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Abstract

The availability of good workload models is essential for the design and anal-

ysis of parallel computer systems. A workload model can be applied directly

in an experimental or simulation environment to verify new scheduling poli-

cies or strategies. Moreover, it can be used for extrapolating and predicting

future workload conditions. In this work, we focus on the workload mod-

eling for parallel computers. To this end, we start with an examination of

the overall features of the available workloads. Here, we find a strong se-

quential dependency in the submission series of computational jobs. Next,

a new approach using Markov chains is proposed that is capable of describ-

ing the temporal dependency. Second, we analyze the missing attributes

in some workloads. Our results show that the missing information can be

still recovered when the relevant model is trained from other complete data

set. Based on the results of overall workload analysis, we begin to inspect

the workload characteristics based on particular user-level features. That

is, we analyze in detail how the individual users use parallel computers.

In particular, we cluster the users into several manageable groups, while

each of these groups has distinct features. These different groups provide

a clear explanation for the global characteristics of workloads. Afterwards,

we examine the user feedbacks and present a novel method to identify them.

These evidences indicate that some users have an adaptive tendency and a

complete workload model should not ignore the users’ feedbacks. The work

ends with a brief conclusion on the discussed modeling aspects and gives an

outlook on future work.
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Chapter 1

Introduction

1.1 Motivation

Many traditional science disciplines as well as recent multimedia applications are in-

creasingly dependent upon powerful high-performance systems for the execution of both

computationally intensive and data intensive simulations of mathematical models and

their visualizations. Parallel computing in particular has emerged as an indispens-

able tool for problem solving in many scientific domains during the course of the past

fifteen years, e.g., weather forecasting, climate research, molecular modeling, physics

simulations.

A parallel computer is a high-end machine designed to support the execution of

parallel computational jobs. It can be composed of hundreds of high-speed processors,

often called nodes. The processors are interconnected by a very fast network. A variety

of parallel computers have been developed and are available to the user community.

This variety ranges from the traditional Massively Parallel Processors (MPPs), to dis-

tributed shared memory systems, to clusters or networks of stand-alone workstations or

PCs, to even geographically dispersed meta-systems or Grids connected by high-speed

Internet connections. Research and development efforts focus on building faster pro-

cessors, more powerful memories at all hierarchy levels, and on building fast networks

with higher bandwidth and lower latencies. All these efforts contributed to the broad

deployment of high-performance parallel systems.

Complementary to the hardware advance is the availability of transparent, highly

portable, and robust software environments like Message Passing Interface (MPI) and

Parallel Virtual Machine (PVM). Such environments hide the architecture details from

the end-users and contribute to the portability and robustness of parallel jobs across

a variety of hardware substrates. The availability of such environments transforms

1



2 CHAPTER 1. INTRODUCTION

every intranet into a high performance system, thus increasing the user access to par-

allel systems. Recently, the concept of Grid computing has been promoted [25, 26].

Grid computing provides shared access to a potentially large number of geographi-

cally distributed heterogeneous computational resources which are made available by

independent providers. Such Grids are used to solve large scale problems, which are

otherwise intractable due to their diverse requirements in terms of computing power,

memory and storage.

The availability of different parallel systems as well as the diversity of available

hardware and software make the arbitration and management of resources among the

user community a non-trivial problem. For example, a number of users typically at-

tempt to use the system simultaneously; the requests of resources are variable in the

parallelism of the applications and their respective computational and storage needs;

sometimes execution deadlines must be met. Therefore, efficient scheduling systems

are required to manage parallel computer resources. It is the task of the scheduling

system to resolve the resource conflicts between the different jobs that are submitted

to the system. It has to meet users’ specifications and fulfill owners’ requirements. A

typical task of a scheduling system is , e.g., allocating resources according to the user’s

requirements (i.e., cater to the interests of a user) and maximize the system through-

out (i.e., maximize system utilization, which is particularly important to amortize the

cost of parallel computers). To this end, the scheduling system has to decide when to

allocate resources for a particular job and when to delay a job in favor of executing

others.

Here, workload modeling plays a vital role in designing scheduling systems. Since

most parallel computers are very expensive machines, conducting extensive experi-

ments on an actual installation to select suitable algorithms or testify new scheduling

strategies is rarely an option. Instead, simulations are often executed to analyze new

strategies. Therefore, a suitable realistic workload model is required that can be used

for the simulation. It helps to compare different scheduling algorithms and explore the

performance of the system in a multitude of scenarios. Because the performance of a

system can only be interpreted and compared correctly with respect to the processed

load, workload modeling, i.e. selecting and characterizing the load, is a central issue in

performance evaluation.

Open Problems in Workload Modeling

The research presented in this work has been focused on workload modeling for parallel

computers. Workload modeling has been subject to research for a long time, not only
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in the field of parallel computers but also in many other applications, e.g., web server

characterization, network traffic description. Reviewing the available literature about

workload modeling, we found that the workload models can be generally classified into

three classes according to the number of users in the applications:

(a) A large number of independent users (say, thousands of individuals, or even more)

contribute to a workload, e.g., in the field of telecommunication, a probabilistic

distribution model [28, 41, 43, 55] normally works because the workloads from

many independent users usually can be regarded as samples from a certain clas-

sical distribution, like Gaussian or Poisson.

(b) Only a few users (say, less than 10 users) are the contributors of a workload,

like peer to peer Computing and special chip design [6, 10], specific models are

required to describe each individual user or workload. That is, every user is

represented using either a different model or a different parameter setting.

(c) A medium number of users (say, hundreds of users) generate a workload. Cur-

rently, the methods from class (a) and (b) are used, i.e., a general statistical

model and a set of user-specific models [30, 35].

Since the user community of a parallel computer is medium, i.e. hundreds of

users [23, 48, 49, 50], workload modeling for parallel computer belongs to the class

(c). However, neither a general distribution model from class (a) nor a set of user-

specific models from class (b) can work in this case. It is mainly because:

- A probabilistic distribution model is based on the assumption of independent

sampling. However, when the size of user community is medium (hundreds of

users), some users’ patterns may still be observed in the final mixed workload.

Therefore, the assumption of independent sampling may not hold any more and

the retained patterns tend to be ignored by a distribution model.

- A general model describes the global characteristics of a workload. However, it

does not consider individual user behaviors. Therefore, it can not provide a clear

explanation to many phenomena in overall workloads from a user point of view.

- Due to the medium size of the user community, it is infeasible to apply a specific

model for each individual user. Otherwise, the number of parameters will be too

large and the scalability of the model will be lost.



4 CHAPTER 1. INTRODUCTION

Therefore, a more suitable model is required to analyze and characterize the work-

load of parallel computers. This is the focus of our work. We will propose a new model

to address the complex behavior of users, to generalize similar submission behaviors

and to consider the users’ feedback behaviors. More details will be given in the next

section.

Contribution of the Work

The objectives of our new workload model are to provide an adequate representation

of the workload and meanwhile to characterize the way that users interact with par-

allel computers. The presented work serves on the one hand as a basis for deriving

new workload models, and on the other hand as a beneficial supplement to existing

approaches as new scheduling systems for parallel computers may include such models

to predict the future workload situation. Several important aspects are considered in

our new workload model:

- We inspect the temporal relations between jobs. A new approach is proposed to

address the temporal relation in job series of workloads.

- Some attributes in the available workloads are missing due to the different re-

source configurations. Here, we propose a parameterized distribution model to

describe the relation between missing and existing attributes.

- We put forward to a novel method to cluster heterogenous users into groups, while

each of these groups has distinct features. Thus, more complicated scenarios can

be simulated for evaluations by adjusting the parameters of user groups.

- We introduce implicit influential factors as representatives to examine the users’

feedback behaviors. A linear model is used to model the feedbacks. With the

model, the feedbacks can be identified and represented by a few parameters.

1.2 Organization of the Thesis

This thesis is organized as follows. Following this introduction, we discuss in Chapter 2

the details of workload modeling for parallel computers. Some essentials about perfor-

mance evaluation using workload models are introduced and the traditional methods

are presented. Based on the comparison of the existing approaches, a novel model

structure is proposed.
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Chapter 3 is devoted to modeling temporal relations in overall workloads. We

will describe the details of our new method. That is, two correlated Markov chains

are proposed to depict the temporal relations and the parameter correlations. Before

turning to the next chapter, the comparisons of static and dynamic characteristics are

made to verify our correlated Markov chains method.

Chapter 4 deals with missing information in the existing workloads. Not all avail-

able workloads provide the same set of information needed for some scheduling systems.

Here, we take estimated runtime as an example to explain how the missing information

is analyzed and modeled. The difference between estimated and real runtime is ex-

plained and then a parameterized distribution is given to model the estimated runtime,

which is missing in some workloads.

In Chapter 5, the method to characterize individual users is given. The challenges

to model the individual submission behaviors are discussed. Next, a user-group based

workload model is given and the detailed steps to construct the model are introduced

and corresponding results are presented.

Chapter 6 discusses the users’ feedback behaviors. First of all, several implicit

influential factors are introduced and then a descriptive model based on linear regression

is proposed. Afterwards, the details of feedbacks identifications are given. The potential

reason and implication of the feedbacks are discussed as well.

In Chapter 7, we demonstrate how these different modeling aspects can be com-

bined and give the future direction about our research work. Several optional method-

ologies and models are discussed. To take an example, we explain how a new model

is constructed by the combination of temporal relations and user groups. Finally, the

dissertation ends with a brief conclusion.
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Chapter 2

Workload Modeling for Parallel

Computers

Modeling, i.e. analyzing and characterizing workloads, is an important task in designing

scheduling systems for parallel computers, as the estimated or observed performance

results depend on the characteristics of workloads. In this chapter, we will give a

detailed description of the workload modeling problem in the field of parallel computers.

Based on a broad overview of relevant work, a new structure is proposed. It is a

collection of several fundamental components to address different aspects of workloads.

Our new model can be adapted to meet particular situations given by the goals of

specific evaluation study.

First of all, we shall give an explanation of a parallel environment which is considered

in our work.

2.1 Parallel Computing Environment

Parallel Architecture

As we have mentioned, a parallel computer is a high-end machine, which is used to sup-

port the execution of parallel computational tasks. It is usually composed of hundreds

of high-speed processors or nodes, which are interconnected by a very fast network.

There are many different kinds of parallel computers (or ”parallel processors”). They

are distinguished by the kind of interconnection between processors (known as ”process-

ing elements” or PEs) and between memories. In our work, we assume that a parallel

system is composed of identical processors or nodes. This coheres with the observation

that many large scale systems for computational purposes consist of predominantly

homogeneous partitions [19].

7



8 CHAPTER 2. WORKLOAD MODELING FOR PARALLEL COMPUTERS

Job Description

A parallel computer is used for running computational tasks. Typically, these tasks

use a certain amount of processors for a period of time. In our work, such a task

is referred to as a job. A rectangle can be used to represent a job, with its width

for parallelism and its length for the runtime as shown in Figure 2.1. Here, we use

parallelism to refer to the number of processors or nodes used by a job (as shorthand

for ”number of nodes”, or ”degree of parallelism”) and runtime for the span of time

starting when a job commences execution and ending when it terminates (otherwise

known as ”duration” or ”lifetime”). The product of runtime and parallelism of a job,

which represents the total resource consumption (in CPU-seconds) used by the job,

is called its squashed area. The term workload is referred to the data set recording

historical job submissions. The term workload model is referred to the statistical model

to describe the real workloads.

Job

Parallelism

Runtime

Figure 2.1: A job is represented by a rectangle in our study.

Scheduling Perspective

The scheduling problem of parallel computers is the composite problem of deciding

where and when a job should execute. As we show in Figure 2.2, a scheduling system

has to decide on which nodes (also indicated as the processor allocation or job scheduling

problem) and in what order (also indicated as the process dispatching problem) the job

will run. In our work, we consider space-sharing instead of time-sharing scheduling

strategy, which is widely adopted by many parallel systems. Space-sharing scheduling

restricts that two jobs executing concurrently must be disjoint. When a job is started

on a machine, it runs to its end or is terminated. In our study, we specify that a job

can not be stopped or interrupted unless it is finished, since many scheduling systems

also follow this rule.

Introduction/job.eps
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Time

Processors

Job

Start time

Allocated resources

Job

Figure 2.2: A job is scheduled by a scheduling system.

User Perspective

A medium number of users attempt to use parallel machine simultaneously, as it is

shown in Figure 2.3. They submit jobs to the scheduling system and specify the de-

tails of resource requirements, including the number of processors, runtime, as well as

some specific requirements. Usually, users make submissions from time to time. The

scheduling system has no direct knowledge about the users’ next submissions. This

is the typical online scenario. Users have their own object functions and their future

submissions may be affected by their satisfaction with the parallel system.

...
User 1

User 2

User k

Scheduling
system

Time

Processors

Job

Time

Figure 2.3: A medium number of users submit jobs to a parallel system.
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2.2 Performance Evaluation a Using Workload Model

As we have pointed out, workload features need to be taken into consideration when

designing a scheduling strategy. Although the scheduling problem is conceptually the

same across different systems and parallel workloads, the feasibility and performance

of possible solutions are very sensitive to the workloads [21, 23, 46]. There is no

scheduling algorithm that is suitable for all scenarios. In other words, scheduling must

be done with caution because solutions need to be carefully tailored according to the

workload characteristics. Therefore, the evaluation of scheduling algorithms under

different workload situations is an important step in designing a suitable scheduling

system and setting appropriate parameters. Basically, there are several methods for

performance evaluation of a scheduling system:

Theoretical Analysis

The theoretical analysis is usually a worst-case study. It tries to provide a theoretical

bound for certain performance criteria. The worst-case study is only of limited help as

typical workloads on production machines normally do not exhibit the specific structure

that will really cause a bad case. In addition, the theoretical analysis is often very

difficult to apply to many scheduling strategies due to its complexity. Therefore, it is

seldom adopted in evaluating scheduling systems for real cases.

Simulation-based Analysis

In practice, simulation-based performance evaluation is often carried out. It simulates

the working procedure of scheduling systems with software tools and then the perfor-

mance can be obtained from the simulation results. Several simulation tools have been

developed, for example, SimGrid [33].

