPS can be used to devise general multiparty
computation protocols, i.e., using threshold decryption we present a multiparty
computation protocol which allows to compute an encryption of the product of two

messages given the corresponding ciphertexts but not the messages themselves. As

4.1 Introduction to Elliptic Curves over Rings Z/ nsz, 50

further application we describe how a protocol for electronic voting can be obtained,
in which each voter simply posts his ballot on a bulletin board in such a way that
the final tally can be computed as sum of all votes while its correctness is verifiable
to any observer and while the privacy of the individual votes is guaranteed. As a
last application we present a way to build a special commitment scheme based on
the elliptic curve Paillier scheme that has some interesting properties, e.g. it can
be instantiated in either perfectly hiding or perfectly binding. For most of these
applications some further sub-protocols are needed which are described in Section
4.5. These protocols are the first elliptic curve variants of the protocols developed

using Paillier’s idea.

4.1 Introduction to Elliptic Curves over Rings Z/ ysz

We shortly introduce elliptic curves over rings to provide the basic facts that are
needed to understand Galbraith’s elliptic curve Paillier scheme as well as his gener-
alisation and our further generalisation. This introduction is mainly based on [42].

For further details and a general introduction to elliptic curves we refer to [80].

Let R be a commutative ring with 1 and R* the set of invertible elements in R. An
elliptic curve

v’z =2 +axz? + b2?

over R is defined by a pair a,b € R such that 6(4a® + 27b?) € R*. As usual the set
of R-valued points is denoted by E(R) and is defined to be the set of equivalence
classes of points (z : y : z) with z,y,2 € R, y*2 = 2® + arz® + bz® and such that

the ideal generated by z,y, z is R, and for which the following equivalence relation
holds:

(x:y:z)~(@:y:2) & INeR =2 y=y Az="7"

For the description of the elliptic curve Paillier scheme and its generalisations we
need to consider rings R = Z/ns7, with N being the product of two primes p and
¢, and s € N. For such rings the usual chord and tangent operation provides a

group law on E(Z/Ns7) with O = (0 : 1 : 0) as identity element. By the Chinese

4.1 Introduction to Elliptic Curves over Rings Z/ nsz, 51

Remainder Theorem it follows that E(Z/Ns7) ~ E(Z/ps7) X E(Z/¢s7). To add two
points (x1 : y; : 21) and (22 : Y2 : z2) on an elliptic curve over Z/ns7 we can use the
usual formulae for 21, 2o € (Z/Ns7)*. To avoid problems if z; or z; are not invertible -
as it will often occur in our setting - we make the curves affine using the (z, z)—plane
by requiring that y = 1. Note that from z not being a unit in R it follows from the
curve equation that x is not a unit, too. Thus in this case y has to be a unit and
we can set y = 1. Hence, we consider curves of the form z = 3 + axz? + bz3. A
point (z : y : z) now becomes (z/y, z/y) and the identity element is represented by
(0,0). The inverse of a point (z, z) is obtained as (—xz, —z). As long as the division
operations are defined in the ring, the sum (3, z3) of two points (z1, 21) and (z2, 29)

for x1 # x5 can be computed by the following group formulae:

(21 — Az1)(2a\ + 3bA?)

r3 = I1+$2+ 1—|—a/\2—|—b/\3 5
z3 = Axz+ 1) — 21, where
A= L2

1 — T2

If 21 = x5 such that we double a point (x1, z;) we obtain the point (z3, z3) as

(21 — A21)(2a\ + 30\?)

= 2
" S IR CR S C R
z3 = Mz + x1) — 21, where
Y 3112 + az?

1 —3bzx2 — 2az121

If the divisions are not defined we need to use other formulae. To obtain such
formulae we have to recall some facts about the p-adic theory of elliptic curves, see
[80] for further details. Let

E\(Z)Ns7) :={P € E(Z/Ns7) : P reduces to (0:1:0) in E(Z/N7)}.

Thus, for an element (z :y: z) € E1(Z/Ns7) it holds that N | z, N | z and N {y.!

Consider the elliptic curve z = 2 + azz?® + bz over Z/Ns7. Given any z with N | z

Tt even holds that N3 | z.

4.1 Introduction to Elliptic Curves over Rings Z/ nsz, 52

we find a unique solution where N | z. It has the form:
w(z) = 2+ ax” + bx® + 2a%z't + Sabx'® + (5a3 + 3b2)x15 1 21a2brlT L

(for example solving the equation by iteration). Since N | z the given sum w(x) is
finite in Z/ns7 and N3 | w(x).

Let ¢ : N(Z/ns7) — FE1(Z/Ns7) with 2 — (2 : 1 : w(z)). The image of the subgroup
NY(Z/N+7) under 9 is the subgroup

E{(Z/Ns7) = {(z:1:2) € E\(Z/N¢7) : N?|x and N¥|z}

of E1(Z/ns7). Obviously, Es(Z/Ns7) = (0 : 1 : 0). The map # is bijective and has
certain homomorphic properties. Although it is not a group homomorphism itself
for all s, it induces a group homomorphism from N7(Z/ns7)/N'*(Z/Ns7) to the
group E;(Z/N°7)/E;+1(Z/N7). In particular, we get

|Ej(Z/N>z)| = N - |Ej11(Z/N°2))]

for all 1 < j < s—1. Hence |E(Z/Ns7)| = N*~'. Note that for s = 2 we obtain an
isomorphism between Z/N7, and E1(Z/N27,).
Now we can give an explicit formula for the sum of the points (z; : 1 : w(z1)) and

(x9 : 1 :w(x2)). The sum is the point (x3: 1: w(x3)) where

w3 = (214 22) + a(—2z130" — 4?20 — 4o P20 — 221)
+b<—3$13§26 — 91’121’25 — 15.17131'24 — 1517141'23 — 9[E15ZL’22 — 35(7161'2) (41)

+a?(—2x129° + 811339°% + 162, 25° + 162, 20" + 82,525% — 22185) + - - -

As already mentioned, F(Z/Ns7,) is a finite group with identity (0 : 1 : 0). Since
E1(Z/N+s7) is the kernel of the reduction map from E(Z/ns7) to E(Z/NZ), we get

|E(Z/nsz)| = |EW(Z/Nez)| - |E(Z/NZ)]
= N |E(Z/Nz)|-

For the description of the cryptosystems in the following sections we need to consider

4.2 The Elliptic Curve Paillier Scheme 53

the points P; = (Ni: 1:0) on E(%Z/N27). They are an important family of points on
E(Z/N27). To compute m - P; we have to use the above Equation 4.1 since divisions
are not defined. We get that mP, = P,,;. Similarly, when working in F(Z/N=7)
we use the point P, = (N : 1 : w(N)), and compute mP; applying Equation 4.1.
Furthermore, it can be shown that N*71P, = (0:1:0).

4.2 The Elliptic Curve Paillier Scheme

In this section the elliptic curve Paillier scheme by S. Galbraith will be summarised.
It is a natural generalisation of Paillier’s probabilistic, homomorphic public key cryp-
tosystem [67] to elliptic curves over rings. This scheme - as well as its generalisations
that we will present in Section 4.3 and 4.4 - have exactly the properties needed for
our protocols constructed in the last chapter.

See [42] for details and see Section 4.1 for some mathematical facts about elliptic

curves over rings and about the p-adic theory of elliptic curves.

Key generation:

To generate a key

e compute a modulus N = pq as a product of two primes p,q > 3.

e Choose a random elliptic curve E : y%z = 2% + az2? + 022 over Z/N7 , i.e.,
ged(N, 6(4a® + 27b%)) = 1.
Let M = |E(F,)|- |E(F,)| be the order of E(Z/N7). Then knowledge of M is
polynomial-time equivalent to knowledge of the factorisation of N = pq (see
[42]). Furthermore, if p, ¢ are known then M can be computed in polynomial
time using the Schoof-Atkin-Elkies algorithm (see e.g. [11]).

e Choose a point @ = (z : y : z) with ord(Q)|M in E(Z/N27). Since we have
|E(Z/N27)| = MN (see Section 4.1), this point can be found by taking a
random point Q' = (2’ : ¢ : 2’) € E(Z/N?7) and setting Q = NQ'.

Let P, := (N :1:0) € E(Z/n27).

4.2 The Elliptic Curve Paillier Scheme 54

The public key consists of the modulus N (and hence the point P;), the coefficients
(a,b) of the elliptic curve, and the point Q.
The secret key is the order M of the group E(Z/NZ).

As already mentioned in Section 4.1 it holds that mP, = P, = (mN : 1 :0) for
0 <m < N. Since

(m+N)P,=((m+N)N:1:0)=(mN :1:0) € E(Z/N?7)

we can also define mP; = P, for m € Z/N7. This is also valid for the generalisations

given in the following sections.

Encryption:
To encrypt a message m € Z/N7, choose a random integer 1 < r < N and compute
the point

C=rQ+mP, =rQ+ P,.

The ciphertext is the point C' € E(Z/N27,).

Decryption:
To decrypt the ciphertext C' use the secret key M to compute

MC=r(MQ)+MP,, = P,y = (mMN :1:0).
o

Given the z-coordinate mMN interpreted in Z we can divide by N to obtain
mM € Z/N7, and then multiply by the inverse of M mod N to recover the mes-
sage m € Z/N7. (Note that we have Z/N7, ~ FE1(%Z/N27) as mentioned in Section
4.1.)

Homomorphic Property:
This scheme is additively homomorphic since given encryptions C = r1Q) +mq P, of
my and Cy = r9Q+mo Py of my an encryption (C1+Cy) = (r1+7r2)Q+ (mq+ms) Py of
(mq1+msy) can be computed just by adding the ciphertexts C; and Cy. Hence, we can
define the algorithm Add as Add(E(my), E(ms)) := E(my) + E(ms) = E(my +ms)
or as

Add(E(my), E(mg)) :== E(mq) + E(m2) +17'Q = E(my + my)

4.2 The Elliptic Curve Paillier Scheme 95

with 1 <’ < N in order to blind the result. Since the message set M equals Z/N7,
the cryptosystem is also scalar homomorphic and the algorithm Mixed-Mult can be
implemented using repeatedly the algorithm Add and some blinding algorithm as

already mentioned in Chapter 2.

Remark 4.2.1. For encryption we must guarantee that the random value r is chosen
from a set that is large enough, i.e., we choose r € {1,..., N—1}. When adding two
ciphertexts C = r1Q +m1 P, and Cy = ryQ) + ms Py we might obtain a value r; +
which is larger than N — 1. We can ignore this as long as for the so obtained new
ciphertext C' it holds that C' # (mN : 1 :0), which can easily be verified. Otherwise
we have to blind the messages by adding r'Q) where v’ € {1,..., N — 1} is randomly
chosen. When using the homomorphic property in the following (i.e., also in the

generalisations) this check is always implicitly included.

The security analysis is very similar to that of Paillier’s original scheme. Note that
the elliptic curve E in this scheme is chosen randomly. Hence, it does not leak
any extra information to an adversary which would help to factorise N. Here, the
semantic security (as defined in [44]) in the case of passive adversaries depends
on the hardness of the following problem which we call the elliptic curve Paillier
assumption: Given a point Q € F(Z/N27) of order dividing |E(Z/N7)| where N is
the product of two large primes, and given a random point C' € E(Z/N?7) determine
whether C' lies in the subgroup generated by Q.

Note that this hardness assumption slightly differs from Paillier’s assumption, in
which he assumes the hardness of the following problem: Given N = pg and a
number ¢ that is either random in (Z/nN27)* or a random N’th power in (Z/N27,)*
decide whether ¢ lies in the subgroup of N’th powers.

It is possible to apply standard methods to obtain more robust security properties
from a semantically secure cryptosystem. For instance, in [69] a construction is
described which converts Paillier’s scheme so that it is semantically secure against

an adaptive chosen ciphertext attack in the random oracle model.

See [42] for further security discussions or for examples.

4.3 A Generalisation of the Elliptic Curve Paillier Scheme 56

4.3 A Generalisation of the Elliptic Curve Paillier

Scheme

In a similar way as Damgard and Jurik [30] have given a generalisation of the original
Paillier scheme to make it more interesting for applications Galbraith generalised
the ECPS [42|. His generalisation for the elliptic curve case will be presented in this
section and later on we will generalise it further to a threshold version. Furthermore,
we will give a length-flexible variant of the generalised elliptic curve Paillier scheme.
These generalisations use higher powers of N and have certain advantages as can
be seen in [30]. So, instead of considering the ciphertext group F(Z/N27) we now
consider elliptic curves over F(Z/nst+17) for s > 0. In this process we have to take

care of subtleties relating to the formal group, see Section 4.1, [80] and [42].

