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On computing maximum-size

matchings in graphs

by Andreas Schoppmeyer

Abstract: The problem of finding a maximum-size matching in a graph appears in
many situations in graph theory. Therefore it is crucial to compute such matchings
in a fast way. In some cases a hybrid algorithm, consisting of an heuristic to find
a start-matching and an exact algorithm to compute the maximum-size matching,
appears to be much faster than classical algorithms. We show a way to implement
appropriate heuristics, exact algorithms and hybrid algorithms in C++ and compare
their performance on different random graphs. To reduce the programming-effort ,
we used comprehensible techniques. These techniques can be implemented indepen-
dent of programming languages and the operating systems.
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1 Introduction

The subject of this paper is the problem of finding maximum-size matchings
in graphs. All graphs G = (V,E) are considered to be connected, finite and
undirected. A matching M is a subset of E with the property, that no vertex
v ∈ V is incident with more than one edge of M . A vertex is called free,
if it is not incident to an edge of M . The set of all vertices adjacent to a
vertex v is named neighborhood of v. An alternating path with respect to
M is a path, consisting alternating of edges e ∈ M and edges e ∈ E \ M . If
both end-vertices of an alternating path are free vertices, the path is called
augmenting path. The augmenting path theorem[1] says, that a matching is
of maximum-size if no augmenting path can be found in G.

We will give an new approach, based on ideas of Micali and Vazirani[3], but
better to implement. Also the possibility of using simple hybrid algorithms to
increase the performance is discussed.

2 Heuristics

In order to construct the hybrid algorithms, we need some heuristics, to com-
pute a first ”good” matching (not necessary of maximum size). We use one
basic frame for all these heuristics. Each heuristic selects a vertex v∗ and
matches it with a selected vertex u∗ from the neighborhood of v∗. After that,
the remaining graph is updated. The heuristics differ only in the selection of
vertices v∗ and u∗ in step 1 and step 2 and in the update-procedure for the
remaining graph, used in step 2 and step 3 in the greedy-heuristic basic frame.
These differences are written in bold letters in the following pseudocode:

Greedy-heuristic basic frame

Given: graph G

Step 0 remaining graph G̃ = (Ṽ , Ẽ) := G, matching M := ∅

Step 1 Select a vertex v∗ ∈ Ṽ

Go to step 2

Step 2 If the neighborhood of v∗ is not empty:
Select a vertex u∗ from the neighborhood of v∗

Go to step 3

Else remove {v∗} from G̃ and update the remaining graph G̃

Go to step 1

Step 3 Set M = M ∪ (v∗, u∗)

Remove {v∗, u∗} from G̃ and update the remaining graph G̃

If Ṽ = ∅, then STOP:
M is a matching

Else go to step 1
The first used heuristic, called Random-Heuristic, is selecting the vertices

v∗ and u∗ randomly. We do not need an update-procedure. The second heuris-
tic is picking the first vertex v∗ of minimum degree above all free vertices.
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The corresponding vertex u∗ is selected from the neighborhood and has also
minimum degree above all neighbors. After that, the degrees of all vertices,
adjacent to the selected vertices v∗ and u∗ respectively are updated. This
approach we call MinDegree-Heuristic in the following sections. This greedy-
heuristic finds better starting matchings than the random heuristic. But we
will also find out, that its performance suffers dramatically on dense graphs,
because of the update-procedure in steps 2 and 3.

3 Algorithms

Beside the heuristics we need some exact algorithms to construct a hybrid al-
gorithms. In this paper, we used Hopcroft and Karp’s algorithm[2] for bipartit

graphs, that runs in O(|V |
5

2 ), |V | is the number of vertices. The idea behind
this approach is to augment the matching along a maximum-cardinality set
of minimum-length augmenting pathes.

We also want to process non-bipartit graphs. The fastest known algo-
rithm is given in [3] by Micali and Vazirani. They used Hopcroft and Karp’s
bound for the number of necessary augmentation steps[2]. The procedure they
present turned out, to be too complex for efficient implementation. Because
of that, a new algorithm is given.

3.1 The new algorithm

We present an new simplified algorithm, based on the ideas of Micali and
Vazirani. The main difference to our approach is that they used a special
procedure to treat odd length cycles. By storing information about the pre-
decessors of each vertex in a alternating path, we can avoid the use of such
procedures. The second advantage of storing the predecessor information is
that we can use a simple breadth-first search in the algorithm. To explain this
approach, we need some definitions.

