

Ulrich Flegel, Michael Meier (Eds.)

Detection of Intrusions and Malware
& Vulnerability Assessment

GI Special Interest Group SIDAR Workshop, DIMVA 2004
Dortmund, Germany, July 6-7, 2004
Proceedings

DIMVA 2004

Gesellschaft für Informatik 2004

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-46

ISBN 3-88579-375-X
ISSN 1617-5468

Volume Editors
Ulrich Flegel
 University of Dortmund,
 Computer Science Department, Chair VI, ISSI
 D-44221 Dortmund, Germany
 ulrich.flegel@udo.edu
Michael Meier
 Brandenburg University of Technology Cottbus,
 Computer Science Department, Chair Computer Networks
 P.O. Box 10 13 44, D-03013 Cottbus, Germany
 mm@informatik.tu-cottbus.de

Series Editorial Board
Heinrich C. Mayr, Universität Klagenfurt, Austria (Chairman, mayr@ifit.uni-klu.ac.at)
Jörg Becker, Universität Münster, Germany
Ulrich Furbach, Universität Koblenz, Germany
Axel Lehmann, Universität der Bundeswehr München, Germany
Peter Liggesmeyer, Universität Potsdam, Germany
Ernst W. Mayr, Technische Universität München, Germany
Heinrich Müller, Universität Dortmund, Germany
Heinrich Reinermann, Hochschule für Verwaltungswissenschaften Speyer, Germany
Karl-Heinz Rödiger, Universität Bremen, Germany
Sigrid Schubert, Universität Siegen, Germany

Dissertations
Dorothea Wagner, Universität Karlsruhe, Germany

Seminars
Reinhard Wilhelm, Universität des Saarlandes, Germany

 Gesellschaft für Informatik, Bonn 2004
printed by Köllen Druck+Verlag GmbH, Bonn

Structural Comparison of Executable Objects

Halvar Flake

halvar@blackhat.com

Abstract: A method to heuristically construct an isomorphism between the sets of
functions in two similar but differing versions of the same executable file is presented.
Such an isomorphism has multiple practical applications, specifically the ability to
detect programmatic changes between the two executable versions. Moreover, infor-
mation (function names) which is available for one of the two versions can also be
made available for the other .

A framework implementing the described methods is presented, along with em-
pirical data about its performance when used to analyze patches to recent security
vulnerabilities. As a more practical example, a security update which fixes a critical
vulnerability in an H.323 parsing component is analyzed, the relevant vulnerability
extracted and the implications of the vulnerability and the fix discussed.

1 Introduction

While programs that compare different versions of the same source code file have been in
widespread use for many years, very little focus has so far been placed on the importance
of detecting and analyzing changes between two versions of the same executable.

Without an automated way of detecting source code changes in the object code resulting
from compilation, the party prompted with the task of reverse engineering the changes
from the object code is at a disadvantage: It takes relatively little work to change source
code and recompile, while the analysis of the object code will have to be completely redone
to detect the changes. Both virus authors of high-level-language virus families (such as
SoBig) and closed-source software vendors try to exploit this asymmetry: The authors of
SoBig intend to create large quantities of work for the antivirus researchers to have more
time to use the infrastructure built by their worm, whereas closed source vendors hope
their customers will have time for installing patches because possible attackers presumably
need a lot of time to reverse-engineer the relevant changes from object-code-only security
updates.

This paper presents a novel approach which corrects the abovementioned asymmetry:
Given two variants of the same executable A called A ′ and A′′, an one-to-one mapping
between all the functions in A′ to all functions in A′′ is created. The mapping does not
depend on the specific assembly-level instructions generated by the compiler but is more
general in nature: It maps control flow graphs of functions, thus ignoring less-aggressive
optimization such as instruction reordering and changes in register allocation.

162 Halvar Flake

This allows porting of information (such as function names from symbolic debug informa-
tion or prior analysis) from one executable to another. Furthermore, due to the approach
taken, functions that have changed their functionality significantly will not be mapped,
allowing the easy detection of functional changes to the program.