Key generation:

To generate a key

e choose a modulus N = pq as a product of two primes greater than 3 and

choose s > 0. (Thus the message set will be the group Z/Ns7.)

e Choose a random elliptic curve E : y?z = 23 + axz?® + b23 over Z/N7, i.e.,
ged(N, 6(4a® + 270?)) = 1. Let M = |E(F,)| - |E(F,)|.

e Choose a point Q = (x : y : z) with ord(Q)|M in E(Z/Ns+17). This point Q
can be found by taking a random point Q' = (2’ : ¢/ : 2/) € E(Z/Ns+17) and
setting @ = N°Q'. (We have |E(Z/Ns+17,)| = M N*® (see Section 4.1).)

Now let P, := (N : 1: w(N)) = (N :1: N3+ aN"+---) € E(Z/ns+17).
We take terms in the z-coordinate until the degree is greater than s+ 1 (see
Section 4.1). One can show that P, has order N* i.e., N°P, = O.

The public key consists of N, s, the coefficients (a,b) of the elliptic curve, and the
point Q).

The corresponding secret key is the order M of the group F(Z/N7).

Encryption:

To encrypt a message m € Z/Ns7, choose a random integer 1 < r < N* and compute

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 57

the point C' = r@Q + mP; using Equation 4.1 of Section 4.1 (since divisions are not
defined here). The ciphertext is the point C' € E(Z/Ns+17,).

Decryption:

To recover the message m € Z/Ns7 compute
MC =r(MQ)+mMP, =mMP, :=m'P, = (m/N+---:1:(m'N)>+-..).

Then m' € Z/Ns7, can be computed iteratively and after multiplying the result by
M~ mod N* we obtain the message as m = m/M~! mod N*. Note that owing to
the fact that for s > 2 the map ¢ is not a group isomorphism but induces only
the group isomorphism from N7(Z/ns7)/NTZ/Ns7) to E;(Z/Ns7)/E;j1(Z/N+7),
divisions are not defined here, see Section 4.1.

The iteration is as follows: We write m’ = >, m/N" in terms of its base-N repre-
sentation. Let the point m'P; = (z : y : z) be given. The z-coordinate of this point
equals >, m;N*- N +--- =myN +m{N?+---+-... We can determine the value

of mg as my = & mod N. We can then subtract mgP; from m'P; (using Equation

4.1) to obtain a new point (x : y : z). From this point we can recover m| = =

N2
mod N and the process is iterated.

Note that for s = 1 we obtain the basic elliptic curve Paillier scheme.

Obviously this generalisation has the same homomorphic properties as the basic
scheme. This time its semantic security is based on the assumed hardness of the
following assumption, which we call generalised elliptic curve Paillier assumption:
Given a point Q € E(Z/Ns+17) of order dividing |E(Z/N7)| where N is the product
of two large primes and given a random point C' € E(Z/Ns+17,) determine whether

C lies in the subgroup generated by Q.

4.4 A Threshold Version of the Elliptic Curve Pail-

lier Scheme

In [30] Damgard and Jurik proposed a threshold decryption version of their gener-
alised Paillier scheme based on an idea by Shoup [79]. This threshold version has

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 58

many interesting properties and is useful for numerous applications as was shown
in e.g. [30, 24, 33, 32]. In this section we adopt their approach to apply it to
the generalised elliptic curve Paillier scheme. This leads to a k& out of ¢ threshold
decryption version of the generalised ECPS, which can be applied in a similar way
to various applications, see Sections 4.6 and 4.7. Our applications are based on
several protocols which we develop in Section 4.5. These protocols are the first el-
liptic curve versions of this kind. Furthermore, in Subsection 4.4.1 we will describe
a length-flexible version of the threshold ECPS that may be useful to build e.g.

mix-nets.

The idea behind threshold cryptography is to distribute the power of one authority
to a group of players. For instance in a threshold decryption scheme, the secret key
is shared in such a way that only a group of players is able to decrypt a ciphertext
and not just one person. Here, we suggest a k out of ¢ threshold decryption scheme,
which is a protocol that distributes the secret key of the generalised ECPS to a set
of ¢ players so that it allows any subset of at least k out of ¢ players to decrypt
a ciphertext correctly and efficiently, while it disallows any subset of less than k
players to compute a decryption or to obtain any useful information. This property
should also hold if an adversary corrupts some subset of less than k players working
together. Obviously this should be done while keeping the homomorphic property
and without degrading the security of the system.

The idea of threshold schemes goes back to Shamir who described in [78] how to
share a secret via Lagrange’s interpolation. It is based on the fact that a polynomial
of degree k — 1 is uniquely determined by k points. Thus given k or more points of
a polynomial of degree k — 1 it is possible to reconstruct it while less than k& points

do not leak any information about the polynomial.

In [79] Shoup proposed an efficient threshold variant of RSA signatures. He men-
tioned two main properties of such a scheme which also hold for our scheme: Non-
forgeability means that less than k players are not able to forge a signature while
robustness means that corrupted players are not able to prevent uncorrupted players
from generating signatures. Our scheme can be proven secure in the random oracle
model assuming the hardness of the generalised elliptic curve Paillier assumption.

Furthermore, our threshold ECPS provides the property of Shoup’s threshold sig-

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 59

nature scheme in the sense that share decryption and verification are completely
non-interactive, and that the size of an individual share is independent from the
number of players. These properties hold in a static corruption model, where an
adversary chooses which players to corrupt at the very beginning of the attack and
is not able to change his mind during the execution of the protocol.

The main part of Shoup’s threshold RSA signature scheme is a protocol that enables
a set of players to efficiently and collectively raise an input to a secret exponent d
modulo an RSA modulus N, i.e., on input x each player computes a share of the
result. Along with this goes a proof of correctness, i.e., a proof that the player
honestly used his share in a correct way. This insures that dishonest and corrupted
players can be identified by any player and observer and then disqualified. Suffi-
ciently many correct shares of the result can be efficiently combined to compute
2% mod N. This method by Shoup was also used in [30] and can be applied to share
combining in our case. Here the players multiply an input ciphertext with their
secret share in such a way that these results can be combined to obtain the product
MC' of the ciphertext C' and the secret value M. Subsequently, the remaining part
of the decryption procedure can be done easily without knowledge of M. As already
mentioned this method needs as a subroutine a proof of correctness. Here this proof
is a proof of the equality of discrete logarithms that proves that the player behaved

honestly and computed the correct value. It will be given in Section 4.5.

Our threshold scheme needs a trusted dealer in the key generation phase to set up
the keys. This is a once and for all operation, i. e., the trusted dealer is not necessary
for the encryption, share decryption or share combining phase. Furthermore, after
distributing the keys the trusted party can delete all secret information. However,
we can get along using multiparty computation techniques which allow us to do the

key generation without a trusted party.

Analogously to Shoup we can summarise our model and security requirements as
follows:

As participants in our scheme we have a set of ¢ players, a trusted dealer, and an
adversary. The number of message shares needed to decrypt a ciphertext is k£ and
the number of corrupted players is t. We require that ¢t < k — 1 and that the

adversary selects a subset of ¢ players to corrupt from the beginning. Our scheme

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 60

can be divided into the following phases: In the key generation phase the trusted
dealer generates a public key k. along with secret key shares si,...,sp, and the
verification keys V and Vi,...,V,. After that we can assume that the adversary
knows the secret shares of the corrupted players, the public key, and the verification
keys. During the encryption phase a message is encrypted under the public key.
Then in the share decryption phase each player computes a message share given the
ciphertext. This message share is published together with a proof of the correctness
of the computation. In the share combining phase k message shares for which there
exists a proof of correctness are combined using the public key in order to receive
the desired decryption (the message) of the ciphertext. In our model the adversary
is allowed to submit decryption requests to the uncorrupted players for ciphertexts
of his choice. Upon such a request, the players output a message share for the given
ciphertext. We say that the adversary forges a message if he is able to output a
valid message corresponding to a ciphertext that was not submitted as a decryption
request to at least k — ¢ uncorrupted players. The scheme is non-forgeable if it is
computationally infeasible for the adversary to forge a message, i.e., if the view
of the adversary that corrupts up to ¢ players does not enable him to compute
decryptions on his own. Our threshold scheme is said to be robust if the honest
players are able to compute a valid decryption - no matter what the corrupted ¢

players do (see e.g. [56]).

We now come to the description of our threshold ECPS, TECPS for short. The key

generation of the generalised ECPS has to be extended as follows:

Key generation:

e Choose N = pq, where p,q > 3 are primes, and some s > 0.

e Choose a random elliptic curve E : y?z = 23 + axz® + b23 over Z/N7, i.e.,
ged(N, 6(4a® + 27b%) = 1. Let M = |E(F,)| - |[E(F,)|.

e Choose a point @ with ord(Q)|M in E(Z/Ns+17). Let P, := (N : 1: w(N)) in
E(Z/Ns+17,). (For the definition of w(N) see Section 4.1 and [80].)

e Pick M’ to satisfy M’ = 0 mod M and M’ = 1 mod N*. (We may always

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 61

assume that ged(M, N®) = 1.) Construct the polynomial

k-1

f(z) = Zaixi € Zlx]

=0

by picking random a; € Z for 0 < i < k that are large enough? and ay = M'.

The secret key share of player i is s; = f(i) for 1 < ¢ < ¢ and the public key is
(N, s, (a,b),Q).

For verification of the actions of the players, we further need the following fixed
public values: V' € E(Z/ns+17), so that (V) = G and the cyclic group G should
have large order, e. g. |G| = N®. Furthermore, for each player we need a verification
key V; := (As;)V in E(Z/Ns+17), where A = (. Hence, after the key generation
phase, the public key consists of (N, s, (a,b), Q) and the secret key share of player i
is s;. Furthermore, V' and all V; can be seen as part of the public key as well. But
note that the public values V' and all V; are only needed during the share decryption
phase (see below) and not to compute an encryption. Hence they can be omitted in

most of the cases and most of the protocols presented in Section 4.5.

Remark 4.4.1. Note that for any subset of k points in {1,...,¢} the values of f
at these k points uniquely determine the coefficients a; for 0 < ¢ < k of f and hence
the value of f at any other point in {1,...,¢}. Furthermore, for any subset of k — 1
points in {1,...,¢} the distributions of the values of f at these points are uniform

and mutually independent.

The encryption phase of our threshold scheme remains the same as in the generalised
ECPS:

Encryption:
To encrypt a message m € Z/Ns7, choose a random integer 1 < r < N*® and compute
the ciphertext as C' = r@Q + mP, € E(Z/Ns+17,).

The decryption phase is divided into two steps: First share decryption, in which

each player computes his share of the decryption using his share of the secret key.

21f s,a; € Z, f(0) = M’ and |[M'| := K then it can be shown that a; with |a;| = log /!4+ K +k+o,
where ¢ denotes the security parameter, are suitable.

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 62

Then during share combining the different shares of the decryption are combined to

obtain the message.

Share decryption:

Given the ciphertext C, player i computes and publishes C; := (As;)C together
with a protocol run which proves that log(C;) = log; (V;) and that does not reveal
any additional information. This convinces the other players as well as any external
observer that player ¢ has indeed multiplied by his secret share s;. In Section 4.5
a non-interactive protocol for this task will be presented which is based on the

corresponding one in [79].

For any subset S of k points in {1,...,¢} and for i € S we define

=2 I ;

i'e S\{i}

These values are directly derived from Lagrange’s interpolation formula. Since the
denominator divides ¢!(¢ — ¢)! which in turn divides ¢! = A these values are inte-
gers. Furthermore, they can be computed efficiently. From Lagrange’s interpolation

formula it follows that

=D NG =DM s

€S €S

Share combining:
Assume that we have the required k& or more shares C; together with a proof of
correctness. We can then obtain the corresponding decryption by combining them,

i.e., we take a subset S of k shares and combine them to

=> A5G = AZ)\OZSZC A%F(0)C = A2M'C.
ies
Since ord(Q)|M = ord(Q)|M’" and N*P; = (0:1:0) and M’ =1 mod N* we have

C' = AN°M'rQ+A*M'mP, = A*M'mP, = A*mP;,
N——
(@]

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 63

where m is the desired plaintext. Hence we can compute m iteratively as before (see
Section 4.4.1) and multiply the result by (A%)~! mod N*. Note that we can always
assume that p,q > /.

Since the encryption procedure remains unchanged it can easily be seen that this
threshold version has the same homomorphic properties as the original elliptic curve

Paillier scheme.

As already mentioned, the proof of correctness of log(C;) = log,,(V;) enables every
player and observer of the scheme to verify the correct behaviour of player ¢ and
hence to disqualify him if the proof does not succeed. The proof will be described in
Section 4.5. It uses a cryptographic hash function to make it non-interactive. There-
fore our proof of security will be given in the random oracle model. This means that
cryptographic hash functions are replaced by a random oracle. This random oracle
model was informally introduced by Fiat and Shamir [40] and later formalized in
Bellare and Rogaway [6]. Thereafter it was adapted in many papers. If we would
do the proofs of correctness interactively instead, we could omit the random oracle.
We now prove that assuming the hardness of the generalised elliptic curve Paillier
assumption this threshold decryption version of the ECPS is as secure as a cen-
tralised scheme with one trusted player who performs the decryption, i.e., as secure
as the generalised ECPS. This proof will be done in a static corruption model where
an adversary corrupts up to k£ — 1 players from the beginning. We use a standard
technique to reduce the security of our threshold version to the security of its single-
decryption-server counterpart, i.e., the generalised ECPS: We exhibit a simulator
which has no access to any secret information but which has an oracle access to the
single-decryption-server realisation of the underlying cryptosystem (see e.g. [56]).
If the adversary is not able to distinguish the view of an execution of the threshold
protocol and a simulated execution that uses as oracle the single-decryption-server

realisation, our threshold scheme is as secure as the generalised ECPS.