One of the most important considerations about simulation is its input. This is,

which kind of workloads should be used as an input for a simulator in order to simulate

the performance under a real environment? Researchers have at their disposal two valid

methods for conducting simulation: it (1) uses real workload traces gathered from real

machines and carefully reconstruct for use in simulation testing, or (2) creates a model

from real workload traces and use the model either for analysis or for simulation. Next,

we will explain both of them in detail.
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(1) Workload Traces for Simulations

A workload reflects a real test of a system: it records the job submissions precisely, with

all their complexities even if they are unknown to the person performing the simulation.

The drawback is that a trace only reflects a specific usage of the machines: there

are always doubts whether the results from a certain trace can be generalized to other

situations. Moreover, the simulation of a scheduling system under different traces can be

problematic. One reason is that if there are no enough jobs in a workload, the according

simulation will not reflect the realistic performance of a scheduling system under heavy

load. Since the traces were usually obtained from different resource configuration: it

will be meaningless to conduct a simulation for a machine with 200 nodes using a

trace obtained from a 100-node machine. It is because the trace will not contain the

jobs whose nodes requirements are more than 100, which is obviously not true for

the 200-node machine in practice. Another disadvantage is it is hard to change the

characteristics of certain workload attribute(s), and even when it is applicable, it may

be problematic. For example, it is difficult to increase the average runtime by adjusting

the workload traces themselves. Increasing arriving rate by reducing the average inter-

arrival time can be a problem, since the daily load cycle shrinks as well. If a model

decomposes arriving rate and daily cycle, it will be feasible to adjust arriving rate as

expected while keeping daily cycle unchanged.

(2) Workload Model for Simulations

In comparison with using traces, simulation using workload model has a number of

advantages [17]:

- Model parameters can be adjusted stepwise, so that the investigation of individual

settings can be performed while keeping other parameters constant. The stepwise

parameter setting even allows the system designer to test how a system is sensitive

to different parameters. It is also possible to select model parameters that are

expected to match the specific workload at a given site.

- In many cases, only one experiment is not enough. Normally, more experiments

are conducted in order to obtain certain confidential intervals. For example, a

workload model can be applied several times with different seeds for random

number generators.

- Finally, a workload model can lead to new designs of scheduling systems. A model

is a generalization of a real workload and it is easy to know which parameters are

correlated with each other because this information itself is part of the model.
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With the deeper knowledge of workloads, the existing algorithms can be improved

and even new methods can be derived. For instance, one can design a set of

resource access policies that are parameterized by the settings of the workload

model so that suitable resource policies are selected for different situations.

The key point of a workload model is its representativeness. That is, to which

degree does the model represent the workload that the system will encounter? How

are the crucial characteristics incorporated into the model? The answers depend not

only on the methodology to build the model but also on the degree of details the

model considers. In the next section, we will give a short overview on the existing

methodologies for workload modeling in the domain of parallel computer.

2.3 Problems with Existing Approaches

Previous research focused on summarizing the overall features of the workload on a

parallel computer [9, 36] as shown in Figure 2.4. Usually, the global characteristics of

workload attributes are analyzed and certain methods are applied to summarize them.

Workload
trace

Global
Workload

 model

Synthetic
workload

Figure 2.4: The global workload modeling structure

The summaries are a collection of distributions for various workload attributes (e.g.,

runtime, parallelism, I/O, memory). By sampling from the corresponding distributions,

a synthetic workload is generated. The construction of such a workload model is done

by fitting the global workload attributes to theoretical distributions. Normally, it is

done by comparing the histogram observed in the data to the expected frequencies of

the theoretical distribution. The modeling methods usually fall into three families [29]:

Moment-based: The kth moment of a sequence x1, x2, . . . , xn of observations

is defined by mk = 1
n

∑

xk
i . Important statistics derived from moments include:

(a) the mean, which represents the ”center of gravity” of a set of observations:

x = 1
n

∑

xi; (b) the standard deviation, which gives an indication regarding

the degree to which the observations are spread out around the mean: s =

Introduction/globalModel.eps
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√

1
n−1

∑

(xi − x)2; (c) the coefficient of variation, which is a normalized version

of standard deviation: cv = s/x.

Percentile-based: Percentiles are the values that appear in certain positions

in the sorted sequence of observations, where the position is specified as a per-

centage of total sequence. Important statistics derived from percentiles include:

(a) the median, which represents the center of the sequence: it is the 50th per-

centile, which means that half of the observations are smaller and half are larger;

(b)quartiles (the 25, 50, and 75 percentiles) and deciles (percentiles that are mul-

tiples of 10). These give an indication of the shape of the distribution; (c) the

Semi-InterQuartile Range (SIQR), which gives an indication of the spread around

the median. It is defined as the average of distances from the median to the 25

percentile and to the 75 percentile.

Mode-based: The mode of a sequence of observations is the most common value

observed. This statistic is obviously necessary when the values are not numerical,

e.g., when they are user names. It is also useful for the distributions that have

strong discrete components.

Here, we give several examples to explain how the classical methods are applied

to model the workloads. Since the runtime and the parallelism of jobs are two of the

most important attributes for many parallel systems [1, 47, 58], we focus on them in our

study. The modeling of job arrival process is equally important and has been addressed

by many papers, see [9, 35] for more detailed information about the job arriving process

modeling.

As mentioned earlier, the job runtime is the duration that a job occupies a processor

set. The runtime histogram of KTH is shown in Figure 2.5. It can be seen that runtime

values usually spread from 1 to over 105 seconds. Such a distribution characteristic is

called heavy-tail and can be formally defined as follows: a random variable X is a

heavy-tailed distribution if

P [X > x] ∼ cx−α, as x → ∞, 0 < α < 2

where c is a positive constant, and ∼ means that the ratio of the two sides tends to 1

for x → ∞. This distribution has infinite variance, and if α ≤ 1 it has an infinite mean.

To model the heavy-tail runtime, Downey [15] proposed a multi-stage log-normal

distribution. This method is based on the observation that the empirical distribution of

runtime in log space was approximately linear. Jan et al. [30] proposed a more general

model by using a Hyper-Erlang distribution for runtime. They used moment estimation
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to model the distribution parameters. Feitelson [22] argued that a moment estimation

may suffer from several problems, including incorrect representation of the shape of

the distribution and high sensitivity to sparse high value samples. Instead, Lublin &

Feitelson [36] selected a Hyper-Gamma distribution. They calculated the parameters

by Maximum Likelihood Estimation.

KTH

 runtime[s]
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0
50

0
10

00
15

00

1 101 102 103 104 105

Figure 2.5: Histogram of job runtime

Another important aspect of workload modeling is the job parallelism, that is, the

number of nodes or processors a job needs for execution. It has been found that the job

parallelism in many available workloads displays two significant characteristics [15, 21]:

(1) the power of 2 effect, as jobs tend to require power of 2 processor sets; (2) a high

number of sequential jobs that require only one processor. These two features can

be seen in Figure 2.6 clearly. It has been found empirically that these effects would

significantly affect the evaluation of scheduling performance [35]. To describe these two

features, a harmonic distribution is proposed in [21] which emphasize small parallelism

and the other specific sizes like power of 2. Later, Lublin and Feitelson used job

partitions to explicitly emphasize the power of 2 effects in the parallelism [36].

Besides the isolated modeling of each attribute, the correlations between different

attributes were addressed as well. For instance, it has been found [30] that the runtime

and the parallelism embody a certain positive correlation. That means the jobs with

high parallelism tend to run longer than those with lower parallelism. Lo et al. [35]

demonstrated that the neglecting of correct correlation between job size and runtime

yields misleading results. Thus, Jann et al. [30] divided the parallelism into subranges

and then created a separate model of the runtime for each range. Furthermore, Lublin

Introduction/hyperDist.eps
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Figure 2.6: Histogram of job parallelism in the KTH workload

& Feitelson [36] considered the correlation according to a two-stage Hyper-Exponential

distribution.

Although these models can provide the general description of a real workload, they

have several serious drawbacks:

- Although static features can be characterized using probabilistic distributions,

the temporal relation in job series is lost. A distribution model is based on the

assumption of independent job submissions. As we mentioned earlier, due to the

medium-sized user community, many user-level behaviors can still stay. Thus,

such an assumption may not hold.

- The global level characterization does not provide an explicit explanation for user

or user groups’ behaviors and thus could not help to relate the global workload

metrics with user groups. For example, a Hyper-Exponential distribution is used

to describe the heavy-tailed runtime in parallel machine, but it can not inter-

pret how this tail is generated; the high fraction of serial jobs is addressed by a

harmonic distribution but it fails to explain where these serial jobs come from.

- User feedback on the quantity of service or system state is ignored. To take a sim-

ple example, some users may continuously submit jobs only if their previous jobs

are finished. As a result, the submission of users is dependent on the scheduling

results - a static model obviously does not address this point.

Based on the investigation of the existing models, we propose a novel workload model

in the next section.

Introduction/powerOf2.eps
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2.4 Proposal of a New Workload Model

According to analysis of the drawbacks of the existing models, we put forward to a

new model. The structure of our model is shown in Figure 2.7. Instead of a general

Figure 2.7: A novel workload model structure

description of workload, our model considers several user groups, where distinctive

submission behaviors are represented. For example, some users always submit the jobs

with longer runtime; others tend to submit jobs requiring only one node. Our new

model addresses the feedback of users. That is, users have adaptive behaviors - both

the submission and profile of a job may be affected by quality of service or system state.

In detail, the new model will be constructed according to the following steps:

Temporal Relations: First of all, we restrict ourselves on the global level of

workload modeling. Previous models ignored the temporal relation. Hence it

would be interesting to know whether there exist some temporal relation evi-

dences. Here, several classical time series methods are considered, like ARIMA,

Neural Network, Markov Chains.

Missing Information: Missing information is another problem to be dealt with

when the global level modeling is considered. Due to different resource configu-

rations and scheduling systems, certain attributes of the existing workloads are

missing. Since there are not so many workloads available, we need to analyze

Introduction/new_model.eps
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these missing attributes and recover them so that the simulations based on dif-

ferent workloads can be performed. Here we consider the methods from classical

statistics as options, e.g., analysis of variance, regressions.

User Groups: After analyzing the global workload features, we begin to the

investigate user-level characteristics. Since the user community of parallel com-

puters is medium-sized, it would be quite beneficial to associate the final workload

with the user or user groups. With the user-level information it may be possible

to explain those global features we have found and explore the effects of specific

users on performance metrics. To identify user groups, the clustering methods

from the data mining community can be applied, e.g., k-means, model-based

clustering.

Additional Influencing Factors: Next, we investigate the possible factors that

affect user submissions. Because of the lack of explicit influential factors, we need

to derive certain implicit variables and try to identify feedback evidences. To this

end, several techniques are tried to determine and measure the variable relations,

like correlation and factor analysis.

Before we are turning to detailed explanation of our methods in the following chap-

ters, we introduce the data set and software tools used in this work.

Workload Traces

The workload traces used in our work are from Standard Workload Archive [51]. They

were collected from a variety of machines at several national labs and supercomputer

sites in the United States and Europe. The type of workloads at these sites consisted

of various scientific applications ranging from numerical aerodynamic simulations to

elementary particle physics. Trace data were collected through a batch scheduling

agent such as the Network Queuing System, LoadLeveler, PBS, or EASY [32]. Here, we

briefly summarize the machine architecture, user environment, and scheduling policies

of each workload:

KTH IBM SP-2: The Swedish Royal Institute of Technology IBM SP-2 machine

with 100 nodes connected by a high performance switch. The trace came from

June 1996 to May 1997 with scheduling managed by IBM’s LoadLeveler.

CTC IBM SP-2: The Cornell Theory Center IBM SP-2 machine. The trace

came from September 1996 to August 1997 with scheduling managed by IBM’s

LoadLeveler.
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LANL CM-5 This log contains two years worth of accounting records produced

by the DJM software running on the 1024-node CM-5 at Los Alamos National

Lab (LANL). The trace came from periods: October 1994 to September 1996.

SDSC IBM SP-2: The San Diego Supercomputer Center houses a 128 node

IBM SP-2 machine. This trace was taken from May 1998 to April 2000.

SDSC Intel Paragon 95: The San Diego Supercomputer Center houses a 416

node Paragon machine. The scheduling policies were implemented through the

Network Queuing System (NQS). The trace was taken from December 1994 to

December 1995.

SDSC Intel Paragon 96: The resource configuration was the same as for SDSC

Intel Paragon 95. This trace was taken from from December 1995 to December

1996.

In Table 2.1 these traces are summarized for later references.

Identifier CTC KTH LANL SDSC

SP2

SDSC 95 SDSC 96

Machine SP2 SP2 CM-5 SP2 SP2 SP2

Period 06/26/96

05/31/97

09/23/96

08/29/97

10/04/94

09/24/96

04/28/98

04/30/00

12/29/94

12/30/95

12/27/95

12/31/96

Processors 430 100 1024 128 416 416

Jobs 79302 28490 201378 67667 76872 38719

Users 679 214 213 428 97 59

Table 2.1: Used workloads from the SWF Archive

Software Tool

The tool used in our work is R [5], which is a language and environment for statistical

computing and graphics. It is a GNU project which is similar to the S language and

environment which was developed at Bell Laboratories (formerly AT&T, now Lucent

Technologies) by John Chambers and colleagues. R can be considered as a different

implementation of S. There are some important differences, but much code written for

S runs unaltered under R.

We select R as our basic tool because R provides a wide variety of statistical (linear

and nonlinear modeling, classical statistical tests, time-series analysis, classification,

clustering, . . . ) techniques, and is highly extensible. It is especially useful for our task,
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which in many cases is a try-out task. With R we can directly try various methods for

modeling task.

R is good at producing well-designed publication-quality plots, including math-

ematical symbols and formulae where needed. Therefore, we can visualize the job

submissions and identify the important aspects of data.

In addition, R is available as Free Software under the terms of the Free Software

Foundation’s GNU General Public License in source code form. We can obtain it freely

from Internet, read and change the source code according to our needs.
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Chapter 3

Investigation of Temporal

Relations

As we have mentioned, workload modeling play a vital role in designing and developing

the scheduling system for parallel computers. Therefore, we proposed a novel workload

model in the last chapter. Our model consists of several fundamental components to

address different aspects of the modeling problem. From this chapter on, we shall

describe each component in detail.