Detecting programmatic changes between two versions of the same executable is relevant
to security research as it allows for quick analysis of security updates (”patches”) to extract
detailed information about the underlying security vulnerabilities. This allows for quick
assessment of the risk posed by a particular problem and can be used to prevent vendors
from fixing security issues ”silently”, e.g. without notifying their customers about the
security problem.

2 Previous Work

Automatically analyzing and classifying changes to source code have been studied exten-
sively in literature before, and listing all relevant papers seems to be out of scope for this
paper. Most of this research focuses on treating the source code as a sequence of lines, and
applying a sequence-comparison algorithm [Hir77][HS77].

The problem of matching functions in two executables to form pairs has been studied in
[ZW00, ZW99], although focused on reuse of profiling information which allowed the
assumption of symbols for both executables being available. Other work has been done
with focus on efficient distribution of binary patches [Poc] [BM99]. Both approaches,
while finding differences between two binaries, are incapable of dealing with aggressive
link-time profiling-information-based optimizations and will generate a lot of superfluous
information in case register allocation or instruction ordering has changed. A bytecode-
centric approach to find sections of similar JAVA-code is studied in [BM98].

Recently another approach to binary comparison also dealing with graph isomorphisms
was discussed in [Tod]: Starting from the entry points of an executable basic blocks are
matched one-to-one based on instructions present in them. If no matching is possible,
a change must have occured. Due to the reliance on comparing actual instructions, a
significant number of locations is falsely identified as changed - the paper mentions that
about 3-5 % of all instructions change between two versions of the same executable.

3 Graph-Centric analysis

Instead of focusing on the concrete assembly level instructions generated by a compiler,
we focus on a graph-centric analysis, neglecting as much of the assembly as possible and
instead analyzing only structural properties of the executable.

Structural Comparison of Executable Objects 163

3.1 An executable as Graph of Graphs

We analyze the executable by regarding it as a graph of graphs. This means that our
executable consists of a set of functions F := {f1, ..., fn}. They correspond to the dis-
assembly of the functions as defined in the original C sourcecode. The callgraph of the
program is the directed graph with {f1, . . . , fn} as nodes. The edges of this graph repre-
sent function calls: An edge from fi to fk implies that fi contains a subfunction call to
fk.

Every function fi ∈ F itself can be represented as a control flow graph (or short cfg)
consisting of individual basic blocks and their branch relations. Thus one can represent an
executable as a graph of graphs, e.g. a directed graph (the callgraph) in which each node
itself corresponds to a cfg of the corresponding function.

3.2 Control Flow Graphs

The concept discussed here is well-known in literature on compilers and code analysis
[AVA99]. Every function in an executable can be treated as a directed graph of special
shape. Every node of the graph consists of assembly instructions that imply the execution
of the following instruction in memory if and only if the previous instruction in memory
was executed. To clarify this: Let ik, ik+1 be addresses of two assembly-level instructions
which are adjancent in memory. These instructions belong to the same basic block if the
execution of ik at n steps of execution implies execution of ik+1 at n + 1 steps, and the
execution of ik+1 at n + 1 implies execution of ik at step n.

Control flow graphs have a few special properties:

1. Every cfg has a unique entry point, meaning a unique node that is not linked to by
any other node.

2. Every cfg has one or more exit points, meaning nodes that do not link to any other
node.

Figures 1 through 4 show a simple C function (figure 1), it’s assembly-level counterpart
(figure 2), a full cfg containing the assembly-level instructions (figure 3) and finally just
the cfg of the function.

3.3 Retrieving the information

In order to retrieve these graphs from an executable, a good disassembly of the binary
is needed. The industry standard for disassembly is [Dat], mainly due to its excellent
cross-platform capabilities coupled with a programming interface that allows retrieval of

164 Halvar Flake

int foo(int a, int b) {
while(a--) {
b++;

}
if(b > 100)
return 1;

else
return 0;

}

Figure 1: The C function

the needed information without knowledge of the underlying CPU or its assembly. This
facilitates implementing the described algorithms only once but testing them on multiple
architectures.

3.4 Indirect calls and disassembly problems

In many cases creating a complete callgraph (which represents all possible relations be-
tween the different functions) from a binary is not trivial. Specifically indirect subfunction
calls through tables (very common for example in C++ code that uses virtual methods) are
hard to resolve statically.