Theorem 4.4.2. Assume the random oracle model and a static adversary that cor-
rupts up to k — 1 players from the beginning. Furthermore, assume the hardness of
the generalised elliptic curve Paillier assumption.

Then the above scheme is correct, 1. e., given any ciphertext, the decryption protocol

outputs the correct plaintext, except with negligible probability.

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 64

Given an oracle that on a given ciphertext returns the corresponding plaintext, the
adversary’s view of the decryption protocol can be efficiently simulated with a statis-
tically indistinguishable distribution. Hence the above threshold scheme is as secure

as the generalised ECPS, robust and non-forgeable.
The proof follows very closely the corresponding proofs in [57] and [79].

Proof. 1f we assume that an adversary can only contribute incorrect values for the
C;’s with negligible probability, correctness of the scheme follows immediately. This,
in turn, is ensured by the special soundness of the protocol for the equality of dis-
crete logarithms given for each C;, which will be introduced and proven in Subsection
4.5.2.

Assume an oracle is given that on a given ciphertext as input returns the corre-
sponding plaintext. To simulate the adversary’s view of the decryption protocol we
start from the public key (N, s, (a,b), Q). Let iy,...,i,—1 € {1,...,¢} be the set of
the corrupted players. We can now simulate the adversary’s view by choosing the
shares s;,,...,s;,_, of the corrupted players as random integers. We have already
argued (see Remark 4.4.1) that these values will be statistically indistinguishable
from the real values. Recall that M’ = f(0) and s; = f(i) and M’ is fully deter-
mined by the choice of the public values N, s, and (a,b). Once M’ is determined
and the values s;,,...,s;,_, are chosen the shares s; for i € {1,... (}\{41,... i1}
for the uncorrupted players and the polynomial f are fixed as well. We have
f(i1) = siyy-., flig—1) = si,_,, but M’ and f cannot be computed by the sim-
ulator. Hence, the shares s;,,...,s;_, of the corrupted players do not leak any
information about the shares of the uncorrupted players, the secret value M’ or the
polynomial f. The reason is that the adversary is not able to distinguish the values
communicated during the protocol from random values.

Now we argue that the values V; of the uncorrupted players and their shares C; of
a ciphertext C' that can be seen during the share decryption phase do not give any
extra information to an adversary. As described below these values can easily be
simulated so that they fit to the above shares of the uncorrupted players: For this
part of the proof we assume that the simulator has access to a decryption oracle,
i.e., to a centralised decryption version - the generalised ECPS.

We now consider the verification key V' as a ciphertext V = rQ+moP; in E(Z/Ns+17,)

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 65

for which the simulator asks the oracle for the corresponding plaintext my. By doing

SO we can compute
f(O)V = M/V = M/TQ —I—mOM'P1 = mOM'P1 = m()Pl.

Let S be the set {0,41,...,i,_1}, and let

s _ =7
Vi=a 11 i— il
i'e S\{i}

be the Lagrange coefficients for interpolating the values of a polynomial in point j
(times A) from its values in points in S, i.e., Af(j) = >_,cg A7, f(i). Then we can

easily compute values V; with V; = As;V = Af(j)V for the uncorrupted players,
fe,je{l,....00\{i1,...,ix_1}, as

S .
Vi= A (fOV).
i€s
When receiving a ciphertext point C' as input, we ask the oracle for the corresponding

plaintext m. This gives us the possibility to compute the points

which means that we can interpolate and compute the contributions C; = As;C' for
the uncorrupted players in the same way as above. This argument shows why we
defined the shares C; to be As;C' instead of, say, s,C.

Obviously the so obtained values are correctly distributed. O

4.4.1 A Length-Flexible Variant

In [30] Damgard and Jurik proposed a length-flexible variant of their generalisation
of Paillier’s encryption scheme. In a similar way we show in this subsection how it is
possible to adjust the block length of our threshold scheme, i. e., we propose a variant
of our TECPS that can efficiently handle messages m of arbitrary length m < N*

where s’ < s, whereas the public key and the secret key shares remain of fixed sizes.

4.4 A Threshold Version of the Elliptic Curve Paillier Scheme 66

More precisely, it is possible to decide on a value for s’ < s, so that the message
space M will be Z/Ns'7, with corresponding ciphertext space C = F(Z/N++17,) at
any point after the keys have been generated. Even the sender can decide on the fly
on a value for s’ when encrypting a message. Such a length-flexible system works as

follows:

The key generation can be done in the same way as above where s should be cho-
sen large enough. Let ' < s. Note that the order M is independent of s and
that for a point @ with ord(Q)|M in E(Z/ns+17) it also holds that ord(Q)|M in
E(Z/Ns'+17). Furthermore, for P, = (N : 1 : w(N)) € E(Z/Ns'+17) it holds that
N* Py =(0:1:0) (see Section 4.1), and for M’ = 1 mod N* it also holds that
M’ =1 mod N¥.

Encryption:
To encrypt a message m represented as a non-negative integer, choose s’ < s so that
m < N*¥, choose a random integer 1 < r < N* and compute C' = rQ + mP; in

E(Z/Ns'+17). Along with the ciphertext the value of s is transmitted.

Share decryption and share combining work exactly the same way as before using

s" instead of s.

It immediately follows that the above variant is semantically secure if the original

scheme is semantically secure.

For instance, this property of length-flexibility together with the homomorphic prop-
erty of the scheme is useful for election schemes as well as to build mix-nets (see
Section 2.2). Mix-nets are protocols which provide anonymity for senders by col-
lecting encrypted messages from several users. Then a collection of servers processes
these, so that at the end the plaintext messages are output in randomly permuted
order and sent to the intended receivers. Hence, it is not possible to trace back the
messages from the receiver to the corresponding sender. The length-flexibility of the
underlying encryption scheme ensures that the mix-net is able to handle messages
of arbitrary size, i.e., although all messages submitted in a single run of the mix-net
must have the same length in order to provide anonymity, this common length can
be chosen freely for each run of the mix-net, without having to change any pub-

lic information. This is especially useful for providing anonymity, e.g. for emails.

4.5 Auxiliary Protocols 67

See [31] for details of mix-nets and further applications of length-flexible threshold

cryptosystems to electronic voting.

4.5 Auxiliary Protocols

As mentioned above we need as a subroutine in the share decryption phase a protocol
for the equality of discrete logarithms, i.e., a proof that given values C, C,V,V in

E(Z/Ns+17) where (V) = G and |G] large, it holds that log-(C) = log (V). Such a

protocol will be presented in Subsection 4.5.2.

In [24] Cramer et al. introduced a new approach to multiparty computation based on
homomorphic threshold cryptosystems. The idea of this application of homomorphic
cryptosystems will be described in Section 4.6. Besides the usual properties of a
threshold homomorphic cryptosystem some auxiliary protocols are needed for this

approach. More precisely, we need

e a protocol for checking if a value is a valid ciphertext,

e a protocol for proving the correctness of the multiplication of an encrypted

value by a constant,

e a protocol for proving the knowledge of a plaintext.

For the application of our threshold homomorphic cryptosystem to electronic voting
which will be described in Section 4.7 another auxiliary protocol is needed: a protocol
for proving that an encryption contains one out of two given values, without revealing
which one it is. In this section we are going to develop these protocols for our
homomorphic threshold cryptosystem in an analogous manner as it was done for
the generalised Paillier scheme in [30, 24, 57, 32|. The special type of protocols we
need are called >-Protocols. They will be shortly defined in the following subsection.

4.5.1 >-Protocols

Y-protocols are two-party zero-knowledge protocols of a particular form. Let R be

a relation consisting of pairs (z,w), where we think of = being a public instance of

4.5 Auxiliary Protocols 68

some computational problem, and w being a witness, i. e., a solution to that instance.
We will be concerned with protocols of the following form: This protocol gets = as
a common input for the prover P and the verifier V, and the prover additionally

knows a witness w as a private input such that (x,w) € R.

1. P sends a message a to V.
2. V sends a random t-bit challenge e to P.
3. P sends a reply z.

4. V decides to accept or reject based on the data he has seen, i.e., x,a, e, z.

Prover Verifier
(x,w)e R X
a
e [
*# e er {0,1}
:II. "y
» accept?

Figure 4.1: >-Protocol

We will assume that both P and V are probabilistic, polynomial time machines.

Hence, P’s only advantage over V is the knowledge of the witness w.

Definition 4.5.1. A protocol is said to be a X-protocol for relation R if we have

the following:

e The protocol is of the above form.
o Completeness: If P and V follow the protocol, the verifier always accepts.

e There exists a polynomial-time simulator, which on input z and a random
challenge e outputs an accepting conversation of the form (a,e, z) with the
same probability distribution as conversations between honest P and V on
input = and challenge e. This property is called special honest-verifier zero-

knowledge.

4.5 Auxiliary Protocols 69

e Special soundness: A cheating prover can answer only one of the possible
challenges. More precisely, from any common input = and any pair of accepting
conversations (a, e, z) and (a, €, z’) where e # €', we can efficiently compute w
so that (z,w) € R.

Note that the notion honest-verifier zero-knowledge proof can also be found in the
literature instead of X-protocols.
It is easy to verify that the properties of Y-protocols are invariant under parallel

composition. For more details and properties of X-protocols see [29] and [24].

4.5.2 Protocol for the Equality of Discrete Logarithms

For the share decryption phase we need a subroutine proving that given values
C,C,V,V in E(Z/Ns+17) where (V) = G and |G| is large, it holds that

loge(C) = logy (V).

With such a protocol run coming together with the published result C (the ciphertext
share C;) of a player P;, the other players (and any observer) of our threshold
decryption scheme will be convinced of the correctness of his computation. Thus
here the player P; is the prover. The values C, C,V,V as well as the public key are
public values in our protocol. Player P; knows additionally As; =: y which is his
secret input.

We need a Y-protocol for the relation

R={((C.C,V.V),y) | C.C,V.V € E(Z/x=+17),y = logo(C) = logy(V)}.

It works as follows:

Protocol for the equality of discrete logarithms
Input: k. = (N,s,(a,b),Q), C,C,V,V € (E(Z/Ns+17),+), where (V) = G and
|G| is large

Private input for the prover: y such that y = log(C) = log (V).
Note that in our application the length of y will be bounded by s|N||M| bit since

4.5 Auxiliary Protocols 70

V € E(Z/Ns+17). Here, | N| and |M| denote the bit length of N and M, respectively.
W.l.o.g. these bit lengths are known as well.

1. The prover P chooses a random number 7 of bit length s|N||M| + 2t, where
t is a secondary security parameter. He computes A = rC' and B = rV in
E(Z/Ns+17,) and sends (A, B) to the verifier V.

2. The verifier chooses a random t-bit challenge e which he sends to the prover.
3. P computes the number z = r 4+ ey and sends it to V.

4. The verifier accepts the proof if and only if 2C' = A + eC and 2V = B + eV
in E(Z/N5+1Z)-

Lemma 4.5.2. The above protocol for the equality of discrete logarithms is a Y-

protocol.

Proof. The completeness of this protocol under an honest prover is obvious. Special
honest-verifier zero-knowledge holds because, for a random t-bit number e and a
random s|N||[M| + 2t-bit number z we have that ((2C' — eC, 2V — eV), e, 2) is an
accepting conversation with the same probability distribution. For special soundness
we assume that P does not know y. If the prover can send correct responses z and

2" to two different challenges e and ¢’ that satisfy the verifier’s check where w.l.o.g.

e>e, ie.,
2C0=A+eC and 2V =DB+eV,
JC=A+e¢C and ZV=B+4V
then
(z—=2)C=(A+eC) = (A+eC)=(e—€)C
and
(z=2)W=(B+eV)=(B+eV)=(e—¢€)V,
and hence

loge(C) = logy (V) = (2 =) (e — €)™

4.5 Auxiliary Protocols 71

the discrete logarithms is efficiently computable. This contradiction shows that the

prover is able to answer at most one challenge e correctly. Therefore the probability

of acceptance of a dishonest prover is 27* which is negligible in ¢. O
Prover Veritier
C,C,V, Vv €.V,

y = loge(C") = logy(V")

re { ‘l}i\lliMl—]I A B
A=rC,B=rV . e ex {0,1}'
7
z=r+cy ‘ p ZC=A+eC'
H
ZN=B+eV'

Figure 4.2: Protocol for the Equality of Discrete Logarithms

Using the Fiat-Shamir heuristic [40] which requires a hash function this protocol can

be made non-interactive, where security can be proven in the random oracle model:

Let H be a hash function, whose output is a ¢-bit integer (¢ = 128, say).