In this chapter, we will focus on the temporal analysis of workloads. Many workload

models use probabilistic distributions, which are based on the assumption of indepen-

dent sampling. Therefore, we will verify whether such an assumption still holds or not

in a parallel computer environment. Actually, our evidences show that there are strong

temporal relations in job submission series. A straightforward methodology to model

temporal relations is time series analysis, e.g., ARIMA. However, due to the relations

between the job parameters, a direct application of the classical methodologies is infea-

sible. Hence, we propose a new approach not only to address the temporal relation but

also to consider the parameter correlations. The experimental results will be discussed

at the end of this chapter.

3.1 Observations on Temporal Relations

A temporal relation is an inter-propositional relation that communicates the ordering

in time of events or states. Several temporal phenomena in job submission series have

already been found. One of them is repeated submission [21], namely, users do not

submit one job once but several similar jobs in a short time frame. Since there are

only a medium number of users submitting jobs, such duplicated submissions can still

21
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be distinguished in the overall job submissions. It can be seen from Table 3.1 that a

large number of neighboring jobs share the same parallelism values. This continuous

occurrence demonstrates that the assumption of independent sampling is not correct.

Percentage (%)

CTC 48.2

KTH 37.5

LANL 46.8

SP2 57.2

SDSC95 49.3

SDSC96 45.6

Table 3.1: Percentage of neighboring jobs with the same parallelism values

In addition, we find that not all jobs are submitted with the same continuity. For a

job series J in a workload, we extract the parallelism uj ∈ U for each job j. We examine

the average continued occurrences of parallelism values in the sequence U . That is, the

number of direct repetitions is considered for each parallelism value in U . Note that we

consider all job submissions instead of the jobs submitted by the same users. As the

existing workloads contain predominantly jobs with the power of 2 parallelism values,

we restrict our examination on such jobs requiring 1 node, 2 nodes, 4 nodes, etc. In

Figure 3.1 the average subsequent appearances of job parallelism in real workloads is

shown. As a reference, the average number of occurrences is provided if a multinomial

distribution model is used for modeling parallelism. The details of the application of

multinomial distribution can be found in [14]. This strategy models each parameter

independently according to the statistical occurrences in an original trace. It can be

seen that the sequences of the same parallelism values occur significantly more often in

a real workload than it would be in a distribution model. This indicates that a simple

distribution model does not correctly represent such an effect. Furthermore, it can also

be seen that the jobs with less parallelism have a lager average repeating than that

of jobs requiring more nodes in the real traces. That is, the jobs with less parallelism

have a higher probability to be repeatedly submitted.

Even if those continuous appearing elements in U are removed, sequential depen-

dencies can still be found. To this end, only one element is kept for each sequence of

the identical parallelism values. For example, an excerpt in a series of parallelism of 1,

1, 1, 2, 2, 5, 5, 5, 8, 16, 16, 16, 2, 2 is changed to 1, 2, 5, 8, 16, 2 after the removal

of repeated items. Here, the jobs with parallelism values that are not the power of 2

are considered as well. Suppose the transformed parallelism sequence is U ′. Next, we
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Figure 3.1: Continuous job submissions

transform U ′ to U ′′ by U ′′ = {2blog2(u′

i)c|u′
i ∈ U ′}. That is, each parallelism value is

rounded to the nearest lower power of 2. For each distinct parallelism value in U ′′, we

TemporalRelations/occ_kth.eps
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calculate the average parallelism value requested by its successor in U ′. The results are

shown in Figure 3.2. The line in the figure is the overall average parallelism value as a

reference. It can be seen that the successors of the jobs with a large node requirements

also tend to request a large number of nodes for the most workloads. However, the

behaviors for SDSC96 and SP2 are different from the others, the reason is not clear

yet.

There is a temporal relation in the runtime series as well. To examine it, we group

all the jobs by the integer part of the logarithm (based on 2) of their runtimes and for

each group the average runtime of its successors has been calculated. The results are

shown in Figure 3.3.

Such sequential dependencies may become very important for optimizing many

scheduling algorithms, like e.g. Backfilling [24]. For instance, a scheduling algorithm

can utilize probability information to predict future job arrivals. Such data can be

included in heuristics about current job allocations. Therefore, a method to capture

the sequential dependencies of workloads would be beneficial.

3.2 Modeling using Markov Chain Model

There are several classical methods to model a stochastic process. For example, Auto-

Regressive Integrated Moving Average (ARIMA) time series models form a general

class of linear models that are widely used in modeling and forecasting time series [7].

ARIMA has been successful applied in many applications where the continuous time

systems are considered. However, since most parallelism values in the workloads are

usually discrete, the ARIMA model is not suitable for our case. Another common

approach is the use of Neural Networks to analyze and model sequential dependencies

[11, 53]. But it is difficult to scale and extend such a model.

Therefore, a Markov chain model is chosen for modeling the described temporal

patterns in Section 3.1. A Markov chain model has the important characteristic that

the transition from one state to the next state depends on the previous state(s). To

reduce the number of parameters in a model, we consider the application of first-order

Markov chain. The first-order Markov chain can be described by a transition matrix.

The element (i, j) within the matrix describes the probability to move from state i to

state j if the system is in state i.

In our workload model, we use two Markov chains to represent the parallelism and

the runtime respectively. If these two Markov chains are independent, they can not

express the correlation between the parallelism and the runtime. Thus, more structures

are required to reflect the correlation.
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Figure 3.2: Temporal relation in the sequence of the parallelism

Similar requirements for correlating Markov chains also occur in other application

areas [18, 39, 44]. For instance, advanced speech recognition systems use the so-called

Hidden Markov Model (HMM) to represent not only phonemes, the smallest sound

TemporalRelations/node_temporal.eps


26 CHAPTER 3. INVESTIGATION OF TEMPORAL RELATIONS

SDSC 96

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19

6
8

10
12

14

CTC

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 3 4 5 6 7 8 9 11 13 15

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

KTH

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 3 4 5 6 7 8 9 11 13 15 17

12
13

14
15

16

LANL

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 3 4 5 6 7 8 9 11 13 15 17

9
10

11
12

13
14

15

SP2

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 4 5 6 7 8 9 11 13 15 17 19

6
8

10
12

14
16

SDSC 95

log2(runtime[s])

lo
g2

(a
ve

ra
ge

 ru
nt

im
e 

of
 th

e 
su

cc
es

so
rs

[s
]) 

0 1 2 3 4 5 6 7 8 9 11 13 15 17

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

Figure 3.3: Temporal relation in the sequence of the runtime

units of which words are composed, but also their combinations to words. The method

to correlate different Markov models is called ”embedded” HMM, in which each state

in the model (super states) can represent another Markov model (embedded states).

reqrt_temporal.eps
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Figure 3.4: Process of correlated Markov chains model

However, this method is not suitable to our problem, as it will dramatically increase the

number of parameters. Consequently, the model becomes very hard to train. Hence,

in the following we propose a new method to correlate two Markov chains without

increasing the number of states.

Our model first builds two Markov chains independently, one for the parallelism

and one for the runtime. Then the two chains are combined to address the correlation

between parallelism and runtime. In Figure 3.4 the steps to build the correlated Markov

chains model are shown.

3.2.1 Markov Chain Construction

Our method starts with constructing two independent Markov chains. Here, we explain

how a Markov chain model for the parallelism is built, a similar method can be applied

for the construction of the Markov chain for the runtime.

One of the key issues during the construction of a Markov chain is the identification

of relevant states in the series. In our case, if all distinct values in the traces are

specified as different states, the Markov chain would have a prohibitively high dimension

transformation matrix. To this end, a small set of states are specified for the Markov

chain for the parallelism.

Assume a sequence of n jobs where the series of the parallelism is described by

the sequence T = {t1, t2, · · · tn}. Thus, the reduced sequence S = {s1, s2 · · · sn} is

constructed from T as follows:

si = 2blog2tic, i ∈ [1, n] (3.1)

Now, each distinct element in S can be considered as a separate state in the Markov

TemporalRelations/correlatedMarkovchain.eps
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chain. The set of states L of this Markov chain can be expressed as follows:

L = {l1, l2, · · · lq|q ≤ n;∀i ∈ [1, q − 1], j ∈ [2, q], i < j : li < lj ;∀c ∈ [1, q], lc ∈ S} (3.2)

Using this transformation, the original sequence T is represented using S and L.

In order to consider the state changes in the original workload, we use U to denote

the according transformation path of S. In fact, the sequence U is the corresponding

indices of the elements in L corresponding to the job sequence. In Table 3.2 an example

is given to illustrate the process of reducing the distinct parallelism values.

Index 1 2 3 4

ti ∈ T 2 4 6 16

si ∈ S 2 4 4 16

lj ∈ L 2 4 16 -

ui ∈ U 1 2 2 3

Table 3.2: Example for deriving the states of the Markov chain for the parallelism

With U and L, the transition matrix E of the Markov chain for the parallelism can

be calculated as: eij = pij/pi, where eij and ei are

pi = |{k|sk = li, k = 1, . . . , n − 1}| and (3.3)

pij = |{k|sk = li ∧ sk+1 = lj, k = 1, . . . , n − 1}| . (3.4)

The transformation from T to S causes a loss of information about the precise par-

allelism, as they have been reduced to the power of 2 values. To record the information

loss, a quality ratio cj is defined for each state in the Markov chain. This ratio indicates

how often the real values in the original group are exactly equal to the representing

value in this state of the chain. More precisely, the quality ratio is calculated by:

cj =
|{i|ti = lj, i = 1, . . . , n}|

|{i|si = lj , i = 1, . . . , n}|
. (3.5)

The definition of the quality ratios cj , j ∈ [1, q] is used to generate the final synthet-

ical parallelism of a job. If the system is in state j, the corresponding value lj is used as

the system output with the probability of cj . With the probability of (1−cj) a uniform

distribution between [lj , lj+1] is used to create the final value for the parallelism.

The same method can be applied to model the runtime. This yields a second Markov

chain. As a short summary, the dimensions of the two matrices for the considered

workloads are presented in Table 3.3.
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Dimension of Dimension of

runtime chain parallelism chain

SDSC 96 19 9

CTC 17 9

KTH 18 8

LANL 18 6

SP2 19 8

SDSC95 19 9

Table 3.3: Dimensions of the Markov chains for the parallelism and the runtime

3.2.2 Combination of Two Markov Chains

As we have mentioned, the runtime and the parallelism have a weak positive correlation

in all examined workloads (except CTC), that is, the jobs requiring more nodes have

longer runtimes on average [23]. Such a correlation has an impact on the performance

of the scheduling algorithms as shown in [21]. Therefore, this correlation should be

reflected in our model as a key feature.

To this end, these two independent Markov chains for the parallelism and the run-

time need be combined to incorporate the correlation. A common approach would be

the mergence of these two Markov chains into a single Markov chain. However, this

would yield a very high dimension chain based on all combinations of the states in the

two original chains. Such a Markov chain is very difficult to analyze and could not be

scaled for incorporating additional job parameters.

In our approach, we combine these two chains by adjusting the state of transfor-

mation of one chain depending on the state transformation of the other chain. Here,

we describe how the new state in the Markov chain for the parallelism is adjusted ac-

cording to the latest transition in the chain for the runtime. Using the transformation

of the runtime chain to affect the transition of the parallelism chain is similar.

The idea is that since the runtime and the parallelism are correlated, the transfor-

mations of their corresponding Markov chains are related as well. For example, when

the Markov chain for the runtime is in a state representing longer runtime, the state

of the Markov chain for the parallelism would tend to move to a state requesting more

nodes, when they are positive related, and vice versa. If the runtime changes dramati-

cally in a chain, the parallelism would have a tendency to change correspondingly. As

a result, the transformation of the states in the different Markov chains incorporates

the correlation between their representing parameters.
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In order to combine these two Markov chains, the correlations between their trans-

formation paths cor0 and their corresponding first-order difference sequences cor1 are

required.

Suppose the transformation path for the parallelism is denoted by P = {p1, . . . , pn},

while R = {r1, . . . , rn} represents the runtime transformation path. Then the correla-

tion cor0 between the two transformation paths can be calculated as:

cor0 = cor(P,R) =
n

∑

piri −
∑

pi

∑

ri
√

n
∑

p2
i − (

∑

pi)2
√

n
∑

r2
i − (

∑

ri)2
(3.6)

The index 0 in cor0 is used to specify that the transformation paths are used without

further modifications. Furthermore, the first-order difference correlation cor1 is used

to denote how the changes of one transformation path affect the other. To define the

first-order correlation precisely, some more variables have to be introduced. Therefore,

two new sets are built which consist of the corresponding changes in the transformation

paths:

∆P = {∆pi = pi+1 − pi|i = 1, . . . , n − 1} (3.7)

∆R = {∆ri = ri+1 − ri|i = 1, . . . , n − 1}. (3.8)

As shown in Section 3.1, the elements in a sequence often do not differ. It follows

that the sequence of first-order difference includes many zero values. Since cor1 is used

to measure the change of one Markov chain affect the other, all elements are removed

where either the parallelism or the runtime states do not change. This procedure leads

to the new sequences ∆N ′ and ∆R′, which are written as follows:

∆P ′ = {∆pi|∀pi ∈ ∆P : ∆pi 6= 0 ∧ ∆ri 6= 0} (3.9)

∆R′ = {∆ri|∀ri ∈ ∆R : ∆pi 6= 0 ∧ ∆ri 6= 0} (3.10)

Now, the correlation cor1 can be defined as: cor1 = cor(∆N ′,∆R′). The actual

values in our examinations for cor0 and cor1 are presented in Table 3.4.

With cor0 and cor1, the Markov chains for the parallelism and the runtime are

combined. Here, three cases are considered: (a) if the Markov chain for the parallelism

does not change, no adjustment is applied; (b) if the state changes only in the chain for

the parallelism and not for the runtime, the state in the parallelism chain is adjusted

based on the state in the runtime chain and cor0; (c) if the states change in both
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cor0 cor1

SDSC 96 0.51 0.48

CTC −0.08 −0.04

KTH 0.04 0.14

LANL 0.14 0.33

SP2 0.18 0.29

SDSC95 0.47 0.51

Table 3.4: Correlation cor0 and cor1 in examined workloads

chains, cor1, the previous state of the parallelism chain and the last change in the

runtime chain are used to adjust the state in the parallelism chain. Note, in order to

reduce the number of parameters, we do not adjust the runtime chain.

Assume that the Markov chains for parallelism and the runtime have dimensions

a and b respectively. Further assume that the synthetically generated transformation

path of the parallelism is from state j to the state k, and the transformation for the

runtime chain is from m to n.