In the presented approach, such indirect calls whose targets cannot be resolved statically,
are simply ignored and treated as a regular assembly-level instruction. In practice, this
does not yield many problems: The question whether a certain call is made directly or not
is not answered by the optimizer but by the code that is being compiled, and thus does not
change between different builds of the same program without a source code change.

4 Structural matching

The general idea explored in this paper is matching the functions in two executables by
utilizing both information derived from the callgraph and the respective cfg’s instead of
relying on instructions or instruction patterns. In this section two versions of the same
executable will be considered: A and B as well as their callgraphs A := {{a1, . . . , an},
{ae

1, . . . , a
e
m}} and B := {{b1, . . . , bl}, {be

1, . . . , b
e
k}} which consist of their respective

nodes (functions) and edges (ce
i is a 2-tuple containing two nodes, and thus describes an

edge in the graph).

Ideally, we want to create a bijective mapping p : {a1, . . . , an} → {b1, . . . , bm}. In
the general case, this mapping does not exist due to different cardinalities of the two sets
(if functions have been added or removed). Furthermore, properly embedding B into A
seems to be an excessively expensive operation, specificially considering the possibility of

Structural Comparison of Executable Objects 165

push ebp
mov ebp, esp
push esi
push edi
jmp short loc_40126A

loc_401267:
inc [ebp+arg_4]

loc_40126A:
mov edi, [ebp+arg_0]
mov esi, edi
sub esi, 1
mov [ebp+arg_0], esi
cmp edi, 0
jnz short loc_401267
cmp [ebp+arg_4], 64h
jle short loc_401287
mov eax, 1
jmp short loc_40128C

loc_401287:
mov eax, 0

loc_40128C:
pop edi
pop esi
pop ebp
retn

Figure 2: The assembly code

m < n.

A different iterative approach to creating an approximation of p is taken: An initial map-
ping p1 is created which maps elements of A1 ⊂ {a1, . . . , an} to elements of B1 ⊂
{b1, . . . , bn}. The mapping is then used to iteratively create a sequence of mappings
p2, . . . , ph with A1 ⊂ A2 ⊂ · · · ⊂ Ah and B1 ⊂ B2 ⊂ · · · ⊂ Bh.

4.1 A simple matching heuristic

Comparing undirected graphs is well-known to be excessively expensive, and even the
restricted directed graphs can be quite expensive to compare. A relatively simple (and
very imprecise) heuristic for telling whether two graphs are isomorphic is to compare the
number of nodes and edges. If they do not match, it can be said with certainty that no
isomorphism exists. The initial partial mapping p1 is constructed by associating every
bi ∈ {b1, . . . , bm} with a 3-tuple (αi, βi, γi) where αi is the number of basic control
blocks in bi, βi is the number of edges in bi and γi is the number of edges in the calltree

166 Halvar Flake

Figure 3: cfg with assembly

originating at bi. We denote the mapping that maps a function in a callgraph C to it’s 3-
tuple with s : C → N

3 and define the inverse function s−1 : N
3 → P({c1, . . . , co}) that

retrieves the set of functions which map to a certain tuple.

The mapping p1 is constructed by examining all 3-tuples generated from A and B as
follows: The functions ai ∈ A and bj ∈ B are mapped to each other if and only if they
map to the same tuple and no other element exists in {a1, . . . , an} or {b1, . . . , bl} which
maps to the same tuple. More formally:

p1(ai) = bj ⇔ |s−1(s(ai))| = 1 = |s−1(s(bj))| ∧ s(ai) = s(bj) (1)

If the cardinalities of the sets s−1(s(ai)) and s−1(s(bj)) are both equal to one and both a i

and bj map to the same tuple, p1 maps ai to bj .

Structural Comparison of Executable Objects 167

Figure 4: cfg without assembly

4.2 Improving p1

The above heuristics yield only relatively small subsets of A := {a1, . . . , an} and B :=
{b1, . . . , bl} that can be successfully matched initially. In general, smaller functions are
a lot less likely to be successfully matched. This is mainly due to the special form that
cfg’s take: Most basic blocks have exactly two ”children” - this means that the odds that
two randomly chosen cfg’s with the same node count have the same number of edges
decrease as cfg’s grow. Smaller functions tend to have fewer subfunction calls, furthermore
increasing the likelyhood that |s−1(s(ai))| �= 1 occurs. It is intuitively clear that smaller
sets A and B would reduce the odds of such collisions.