1. The prover P chooses a random number r of bit length s|N||M| + 2t. He
computes A = rC' and B = rV in E(Z/Ns+17), sets e = H(A, B,C,C) and
computes z = r+ey. He defines the proof of correctness to be (e, z) and sends
this to the verifier V.

2. To verify this proof V checks that e = H(2C — eC, 2V — eV, C,).

In this non-interactive version of the protocol we can exclude V, V in the input to H
since in our application, they are fixed and chosen by a honest dealer as being the
verification keys. If we assume the prover’s claim to be true, i.e., the equality of the
discrete logarithms holds then the correctness of this protocol follows immediately.
Assuming the random oracle model, i.e., replacing H by a random function, we can

show soundness and special honest-verifier zero-knowledge as above.

The Fiat-Shamir heuristic can also be used to make all of the following protocols of

this section non-interactive.

4.5 Auxiliary Protocols 72

4.5.3 Check of Ciphertextness

Now we will describe a protocol that given a value C' and the public key k. checks
whether C' is a valid ciphertext. For the parameters of our threshold scheme that
means that given a point C' and the public key k. = (V, s, (a,b), Q) check whether
there exists a message m € Z/Ns7 and a random element 0 < r < N® such that
C = Ei.,(m) =rQ+ mP, € E(Z/Ns+17). Note that the values V' and all V; are
only needed for the share decryption phase in our threshold scheme. They can be
omitted as public inputs in all our following protocols.

The property C' = rQ) + mP; is obviously equivalent to C' — mP;, = r@, i.e., to
C — mP, being an encryption Ej, ,(0) of 0 under the public key k. and a random
number 7.

Hence, we would like to construct a X-protocol for the relation

R ={((k.,C),r) | C = Ey,(0) where k. is the public key}.

A protocol for this can easily be obtained from the corresponding one in [57]:

Protocol for checking whether an element is an encryption of 0
Input: k. = (N, S, (a,0),Q),C
Private input for the prover: r with 0 <r < N*® so that C' =rQ = Ej_,(0).

1. The prover P chooses " with 0 <’ < N*® at random. He computes
A=1r'Q = E, - (0)

and sends A to the verifier V.
2. V challenges P with a random ¢-bit string e.
3. P computes z = 1’ + er and sends z to V.

4. V checks whether A, C' € E(Z/Ns+17) and that Fy_.(0) = A+ eC. He accepts

if and only if this is the case.

Lemma 4.5.3. The above protocol for checking whether an element is an encryption

of 0 is a X-protocol.

4.5 Auxiliary Protocols 73

Proof. For completeness we have to show that the verifier always accepts if the

prover and the verifier follow the protocol. This holds as follows:
A+eC=7r"Q+eC=r"Q+erQ = (r'+er)Q = 2Q = Ey_.(0).

For special honest verifier zero-knowledge we have to simulate a conversation (A, e, z)
with the same probability distribution. Therefore the simulator chooses z and e
randomly in their respective domains. He sets A = Ej_.(0) — eC' and outputs
(A, e, z), which is obviously a conversation with the same probability distribution.

For special soundness we assume that there are two accepting conversations (A, e, z)

and (A, ¢, 2') where e # ¢’ and w.l.o.g. e > ¢'. Hence, we obtain
FEy..(0) = A+eC and Ey, .(0) = A+¢€'C.

Therefore
(e—€)C = Ej, (--)(0) = (z — 2)Q.

Since e # €’ we can set v := (2 — 2')(e — €)1, So,

C = (2=)e—¢)'Q=0Q = By, .(0),

i.e., the necessary values for an encryption of 0 can indeed be efficiently computed.
O

In our application of this and the following protocols we assume that the modulus
N = pq has two prime factors of roughly the same size. Hence, if |N| is the bit
length of N, we can set t = |N|/2 to ensure that the probability of a cheating prover

to make the verifier accept is < 27,

4.5.4 Proof of Correct Multiplication

We now describe a protocol for proving that a given ciphertext is the product of an

encrypted value by a plaintext. Hence, we define the relation

R= {((lea Cm27D)a (7)’?@,7“2,7'3)) ‘ le = E(ml)a Cmg = Erg(mQ)aD = m2Cm1+r3Q}7

4.5 Auxiliary Protocols 74

where all encryptions are done under the same public key k. = (N, s, (a,b), Q).

Using the algorithm Mixed-Mult to express the relation this means that
D = Mixed-Mult(ma, C,,,),

i.e., D is an encryption of mom;. A protocol for this relation is similar to the one

proposed in [24] for the threshold Paillier scheme:

Protocol for proving correct multiplication
Input: k. = (N, s, (a,b),Q) and C,,,, Cpn,, D, so that

Cmy =1m1Q +mi Py, Chy =1Q +moPy, D =moChy, +130Q
Private input for the prover: my and ro, 73
1. The prover P chooses m € Z/ns7 and 0 < v,u < N*® at random. He computes
A=mC,,, +vQ and B = mP; + u@.

P sends (A, B) to the verifier V.
2. V sends a random t-bit challenge e to P.

3. The prover P computes
w=m-+emg, Yy=v+e€rs, z=u-+ter

and sends (w,y, z) to V.

4. The verifier checks that
wP, 4+ 2Q = B+ eC,,, wCp, +yQ =A+eD.

He accepts if and only if this is the case.

Lemma 4.5.4. The above protocol for proving correct multiplication is a >-protocol
proving knowledge of mg, 15, r3 such that C,,, = ro@Q +moP; and D = myCl,, +130),

i.e., proving that D encrypts mom;.

4.5 Auxiliary Protocols 75

Proof. Showing completeness is straightforward since

wP; 4 2Q = (m + emg) Py + (u + ere)Q = mP, +u@ + e(r2Q + moPy) = B + eCly,
and

wCh,, +yQ = (Mm+ems2)Chyy +(v+er3)Q = mCyy, +vQ+e(moChy, +13Q) = A+eD.

For special honest verifier zero-knowledge, given any challenge e a correctly dis-
tributed conversation can be simulated as follows: the simulator chooses the values
w,y, z at random in their respective domains. He then computes matching values
A, B using the equations wP; + 2Q) = B + eC,,, and wC,,, + yQ = A+ eD.

For soundness we assume that for some value of (A, B) the prover P can correctly
answer two different challenges e, e’ where w.l.o.g. e > €. Hence, the following

equations are satisfied
whP, 4+ 2Q = B+ eC,,,, wCy,, +yQ =A+eD

and
wP +2Q=B+¢€C,,, wlC,+yQ=A+¢eD.

This implies that
(w - w/)Pl + (Z - Z/)Q - (6 - 6/)Om2

and
(w—w")Crny + (y —y)Q = (e = €')D.
Hence
Cpy = (w—w)(e—e) P +(z—2)e—€)'Q
and

D=(w-—uw)e—e)"Cn+y—y)e—€)'Q.

We can conclude that my = (w — w')(e — €)™ ,ry = (2 — 2')(e — ¢/)7! and that

r3 = (y —y')(e — €)~!. Thus D is indeed an encryption of maym;. O

4.5 Auxiliary Protocols 76

4.5.5 Proof of Plaintext Knowledge

We want to obtain a ¥-protocol that given an encryption C' = Ej_(m) of m proves
that P knows the corresponding message m. Such a protocol is contained implicitly
in the above protocol for proving correct multiplication. Here, the relation R is

obviously

R = {(ke>cm2)v (mQaTZ)) | ma € Mv sz = Ekeﬂ"z(mZ)}‘

Protocol for proving plaintext knowledge
Input: k. = (N, S, (a,b),Q) and C,, = r2Q + ma P,

Private input for the prover: m, and r

1. P chooses m € Z/Ns7,and 0 < u < N*® at random. He computes B = mP; + uQ)
and sends B to V.
2. V sends a random t-bit challenge e to P.
3. P computes w = m + emy, z = u + ery and sends (w, z) to V.
4.V checks that wP, +2Q) = B+ eC,,, and accepts if and only if this is the case.
Lemma 4.5.5. The above protocol for proving plaintext knowledge is a »-protocol

proving knowledge of my and 79 such that C,, = r2Q + moP;.

The proof follows immediately from Lemma 4.5.4.

4.5.6 1-out-of-2 Protocol

We now describe a »-protocol that given two ciphertexts C, Cs, and the public key
k. proves that the prover knows one of the corresponding messages without revealing
which one it is. This property is called witness indistinguishability. As before this
is equivalent to proving that the prover knows one corresponding random value r
to two encryptions of 0, i.e., if C) = Ej_,,(0) = mQ and Cy = Ej_,,(0) = 7@

are encryptions under the same public key k. and the random number r; and rs,

4.6 Application to Multiparty Computation 7

respectively, to show that P knows either r; or ry without revealing either of the
values. Due to Lemma 4.5.3 and using the techniques from [25] we can immediately
build such a protocol. We will assume without loss of generality that the prover
knows 7, such that Cy = Ej_,,(0) and where S denotes the honest-verifier simulator
for the protocol for checking whether an element is an encryption of 0 of Subsection
4.5.3.

1-out-of-2 protocol
Input: k. = (N, S, (a,b),Q),Cy,Cy
Private input for the prover: r; with 0 <7 < N° so that Cy = rQ = Ej, -, (0).

1. The prover P chooses randomly r with 0 < r < N?®. He invokes the honest-
verifier simulator S on inputs k., C to obtain a conversation (As,es, z3). P
computes A = rQ) = Ey,,(0) and sends A; and Ay to the verifier V.

2.V chooses randomly a t-bit challenge e and sends it to P.

3. P computes e; = e — ey, where w.l.o.g. e > €9, and z; = r + e;r;. He sends

€1,21,€9,29 to V.

4.V checks whether Ay, Ay, Cy,Cy € E(Z/Ns+17,) and that Ej, ,,(0) = A +e,C4
and F, .,(0) = As 4 e2Cy. He accepts if and only if this is the case.

Now Lemma 4.5.3 and the proof techniques from [25] imply the following Lemma.

Lemma 4.5.6. The above 1-out-of-2 protocol is a Y-protocol.

4.6 Application to Multiparty Computation

Given a semantically secure threshold homomorphic cryptosystem and some aux-
iliary protocols it is possible to obtain general multiparty computation protocols
which are secure against an active and static adversary that corrupts any minority
of the players, see [24]. For our threshold version of the generalised elliptic curve
Paillier scheme we constructed the auxiliary protocols that are needed (see Section

4.5). Hence, the proposed scheme can be used to build such multiparty computation

4.6 Application to Multiparty Computation 78

protocols. In this section we will summarise the results and ideas of the approach
by Cramer et al. [24].

The idea of multiparty computation dates back to the papers by Goldreich, Micali,
Wigderson [46] and by Yao [84]. They were able to prove that n players can effi-
ciently compute an agreed n-input function of their inputs in a secure way. In such
a multiparty computation protocol security means that everyone learns the correct
output while the privacy of each player’s input is guaranteed. Note that the sce-
narios considered in Chapter 3 belong to the same area. There are several different
types of adversaries possible for such kind of problem, and we can distinguish be-
tween active and passive corruption. If an adversary can corrupt a set of players
to make them behave the way he wants, we say that the adversary is active, else if
the adversary obtains “only” the complete information held by the corrupted players
while the players still are able to execute the protocol correctly, he is called passive.
If the set of corrupted players is fixed from the beginning, the adversary is called
static. If the adversary can at any time during the protocol choose to corrupt a
new player based on all information he has at this time, he is called adaptive. The
protocols by Goldreich et al. and Yao can be proven secure against an active, static,
polynomial time bounded adversary who can corrupt any set of at most n/2 — 1
players.

Several protocols for multiparty computations have been proposed over the years to
improve efficiency, see e.g. [23]. Most of the proposed protocols have been based on
verifiable secret sharing schemes. A verifiable secret sharing scheme allows a dealer
to securely distribute a secret s among a set of players, where the dealer and/or
some players may be cheating. Here it is guaranteed that if the dealer is honest,
then the cheaters obtain no information about s, and all honest players are able to
reconstruct the secret s even against the actions of the cheating players.

The proposal by Cramer et al. basing multiparty computation protocols on a thresh-
old homomorphic cryptosystem instead of secret sharing schemes leads to more ef-
ficient protocols since it reduces the total number of bits that have to be sent to
O(no|C|), where n is the number of players, o is the security parameter and |C| the
size of the circuit C' computing the desired function. All previous protocols which

were secure against active adversaries required Q(n?0|C|) bits to broadcast.

The idea of Cramer et al. is basically as follows: given a semantically secure public-

4.6 Application to Multiparty Computation 79

key cryptosystem with threshold decryption where the message space M is assumed
to be a ring. (In our case we have M = Z/ns7). The following homomorphic
properties are required: given encryptions E(a) and E(b) of a and b under the
same public key we can efficiently compute an encryption of the sum FE(a + b).
Furthermore, from an encryption E(b) and a plaintext a € M it should be easy
to compute a random encryption of E(ab). Obviously these properties are just the
additively homomorphic property and the scalar-multiplicativity which hold for our
threshold decryption ECPS.

