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Introduction

It is an old problem of differential topology to determine the immersion
dimension of a compact smooth manifold X. The immersion dimension is
the smallest integer 7 such that X can be immersed in an Euclidean space
with dimension j.

There are a lot of results concerning the projective spaces ([Ati62], [San64],
[AGM65], [Fed66], [MMG67], [Mil67], [JamT71], [Ste71l], [SS78], [DM77],
[DM79], [Cra91], [Dav93]).

In [Coh85] Cohen gave an upper bound for all compact smooth manifolds
which only depends on the dimension of the manifold. This upper bound
is sharp: For all integers d > 1 there is a compact smooth d-dimensional
manifold with immersion dimension being equal to Cohen’s upper bound.
For certain homogeneous space some authors established other upper bounds.
In [Tor68] Tornehave calculated an upper bound for the immersion dimen-
sion of coset spaces of centralizers of tori. For many flag manifolds Lam
determined lower upper bounds (see [Lam?75], also [Hil82b]). The essential
tool of those authors was Hirsch’s immersion theorem ([Hir59)]).

The integrality theorems due to Atiyah and Hirzebruch ([AH59]) and Mayer
([May65]) can be used as a tool for the determination of lower bounds for the
immersion dimension. By application of these theorems Sugawara ([Sug79]),
Paryjas ([Par88]) and Mayer ([May97], [May98]) found lower bounds for the
immersion dimension of Grassmannian manifolds. By other methods Hog-

gar ([Hog71]), Oproiu ([Opr76], [Opr81]), Ilori ([Ilo79]), Hiller and Stong
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6 INTRODUCTION

([HS81]), Markl ([Mar88]) and Tang ([Tan93a], [Tan93b], [Tan95]) as well as
Connell ([Con74]) proved non-immersion theorems for Grassmannian mani-

folds and for low dimensional complex flag manifolds, respectively.

For a compact Lie group G and a closed subgroup U of G many topological
invariants of the homogeneous space G/U can be expressed by structural
datas of the Lie groups G und U. Examples of homogenous spaces are given
by projective spaces und more general by flag manifolds.

In 1958 many important relations between the topological invariants and
those structural datas were already well known and published in the fun-
damental articles ”Characteristic classes and homogenous spaces” by Borel
and Hirzebruch ([BH58], [BH59], [BH60]). In these articles the twisted Todd
genus and the untwisted A-genus are calculated and existence theorems for
complex, almost complex and Spin-structures on G /U are proved.

Up to now several other results, for example about the signature ([Sha79],

[HS90], [BMP90], [S1092]), have been established.

The object of the present work is to calculate characteristic numbers which
are related to the immersion dimension of G/U by Lie group invariants of G
and U.

The first chapter is devoted to collect well known immersion und non-
immersion theorems. Subsequently (virtual) differential operators with in-
dices equal to the values of a Hilbert polynomial are defined.

The second chapter provides some results of the representation theory of
compact Lie groups and some relations between the topological structure of
a homogeneous space and the algebraic structure of the Lie groups.

The subject matter of the third chapter is to calculate the indices of the dif-
ferential operators introduced in the first chapter in the case of homogeneous
spaces. The result is an expression for the index by algebraic invariants of
the Lie groups.

In the first section of the fourth chapter we establish some identities and
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inequalities. They will be of use in the subsequent sections.

In the other five sections of the fourth chapter we calculate lower bounds for
the immersion dimension of (complex, quaternionalal resp. oriented real) flag
manifolds and the manifolds Sp(n)/U(ny) x --- x U(ns), SO(2n)/U(ny) x
<o x Ul(ng).

In the tables of the appendix lower and upper bounds for concrete homoge-

neous spaces are assembled.

I want to express special thanks to Professor Dr. Karl Heinz Mayer for a lot

of useful hints and numerous inspiring discussions.
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Chapter 1

The Hilbert polynomial

1.1 The A—class and the Hilbert polynomial

In this chapter let X be a compact connected smooth oriented manifold of
even dimension 2n with Pontrjagin classes p;(X) € H*(X;Z) and funda-

mental class [X].
Let K(X) be the K-ring of X.

If A is a commutative ring with 1, H*(X; A) stands for the singular coho-
mology ring of X with coefficients in A.

Moreover let ch : K(X) — H*(X;Q) be the Chern character and ch(X) C
H*(X;Q) the image of K(X) by ch.

For an element » = > % z; € H*(X;Q) with zp; € HY(X;Q) and a

rational number ¢ € Q we set 2() = 3 2ot/
j=0

9



10 CHAPTER 1. THE HILBERT POLYNOMIAL

Proposition 1.1
Ift € Z and z € ch(X) then 2 € ch(X).

Proof: [AH59], p.387. O

Definition 1.2
We set

AX) = Zflj (p1(X), .., pi(X)),

=1

<

where {AJ} 15 the multiplicative sequence belonging to the power series
1
V2

sinh (%\/Z)
A(X) is called the A—class of X.
For all d € H*(X;Q) and z € H*(X; Q) we define

A(X,d,z) = <z : edA(X)> X]. O

Proposition and Definition 1.3

Ifd € H*(X;Q) and z € ch(X) then

H(t)=A (X, g, z(t)>

is a polynomial in t of degree lower or equal to n with rational coefficients.

H is called the Hilbert—Polynom of X associated with d and z. [

Remark 1.4
Ifte€Z,de H*(X;Z) and d = wo(X) mod 2 then H(t) is an integer.

Proof: [AH59], p.388. O
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1.2 Immersion and Non-immersion theorems

The importance of the Hilbert polynomial for the immersion problem is given

by the following integrality theorem ([May65]):

Proposition 1.5 (Mayer)
Let X be a 2n—dimensional compact oriented smooth manifold and H be the

Hilbert polynomial associated with d € H*(X;Z) and z € ch(X).
If X can be immersed in R*™™ with k € {2s,2s + 1} then 2""SH(3) is an

integer.

Consequently X can not be immersed in an Fuclidean space with dimension
—2u((H(3)) — 1.

Thereby we use the following notation:

Notation 1.6
For q € Q we write v5(q) for the exponent of the prime 2 as prime factor of

q.

Remark 1.7

In the integrality theorem in [May65] the following non-embedding result is in-
cluded: If X can be embedded in R*"™* with k € {2s,2s+1} then 2"~ 1H (1)
is an integer. The theorem contains sharper results for the cases z € chO(X)

and z € chSp(X). O
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Upper bounds for the immersion dimension are given by the next theorems:

Theorem 1.8 (Cohen)
Let X be a d—dimensional compact smooth Mannigfaltigkeit with d > 1. Then
X can be immersed in an Euclidean space with dimension 2d— a(d). Thereby

a(d) is the number of the digit 1 in the dyadic representation of d.

Proof: [Coh85].

Remark 1.9
For every integer d > 1 there exists a d—dimensional compact smooth mani-

fold X with immersion dimension equal to 2d — a(d). ([Coh85]. p.238) O

For homogeneous spaces Tornehave ([Tor68]) established other upper bounds

for the immersion dimension:

Proposition 1.10

Let G be a compact Lie group and Ad the adjoint representation of G on
the real Lie algebra go of G. If U is the centralizer Z(S) of a toral subgroup
S of G and the dimension of the center of U is equal to s, then G /U can be

immersed in an Fuclidean space with dimension dim(gg) — s.
Proof: [Sch86], Prop.4.
Remark 1.11

(i) For the notations see chapter 2.

(ii) In [Lam75] Lam determined more results for real und quaternional flag

manifolds. For the exact statements see the remarks 4.26 and 4.34. 0O
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The proofs of those theorems are based on the following results of Hirsch

([Hir59]):

Theorem 1.12 (Hirsch)
Let X be a d-dimensional compact smooth manifold. If there is a real k-
dimensional vector bundle n over X such that k > 1 and T(X) & n is trivial

then X can be immersed in an Euclidean space with dimension d + k.

Proof: [Tor68], p.24. O

Theorem 1.13 (Hirsch)

Let X be a d—dimensional compact smooth manifold. If X can be immersed
in an Buclidean space with dimension d + k +r such that the normal bundle
contains a trivial r—dimensional subbundle then X can be immersed in an

FEuclidean space with dimension d + k.

Proof: [Hir59], p.269. O
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1.3 Hilbert polynomials and differential op-

erators

This section ist devoted to introduce results due to Mayer and Schwarzen-
berger ([May65], [MST73]). They serve as a tool for evaluating Hilbert poly-

nomials at % )

Notation 1.14

For natural numbers k,n let G(2n,2,k) C Spin(2n + 2 + k) be the preimage
of SO(2n) x SO(2) x SO(k) C SO(2n+2+k) unter the canonical two-sheeted
covering map A : Spin(2n+ 2+ k) — SO(2n+2 + k).

Proposition 1.15
Let X be a 2n—dimensional compact oriented smooth S'-manifold. We as-

sume the fized point set Y of the S*—operation to be finite.

Additionaly let E be an equivariant complex line bundle over X, D an
equivariant r-dimensional complex vector bundle and F be an equivariant

k-dimensional real vector bundle over X.
We suppose ¢1(E) = wy(F) + we(X) mod 2 and F to be oriented.

We understand T'(X) & E @& F & D to be a vector bundle with structure
group SO(2n) x SO(2) x SO(k) x U(r) and principal bundle P. There is an
St-action on P, which induces the S*-action on T(X)® E® F & D.

Additionally there is a principal bundle Q over X with structure group
G(2n,2,k) and a two-sheeted covering map k : Q — P, such that for
all (q,91,92) € Q x G(2n,2,k) x U(m) the identity k(q- (g1,92)) = K(q) -
(Ag1), g2) holds.
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If there is moreover an S'-action on Q which induces the S'-action on P

(we quote this property by (*)) then there is an equivariant elliptic differential
operator of first order on X such that the index T'(X,E,F,D) € R(S') has

the following properties:

(i)

(i)

I'X,E,F,D)(1)

= (-2t («a%ﬂw)chw) (H cosh (%)) A(X)) [x].

Thereby p(F) = [, (1 +y?) is the total Pontrjagin class of F.

For all elements g of a dedicated dense subset of S the following iden-
tity holds:

I'X,E, F,D)(g)
_ Z( ggw Zgup(y H<g 1mu(y) _gzmu(y)> -
L (30 +47479) i) [1)]

Thereby for a fized point y € Y we denote the rotation number
of the complex representation E, of S' by v(y), the rotation num-
bers of the complex representation D, of S* with ui(y), ..., u-(y), the
positive rotation numbers of the real representation T,(X) of S* by
mi(y), ..., mu(y) and the positive rotation numbers of the real repre-
sentation F, of S* by Bi(y),...,Bs(y). Additionally the trivial one-
dimensional representation appears with multiplicitiy 21(y) or 2l(y) + 1
as subrepresentation of F,. All representation numbers have to be
counted concerning their multiplicities. If the orientation of T,(X)
with all rotation numbers positive is equal to the orientation induced
by the manifold X then we understand the singleton {y} to be oriented

positive else negative.
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We pay attention to the fact that the representations T,(X) have no
trivial subrepresentations. We notice that T,(X) has a complex struc-
ture, such that all rotation numbers belonging to this complex structure
are positive. Let the orientation of {y} be induced by this complex

structure.

Remark 1.16

(i)

(ii)

The assumption (x) garuantees that the term on the the right hand side
of the formula in (ii) is a meromorphic function in g. Due the conti-
nuity in 1 of the term on the left hand side 1 is a removable singularity

of this meromorphic function. So the term I'(X,E,F,D)(1) can be

calculated by determination of a limit.

If the extra assumption (x) fails to be satisfied then there are S*—actions
on X, E, F, G such that the assumption (x) is satisfied and all rotation
numbers are doubled. ([AH70], Prop.2.1 or [Sch72], Satz (2.6)).

Also in this case I'(X, E, F, D)(1) can be calculated as limit of the term

in (i) (with the datas coming from the original S*-action).

Remark 1.17

(i)

Virtual equivariant bundles E, F, D satisfying the prerequisites of the
theorem yield an equivariant “virtual” differential operator. The state-

ments of the theorem remain valid for its formal index.

(11) If we set F =0 and substitute D by (D) with an integer t and v, the

Adams operation then the folowing identities hold:

~

DX B F (D)) = (1) (e Peh(ui(D)A(X) ) | X]
= (=1 (2P en(D)A(X) ) [ X]

= (-1)"A (X, @,ch(D)(”)

= (—1)"H(t).
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Thereby H is the Hilbert polynomial associated with ¢ (FE) and
ch(D). O
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Chapter 2

Homogeneous Spaces

2.1 Basic definitions

Proposition and Definition 2.1

Let G be a compact connected Lie group and U a connected closed subgroup
of G.

We denote the set of left cosets of G modulo U by G/U = {gU | g € G}.

We furnish G /U with the quotient topology and the C*°—structure character-
ized by the fact that the canonical projection m : G — G/U is smooth and
G/U is a quotient manifold with respect to 7.

A manifold constructed in this way is called a homogeneous space. ([BD85],

I(4.3)) O

Proposition 2.2
(G,G/U,m) is a principal bundle with structure group U.  ([BD85],

1(4.3)) O

19



20 CHAPTER 2. HOMOGENEOUS SPACES

2.2 Lie groups

There is a deep coherence between the topological structure of a homogeneous
space and the algebraic properties of the defining Lie groups. Hence we are
going to rephrase important concepts and results of the representation theory
of compact Lie groups. They can be looked up in most textbooks about

representation theory (e.g. [Ada69], [BD85], [FH96] or [Kna96]).

In this section we understand G to be a compact connected Lie group with

neutral element e.

Proposition and Definition 2.3

T.(G) has the structure of a real Lie algebra and is referred to be the Lie
algebra go of G ([Kna96], p.3). Its complezification go ® C is denoted by g.
There is a natural C>*°-mapping exp : go — G with exp(0) = e and Ty(exp) =
id : To(go) = g0 — @o. exp is called the exponential map of G. ([Kna96],
p.49) O

Proposition 2.4
If H is another (not necessarily connected) Lie group and 0 : G — H a

homomorphism of Lie groups then T.(0) is a homorphism of Lie algebras.

