
Structural Comparison
of Executable objects

Reverse Engineering changes between executable
versions

Halvar Flake – DIMVA 2004
halvar.flake@sabre-security.com

Motivation
i. Reverse engineering multiple versions of

essentially the same binary is oftentimes needed:
i. Security review of sequential versions of the same piece

of software
ii. Analysis of multiple variants of the same high-level-

language virus
iii. Analysis of security updates (“patches”)

ii. Problem is asymetric:
i. Changing a few lines of sourcecode and recompiling is

comparatively easy
ii. Reverse engineering is harder: Function names have to

be recovered, then functions have to be read and the
change detected

iii. Both HLL-Virus authors and software vendors try to
exploit this asymetry to their advantage

Structural Comparison
Diff’ing executables is difficult

Why not use something like DIFF ?
i. Small changes in the source code can trigger

significant changes in the executable:
i. Adding a structure member will change immediate offsets

for all accesses to structure members behind the new
member

ii. Adding a few lines of code can produce radically different
register assignments and lead to differing instructions

iii. Changed sizes of basic blocks in one function can lead to
code in unrelated functions changing (because of branch
inversion)

ii. The overwhelming majority of changes in the
binary are irrelevant

i. Classical trade-off: More false positives or running the risk
of a false negative ?

A structural approach
i. Standard source-code “diff”-techniques can’t be

applied:
i. Register allocation can / will change
ii. Arrangement of basic blocks and branch directions can

change
iii. Depending on optimization, compilers can decide to use

different instructions
(e.g. lea eax, [eax + 10] vs add eax, 10)

ii. Addresses of global symbols change
iii. Filtering unwanted changes requires very CPU-

specific implementation
A more general approach is presented in this talk,
focusing primarily on structural properties of an
executable

Structural Comparison
Viewing a program as graph of graphs

i. Primarily one is interested in changes to program
logic

ii. A program can be viewed by looking at two graphs:
i. The callgraph which contains all functions and their

relationships (A calls B etc.)
ii. The individual function flowgraphs which represent the

basic blocks of every function and how they are linked by
conditional or unconditional branches

iii. The program logic is more or less encoded in
these two graphs

i. Adding a single if() in any function will trigger a change in
it’s flowgraph

ii. Changing a call to strcpy to a call to strncpy will change the
callgraph

Structural Comparison
Detecting changes by comparing graphs

i. Program logic is encoded a callgraph with nodes
being the individual function flowgraphs

ii. Comparing two executable based on these graphs
will detect logic changes

iii. The comparison should be false-positive-free:
i. Only “real” changes to program logic should be detected
ii. Compilers don’t usually change the program logic

iv. The comparison will not be false-negative-free:
i. Switching signedness of a type or changing constants and

buffer sizes will go undetected
ii. This is neglectable in many cases

v. So how can two graphs of graphs be compared ?

An executable as
“Graph of Graphs”

An executable consists of:

which are nodes of a digraph, the callgraph
of an executable (edges imply calls-to relation)
Every function can itself be
viewed as a digraph, the function flowgraph.

Executable is a graph of graphs

An executable as
“Graph of Graphs”

Statically generating a callgraph is not always trivial:
• Calls via function pointers can not be always

statically resolved
• Calls via OS-dependent functions (e.g.

CreateThread()) can not always be statically
resolved

• Calls via indirection through compiler-generated
structures such as vtables for virtual C++ methods
can not always be resolved statically

Luckily, calls that cannot be resolved in one variant of
the binary are unlikely to be resolved in the other

Structural Matching

Consider executables A and B and their
callgraphs:

We want to construct an isomorphism

In the general case, this isomorphism does not
exist because the cardinalities of the two sets are
not necessarily identical

Iterative construction of
the partial isomorphism
An initial mapping is created:

This mapping is used to create sequence of
mappings:

A Simple matching
heuristic

• Comparing individual flowgraphs initially
would be too expensive

• Heuristic is used: Every function is
associated with 3-tuple:

:= Number of basic blocks
:= Number of edges in flowgraph
:= Number of edges originating at
this node in the callgraph

A Simple matching
heuristic

The initial mapping is created by associating functions
under the following conditions

• Both functions have the same 3-tuple
• No other functions with the same 3-tuple

exist in both sets

(Additional initial matches can be generated by using
the names of functions (if available, e.g. in the
case of dynamically linked functions))

Improving the initial
mapping (I)

Only a small number of functions will be
mapped initially.

– Smaller functions are less likely to be mapped
as the propability for a “collision” of the
signature increases

– Smaller subsets to be matched by this heuristic
will produce better matches as fewer collisions
occur

Improving the initial
mapping (II)

Construct better isomorphism from
1. Take and
2. Let be the set of all functions that have are

called by and be the set of all functions
that are called by

3. Construct from , in the
same way was constructed from the larger
sets

4. If and a new match was
constructed, otherwise let

5. and are the domain and image of

Practical
implementation

– Based on IDA Pro as a plugin
– Can deal with x86, MIPS so far
– Additional platforms are normally simple to add

(exception: Platforms with speculative
execution)

– PPC and SPARC are planned
– Extra code for attempting to “highlight” changes

in the graph (very broken heuristics though)
– Additional “heuristic” matches in the

isomorphism: Treat 3-tuple as coordinates, if
euclidian distance is smaller than threshold
attempt to match as well

Practical results

IIS SSL/PCT parser
– Updated schannel.dll
– Information from the security bulletin:

• Possible remote compromise
• Flaw in PCT parsing (PCT is a legacy protocol

obsoleted by TLS)
• No technical details about whereabouts etc.

– Only one function with a “PCT” in the name
changes
Change is an added range check to prevent a
simple stack overflow

Practical results

MSASN1.DLL bugs
– Information from the security bulletin:

• Integer wrap leading to compromise
• No technical details about whereabouts etc.

– Changes in ASN1DECAlloc, ASN1DecRealloc
– Prevent integer overflows in the allocation

functions
– Additional changes to prevent memory leaks

Practical results

MSASN1.DLL bugs
– Information from the security bulletin:

• Integer wrap leading to compromise
• No technical details about whereabouts etc.

– Changes in ASN1DECAlloc, ASN1DecRealloc
– Prevent integer overflows in the allocation

functions
– Additional changes to prevent memory leaks

Practical results

ISA Server H.323 library bugs
– Information from the security bulletin:

• Parsing problems in H.323 code
• No technical details about whereabouts etc.

– Added range check before PERDecZero
CharStringNoAlloc()

– Prevent integer overflows in the allocation
functions
Disclosed unknown vulnerability in NetMeeting
and H323MSP !
Publication of the fix did more harm than good

Future improvements

Future improvements on the BinDiff:
– Add functions frame sizes and constant

arguments of malloc()-calls to the functions
identification (to detect changed buffer sizes)

– Add static strings as nodes to callgraph for
improved matching and ambiguity resolution

– Add function flowgrapher to retrieve better
flowgraphs for speculative execution
architectures

Future/Related work ?

Treating executables as graphs of graphs opens up
interesting opportunities:

– Ero Carrera (of F-Secure AV Research team) uses graphs
of graphs to cluster new HLL virii together to identify “code
sharing” between virus authors

– Identification of library functions (e.g. OpenSSL) in large
embedded systems can aid in reverse engineering

– Identification of GPL’ed code fragments in closed-source
software could be possible

– Identification (or debunking) of code theft claims (as in
the SCO vs Linux case)

Questions ?