Finally, some secure sub-protocols must be available: a protocol for checking if a
value is a valid ciphertext, a protocol for proving the correctness of the multiplication
of an encrypted value by a constant, and a protocol for proving the knowledge of a
plaintext. Based on our scheme these protocols were described in Section 4.5.

To securely compute an n-input function we consider a circuit with addition and
multiplication gates computing the function and evaluate the circuit gate by gate.
To start the multiparty computation protocol each player P;, for 1 < i < n, publishes
an encryption F(z;) of his private input z; together with a Y-protocol proving
his knowledge of z;, see Subsection 4.5.3. Any operation involving addition or
multiplication by a constant can then be performed without further interaction
using the algorithms Add and Mixed-Mult of the encryption scheme. Hence, we just
need a protocol for securely computing an encryption of the product E(c) = E(a-b)
given encryptions of E(a) and E(b) but not the values a and b themselves. This in

turn can be done by the following protocol:

Multiparty computation protocol for multiplication of ciphertexts

Input: E(a), E(b)
Output: F(c) = E(a-b)

1. Each player P; chooses a random value r; € M and broadcasts an encryption
E(r;) of it. Furthermore, all players prove that they know their value r; using

the corresponding sub-protocol.

2. Let r =ry+---+mr,. All players can now compute an encryption E(a+r) by
applying iteratively the algorithm Add on E(a) and E(r), ..., E(r,). The so

4.7 Application to Electronic Voting 80

obtained ciphertext E(a+r) is then decrypted using the protocol for threshold

decryption. Now all players know a + r.

3. Player P; sets a; = (a + r) — r; while all other players P; for 1 < i < n set
a; = —r;. Note that every player is able to compute an encryption of each a;

and that we have a = a; + -+ + a,.

4. Each player P; computes an encryption F(a;b) = Mixed-Mult(a;, E£(b)) and
broadcasts it together with a proof for the correctness of the multiplication us-
ing the corresponding sub-protocol from Subsection 4.5.4 on inputs E(b), F(a;)
and F(a;b).

5. Let S be the set of players for which the previous step succeeded, and let S¢ be
the complement of S. We now first compute E (), . a;) using the algorithm
Add. Then using threshold decryption we decrypt this ciphertext E (), . a;)
which gives us the value age := Y. .. a;. This allows everyone to compute
an encryption F(agcb) by using the algorithm Mixed-Mult. From this and the
encryptions E(a;b) for i € S, all players are able to compute an encryption

E(>,cqaib+ aseb), which is indeed an encryption of ab.

At the final state the known encryptions of the output values can be decrypted
using threshold decryption to obtain the function value. Intuitively this is secure if
the underlying cryptosystem is secure, since (apart from the output) all values that
are decrypted are either random values or values already known to the adversary.
The efficiency of this protocol depends entirely on the efficiency of the underlying

threshold decryption scheme and the corresponding sub-protocols.

For a formal description, a proof of security and details see [24].

4.7 Application to Electronic Voting

In this section we will describe how our homomorphic threshold cryptosystem can
be used to obtain a multi-authority secret-ballot election scheme that guarantees

robustness, universal verifiability and computational privacy. Our construction is

4.7 Application to Electronic Voting 81

based on an idea of Cramer, Gennaro and Schoenmakers [27] who proposed such
an election scheme based on a threshold version of the ElGamal scheme [37] (see
Section 3.4.1). We build our voting protocol in an analogous way as the Damgard
et al. protocol presented in [32].

The scheme described by Cramer et al. is based on a model by Benaloh et al.
[21, 9, 7| where the active parties are divided into a set of voters Vy,...,V,, and a
set of tallying authorities Aq,...,A,. Furthermore, a so-called bulletin board B is
needed which is accessible by all parties even passive observers to achieve universal
verifiability. Such a bulletin board is like a public broadcast channel with memory.
It has the property that any active or passive party is able to read the contents of it.
Furthermore, there is a designated section for each active participant where he can
post his messages. Hence we can identify which player each message comes from.
Additionally it is not possible to delete any information from the bulletin board.
For instance, such a bulletin board can be implemented in a secure way by using
an already deployed public key infrastructure and a server replication technique to
prevent denial of service attacks.

In our voting protocol a voter simply posts a particular encryption under the TECPS
of the vote to the bulletin board accompanied by a proof of validity that shows that
the ballot indeed contains a valid vote. Here the ballot is encrypted with the public
key of the authorities. Since the encryption method used is additively homomorphic,
the final tally can be obtained as “sum” of all votes. Furthermore, it is verifiable
by any observer of the election against the “sum” of all submitted ballots. Due to
the properties of our threshold decryption scheme the benign or malign failure of
some tallying authorities can be tolerated while the privacy of the individual votes
will be guaranteed, i.e., the correctness of the decryption will be assured even in
the presence of malicious authorities which ensures universal verifiability. In the
proposed protocol the private key is never reconstructed, and only used implicitly
when the authorities cooperate to decrypt the final tally.

We assume that the purpose of the election is to elect a winner among L candidates,

and that each voter is allowed to vote for ¢t < L candidates.

4.7 Application to Electronic Voting 82

Properties of elections

There are many properties of election schemes that should be considered. We list
the properties that were considered in the approach by [27|. These properties also

hold for our protocol.

Eligibility: Only eligible voters are able to vote and each eligible voter can cast a

single vote.
Since we assume that a bulletin board is available this property follows immediately.

Universal Verifiability: The fairness of the election can be checked by any party
including passive observers. That means that any party is able to check that the
published final tally is consistent with the correctly cast ballots. This property also
includes that any party can check whether ballots are correctly cast, and that only

invalid ballots are discarded.

Privacy: Privacy of an individual vote is assured against any reasonably sized
coalition of participants (excluding the voter himself), i.e., unless the number of
colluding parties exceeds our threshold k, different ballots are indistinguishable irre-
spective of the contained votes. Information-theoretic privacy is achieved when the
ballots are indistinguishable independent of any cryptographic assumption; other-

wise computational privacy is achieved.

Robustness: The faulty behaviour either benign or malicious of any reasonably
sized coalition of parties can be tolerated. This includes the property that no coali-
tion of voters of any size can disrupt a large-scale election, i.e., we can detect and

discard any cheating voter.

No vote duplication: It should be impossible to copy another voter’s vote even

without knowing what the copied vote is.

No interaction between voters: During the execution of the voting protocol the

voters do not have to interact with each other.

As mentioned in Section 4.5 we use the Fiat-Shamir heuristic which enables us to
make our proofs non-interactively. The hash function needed will be denoted by h.
Since we base the voting protocol on the TECPS, we further assume that an in-
stance of the threshold ECPS with public key (N, s, (a,b), @) has been set up. The

4.7 Application to Electronic Voting 83

tallying authorities A4; for 1 < i < n will act as decryption servers. To guarantee
the correctness of the final tally we also have to assume that N° > m’, where m is
the number of voters and L the number of candidates. Note that this can always be
fulfilled by choosing s or N large enough.

In the following voting protocol for two candidates we will use the notation Proo fy, (.S)
as introduced in [32]. Here S denotes a logical statement which indicates which pro-
tocol from Section 4.5 will be used. Proofy,(S) = (e, z) will be a bit string created
by voter V;. V; uses the appropriate protocol that can be used to interactively prove
S. He computes the first message a in this protocol, computes e = h(a, S, 1D(V;))
where 1D(V;) is a unique public string identifying V;. He takes the result e of this
as the challenge from the verifier and computes the corresponding answer z. Note
that we have to include ID(};) in the input of A to prevent vote duplication. Fur-
thermore, note that in all auxiliary protocols it can always be easily computed what
a should have been given S, z, e, had the proof been correct. This is done by just
plugging z and e into the verifiers check. Thus, such a proof can be checked effi-
ciently by checking whether e = h(a, S, ID(V;)).

Now we are able to explain a protocol for the case L = 2, i.e., a protocol in which
the voter votes for one out of two candidates. Since this is equivalent to a yes/no

vote, each vote can be considered as '0’ for no and ’1’ for yes.

Voting protocol for two candidates

1. Each voter V; decides on his vote v;. He computes C; = E(v;,1;), where r;
is chosen at random. He creates Proofy,(C; or C; — Pj is an encryption of 0)
based on the 1-out-of-2 protocol of Subsection 4.5.6. He posts his encrypted
vote together with the proof to the bulletin board B.

2. Each tally authority A; does the following:

o Set C =0.

e For all i: check the proof written by V; on B. If it is valid, then set
C = C—|— Cz (= E(Z/Ns+1z)

e A; uses C as the input ciphertext and executes his part of the threshold
decryption protocol. He posts his result to the bulletin board B.

4.7 Application to Electronic Voting 84

3. After discarding invalid messages, the combining of these decryption shares
written by the A;’s can now be done by anyone, i. e., the reconstruction of the
plaintext corresponding to . For simplicity we assume now that all votes are

valid. Then we obtain
C= ZE(%,W) = E(Z v; mod N¥, Zri mod N?).

Hence, the result of the decryption, i.e., the final tally is >, v; mod N* which

is), v; since we have N* > m.

Analogously to [27] we can now prove the following:

Lemma 4.7.1. Assuming the hardness of the generalised elliptic curve Paillier as-
sumption, our election scheme provides universal verifiability, computational privacy,
robustness and prevents vote duplication. Furthermore, in the random oracle model

no interaction between voters is needed.

Proof. Since the proofs of validity for the ballots C; are made non-interactively, they
are verifiable by any observer. Furthermore, any observer can check the final tally
with respect to all valid ballots. This gives us universal verifiability.

Assuming the hardness of the generalised elliptic curve Paillier assumption the k
out of ¢ TECPS is semantically secure and hence no information about the vote
is leaked given E(v;,7;). If we assume that at most & — 1 tallying authorities are
corrupted, we obtain computational privacy of the individual votes.

Note that the proof of validity cast with each vote is witness indistinguishable, i. e.,
it gives no hint on the corresponding witness used in the proof. Thus it does not
help to break privacy.

Special soundness of the proofs of validity guarantees that a voter cannot cast bogus
ballots. This ensures robustness with respect to malicious voters. Robustness with
respect to at most n — k malicious authorities is inherited from the robustness of
the key generation and decryption protocols.

The hash function h needed for the proofs of validity gets the user identity as input.

This prevents vote duplication. O

4.8 Application to Commitment Schemes 85

Extension to Multi-Candidate Elections

Instead of making a choice between two candidates it is often required to choose one
or more out of several candidates. There are several ways to tackle this problem,
i.e., to generalise the above approach to L > 2 candidates. A very simple way as
described in [32] is to make L parallel yes/no votes as above. A voter votes 1 for
the candidates he wants and 0 for the others. Hence, each voter V; sends L votes in

parallel which are of the following form:
Cij = E(vij, rij)

where 0 < j < L—1. Here, 7;; are chosen at random and v;; is V;’s vote for candidate
number j. He also creates Proofy,(C;; or C;; — Py is an encryption of 0) based on
the 1-out-of-2 protocol of Subsection 4.5.6. He then computes Zf;ol r;; mod N and
posts it to the bulletin board B. This proves that he voted for exactly t out of L
candidates since any observer can check that Z]L;ol E(vj,7;;) is an encryption of
t. Due to the proof of validity we know that all individual votes are either 0 or 1
which shows that this check is sufficient. Now by decryption of the L values Cj; the

number of votes each candidates received is obtained.

Note that the complexity of the described protocol is as well linear in the number

of voters as in the number of candidates.

4.8 Application to Commitment Schemes

For a commitment scheme a new and very strong security notion called universal
composability was introduced by Canetti and Fischlin [17]. This notion was adopted
by Damgard and Nielsen [33] who presented a new construction of universally com-
posable commitment schemes based on so called special mized commitment schemes.
Furthermore, they have shown that it is possible to base such a special mixed com-
mitment scheme on the Paillier scheme. Using their results we show that it is
possible to base a special mixed commitment scheme on a slightly modified version

of the ECPS, and thus on the elliptic curve Paillier assumption instead of Paillier’s

4.8 Application to Commitment Schemes 86

original assumption. The construction of Damgard and Nielsen is based on ¢ one-
way homomorphisms which will be introduced in Subsection 4.8.2. Furthermore,
they prove that for the so obtain special mixed commitment scheme it is possible
to build protocols for proving Boolean relations between committed values defined
by any Boolean function as well as protocols for proving additive and multiplicative
relations.

After explaining the idea behind commitment schemes and explaining their main
properties we prove that it is possible to modify the ECPS in such a way that it
fulfills the requirements of a ¢ one-way homomorphism. Hence, using the results
of [33] we obtain a special mixed commitment scheme based on the elliptic curve

Paillier assumption with exactly the same properties.

