
UNIX and Linux based
Kernel Rootkits

DIMVA 2004
Andreas Bunten

Andreas Bunten - © 2004 DFN-CERT Services GmbH 2

Agenda

● Introduction
● Classification of rootkits
● Countermeasures
● Examples
● Conclusions

Andreas Bunten - © 2004 DFN-CERT Services GmbH 3

The Setting

Situation:
● A system is scanned for vulnerable services
● Remote and local exploits are used to break in
● The system is compromised and the attacker gained

the access privileges of the administrator

What does the attacker want?
● Reconnect without having to use the exploit again
● Stay unnoticed as long as possible

Andreas Bunten - © 2004 DFN-CERT Services GmbH 4

Definition

A Rootkit enables an attacker to stay unnoticed on a
compromised system so he can use it for his purposes.

Traditional rootkit 'features':

● Hide files, processes and network connections
● Filter logfiles
● Provide a hidden backdoor into the system

Andreas Bunten - © 2004 DFN-CERT Services GmbH 5

Timeline

● Hiding out under UNIX, Black Tie Affair,
Phrack 25, 1989

● System Binaries are exchanged on SunOS 4
systems (Trojan Horses)

● Linux Rootkits appear
● Abuse of the Linux Kernel for Fun and Profit,

Halflife, Phrack 50, 1997
● Kernel Rootkits appear for all popular UNIX

versions and Microsoft Windows

1990

2000

Andreas Bunten - © 2004 DFN-CERT Services GmbH 6

Classification

 Classification of kernel rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH 7

Classification

Different criteria of a rootkit can be used for classification.

Example: How is the flow of execution intercepted?

● The flow of execution needs to be intercepted or
modified at some point

● The manipulation can take place at many different
levels in user or kernel space. This determines:
● What features the rootkit can provide
● How the rootkit can be detected

Where does a rootkit intercept 'ls' to hide files?

Andreas Bunten - © 2004 DFN-CERT Services GmbH 8

Intercepting the flow of execution

The flow of execution

● Process 'ls' uses
library, which makes
system call

● The system changes
into kernel mode and
calls function in kernel

● Every user process
is affected when the
kernel is manipulated

Andreas Bunten - © 2004 DFN-CERT Services GmbH 9

Inside the kernel

Executing a syscall in
the kernel:

● Interrupt handler
consults the IDT

● System call handler
consults Syscall Table

● Function implementing
the system call is
executing other kernel
functions

Andreas Bunten - © 2004 DFN-CERT Services GmbH 10

Inside the kernel

Manipulating the
Syscall Table:

● The rootkit is called
instead of original
function

● Rootkit acts as a
wrapper

● Method used by first
kernel rootkits

Examples:

Adore, KIS, ...

Andreas Bunten - © 2004 DFN-CERT Services GmbH 11

Inside the kernel

Copying the syscall
table / handler:

● Original syscall table
is not modified

● Modified syscall
handler uses
manipulated copy

Examples:

SucKIT

Andreas Bunten - © 2004 DFN-CERT Services GmbH 12

Inside the kernel

Manipulating the IDT:

● A different syscall
handler is used, which
calls rootkit

● No need to modify
syscall handler or
syscall table

Examples:

Concept rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH 13

Inside the kernel

Manipulation deeper
inside the kernel:

● Less central kernel
structures are
manipulated

● Hard to detect since
many kernel structures
need to be monitored

Examples:

Adore-NG manipulates
/proc using virtual
filesystem (VFS)

Andreas Bunten - © 2004 DFN-CERT Services GmbH 14

Classification

Intercepting the flow of execution:

● User space:
● Exchange system binaries
● Infect library

● Manipulation in kernel space:
● Interrupt Descriptor Table
● Syscall Handler
● Syscall Table
● VFS layer
● ...

Andreas Bunten - © 2004 DFN-CERT Services GmbH 15

Classification

Further criteria useable for classification:

● How is a backdoor provided?
● How is the rootkit loaded at restart of the system?
● What features are provided?

● E.g. automatic log filtering of hidden processes (KIS)
● How is code transferred into the kernel?

● Official API for kernel modules (Adore, knark, ...)
● Raw memory device (e.g. /dev/kmem or kernel exploit)

(SucKIT)

Andreas Bunten - © 2004 DFN-CERT Services GmbH 16

Classification

Classification of example rootkits:

 Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Intercepting the syscall syscall VFS
flow of execution table handler

Code transfer module raw memory module
into the kernel access

Remote backdoor - yes -
included

Reload mechanism - /sbin/init tool to infect
existing modules

Andreas Bunten - © 2004 DFN-CERT Services GmbH 17

Countermeasures

Countermeasuers for
current kernel rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH 18

Countermeasures

Typical methods to detect a rootkit:

● Checksums of important files (aide, tripwire, ...)
● Rootkit detector programs using signatures

(chkrootkit, rootkit hunter, ...)
● Backups of central kernel structures (kstat)
● Runtime measurement of system calls (patchfinder)
● Anti-rootkit kernel modules (St Michael)
● Offline / forensic analysis (TCT, ...)
● Watching the network traffic / flows from 3rd system
● Manual logfile analysis and search

Andreas Bunten - © 2004 DFN-CERT Services GmbH 19

Countermeasures

Applying runtime detection methods:

 Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Checksums
aide 0.7

Process list
chkproc

Kernel structures
kstat 2.4

Rootkit detector
chkrootkit 0.43

Runtime
measurements ...

Andreas Bunten - © 2004 DFN-CERT Services GmbH 20

Examples

Rootkits seen by
DFN-CERT

Andreas Bunten - © 2004 DFN-CERT Services GmbH 21

Examples

Rootkits seen in real incidents:

● Plattforms: mostly Linux, MS Windows and Solaris;
occasionally BSD, Tru64, HP-UX, AIX, ...

● Attackers using different misconfigured rootkits
together on one system

● Attackers combining sophisticated methods:
● multistage attacks
● obfuscated rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH 22

Examples

Example incident with obfuscated rootkit:

● Rootkit was installed on SSH gateway of research site
● Logins were sniffed / ~ 30 research sites involved
● Rootkit SucKIT was combined with burneye tool

● Rootkit loader (/sbin/init) was obfuscated (no encryption)
● Output of 'strings' was empty
● Obfuscation could be reversed with free tools

● As soon as rootkit was known:
● Remote scanner for this version of SucKIT can be used
● Local detection became very easy

Andreas Bunten - © 2004 DFN-CERT Services GmbH 23

Examples

linux:/sbin # ls -al init*
-rwxr-xr-x 1 root root 392124 Jan 6 2003 init
linux:/sbin # mv init initX
linux:/sbin # ls -al init*
-rwxr-xr-x 1 root root 28984 Jan 6 2003 initX
linux:/sbin # ./initX
/dev/null
Detected version: 1.3b
use:
./init.bak <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
linux:/sbin #

Andreas Bunten - © 2004 DFN-CERT Services GmbH 24

Conclusions

● Many criteria can be used for the classification of
rootkits - e.g. the interception of the flow of execution

● Most detection tools are based on specific features of
rootkits; few use general mechanisms for detection

● Experience shows that identifying the type of rootkit
helps dealing with the incident

● Tools for generic detection of malware are needed

Andreas Bunten - © 2004 DFN-CERT Services GmbH 25

Questions?

 ???

 Feedback / rootkits: bunten@dfn-cert.de