The above mentioned procedure can be described in the following three rules in

order to adjust the state in the Markov chain for the parallelism based on the Markov

chain for the runtime:

1. If j = k, no transformation is applied. As the state in the Markov chain for

parallelism is not changing (j = k), it is probably because of repeated submission

effect of the parallelism series. Therefore, no adjustment in the Markov chain for

parallelism is needed.

2. If j 6= k and m = n, the destination state k is adjusted to k = bn · (a/b)c with the

probability cor0. This means that the resulting parallelism is changed with the

probability cor0 if the active state within the Markov chain for the parallelism

changes while the state in the runtime chain stays constant. The factor a/b is used

as a normalization between the two matrices. The value of n reflects the fact that

the Markov chain of the runtime is used for the adjustment of the Markov chain

for the parallelism. Here, a job with a longer runtime should also have a higher

parallelism value, when the runtime and the parallelism are positive related.

3. If j 6= k and m 6= n, the destination state k is changed to k = b(n − m) · (a/b) ·

sign(cor1)+jc with the probability |cor1|. This rule is used in the situations where

the states change in both of the Markov chains. Here, the incremental change is
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used for the adjustment. The term (n − m) describes the incremental change in

the Markov chain for the runtime, where the sign(cor1) indicates the direction

of the change. Again, the factor of a/b is used for the necessary normalization.

As the first terms only describe the change, the originating state j is used as

the basis. Similar to the step 2 the adjustment is only applied with the certain

probability cor1, which is calculated based on the incremental changes.

3.3 Experimental Results

To evaluate our approach, we have examined the workloads presented in Table 2.1.

For all of these workloads, the corresponding Markov chains for the parallelism and

the runtime have been created. Using the presented algorithm, the new synthetical

workload traces have been created. The quality of the presented modeling method is

measured by comparing the original with the newly generated traces using the following

static and temporal criteria.

3.3.1 Static Comparison

To compare the static similarity, we use Kolmogorov-Smirnov (KS) test [34]. The KS

test is used to decide if a sample comes from a population with a specific distribution

or whether two sample sets are coming from the same distributions. The precondition

of the test is that the observations are obtained independently, which is not met in

our data. Since there are no other suitable methods to examine the static similarity of

dependent data sets, we use KS test values as descriptive criteria. Then we take the

results as a hint that the frequencies of states in the observed and simulated data are

not too different. Furthermore, we calculate the difference of Squashed Area (SA) by

dSA =
synthetic SA − original SA

original SA
. (3.11)

It can be seen in Table 3.5 that the explained Markov chains models match well

the original traces. The results for squashed area as well as for the KS test are quite

acceptable. To take an example, Figure 3.5 shows the cumulative distribution curves of

the original and synthetic runtime and parallelism in the KTH workload. In regard to

the squashed area difference, it can be seen from the table that for the CTC workload

the result shows an inappropriate deviation (about 38%). The squashed area or amount

of total workload within a trace has a significant impact on scheduling performance [20].

However, information about this criteria is usually not provided for most workload

models.
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KS test KS test dSA

of parallelism of runtime

SDSC96 0.08 0.06 8.3%

CTC 0.02 0.03 37.8%

KTH 0.04 0.03 15.4%

LANL 0.01 0.04 −1.1%

SP2 0.02 0.04 7.6%

SDSC95 0.09 0.02 −3.3%

Table 3.5: Static Comparison of the modeled and the original workloads
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Figure 3.5: Comparison of modeled and original distributions of runtime and

parallelism

We compare the presented model with the model by Lublin & Feitelson [36] in

terms of correlation between the model and the original traces. That is, we compare the

correlations from our model with that from real data and Lublin & Feitelson model. The

Lublin & Feitelson model has been widely used for designing new scheduling algorithms

or verify the existing scheduling systems, e.g., in [4, 52, 59]. It can be seen from Table 3.6

that our model is closer to the real correlation value than that in the Lublin/Feitelson

model.

TemporalRelations/rst_ecdf.eps
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Real Data Markov chain Lublin/Feitelson

Model Model

SDSC 95 0.28 0.14 0.11

SDSC 96 0.37 0.16 0.12

KTH 0.01 0.01 0.01

LANL 0.17 0.23 0.30

Table 3.6: Comparison of the correlation of the parallelism and the runtime from the

Markov chain model and the Lublin/Feitelson model

3.3.2 Comparison of Temporal Relations

The autocorrelation ρ1 has been used to examine the temporal dependency within

each sequence. The results in Table 3.7 show that the Markov Chain Model correctly

incorporates the temporal dependency since the ρ1 from the synthetic data are close

to the real data. As we see from the table, a Probability Distribution Model does not

contain such a dependency.

Parallelism series Runtime series

Real data MCM PDM Real data MCM PDM

SDSC 95 0.43 0.31 −0.01 0.28 0.16 0.01

SDSC 96 0.41 0.37 −0.01 0.17 0.20 0.02

KTH 0.29 0.29 0.01 0.29 0.30 −0.01

LANL 0.16 0.20 −0.01 0.18 0.19 −0.03

Table 3.7: Comparison of the autocorrelation ρ1 of the parallelism and the runtime

sequences from MCM, PDM, and the original workloads

3.4 Summary

In this chapter, a workload model based on Markov chain has been presented. This

model does not only incorporate temporal dependencies but also keeps static similarity

with original workloads.

The correlation between job parameters requires the combination of the different

Markov chains. To this end, a novel approach of transforming the states in the different

Markov chains has been proposed.
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The quality of the modeling method has been evaluated with existing real workload

traces. The presented workload model yields good results in comparison to the real

traces. Here, the static characteristics as well as the temporal relation of our model are

similar to those of the original workloads.

However, as to the overall modeling of workloads, there is another problem to be

addressed - missing information in some workloads. This missing information prevents

from a broad comparison of workloads under different resource configurations. There-

fore, in the next chapter, we will discuss this problem.
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Chapter 4

Analyzing Missing Information in

Workloads

In this chapter, we concentrate on another important issue of the workload modeling

for parallel computers - missing information in the workloads. Since the available

workloads are obtained under various resource configurations and scheduling systems,

the details of the workloads are not always uniform. It is not uncommon that some

attributes of the workloads are not available. As a result, the simulations based on

different workload situations can not be carried out. Therefore, in this chapter, a

model is presented to recover the missing information. We take estimated runtime as

an example to illustrate how a missing attribute is supplied in the workloads when it

is absent. The quality of the modeled estimated runtime is evaluated by comparing

different traces for which this information exists.

4.1 Missing Estimated Runtime

As we have shown in Table 2.1, there are only several workloads available which were

recorded from real system installations. Due to the variety of different system con-

figurations, it often happens that certain attributes are missing in some workloads.

The absent information hinders the comprehensive comparison of workloads under the

different circumstances and the broad verification of workload models.

One of missing attributes often encountered is estimated runtime. It differs from the

real runtime in that the former is only the estimation of the real runtime by a user at a

job’s submission. Some scheduling systems require a user to provide such information

when he or she submit a job. For example, Easy backfilling [60] uses this information to

estimate the maximum delay of the queued jobs if a particular job is executed. When

37
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a job exceeds its estimated runtime, it is usually terminated by the scheduling system

after a given time. As a results, the traces obtained from such systems contain the

estimated runtime information, e.g., KTH, CTC. On the contrary, First Come First

Service (FCFS) does not need the runtime estimation since it just assigns the resources

to the earliest coming job. Hence, the traces obtained from a FCFS scheduling system

do not have estimated runtime information. In Table 4.1 the missing estimated runtime

is summarized for our examined workloads.

SDSC 96 CTC KTH LANL SDSC SP2 SDSC 95

Real runtime Yes Yes Yes Yes Yes Yes

Estimated runtime No Yes Yes Partially Yes No

Table 4.1: Summary of missing estimated runtime for the examined workloads

4.2 Analysis of Estimated Runtime in Complete Work-

loads

The missing estimated runtime has been noticed by Cirne & Berman in [9]. They

modeled the estimated runtime and its accuracy independently. Based on these two

parameters the real runtime is derived. The model requires the availability of the

estimated and real runtime in the underlying workload traces to determine the corre-

sponding model parameters. However, since the estimated runtime is missing in several

existing workloads as shown in Table 4.1, this method can not be applied to deduce

missing estimated runtime. Therefore, an appropriate approach is required. First of

all, we shall analyze the estimated runtime from the complete workloads.

4.2.1 Estimation Accuracy

The Cirne/Berman model [9] assumed that a job can not run longer than its esti-

mation. However, we found that it is not true for the complete traces as shown in

Table 4.2. The table shows the accuracy of the estimated runtime which is defined in

Equation 4.1. It also provides the information of the corresponding SA to indicate the

resource consumption.

accuracy =
real runtime

estimated runtime
(4.1)

It can be seen from the table that more than 10% of all jobs are exceeding their

estimated runtime in the SP2, CTC and LANL workloads. Thereby, these jobs can not
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be neglected as they account for more than 20% of the total squashed area. However, we

can also see that on average, with the exception of LANL, not many jobs exceed their

runtimes by more than 10%. We neglect the jobs with an accuracy > 1.1 as they do not

account for much amount of the total squashed area for the corresponding traces. For

LANL, however, more than 20% of the total resource consumption is caused by those

jobs with an accuracy > 1.1. Therefore, this particular workload trace is considered

separately.

accuracy > 1 accuracy > 1.1

Traces Percentage of jobs Squashed area Percentage of jobs Squashed area

KTH 1.1% 1.8% 0.2% 1.1%

SP2 9.7% 26.1% 1.1% 1.1%

CTC 16.1% 20.3% 0.8% 1.2%

LANL 15.8% 30.5% 7.5% 22.7%

Table 4.2: Analysis of the jobs exceeding their real runtimes

We also found that the estimation accuracy depends on the real runtime. To this

end, the jobs are grouped by the integer part of the logarithm (based on 2) of their

runtimes. For each group, the average accuracy is calculated and shown in Figure 4.1.

It can be seen that the accuracy increases with the real runtime. It may indicate that

when users submit a longer job, they tend to give an accurate estimation.

4.2.2 User Estimations

Another point about the estimated runtime is that most users do not estimate an exact

time span for the job execution time. Instead, they provide a general estimation, e.g.,

1 minute, 10 minutes, 2 hours.

In Table 4.3 the most frequently required estimated runtimes from the workloads

KTH, SDSC SP2 and CTC are summarized. It can be seen that the most jobs’ esti-

mated runtimes fit to these 20 groups (about 80 % of all jobs). This suggests either that

the users tend to provide rounded estimates or that the estimated runtime is related

to the configuration of available system queues with certain default values. The corre-

sponding groups for the separate workloads are presented in Table 4.4 and Table 4.5.

4.3 Parameterized Distribution Model

In the following, we will model the estimated runtime based on the corresponding real

runtime. As we have shown, the estimated runtime and the real runtime are correlated
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Figure 4.1: The relations of the accuracy to the real runtime. Here, only the jobs

whose accuracies smaller than 1.1 are considered.
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Group Estimated Percentage of Group Estimated Percentage of

runtime all jobs (%) runtime all jobs (%)

1 1 min 0.9 11 3 hours 3.9

2 5 mins 9.7 12 3.33 hours 0.8

3 10 mins 7.0 13 4 hours 5.0

4 15 mins 6.8 14 5 hours 1.2

5 20 mins 3.2 15 6 hours 4.8

6 30 mins 4.0 16 8 hours 1.9

7 1 hour 6.3 17 10 hours 2.3

8 1.5 hours 0.8 18 12 hours 2.5

9 2 hours 5.0 19 15 hours 1.1

10 2.5 hours 0.8 20 18 hours 14.4

Table 4.3: Summarized alignment of the estimated runtimes within the KTH, SDSC

SP2, CTC workloads, total alignment: 82.7%

by the accuracy, therefore we model the accuracy first and then the estimated runtime

can be calculated.

4.3.1 Model Selection

First of all, a basic model has to be selected to describe the accuracy. We select

a Beta distribution [14] for the workloads of KTH, SP2, CTC, which gives a better

fitting than the others, e.g., Gaussian. The general formula for the Beta distribution

function is given in Equation 4.2 where p and q are the shape parameters, a and b

denote the bounds of the distribution function. The Beta function itself is defined in

Equation 4.3. On the contrary, for LANL a Gamma distribution is more suitable. The

Gamma distribution is given in Equation 4.4, where Equation 4.5 describes Gamma

function. Figure 4.2 shows the comparison of cumulative distribution functions (CDF)

from the original data and the corresponding Beta distribution for KTH. It can be seen

that a Beta distribution is capable of describing the accuracy.
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LANL KTH

Group Estimated Percentage of Estimated Percentage of

runtime all jobs (%) runtime all jobs (%)

1 1 min 4.6 1 min 5.3

2 2 mins 0.9 2 mins 3.3

3 3 mins 1.0 3 mins 1.7

4 5 mins 23.3 5 mins 9.3

5 6 mins 0.3 10 mins 7.8

6 10 mins 5.6 15 mins 4.3

7 15 mins 3.8 20 mins 2.5

8 20 mins 2.0 30 mins 4.5

9 29 mins 0.9 1 hour 4.7

10 30 mins 4.7 1.67 hours 1.1

11 40 mins 0.9 2 hours 3.7

12 50 mins 1.1 2.5 hours 1.1

13 59 mins 0.8 3 hours 2.0

14 1 hour 25.8 3.33 hours 4.1

15 2 hours 0.7 3.83 hours 2.6

16 2.33 hours 0.6 4 hours 10.1

17 2.5 hours 0.9

18 3 hours 16.5

19 4 hours 0.3

20 6 hours 1.0

Total 96 % 74.9%

Table 4.4: Alignment of the estimated runtimes within the LANL and KTH workloads

f(x) =
(x − a)p−1(b − x)q−1

B(p, q)(b − a)p+q−1
, a ≤ x ≤ b; p, q > 0 (4.2)

B(α, β) =

1
∫

0

tα−1(1 − t)β−1dt (4.3)

f(x) =

(

x−µ
β

)γ−1
· e

“

−x−µ
β

”

βΓ(γ)
, x ≥ µ; γ, β > 0 (4.4)

Γ(a) =

1
∫

0

ta−1e−tdt (4.5)

The independent modeling of the accuracy is not feasible for our problem, since

the accuracy is related to the real runtime. Therefore, in the following section we will
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CTC SDSC SP2

Group Estimated Percentage of Estimated Percentage of

runtime all jobs (%) runtime all jobs (%)

1 5 mins 8.6 5 mins 11.6

2 10 mins 6.2 10 mins 7.8

3 15 mins 10.4 12 mins 1.1

4 20 mins 1.9 15 mins 2.9

5 30 mins 3.4 20 mins 5.5

6 1 hour 4.1 30 mins 4.6

7 1.5 hours 0.8 45 mins 1.0

8 2 hours 5.3 1 hour 10.3

9 3 hours 4.8 2 hours 5.1

10 4 hours 2.1 2.5 hours 1.2

11 4.83 hours 0.6 3 hours 3.7

12 5 hours 1.1 4 hours 6.4

13 6 hours 8.5 5 hours 1.4

14 8 hours 1.5 6 hours 1.9

15 10 hours 1.7 7 hours 0.9

16 12 hours 2.2 8 hours 3.3

17 15 hours 1.4 10 hours 3.2

18 16 hours 1.0 12 hours 3.9

19 17 hours 0.6 15 hours 0.8

20 18 hours 23.1 18 hours 9.4

Total 89.1% 86.2%

Table 4.5: Alignment of the estimated runtimes within the CTC and SDSC SP2

workloads

propose an integrated model for the estimated runtime.