Definition 1. Let G = (V,E) be a graph, M a matching in G and v0 ∈ V a

free vertex. A tree T = (V (T ), E(T )) of G is called rooted alternating tree

with root v0, if

• v0 ∈ V (T ) and

• each vertex in V (T ) is connected to the root v0 on an alternating path.

Definition 2. Let G = (V,E) be a graph, M a matching in G, v0 ∈ V a

free vertex and T = (V (T ), E(T )) a rooted alternating tree with root v0. The

vertices in V (T ) are called inner vertices and outer vertices, so that

• the root v0 is outer vertex,

• each inner vertex is adjacent in T with an outer vertex and

• each inner vertex is incident with two edges from E(T ).
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In this approach we start with the construction of rooted alternating trees
in each free vertex. These trees are expanded with a breath-first search. The
procedure inserts all inner or outer vertices respectively, that can be reached
in the existing alternating tree plus one edge.

In an odd-length cycle all vertices can be reached on two different alter-
nating pathes from the root. On one path, each vertex is outer vertex in the
tree, and on the other path, each vertex is inner vertex. So the vertices in
an odd-length cycle are considered twice on different search-levels. If an aug-
menting path is found, all vertices of the current search-level are examined.
After the augmentation the breath-first search starts with empty trees again.

A special feature of the presented algorithm is the storage of the prede-
cessors. All stored predecessors are outer vertices, because the inner vertices
can be identified by the current matching.

Algorithm 1

Given: graph G = (V,E), matching M

Step 1 For all vertices v ∈ V do
set innerlevel(v) = outerlevel(v) = ∞
set innerpred(v) = outerpred(v) = −1
set tree(v) = −1
set done(v) = 0

set i = −1, aug = 0
set outerlevel(v) = 0 and tree(v) = v ∀ v ∈ V \ V (M)
Go to step 2

Step 2 i = i + 1
if {v | outerlevel(v) = i ∨ innerlevel(v) = i)} = ∅ then STOP
if i is an even number then go to step 3, else go to step 4

Step 3 for all v with outerlevel(v) = i and done(v) = 0 do
for all (u, v) ∈ E with innerlevel(u) = i + 1, tree(u) =
tree(v), innerpred(v) = u do

set innerlevel(u) = 0
for all (u, v) ∈ E with innerlevel(u) > i + 1, tree(u) ∈
{tree(v),∞} do

set innerlevel(u) = i + 1
set innerpred(u) = v

set tree(u) = tree(v)
if {w | (w, v) ∈ E, tree(w) 6= tree(v), outerlevel(w) < ∞} 6= ∅
then

Select a vertex w from this set
identify the augmenting path P from tree(w) to tree(v)
augment the matching M with respect to P .
set done(u) = 1∀u with tree(u) = tree(v)∨
tree(u) = tree(w)
set aug = aug + 1.

if aug = 0 then go to step 2, else go to step 1
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Step 4 for all v with innerlevel(v) = i and done(v) = 0 do
for all (u, v) ∈ M with outerlevel(u) > i + 1, tree(u) ∈
{tree(v),∞} do

set outerlevel(u) = i + 1
set outerpred(u) = innerpred(v)
set tree(u) = tree(v)

if {w | (w, v) ∈ M, tree(w) 6= tree(v), done(w) = 0} 6= ∅ then
Select a vertex w from this set
identify the augmenting path P from tree(w) to tree(v)
augment the matching M with respect to P .
set done(u) = 1∀u with tree(u) = tree(v)∨
tree(u) = tree(w)
set aug = aug + 1.

if aug = 0 then go to step 2, else go to step 1

Theorem 1. Let G = (V,E) be a graph and M be a matching not of

maximum-size in G. Then Algorithm 1 finds a maximum-cardinality set of

augmenting pathes of minimum-length among all possible augmenting pathes.