6 is determined by T.(0).

Proof: [Ada69], 1.7 and 2.17.

Definition 2.5
A finite dimensional complex representation of G is a pair (V, ®) consisting of
a finite dimensional complex vector space V' and a continuous homomorphism

O G — Aut(V). V is called the representation space.
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For the sake of convenience we often denote the representation by V and the

element ®(g)(v) by g(v) or gv.

In a similar manner the concept of a real or quaternional representation of
G is defined. U

Definition 2.6

A finite dimensional complex representation of a complex Lie algebra a is a
pair (V, ) consisting of a finite dimensional complex vector space V and a
homomomorphism of Lie algebras ¢ : a — End(V'). V is called the represen-

tation space.

For the sake of convenience we often denote the representation by V and the
element ¢(g)(v) by g(v) or gv.

In a similar manner the concept of a real or quaternional representation of

a is defined. [

Remark 2.7

In a natural way concepts like “unitary representation”, "irreducibility of rep-
resentations” and “invariance of subspaces” can be introduced. Furthermore,
most functorial constructions known from linear algebra can be transferred to

representations.  [J

Example 2.8
The congugation mapping A : G — Aut(G) with A(g)(h) = g 'hg induces
real representations Ad of G and ad of go on go and a complex representation

ad of g on g. These representations are referred as adjoint representations

of G. ([Ada69], 1.10) O
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Due to the compactness of G the following statements hold:

Proposition 2.9

(1) If (V,®) is a finite dimensional complex or real representation of G then

there is an FEuclidean structure on V' such that (V, ®) is Fuclidean.

(i1) Let'V be a finite dimensional complex representation on G. Then there
are invariant subspaces Vi, ..., Vs of V such that V =V, ®---®V; and

the representations Vi, ..., Vy are irreducible.

Proof: [Ada69], 3.20. O

Definition 2.10

Let Rr(G) and R(G) = Rc(G) be the free abelian groups generated by the
set of irreducible representations of G. The tensor product induces a ring
structure on these groups. Rr(G) and R(G) = Rc(G) are called the real or

complex representation ring of G, repectively. [

Proposition and Definition 2.11

Let (V, ®) be a finite dimensional complex representation of G. We associate
a mapping Xy = Xo : G — C by xv(g9) = trace(®(g)). xv is called the
character of (V,®). It has the following properties:

(i) xv(e) = dimcV.

(i1) xv is continuous and constant on the conjugation classes of G. Such a

map s called a class function.

(i) xv-(g9) = xv(g™") = Xv—(g) forall g € G.
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(iv) xv defines an injective homomorphism of rings
X: R(G)— CLG) ={f €C(G,C)| f is class function}.

The image x s called the character ring of G. The character ring will
be denoted by R(G), too.

Proof: [Ada69], 3.32. O
*

The representation theory of toral groups is very easy:

Proposition 2.12
Let T* = R*/7ZF the k-dimensional standard torus. Then the following state-

ments hold:
(i) T* ist monogenic, i.e. T* has a generating element.

(ii) IfV is a irreducible complex representation of T* then V has dimension

one.

(iii) If (C,®) is a complex representation of T* then ® has the form

O([x1, ..., x21])(2) = eZrilmzitetmean) o ith integers ny, . . . ny.

(iv) Let p; be the one-dimensional complex representation of T* with
pi([z1, .. 2k])(2) = @)z, R(T*) is the ring consisting of the fi-

nite Laurent series in pi, ..., Pk-

(v) If V is a irreducible real representation of T* then either V is one-
dimensional and trivial or the realization of a non-trivial complex irre-

ducible representation.

Proof: [Ada69], 4.3, 3.71, 3.76, 3.77, 3.78. O
*
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In order to classify the representations of a compact Lie group one makes use
of the knowledge about the representations of a maximal abelean subgroup

of G. Those are toral due to the following proposition:

Proposition 2.13

A compact connected abelean Lie group is a torus.

Proof: [Ada69], 2.32. [

Definition 2.14
A maximal torus in G is a toral subgroup T such that there is no toral sub-

group S of G containing T as a proper subgroup. [

The next proposition gives a survey of the properties of maximal tori:

Proposition and Definition 2.15

(i) There is a mazimal torus in G. Each toral subgroup is contained in a

mazimal torus.

(i) Two mazimal tori of G are conjugated. Consequently they have the

same dimension. This dimension is referred to as rank of G.

(111) Let T be a maximal torus in G and Ng(T') ist normalizer in G. Then
Ng(T)/T is a finite group and is called the (analytic) Weyl group of G
(belonging to T).

(iv) The canonic homomorphism i* : R(G) — R(T) is an isomorphism onto

the subring R(T)V©) consisting of the W (G)—invariant elements.

Proof: [Ada69], 4.8, 2.23 and [BD85], IV(1.4), VI(2.1) O
*
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In the next propositions we assume 7" to be a fixed maximal torus in G. Let

to be the Lie algebra of T', t = t, ® C be the complexified Lie algebra of T'.

Remark 2.16
We can understand the elements of W(G) in an algebraic sense, i.e. as self

mappings of t or ty. ([Kna96], 4.54) O

Definition 2.17

(1) A multiplicative character of T is a continuous homomorphism & : T —

St. ([Kna96], 4.32)

(1) An element p € t* is called analytically integral if there ist a multiplica-
tive character &, of T with &,(exp H) = e*H) for all H € t,. ([Kna96],

4.58)

Remark 2.18
An element p € t* is analytically integral iff p(H) € 2miZ for all H € tg with
exp H = 1. ([Kna96], 4.58) O

Proposition 2.19
Let 1 € t* be analytically integral. For all w € W(G) the element p o w is
analytically integral. Furthermore, there is an element p of the representation
ring of G with
Xplexp H) = Z e ) for all H € to.

weuW(G)
Proof: The term on the right hand side is W(G)-invariant. (Prop.
2.15(iv)) O

Proposition and Definition 2.20

(1) Let V be a complex s—dimensional representation of G. As a complex
representation of TV decomposes in one—dimensional subrepresenta-
tions Vg, , ..., Vg, with {01,...,B3s} a W(G)-invariant set of analyti-
cally integral elements and T acting on Vs, by g(v) = e%i9) .y for all
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g €T and v € Vs,. The elements (3y,..., 0B, are called the weights of

the representation V.

(i1) Let 'V be a real s—dimensional representation of G. As a complex rep-

resentation of TV decomposes in an r—dimensional trivial subrepre-
, with
s —r =2d even, {£f,...,104} a W(G)-invariant set of analytically

sentation Vo and two-dimensional subrepresentations Vg, ,..., Vs

integral elements and T' acting on Vg, by the realization of the complex
representation given by g(v) = %9 v for allg € T and v € V. The
elements £y, ...,+Bq are called the weights of the representation V.

(i1i) Let V' = go be the adjoint representation of G. Then Vo = tg. The

weights of the adjoint representation gy are called the roots of G.

All roots are purely imaginary on ty. ([Kna96/, 4.58) O

Definition 2.21
Let (L;) be a base of t. A total ordering on t} is given by

ZA2L1>ZM7’LZ < )\1:/Jbl,...,)\r,lzlu,rfl,)\r>/llr foraer.D

Definition 2.22
A positive root is called simple if it is not representable as the sum of two

positive roots. [

Notation 2.23

(i) The root system of G is denoted by X(G).

(i) 1(G) = {a € B(G) | a > 0} is referred to as the system of the positive
roots of G with respect to the given ordering. [

*
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There is a close relation between the structure theory and representation
theory of G and the corresponding theories of the Lie algebras gy and g of

G. Hence we are going to collect results of the theory of Lie algebras.

For the sake of simplicity we define all concepts for the complex case.

g and go being the Lie algebras of the compact Lie group G we do not need
the theory of Lie algebras in its full generality.

So we may introduce some objects by properties which are more convenient

than the properties which have to be used in the general context.

Definition 2.24

(i) For subsets a,b of g we define

[a,6] = {[A,B]| A € a,B € b}.

In a similar way a + b is defined.
(11) A vector subspace a of g with [a,a] C a is called a Lie subalgebra.
(111) A Lie subalgebra a of g with [g,a] C a is called an ideal of g. O
Example 2.25
(1) If a,b are ideals of g then aNb, a+ b and [a,b] are ideals of g, too.
(i1) The ideal [g,g] is called the commutator ideal of g.

(ZZZ) 39 = {Hl cg |[H1,H2] =0 fOT all HQ S g}

is an ideal of g and called the center of g.
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Proof: [Kna96], 1.7. O

Proposition and Definition 2.26

Under our assumptions it holds g = 34 & [g, g].

g, 9] is semisimple in the sense of Lie algebra theory and is called the
semisimple part of g.

G, g and go are called semisimple if [g,g9] = g. This is equivalent to the
finiteness of Z(G) and to the triviality of 34. ([Kna96], 4.25, 4.29) O

Proposition and Definition 2.27

(i) B:gxg— C with

B(Hy, Hy) = trace(ad(Hy) o ad(Hs))

is a symmetric bilinear form on g. B is called the Killing—Form of G.

(i) The restriction of B to the semisimple part [g,g| is non-singular.

([Kna96], 1.42)
(i) ¥ =tNlg,g| is a Cartan algebra of [g,9]. ([Kna96], 2.13)

(iv) ¥* can be understood as subset of t*. Elements of ¥* map elements of

3g t0 0. ([Kna96], p.200) O

Proposition and Definition 2.28

Let B be the Killing form of G. The restriction of B to t' is non-singular.
The induced bilinear form on t* is denoted by (, ). The restriction of (, ) to
the real subspace toNt' is negative definite; the restriction to the real subspace

i(to NY) is positive definite. ([Kna96], p.207) O
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Definition 2.29
(i) An element p € t* is callled algebraically integral with respect to G, if

the following condition holds:

2 (p, )
(a, @)

([Kna96], 4.59)

€ Z for all o € %(G).

(ii) An element p € t* is called algebraically semiintegral with respect to G

if 2p 1s algebraically integral.

Remark 2.30
(i) Analytically integral elements of ¥* are algebraically integral. ([Kna96],

4.59)

(11) If G is semisimple with trivial center then each analytically integral ele-

ment is an integral linear combination of the roots. ([Kna96], 4.68) O

Proposition and Definition 2.31
(1) w e W(G) permutes the roots of G. ([Ada69], 4.37)

(ii) For an element w € W(G) the identity det(w) = (—1)’{0‘€2+(G)|aw<0}‘
is valid. We denote det(w) with sign(w). sign: W(G) — {£1} is
a homomorphism of groups. ([Kna96], 11.12.21-23 or [Hil82a], (1.5)
and the remark before (3.2))

(111) The bilinear form (, ) on t* is invariant with respect to the operation

of W(G). ([Kna96], 2.62) O

Proposition and Definition 2.32

We define
1
aeXt(G)

0 s algebraically integral with respect to G.
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Proof: [Kna96], 2.69 und 4.62. O

Proposition 2.33

Z sign(w)e®? ) = H (e%a(H)—e’%a(H)>

weW (G) a€XT(G)

for all H € ¢*. ([Kna96], 5.111) O

Definition 2.34
Let Qt = {H € ty|a(H) > 0 for all « € ¥7(G)}. Q7 is a mazimal convex
subset of Q = {H € to|a(H) # 0 for all o € X7 (G)}. We refer to it as the

positive Weyl chamber or fundamental chamber of G. [

Proposition 2.35
Let u be an algebraically semiintegral element with respect to G and (, ) be the
bilinear form on t* induced by the Killing form. Then the following identity
holds:

S sign(w)etH)

lim weW(G) 1 1 _ H <:UJ7O‘>. (*>
hed T (eseUD — i) o, (.0)
acs+(Q)

Remark 2.36
For a simple root « the equation 2 (0, o) = (o, &) > 0 holds. Another positive

root is a sum of simple roots. Hence the denominator on the right hand side

of () is different from 0. ([Kna96], 2.69)

Proof of Proposition 2.35:

Case 1: p is algebraically integral and an element of the closure of the positive
Weyl chamber.

The statement is a corollary of the Weyl dimension formula ([BH58], sect.

3.4.).
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Case 2: p is algebraically integral.
By [BH58], sect. 2.7 there is an element wy € W(G), such that pwy is an
element of the closed positive Weyl chamber. Case 1 yields:

Z sign(w)e“(w(H))

. weW (Q)
lim

H=>0 H <€%a(H)_ef%a(H))

a€XT(G)

2.31(i1) .. . weW(G)
= lim sign(wp)
H=0 [T (erot —esoth)
aeXT(G)

Case 1 . </‘Lw0 ) Oé>
= sign(wo) H W
a€Tt(G) ’

-1

2.31(343) . <u,o¢w0>
U sign(wy) [ 0
a€Tt(G) (0, @)

2.31(id) 11 (1, a)

a€XH(G)

Case 3: pu ist algebraically semiintegral.

lim
=0T (eéaw)_e—goe(m)
aesH(@)
Z sign(w)e“(w(w))
_n weW (G)
H—0 H e%a(QH)_efia@H))
aeXt(G)
Z sign(w)eQ“(w(H))
_ iy V@
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Z sign(w)eQ“(w(H))

weW (Q)
H—0 H <e%a(H)+ef%a(H)> H (e%a(H)_ef%a@H))
2nd(e) ae¥xt(G)
(2, )
2 (6, )
(1, ) 0
(0, @)
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2.3 The topological structure of homoge-
neous spaces

We assume G to be a compact connected Lie group and U to be a closed

subgroup of G with maximal rank. Let T" be a maximal torus of U.

Notation 2.37

(i) We denote the Lie algebra of G by go, its complezification go ® C by g.
In the same way let ty be the Lie algebra of T and t its complexification.
We define ¥ by ¥ =tN|g,g|.