4.3.2 Modeling Estimated Runtime

To reflect the relation between the accuracy and the real runtime we use a parameterized

distribution model. That is, instead of using one accuracy model, a series of accuracy

models are applied. These models are parameterized by the real runtime so that the

relation can be represented.

First, in our model the jobs are grouped by their real runtimes. Then, for each of

these groups, the parameter combinations of p and q of Beta distribution are identified

in order to maintain a better similarity between the original and the synthetically

generated workloads. Finally, the according accuracy distribution functions are derived

from the combination of these parameters by a linear regression. In detail, the process
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Figure 4.2: Comparison of modeled

(SIM) and original (REAL) accuracies
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Figure 4.3: Comparison of modeled

(SIM) and original (REAL) estimated

runtime

works as follows:

1. In the first step all jobs are grouped by their real runtime. The jobs are grouped

by calculating the integer of the logarithm (based on 2) of the real runtime. In our

examples, up to 19 different groups for the different workloads are created. This

allows the examination of the influence of the parameters p and q in a smaller

subset of all jobs, as the real runtimes vary in a wide range. For each of these

subsets a separate combination of the parameters p and q is generated. Suppose

{t1, . . . , tn} are the real time values of n jobs. Then a group Gi is build as follows:

Gi = {x|blog2(tx)c = ri;x = 1, . . . , n},

where k is the number of groups.

2. For each group Gi a combination of p and q can be found for which the Beta

distribution resembles the accuracy in the group using moments estimates:

p = x̄(
x̄(1 − x̄)

s2
)

and

q = (1 − x̄)(
x̄(1 − x̄)

s2
− 1)

, where x̄ is the sample mean and s2 is the sample variance. The results in

Figure 4.4 present the relation between p, q and the real runtime for the KTH

EstimatedRuntime/ac_fit.eps
EstimatedRuntime/exp_rt_fit.eps
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Figure 4.4: The relations between the real runtime and the parameters of the Beta

distributions for KTH. The relations similar for the traces of SDSC SP2 and CTC

workload. As it can be seen that the parameters are not constant but p generally

increases and q decreases with an increasing group number (created depending

on their real runtimes). All other workloads have a similar behavior.

3. The parameters p and q are yet only described in a qualitative fashion. This step

includes the determination of specific values for p and q depending on the real

runtime. To this end we use a linear regression model for these two parameters.

The linear model can be described as follows: log2(p) = log2(T ) · a1 + b1 and

log2(log2(q)) = log2(T ) · a2 + b2, here, T denotes the real runtime. For q we used

the log2 transformation twice as the results indicate a better fitting. For each

group Gi a Beta distribution with specific pi and qi exists. So k pairs (ri, pi)

and (ri, qi) can be used to derive the parameters (a1, b1) for p and (a2, b2) for q.

The corresponding accuracy distribution can be created for given any the real

runtimes using the resulting functions for p and q. The estimated runtime can be

directly generated by using this accuracy distribution and the real runtime itself.

Figure 4.3 shows the curve of the cumulative distribution function using the de-

scribed method to derive the estimated runtime. Here, the KTH workload is presented,

but the other workloads show a similar behavior. The difference between the artificially

generated and original estimated runtimes can be seen clearly in the figure. This dif-

ference is caused by the fact that most estimated runtimes have rounded values as we

have shown before, e.g., 1 minute, 2 hours. Therefore, an alignment of the estimated

runtimes can be used to improve the quality of our model.

EstimatedRuntime/ac_params_rt.eps


46 CHAPTER 4. ANALYZING MISSING INFORMATION IN WORKLOADS

To this end, the transformation method is extended by including an alignment

process. From the available workloads we can see in Table 4.3 that between 70 and

95% of all jobs are aligned to some round values. Therefore, in our alignment process

we decide that with a probability of 0.8 the estimated runtime is aligned to the nearest

value according to the rule in Table 4.6.

As the synthetically generated estimated runtime might be much higher, the syn-

thetically generated squashed area of the different workloads would be much higher

than in the original traces. Existing scheduling strategies like Backfilling are sensitive

to such a difference. To this end, the estimated runtime is bounded. Note, the runtime

of all jobs is unchanged and so the real squashed area of all jobs of the different work-

loads is not affected. The bound of the estimated runtime is selected from the highest

value of all jobs within the existing workloads. The maximum estimated runtimes of

the examined workloads are presented in Table 4.7. Therefore, we have chosen an upper

bound of 60 hours for the synthetically generated estimated runtimes.

Estimated runtime aligned to

before alignment multiples of

1 - 5 min 1 min

5 min - 60 min 5 min

1h - 4h 20 min

> 4h 1h

Table 4.6: Alignment of the modeled estimated runtime

KTH SP2 CTC LANL

Maximum 60 48 18 8.33

Table 4.7: Maximum estimated runtime (hours) of the different traces

As mentioned in Section 4.2, the accuracy of the LANL workload has a wider

range than the other workloads and so a Beta distribution is not suitable. Therefore,

a modified procedure has been used for this workload. We have chosen a Gamma

distribution [14] to model the accuracy for this workload. Here, the maximum estimated

runtime for the alignment process is selected by 8.33 hours (Table 4.7). The process of

parameterizing the Gamma distribution is similar to the method as described above;

again, two parameters need to be extracted, which are γ and βinstead of p and q. The

final selection of a reasonable estimated runtime is done by using the same alignment

process as described for the other three workloads.
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Figure 4.5: Comparison of the synthetic

(SIM) real estimated runtimes (REAL)
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Figure 4.6: Comparison of the synthetic

(SIM) and real estimated runtimes

(REAL)

4.4 Experimental Results

4.4.1 Statistic Comparison

The empirical cumulative distribution functions of the synthetic and real estimated

runtimes are plotted in Figure 4.5. The results of the KS tests and the comparisons

of the estimated squashed areas of the workloads are shown in Table 4.8. Here, the

difference of estimated SA is calculated by:

dSA =
synthetic estimated SA − original estimated SA

original estimated SA
.

KTH SP2 CTC

KS Test 0.06 0.14 0.15

dSA 15.1% -8.9% 34.1%

Table 4.8: Comparison of KS test results and difference of SA

The KS test shows that the synthetic and original estimated runtimes are similar.

However, the results based on the comparison of the squashed areas are different for

CTC. Here, the generated workload has an estimated squashed area 34% higher than

that of the original workload. This is caused by our assumption of an upper bound

for the estimated runtime of a job. As can be seen from the original workload trace of

EstimatedRuntime/exp_rt_fit_final.eps
EstimatedRuntime/lanl_exp_rt_fit_final.eps
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CTC in Table 4.7, the upper bound is much lower than 60 hours. In order to increase

the precision of the estimation a tighter upper bound can be applied for the estimated

runtime in the alignment process.

4.4.2 Deriving a General Model

Next, we verify whether a general model can be derived to recover the estimated runtime

for the traces without the information. Therefore, we train the model with KTH, SP2

and CTC and combinations of them. Finally, the synthetic estimated runtimes are

compared with the original estimated runtime of the workloads, as shown in Tables 4.9.

The KS test shows that the combination of KTH, SP2 and CTC is suitable to train the

model for all 3 workload traces. In addition, the difference of estimated squashed area

is given as well. It can be seen from the table (the first column of the SA comparison

results) that the original value of KTH is smaller than the model trained by SP2, CTC

or their combinations. This is due to the fact that the accuracy of KTH is better

than that of CTC or SP2. Therefore, the overall accuracy of the estimated runtime is

considerably worse than that of KTH. Based on the averaging effect by training with

other workload traces, the lower modeled accuracy yields a higher estimated runtime.

It follows that the synthetic squashed area is larger than its according original value.

KS test results SA comparison

Training workloads KTH SP2 CTC KTH SP2 CTC

KTH 0.06 0.18 0.18 15.1% −27.7% −30.1%

SP2 0.10 0.14 0.15 39.7% −9.4% −9.8%

CTC 0.22 0.13 0.15 144.2% 40.3% 34.1%

KTH,SP2 0.14 0.11 0.13 48.6% −15.9% −12.3%

KTH,CTC 0.13 0.11 0.13 56.1% −1.4% −4.9%

SP2,CTC 0.17 0.10 0.11 95.5% 14.9% 7.1%

KTH,SP2,CTC 0.12 0.12 0.13 61.2% −2.1% −7.4%

Table 4.9: Comparison of synthetic estimated runtime and real estimated runtime

To use our model to recover the missing information, a decision must be made

whether a workload resembles other workloads in order to train the model accordingly.

The selection depends on the detailed knowledge of a workload itself.

For LANL, about 20% of the jobs have estimated runtime information, while it is

missing for all other jobs. Therefore, we trained our model with those 20% of entries and

used the model to recover the others. The cumulative distribution functions of synthetic
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and real estimated runtime are plotted in Figure 4.6. The results are acceptable with

regard to a KS test of 0.13, and a difference of the squashed area of -7%.

4.5 Summary

In this chapter, we presented a model to recover an estimated job execution time for the

workload traces without such information. This information is often used in scheduling

strategies and therefore necessary for the evaluation process. The statistical criteria

showed that the model produces acceptable results in comparison to the original traces.

The evaluation results also showed that the parameterizations of the model varies for

different workloads. The quality of the modeling depends on the similarity of the

workload used for training and the workload scenario for which estimated runtimes are

modeled. The presented method to characterize the estimated runtime is an example

for recovering the missing workload attributes. Similarly, the method can be applied

to other attributes.

Until now, we have restricted ourselves on analyzing the global features in the

workloads. These overall features are useful for characterizing the final mixtures of job

submissions. Whereas, in many application scenarios, a more detailed representation

of the workloads is required. Therefore, in the next two chapters we go further to

investigate user-level characteristics.
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Chapter 5

User Group-based Analysis and

Modeling

In the previous chapters, we have mainly concentrated on studying the overall charac-

teristics of the workloads. Until now, the individual users and their correlations to final

workloads are not considered yet. Since more job scheduling systems for single parallel

installations as well as for Grid computing start to focus on the quality of service for

specific users or user groups, the detailed knowledge of the individual users is necessary

for developing user-oriented scheduling strategies.

From this chapter on, we begin to investigate the user-level behaviors. This chapter

will mainly discuss the static characteristics of individual users. To this end, a new

approach is given to cluster users into different groups according to their past sub-

missions. Based on the analysis of the different user groups, a group-based model is

proposed, called MUGM (Mixed User Group Model) , which maintains the features of

the user groups. The comparison and analysis of different user groups will be given at

the end of this chapter.

5.1 Analysis of User-level Submissions

When observing the individual submissions, one of the obvious characteristics in the

examined workloads is the sparsity of users. That means, only a few users are responsi-

ble for thousands of jobs, while many other users just generate very few jobs. Table 5.1

shows the number of submissions from the users in the KTH workload: only a couple

of users with more than 1000 job submissions. Actually, there are about 30,000 jobs

from over 200 users. This effect is similar for all other workload traces.

51
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Another aspect about the workload data is the heterogeneity of the job submission

patterns among different users. In Figure 5.1 the average job parallelism values are plot-

ted for the top 10 users with the most submissions: the heterogeneity can be seen clearly

as some try to submit jobs with the lower parallelism (e.g. user IDs={91,93}), while

some tend to make submissions with the higher parallelism (e.g. user IDs={18,67}).

We have also examined the other workloads and found similar results.

# of Job Submission # of Users (%)

[1, 100[ 68.22

[100, 500[ 18.22

[500, 1000[ 12.15

[1000, 2000[ 0.93

more than 2000 0.47

Table 5.1: Comparison of the numbers of users’ submissions
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Figure 5.1: Comparison of the average job parallelism for individual users

The main challenge in the construction of a new model addressing the individual

submission behaviors is the decision of a trade-off between two extremes. One extreme

is the summarization of a general probability model for all job submissions. Thus,

the user-level behaviors are not considered. As the other extreme, a specific model is

created for each user based on his or her past transaction data, e.g., using hundreds of

distributions for different users. Even if we would follow this approach, it suffers from

two significant problems: there is not enough information for those users with only a

UserGroups/heteUsers1.eps
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few job submissions; even for those users with enough data to model, the number of

parameters will be so large that the interpretability and scalability of the model are

lost. As a consequence, we would like to get a mixture of user groups that summarizes

similar user submission behaviors, while each of these groups has distinct features. Our

proposed model allows to address the user submission behaviors, while it maintains the

simplicity and the scalability. In the next section, we will give the details about our

new model.

5.2 Clustering Users into Groups

Before we describe our MUGM model, some definitions are given in advance. We

denote D as the set of n jobs by D = {d1, . . . , dn}, where di represents the parameter

set for job i, including e.g. the number of processors, the expected runtime, memory.

This parameter set can easily be extended to contain additional job information. As

previously mentioned, we currently focus only on the parallelism and runtime. Thus,

we use dp
i to represent the parallelism and dr

i for the runtime of job i. The jobs are

generated by J users, where user j generates job i: du
i = j, j ∈ [1, J ].

In our MUGM model a workload is analyzed to classify users into K user groups.

Note that we do not assume that these K groups necessarily represent the true physical

groups in the real environment. The membership of a user j is identified by m(j) =

k, k ∈ [1,K]. The users in the same group are assumed to have a similar job submission

behavior. Thus, the kth group 1 ≤ k ≤ K will represent a specific model for generating

corresponding jobs.