Commitment schemes are a fundamental primitive in both theory and practice of
cryptography, e.g. for zero-knowledge proofs (e.g., [47, 14, 28|), general function
evaluation protocols (e.g. [46, 43]), contract-signing, electronic commerce or coin
flipping. Informally in a commitment scheme a player P is able to commit to a
self-chosen value of a finite set in such a way that he cannot change his mind later
on. Furthermore, he does not have to reveal his choice to other players)V at this
time, i.e., to reveal to which value he is committing to. He may to choose to do so

at some later time though.

As an informal example consider the following protocol between two players P and

V.

1. P wants to commit to a bit b. To do so, he writes b on a piece of paper and

puts the paper in a box. He locks the box using a padlock.
2. P gives the box to V.

3. If P decides to open the commitment he gives) the key to the padlock.

There are two basic properties of such a scheme which can be satisfied either un-
conditionally or relative to a complexity assumption: The binding property ensures
that a cheating player P cannot change the value he has committed to at a later
time, i. e., he cannot change what is inside the box. Hence, when the box is opened,

we know what is revealed really was the choice that P committed to originally. The

4.8 Application to Commitment Schemes 87

hiding property guarantees that a cheating) cannot obtain the value P committed
to until P decides to open his commitment since V cannot look into the box until he
received the key to the padlock from P. Note that it is not possible for a scheme to
be simultaneously perfectly binding and perfectly hiding. Here, by perfect we mean
that an unbounded receiver V gets zero information about the bit b, respectively an
unbounded committer P can change his mind about b with probability zero.

Many different commitment schemes are known in the literature (e.g., [12, 63, 35,
64, 34|) which are based on different complexity assumptions and various notions
of security. Some of them realise this basic functionality by basing it on physical
processes like e.g. noisy channels or quantum mechanics, while others base it on
distributing information between many players connected by a network. In the con-
struction by Damgard and Nielsen the commitment scheme is a protocol between
two players although commitment schemes may be implemented as a protocol be-
tween more players.

Their scheme is a universally composable commitment scheme with a constant ex-
pansion factor that can be instantiated in either perfectly hiding or perfectly binding
versions. Universal composability as introduced in [17] guarantees that security is
maintained even when an unbounded number of copies of the scheme are running
concurrently in an adversarially controlled way. Thus it is a very strong notion of
security. Furthermore, it implies non-malleability and security against adaptive ad-
versaries. Damgard and Nielsen based the construction on a new primitive which
they call mized commitment scheme and which will be defined in Subsection 4.8.1.
Basing the implementation on the ECPS we can obtain a mixed commitment scheme

with exactly the same properties.

To intuitively explain the main ideas of [33] we think of the simplest type of commit-
ment schemes where both committing and opening are non-interactive. To commit
to a message m the committer runs an algorithm commit; where K denotes a public
key and which has as input the message m together with a uniformly random string
r. Hence, he computes ¢ = commitg(m,r) and sends ¢ to the receiver. To open
the commitment, the committer sends m and r to the receiver who verifies that
¢ = commitg (m,r). Here hiding means that given just ¢ the receiver does not learn
m and binding means that the committer cannot change his mind by computing

m’,r’" where ¢ = commitg (m/,r") and m’ # m.

4.8 Application to Commitment Schemes 88

In a trapdoor commitment scheme there is a piece of trapdoor information ¢ which
is associated to each public key K. This, if known, allows the committer to change
his mind. Obviously from the existence of such trapdoor information it follows that
in such a scheme the binding property cannot be satisfied unconditionally. In most
trapdoor schemes it is even possible to compute from ¢ commitments that can be
opened in any way desired. This special type of trapdoor schemes is called equivo-
cable.

Furthermore, it is possible to construct commitment schemes where a different type
of trapdoor information ¢ exists, so that the knowledge of ¢ guarantees that we
can efficiently compute m from commit(m,r). This property immediately implies
that such schemes cannot be unconditionally hiding. This type of commitment
scheme is called eztractable.

In the scheme of Canetti and Fischlin in [17] the hiding property and binding prop-
erty are both fulfilled only computationally. This is owing to their construction in
which it seems that a scheme is needed that is simultaneously extractable and equiv-
ocable to be universally composable. As already mentioned in [33| a new technique
for the construction of universally composable commitments based on a so-called
mixed commitment scheme is proposed. Basically a mixed commitment scheme is
a commitment scheme which on some of the keys is perfectly hiding and equivo-
cable, these keys are called E-keys, and on some of the keys perfectly binding and
extractable, these keys are called X-keys. Note that obviously, a key cannot be both
X- and E-key. The basic construction of this technique by Damgard and Nielsen
is neither perfectly binding nor perfectly hiding. However, it is possible to modify
their basic scheme to obtain a commitment scheme that can be instantiated in either

perfectly binding or perfectly hiding.

4.8.1 Mixed Commitments

The formal definition of mixed commitment schemes given in [33] is as follows:

Definition 4.8.1. By a mized commitment scheme we mean a commitment scheme
commitx with some global system key N, which determines the message space My
and the key space Iy of the commitments. The key space contains two sets, the
E-keys and the X-keys, for which the following holds:

4.8 Application to Commitment Schemes 89

Key generation:

One can efficiently generate a system key N along with the so-called X-trapdoor
ty. One can, given the system key N, efficiently generate random commitment keys
and random X-keys. Given the system key, we can efficiently generate an E-key K

along with the so-called E-trapdoor .

Key indistinguishability:
Random E-keys and random X-keys are both computationally indistinguishable from

random keys as long as the X-trapdoor is not known.

Equivocability:
Given an E-key K and an E-trapdoor tx we can generate fake commitments ¢, dis-
tributed exactly as real commitments, which can later be opened arbitrarily, i.e.,

given a message m we can compute uniformly random r for which ¢ = commit g (m, r).

Extraction:
Given a commitment ¢ = commity (m, r), where K is an X-key, we can, given the X-
trapdoor ty, efficiently compute m, where m is uniquely determined by the perfect

binding.

Note that from key indistinguishability it follows that as long as the X-trapdoor is
not known the scheme is computationally hiding for all keys. Furthermore, it implies
that as long as neither the X-trapdoor nor the E-trapdoor is known the scheme is
computationally binding for all keys.

For the construction based on the idea of Damgard and Nielsen a few special re-
quirements on the mixed commitment scheme are needed:

A special mized commitment scheme is a mixed commitment scheme with the fol-
lowing further properties: The message space My and the key space Ky are finite
groups in which it is possible to compute efficiently. Furthermore, the ratio of E-
keys over the total number of keys is negligible and the ratio of X-keys over the total
number of keys is negligible close to 1. This implies that there is only a negligible
fraction of keys which is neither E-key nor X-key.

As last requirement the scheme should be of a particular form. This is ensured by
a transformation. The message space of the so-obtained transformed scheme is the

same, but the keys are now of the form (K, K;). The corresponding E-keys are

4.8 Application to Commitment Schemes 90

pairs of E-keys and the corresponding X-keys are pairs of X-keys. As before this
construction leaves only a negligible fraction of keys which is neither E-key nor X-
key. To commit to a given message m we compute (commit g, (7m;),commit g, (ms))
where m, and my are uniformly random values for which m = m; +ms. If both keys
are X-keys, then m; and ms and thus m can be computed by extraction. Note that
all other properties of a special mixed commitment scheme are also fulfilled under

this transformation.

4.8.2 Special Mixed Commitment Schemes Based on ¢ One-

Way Homomorphisms

In [33] the notion of extractable q one-way homomorphisms was introduced. It
extends the definition of ¢ one-way homomorphism generators from Cramer and
Damgard [22]. Let G and H be finite abelian groups and let H/f(G) be a cyclic
group with only large prime factors in its order. The idea is to consider an easily
computable homomorphism f : G — H. Furthermore, without a trapdoor random
elements of f(G) should be computationally indistinguishable from elements chosen
randomly from all over H. Note that this implies that f is hard to invert if no
trapdoor is known. Given such a trapdoor associated with f it should be easy to
decide about the status of an element in H. More formally, extractable ¢ one-way
homomorphisms are defined as follows [33]:

A family of extractable ¢ one-way homomorphisms is given by a probabilistic poly-
nomial time generator G which on input 17 where o denotes the security parameter,
outputs a description of an 8-tuple (G, H, f,g,q,b,b',t), where G and H are groups,
f: G — H is an efficiently computable homomorphism, g € H\ f(G),q,b, b € N,
and t is a string called the trapdoor. Let F' := f(G). It is required that gF' generates
the factor group H/F. Furthermore, ord(g) = |H/F| should be superpolynomial in
the security parameter o, e.g. 27, ord(g)|q and b is a public lower bound on ord(g),
i.e., 2<b<ord(g) <gq. A generator is said to have public order if b = ord(g) = q.
Also b’ is superpolynomial in o (e.g. 27/2) and its order is a public lower bound
on the prime factors in ord(g), i.e., all prime factors in ord(g) are at least ¥’. In
contrast to [33] we write operations in G and H additively. Finally, it is required

that in both groups G and H we can add, multiply by an integer, take inverses and

4.8 Application to Commitment Schemes 91

sample random elements in probabilistic polynomial time given (G, H, f, g,q,b,b).

The final central requirements are as follows:

Indistinguishability: Random elements from F' are computationally indistinguish-

able from random elements from H given (G, H, f,g,q,b,V').

Extractability: A generator is called fully extractable if given (G, H, f,qg,q,b,V',t)
and y = ig + f(r) we can compute 7 mod ord(g) in probabilistic polynomial time.
Note that given the 8-tuple (G, H, f,g,q,b,V,t) it is easy to compute ord(g).

g-invertibility: Given (G, H, f,g,q,b,b') and y € H, it is easy to compute z S0
that gy = f(z). Note that this does not contradict indistinguishability: since ¢ is a
multiple of ord(g), it is always the case that qy € F.

Using such an extractable ¢ one-way homomorphism Damgéard and Nielsen [33] de-
scribed a way to transform it into a special mixed commitment scheme: The message
space of the commitment scheme will be Z/p7, and the key space K will be the group
H. Hence both are finite groups in which we can compute efficiently. To commit
to a message m € Z/pz, given a key K € K choose r € H randomly and compute
the commitment as ¢ = commityi(m,r) := mK + f(r). The E-keys will be the set
F = f(G) with corresponding E-trapdoor tx = f~!(K). Due to the requirement
that ord(g) is superpolynomial in the security parameter o we fulfill the requirement
that the number of E-keys is negligible over the total number of keys. The X-keys
will be elements of the form K = ig + f(rx) where 7 is invertible in Z/ord(g)Z with
X-trapdoor ¢t. By the requirement that all prime factors of ord(g) are large, the
ratio of X-keys over the total number of keys is negligible close to 1 as required
for a special mixed commitment scheme. Furthermore, the X-keys can be sampled
efficiently given ¢ since ord(g) is know.

Key indistinguishability follows directly from the requirement that random elements
in f(G) and random elements chosen from all of H are computationally indistin-
guishable. To show equivocability we assume that the E-key K = f(rg) and E-
trapdoor tx = rx is given. A fake commitment is generated as ¢ = f(r.) for r. € H
uniformly random. Assume that we are given m € Z/pz. Let r := —mrg +r.. Then
r is uniformly random and ¢ = f(r.) = f(mrx +r) = mK + f(r) = commitg (m,r).
This proves that tx = rg gives equivocability, i.e., fake commitments that are

distributed exactly as real commitments and can later be opened arbitrarily can be

4.8 Application to Commitment Schemes 92

generated. To show extractability we assume that K is an X-key, i.e., K = ig+f(rg)
with 7 invertible in Z/ord(g)Z, and a commitment ¢ = mK + f(r) = img+ f(mrg+r)
for m € Z/pz, is given. Using fully extractability, i.e., using the X-trapdoor t we
can compute im mod ord(g) from ¢ and furthermore, ¢ mod ord(g) can be com-
puted from K. Since i is invertible we can then compute m mod ord(g) = m. The
transformed scheme has keys (K7, K3) which are pairs of keys and we commit as
commitg, i, (m, (r1,re,my)) = (my Ky + f(r1), maKs + f(re)) where 1,75 are ran-
dom elements in H and my = m — m; mod q. Hence all requirements for a special
mixed commitment scheme are fulfilled.

Furthermore, Damgard and Nielsen develop efficient protocols for proving in zero-
knowledge relations among committed values for the special mixed commitment
scheme. See [33] for details of these protocols and for further properties and the

proof of security of the commitment scheme.

4.8.3 The ECPS as an Example for a ¢ One-Way Homomor-
phism

We can now show that a slightly modified version of the ECPS (see Section 4.2) is
an example of a ¢ one-way homomorphism. Hence it can be used to construct a

special mixed commitment scheme as described above.