(it) Let S(G) be the root system of G, X1 (G) be a system of positive roots
of G.
Let ¥(U) C X(G) be the root system of U and ¥+ (U) = X(U)NEH(G).

(111) The elements of ¥ = X7(G) \ X1T(U) are called the positive comple-

mentary roots of G with respect to U.

(iv) We refer to the Weyl group of G by W(G) and to the Weyl group of U
by W(U).

Remark 2.38
(i) XT(U) is a system of positive roots of U.

(i1) We can understand W(U) as a subset of W(G). O

Definition 2.39

U operates by adjunction on the tangent space Ty (G/U) with weights o €
YHG)\XT(U) = . This representation is called the isotropy representation
LU — Autt(Ty(G/U)). O
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Proposition 2.40
The tangent bundle of G/U has an U-structure via t.

Proof: [BH58| (Prop. 7.5) and the subsequent remark. [
*

Proposition 2.41

(1) G/U s a simply connected manifold with dimension 2|¥|. An orien-

tation of G/U is given by an orientation of Ty (G/U).

(i1) The maps §: G/U — G /U with g € G and 2U — gxU are orientation
preserving diffeomorphisms of G/U.

Proof:

(i) We consider the homotopy sequence to the principal bundle G — G/U:
= m(U) - m(G) —» m(G/U) = m(U) — mo(G) — - -

Due to the connectedness of G and U statement (i) is equivalent to the
surjectivity of m(U) — m1(G). m1(T) — m1(G) is surjective since G/T
is simply connected ([Ada69], Lemma 5.54). Therefore m,(U) — m(G)

is surjective.
(ii) If g, is a path from e to g then g is an isotopy from id to g. O

The root space decomposition of GG is given by
( ) =00 = t0 S @ gO as
acXt (G

whereby the real representation of 7" on go o is equal to the realization of the

complex one—dimensional representation of T given by the root a.
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The root space decomposition of U is given by

T.(U)=w=t® P g O

aext(U)

Definition 2.42
We orient Ty (G/U) and therefore G/U by identifying the root spaces go.q,
a € VU, with copies of C. [

Proposition and Definition 2.43

We define
1
0=-= Z a,
aeXt(G)
1
R —
0= 2 Z @,
a€s+(U)
~ 1
5 = 5 Z .
aev

If G is simply connected then the following statements are equivalent:
(1) G/U has a Spin structure.
(11) o' is integral with respect to G.

(iii) & is integral with respect to G.

Proof: [HS90], p.327. O
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Chapter 3

Hilbert polynomials of

homogeneous spaces

We want to apply the results of section 1.3 and Proposition 2.35 to determine

Hilbert polynomials of homogeneous spaces.

3.1 An S'-action on G/U

We choose a regular one-parameter subgroup A : S' — T in G within the
positive Weyl chamber, i.e. the differential of A at 1 is a linear map d; A :
R = s' — ty with d;\(1) being a member of the positive Weyl chamber.

Since we can eliminate any possibility of misunderstandings we denote both

the homomorphism S* — T and its differential R — t; by A.
By means of \ every T-action can be restricted to an S'-action.

In particular, there is a canonical S'-action on G/U induced by A.

37
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Proposition 3.1
The fized point set of this S*-action on G /U is given by

(G/U ={gU € G/U | g € Na(T)}.

Remark 3.2

Given g1,92 € Ng(T) the identity ;U = goU holds iff g1 € ¢g2Ny(T).
Hence (G/U)* is a finite set in bijection to the sets Ng(T)/Ny(T) and
(Na(T)/T)/(Nu(T)/T) = W(G)/W(U).

Furthermore, given g € Ng(T') the left coset gU depends only on the left coset
in W(G)/W(U) represented by g.

So the expressions wU and [w|U for w € W(G) and [w] € W(G)/W(U) are
well defined.

With the notations intoroduced above we can reformulate Proposition 3.1:

Corollary 3.3
The fized points of the S*-action on G /U are the distinct points [w)U € G/U
with [w] € W(G)/W(U).

Proof of 3.1 and 3.3: [HS90], sect. 2.5 [
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3.2 Equivariant vector bundles over homoge-

neous spaces

Let (V,p) be a real or complex representation of U. Via the canonical U-
principal bundle G — G/U this representation induces a vector bundle G x,
V. G acts equivariantly on the canonical principal bundle and consequently
on the associated vector bundle. The same is true for any closed subgroup

of G.

Proposition 3.4
The T-action on the fibre (G X,V ), withw € W(G) is equivalent to pow™*
([HS90]). The same is true for all closed subgroups of T.

In particular, the weights of the T-action on the tangent space in the fixed

1

point wU are given by oo w™ with o € ¥. Here we understand w=! to act

on the Lie algebra ty.

Proof: Let g € Ng(T) represent the element w € W(G). All elements of
G X, V being in the fibre over the fixed point [g] € G/U is representable in
the form [g,v] with v € V uniquely determined. For ¢t € T and v € V we

have:
tlg,v] = [tg,v]
= [gg "tg,v]
—
eT
= lg,p(g "tg)v]

= g, p(w™'(t))(v))] O
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Proposition 3.5
Let G D U be connected Lie groups with same rank. Moreover let (L,n) be a
complex one-dimensional representation of U with weight v and (K, () be an

complex r-dimensional representation of U with weights iy, . . ., .

In addition let (V, @) be a k-dimensional real representation of U with positive
weights B, ..., Bs. We assume that the trivial one-dimensional representa-

tion of U appears as subrepresentation of V' with multiplicity 20 or 21 + 1.
All weights have to be counted according to their multiplicity.

Furthermore we assume
c1(G X, L) = wa(G x, V) +wo(G/U) mod 2 (x).

Then we have the identity

o) <e%61<GXnL>ch(G x¢ K) (H cosh (%)) A(G/U>> [G/U]

H <%7+Mp +0' + % 25(0)50705>

— ol. a€Xt(G) a
zp:a:{l,...%;{ﬂ} H (6, )

a€XH(G)

In this formula we use the notations:
p(G x, V) =TI, (1 + y?) is the total Pontrjagin class of G x, V.
(, ) is the bilinear form on t* induced by the Killing form on G. ¢ is the half

sum of the positive weights of G, &' is the half sum of the positive weights of
U.

Y1 (G) is the set of positive weights of G, U the set of positive complementary
weights of G with respect to U.
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Remark 3.6

(i) The fulfillment of condition (x) can be read off the weights of the rep-
resentations. ([BH58], sect. 11). For the sake of simplicity we want to

give the criterion just in the case of V = 0:

c1(G %, L) = wo(G/U) mod 2
1 _ : : ,
= 2 (”y + Z a) is analytically integral with respect to G.

(i) If U is the centralizer of a toral subgroup of G then a theorem due

to Wang says that G/U possesses a homogeneous complez structure.

([Wans4].)

In the case L = AYI(Ty(G/U)), K one-dimensional and i, being posi-
tive and orthogonal to the roots of U the formular in 3.5 coincides with

the formula given in [Sug79], sect.2. (see also [BH59], sect. 24.7.)

Proof of Satz 3.5:

We define F = G x, L and F' = G X,V and D = G x¢ K. Furthermore,
let T(G/U) be the tangent bundle of G/U. S' acts on these spaces as in
section 3.1. T'(G/U) is equivariant isomorphic zu G x, Ty/(G/U). Due to the

connectedness of U, F' ist orientable.

The positive weights of T (G/U)) are the complementary roots a € W.
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Table of notations

representation | filed dim. weights ass.bundle
(L,n) C 1 07 E
25 + 21
(V) R or +061,...,1£05,0,0,...,0 F
2s+20+1
(K,Q) C r [1s - D
Ty (G/U) R 20| complementary roots T(G/U)

Due to 3.4 the fibres of those bundles over the fixed point wU are represen-
tations of T with weights yw ™!, £5;w™!, pw™t, aw™".
The results of section 1.3 cause the next identity being valid for all members

z of a dense subset of R:

I'(G/U, E, F,D)(e*™) = ! > A(wU,E,FE)(e™)  (xx)

with

v(wU, E, F, D) (62”“)
— 6% (yw™ A (= (Z etow —1x a:)

9! H (ezwaw ) 4 - (&wﬂ(w)))

11 (efg(aw*u( 2) _ e%(awﬂ(w)))

acV

-1

By means of the results in section 3.2 (#x) is equal to the formula in section
1.3. We just have to take care about the sign coming from the orientations
of the fixed points. We have to orient them in such a way that all rotation
numbers of the tangent space are positive. So each o with negative cw™!

gives a change of the orientation.
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This fact was taken into account because for each such a the denominator

above has another sign than the corresponding term in section 1.3.

In order to apply Proposition 2.35 we transform the term:

['(G/U, E, F, D)(e*™)

= ’WEU)’ Z y(wU, E, F, K)(e*™)
ew

1 1,1 1
_ 5(yw A(z)) | pw ™ IA(Z)
= way 2 (Zeu >

P
2'T] <€%(ﬂaw‘l>\(z)) 4 e—%(ﬁaw‘lx\(&?)))

11 (e—aaw*lx( 2) _ eaaw*u(x)))

-1

aew
1 -1 -1y
— _1\¥l (yw™ A (z w (z
= Oy 2 <Z )
weW (Q)
211_[(% w I\ (0 —|—€ 2 Bow™ A(x))
I (eaaw—wx» _ e;(aw—u(@)>—1
ac¥
1 Lyw=I\(= w I\ (z
— (_1>‘W||W(U)| Z ez (YW X( )).(Zeup A ))
weW (Q) P

2'T] (eé(ﬁow‘lk(r)) 1 e (Bow” 1A<w>>>
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2T] (e%(ﬁow”k(x)) i e—é(ﬂawﬂ(x)))

H (6%(aw’1/\(x)) . 6_%(0“0—1)\(1,)))
aeXt(U)

I1 (eaax(x)) _ e%(—am)))

aeXH(G)

-1

2.33 (_1)|@||WEU)| Z sign(w)e%(wIA(JJ))-(Ze“pwl*(@)

2y <He2 £(0) (Bow! (w)))

e{1,...,s}—{x1}

Z (Sign(w/)eyw”lwfl)\(x))

w' eW (U)

11 (e%w(x))_e LA >>>‘1

aeXT(G)
- (-1 |\P| Z sign(w) " ] <62<ax<x
ew (U) P aeXt (G
> Z sl (s 1 0
e weW(G@

x — 0 causes A(x) — 0. So Proposition 2.35 gives:

ol4) <e2 (ED o (G o K (Hcosh (y)> A(G/U)) [G/U]

= (-D)YT(G/U,E, F,D)(1)
2! -1
=y 10

_ 6—%@@)))

aESH(G)
3 sign@/)g;z{
w' eW (U) p €
11 <;v+up + 0w+ < Z ﬁa,>
aeXT(G)

2.31(44) 2! -1
= . 0,
way - L@

a€s+(G)

-1
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-2 22 <v+up+5’ s Z o), o 1>

weEW(U) p & aest(G

2.31 (i) 2! 1
= . | | 0,
(W(U)| (9,)

a€s+(G)

P3P0 3| [ CERVEREE) ECTARY

wewU) p € aclt(G o
2l

=y 1L e

aesH(G)

P35 351 [ CTVERES ) SELTRY

weEW(U) p & acst(G

g

1 1
| QGLI(G) <§7 +pp, + 0+ 3 za:s(a)ﬁm a>
D>

P edl,..,s}—{x1} H (0, )

a€SH(G)

In the penultimate step we made use of the fact that the sets {7},
{£61,...,£0s} and {u1,..., .} are W(U)-invariant. They are weights of

representations of U. [
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3.3 Non-immersion theorems for homoge-

neous spaces

We apply the results of the preceding section to a special situation: We
set V' = 0 and substitute K by K(t) = ¢(K) with K a virtual complex

representation of U and ¢ an integer. We associate to v, the Adams operation.

Proposition 3.7
Let G D U be connected Lie groups with same rank. Moreover, let (L,n) be a
complex one-dimensional representation of U with weight v and (pq, . .., f)

be a W(U)—invariant family of analytically integral elements.

Due to 2.15(iv) there are complex representations (K1,(1),. .., (Ks, () and

T S
integers ny,...,ns with >, e = > nyXk, .
p=1 o=1

We assume % (7 + > a) to be analytically integral with respect to G. This
ac¥
implies:

r

> I (3r+m+da)
G)

p=1 aext(

H (0, &)

a€S+(G)

(ii) H(t) =

Here we use the following notations:

By H we denote the Hilbert polynomial of G/U associated with ¢1(G %, L)
and z = Y nych (G x¢, K,).
o=1
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(,) is the bilinear form on ¥* induced by the Killing form of G. By § we

denote the half sum of the positive weights of G, by & the half sum of the

positive weights of U.

Y1 (G) is the set of positive weights of G, U the set of positive complementary

weights of G with respect to U.

Remark 3.8

(i) If G/U is an almost complex homogeneous space with invariant almost

complexe structure then L may be chosen as bundle of determinant
forms of Ty (G/U) (considered as a complex vector space). The weight
of this bundle is given by the sum of the positive complementary weights.