The improved mappings pi are constructed by taking advantage of the information gained
from pi−1 and using them to create small subsets A′

j ⊂ A and B′
j ⊂ B which are used for

improving the mapping as explained above. The algorithm for constructing p i from pi−1

works as follows:

1. Take the ith element ai from Ai−1 and retrieve pi−1(ai)

2. Let A′
i be the set of all functions ak that have edges originating from ai leading to

ak in A and B′
i the set of all functions bo that have edges originating from p i−1(ai)

leading to bo in B

3. Construct p′
i : A′

i → B′
i in the same way as p1 was constructed

4. pi(aj) := pi−1(aj) if aj ∈ Ai−1. If aj �∈ Ai−1 and the construction of p′
i yielded

a match, pi(aj) := p′i(aj). If the construction of p′
i did not yield a match and

aj �∈ Ai−1 then pi(aj) is undefined.

168 Halvar Flake

5. Ai and Bi are the domain and image of pi

Once pk has been constructed where |Ak| = k, the iteration is finished and cannot yield
improved results.

4.3 Graph restructuring

Compilers (and optimizing linkers) tend to change cfg’s in ways that do not truly change
the logical structure of the function. Oftentimes, a single control block in a cfg is split up
into several smaller ones that are linked with an unconditional branch instruction 1. Since
these operations will change the node and link count a way to easily and quickly undo the
changes is needed. A simple graph-restructuring algorithm is applied before generating
the 3-tuples which removes superfluous nodes generated by these optimizations:

for x ∈ {c1, . . . , co}:
if (number of edges to x) = 1:

ye
x := edge to x

y := source node of ye
x

{xe
i , . . . , x

e
j} := set of edges originating in x

remove edge from y to x from graph
remove x from graph
for xe ∈ {xe

i , . . . , x
e
j} :

add edge from y to target of xe to graph
remove xe from graph

5 Practical results

An implementation of the described methods has been created as an extension to the com-
mercial debugger IDA Pro.

5.1 Name porting between databases

Two libraries that come with every standard install of Windows were examined in different
versions: wininet.dll and msgsvc.dll. The versions of wininet.dll were those of Windows
XP SP1/SP2 respectively, the versions of msgsvc.dll those pre/post MS03-48. Both have
been heavily fragmented by aggressive link-time optimizations and pose significant prob-
lems to signature-based function matching.

1This seems to be a specialty of Microsoft’s optimizing linker

Structural Comparison of Executable Objects 169

File File Size # functions # mapped Runtime in seconds

msgsvc.dll pre MS03-48 35.600 134 100 < 5
msgsvc.dll post MS03-48 34.064 129 100 < 5
wininet.dll SP1 599.040 2310 1522 183
wininet.dll SP2 588.288 2321 1522 183

5.2 Analysis of security patches

5.2.1 H.323 Parser

After the NISCC published information about vulnerabilities in multiple H.323 parsers,
the question arose where the relevant mistake in Microsofts ISA Server product was. Mi-
crosoft refuses to publish detailed information about the vulnerability they fix. According
to the NISCC report, the problem was located in ASN.1 decoding.

Both the pre- and post-patch versions of H323ASN1.DLL were analyzed, with the result
that 11 functions in the unpatched version could not be mapped to the patched version, and
8 functions in the patched version could not be mapped to any function in the unpatched
version.

Address # Nodes # Links # Children Address # Nodes # Links # Children

40f627 26 46 21 40f4bb 22 40 21
40f837 19 32 12 40f697 14 24 12
41d012 10 16 7 41cd73 9 15 8
41ed06 8 12 2 41ce7d 8 13 7
428d36 8 12 2 425595 4 5 4
42b9e2 8 12 2 425728 4 5 4
42bc90 8 12 2 428b72 7 10 2
42bd85 8 12 2 42b98e 7 10 2

42bbd2 7 10 2
42bcbf 7 10 2

Patched Version Unpatched Version

A manual inspection of these functions yielded the result that the first three functions in
both tables are in fact the same with the only change being an added range check. In
all three cases, the old version retrieves an unsigned 32-bit integer from an ASN.1 PER
encoded stream by means of a function called ASN1PERDecU32Val().

