DFN ..
CERT

UNIX and Linux based

Kernel Rootkits

DIMVA 2004
Andreas Bunten

Introduction
Classification of rootkits
Countermeasures
Examples

Conclusions

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Situation:
* A system is scanned for vulnerable services
* Remote and local exploits are used to break in

* The system is compromised and the attacker gained
the access privileges of the administrator

What does the attacker want?
* Reconnect without having to use the exploit again
e Stay unnoticed as long as possible

Andreas Bunten - © 2004 DFN-CERT Services GmbH

A Rootkit enables an attacker to stay unnoticed on a
compromised system so he can use it for his purposes.

Traditional rootkit 'features’:

* Hide files, processes and network connections
* Filter lodfiles
* Provide a hidden backdoor into the system

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Hiding out under UNIX, Black Tie Affair,
Phrack 25, 1989

System Binaries are exchanged on SunOS 4
systems (Trojan Horses)

Linux Rootkits appear

Abuse of the Linux Kernel for Fun and Profit,
Halflife, Phrack 50, 1997

Kernel Rootkits appear for all popular UNIX
versions and Microsoft Windows

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Classification

Classification of kernel rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Different criteria of a rootkit can be used for classification.

Example: How is the flow of execution intercepted?

* The flow of execution needs to be intercepted or
modified at some point

* The manipulation can take place at many different
levels in user or kernel space. This determines:

* What features the rootkit can provide
* How the rootkit can be detected

Where does a rootkit intercept ‘Is’ to hide files?

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Intercepting the flow of execution

The flow of execution

, \ Process 'Is' uses
Process Is J library, which makes
system call

The system changes

-

System library getdents()

J

User mode \ System call Into kernel mode and

calls function in kernel

Every user process
_ sys_getdents) is affected when the
Kernel functions (manipulated) kernel is manipulated

Kernel mode ' interface

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Kernel mode l

interrupt handler the kernel:

[choose J Executing a syscall in

Interrupt
/ Descriptor
Table Interrupt handler

[choose J consults the IDT

system call

Syscall System call handler
Table consults Syscall Table

Function implementing
the system call is
I executing other kernel
) functions

(sys_getdents()

access virtual filesystem
[access actual filesystem
.

J

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Inside the kernel

Kernel mode l

choose Manipulating the
interrupt handler Syscall Table:

Interrupt
/ Descriptor
Table The rootkit is called

instead of original
function

J Syscall _
Table Rooftkit acts as a
(manipulated) wrapper

Rootkit /) Method used by first
‘ kernel rootkits

B —

[choose

system call

[sys_getdents()

~

access virtual filesystem

, 3 Examples:
[access actual filesystem
\ Adore, KIS, ...

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Inside the kernel

Kernel mode l

choose Copying the syscall
interrupt handler table / handler:

Interrupt
/ Descriptor
Tanle * Original syscall table

{choose } i i | IS not modified

system call
(modified)

_ =

* Modified syscall

Syscall
(modified copy) magnipulated copy

!

rﬁ’ootkit
sys_getdents() | Examples:

access virtual filesystem SucKIT
[access actual filesystem

[
v

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Inside the kernel

Kernel mode l

interrupt handler

Interrupt :
Descriptor * A different syscall

Table handler is used, which

[choose] Manipulating the IDT:
]

calls rootkit

~
choose -
L[system call] Syscall No need to modify
Table syscall handler or
syscall table

N

\ Examples:
i Concept rootkits

Rootkit
[sys_getdents()

access virtual filesystem

[access actual filesystem

.

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Kernel mode l

interrupt handler

choose Manipulation deeper
inside the kernel:

Interrupt
/ Descriptor
Table Less central kernel

[choose J structures are

system call

manipulated

Syscall _
Table Hard to detect since
many kernel structures

(sys_getdents() need to be monitored

Rootkit
access virtual filesystem

Examples:

Adore-NG manipulates
/proc using virtual
filesystem (VFS)

[access actual filesystem

.

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Intercepting the flow of execution:

* User space:
* Exchange system binaries
* Infect library

* Manipulation in kernel space:
* Interrupt Descriptor Table
* Syscall Handler
Syscall Table
VFS layer

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Further criteria useable for classification:

 How is a backdoor provided?
* How is the rootkit loaded at restart of the system?

* What features are provided?
e E.g. automatic log filtering of hidden processes (KIS)

* How is code transferred into the kernel?
* Official API for kernel modules (Adore, knark, ...)

* Raw memory device (e.g. /dev/ikmem or kernel exploit)
(SucKIT)

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Classification of example rootkits:

Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Intercepting the
flow of execution

Code transfer
into the kernel

Remote backdoor
included

Reload mechanism

syscall syscall VFS
table handler

module raw memory module
access

yes

/sbin/init tool to infect
existing modules

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Countermeasures

Countermeasuers for

current kernel rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Typical methods to detect a rootkit:

Checksums of important files (aide, tripwire, ...)

Rootkit detector programs using signatures
(chkrootkit, rootkit hunter, ...)

Backups of central kernel structures (kstat)

Runtime measurement of system calls (patchfinder)
Anti-rootkit kernel modules (St Michael)

Offline / forensic analysis (TCT, ...)

Watching the network traffic / flows from 3rd system
Manual logfile analysis and search

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Countermeasures

Applying runtime detection methods:

Adore 0.34 SucKIT 1.3b Adore-NG 1.31

Checksums

aide 0.7 vV . >< ><

Process list
chkproc

Kernel structures i N
kstat 2.4 \4

chkrootkit 0.43
Runtime ¢

measurements ...

X
Rootkit detector \/ vV X
C

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Rootkits seen by

DFN-CERT

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Rootkits seen in real incidents:

Plattforms: mostly Linux, MS Windows and Solaris;
occasionally BSD, Truc4, HP-UX, AlX, ...

Attackers using different misconfigured rootkits
together on one system

Attackers combining sophisticated methods:

* multistage attacks
* obfuscated rootkits

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Example incident with obfuscated rootkit:

Rootkit was installed on SSH gateway of research site
_ogins were sniffed / ~ 30 research sites involved
Rootkit SucKIT was combined with burneye tool

* Rootkit loader (/sbin/init) was obfuscated (no encryption)
e Qutput of 'strings' was empty

* Obfuscation could be reversed with free tools

* As soon as rootkit was known:

* Remote scanner for this version of SucKIT can be used
* Local detection became very easy

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Examples

linux:/sbin # ls -al init*

-rwxXxr-xr-x 1 root root 392124 Jan 6 2003 1init
linux:/sbin # mv init initX

linux:/sbin # 1ls -al init*

-rwxXr-xXr-x 1 root root 28984 Jan 6 2003 1nitX
linux:/sbin # ./initX

/dev/null

Detected version: 1.3b

use:

./init.bak <uivfp> [args]

u uninstall

1 make pid 1nvisible

v make pid visible

f toggle file hiding

P toggle pid hiding

linux:/sbin #

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Many criteria can be used for the classification of
rootkits - e.g. the interception of the flow of execution

Most detection tools are based on specific features of
rootkits; few use general mechanisms for detection

Experience shows that identifying the type of rootkit
helps dealing with the incident

Tools for generic detection of malware are needed

Andreas Bunten - © 2004 DFN-CERT Services GmbH

Questions?

Feedback / rootkits: bunten@dfn-cert.de

Andreas Bunten - © 2004 DFN-CERT Services GmbH