Hence weget%(v%— Sa)l=> aand iy+46 =4.

acV¥ acV

(1) If G/U is a homogeneous Spin-manifold we may choose L as trivial

bundle. In this situation we have % <fy—|— > ) = % >« and %’y +
acVv aevy
o =19

(111) Linked with Proposition 1.5 the proposition above yields a non-
immersion theorem for homogeneous spaces. In the case r = 1 we have
H(t) in a factorized form. So the value vy (H (%)) can be calculated in

an easy way. In the case r > 1 we have to make more efforts. [
Proof of 3.7:
For all o € {1,...,s} let u§”>, el ) be the set of weights of K. For all

analytically integral elements p we have

s r(o0)
Hpeft, ot =nd =) Z N

uE)U):u

For all o € {1, ..., s} Proposition 3.5 causes

(o)
A(G/U,M,ch@x@[(ﬁ))z 11 <7+up + 0, >

p=1 aext(G)

I[I o

a€s+(G)
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Using z = Y nych (G %, K,) this leads to

A (G/U, 5

= ZnUA (G/U7 Q(wa,ch (G ¢, KU)>
o=1

. 1:[(0) <%7 + b+ 5"a>
_ 3 a€dl
2" I @o

a€s+(G)

s (o) 1:[((})<%'Y+H+5’,04>
aed
g ’)’Lo_
> oy Yo

panalyt.int. o=1 p=1

a1 (G %, L),z>

H <%’7+,u+5',a>

_ "\ aent(@)
uanazly:t.int. ; H <67 Oé>

ot a€St(G)

1 !
H <§v+up+5,a>

N aeTi(g)
2% I 6w

aeXt(G)

This establishes part (i) of the statement. For integers ¢ part (ii) is implied
by part (i) and the additivity of the Adams operation. [



Chapter 4

Applications

4.1 Preliminaries

The essential tool for the determination of the numbers 15(q) is the next

lemma. First we need some notations:

Notation 4.1
For n € N we define:

a(n) = number of the digit 1 in the dyadic representation of n;

Lemma 4.2

ve(n!) =n—a(n). O
For the purpose of applications we note the subsequent identitities:

Proposition 4.3

n+1
_ _ (2n+1)!
[1ei-n =57

49
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—~
<
|
o~
~—
I
pamp
—
.
|
—
~—

H
O
A

.
A
3

<

I
A

—
<
_|_
.
N—
I
==
—~
[\)
<
|
—_
S~—

<.

1<i<j<n Jj=1
: T (29)!
H (J+i+1)= H .
1<i<j<n j=1 (‘7 + 1)'
. n (25 —2)!
(J+i—1)= ‘
1<E<n 91;[1 =D
n—1 .
L 25 —1)!
(j+i1—2)= ((‘7_1))'
1<i<j<n 7j=1 J ’

an—1)+1, nodd

a(n) = { « (%) ) n even

200 (RB) + 2, n even
iy ] 20 (8)
ajn—1)4+a(n—1), nodd

w0 U —i)) S e

vy H(j+z’>>= ;— +a)

v 11 (j+i+1)>:(n_2)2(n+1)+a(n+1)
" 1<‘1:['< (j+i_1)>:n(n2_ 1)

v |1 <j+z'—2>>: >
1<i<j<n
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Remark 4.4

We will use the formulas above without an explicit reference.

Remark 4.5

(i) a1 is monotonely increasing. If n is a power of 2 than we have a;(n) =

% logy(n).

(11) By means of the identities above we can calculate a(n) and ay(n) with

time exposure O(logn) and O((logn)?), respectively. O

Values of a; will be used only in the form oy(n) — oy (k) — ag(n — k) with

0 < k <n. So the following propositions are of interest:

Proposition 4.6
Let n be a natural number and k € {0,...,n}. Then:

0<ai(n)—a(k)—ar(n—k) <min{2’|peNand 2 >n} —1 < 2n — 1.

Proof:

For natural numbers p and p we define

al?) (p) = digit with value 2” in the dyadic representation of p;

Claim 1: Let p € N. For all natural numbers p there are uniquely determined
natural numbers s(p), r(p) with p = s(p) - 2°*! +r(p) and 0 < r(p) < 21

With these notations we have

ai”(p) = s(p) - 27 + max{0,7(p) — 2°}.
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Proof of Claim 1:

For p = 0 the statement is trivial.

Let p > 0.
Case 1: 0 <r(p—1) < 2°.
This gives a” (p—1) = 0, s(p) = s(p—1) and r(p) = r(p—1) +1. We obtain

Case 2: 2P <r(p—1) <2°t — 1.
This gives o) (p—1) = 1, s(p) = s(p—1) and r(p) = r(p— 1) + 1. We obtain
(p) - 20 + max{0, r(p) — 2°}
= s(p)-2"+r(p) =2
(p—1)-2° +max{0,r(p—1) —2°} +1
= p-1)+1

= o (p).

Il
VA

Case 3: r(p—1) = 2°+1 — 1.
This gives a®(p — 1) =1, s(p) = s(p — 1) + 1 and r(p) = 0. We obtain

s(p) - 22 + max{0,r(p) — 2°}

_1).2P+29
-1

I
®

= s(p
(p—1)-2"+max{0,r(p—1) —2°} +1

= ozgp)(p—l)%—l

= o (p).

So Claim 1 is proved.
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Claim 2: Let p € N. This causes
(p) _(» N (Y 0
0 <o (n)— o)’ (k) — oy (n— k) < 2°.

Proof of Claim 2:
We have

n=(s(k)+s(n—k) -2 +rk)+r(n—k).
Case 1: 0 <r(k) <2’ and 0 < r(n—k) < 2.
This gives 0 < r(k) +7(n — k) < 277! hence s(n) = s(k) + s(n — k)
and r(n) = r(k) +r(n — k). We obtain
of (n) — o’ (k) — o (n — k)
= max{r(n) —2°,0}
e {0,...,2° —1}.
Case 2: 2° < r(k) <2/t and 0 < r(n — k) < 2.
This gives 2° < r(k) +r(n—k) <2/ or 2071 < (k) +r(n — k) < 3-2°.

In the first subcase we have s(n) = s(k) + s(n — k)
and r(n) = r(k) +r(n — k). We obtain

e {0,...,2° —1}.
In the second subcase we have s(n) = s(k) + s(n — k) + 1
and r(n) = r(k) + r(n — k) — 2/, We obtain
o (n) = ol (k) = o (n — k)

= 20— (r(k) —2°) =2t —r(k)

e {1,...,2°}.

23
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Case 3: 2 <r(n—Fk) <2 and 0 < r(k) < 2°.

The statement is analogous to Case 2.

Case 4: 2° < r(k) < 2°t and 2 < r(n — k) < 271

This gives 27 < r(k)+r(n—k) <3-2° or 3-27 <r(k)+r(n—k) < 22
In both subcases we have s(n) = s(k) +s(n — k) + 1

and r(n) = r(k) +r(n — k) — 2/1.

In the first subcase we obtain

o (n) — o (k) — o (n — k)
= 2 —(r(k)—2°) — (r(n — k) — 2°)
= 3.20—r(k)—r(n—k)
e {1,...,2°}.

Im the second subcase we obtain

al”(n) — of” (k) — o (n — k)
= 224 (r(n)—2°)—(r(k) —2°) = (r(n — k) — 2°)
= 0.

So Claim 2 is proved.

Claim 3: Let p € N and p > log,(n). Then for all x € {0,...,n — 1} o’ (k)

is vanishing. In particular, for all p > logy(n) the term o\’ (n) — ol (k) —

a\”(n — k) is vanishing.

Proof of Claim 3:

Else we got n > k > 2° > logs(n) —

With po = max{p € Z|p < logy(n)} we obtain py + 1 = min{p € Z|p >
log,(n)}. This leads to
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aj(n) —ag (k) — ay(n — k)
_ Za(p) (p) (k) — agp)(n — k)

>
p=0

_ 200-!—1 -1

IN

= min{2’|p € Z and p > log,(n)} —1
< 2n—-1 0

Lemma 4.7

0 < a(p) <logy(p) +1 for allp € N.
Proof:
R
We assume p = ) a,2” with a, € {0,1} for all p € {0,...,R — 1} and

p=0
ar = 1. This leads to a(p) < R+ 1 =log,(2%) + 1 <log,(p) + 1. O

Proposition 4.8
Let g,h :{0,1,...,n} — Z be given by

g(k) =4k(n — k) + 204 (k) + 2a1(n — k) and
h(k) = 8k(n — k) — 2k + 204 (k) 4+ 2a1(n — k).
Then the following statements are true:
(i) g(k) = g(n — k) if k < 5
i) g(k) > gk —1) if 0 < k< —lom(W) — 1.
(i) g(k) = g(k —1) if 0 <k < 5 — —27—

(1) h(k) > h(n — k) if k < &;
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(iv) h(k) > h(k — 1) if 0 < k < § — 12B82(0) =2

Proof:

g(k) —g(k—1)
= Bk+4n+4+2a(k—1)—2a(n—k)
> —8k+4n+4 —2logy(n) — 2

= —8k+4n+2 —2log,(n);

h(k) — h(k —1)
= —16k+8n+6+2a(k —1) —2a(n — k)
> —16k +8n+6 — 2logy(n) — 2
= —16k+8n+4 —2logy(n). O

*

In order to calculate favourable parameters while dealing with the immersion
problem of complex flag manifolds we have to solve the following minimizing

problem:

Lemma 4.9

Le n > 2 be an integer and the mapping
Ry :{(x1,.. . x0) € Z" |2 # x5 fuers # N} — N

gZ"U@’ﬂ b@/ Rn(xla"wxn) - Z VQ(ZE)\—.T,{)-
1<k<A<n

R, has a minimum in (1,...,n).
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Proof:
First we note that for any permutation ¢ € &,, the values R, (x1,...,2,),
Ro(x1+ 1,29+ 1,... 2, + 1) and R,(2o(1), .- ., Zs(n)) coincide.

We perform the proof by induction. If n = 2 then the statement is trivial.

We assume n > 3 and (z1,...,2,) to be a minimum of R,. Without loss
of generality we assume x1,...,x,, to be odd and x,,.1,...,%, to be even.
Furthermore we may suppose m > 7. Else we could increase all components
by 1.

Let z, = 2y, — 1 for Kk < m and x, = 2y, for Kk > m.

We have m # n, else we would obtain the contradiction

Ru(xy,...,z,)

= (23//\_1_2yn+1>

1<k<A
- (5 ) T
1<k<A<n
= < ) y17 ce 7yn)
> Ru(yi, -y Yn)-
We have
Ry(x1,...,2,)
= Z Vo(T) — ) + Z vo(T\ — xy)
1<k<A<m m+1<k<A<n
= D wm@n-)+ Y w25 — 2y
1<k<A<m m+1<k<A<n

— <”21>+ Z Vz(yx—yn)Jr(n_Zm)Jr Z Vo (Yn — Yr)

1<k<A<m m+1<k<A<n
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n—m

) +Rm(y1a>ym) + ( 2 ) +Rn—m<ym+la--'7yn)

Consequently (1,3,...,2m —1,2,4,...,2(n —m)) is a minimum, too.

n+1

If we assume m > >

we would get 2m —3 >n—2and n—m <m — 1.

This would lead to the contradiction

R,(1,3,...,2m —3,2m —1,2,4,...,2(n —m))
—R,(1,3,....,2m—3,2(n—m+1),2,4,...,2(n —m))
= Z ve(2m —1—-2k+1) — Z ve(2(n —m+1) — 2k)

1<k<m-—1 1<k<n—m

= ) wmlm-r)— > w2n-m+l-k)
1<k<m-—1 1<k<n—m

= Z v (2K) — Z v5(2kK)
1<k<m-—1 1<k<n—m

= Z Vo (2K)

n—m+1<k<m-—1

= Y mWw+D

n—m+1<s<m-—1

> 0.
Therefore m = |[%2] and (1,3,...,2[%] — 1,2,4,...,2[%]) and
(1,2,3,4,...,n) are minima. [

*
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While dealing with the immersion problem for the quaternional flag manifolds

we have to consider a determinant of a matrix of the form:

Proposition 4.10

For all n € N the following equation s true:

det ((1 . xﬂ)?)\—l + (1 + xﬂ)?)\—l + (1 . yK)Q)\—l + (1 + yK)Q)\—l)

(2n —1)! 272 2A—2
m - det (LIZ’N + Y

1<k, A<n
= 2 )ISH,ASH :

Proof: We prove by induction for [ € {1,...,n}:

det (1 —2) '+ (14+2)" "+ (1—y)™ '+ (1 +y) )

= 2 ﬁ(2y —1)

1<k, A<n

-det
(1 . mn)”\_l + (1 + mn)”\_l + (1 . yn)2/\_1 + (1 + yn)”\_i

-

Ae{l+1,...,n} 1<k<n

In the case [ = 1 the statement is trivial. We assume the statement to be

true for all [ € {1,...,n — 1}. This leads to

det ((1 . xﬁ)?)\—l + (1 + xﬁ)?)\—l + (1 . yﬁ)2>\—1 + (1 + yﬁ)2>\—1)
l

= 2 JJ@v-1)

v=1

1<k,A<n

(A=) (o)™ o+ ()™ ()™

TV
Ae{l+2,...,n} 1<k<n
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—
*
~

:N

= 21fev-1
v=1
Ae{l,...l}
Ii,\—Q -I—y,%’\_?
2L s , A A
- det S () (1) + 1) (e + 4)
§=0
=2+ (14 2)? 7 + (1= y)? 7+ (L4 y)? !
Ae{l-&tg,..-,n} 1<k<n
1
= 2 H(Ql/ —1)
v=1
Ae{l,...,l}
A2 4 2A-2
!
e > (42 (a2 + 42
e U 2 Sl Ut T e L
/\e{lig,.‘.,n} 1<k<n
I+1
() 541 .
= 2 H(Ql/ —1)
v=1
Ae{1,...,l1+1}
—
$i/\_2 +yi,\—z
-det
(1—2)™ "+ (14 2)? 7 + (1= 9)? " + (1T +y)™ !
)\E{l:2,...,n} 1<k<n

The identity (x) is implied by the binomic formula. The identity (*x) is due
to the invariance of the determinant to elementary transformations.

The statement for [ = n yields the proposition. [
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4.2 Non-immersion theorems for

flag manifolds

Notation 4.11

(1) Let ny,...,ng be positive integers.
y s o—1 o
(1) n=">3 ng, l,=1+> n;, my=>_ n,.
o=1 j=1 j=1

(111) Let T:{1,...,n} — {1,...,s} be given by
TA) =0 <= I, <\ <m,.