This 32-bit integer is passed on to ASN1PERDecZeroTableCharStringNoAlloc() as
second argument. The patched variant on the other hand introduces a range check to
make sure this second argument is smaller than 129.

A closer inspection of ASN1PERDecZeroTableCharStringNoAlloc() reveals that the
function calculates the size of memory allocation based on the formerly untrusted value
– an attacker was able to set this value in a manner that the calculation would exceed

170 Halvar Flake

MAXUINT and thus be of very small size. The subsequent copy-operation would then
corrupt the heap, allowing an attacker to gain control in the next round of heap consoli-
dation. Instead of fixing the issue at the core (e.g. in the MSASN1.DLL library), a range
check was added into the calling application (H323ASN1.DLL).

The update thus disclosed to an examining party that every call to ASN1PERDecZero-
TableCharStringNoAlloc() needs to have argument checking done before the call is is-
sued. A short system-wide scan was conducted to see if other applications besides ISA
Server use the relevant function in dangerous way. Two other instances were found: The
Windows-internal H.323 Multimedia Provider Library (which allows arbitrary applica-
tions to easily process H.323 data) and Microsoft’s Video Conferencing Software Net-
meeting. Neither does proper range checking on the function in question.

The result was that the update to H323ASN1.DLL fixed one bug but alerted anyone with
the capability to analyze patches to two further remotely exploitable vulnerabilities which
were not fixed at the time.

Microsoft was contacted and the issues were fixed a few months later, in MS04-11.

The total analysis took less than 3 hours time.

5.2.2 SSL/PCT Parser

In April, Microsoft issued an update to SCHANNEL.DLL, the library responsible for han-
dling SSL communication. According to their security bulletin, they removed a security
problem that allowed attackers to take full control of any computer running an SSL-based
server. No technical details were provided, except that the problem itself lay in a part of
the library responsible for parsing PCT packets 2.

More than 20 changed functions were detected in total, but only one with a name that im-
plied it was involved with PCT parsing. An examination of the function Pct1SrvHandle-
UniHello() revealed that the old version had taken a string, NOT’ed every character and
appended it to the original string. The new version was changed in such a manner that it
ensured the combined string would not exceed 32 characters.

Detecting and understanding the vulnerability (a vanilla stack-smash with EIP overwrite)
took less than 30 minutes. Subsequently, code was constructed to reach the appropriate
location in the binary. Within 5 hours, EIP could be overwritten with an arbitrary value,
and within 10 hours of the start of the analysis, a program that reliably exploited the
vulnerability was created.

6 Comparison to other methods

In comparison to other methods for reverse engineering changes to a binary, the presented
method has a few distinctive advantages as well as a few significant disadvantages.

2PCT is a legacy-protocol that was obsoleted by TLS and is supported for legacy browsers

Structural Comparison of Executable Objects 171

6.1 Few False positives

The presented method performs significantly better than [Tod] in terms of false positives:
The instruction-based approach suffers from 3-5 % of all instructions being marked as
changed. Unless heavy, structure-changing optimizations are performed (such as the in-
lining of complex functions), the presented method is free of false positives: A functions
whose flowgraph has changed has undergone a change. While testing the method on a
multitude of different programs, no function pair was found that had not changed but was
marked as changed. This drastically reduces the human work involved when trying to
detect the significant changes in a security update.

6.2 CPU-independence

The presented method is almost completely independent of the underlying CPU architec-
ture as long as a good disassembly with cross-references is available. The only CPU-
dependent function that has to be available in addition to flow information is the capability
to distinguish between a subfunction-call and a non-subfunction call. Successful tests were
ran examining differences between MIPS-based ROM images and SPARC-based Solaris
ELF executables in addition to the x86-based PE files discussed above.

Instruction-based approaches contain large amounts of CPU-dependent code which makes
creating a multi-platform analysis tool significantly more complex.