To develop the construction in an analogous manner as in [33] we have to modify
the random contribution of the ECPS to build a ¢ one-way homomorphism and
hence to construct a special mixed commitment scheme: Let N be an RSA modulus
(and let s = 1 if we consider the generalised ECPS). Furthermore, let P, and M be
the appropriate values computed in the key generation phase of the ECPS for an
elliptic curve with (a,b) as parameters. We have that F(Z/N27) ~ G; x Gy where
G1 ~ Z/N7, thus |G1| = N and G is a group of order M which is hard to compute
unless the factorisation of N is known, see [42|. Before defining the homomorphism
f we consider the map @ : (m, R) — mP;+ NR where m € Z/N7 and R is a random
point on E(Z/N27,).

4.8 Application to Commitment Schemes 93

Remark 4.8.2.

1. Note that we cannot directly choose a random element in F(Z/nN27) without
the knowledge of the factors of N. To solve this we fix a number of points
Q1, ..., Q; at key generation time, i. e., when the prime factors of N are known,
and then let R = r{Qy + - -- + r;Q);. By tuning ¢ and the size of the numbers
r; for 1 < ¢ <t this will generate an appropriate approximation to a uniform
choice from E(Z/N27). *

2. Note that the random contribution in this map is defined different than in
the original ECPS (see Section 4.2): Instead of defining it as a fixed point
() multiplied by a random number, we take a random point R on the elliptic
curve F(Z/N27) multiplied by N which gives us a random element in the group
Go.

Obviously for the map ® it holds that

k(I)(ml, Rl) + CI)(WQ, Rg) = (k‘m1 =+ mz)Pl + N(k’Rl + Rg)
= @(kml + mao, le + R2>

Note that given a point mP; + NR € FE(Z/N27,) it is possible to compute m € Z/N7,
efficiently if M (or equivalently the factorisation of N, see [42]) is known, since
we can multiply by M to obtain MmP; and then proceed as in the decryption
phase described in Section 4.2. Furthermore, if the elliptic curve Paillier assumption
holds elements of the form ®(0, R) are indistinguishable from elements of the form
®(m, R), where R is a random point in E(Z/N27) and m is any fixed element in
(Z/Nz)*

Based on this observation we can now show that relative to the elliptic curve Pail-
lier assumption this modified version of the ECPS leads to a fully extractable gen-
erator with public order: Let N be an RSA modulus with prime factors of bit
length o/2. Let both groups G and H be E(Z/N27) and let f(R) = NR which

is an element in F' = (5 and obviously efficiently computable. Let ¢ = P;, and

3n particular, by the Chinese Remainder Theorem it follows immediately that ¢t = 5 is enough
to generate random points. However, it can also be shown that ¢ = 4 is enough.

4.8 Application to Commitment Schemes 94

let the trapdoor t be the group order M or equivalently the prime factors of V.
We define b = ¢ = N to obtain a generator with public order. We have that
ord(g) = N = |E(Z/N27)/Gs|. Hence ord(g) as well as b’ = 27/27! is superpoly-
nomial in o. Obviously given (G, H, f,g,q,b,b') we can add points on E(Z/N27,)
(see Section 4.1), multiply them by integers, take inverses of points in F(Z/N27,)
in probabilistic polynomial time. Additionally, we can sample random elements in
E(Z/N27) as noted above. Furthermore, the elliptic curve Paillier assumption guar-
antees indistinguishability. If we are given (G, H, f,g,q,b,0') and additionally the
trapdoor t = M we can compute ¢ mod N given ig + f(R) = iP; + NR using the
decryption algorithm, i.e., multiplying by M. This shows that the generator is fully
extractable. The last property that has to be verified is g-invertibility which follows

immediately from the definition.

Hence, using the result of Damgard and Nielsen [33| as described in Subsection 4.8.2

we obtain the following theorem:

Theorem 4.8.3. Based on the ECPS it is possible to build a special mized com-
mitment scheme with message space Z/Ng7, with proofs of relations of the form
m = f(my,ms,...,my) where [is a Boolean predicate and I = O(log(k)) and proofs

of additive and multiplicative relations modulo N.

Chapter 5
Conclusions and Open Questions

This thesis dealt with homomorphic cryptosystems and their applications. In Chap-
ter 2 we have efficiently constructed an algebraically homomorphic cryptosystem
given a homomorphic cryptosystem on a special non-abelian group. Designing such
an algebraically homomorphic cryptosystem has been an open problem for more
than 20 years since a positive result leads to efficient and simple solutions to several
cryptographic protocols. We were able to partially solve this long standing open
problem by reducing it to the search for special efficient homomorphic cryptosys-

tems.

The solutions presented in Chapter 3 were based on the idea of considering branching
programs instead of circuits as a computational model for functions. By such means
we were able to provide non-interactive and provably secure protocols to encrypt
functions given by polynomial branching programs in such a way that they are
still executable. Hence we enlarge the class of encryptable functions from NC! to
polynomial branching programs. This is an improvement of existing solutions and -
to the best of our knowledge - there are no concrete functions known that cannot be
represented by polynomial branching programs. Future research will show if there
exist solutions based on homomorphic schemes that are independent of the size of the
underlying function. Finally, owing to this enlargement the question arises whether
algebraically homomorphic cryptosystems are still necessary for specific applications

or whether homomorphic cryptosystems are sufficient.

Conclusions and Open Questions 96

In Chapter 4 we constructed a threshold decryption version of the elliptic curve
Paillier scheme. This version is especially suited for many applications since various
powerful auxiliary protocols can be built based on it. Our protocols are the first
elliptic curve versions of this kind. It is interesting if there exist further elliptic curve
versions of the Paillier scheme that are as powerful as our scheme, i.e. that lead
to the same protocols. Furthermore, one could analyse our results to determine the
specific properties required of the underlying cryptosystem to obtain all mentioned

auxiliary protocols.

Bibliography

[1]

12l

3]

[4]

[5]

[6]

7]

8]

M. Abadi, J. Feigenbaum, Secure Circuit Evaluation - a Protocol based on Hid-
ing Information from an Oracle, Journal of Cryptology, Vol. 1, No. 2, 1990, pp.
1-12

A. Adelsbach, S. Katzenbeisser, A. Sadeghi, Cryptography Meets Watermarking:
Detecting Watermarks with Minimal or Zero Knowledge Disclosure, In Proceed-

ings of the European Signal Processing Conference 2002, Toulouse, France, 2002

F. Bao, Cryptanalysis of a Provable Secure Additive and Multiplicative Privacy
Homomorphism, Workshop on Coding and Cryptography, 2003, Versailles

D. A. Barrington, Bounded-with Polynomial-size Branching Programs Recognize
Ezactly those Languages in NC', In Proceedings of the 18th ACM Symposium
on the Theory of Computing, 1986, pp. 1-5

D. M. Barrington, H. Straubing, D. Therien, Non-uniform Automata over
Groups, Information and Computation, Vol. 89, No. 2, 1990, pp. 109-132

M. Bellare, P. Rogaway, Random Oracles are Practical: o Paradigm for De-
signing Efficient Protocols, First ACM Conference on Computer and Commu-

nications Security, 1993, pp. 62-73

J. C. Benaloh, Verifiable Secret-Ballot Elections, Ph.D. Thesis, Technical Re-
port 561, Yale University, Department of Computer Science, 1988

J. Benaloh, Dense Probabilistic Encryption, In Proceedings of the Workshop on
Selected Areas of Cryptography, 1994, pp. 120-128

BIBLIOGRAPHY 98

[9] J. Benaloh, M. Yung, Distributing the Power of a Government to Enhance the
Privacy of Voters, In Proceedings of the 5th ACM Symposium on Principles of
Distributed Computing (PODC’86), New York, 1986, pp. 5262

[10] M. Ben-Or, R. Cleve, Computing Algebraic Formulas Using a Constant Number
of Registers, STAM Journal on Computing, Vol. 21, No. 1, 1992, pp. 54-58

[11] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, London Math-
ematical Society, Lecture Note Series 265, Cambridge University Press, 1999

[12] M. Blum, Coin Flipping by Telephone, IEEE Spring COMPCOM, 1982, pp.
133-137

[13] Boneh, Lipton, Searching for Elements in Black Boz Fields and Applications,
In Proceedings of Crypto 96, LNCS 1109, Springer-Verlag, 1996, pp. 283-297

[14] G. Brassard, D. Chaum, C, Crépeau, Minimum Disclosure Proofs of Knowledge,
Journal of Computer and System Sciences, Vol. 37, No. 2, pp. 156-189, 1988

[15] E. F. Brickell, Y. Yacobi, On Privacy Homomorphisms, Advances in Cryptology
- EUROCRYPT 1987, LNCS 304, Springer-Verlag, 1987, pp. 117-126

[16] C. Cachin, J. Camenisch, J. Kilian, J. Miiller, One-round Secure Computation
and Secure Autonomous Mobile Agents, In Proceedings of the 27th International
Colloquium on Automata, Languages and Programming (ICALP), LNCS 1853,
Springer-Verlag, 2000, pp. 512-523

[17] R. Canetti, M. Fischlin, Universally Composable Commitments, Advances in
Cryptology - CRYPTO 01, LNCS 2139, Springer-Verlag, 2001, pp. 1940

[18] D. Catalano, R. Gennaro, N. Howgrave-Graham, The Bit Security and Pail-
lier’s Encryption Scheme and its Applications, Advances in Cryptology - EU-
ROCRYPT 2001, LNCS 2045, Springer-Verlag, 2001, pp. 229-243

[19] D. Catalano, R. Gennaro, N. Howgrave-Graham, Paillier’s Trapdoor Function
Hides up to O(n) Bits, Journal of Cryptology, Vol. 15, 2002, pp. 251-269

BIBLIOGRAPHY 99

[20] D. Catalano, R. Gennaro, N. Howgrave-Graham, P. Q. Nguyen, Paillier’s Cryp-
tosystem Rewvisited, In Proceedings of the 8th ACM Conference on Computer
and Communication Security, 2001, pp. 206-214

[21] J. Cohen, M. Fischer, A Robust and Verifiable Cryptographically Secure Elec-
tion Scheme, In Proceedings of the 26th IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, 1985, pp. 372—-382

[22] R. Cramer, I. Damgard, Zero-Knowledge for Finite Field Arithmetic. Or: Can
Zero-Knowledge be for Free?, In Proceedings of CRYPTO 98, LNCS 1462,
Springer-Verlag, 1998, pp. 424-441

[23] R. Cramer, I. Damgard, U. Maurer, General Secure Multiparty Computation
from any Linear Secret-sharing Scheme, In Advances in Cryptology - EURO-
CRYPT 2000, LNCS 1807, Springer-Verlag, 2000, pp. 316-334

[24] R. Cramer, 1. Damgard, J. Nielsen, Multiparty Computation from Threshold
Homomorphic Encryption, In Proceedings of EUROCRYPT 01, LNCS 2045,
pp. 280-299, 2001

[25] R. Cramer, 1. Damgard, B. Schoenmakers, Proofs of Partial Knowledge, In
Proceedings of CRYPTO 94, LNCS 839, Springer-Verlag, 1994, pp.174-187

[26] R. Cramer, S. Fehr, Y. Ishai, E. Kushilevitz, Efficient Multi-Party Computa-
tion over Rings, In Proceedings of EUROCRYPT 2003, LNCS 2656, Springer-
Verlag, 2003

[27] R. Cramer, R. Gennaro, B. Schoenmakers, A Secure and Optimally Efficient
Multi-Authority Election Scheme, In European Transactions on Telecommuni-
cations, Vol. 8, No. 5, 1997, pp. 481-490

[28] 1. Damgard, On the Existence of Bit Commitment Schemes and Zero-knowledge
Proofs, Advances in Cryptology - CRYPTO ’89, LNCS 435, Springer-Verlag,
1989, pp. 1729

[29] 1. Damgard, On X-Protocols, Cryptologic Protocol Theory Course, 2002,
URL: http://www.daimi.au.dk/ ivan/CPT.html

BIBLIOGRAPHY 100

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

38

I. Damgard, M. Jurik, A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System, Public Key Cryptography (PKC
2001), LNCS 1992, Springer-Verlag, 2001, pp. 119-136

I. Damgard, M. Jurik, A Length-Flexible Threshold Cryptosystem with Appli-
cations, In Proceedings of the 8th Australasian Conference on Information Se-
curity and Privacy (ACISP 2003), LNCS 2727, Springer-Verlag, 2003

I. Damgard, M. Jurik, J. Nielsen, A Generalisation of Paillier’s Public-Key Sys-
tem with Applications to Electronic Voting, Special issues on Financial Cryptog-
raphy, International Journal on Information Security (IJIS), Springer-Verlag,
2003

I. Damgard, J. Nielsen, Perfect Hiding and Perfect Binding Universally Com-
posable Commitment Schemes with Constant Expansion Factor, Advances in
Cryptology - CRYPTO 2002, LNCS 2442, Springer-Verlag, 2002, pp. 581-596

G. Di Crescenzo, J. Katz, R. Ostrovsky, A. Smith Efficient and Perfectly-Hiding
Non-Interactive, Non-malleable Commitment, Advances in Cryptology - EU-
ROCRYPT 2001, LNCS 2045, 2001, pp. 40-59