(v) G=U(n), U=U(ny) x -+ x U(ny).

(v) T=U1)xU(1) x--- x U(1).

Example 4.12

For s =3, n1 =1, no =4 and n3 = 3 we obtain:

olng|ly | me| 7o)

10111 | {1}

2042 5 ({2345}

313/6| 8| {6,7,8)

Proposition 4.13

61

complex

U(ny) x -+ x U(ng) is the centralizer Z(S) of the toral subgroup S =

{ diag (@i"r<1)7 . e"ﬂ")) ’ T1,...,Ts € ]R} in U(n).

Proof: [Tor68], p.25 ff. O
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Proposition 4.14

(i) Due to Remark 3.6(ii) G and U fulfill the prerequisites of Remark
3.8(i). T is a maximal torus of G and U.

(i1) In a canonical way gy can be understood way as the Lie algebra u(n) of

skew hermitian complex n x n-matrices. ([Ada69], 5.17(i).)

Due to [Kna96], 1.15.4 g = go®@C can be identified with the Lie algebra

gl(n,C) of complex n x n-matrices.
Hence [g,g] = sl(n,C).

t* is the span of the linear maps Ly (A =1,...,n) given by L\(D) =
D, modulo the relation Ly +---+ L, = 0.

(i1i) The Weyl group W (G) ist isomorphic to S,,. The Weyl group W (U)
ist isomorphic to &,, X --- x &, . ([Ada69], 5.17(i).)

(iv) The Killing form of G induces the bilinear form (, ) on t* given by

([FHI6], p.213)

(v) A system of positive roots of G ist given by

YHG) ={Ly— L. |1 <A<k <n}.

([Ada69], 5.28)
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The half sum of the positive roots is equal to

n

1

5= §Z(n—2A+ 1)L,.

A=1

(vi) For integers puy, ..., s the element Y pirnLy € t* is W(U)-invariant
A=1
and analytically integral. ([Kna96], 1V,9.17) O

Given these data the corresponding Hilbert polynomial of G/U is equal to

H(t)
u 1
11 <Z (tum +5(n—2w+ 1)) L, L, — LA>
- 1<k<A<n \v=1
" /1
11 <Z (§(n — 2+ 1)) L, L, — LA>
1<k<A<n \v=1
1 1
H <(tﬂﬂ'(l€) + 5(” — 2k + 1)) - (t,UT(A) + i(n —2X + 1)))
. 1<k<A<n
N 1 1
11 <§(n—2/€+1) - 5(n—2/\+1)>
1<k<A<n
I ((tre — 5) = () = V)
_ :t1§K<A§n

I =+»

1<k<A<n

So we obtain

Proposition 4.15
If i, . . ., s are integers then there exists an element z € ch(G/U), such that
the Hilbert polynomial associated with ¢i(G/U) and z is given by

T () = 5) = (try = A)
IT (=1

1<k<n

H(t) = +
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In order to get non immersion results we are interested in those integers

M1, - - - fbs With minimal 4 (H (%))

Therefore we choose a subset S C {1,...,s}. Let k be the sum k = >_ n,.

oeS
This causes n — k = Y n,.
o¢S
We determine the minimal value of v»(H(3)) under the assumption that s,

is even iff o € S.
We introduce integers 71, ...,7s by pe = 27, for o € S and u, = 27, — 1 for
og¢s.

+(7(2))

1
= > m (5 (Bre) = r) + A = "?)

1<k<A<n
T(k)ES,T(N)ES

1
+ Z Vo (5 (;u‘r(/@) - /J“T()\)) + A= KJ)

1<k<A<n
T(k)ES,T(N)ES

1

D D (5 (Hrm) = pen) + A = Fﬂ)

1<k,A<n
T(k)ES,T(N) ¢S

— Z I/g()\—lﬁ)

1<k<A<n

= Y (kw5 = (rw =)

1<k<A<n
T(k)ES, T(N)ES

+ D (e — k) = (e — V)

1<k<A<n
T(R)ES,T(N)ES

LD DI (—% + (Yrt) = £) = (e = A))

1<k,A<n
T(k)ES, T(N)ES

n(n —1)

—T + oq(n)

= > (v =) = (e = V)

1<k<A<n
T(r)ES,T(N)ES
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+ > (e —K) = (e = V)

1<k<A<n
T(R)ES,T(A)ES
—1
—k(n —k) — M

9 —+ aq (n)

Lemma 4.16

In the situation above vy (H (%)) s minimal for
Yo =14+ my + Z ny for o € S and

1<¥<o
ves

Yo =1+ m, + Z ng for o ¢ S.

1<¥<o
9ES

Proof: Due to lemma 4.9 the sum is minimal if

{vrwy — k|1 <Kk <n,7(k) € S} ={1,2,...,k} and

{’}/T(,{)—I{|].SI{STL,T(KJ)gS}:{l,Q,...,n—k’}.

65

By the definion of v, given above this is fulfilled. We show this by induction

over the cardinality of S: If S = (), then the statement is trivial. If S # (),

let 0 = max(S) and S; = S\ {o}. Thies gives

{7y — k|1 <Kk <n,7(k) €S}

= {’yT(H)—H‘lSKSH,T(H)ESl}U{”}Qy—KUUS’igmda}

= {l,...,k—n,JU{l+my+(k—n,) — k|l <k <mgy,}

= {l,....k—ny}

U{l4+my+ (k—ny) —Mmg, ..., 1L +ms+ (k—ny) — I}

= {1,...,k—n,U{l+k—n4,....k}

For the second sum we apply the same technique.
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Lemma 4.17
Letny, ... ,ng be integers and S be a subset of {1, ..., s}. Using the notations
n= ne and k= > n, we obtain:

o=1 1<o<s

oceS
The minimal value of all values vy (H (%)) constructed under the restriction

Lo 15 even iff o € S is given by
—2k(n — k) + a1(n) — ai(k) —ay(n — k).

Proof: The minimal value is equal to

Z va(A — K) + Z Vo(A — K)

1<k< A<k 1<k<A<n—k
n(n —1)

—k(n —k) — 5

-+ Oél(n)

_ ML+

(n—Fk)(n—Fk—1)
2

2
n(n —1)
—— 7 ai(n) —k(n — k)

= o(n) —o(k) —a(n—k)—2k(n—k). O

—aj(n—k)

Proposition 4.18
The complex flag manifold U(n)/U(ny) x --- x U(ns) has real dimension

n? — 3" n2 and can not be immersed in an Euclidean space with dimension

o=1
4dk(n — k) — 204 (n) + 204 (k) 4+ 204 (n — k) — 1.
Thereby k is an arbitrary integer which can be represented as sum > n, with

oS
Sc{l,..., s}

Remark 4.19

(i) In the case of complex Grassmannians (s =2, ny =k, no =n — k) the

results coincide with the results given in in [Sug79] and [May97].
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(11) In [Lam75] there is given a positive result: The complex flag manifold
U(n)/U(ny) x --- x U(ng) is a m7—manifold or can be immersed in an

Euclidean space with dimension n® — s.

(i1i) We obtain good results if we choose k to be close to % (see Proposition

4.8) O
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4.3 Non-immersion theorems for quater-

nional flag manifolds

Notation 4.20
(i) Let nq,...,ns be positive integers.
s o—1 o
(i1) n = Zlno, l, =1+ Zlnj, My = Z1n]
o= j= j=

(11i) Let T:{1,...,n} — {1,...,s} be given by
TA) =0 <= I, <A< m,.

(iv) G = Sp(n), U= Sp(ny) x -+ x Sp(ng).
(v) T=U1)xU(1)x---xU(1).

Proposition 4.21

(i) G and U fulfill the prerequisites of Remark 3.8(ii). T is a maximal
torus of G and U.

(11) go can be understood as the Lie algebra sp(n) of skew Hermitian quater-
nional n X n-matrices. ([BD85], 1.2.19) Due to [Kna96], pp.35-36, g
can be identified with the Lie agebra sp(n,C) Nu(2n).

g = go ® C can be identified with the Lie algebra sp(n,C).

This yields the simplicity of g and
t=1t = Dy is a diagonal matriz in gl(n,C)

t* is the span of the linear maps Ly (A =1,...,n) given by L\(D) =
D)\A.
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(iii)

(iv)

(v)

(vi)

The Weyl-group W (G) is isomorphic to the semidirect product of &,
and {£1}". The operation of &,, on {£1}" is given by the standard

operation on the set of indices.

The Weyl group W (U) is isomorphic to the semidirect product of &,,, x
e X 6, and {£1}". ([BD85], IV.3.8)

The Killing form of G induces the bilinear form (, ) on ¥* given by

< _Z axLy, _Z_ bHLK> = 4n1+4 ( > a,{bﬁ@) :

1<k<n

([FHI6], p.241)

A system of positive roots of G is given by
Z+(G) :{L)\—LH, L/\—FLH, 2L/\’1 <A< HSTL}

([Ada69], 5.28) The half sum is equal to

n

§=> (n—X+1)L,.

A=1
A system of positive roots of U is given by
SHU) = (J{Lr = Lu, La+ L, 2Ly |l < A < & < m, ).
o=1
The half sum is equal to

5/ = Z(mT(A) - A + 1)L)\.
A=1
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(vii) For given integers i1, . .., s the set of analytically integral elements

{£1}, falls pry # 0
Z ExtryLn| €x € (%)

fsAsn {1}7 jdlk Hr (k) =0
is W(U)-invariant. ([Kna96], 1V.9.19)

Remark 4.22
In the family

( Z Extlr(n) L

1<A<n

ex €{£1}, falls1 <k < n)

X ne
1<o<s
each member of (x) appears exactly (2 Ho =0 > -times. [

*

Given these data we obtain a Hilbert polynomial of G/U by:

No
1<o<s

20 H(t)

H <Z(€ytu7(y) +Mrw) — v+ 1)L,,, 2LH>
- + 1<k<n v=1
81w;;;i1 u
11 <Z(n — v+ 1)L, 2LR>

1<k<n \v=1
H <Z(5utﬂfr(y) + Mrw) —V + 1)[/1/7 LH - L)\>
1<k<A<n \v=1
11 <Z(n —v+1)L,, L, — LA>
1<k<A<n \v=1
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(EVtILLTI/ + Mz _V+1)LuaLn+LA
) )

1<k<A<n \v=1
1T <Z(n—u+1)Ly,LH+LA>
1<k<A<n \v=1

IT 2 (eutprie) + mrie) — 5+ 1)

_ 1<k<n
j:s1 jg: I]: 2<n<_/€%_1)

..... en=%1

1<k<n

TT  ((extieiey + megey = 5+ 1) + (Extiepy + may — A+ 1))
‘1§m<A§n

[l (n—r+1)+(n-r+1)

1<k<A<n

I ((eatiro + magy = 5+ 1) = (exthsey + mepy = A+ 1))

1<k<A<n

H (n—k+1)—(n—X+1))

1<k<A<n

= 4 [ H (Sﬁt/LT(K) + Mre) — K+ 1)
€1,..,en==E1

1<k<n

T ((Eetitnie) +meio = 5+ 1) = (extitny +moy = A+1)°)

1<k<A<n

H (n—k+1)—(n—A+1)"

1<k<A<n
[l (n=s+D)+@m=-A+1)7"
1<k<A<n
JI m=r+0)7"
1<k<n
= 4+ Z det ((E,J,LLT(,{) + M) — K+ 1)2A72>
€ en==%1 1<k,A<n
1y--9&n=—

' H (Exthtr(ny + M) — K+ 1)

1<k<n

IIT o= JI @-s-x+27" J] h-r+17"

1<k<A<n 1<k<A<n 1<k<n
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= 4+ [det <(€Htu7(ﬁ) + Mre) — K+ 1)2/\71> }
81,...762»”:&1 1<k, A<n
H AN—r)""- H (k+ )" H K-
1<k<A<n 1<k<A<n 1<xk<n
= £ [[ =17 I & [T @e—nr ' n!
1<k<n 1<k<n 1<k<n
221 2A—1
- det <(—tuT(H) + Mr(ey — £+ 1) + (thr(ny + My — £+ 1) >1<K’/\<n
=+ ] @x-1!
1<k<n
22A—1 2A—1
-det <(—t,u7(,{) + Mr) — K+ 1) + (tuT(H) + Mr) — K+ 1) )1§n,)\§n

At this point we are going to perform elementary row transformations within

the "o-th” block for all o € {1,...,s}, i.e. for k € {ly,...,my}.

Notation 4.23

For all r € Z we introduce a relation ~, on the set of n, X n-matrices:

A~ Ay —
For all (n — n,) X n-matrices B: det = +2" det

This leads to:

((=thr + mrg =+ 1)

0 ((_tug+/€)2)\fl

<—t,LLo- + 1)2)\—1

~ (_t/io— _’_2>2)\—1 + (tﬂzo— _’_2)2)\—1

)2)\71 )2)\71

(—tpy + K + (tho + K

-~

3<k<no 1<A<n
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(—tpo + D)+ (tpo + D27 4 (—tpe + D7+ (e + )P
~i (=thto + 207"+ (o)™ (o) (11 + 20
(Stha+ ®) 5 (Stpo+ k=227 (tpot k= 22N (tpo+ 1)2)
3§\/:§ng 1<A<n

~0 ((—tuo + 1)+ (tpy — e+ 2)2!
+ (—t,LLU — K+ 2)2)\—1 + (t,ug + /{)2)‘_1>

~q ( (—tuT(R) + Kk — lT(R) + 1)2)\_1

+ (thir) = K4 Ly +1)7

t (—tptry = B+ Loy + 1)

+ (t,uT(,{) + K =y + 1)2)\_1 )

lo<k<mg
1<A<n

In step ~_; we added the negative of the (k — 2)-th row to the k-th row
(k =ng,...,3), doubled the first row and added a null row to the second row.
We observe the admissibility of that tranformation in the case of n, € {1, 2}.
Consequently the Hilbert polynomial is given by

No
1<o<s

2i0=0  H(t)
= 27 ] @x—1r!