Data
processing

Job
clustering

User
grouping

Group
Analyzing

Group
modeling

Synthetic
workload
generation

Figure 5.2: Process of the MUGM model

Figure 5.2 gives an overview on the construction of MUGM. We first find different

job clusters or types using a cluster algorithm to partition jobs. In this step, the

user origin is not considered. Instead, only common job types are identified by this

clustering. Then each user is characterized by a feature vector, which describes the

contribution of this user to each job cluster. Afterwards, we use these feature vectors

UserGroups/mugmFlow.eps
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to cluster user groups. In this way, the users are grouped by their similar contribution

patterns to the previously identified common job clusters. Next, we analyze and model

the submission characteristics of each user group. The combination of the group models

is used to generate the synthetic workloads.

In the following, each step in the MUGM process is described in more detail.

5.2.1 Data Preprocessing

Parallelism and runtime values both cover wide ranges that are only bound by zero.

Therefore, it is common practice to apply a logarithmic transformation for analyzing

and modeling. Here, a log transformation based on 2 is used. That is, the parallelism

and the runtime are transformed by log2 (dp
i ) and log2 (dr

i ). Zero values are neglected

as they are very rare (less than 0.3%).

5.2.2 Job Clustering

Next, we cluster all jobs into several groups. The parallelism and the runtime are sep-

arately clustered in order to maintain sharper partition borders. That is, the different

job clusters differ in the parallelism or the runtime. Each job is uniquely assigned to

one of the clusters.

To cluster the parallelism we round all the job parallelism values log2(D
p) to the

blog2(D
p)c. Such a clustering method is based on the above mentioned observation of

the power of 2 effect in parallelism. For the runtime we choose a clustering algorithm

CLARA proposed in [31] because of its computational efficiency.

This algorithm is based on the Partition Around Medoids (PAM) method which is

also presented in [31]. The PAM clustering procedure takes the unprocessed items as

input and produces a set of cluster centers or so called ”medoids”. In the following, we

briefly describe the general approach of the PAM method. Let X = {x1, . . . , xT } be the

input element set of size T , and H be the number of clusters, and M = (M1, . . . ,MH)

denotes the list of to be mediods identified in X. The minimal distance of each element

to the mediods can be calculated by

distance(xt,M) = minh∈[1,H]{||xt,Mh||}.

Next, the PAM method selects the set of medoids M ∗ by minimizing the sum of the

distances f(M) =
∑

t∈T distance(xt,M). An overview of the cluster algorithm PAM

is given in Figure 5.3.

It has been pointed out in [31] that the complexity of a single iteration is O(H ·

(T − H)2). Usually, T � H, therefore, it is computationally quite time consuming for
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large values of T . For instance, T in our evaluation equals the number of jobs which is

larger than 20,000. The difference between the PAM and CLARA algorithms is that

the latter uses only a sampled subset S ⊂ X before applying the same PAM method.

This reduces the complexity to O(H · |S|2 + H · (T −H)) for each iteration comparing

to the O(H · (T − H)2).

In our case, each element is a runtime value. We use the Euclidean distance between

two logarithmic scaled runtimes, which is (log2(d
r
i′) − log2(d

r
i′′))

2. To decide the number

of clusters, we do not adopt classical methods like e.g. silhouette, Gap statistic [38, 54]

because they caused a large number (more than 20) of small clusters which increase

the complexity level for our MUGM model. In our analysis we tried several number

of clusters, e.g. 2, 4, 6, 8, 10,..., 20. However, it turned out that the final modeling

quality did not increase for more than 4 clusters. Note that it has to be verified if the

model is applied to other workload traces.

Overall, all jobs have been partitioned into L clusters distinguished by the CLARA

clustering of their log-transformed runtimes and the clustering of their log-transformed

parallelism. In the next step, we group the users based on their contributions to the

different job clusters.

5.2.3 User Grouping

We can characterize the submission of user j by a feature vector αj = (αj1, . . . , αjL),

where αjl denotes the fractions of user j submissions belonging to job cluster l, l ∈ [1, L].

Obviously, there is
∑

l αjl = 1,∀j ∈ [1, J ].

Then we can cluster all users into K groups by their feature vectors. The similarity

of users is characterized by the distance of their feature vectors. Since different users

have different number of job submissions, we weight the distance between the feature

vectors of users by their corresponding number of job submissions. Here, the weight

is used to prevent the appearances of tiny groups which have similar submissions but

ignorable numbers of jobs. In more detail, the distance d(j ′, j′′) between user j ′ and j′′

is defined by

d(j′, j′′) = ||αj′ − αj′′ || ·
|W |

n
,

where W = {du
i |(d

u
i = j′) ∨ (du

i = j′′); i = 1, . . . , n} and n is the total number of jobs.

That is, we divide the number of jobs belonging to user j ′ and j′′ by the number of all

jobs, and then multiply the result by the distance between both feature vectors. With

weighted distances between the feature vectors, the PAM clustering algorithm is again

applied to partition the users into K groups. The determination of the actual number

of groups K is given in the Section 5.4.
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PROCEDURE PAM clustering(X,H)

Input: elements to be clustered,

X = {x1, . . . , xT }

Input: H the number of clusters

Output: cluster medoids M = (M1, . . . ,MH)

Output: cluster membership

g : X → {1, . . . ,H}

BEGIN

Set M to initial value,

e.g. random selection from X

FOREACH t ∈ [1, T ] LOOP

g(xt) = arg minh∈[1,H] ||xt,Mh||

END LOOP;

DO LOOP

FOREACH h ∈ [1,H] LOOP

recalculate the Mh of

each cluster {xt|g(xt) = h, t ∈ [1, T ]}

END LOOP;

FOREACH t ∈ [1, T ] LOOP

g(xt) = arg minh∈[1,H] ||xt,Mh||

END LOOP;

WHILE M has not changed;

END LOOP;

RETURN M, g;

END PROCEDURE;

Figure 5.3: Algorithm for the PAM Clustering

5.2.4 Workload Modeling of Identified User Groups

After clustering the users into several groups, we characterize all jobs submitted from

all the users in one group using statistical methods. There are several common methods

to describe the data distribution. However, we found that after the users are grouped,

the characteristics of jobs originated by each user group can not easily be described by

a single distribution. Therefore, we use model-based density estimation to model the

jobs from each group, which is described in more detail by Fraley and Raftery [27]. This

model-based method assumes that the data is generated by a combination of distribu-

tions and determines the corresponding parameters for a set of Gaussian distributions.

We denote the estimated distribution function for a user group k as Gk. However,
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the Gk distribution function does not address the power of 2 effect for the parallelism.

Hence, we extract the amount of power of 2 jobs fk in the original workload of a user

group k. That is,

fk =
|{du

i |log2(d
p
i ) ∈ N ∧ m(du

i ) = k; i = 1, . . . , n}|

|{du
j |m(du

j ) = k; j = 1, . . . , n}|
.

Additionally, the fraction of submission pk from group k is calculated by

pk =
|Dk|

n

where Dk = {du
i |m(du

i ) = k; i = 1, . . . , n}. In a summary, the workload of the user group

k can be represented by Gk, fk, pk. In the next section, we will discuss our method to

generate the combined synthetic workload.

5.3 Generation of Synthetic Workloads

To create n synthetic jobs by the MUGM model, the following steps are applied:

1. For each user group k, we generate nk jobs with nk = bn·pkc from Gk. We generate

the synthetic parallelism Pk = {p1, . . . , pnk
} and runtime Rk = {r1, . . . , rnk

} by

sampling from the distribution Gk. However, we also have to transform our

previous log and round to the nearest integer value:

P ′
k = {p′i|p

′
i = b2pi + 0.5c; i = 1, . . . , nk} and

R′
k = {r′i|r

′
i = b2ri + 0.5c; i = 1, . . . , nk}.

2. To address the power of 2 effect, a fraction of the values in P ′
k is rounded to the

nearest power of 2 value. That is, with a probability of fk the simulated value P ′
k

is modified.

3. The synthetic jobs from different user groups are combined. Particularly, we use

probability pk to pick a job from group k. According to this method we create

the final n jobs.

In the next section, we discuss the evaluation of the MUGM method with experi-

mental results.

5.4 Experimental Results

To evaluate our MUGM method we also used those 6 workloads from Standard Work-

load Archive as mentioned before. In the following, different user groups are analyzed

and compared.



58 CHAPTER 5. USER GROUP-BASED ANALYSIS AND MODELING

5.4.1 Analysis of Job Characteristic from User Groups

First, we examine the job characteristics of the resulting user group clusters. Here,

the results for the KTH workload are shown primarily. However, the other workloads

exhibited similar results. Figure 5.4, 5.5, 5.6 display the results for different numbers

of user group clusters K = {2, 4, 6}. The user groups are ordered left-to-right and

top-to-bottom in descending order by their combined amount of squashed area in each

figure. The information in the header of each diagram shows the relative contributions

of each user group to the squashed area SA, the total numbers of jobs and users. These

figures give an idea of how much the parallel computer was utilized by one of the user

groups.

The increase of K forces the creation of more user groups. For example, for K = 2,

there are two user groups in Figure 5.4: the first group submits a lot of short jobs,

requiring below 10 seconds; the other group causes more jobs with one node and longer

runtime requirements. The parallelism is nearly not distinguished in this classification.

For K = 4 more detailed user groups are found in Figure 5.5, in which combinations of

runtime and parallelism are found. However, for K = 6 in Figure 5.6, it is noteworthy

that some of the user groups cover only very few users with a small amount of workload.

That is, for some of them SA contribution is even less than 1%. It can be deduced that

these groups have a limited impact on the overall system performance. This has to be

verified in the future research work.

Nevertheless, the results indicate that with 4 user groups the workloads could be

distinctively covered. It is worthwhile to notice that this applied to almost all of the

existing workloads as can be seen in Table 5.2. That is, there is only a limited number

of distinctive features of user behaviors on real systems. It can be assumed that the

additional user clustering only yields groups with minor contribution to the workload.

Therefore, we focused on the creation of 4 user clusters.

For the KTH modeling with 4 user groups, the following characteristics of the user

groups can be seen in Figure 5.5:

1. Users in Group 1 submit a lot of jobs with high parallelism. Many jobs require

more than 1 node. Moreover, a large number of jobs run only for short time

about 10 seconds. However, this group accounts for most resource consumption

in terms of the SA. That is, over 40% of the total SA is caused by this group.

2. Users in Group 2 submit more jobs requiring relatively longer runtimes. Many of

these jobs have a runtime more than 103 seconds. Some are even larger than 104

seconds. This group also creates some highly parallel jobs. But in comparison

with Group 1, most node requirements in this group are less than 24.

3. It is interesting to note that the jobs from Group 3 are quite specific in terms of

the runtime and the parallelism. Most jobs have a parallelism around 23 and a
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Figure 5.4: 2 user groups are clustered in KTH with the MUGM model.

runtime over 103 seconds. These users do not have jobs with short runtimes like

Groups 1 and 2. The jobs account only for about 6% of the total job number but

over 20% of the total SA. Another point is that only 3% users are in this group.

4. In Group 4, users concentrate on submitting sequential jobs, requiring only 1

node. The runtime is also distinctive: most of them run around 104 seconds. Over

40% of all users are in this group and they submit about 13% of the total jobs.

It indicates that quite a lot of users use the machine primarily but infrequently

for sequential jobs.

Note, that the other workloads do not exhibit the exactly same group characteristics,

as can be seen exemplarily in Figure 5.7 for the LANL workload. However, as mentioned

before about 4 user groups can be identified as well.

5.4.2 Statistical Comparison

The KS results are given in Table 5.3. It can be seen that the output of our MUGM

method yields good results for most workload traces. That is, the KS value is below

0.10 in all cases and at 0.05 on average.

In Table 5.4 we present the correlation between the parallelism and the runtime for

the synthetic and the original workload. As shown in the table the synthetic data from

our MUGM model display a similar correlation as that from original data. It follows

that our model can capture the correlation between the parallelism and the runtime.

UserGroups/group3d21.eps
UserGroups/group3d22.eps
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Figure 5.5: 4 user groups are clustered in KTH with the MUGM model.

5.5 Summary

In this chapter, we proposed a novel method MUGM for analyzing and modeling work-

load traces. The main advantage of this method is the consideration of individual user

groups. Our MUGM method has been applied to several workloads from real installa-

tions. Here, it is interesting that the analysis of the workloads exhibited that only a

few distinct user groups exist. This applied to all examined workloads.

The presented method allows the creation of the new synthetic workloads according

to the original user group characteristics. This method can be used to evaluate new

scheduling strategies. The job submission process has now a direct association with

individual user groups. This information can be exploited for individualized quality cri-

teria considered by scheduling strategies. Furthermore, additional workload parameters

can be modeled in regard to individual scheduling objectives of these user groups. This

UserGroups/KTH4groups.eps
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applies especially to the Grid scheduling scenario in which the scheduling objective is

not globally given for a specific computing system but depends on the user preferences.