Proof. An augmenting path musst exist, because of the augmenting path
theorem[1]. We can divide all augmenting pathes in two alternating pathes
of the same length and a linking edge between those pathes, because every
augmenting path has an odd number of edges. The construction of the trees
is started in each free vertex (Step 1), so there can only be an augmenting
path, consisting of two vertex-disjoint alternating pathes and a linking edge
between these pathes. Because of G being connected, there musst be a linking
edge, between each pair of alternating pathes. Every vertex contained in one
of the pathes (outer-/innerlevel < ∞) can be reached from a free vertex (the
root) on one or two alternating pathes. The only possibility that a vertex can
be reached on two different pathes, is the existence of an odd-length cycle. In
this case, the vertex is duplicated (outer- and innerlevel < ∞), it is outer
and inner vertex on two different search-levels (outerlevel 6= innerlevel) and
is part of two different alternating pathes.

While the construction is in progress, all possible linking edges are exam-
ined. There are two cases, when a linking edge is found, that implicate an
augmenting path. The first case appears, when two outer vertices from dif-
ferent trees are adjacent (if-clause in Step 3). The second case of a possible
augmentation is, when two inner vertices are joined by a matching edge (if-
clause in Step 4), because these vertices are reached on a free edge in the tree.
Linking edges between an inner vertex and an outer one are of no interest,
because the inner vertex must join the outer vertex with a free edge and it is
reached with a free edge in the tree.

Because of all linking edges being examined, each augmenting path is found
and because of the iterative increasing search level (Step 2) both vertices of
a linking edge have the same level. A linking edge between two vertices of
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a different level is not possible. If the level difference is odd, then an inner
vertex is joined to an outer one and no augmenting path can be found. If the
level difference is even and two or more, the vertex of higher level must have
been integrated to a tree on a lower search-level. Because of this, all linking
edges are found on the lowest possible search-level.

When the first augmenting path is found, all vertices on the current search-
level are checked. All other augmenting pathes with the same length are found
in this case and all pathes are used for augmentation, so the number of aug-
menting pathes being found is maximum. After that the search is stopped and
restarted. ¤

With theorem 1, the results of Hopcroft and Karp can be applied and
the number of restarts for the search is at most

√
|V |. In the worst case, the

search examines all edges in the graph, so at most |E| steps are needed for
one search, with |E| being the number of edges in the graph. This results in
running time of O(

√
|V | · |E|).

4 Hybrid-algorithms

Beside the new approach, we want to increase the capability to solve large
matching problems using hybrid algorithm. These hybrid algorithms are con-
structed by combining heuristics with exact algorithms. For our test we used
both heuristics from section 2 and combined them with both algorithms, that
of Hopcroft and Karp and our new one. These algorithms can be started
with a first matching, that is improved, while the algorithm is running. When
these algorithms are standing alone, we start with an empty matching, but
in hybrid algorithms, a heuristic is used for finding the start matching. This
is simply realized, by running the heuristic and handing the found matching
to the exact algorithm to start with it. In the following section, the hybrid
algorithms are labeled with the name of the heuristic ”+” the name of the
exact algorithm.

5 Computational results

In this section, we test the hybrid algorithms in competition to the exact
algorithm standing alone. All test’s have taken place on random graphs. The
heuristics and algorithms are implemented in C++, with respect to efficient
programming.

As we see in table 1, the MinDegree-Heuristic is not suitable for the use
in hybrid algorithms. But using the Random-Heuristic in a hybrid algorithm
improves the performance, its average time for computing the matching is less
than half of the average time, Algorithm 1 needed. In table 2 we see results for
a test on bipartit graphs. The algorithm of Hopcroft & Karp can be improved
with both heuristics, but the Random-Heuristic performs better. The direct
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method average time min time max time

Algorithm 1 63, 45 47 79

Random-Heuristic + Algorithm 1 26, 86 15 32

MinDegree-Heuristic + Algorithm 1 279, 25 250 282

Table 1. Results for a test with 1000 random graphs with |V | = 8000

method average time min time max time

Hopcroft & Karp 7523, 21 7391 7641

Random-Heuristic + Hopcroft & Karp 82, 74 62 94

MinDegree-Heuristic + Hopcroft & Karp 271, 57 250 282

Algorithm 1 125, 83 109 141

Random-Heuristic + Algorithm 1 99, 70 93 110

MinDegree-Heuristic + Algorithm 1 289, 66 281 297

Table 2. Results for a test with 1000 random bipartit graphs with |V | = 9000

comparison between both algorithms shows, that Algorithm 1 is faster than
Hopcroft & Karp’s algorithm, but a hybrid algorithm with Hopcroft & Karp’s
algorithm and the Random-Heuristic is the fastest method in the test.
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