1<k<n
)2)\—1

)2>\—1

-det ( (—threy + £ — Ly + 1 + (i) — £+ Loy + 1

)2/\—1

-+ (_tMT(n)_ K+ lT(H)‘f’ 1 + (tMT(H)+ K= l”'('i)—’— 1)2)\_1 >
1<k, A<n

4.10 )2)\—2

= 42175 det <(—t,u7(,i) + K=l

=11 I @e—1r!

1<k<n—1

o (te = L) ™)

1<k, A<n
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We summarize the outcomes:

Proposition 4.24
Let py, ..., ps be integers. Then there exists an element z € ch(G/U) such
that the Hilbert polynomial associated with 0 € H*(G/U) and z 1is given by

) 2A—2

H(t) = det ((<tire) + 5 = L) ™7+ (ting + 5= b))

1-s— Y ne

1<o<s
Ho

w0

1<k, A<n

=1t I @e—-1nrt-2

1<k<n—1

*

In order to obtain non immersion results we set ¢ = %

Provoked by the
results in the complex case we choose the integers pq,..., s in a similar

manner.

Let SC{l,....s}, k=3 coNo, | =3 q5Me =n —k and

1—1—22719, ifoes

<o
ocS

25 ng, ifo¢s

0<o
o¢S

Mo =
W.lo.g. we assume S to be of the form S = {1,...,p} with p € {0,...,s}.
This causes k = m,, | =n —m, and

2, — 1, fl1<o<p

Mo = .
2(l, —k—=1), ifp+1<oc<s

*
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We perform elementary row transformations within the upper k£ rows:

1 2\—2 1 22—2
((—ﬁﬂf(n) + K- lf(ﬁ)) + <§M7(n) + K- lT(n)) )
1<k<k
1<x<n

1 22—2 1 22—2
= - — QZT(R) + H) + (—— + H)
(2 2 1<rk<k
122
< 1 . :>2A—2
~ ——+kK :
P 2 1<k<k

N —
+
[N}
A
K
|
=N

N———

3V
>
o

+

/I\

N —
_I_
=N

N——

3V
>
o

N

A

B

A

kol

The last relation is implied by the fact that for all o € {1,..

k€ {ly,...,m,} we have:

o If K =1, then
Loy —r=-14
2 7—(5) Kr = 2 K.

o Ifl,+1<k<2l,—1 then

1 —l+2lT(,€)—l€<—l+/i.

[\
|
o

o If k > 2[, then
1 1 1
? f;‘—'<——? *_QZTUQ _'H> < _‘? + K.

So

22—2 22—2
1 1
——+2hmy—% +|{—=4+kK
2 2 1<k<k

1<A<n

is a matrix of the form

(xiA72<+_y£A72)

1<k<k 5
1<A<n

.,p} and all

such that for all k € {1,...,k} there is an element v € {1,...,x} with

T = Y, S0 the matrix can be simplified by elementary row transformations

step by step.
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We perform elementary row transformations within the lower n — k rows:

1 2A—2 1 2A—2
(_iﬂT(n) + K= lr(n)) + (5#7(/@) + K= ZT(H))
k+1<x<n

1<X<n

= ( ]{3 +14+Kk— 217'(/&))2)\_2 + <_k -1+ K)QA_Q) k+1<k<n
1<A<n
= ( - 1 — K + 2l )2>\72 _I_ (_k - 1 _|— [{,)2)\72> k+1<r<n
1<A<n
2A—2
~s—p—14npi1 ( k—1+k )k+&§n§n

1<A<n

22—2
= <(_1 + KJ) ) 1<wk<n—k

1<A<n

The penultimate relation is implied by the fact that for all o € {p+1,... s}

and all k € {l,,...,m,} we have:

o If o =p—+1 then
k+1—|—li—2l7(,.i):—k—1—|—li.

e lfoe{p+2,...,s} and kK =, then
—k—l—li—i—QlT(n):—k—l—i—/ﬁ.

e lfoe{p+2,...,stand l, +1 <k <2l, —k—1 then
0§—l€—1—/€+2l7(,€)<—1—/€+/€.

e lfoe{p+2,...,8} and kK > 2, — k then
1§k’+1+/€—2l7(5)<—1—/{7+li.

*

Given these data the corresponding Hilbert polynomial of G /U is given by
1

"(3)
2

4 det

(49)7)

<(—1 + H)D_Q)

1<k<k

1<k<n—k / 1<i<n
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(=1 I @e—1r!

1<k<n-—1

7

=+ ] (A:f;) I[[ Ci4x+x) J] (A =r)

1<k< ALk 1<k< ALk 1<k<A<n—k

IT —2+x+x ]I (—%Jr/\—m) 11 (-;—F)\—F/{)

1<k<A<n—k 1<k<k
1<A<n—k
(=117 I @e—nr!

1<k<n

1<k<k
1<A<n—k

— s [[ -0 ] % I -1y

1<k<k 1<r<k ( T 1<k<n—k

1<k<n—k-1

=17t I @e—nrt

1<k<n—1

1<k<k
1<A<n—k

1T % 11 (—%-I—)\—/i) ng <—g+)\+l€)

1<A<n—k

=+ [J@-20- J] @-1'-(n-k-1)

1<k<k 1<k<n—k-1

1<k<k 1<k<k
1<A<n—k 1<A<n—k

(=1 ] @e—1!

1<k<n—1

*

This leads to

+(7(3))

= ) (26-2)— > a(2k-2)

1<k<k 1<k<k

+ Y 2= - > a@2s-1)

1<k<n—k-—1 1<k<n—k—1

+n—k—1)—an—Fk—1)
—2k(n — k)

11 <—%+A—m> 1T <—§+A+m)
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- > @-1)-(-1+ > as-1)+an-1)

1<k<n—1 1<k<n—1
= k(k=1)= > a(k-1)
1<k<k
+n—k—-12-Mn—-k—1) - Z alk —1)
1<k<n—k-1

+(n—k—1)—an—Fk—1)
—2k(n — k)

—n=1°=mn-D+Mm-1)+ Y ak-1)+an-1)

= k—4k(n—k) — ai(k) — a1(n — k) + a1(n)

Proposition 4.25
The quaternional flag manifold Sp(n)/Sp(ny) x --- x Sp(ns) has real dimen-
sion 2 (n? — > n2 | and can not be immersed in an Euclidean space with

) \ o=1
dimension

8k(n — k) — 2k + 21 (k) + 2a1(n — k) — 2a4(n) — 1.

Thereby k is an arbitrary integer which can be represented as sum »_ n, with

cesS
S cA{l,...,s}.

Remark 4.26

(i) In the case of the quaternional Grassmannian (s = 2, n; = k, ng =

n — k) the results coincide with the results given in [May97].

(i1) In [Lam75] a positive result was proved: The quaternional flag manifold
Sp(n)/Sp(ny) x -+ x Sp(ng) is a m—manifold or can be immersed in an

Euclidean space with dimension 2n* —n —s. [
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4.4 Non-immersion theorems for real flag

manifolds

Notation 4.27

(i) Let ny,...,ns be positive integers.

s o—1 o
(1) n = Zlna, l,=14+> n;, m,= zzlnj
o= j=

j=1
(i1i) Let 7 :{1,...,n} — {1,...,s} be given by
TA) =0 <= I, <A< m,.

(iv) G =50(2n), U=S0(2n;) x -+ x SO(2ny).

(v) T=S0(2) x SO(2) x --- x SO(2).

Proposition 4.28

(i) G and U fulfill the prerequisites of Remark 3.8(ii). T is a mazximal
torus of G and U.

(11) go can be understood as the Lie algebra so(2n) of skew symmetric real

(2n) x (2n)-matrices. ([BD85], 1.2.15)

g = g0 ® C can be identified with the Lie algebra so(2n,C) of skew
symmetric complex (2n) x (2n)-matrices. ([Kna96], 1.15.4)

This yields the simplicity of g and

t=t= < diag e 21,...,2n €C
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(iii)

(iv)

(v)

CHAPTER 4. APPLICATIONS

t* is the span of the linear maps Ly (A =1,...,n) given by

. 0 =z 0 =z
Ly | diag e = 2.
-z 0 —z, O

The Weyl group W(G) 1is isomorphic to the semidirect product of
S, and {(81, coen) €E{ELY [ [ &x = 1}. The operation of &,, on
k=1

(€1,...,6n) € {£1}"

set of indices.

[[ex =1 is the standard operation on the
k=1

The  Weyl group W(U) is isomorphic to the direct

product  of  accordant  semidirect  products of &,, and

{(510, ey Em,) € {E£1}7 f[r €. =1 } ([FHI96], p.271) ([BD85],
rk=ls

IV.3.6)

The Killing form of G induces the bilinear form (, ) on ¥* given by

< > aLy, Y bﬁLH> = 4n1_4 ( > aﬂbn>.

1<A<n 1<k<n 1<k<n

([FHI6], p.272)

A system of positive roots of G is given by
Z—F(G):{L)\—Lm L>\+LH|1§/\<I€STL}

([Ada69], 5.28)
The half sum is equal to

0= Z(n — /\)L)\

A=1
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(vi) A system of positive roots of U is given by

SHU) = (J{La = Lu, La+ L, |le X < 5 <mp b

o=1

The half sum is equal to

n

5/ = Z(m.,-()\) — )\)L/\

A=1
(vii) For integers i, ..., us the set of analytically integral elements
+1}, if ) 0
. e {1} f fr(s) 7
> eattrnLa b e =0 (%)
f=Asn ﬁ ex =1 fuer alleoc € {1,...,s}
k=lo

is W(U)-invariant. ([Kna96], 1V.9.20)

Remark 4.29
In the family

en € {£1}, if 1<k <n
eExphr(n L e
> eattrnn [[ n=1 fuer alle s € {1,...,s}

1<X<n
- = k=l

>, (no—1)
<o<s
each member of (x) appears exactly <21“_<f:0 )—times.

Remark 4.30
G/U is a Spin manifold because of wy(G/U) = 0.

Proof:
We denote the canonic bundles over G/U by &;,...,&. The tangent bundle
of G/U is equivariant isomorphic to the vector bundle € &, ® &.

1<o<6<s
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ST

OJ

&, are orientable, so we(G/U) =

CHAPTER 4. APPLICATIONS

I1

1<0<6<s

(2n0w2<§0> + 2n9w2(§g)) = 0.

*

Given those data the corresponding Hilbert polynomial of G/U is given by

>

(no—1)

1<o<s

2 po=0

H(t)

n

[

1<k<A<n

(

v=1

Z(Eutﬂﬂ-(y) + Merw) — U>Ll/7 Ln

_LA>

,,,,,

II

1<k<A<n

(

[I

1<n<A<n,<

v=1

> (n—v)L,, Lc — Ly

> (vt + M) —

n

;

v=1

v)L,, L, + L,\>

n

11

1<k<A<n

(

H ((5nt/jlﬂ'(n) +

1<k<A<n

v=1

> (n=v)Ly, L+ Ly

;

Mr(e) = K) =

A)

(5)\t,u7'()\) +mr) —

T ((extinte) + Mg —

1<k<A<n

I[ (s~

1<k<A<n

(n—=A)

k) + (extitzy + Mz — A))

[[ (h=r)+m=2)

1<k<A<n

= ]I ¢

1<k<A<n

n,—-m

—(n—=N)"

I[I (n=m)+m-2)"

1<k<A<n

Z H ( Exlllr(x) T Mar(r) — H)Q— (EAt,UT(/\) + mrn) — )\)2>

en=%1 1<k<A<n

H ex=1Vo
k=lg

= > I «

€1,--men=%1 1<pg<A<n

H ex=1Vo
k=lg

,,,,,

,,,,,

H (2n — Kk —\)

1<k<A<n
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22A—2
-det ((&’»WT(&) + M) — F") >1<H A<n

N H A—r)""- H (2n—r—A)""

1<k<A<n 1<k<A<n
Z det ((sntuT(,{) + M) — /1)%_2>
1<k, \<n
€1,-.,6n==E1 -
= 2 J] 0-n7" ] +rx-27"
1<k<A<n 1<k<A<n

.det ((—tuf(ﬁ) + Mark) — ,4;) 222 + (wT(n) + Mr(k) — 5)2A2>1<H .

= 227 [[ s=0r' I -1 J] @-1nr!

1<k<n 1<k<n-—1 1<k<n-—1

det ((—t,uT(,{) + Mr(r) — /<;) A2 + (t/LT(H) + Mr(x) — /1)2/\_2> L ern

= £2°nw-1" J] @s-1!
1<k<n—1

-det ((—t,uT(,.;) + Ma(r) — /<L) A

+ (t/,[,,r(,.i) + m'r(/i) - H)2>\_2> 1§;@,)\§n

Step (%) is true because for all ¢ € {1,..., s} the m,-th row is independent
of the sign of ¢,,, = £1.

We perform elementary row transformations within the ”o-th block”, i.e. for
KE{ly,...,my}:

With the notations of 4.23 we obtain:

)7 (g e =) 7)

((—t/if(n) +Mr(r) — K
1<A<n
22—2

~0 <(—tﬂa +K— 1)2/\_2 + (tpo +5—1) 1<k<no
1<A<n
)2)\72

~o ((=thtr + 8 = L) ™7+ (tariuy + = L) ™)
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So the corresponding Hilbert polynomial of G/U is given by

(no—1)

5 HE)

1<0<s
Ho

2

— 4+ det ((—mf(ﬂ) k= L)

IT ex—-rt (-1

1<k<n—1

o (tpr) + 5 = L) 7

1<k, A<n

We summerize the outcome:

Proposition 4.31
Let iy, ..., ps be integers. Then there exists an Element z € ch(G/U) such
that the Hilbert polynom associated with 0 € H*(G/U) snd z is equal to

H(t) = =det ((—tug + K — lT(,,))Q/\_2 + (t,u,, 4+ K= lT(U))z/\_Q)
1<k, A<n
_S_1<Z<s(nv_1)
2 o= cn=nr - I @17t O

1<k<n—1

*

If we denote the corresponding Hilbert polynomial of the quaternional flag

manifold Sp(n)/Sp(ny) x --- x Sp(ns) by A(t) we obtain
H(t) = A(t) - ol{o | no=0}|-1
and

(1) - (52 -

(see Proposition 4.24.)
In particular, by choosing the integers pq, ..., us as in section 4.3 we get a

non-immersion theorem:



4.4. REAL FLAG MANIFOLDS 85

Proposition 4.32
The real oriented flag manifold SO(2n)/SO(2ny) x --- x SO(2ng) has real

S
dimension 2 <n2 — 3" n?) and can not be immersed in an Euclidean space

o=1

with dimension
8k(n — k) — 2k + 201 (k) + 2a1(n — k) — 2a1(n) — 1.