Our MUGM model can explain the static behaviors of users but it does not reflect

the feedbacks of users. Actually, users’ submissions are not always dominated by their

inner requests. They could also be affected by other dynamical factors. Therefore, in

the next chapter, we will discuss users’ dynamic feedback behaviors.
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Figure 5.6: 6 user groups are clustered in KTH with the MUGM model.
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Figure 5.7: 4 user groups are clustered in LANL with the MUGM model.
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Workload K User group information

2 (53.7, 80, 98.3), (46.3, 20, 1.7)

4 (46.3, 20, 1.7), (22.1, 20.4, 72.9)

SDSC96 (18.7, 40.0, 23.7), (13, 19.6, 1.7)

6 (46.3, 20.0, 1.7), (20.6, 15.8, 71.2)

(17.1, 6.6, 1.7), (13, 19.6, 1.7)

(1.6, 33.5, 22.0), (1.5, 4.6, 1.7)

2 (77.7, 57.4, 30.0), (22.3, 42.6, 70.0)

4 (75.9, 52.8, 26.7), (14.3, 24.1, 14.4)

CTC (9.0, 17.6, 30.8), (0.7, 5.5, 28.1)

6 (49.5, 42.3, 17.4), (34.5, 15.2, 25.6)

(11.1, 16.5, 10.9), (2.3, 6.8, 2.7)

(2.1, 13.7, 16.1), (0.7, 5.5, 27.4)

2 (95.6, 85.9, 55.6), (4.4, 14.1, 44.4)

4 (45.0, 40.1, 37.9), (29.2, 40.1, 16.8)

KTH (21.3, 6.7, 3.3), (4.5, 13.1, 42.1)

6 (44.2, 26.1, 32.2), (29.2, 39.7, 16.4)

(21.3, 6.7, 3.3), (3.4, 4.7, 41.6)

(1.1, 8.4, 0.5), (0.8, 14.5, 6.1)

2 (95.7, 89, 99.5), (4.3, 11, 0.5)

4 (66.3, 33.6, 22.5), (22.7, 25.7, 24.9)

LANL (6.7, 29.6, 52.1), (4.3, 11, 0.5)

6 (53.2, 31.4, 22.1), (14.8, 19.9, 24.4)

(13.1, 2.2, 0.5), (7.9, 5.9, 0.5)

(6.7, 29.6, 52.1), (4.3, 11.0, 0.5)

2 (86.7, 71.6, 42.8), (13.3, 28.4, 57.2)

4 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

SP2 (12, 17.7, 34.1), (6.3, 23.2, 36.9)

6 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

(11.7, 15.7, 32.2), (5.7, 5.4, 1.6)

(0.8, 2.6, 36.9), (0.2, 17.2, 0.2)

2 (99.7, 91.1, 99.0), (0.3, 8.9, 1.0)

4 (76.5, 68.6, 96.9), (23.0, 5.1, 1.0)

SDSC95 (0.3, 8.9, 1), (0.3, 17.3, 1)

6 (68.9, 55.6, 94.8), (23.0, 5.1, 1.0)

(7.5, 3.5, 1.0), (0.3, 8.9, 1.0)

(0.3, 17.3, 1.0), (0.1, 9.5, 1.0)

Table 5.2: The Details of user groups (SA%, # of Jobs%, # of Users%) identified by

the MUGM model
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Parallelism Runtime

SDSC 96 0.06 0.03

CTC 0.04 0.06

KTH 0.05 0.07

LANL 0.04 0.06

SP2 0.03 0.05

SDSC 95 0.04 0.06

Table 5.3: KS test results (Dn) of the modeled and the original workloads

Original Synthetic

SDSC 96 0.37 0.41

CTC −0.02 −0.01

KTH 0.01 0.00

LANL 0.17 0.14

SP2 0.15 0.09

SDSC95 0.28 0.24

Table 5.4: Comparison of the correlations between the modeled and the original

workloads
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Chapter 6

Examination of Implicit User

Feedbacks

As we have mentioned, a deep understanding of users’ behaviors has a very crucial

implication for the scheduling systems of parallel computers or in Grid environments,

e.g., resource reservation, load balancing. In the previous chapter, we have analyzed

and characterized the static characteristics of users. The dynamic behaviors have not

been discussed yet. Actually, users may change their job submissions according to

online information, e.g., system states. In this chapter, we focus on investigating the

responsive behaviors or feedback behaviors of the users. Due to the lack of direct infor-

mation, we derive several implicit factors from the existing workloads and investigate

how the users adjust their submissions by these factors; we also provide a method to

identify and describe the details of feedbacks. At the end of this chapter, the results

are compared among the different workloads.

6.1 Feedback Examination

The feedback analysis has a history in information retrieval that dates back over thirty

years. It is widely used in short-term for modeling of users’ immediate requirements and

during long-term for modeling of users’ persistent interests and preferences. Basically,

there are two kinds of methods to extract the feedback information:

- Explicit Inquiry : This method requires that users explicitly give feedbacks by, for

instance, specifying items, selecting from options, or answering questions about

their interests. Such a method forces users to engage in additional activities

beyond their normal submission tasks; the cost of inquiry can be high and the

answers from users may be not correct. Hence, the effectiveness of this technique

can be limited.

67
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- Implicit learning : This method unobtrusively obtains the information about users

by learning from their past submissions. The primary advantage to use implicit

learning is the removal of the cost for extracting the feedback information. More-

over, the implicit measures can be combined with the explicit inquires to obtain

a more accurate feedback representation.

Because of unobtrusive feedback obtaining, we consider to use the implicit learning

method. There is a growing body of literature on implicit feedbacks, which is mainly

in the fields of web navigation or network reservations [40, 42, 45]. In those fields there

are explicit feedback variables available, e.g., preference rating and price information

and then the feedbacks are analyzed directly.

In fact, the feedback behaviors may also exist in the field of parallel computers or

Grid environments. For instance, some users who submit real-time interactive applica-

tions may be unable tolerate relatively long waiting time, whereas they may not care

the waiting time when submitting a simulation program before returning home; some

users may check the system load level before they submit a new job; some users make

submissions only after all their previous applications are finished.

These feedbacks may be beneficial for machine owners, for example, to balance the

loads and to improve the scheduling systems. New scheduling systems can be designed

in regard to different user communities and their feedback tendencies. Therefore, in

the following we will analyze users’ feedback in the parallel computer environment.

6.2 Feedback Analysis

6.2.1 Implicit Feedback Factors

One problem about feedback analysis in our study is the missing of explicit feedback

factors in the workloads. The available workloads themselves only recorded how jobs

were submitted and scheduled, including job parallelism, runtime, submission time, etc.

There is no explicit information about feedback factors, e.g., price, user satisfaction

ratings.

Therefore, at the first step of the feedback analysis, the potential factors, which

will influence users’ submissions, need to be identified. As there are no explicit factors

recorded in the workloads, we introduce two variables as implicit factors: the number of

waiting jobs and the number of occupied nodes in the workloads, which are dynamically

changed and can be regarded as the measurements of the system states. The concrete

values can be easily calculated from the workloads and then we can investigate how

these two variables affect job profiles. One can straightforward introduce more possible

variables when more information is available. In short, we summarize the implicit

feedback factors and job profile variables in Table 6.1.
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After specifying the possible feedback factors we begin to explore the detailed feed-

back behaviors in the next section.

Name Notation Details

parallelism P the number of proces-

sors or nodes that a job

requires

runtime R the duration that a job

runs on the machine

the number

of waiting

jobs

W the number of jobs

which have been sub-

mitted but not been

started yet at submit

time

the number

of occupied

nodes

O the number of nodes

which are busy at a

job’s submit time

Table 6.1: Considered variables for feedback analysis

6.2.2 Problem Specification

To understand whether users’ submissions are affected by certain factor(s) the following

two questions need to be considered:

- Would the factor(s) affect a job’s delivery? For example, would some users may

stop delivering jobs when they notice a large number of waiting jobs?

- Would the factor(s) affect a job’s profile, like job parallelism and runtime? For

instance, would some users begin to submit the jobs requiring 10 nodes when they

find there are over 10 nodes free in the system?

Due to lack of the standard references, it is infeasible to answer the first question.

For example, if a user seldom delivers jobs at noon, it might result from a regular lunch

at noon, or has a real feedback implication: the user finds many waiting jobs at noon

and then stops his or her submissions. We also observed the histograms of W and Q

by individual users and did not find obvious difference among users.

Whereas, it is possible to answer the second question, since the job profiles can

be compared along different situations of influential factors. Therefore, we restrict

ourselves on dealing with the second question: how would the given factor(s) affect the
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job profiles? That is, how would the number of waiting jobs and the number of occupied

nodes affect the runtime and the parallelism of jobs for each user. In other words, the

correlations between the feedback factors and the job attributes will be analyzed.

6.2.3 Method Selection

To investigate the correlation between variables, say X and Y , a straightforward

method is the use of Pearson’s correlation coefficient

ρXY =
E((X − µ̄X)(Y − µ̄Y ))

δ(X)δ(Y )

where µ̄X and µ̄Y are the means of X and Y respectively, δ(X) and δ(Y ) are their

standard deviations respectively.

However, the calculation of Pearson’s correlation coefficient is very sensitive to the

outliers. Very few outliers may deviate the results and it is difficult to identify the

outliers. Another weak point is that when there are multiple variables available, it can

only give pairwise correlation results and will not consider the combined effects.

Some methods can also be used to analyze the correlation between variables, e.g.,

non-linear regression, Neural network, factor analysis [56]. Since the goal of our study

is to investigate and compare individual feedbacks so that the similar behaviors can be

identified and explained, a model with many parameters is not suitable for our work.

As a result, we use a classical linear regression model to describe the relation between

the feedback factors and job attributes for each user. The feedback effects may be much

more complex than what a linear regression can describe. Whereas, the advantage of

using linear models is that the feedbacks can be explained with few parameters. We

can even identify user groups with similar feedback behaviors, and then arbitrate that

certain behavior is worthy to consider or not in workload modeling. Next, we will

explain the details of our method.

6.3 Methodology

6.3.1 Data Preprocessing

First, we preprocess the data in order to remove the noisy data. In our case, we need

to find those irregular users and discard their submissions from the data set. We define

the irregular users as those with less than 50 submissions. Since their submissions are

rather few, we have not enough information to deduce their feedback behaviors.

Next, we should deal with the skew distribution of the data in the workloads. The

data from skew distributions have the mode at a different value from the mean. To

take one example, the histogram of the number of waiting jobs in KTH are plotted in



6.3. METHODOLOGY 71

Figure 6.1. We can see the data are bounded at the left side (zero) and has a tail at

the right side.

When we apply such data directly to the linear regression, the parameters of a linear

model may be dominated by a small portion of the data. In our case, for example, the

parameters may mainly depend on the jobs with longer runtime or higher parallelism.

We can apply the logarithmic transformation. However, we find that the data are still

unsymmetrical even after the transformation. Another way to deal with this problem is

to discretize them. A common method, Equal Frequency Intervals, divides a continuous

variable into k levels where (given m instances) each level contains m/k (possibly

duplicated) adjacent values. In Table 6.2, we give an example to show how the number

of waiting queue is discretized into 5 levels. In our work, we found that a large number

of levels may cause noisy points and a small number of levels may be not enough

for obtaining the parameters. As a result, we select k = 10 and use 0, 1
9 , 2

9 , . . . , 1 to

represent the 10 different increasing levels. We apply such a discretization to the values

of R,P,W and O at the global level. Using the transformed data, the corresponding

linear models can be constructed. In the next section, we will begin to construct the

linear models.

Level 1 2 3 4 5

Range [0,8] [9,13] [14,17] [18,23] [24,+∞]

Table 6.2: Discretization Results with 5 levels for # of waiting jobs in KTH
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Figure 6.1: Histogram of the number of waiting jobs in KTH
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6.3.2 Fitting Linear Regression Model

As mentioned previously, a linear regression model has been chosen to describe the

variable correlations for each user. In detail, the linear model for user i takes the form:

R = bWR
i · W + bOR

i · O + εR
i ;

P = bWP
i · W + bOP

i · O + εP
i ;

where Bi = {bWR
i , bOR

i , bPR
i , bOP

i } are the linear coefficients. Here, we can regard Bi

as the descriptions of user i feedback behaviors, e.g., bWR
i describes the correlation

between the number of W aiting jobs and the Runtime. If bWR
i > 0, it indicates that

user i tends to submit longer jobs when the number of waiting jobs rises.

To obtain the parameter settings a stepwise regression procedure is used to decide

whether b∗∗i is 0 or not using the jobs submitted by user i. The stepwise procedure

selects the subset of predictors optimizing on one of the following indicator statistics:

Mallow’s Cp [57], Akaike’s Information Criteria (AIC) [2], R2, or adjusted R2 [14]. We

select AIC since it tries to achieve a good compromise between the desire to explain

as much variance in the predictor variables as possible (minimize bias) by including

all relevant predictor variables, and to minimize the variance of the resulting estimates

(minimize the standard error) by keeping the number of coefficients small. The stepwise

regression procedure fits all possible combination of predictors and selects the model

that results in the result which is close to optimal indicator statistic.

The AIC statistic, the likelihood version of the Cp statistic, is calculated as

AIC = δ̂2(Cp + n)

and the Cp statistic is

Cp = p +
(n − p)(s2

p − δ̂2)

δ̂2

where n is the number of observations; p is the number of parameters in the model, sp

is the mean square error and δ̂2 is the estimate of error.

We apply the linear model for each user to optimize on AIC. That is, the jobs from

the same users are used for training. Finally, the parameter settings of Bi are obtained

for user i, with which the feedback details can be explained. The effectiveness of our

linear model will be verified in the next section.

6.4 Experimental Results

In this section, we illustrate the experimental results using data from those workloads in

Table 2.1. Here, LANL is not applied for verification, since its scheduling system used

time-sharing strategies. It follows that a job can be started as soon as it is submitted
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and several jobs can share the same nodes in turn. Thus, the number of waiting jobs

is always equal to 0 and the number of occupied nodes cannot be calculated from the

workload. Therefore, the evaluations are obtained from the other 5 workloads.

The evaluations are based on the analysis and visualization of users’ feedback be-

haviors. As an example, we give a detailed explanation of the results for the workload

KTH.

6.4.1 Feedback Visualization

Using our linear model, the feedbacks of users can be identified directly. For instance,

user j who tends to submit shorter runtime jobs when the number of waiting jobs

increases can be distinguished by bWR
j < 0. In this way, we obtain several overlapped

user groups with similar feedback behaviors:

BWR
+ , BWR

− , BOR
+ , BOR

− , BWP
+ , BWP

− , BOP
+ , BOP

− ;

where J is the number of users and BWR
+ = {bWR

i |bWR
i > 0, i ∈ 1, . . . , J}, BWR

− =

{bWR
i |bWR

i < 0, i ∈ 1, . . . , J}, etc.

To give a straightforward illustration on discovered feedback behaviors, we visualize

the job submissions from each group. Due to unbalanced submissions, some user groups

may contribute only a small number of jobs comparing to the total jobs in a workload.

Thus, not all the user groups are considered in our study. Here, only those groups

with their total submissions over 20% of whole entries are displayed as the evidence of

feedbacks. Note, the user groups are overlapped. That is, a user can belong to different

groups at the same time. The results are shown in Figure 6.2, where the average runtime

and the average parallelism are plotted under different levels of implicit feedback factors

for each user group. Additionally, the global average value in the workload is given

(horizontal line) as a reference.

