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Situation:
* A system is scanned for vulnerable services
* Remote and local exploits are used to break in

* The system is compromised and the attacker gained
the access privileges of the administrator

What does the attacker want?
* Reconnect without having to use the exploit again
e Stay unnoticed as long as possible
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A Rootkit enables an attacker to stay unnoticed on a
compromised system so he can use it for his purposes.

Traditional rootkit 'features’:

* Hide files, processes and network connections
* Filter lodfiles
* Provide a hidden backdoor into the system
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Hiding out under UNIX, Black Tie Affair,
Phrack 25, 1989

System Binaries are exchanged on SunOS 4
systems (Trojan Horses)

Linux Rootkits appear

Abuse of the Linux Kernel for Fun and Profit,
Halflife, Phrack 50, 1997

Kernel Rootkits appear for all popular UNIX
versions and Microsoft Windows
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Classification

Classification of kernel rootkits
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Different criteria of a rootkit can be used for classification.

Example: How is the flow of execution intercepted?

* The flow of execution needs to be intercepted or
modified at some point

* The manipulation can take place at many different
levels in user or kernel space. This determines:

* What features the rootkit can provide
* How the rootkit can be detected

Where does a rootkit intercept ‘Is’ to hide files?
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Intercepting the flow of execution

The flow of execution

, \ Process 'Is' uses
Process Is J library, which makes
system call

The system changes

-

System library getdents()

J

User mode \ System call Into kernel mode and

calls function in kernel

Every user process
_ sys_getdents) is affected when the
Kernel functions (manipulated) kernel is manipulated

Kernel mode ' interface
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Kernel mode l

interrupt handler the kernel:

[choose J Executing a syscall in

Interrupt
/ Descriptor
Table Interrupt handler

[choose J consults the IDT

system call

Syscall System call handler
Table consults Syscall Table

Function implementing
the system call is
I executing other kernel
) functions

( sys_getdents()

access virtual filesystem
[access actual filesystem
.

J
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Inside the kernel

Kernel mode l

choose Manipulating the
interrupt handler Syscall Table:

Interrupt
/ Descriptor
Table The rootkit is called

instead of original
function

J Syscall _
Table Rooftkit acts as a
(manipulated) wrapper

Rootkit / ) Method used by first
‘ kernel rootkits

B —

[choose

system call

[ sys_getdents()

~

access virtual filesystem

, 3 Examples:
[access actual filesystem
\ Adore, KIS, ...
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Inside the kernel

Kernel mode l

choose Copying the syscall
interrupt handler table / handler:

Interrupt
/ Descriptor
Tanle * Original syscall table

{choose } i i | IS not modified

system call
(modified)

_ =

* Modified syscall

Syscall
(modified copy)  magnipulated copy

!

rﬁ’ootkit
sys_getdents() | Examples:

access virtual filesystem SucKIT
[access actual filesystem

[
v
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Inside the kernel

Kernel mode l

interrupt handler

Interrupt :
Descriptor * A different syscall

Table handler is used, which

[choose ] Manipulating the IDT:
]

calls rootkit

~
choose -
L[system call ] Syscall No need to modify
Table syscall handler or
syscall table

N

\ Examples:
i Concept rootkits

Rootkit
[ sys_getdents()

access virtual filesystem

[access actual filesystem

.
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Kernel mode l

interrupt handler

choose Manipulation deeper
inside the kernel:

Interrupt
/ Descriptor
Table Less central kernel

[ choose J structures are

system call

manipulated

Syscall _
Table Hard to detect since
many kernel structures

(sys_getdents() need to be monitored

Rootkit
access virtual filesystem

Examples:

Adore-NG manipulates
/proc using virtual
filesystem (VFS)

[access actual filesystem

.
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Intercepting the flow of execution:

* User space:
* Exchange system binaries
* Infect library

* Manipulation in kernel space:
* Interrupt Descriptor Table
* Syscall Handler
Syscall Table
VFS layer
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Further criteria useable for classification:

 How is a backdoor provided?
* How is the rootkit loaded at restart of the system?

* What features are provided?
e E.g. automatic log filtering of hidden processes (KIS)

* How is code transferred into the kernel?
* Official API for kernel modules (Adore, knark, ...)

* Raw memory device (e.g. /dev/ikmem or kernel exploit)
(SucKIT)
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Classification of example rootkits:

Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Intercepting the
flow of execution

Code transfer
into the kernel

Remote backdoor
included

Reload mechanism

syscall syscall VFS
table handler

module raw memory module
access

yes

/sbin/init tool to infect
existing modules
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Countermeasures

Countermeasuers for

current kernel rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH



Typical methods to detect a rootkit:

Checksums of important files (aide, tripwire, ...)

Rootkit detector programs using signatures
(chkrootkit, rootkit hunter, ...)

Backups of central kernel structures (kstat)

Runtime measurement of system calls (patchfinder)
Anti-rootkit kernel modules (St Michael)

Offline / forensic analysis (TCT, ...)

Watching the network traffic / flows from 3rd system
Manual logfile analysis and search
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Countermeasures

Applying runtime detection methods:

Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Checksums

aide 0.7 vV . >< ><

Process list
chkproc

Kernel structures i N
kstat 2.4 \4

chkrootkit 0.43
Runtime ¢

measurements ...

X
Rootkit detector \/ vV X
C
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Rootkits seen by

DFN-CERT
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Rootkits seen in real incidents:

Plattforms: mostly Linux, MS Windows and Solaris;
occasionally BSD, Truc4, HP-UX, AlX, ...

Attackers using different misconfigured rootkits
together on one system

Attackers combining sophisticated methods:

* multistage attacks
* obfuscated rootkits
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Example incident with obfuscated rootkit:

Rootkit was installed on SSH gateway of research site
_ogins were sniffed / ~ 30 research sites involved
Rootkit SucKIT was combined with burneye tool

* Rootkit loader (/sbin/init) was obfuscated (no encryption)
e Qutput of 'strings' was empty

* Obfuscation could be reversed with free tools

* As soon as rootkit was known:

* Remote scanner for this version of SucKIT can be used
* Local detection became very easy
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Examples

linux:/sbin # ls -al init*

-rwxXxr-xr-x 1 root root 392124 Jan 6 2003 1init
linux:/sbin # mv init initX

linux:/sbin # 1ls -al init*

-rwxXr-xXr-x 1 root root 28984 Jan 6 2003 1nitX
linux:/sbin # ./initX

/dev/null

Detected version: 1.3b

use:

./init.bak <uivfp> [args]

u uninstall

1 make pid 1nvisible

v make pid visible

f toggle file hiding

P toggle pid hiding

linux:/sbin #
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Many criteria can be used for the classification of
rootkits - e.g. the interception of the flow of execution

Most detection tools are based on specific features of
rootkits; few use general mechanisms for detection

Experience shows that identifying the type of rootkit
helps dealing with the incident

Tools for generic detection of malware are needed
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Questions?

Feedback / rootkits: bunten@dfn-cert.de
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