6.3 Possible False Negatives

The downside obviously is the presence of possible false negatives if the program logic
itself is not changed but constants or buffer sizes are. It is easy to imagine that a software
vendor will fix a security vulnerability not by adding a range check but by enlarging the
size of a buffer, which in the current method will go unnoticed. This is where [Tod]
is clearly superior, as any change in buffer sizes or constants will be detected. This is
bought by the cost of having to examine a significantly larger number of detected changes.
Empirical evidence suggests that security updates which change constants but not program
flow are very rare. Nonetheless, this is a region in which improvements on the proposed
method are desirable.

7 Summary

It has been shown that nondisclosure of vulnerability information is not a promising deter-
rent to would-be-attackers and that security updates can be reverse engineered in relatively
little time (given the right tools). It has furthermore been shown that special care has to be

172 Halvar Flake

taken when releasing security updates, as the information in the patch has to be assumed to
be public. An incomplete bugfix can do more harm than good by disclosing the existence
of other (unfixed) bugs along with the fix.

The presented work furthermore implies that the common practice of leaving one or two
weeks between the publication of a security update and installing the patch is highly dan-
gerous.

Leaving the politics of vulnerability disclosure out, it has been shown that analysis of
binaries based only on structural properties of the code is a promising field of research,
as it allows analysis of executable code without the need to abstract to an intermediate
language or CPU-specific analysis engines.

8 Future work

Many things have to be improved and worked on to make the proposed method truly
useful. Fast heuristics that can tell that two graphs are not isomorphic which are better
than the current version are needed and would greatly improve the matching statistics.
Furthermore, intraprocedural difference analysis would be useful: Given two cfg’s a 1, b1

which are different, but expected to belong to the same function due to their position in
the callgraph or due to other heuristics, an algorithm that constructs a partial isomorphism
between subgraphs of a1 and b1 would allow quicker analysis of changes. Given two
versions of the same large function, finding a relatively small change still has to be done
manually.

A separation of the function-matching for name porting and function-matching for binary
difference analysis will be needed sooner or later: Function-matching benefits from re-
laxed heuristics, while binary difference analysis does not want to miss changes.

More in-depth study of the effects of heavily optimizing/inlining compilers would be de-
sirable, as well as more studies on the applicability of the presented methods to other
CPU-architectures.

Detecting changes in buffer sizes and changes in (certain) constants would be desirable
goals in the immediate future.

9 Acknowledgements

The author would like to thank the anonymous reviewers for many constructive comments.
Valuable comments were also provided by Josh Anderson, Brandon Baker, John Pincus,
Felix Lindner und Jan Muenther.

Structural Comparison of Executable Objects 173

References

[AVA99] Jeffrey D. Ullmann Alfred V. Aho, Ravi Sethi. Compilerbau. Oldenburg Verlag, München
Wien, 2 edition, 1999.

[BM98] Brenda S. Baker and Udi Manber. Deducing Similarities in Java Sources from Bytecodes.
pages 179–190, 1998.

[BM99] Brenda S.Baker, Udi Manber and Robert Muth. Compressing Differences of Executable
Code. In ACMSIGPLAN Workshop on Compiler Support for System Software (WCSS),
pages 1–10, 1999.

[Dat] DataRescue. IDA Pro Disassembler
http://www.datarescue.com/idabase.

[Hir77] Daniel S. Hirschberg. Algoritms for the Longest Common Subsequence Problem. J. ACM,
24(4):664–675, 1977.

[HS77] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest com-
mon susequences. Commun. ACM, 20(5):350–353, 1977.

[Poc] Pocket Soft Inc. RTPatch – Software Update Tool
http://www.pocketsoft.com/whitepapers/whitepaper.html.

[Tod] Todd Sabin. Comparing binaries with graph isomorphisms
http://razor.bindview.com/publish/papers/comparing-binaries.html.

[ZW99] Scott McFarling Zheng Wang, Ken Pierce. BMAT - A Binary Matching Tool. 2nd ACM
Workshop on Feedback-Directed Optimization, November 1999.

[ZW00] Scott McFarling Zheng Wang, Ken Pierce. BMAT - A Binary Matching Tool for Stale
Profile Propagation. The Journal of Instruction-Level Parallelism (JILP), 2, May 2000.