Several interesting feedbacks have been identified: as shown in the top-left part

of the figure, when considering the jobs from the users in BWR
− , the average runtime

decreases from about 4.5 hours to about 2.0 hours with the increasing of the number of

waiting queue levels. These users may submit longer jobs when they find that few jobs

are waiting for the machine. Correspondingly, from the top-right part of Figure 6.2

we can see that the runtime is affected by the number of occupied nodes as well: the

average runtime rises when the number of occupied nodes increases.

In the bottom-left and bottom-right parts of the figure, the feedbacks on parallelism

are displayed. It can be seen that for the users in BWP
+ average parallelism values grow

when more jobs are waiting. On the contrary, the users in BWP
− will slightly decrease

the parallelism. It is also worth noting that the average parallelism of jobs from the

users BOP
− declines with the rise of the number of occupied nodes levels. This can be
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caused by the fact that some users tend to submit jobs with high parallelism when they

observe that more nodes are free.
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Figure 6.2: Feedback discoveries in KTH

Note, the other workloads do not exhibit the identical feedback evidences, as the user

communities are different. However, some feedbacks are found as well. In Figure 6.3

the results for CTC are given as another example.

6.4.2 Exclusion from Other Factors

In order to ensure that the discovered feedbacks do not inherit from other factors, we

need to exclude the effects of other possible factors.

We take the daily cycle as an example. Daily cycle is referred as the phenomena

that more jobs arrive in the day while few jobs arrive at night. Therefore, the number

of waiting jobs in the day tends to be larger than that at night. Users could submit a

Feedbacks/kth.eps
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Figure 6.3: Feedback discoveries in CTC

certain kind of jobs at specific time span regardless of waiting jobs, e.g., user submits

jobs requiring the longer runtime at night. As a result, the conclusion can not be made

that users’ submissions are affected by the number of waiting jobs.

To remove daily cycle influence, we focus ourselves on small time frames. For in-

stance, we take the time frame from 1 pm to 4 pm and display the jobs appearing in

that time frame in Figure 6.4. The feedbacks still exist comparing to Figure 6.2 accord-

ingly. Such a result at least indicates that the feedback behaviors are not exclusively

inherited from the daily cycle.

6.4.3 Comparison over All Workloads

After examining workloads separately, we shall investigate common feedbacks over all

the workloads in Table 2.1 except LANL. Namely, we try to find whether some general

Feedbacks/ctc.eps
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Figure 6.4: Feedback discoveries in the time frame from 1pm to 4pm in KTH

feedback phenomena exist. To this end, we summarize all the feedback results in

Table 6.3. In the table, we use ”1” for the existence of a certain feedback behavior

evidence and ”0” for non-existence. As we mentioned, a feedback evidence is considered

in our study as the existence of the users with similar feedback behaviors and their

submissions are over 20% of total submissions.

Altogether, several interesting facts can be observed from Table 6.3:

1. Certain feedbacks exist along all the workloads, including BWR
− , BOR

+ , BOP
− . It

indicates they are rather general behaviors. That is, some users tend to submit

shorter jobs when they find a longer waiting queue; some users have a tendency

to submit longer jobs when many nodes are occupied; some users may deliver a

job with high parallelism when they find more nodes are available.

Feedbacks/kthsub.eps
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BWR
+ BWR

− BOR
+ BOR

− BWP
+ BWP

− BOP
+ BOP

−

SDSC 96 0 1 1 1 1 1 0 1

CTC 1 1 1 0 1 0 0 1

KTH 0 1 1 1 1 0 0 1

SP2 1 1 1 1 1 0 0 1

SDSC 95 1 1 1 0 0 1 0 1

Table 6.3: Summary of discovered feedbacks in the examined workloads

2. Users with feedback BOP
+ are not found. It is quite reasonable that users probably

would not submit the jobs with high parallelism when more nodes are busy.

3. The feedback phenomena are found in each workload, which are supported by

the fact that each row have several ”1”s inside. It suggests that the feedbacks

are widely existing in the parallel computer environment and they should be

considered for workload modeling.

6.5 Summary

In this chapter, we investigated the feedbacks of individual users. Due to lack of direct

feedback factors, several implicit factors were derived from workloads. We proposed

a linear model to describe how a user’s jobs are affected by the feedback factors. We

have found several common behaviors from the different workloads. The analysis of

feedbacks can give schedulers some hints to improve the scheduling algorithms.

Until now, we have analyzed some global features in Chapter 3 and Chapter 4; we

have investigated users’ static and dynamic behaviors in Chapter 5 and Chapter 6. In

the next chapter, we will introduce more observations about the workloads and discuss

the combination of described methods to construct a comprehensive model.
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Chapter 7

Discussions and Further Work

Several important aspects of workload modeling have been described in the previous

chapters, including describing temporal relation, recovering missing information, clus-

tering users and identifying feedbacks. In this chapter, we will discuss more patterns

found in the workloads. Based on the analysis of different aspects of workload model-

ing, the combination of these aspects is discussed in order to construct a comprehensive

model. The challenge for the combination is analyzed and several possible solutions

are compared and discussed for our future work.

7.1 More Observations of the Workloads

Besides the discussed aspects of workload modeling, there are several interesting pat-

terns at the global level of the workloads:

- Daily Cycle: The hour in a day would affect not only the number of arriving jobs

but also the profile of the jobs. Figure 7.1(a) shows the daily arriving patterns

of jobs. There is an obvious daily cycle: most jobs arrive during the day and

only a few of them at night. Figure 7.1(b) exhibits the average runtime of jobs

submitted in different hours of one day, which is completely diverse from the

arriving pattern: although there are less jobs appearing at night, the runtime is

longer on average. Similarly, the average parallelism is longer at night and in the

morning comparing that at noon.

- Day of Week: We also find that less jobs are submitted during the weekend as

shown in Figure 7.2(a): more jobs are submitted on weekday than on weekend.

The average runtime differs significantly on weekdays in comparison to the jobs

on weekends as shown in Figure 7.2(b). The runtime is longer on average during

weekend than weekday.
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Figure 7.1: Daily cycle in KTH. Left: the number of jobs in the different hours of day.

Right: the average runtime in the different hours of day

MON TUE WED THU FRI SAT SUN

day of week

nu
m

be
r o

f j
ob

s

0
10

00
20

00
30

00
40

00
50

00

MON TUE WED THU FRI SAT SUN

day of week

av
er

ag
e 

ru
nt

im
e[

s]

0
20

00
60

00
10

00
0

14
00

0

Figure 7.2: Weekday effect in KTH. Left: the number of jobs in the different days of

week. Right: average runtime in the different days of week

These effects can be described by classical statistical methods. For example, Downey

in [16] modeled the daily cycle using a Poisson distribution with a twist: Each day of

simulated time is divided into two parts with 12 hours each. During the first part

(the day) jobs arrive according to the Poisson process, but may be queued if they

cannot run immediately. During the second part (the night) no more jobs arrive, and

the system serves jobs that were queued during the day; Calzarossa [8] found that

an eight-degree polynomial function is a suitable representation of all the analyzed

arrival processes. Three representative patterns have been identified in the workloads

by means of clustering applied to the coefficients of the various polynomial functions. In

our work, the method based on the polynomial function is adopted due to its accuracy.

Conclusions/hist_day.eps
Conclusions/hist_daymedianrt.eps
Conclusions/week_num.eps
Conclusions/week_medianrt.eps


7.2. FURTHER WORK 81

Combinations of Different Components

Another important issue in workload modeling is how these separate components can be

combined to meet particular requirements posed by the specific objectives of evaluation

study.

It is applicable to combine different components, when they are independent or

unrelated. For instance, our correlated Markov chain in Chapter 3 and user-group

model in Chapter 5 can be combined as shown in Figure 7.3: the correlated Markov

chain model is used to generate synthetic jobs with temporal relations, and then the

newly generated jobs are assigned to different groups, which are described by the user

group model. Another example is the arriving process. It has been argued by many

researchers that the profiles of jobs have no direct connection to the submission time.

Therefore, the arriving process and job profiles can be considered independently: for

job profiles, the correlated Markov chains can be applied, and for job arriving processes

the eight-degree polynomial function can be used.

+

User Group Model:
To form group
characteristics

Correlated Markov
chain Model:
To describe the

temporal relation

Synthetic
workload

Figure 7.3: Combination of correlated Markov chain and the user group model

When the attributes of workloads are correlated, the combination task can be quite

difficult. For instance, the submissions from users may not only embody the temporal

correlations but also be affected by the other dynamic factors, e.g., the number of

waiting jobs, as we have shown in Chapter 6. The solution can only come from the

modern methodology. Here, we give several suggestions for further work.

7.2 Further Work

In our work, the combinations of different components can be regarded as constructing

a complex statistical system, with multiple inputs and outputs. Consequently, we shall

consider the following methods for our future research:

Conclusions/combine.eps
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Artificial Neural Network

Artificial Neural network [3] is a system loosely modeled based on the human brain. It

is an inherently multiprocessor-friendly architecture and without much modification.

It has the ability to account for any nonlinear functional dependency. The network dis-

covers (learns, models) the nature of the dependency without needing to be prompted.

Neural network is a powerful technique to solve many real world problems. They have

the ability to learn from experience in order to improve the performance and to adapt

themselves to change in the environment. In addition, they are able to deal with incom-

plete information or noisy data. They can be very effective especially in the situations

where it is not possible to define the rules or steps that lead to the solution of a problem.

In our work, the Neural network may be applied for workload modeling as shown in

Figure 7.4. These potential factors e.g., the hour of day, previous runtime, are used as

inputs, the job profiles like the parallelism, the runtime and the intervals are outputs

of Neural network. Here, the recursive neural network is a good option to encode the

feedbacks or temporal relations in workloads.

...

...

Previous job
runtime

Previous job
parallelism

Submit
hour

Input
level

Middle
level

Output
level

Next job
runtime

Next job
pallelism

Next submit
time

Figure 7.4: Application of Neural network for workload modeling

Support Vector Machine

A Support Vector Machine (SVM) [13] is a supervised learning technique from the

field of machine learning. It is applicable to both classification and regression. Rooted

in the statistical learning theory and developed by Vladimir Vapnik and co-workers at

AT&T Bell Laboratories in 1995 [12], SVMs are based on the principle of structural risk

minimization. An important and unique feature of this approach is that the solution

is based only on those data points, which are at the margin. These points are called

support vectors. The linear SVM can be extended to nonlinear one when first the

problem is transformed into a feature space using a set of nonlinear basis functions.

It is not necessary to implement this transformation and to determine the separating

hyperplane in the possibly very-high dimensional feature space. Instead, the solution

Conclusions/mynn.eps
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is written as a weighted sum of the values of certain kernel function.

Since the SVM can be used to simulate the complex non-linear function, it can be

applied in our study as well. Furthermore, we can compare the results with the Neural

network to see whether an improvement can be achieved.

Variable Length Markov chain

As we all know, the first-order Markov chain assumes first-order stationary. In other

words, the model takes the consideration of one-step ahead. In many cases, the work-

loads can have more complicated correlations. In the future, we shall think of using

more previous steps for modeling. To this end, we will choose Variable Length Markov

chain (VLMC) [37] to characterize more complex cases.

VLMC is the a Markov chain with the additional structure whose memory depends

on a variable number of lagged values, depending on how the actual past (the lagged

values) looks like. It builds a very flexible class of tree structured models for categorical

time series.

We can predict the job submissions with VLMC. Because of randomness of sub-

mission from users, the exact prediction of job submission is impracticable. Therefore,

we will try to predict the range of job parameters. The prediction of job parameters

is limited of help if the intervals of jobs are unknown. Therefore, the intervals will be

taken into consideration in the future as well.

7.3 Summary

Workload modeling can be much more complicated than what we have analyzed until

now. In this chapter, we have discussed more aspects of workload modeling, for exam-

ple, daily cycle and week day effect. We also addressed the problem of the combination

of different aspects into a comprehensive workload model. Finally, we provided several

methods as options and gave some suggestions for our further work.
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Chapter 8

Conclusion

In this work, we restricted ourselves to workload modeling for parallel computers. Pre-

vious work focused on scenarios where a large number of users contributed to the

workloads. In that case, the workloads can be well described using classical statistical

models, like a probabilistic distribution model. However, such a model is not suitable

for the parallel computer environment. Due to the medium-sized user community, user-

level behaviors might still be observed in the overall workloads; individual users or user

groups can have important implications for scheduling system. Consequently, a new

workload model is required for parallel computers. That is the focus of our study.

We started our work with examining the overall features of workloads. By analyzing

the temporal relations, we found a strong sequential dependency in the job series.

Therefore, we proposed a new method to correlate different Markov chains so that

both the temporal dependency and the parameter correlations are considered. The

results indicated that the correlated Markov chain model is capable of characterizing

the temporal relation and keep the static similarity.

Another important issue is the missing information in different workloads. Because

the workloads are often obtained under different resource systems, it is not uncommon

that certain attributes are absent. Due to the missing attributes, the experiments or

simulations based on different workload situations are not applicable. To this end, we

proposed a parameterized distribution model to describe the relation between missing

and existing attributes. Our results have shown that some missing information may be

recovered when the relevant parameters can be trained from the complete workloads.

Based on the global-level analysis of the workloads, we investigated user-level behav-

iors. The detailed knowledge of individual users has crucial implications for scheduling

systems. We clustered users into different groups, while each of these groups has dis-

tinct features. With these user groups, the final workloads have a direct association

with individual users. The successful identification of different user groups supports

our argument before: the general descriptions are not suitable for the case with the
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medium-size user community.

Feedback analysis is another important part in our research. Although it has been

mentioned by several papers that users are adaptive to the quality of service, there are

very few results about the details of feedbacks: what is the feedback? How will users

react to the service of system? Our work filled this blank. Using the transformed linear

model several feedback behaviors were identified, for example, some users may reduce

the job runtimes when more jobs are waiting for the resources. These results indicated

users have adaptive tendencies, which cannot be addressed by static models.

Our model is not a full implementation of the workload modeling tool, which re-

quires many additional efforts. Nevertheless, the presented concept and methodology

provided several features of workload modeling that are currently not available in any

of initiatives. The methods in our work can be further adapted and incorporated into

other tools, e.g., simulation toolkits. They may also be combined into a comprehensive

modeling tool. We have given several methods as options for constructing a complete

model.

All our results make it clear that: our modeling methods are capable of captur-

ing several important aspects of parallel computer workloads. They are helpful for

constructing new workload models in the future. Although the research in this work

has been focused on the workload modeling for parallel computers, the concepts and

methods can be applied to many applications, for instance, logistics and E-commerce.
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