D. Dolev, C. Dwork, M. Naor, Non-malleable Cryptography, SIAM Journal on
Computing, Vol. 30, No.2, 2000, pp. 391-437

J. Domingo-Ferrer, A Provably Secure Additive and Multiplicative Privacy Ho-
momorphism, In Proceedings of the 5th International Conference on Informa-
tion Security (ISC 2002), LNCS 2433, Springer-Verlag, 2002, pp. 471-483

T. ElGamal, A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms, Advances in Cryptology - Proceedings of CRYPTO 84,
LNCS 196, 1985, pp. 10-18

J. Feigenbaum, M. Merritt, Open Questions, Talk Abstracts, and Summary of
Discussions, DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, Vol. 2, 1991, pp. 1-45

BIBLIOGRAPHY 101

[39] M. Fellows, N. Koblitz, Combinatorial Cryptosystems Galore!, In Finite Fields:
theory, applications and algorithms, Contemporary Mathematics, Vol. 168, Las
Vegas, 1993, pp. 51-61

[40] A. Fiat, A. Shamir, How To Prove Yourself: Practical Solutions to Identification
and Signature Problems, Advances in Cryptology - CRYPTO ’86, LNCS 263,
Springer-Verlag, 1987, pp. 186-194

[41] P. Fouque, G. Poupard, J. Stern, Sharing Decryption in the Context of Voting
or Lotteris, Financial Cryptography 2000, LNCS 1962, Springer-Verlag, 2000

[42] S. D. Galbraith, Elliptic Curve Paillier Schemes, Journal of Cryptology, Vol.
15, No. 2, 2002

[43] Z. Galil, S. Haber, M. Yung, Cryptographic Computation: Secure Fault-tolerant
Protocols and the Public-key Model, Advances in Cryptology - CRYPTO 87,
LNCS 293, Springer-Verlag, 1988, pp. 135-155

[44] S. Goldwasser, S. Micali, Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information, Proceedings of the 14th ACM Sympo-
sium on the Theory of Computing, 1982, pp. 270-299

[45] S. Goldwasser, S. Micali, Probabilistic Encryption, Journal of Computer and
System Sciences, Vol. 28, No. 2, 1984, pp. 270-299

[46] O. Goldreich, S. Micali, A. Wigderson, How to Play any Mental Game, ACM
Symposium on Theory of Computing (STOC), 1987, pp. 218-229

[47] O. Goldreich, S. Micali, A. Wigderson, Proofs that Yield Nothing but their
Validity or All Languages in NP have Zero-Knowledge Proof Systems, Journal
of the ACM, Vol. 38, No. 1, 1991, pp. 691-729

[48] P. Golle, M. Jakobsson, A. Juels, P. Syverson, Universal Re-encryption for
Mizxnets, In Proceedings of the RSA Conference Cryptographer’s Track 04,
LNCS 2964, Springer-Verlag, 2004

[49] D. Grigoriev, I. Ponomarenko, Homomorphic Public-key Cryptosystems and
Encrypting Boolean Circuits, Workshop on Codes and Cryptography, INRIA,
Versailles, 2003

BIBLIOGRAPHY 102

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Grigoriev, 1. Ponomarenko, Homomorphic Public-key Cryptosystems over
Groups and Rings, http://arxiv.org/abs/cs.CR /0309010

J. Groth, Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack
Secure Cryptosystems, In Proceedings of the First Theory of Cryptography
(TCC 2004), LNCS 2951, Springer-Verlag, 2004, pp. 152-170

J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Oxford Mathe-
matical Monographs, Clarendon Press, Oxford, p. 30, 1979

Y. Ishai, E. Kushilevitz, Private Simultaneous Messages Protocols with Appli-
cations, In Proceedings of the Fifth Israel Symposium on Theory of Computing
and Systems (ISTCS 1997), IEEE Computer Society, 1997, pp. 174-183

Y. Ishai, E. Kushilevitz, Randomizing Polynomials: A new Representation with
Applications to Round-efficient Secure Computation, In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science (FOCS 2000), 2000,
pp- 294-304

Y. Ishai, E. Kushilevitz, Perfect Constant-Round Secure Computation via Per-
fect Randomizing Polynomials, In Proceedings of the 29th International Collo-
quium on Automata, Languages and Programming (ICALP 2002), LNCS 2382,
Springer-Verlag, 2002, pp. 244-256

S. Jarecki, A. Lysyanskaya, Adaptively Secure Threshold Cryptography: Intro-
ducing Concurrency, Removing Erasures, Advances in Cryptology - EURO-
CRYPT 2000, LNCS 1807, Springer-Verlag, 2000, pp. 221-242

M. Jurik, Eztensions to the Paillier Cryptosystem with Applications to Cryp-
tological Protocols, Ph.D. Thesis, Department of Computer Science, University
of Aarhus, Denmark, 2003

K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. S. Kang, C. Park, New Public-
key Cryptosystem Using Braid Groups, Advances in Cryptology - CRYPTO
2000, LNCS 1880, Springer-Verlag, 2000, pp. 166-183

N. Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation in
Mathematics, Vol. 3, Springer-Verlag, New York, 1998.

BIBLIOGRAPHY 103

[60] Helger Lipmaa, Verifiable Homomorphic Oblivious Transfer and Private Equal-
ity Test, Advances in Cryptology - Asiacrypt 2003, LNCS 2894, Springer-Verlag,
2003

[61] L. V. Ly, Polly Two - A Public-Key Cryptosystem based on Polly Cracker,
Ph.D. Thesis, Ruhr-Universitat Bochum, 2002

[62] D. Naccache, J. Stern. A New Public Key Cryptosystem Based on Higher
Residues, In Proceedings of the 5th ACM Conference on Computer and Com-
munications Security, 1998, pp. 59-66

[63] M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology,
Vol. 4, 1991, pp. 151-158

[64] M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung, Perfect Zero-Knowledge Ar-
guments for NP Can be Based on General Complexity Assumptions, Advances
in Cryptology - CRYPTO’92, LNCS 740, 1992, pp. 196-214

[65] T. Okamoto, S. Uchiyama, A New Public-Key Cryptosystem as Secure as Fac-
toring, Advances in Cryptology - EUROCRYPT 1998, LNCS 1403, Springer-
Verlag, 1998, pp. 308-318

[66] S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee, C. Park, New Public Key Cryp-
tosystem Using Finite Non Abelian Groups, Advances in Cryptology - CRYPTO
2001, LNCS 2139, Springer-Verlag, 2001, pp. 470-485

[67] P. Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, Advances in Cryptology - EUROCRYPT 1999, LNCS 1592, Springer-
Verlag, 1999, pp. 223-238

|68] P. Paillier, Trapdooring Discrete Logarithms on Elliptic Curves over Rings, Ad-
vances in Cryptology - ASTACRYPT 2000, LNCS 1976, Springer-Verlag, 2000,
pp- 573-584

[69] P. Paillier, D. Pointcheval, Efficient Public-Key Cryptosystems Provably Secure
Against Active Adversaries, Advances in Cryptology - ASTACRYPT 99, LNCS
1716, Springer-Verlag, 1999, pp. 165-179

BIBLIOGRAPHY 104

[70] B. Pfitzmann, M. Waidner, Anonymous Fingerprinting, Advances in Cryptol-
ogy - EUROCRYPT 1997, LNCS 1233, Springer-Verlag, 1997, pp. 88-102

[71] G. Poupard, J. Stern, Fair Encryption of RSA Keys, Advances in Cryptology -
EUROCRYPT 2000, LNCS 1807, Springer-Verlag, 2000

[72] D. K. Rappe, Algebraisch homomorphe Kryptosysteme, Diploma Thesis, Uni-
versity of Dortmund, Germany, 2000
URL: http://www.matha.mathematik.uni-dortmund.de/ rappe/

[73] R. Rivest, L. Adleman, M. Dertouzos, On Data Banks and Privacy Homo-
morphisms, Foundations of Secure Computation, Academic Press, 1978, pp.
169-177

[74] R. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems, Communications of the ACM, Vol. 21, No. 2,
1978, pp. 120-126

[75] T. Sander, C. F. Tschudin, Towards Mobile Cryptography, IEEE Symposium
on Security & Privacy '98, Oakland, California, 1998, pp. 215-224

[76] T. Sander, C. F. Tschudin, Protecting Mobile Agents Against Malicious Hosts,
in Mobile Agents and Security, LNCS 1419, 1998

[77] T. Sander, A. Young, M. Yung, Non-Interactive CryptoComputing for NC*,
In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, IEEE, 1999, pp. 554-567

[78] A. Shamir, How to Share a Secret, Communications of the ACM, vol. 22, no.
11, 1979, pp. 612613

[79] V. Shoup, Practical Threshold Signatures, Advances in Cryptology - EURO-
CRYPT 2000, LNCS 1807, Springer-Verlag, 2000, pp. 207-220

[80] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathe-
matics Vol. 106, Springer-Verlag, 1986

BIBLIOGRAPHY 105

[81] D. Wagner, Cryptanalysis of an Algebraic Privacy Homomorphism, In Proceed-
ings of the 6th International Conference on Information Security (ISC 2003),
LNCS 2851, Springer-Verlag, 2003,

URL: http://www.cs.berkeley.edu/ daw/papers/ (revisted version)

[82] N. R. Wagner, M. R. Magyarik, A Public Key Cryptosystem Based on the Word
Problem, Advances in Cryptology - CRYPTO ’84, LNCS 196, Springer-Verlag,
1985, pp. 1936

[83] 1. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in
Computer Science, 1987

[84] A. Yao, Protocols for Secure Computation (extended abstract), In 23rd Annual
Symposium on Foundations of Computer Science, IEEE, 1982, pp. 160-164

[85] A. Yao, How to Generate and Ezchange Secrets, In 27th Annual Symposium
on Foundations of Computer Science (FOCS 1986), IEEE, 1986, pp. 162-167

Index

NC! circuit, 21 computing with encrypted functions,
Y-protocol, 67 16
k-path, 23 computing with encrypted data, 16, 26
q one-way homomorphism computing with encrypted functions,

extractable, 90 36
q one-way homomorphism generator, cryptosystem

90 additively homomorphic, 6
g-invertibility, 91 algebraically homomorphic, 9
deterministic, 6

adversary homomorphic, 5

active, 78

multiplicatively homomorphic, 6
adaptive, 78 e

‘ probabilistic, 6
passive, 78

scalar homomorphic, 9
static, 59, 63, 78

denial of service, 34
binding property, 86

blinding, 9 ECPS, 53
branching program, 22 election scheme, 17
bulletin board, 81 electronic voting, 80

eligibility, 82

commitment scheme, 18, 85 elliptic curve Paillier assumption, 55

equivocable, 88
extractable, 88
mixed, 87, 88

special mixed, 89

elliptic curve Paillier scheme, 53
equivocability, 89
extractability, 91
extractable
fully, 91

extraction, 89

trapdoor, 88
completeness, 68

computationally indistinguishable, 91
fair encryptions, 20

INDEX

107

Fiat-Shamir heuristic, 71
fingerprinting, 18

generalised elliptic curve Paillier assump-
tion, 57, 63

generalised elliptic curve Paillier scheme,
26

Goldwasser-Micali scheme, 8, 29

hiding property, 87

honest-verifier zero-knowledge proof, 69
indistinguishability, 91
key indistinguishability, 89

length-flexible, 65
lottery, 18

mix-net, 19, 66

mixed commitment scheme, 87, 88
mobile agent, 16, 37

multiparty computation, 16, 77

negligible, 6
non-forgeability, 58

non-interactive, 28

oblivious transfer, 18

Okamoto-Uchiyama scheme, 29

Paillier’s assumption, 55

perfect, 87

Polly Cracker, 11

privacy, 82
computational, 82

information-theoretic, 82

protocol
Y, 68
1-out-of-2, 77
check of ciphertextness, 72
correct multiplication, 74
equality of discrete logarithms, 69
multiparty computation, 79
plaintext knowledge, 76
voting, 83

public order, 90

random oracle model, 63, 71
random self-reducibility, 19
randomizing polynomials, 26
re-encryption, 19
re-randomizable encryption, 19
robustness, 58, 82

RSA, 7

secret sharing scheme, 17

secure circuit evaluation, 37

security parameter, 5

share combining, 62

share decryption, 61

special honest-verifier zero-knowledge,
68

special mixed commitment scheme, 85,
89

special soundness, 69

TECPS, 57

threshold elliptic curve Paillier scheme,
57

threshold scheme, 17, 58

total weight, 22

INDEX 108

universal composability, 85, 87

universal verifiability, 82

verifiable encryption, 20
verifiable secret sharing scheme, 78

vote duplication, 82

watermarking, 18
weight, 22

witness, 68

zero-knowledge proof, 17

		2005-03-08T16:02:22+0100
	Universitaetsbibliothek Dortmund - Eldorado