Thereby k is an arbitrary integer which can be represented as sum » | n, with

oc€eS
S cA{l,...,s}.

Corollary 4.33
The real flag manifold O(2n)/O(2n,) x --- x O(2ns) has real dimension

S
2 (n%— > n2) and can not be immersed in an Euclidean space with di-
o=1

mension
8k(n — k) — 2k + 2a1(k) + 2a1(n — k) — 2a1(n) — 1.

Thereby k is an arbitrary integer which can be represented as sum Y n, with

oeS
S cAl,...,s}.

Proof: The canonical projection SO(2n)/SO(2n;) x --- x SO(2ng) —
O(2n)/O(2ny) X -+ x O(2ng) is a covering map and therefore an immer-

sion.

Remark 4.34
(1) In the case of real Grassmannians (s = 2, ny = k, ny = n — k) the

results coincide with the results given in [May97].

(i1) If we substitute the set (x) by the W(U)-invariant set of analytically

integral elements

(1}, if prge) £ 0
Z 5)\/117'()\)[4)\ €k € )

| (')
1<A<n {1}, if prgy =0
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we obtain a Hilbert polynomial
H(t) = A(t) - 2571

This generalizes the results in [May98].

(11i) There is a positive result given in [Lam75]: The real flag manifold
O(2n)/O(2ny) x -+ x O(2ny) is a T-manifold or can be immersed in

an Euclidean space with dimension 2n®> —n. [
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4.5 Non-immersion theorems for the mani-
folds
Sp(n)/U(ny) x -+ x U(ny)

Notation 4.35

(1) Let ny,...,ng be positive integers.
s o—1 o
(i) n = Zlng, l, =1+ Zlnj, My = Zlnj
o= = j=

(11i) Let T :{1,...,n} — {1,...,s} be given by
TA) =0 <= I, < A<m,.

(iv) G =Sp(n), U=U(ny) x--- x U(ng).
(v) T=U1)xU(1) x---xU(1).

Proposition 4.36
U(ny) x -+ x U(ng) is the centralizer Z(S) of the toral subgroup S =
{ diag (ei”(U, . e"f<")) ’ T1,...,Ts € ]R} in Sp(n).

Proof: Let A € Z(S). A commutes with the matrix diag(i,...,17), so all
entries of A commute with i. Consequently all entries of A are complex and
the centralizer of S in Sp(n) is equal to the centralizer of S in U(n). The

statement follows from Proposition 4.13. [

Proposition 4.37
(i) Due to Remark 3.6(ii) G and U fulfill the prerequisites of Remark

3.8(i). T is a mazimal torus of G and U.

t, W(Q), W(U), (,), 7(G) and § are decribed in Proposition 4.1/
and Proposition 4.21.

n

(ii) For integers i1, ..., s the analytically integral element ) pi-(yLy is
v=1
W (U)-invariant. O
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Given these data the corresponding Hilbert polynomial of G/U is equal to

H{(t)
I (St + - D) 1)
_ :t1§n<A§n v=1 .
II <Z(n —v+1)L,, L, — LA>
1<k<A<n \v=l1
H <Z(tuT(V) +(n—v+1))L,, L, + LA>
1<k<A<n \v=1
11 <Z(n —v+1)L,, L, + LA>
1<k<A<n \v=1
H <Z(t,u7(,,) +(n—v+1))L,, 2LH>
1<k<n \v=1
H <Z(n —v+1)L,, 2L,€>
1<k<n \v=1
[T ((peeo+n—r+1) = (trpy +n =2+ 1))
_ :t1§n<A§n
I[] (n=k+1)=(n-x+1)
1<k<A<n
IT (e +n—K+1) + (tpepy +n— A+ 1))
‘1§5<A§n
[I (n—rs+1)+(n-r+1)
1<k<A<n
IT (tpr+n—r+1)
‘lgngn
H (n—r+1)
1<k<n
T (Cpey +n—r+1) = (tpepy +n— A+ 1))
. :t1§n<A§n

II =+»

1<k<A<n
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H ((t,uT(fi) +n—K+ 1) + (t:uT(/\) +n—XA+ 1))

1<k<A<n

I[I en-r-2r+2

1<r<A<n

H (t:uT(n) +n—K-+ 1)

1<k<n

H (n—r+1)

1<k<n

H ((t,uT(n) tn—kK+ 1) - (t,uT()\) +n—-A+ 1))

1<k<A<n
H (= +A)

1<k<A<n

H ((tpry + n— K+ 1) + (tpry + 1 — A+ 1))

_1§5<A§n
H (k+A)

1<k<A<n

H (tprey +n — £+ 1)

1<k<n
11 =

= =+

1<k<n
-+ H ((tptriey + 10— £+ 1) = (tproy + 1= A +1))
1<k<A<n
[T (Guro +n =5+ 1) + (trroy 1= A+ 1))
1<k<A<n
' H (tpre) + 0 — K+ 1)
1<k<n
nl~! H k! H (k — )71 H (25 — 1)1
1<k<n 1<k<n 1<k<n
= = I (@ +n—r+1) = (tupy +n-A+1)
1<k<A<n
H ((tpr(ey + 0 — K+ 1) + (tiry + 0 — A+ 1))
1<k<A<n

' H (t/%(n)—i-n—/f—o—l). H (26 — 1)1

1<k<n 1<k<n
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We summarize the outcome:

Proposition 4.38

Let pq, ..., us be integers. Then there exists an element z € ch(G/U) such
that the Hilbert polynomial associated with ci(G/U) € H?*(G/U) and z is
given by

H(t) = i( H (tuT(H)—l—n—/ﬁ—irl)—(t/LT(A)—irn—)\—l—l))

1<k<A<n

IT (e +n—+1) + (tpepy +n— A+ 1))

1<k<A<n
H (tpr(e) + 0 — K+ 1) H 2 — 1171 O
1<k<n 1<k<n
*
The results in 4.2 induce to set the integers pq,..., us in a similar way.

We choose a subset S C {1,...,s} and define

Vo = —N + My + Z ng, if o € S,

1<9<o
veS

Yo = —N + Mgy + Z ng, if 0 & S,

1<¥<o
0¢gs

e =27, if 0 €5,

fo =27, — 1, if 0 ¢ S and

Then the sets {7,y +n— K+ 1|1 < k < n,7(k) € S} and {1,2,...,k}
are equal. Also the sets {v.(s) +n — K + 1|1 < x < n,7(k) ¢ S} and
{1,2,...,n — k} are equal.
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This leads to

1<k<A<n
r(r)eS(NES

+ Z Vs

1<k<A<n
T(R)ES,T(N)ES

1<k<A<n

+
X
)
R N Y Y
/\/_\/T\/_\/_\
DO —
=
N
z
_|_
S
|
&
+
—_

N— N N~ "
+
/_\/\/T\/_\/\\
DO —
=
N
S
+
S
|
>
+
—_

N—— N N 7
N— N N N~

1<k,A<n
T(k)ES,T(N) ¢S

1
+ Z Vs (5/17(,{)+n—/<a+1)

= Z Vo ((%(n)—l—n—/ﬁ—i—l)—(%(,\)+n—)\+1))
1<k<A<n
T(k)ES,T(N)ES
+ Z Vo ((VT(K)+n—/i+1)—(%(A)%—n—)\%—l))

1<k<A<n
T(R)ES,T(N)ES

1
D DRz (—§+(%(n>+”—f€+1)—(%(A)Jrn—wrl))

1<k,A<n
T(R)ES,T(N)ES

+ Y n((rwmtn—r+ D)+ (e +n— A+ 1)

1<k<A<n
T(k)ES,T(N)ES

91
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+ Z Vo (14 (yr) +n— K+ 1)+ () +n— A+ 1))
1<k<A<n
T(R)EST(VES

1
D DRz (—§+(%(n)+n—/€+1)+(%(x>+“—)\+1))

1<k, <n
T(k)ES, T(N)ES

+ Y (Y +n—r+1)

1<k<n

T(r)ES
+ Y wm (—%+%<H)+n—f€+1)
Togs
=S w1
= Z Vo (K — A) + Z Vo (k—A) —k(n—k)
+ Z o (K 4+ A) + _Z vo(—=1+ K+ —k(n—k)
1<k<A<k 1<r<A<n—k
+ > (k)= (n—k)
— Z ve (26 — 1))
— k(kz_ D) — o (k) + (n—k)(nQ—k— D —a1(n—k) —k(n—k)
+k(l€2— 3) +a(k) + (n — k)(g_ k—1) — k(n—k)

+k —a(k) — (n—k) —n*+n+ai(n)
= —(n—k)—4k(n—k) — a1(k) — aa(n — k) + o (n).

We obtain as non-immersion result:

Proposition 4.39
The manifold Sp(n)/U(ny) X - --xU(ng) has real dimension n(2n+1)— > n?
1

and can not be immersed in an Fuclidean space with dimension

8k(n — k) +2(n — k) — 2a1(n) + 2a4(k) + 2a4(n — k) — 1.
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Thereby k is an arbitrary integer which can be represented as sum . n, with

oes
Sc{l,...,s}. O
Proposition 4.40
Sp(n)/U(ny) x -+ x U(ng) is a m—manifold or can be immersed in an FEu-

clidean space with dimension 2n® +n — s.

Proof: The statement is caused by Proposition 1.10 and Proposition 4.36.
O
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4.6 Non-immersion theorems for the mani-
folds
SO2n)/U(ny) x -+ x U(ny)

Notation 4.41

(i) Let nq,...,ng be positive integers.
s o—1 o
(1)) n=">3 ng, l, =1+ > nj, my=> n;.
o=1 j=1 j=1

(1ii) Let T:{1,....,n} — {1,...,s} be given by
TA) =0 <= I, <A< m,.

(iv) G =S02n), U=U(ny) x - xU(ng).
(v) T=U(1)xU(1) x---xU(1) =50(2) x --- x SO(2).

Proposition 4.42
U(ny) x -+ x U(ng) is the centralizer Z(S) of the toral subgroup

S — {dzag(( cosTr(1)  sinri(q) > ..... ( COSTr(n)  SINTr(p) )> ’ Plyeoo Ts € R} ‘

—sin Tr(1) COos Tr(1) —sin Tr(n) COos Tr(n)

in SO(2n).

Proof: Let A € Z(S). We understand A to be an R-linear endomorphism
of C". A commutes with the matrix diag(( _(1) (1) > ..... ( _(1) (1) )) So A is C-
linear. Consequently the centralizer of S in SO(2n) es equal to the centralizer

of S'in U(n). The staement is caused by Proposition 4.13. [

Proposition 4.43
(i) Due to Remark 3.6(ii) G and U fulfill the prerequisites of Remark
3.8(i). T is a mazximal torus of G and U.

(i) t, W(G), W(U), (,), E7(G) und § are described in Proposition 4.28
and Proposition 4.14.
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n

(iii) For integers pu,. .., us the analytically integral element ) piro)Ly is
v=1
W(U)-invariant. O

*

Given these data we obtain a Hilbert polynomial of G/U equal to

H(t)
11 <Z(Wf<v> +(n—v))Ly, L. — LA>
_ :t1§H<A§n v=1 .
11 <Z(n — )L, L, — LA>
1<k<A<n \v=1
H <Z(t,u7(u) +(n—y))L,,,L,€+L,\>
.1§n<A§n v=1
1T <Z(n — V)L, L, + LA>
1<k<A<n \v=1
I (e +n—5) = (tpepy +n = V)
_ :t1§n<A§n
[T ((n=r)—(m-N)
1<k<A<n
I (e + 0= 5) + (e + 1= X))
‘1§n<A§n
[T ((n=r)+(n-21)
1<k<A<n
H ((t,uT(N) +n—K) = (tpro) +1n — )\))
_ :t1§H<A§n

I =+»

1<k<A<n

H ((t,uT(,.i) +n—r)+ (turoy +n — /\))

‘1§5<A§n
H (2n — Kk —\)

1<k<A<n
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T (e + 1= 5) = (tpey + 0= N)

_ :t1§H<A§n
II =+»
1<k<A<n
H ((tpr(e) + 1 — &) + (tirry + 1= N))
.1§5<A§n
I +r-2
1<k<A<n
= 4+ H (tpirey + 1 — K) = (tprpy + 10— N))
1<k<A<n
H ((tpr(ey + 1 — &) + (tirry + 1= N))
1<k<A<n
IT =10 II -0t J] (s—117"
1<k<n-—1 1<rk<n-—1 1<k<n
= + H (tprie) + 1 — K) — (tprny + 10— X))
1<k<A<n
H ((tpr(ey + 1 — &) + (tirry + 1= N))
1<k<A<n
=11 I @s-117"
1<k<n—1

We summarize the result:

Proposition 4.44
Let pq, ..., s be integers. Then there exists an element z € ch(G/U) such

that the Hilbert polynomial associated with ci(G/U) € H?*(G/U) and z is
given by

Hit) = £ [ ((peie) +n—5) = (tpepy +n— )
1<k<A<n
H ((tprey + 1 — &) + (tprpy + 1 — N))
1<k<A<n
(-1t ] k-1 O
1<k<n—1

*
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In a similar way to the preceding section we set the integers py, ..., s

We choose a subset S C {1,...,s} and define

Vo = —N+ My + Z ny, ifUES,

1<¥<o
ves

Yo=-n+1+m, + Z ng, if o ¢ S,

1<9<o
IES

le = 275, if 0 €S,

fo =27, — 1, if 0 ¢ S and

Then the sets {y;) +n—r|1 <k <n,7(k) € S} and {0,1,...,k — 1} are
equal and the sets {y;.) +n— k|1 <k <n,7(k) ¢ S} and {1,2,...,n—k}

are equal.

