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Unsupervised anomaly detection in IDS

» Main idea: search for anomalies in the data without training
on the clean data.

» Previous work: (Eskin et al., 2002), (Lazarevic et al., 2003).

» Advantages: no need for training, no need for extensive
amount of clean data.

» Problems: false alarm rates, performance.
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Motivation for our work

» Reproduce the state-of-the-art results on the KDD Cup
(DARPA '98) dataset (with the main focus on one-class SVM).

» Investigate the methods from the machine learning point of
View.

» Investigate the behavior of anomaly detection methods with
varying outlier percentages.
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Motivation for our work

» Reproduce the state-of-the-art results on the KDD Cup
(DARPA '98) dataset (with the main focus on one-class SVM).

» Investigate the methods from the machine learning point of
View.

» Investigate the behavior of anomaly detection methods with
varying outlier percentages.

Main result: we propose a new anomaly detection technique, a
quarter-sphere SVM, which is particularly geared for data used
in intrusion detection and is significantly faster than other
one-class SVM methods.

LD
FFFFF




KDD Cup data: summary of features

KDD Cup dataset contains the total of 42 features computed for
connections of TCP data from the DARPA "98 evaluation.

serror _rate, rerror_rate

Source Sample attributes Type

Basic connection properties durati on, service, I nt, bool,
src_bytes, dest bytes string

Selected content features | ogged_in, root _shell, | nt, bool
num shel | s

Time window features count, srv_count, i nt, fl oat

Connection window features

dst _host count,

I nt, fl oat
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KDD Cup data: normalization

» Numerical attributes: replace the values with distance from
mean in the number of standard deviations.

i o(d)

» Categorical attributes: extend the space with card @

coordinates; assign the value of % to coordinates
car

matching the attribute’s value.
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Support Vector Machines (SVM)

The main idea of SVM: separation of examples of two classes
with a hyperplane producing a large margin:

SVM example
- min ][+ i
w,¢,b P
subject to yi((w-x;)+0b) >1
;i > 0.
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One-class SVM: plane formulation

The main idea of the plane one-class SVM: separate data from the
origin with a hyperplane:

One-class SVM example: plane

1 l
2.5/ ‘ min ~||lwl)? +  —V
min 5wl i;@z o
subject to (W-x;)+b>p—Ci,

& > 0.
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One-class SVM: sphere formulation

The main idea of the sphere one-class SVM: fit a hypersphere
around the data:

One-class SVM example: sphere

2.: CIE}]% RZ 4+ w Z:Z‘igl

L5l subject to e —x;|[> < R+ ¢,
| i > 0.
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One-class SVM on non-negative data

Previous methods
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One-class SVM on non-negative data

Previous methods

Plane

New method

Quarter—sphere
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Quarter-sphere SVM: dual formulation

Algorithmically, the following linear program must be solved to
apply a quarter-sphere SVM:

max Z o k(x;, X;),

x

subject to 0<w; <C,i=1,...,1,
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Results: Quarter-sphere vs. Sphere

attack ratio = 0.02, gamma =1 attack ratio = 0.02, gamma = 12
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Results: varying attack percentage

guarter—sphere: nu =5 %, attack pct varies sphere: nu =5 %, attack pct varies
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Results: numerical vs. categorical features

attack ratio = 0.02, gamma = 12, num. features
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Conclusions

» Designing special-purpose anomaly detection techniques,
suited for the data arising in IDS, can significantly decrease
false alarm rates.

» What is most needed for the success of anomaly detection:

» Precise understanding of how different mechanisms of
anomaly detection work on the data arising in IDS.

» Critical analysis with respect to robustness, i.e. operation
under conditions that anomalies are not rare or their
impact can significantly tilt the decision toward the
anomaly:.
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