5(7())

1 1
= Z Vo iuT(H)+n—/€ — | ghrm +n—A
1<k<A<n

T(k)ES,T(N)ES

+ Z Va

1<k<A<n
T(r)¢S,T(N)ES

1
+ E Vo ((i,uf(n)—l-n—/i
1<k,A<n
T(k)ES, T(A)ES

+ Z %)

1<k<A<n
T(k)ES,T(N)ES

+ Z 12

1<k<A<n
T(R)ES,T(A)ES



98 CHAPTER 4. APPLICATIONS

1 1
+ Z Vo ((5,“7(@ +n— H) + <§MT(A) +n— A))

1<k,A<n
T(K)ES,T(N)ES

= > (2= 1) = wa((n—1))

= Z Vo (K — )+ Z Vo (kK —A) — k(n—k)
1<k< A<k 1<k<A<n—k
+ > wmE+HA-2+ Y wm(-l+r+A)—k(n—k)
1<k< A<k 1<k<A<n—k
- > wm(@e— 1) = wa((n—1))

_ ’“(’“2_ Y k) + (”_k)(”Q_k_ Y iln— k) — k(n — k)
+(k—2)2(k—1)+(n—k)(r;—k—1)_k(n_k)

—n=12*+m-1D4+a(n—1)—mn—-1)+a(n—1)
= (n—k)—4k(n —k) —aq(k) —a1(n — k) + a1 (n)

Intertwining k < n — k leads to:

Proposition 4.45
The manifold SO(2n)/U(ny) X --- x U(ns) has real dimension n(2n — 1) —

S
S™ nZ and can not be immersed in an Euclidean space with dimension

o=1
8k(n — k) — 2k — 2ac1(n) + 204 (n — k) + aq (k) — 1.
Thereby k is an arbitrary integer which can be represented as sum »_ n, with

ces
Sc{l,....,s}. O

Proposition 4.46
SO(2n)/U(ny) x -+ x U(ng) is a m—manifold or can be immersed in an Eu-

clidean space with dimension 2n* —n — s.

Proof: The statement is caused by Proposition 1.10 and Proposition 4.42.
O



Appendix

Each of the five tables in this appendix is concerned with one of the five types
of homogenous spaces considered in the last chapter. Fach table contains the

dimensions and bounds of 25 homogeneous spaces chosen by random.

For the sake of convenience we denote groups like U(ny) x --- x U(ng) by

U(nl,...,ns).
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Complex flag manifolds

APPENDIX

Manifold dim L.b. u.b.

U(128)/U(14,16,7,9,25,5,24,21,7) 14086 | 16256 | 16375
U(99)/U(13,2,7,9,6,21,20,21) 8180 | 9702 | 9793
U(46)/U(16,10,3,17) 1462 | 2036 | 2112
U(51)/U(4,20,4,23) 1640 | 2544 | 2597
U(33)/U(4,19,8,2) 644 | 1026 | 1085
U(32)/U(25,7) 350 666 694

U(15)/U(3,4,8) 136 210 222

U(66)/U(3,6,9,17,12,16,1,2) 3536 | 4290 | 4348
U(127)/U(10,24,8,9,16,23,13,16,8) 14034 | 16002 | 16120
U(91)/U(23,24,17,4,23) 6342 | 8190 | 8276
U(89)/U(24,25,24,16) 5888 | 7790 | 7917
U(45)/U(23,2,18,2) 1164 | 1980 | 2021
U(30)/U(21,5,4) 418 724 832

U(53)/U(10,18,14,11) 2068 | 2750 | 2805
U(154)/U(23,25,10,20,21,23,4,22,2.4) | 20572 | 23562 | 23706
U(71)/U(15,24,18,11,3) 3786 | 4970 | 5036
U(145)/U(16,24,19,9,25,14,21,14,3) 18284 | 20880 | 21016
U(59)/U(8,9,15,1,4,22) 2610 | 3422 | 3475
U(56)/U(6,11,14,6,19) 2386 | 3064 | 3131
U(65)/U(22,7,3,13,15,5) 3264 | 4160 | 4219
U(67)/U(25,16,12,14) 3268 | 4368 | 4485
U(52)/U(10,21,17,1,3) 1864 | 2648 | 2699
U(65)/U(3,10,6,21,1,11,13) 3348 | 4160 | 4218
U(128)/U(23,13,15,12,16,13,2,16,10,8) | 14468 | 16256 | 16374
U(38)/U(23,15) 690 | 1346 | 1375




TABLES

Quaternional flag manifolds

Manifold dim L.b. u.b.

Sp(85)/Sp(6,4,18,17,13,3,24) 11612 | 14280 | 14358
Sp(61)/Sp(9,22,7,20,3) 5396 | 7320 | 7376
Sp(121)/Sp(16,20,22,4,23,20,16) 24600 | 29040 | 29154
Sp(113)/Sp(5,9,1,22,6,23,25,1,21) 21092 | 25312 | 25416
Sp(74)/Sp(15,16,3,11,25,4) 8448 | 10800 | 10872
Sp(125)/Sp(6,24,25,21,22,21,6) 25972 | 30988 | 31118
Sp(121)/Sp(25,22,10,7,24,15,18) 24516 | 29040 | 29154
Sp(54)/Sp(15,14,15,10) 4340 | 5698 | 5774
Sp(63)/Sp(5,19,21,3,15) 5816 | 7758 | 7870
Sp(28)/Sp(2,21,5) 628 | 1136 | 1251
Sp(134)/Sp(9,25,9,23,20,17,5,1,25) 30600 | 35644 | 35769
Sp(105)/Sp(22,1,17,25,21,19) 17648 | 21696 | 21939
Sp(66)/Sp(11,19,8,15,13) 6832 | 8576 | 8641
Sp(97)/Sp(1,9,10,7,11,4,13,19,10,13) | 16484 | 18624 | 18711
Sp(105)/Sp(22,18,11,25,13,14,2) 18204 | 21840 | 21938
Sp(35)/Sp(9,10,16) 1576 | 2368 | 2412
Sp(46)/Sp(7,18,21) 2604 | 4112 | 4183
Sp(109)/Sp(24,18,22,25,6,7,1,4,2) 19532 | 23544 | 23644
Sp(18)/Sp(3,15) 180 344 356

Sp(19)/Sp(1,18) 72 138 142

Sp(94)/Sp(18,22,21,3,8,8,14) 14508 | 17484 | 17571
Sp(58)/Sp(8,15,21,10,3,1) 5048 | 6612 | 6664
Sp(149)/Sp(23,9,9,3,23,7,9,24,24,18) | 38732 | 44104 | 44243
Sp(93)/Sp(10,21,16,20,11,2,13) 14316 | 17112 | 17198
Sp(115)/Sp(1,5,14,24,18,1,15,24,13) | 22264 | 26220 | 26326
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Real oriented flag manifolds

APPENDIX

Manifold dim L.b. u.b.
SO(206)/SO(36 50,32,16,16,24,24,8) 17944 | 21012 | 21115
SO(76)/S0(26,4,12,6,28) 2060 | 2812 | 2850
S0O(90)/S0O(36,38,16) 2552 | 3872 | 4005
SO(66)/S0(26,22,12,6) 1508 | 2112 | 2145
S0O(312)/50(48,20,20,12,46,34,44,38,6,44) | 42736 | 48360 | 48516
SO(218)/50(28,32,16,18,34,12,32,46) 20348 | 23544 | 23653
SO(70)/S0O(12,28,30) 1536 | 2336 | 2415
SO(98)/50(4,44,2,12,12,24) 3392 | 4704 | 4753
S0(260)/50(28,22,46,34,46,42,20,22) 29148 | 33540 | 33670
SO(98)/50(22,6,32,38) 3308 | 4658 | 4753
SO(108)/S0(18,8,26,16,8,16,16) 4884 | 5720 | 5778
SO(82)/50(46,32,4) 1784 | 3238 | 3321
S0(42)/S0(18,16,8) 560 828 861
SO(256)/50(10,20,42,20,18,36,28,38,2,42) | 28628 | 32512 | 32640
SO(268)/S0(38,32,30,48,30,50,4,36) 30720 | 35644 | 35778
SO(62)/50(50,12) 600 | 1160 | 1196
SO(30)/S0(22,8) 176 330 349
S0O(232)/50(28,12,34,50,36,22,50) 22480 | 26674 | 26796
SO(54)/S0O(20,34) 680 | 1316 | 1356
SO(176)/S0(38,22,16,20,46,32,2) 12624 | 15312 | 15400
SO(178)/S0(24,16,10,30,24,50,24) 13100 | 15664 | 15753
SO(192)/S0(26,50,34,10,14,32,4,22) 15356 | 18240 | 18336
SO(302)/S0(50,18,48,48,48,30,32,28) 39380 | 45286 | 45451
S0O(278)/5S0(38,8,36,6,48,34,18,50,40) 33280 | 38364 | 38503
S0O(230)/S0(12,34,30,44,20,48,30,12) 22508 | 26220 | 26335




TABLES

The manifolds
Sp(n)/U(ny) x -+ x U(ny)

Manifold dim L.b. u.b.
Sp(45)/U(7,1,13,6,18) 3516 | 4038 | 4090
Sp(64)/U(11,10,23,20) 7106 | 8178 | 8252
Sp(68)/U(11,19,21,8,9) 8248 | 9224 | 9311
Sp(110)/U(16,16,8,4,11,25,8,17,5) 22594 | 24200 | 24301
Sp(47)/U(13,12,22) 3668 | 4402 | 4462
Sp(129)/U(13,20,14,20,18,6,9,15,6,8) | 31480 | 33282 | 33401
Sp(61)/U(16,24,19,2) 6306 | 7282 | 7499
Sp(70)/U(8,21,18,23) 8512 | 9682 | 9866
Sp(86)/U(6,7,11,5,10,22,6,17,2) 13734 | 14792 | 14869
Sp(112)/U(6,1,22,16,3,17,19,14,14) 23372 | 25088 | 25191
Sp(51)/U(22,2,9,18) 4360 | 5190 | 5249
Sp(47)/U(4,21,1,21) 3566 | 4402 | 4461
Sp(114)/U(19,25,10,16,13,23,2,6) 24026 | 25992 | 26098
Sp(43)/U(2,16,10,9,6) 3264 | 3698 | 3736
Sp(50)/U(9,11,18,2,4,6) 4468 | 4996 | 5044
Sp(59)/U(23,2,17,16,1) 5942 | 6872 | 7016
Sp(79)/U(12,19,9,4,6,10,19) 11462 | 12482 | 12554
Sp(73)/U(7,19,24,15,8) 9456 | 10616 | 10726
Sp(84)/U(24,11,11,15,9,14) 12876 | 14088 | 14190
Sp(56)/U(25,9,22) 5138 | 6208 | 6325
Sp(85)/U(4,10,11,14,21,15,7,3) 13378 | 14450 | 14527
Sp(118)/U(12,19,12,3,10,8,22,22,10) | 26076 | 27848 | 27957
Sp(23)/U(22,1) 596 597 | 1079
Sp(53)/U(16,24,13) 4670 | 5578 | 5668
Sp(114)/U(2,6,24,13,19,2,13,16,19) 24170 | 25992 | 26097
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104 APPENDIX
The manifolds
SO2n)/U(ny) x -+ x U(ny)
Manifold dim Lb. u.b.
SO(282)/U(24 18,23,2,21,18,10,15,10) | 36998 | 39480 | 39612
SO(130)/U(5,14,20,15,5,6) 7478 | 8300 | 8379
SO(136)/U(22,13,11,9,13) 8156 | 9106 | 9175
SO(166)/U(18,10,6,5,15,2,19,8) 12556 | 13612 | 13687
SO(248)/U(4,8,19,21,10,25,2,16,15,4) | 28520 | 30504 | 30618
SO(66)/U(24,6,3) 1524 | 1678 | 2142
SO(86),/U(3,25,14,1) 2824 | 3526 | 3651
SO(160)/U(20,16,22,4,4,14) 11352 | 12640 | 12714
S0O(96)/U(12,5,8,21,2) 3882 | 4502 | 4555
SO(88)/U(13,23,8) 3066 | 3778 | 3825
SO(104)/U(24,22,6) 4260 | 5280 | 5353
SO(104)/U(9,1,14,19,9) 4636 | 5280 | 5351
SO(270)/U(15,9,24,17,24,25,10,11) | 33722 | 36180 | 36307
SO(90)/U(20,25) 2980 | 3918 | 4003
SO(198)/U(14,14,17,18,16,9,10,1) 18060 | 19404 | 19495
S0(92)/U(4,19,5,1,17) 3494 | 4140 | 4181
SO(124)/U(6,14,11,4,15,10,2) 6928 | 7564 | 7619
SO(194)/U(17,7,2,18,6,25,22) 16910 | 18624 | 18714
SO(106)/U(18,1,8,20,3,3) 4758 | 5512 | 5559
SO(30)/U(3,3,5,4) 376 | 420 | 431
SO(38)/U(3,7,2,7) 592 | 684 | 699
SO(186)/U(13,6,8,7,20,2,18,12,7) 15966 | 17112 | 17196
SO(24)/U(2,10) 172 | 173 | 274
SO(274)/U(11,22,21,19,2,23.4,16,19) | 34828 | 37264 | 37392
SO(56)/U(3,25) 906 | 907 | 1538
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