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Introduction

In the early 1920's the Compton e�ect, i.e. the softening of scattered x-rays, was
discovered and correctly interpreted [Compton 1923, Debye 1923] and a few years
later DuMond [DuMond 1929] has shown that the measured Compton pro�le of
beryllium was in line with the predictions of the Fermi-Dirac statistics. In the
following years the relation between the Compton pro�le and the electron momen-
tum distribution was investigated systematically [DuMond and Kirkpatrick 1931,
DuMond and Hoyt 1931, DuMond et al. 1932]. Kappeler [Kappeler 1936] mea-
sured Compton pro�les of the solids lithium, carbon, sodium 
uoride and the
gases neon, oxygen and nitrogen obtaining reasonable agreement with theory, ex-
cept for the Compton pro�le of lithium, which was by a factor of 2.5 wider than the
theoretical predictions. Each attempt to explain this discrepancy on the theoreti-
cal side failed. In spite of the physical signi�cance of this experimental technique
Compton scattering faded away in the late 1930's for a period of roughly 25 years,
which may be due to the enormous experimental diÆculties the experimentalists
had to overcome.

With the development of eÆcient scintillation counters and rotating anode x-ray
generators the revival of Compton scattering started in the middle of the 1960's
with the experimental work of Cooper et al. [Cooper et al. 1965] showing that
the experimental result for lithium obtained by Kappeler [Kappeler 1936] was in-
correct and con�rming the former theoretical predictions. At this time the in-
terplay between theory and experiment was incited since a discussion of the va-
lidity of the impulse approximation has been presented by Platzman and Tzoar
[Platzman and Tzoar 1965] and the e�ect of electron-electron correlation on the
Compton pro�le has been discussed [Lam and Platzman 1974]. From the experi-
mental point of view Compton scattering studies have been restricted to the light
elements since only x-ray sources having low x-ray energies and intensities were
accessible at this time.

The advent of synchrotron radiation along with the use of solid state detec-
tors [Holt et al. 1978] followed by the crystal-dispersive analysis of the scat-
tered photons [Loupias et al. 1980] established the applicability of Compton
scattering to a variety of heavier and more complex materials. Along with
this high improvement on the experimental side Compton scattering became
an excellent tool to investigate the ground state properties of electronic sys-
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2 Introduction

tems so that problems related to fermiology and electronic structure were
extensively studied for ordered and disordered systems [Loupias et al. 1984,
Bauer and Schneider 1985, Bansil 1993, Manninen et al. 1996, Bansil et al. 1998,
Marangolo et al. 1999, Stutz et al. 1999, Dugdale et al. 2000]. Especially, the
e�ect of electron-electron correlation on the electron momentum density at-
tracted more and more interest and was investigated on pretended simple sys-
tems like aluminium, lithium, beryllium and sodium [Cardwell and Cooper 1989,
Suortti et al. 2000, Sakurai et al. 1995, Sch�ulke et al. 1996, Huotari et al. 2000,
H�am�al�ainen 2000]. Recently, Compton scattering was applied to study the
electronic properties of high temperature superconductors [Shukla et al. 1999]
and the technique to extract information from the Compton pro�les with re-
spect to the chemical bonding utilizing the Fourier transform of the Compton
pro�le was renewed [Asthalter and Weyrich 1997, Anastassopoulos et al. 1998,
Isaacs et al. 1999, Shukla et al. 1999]. This method has been used in the early
1980's by Pattison et al. [Pattison et al. 1981] to investigate bonding e�ects
in diamond and silicon and has its origin in the very early work of Sch�ulke
[Sch�ulke 1977] and Weyrich [Weyrich et al. 1979]. Furthermore, circularly po-
larized synchrotron radiation was utilized to separate the spin dependent part
of the Compton scattering cross section yielding information about the spin
density [Sakai 1996, Cooper and Du�y 2000]. The progress on the experimental
side was attended by the permanent improvement of the theoretical approaches
[Holm and Ribberfors 1989, Bansil 1993, Blaas et al. 1995, Sakurai et al. 1995,
Weyrich 1996, Kr�alik et al. 1998, Du�y et al. 2000].

Within this thesis the valence Compton pro�le of lithium is investigated which is
of a particular interest, in the history and in the present, since for lithium a signi�-
cant discrepancy was found between experimentally obtained Compton pro�les and
results from band structure calculations [Sakurai et al. 1995, Sch�ulke et al. 1996,
Filippi and Ceperley 1999]. This discrepancy was widely discussed in terms of
electron-electron correlation with respect to the value of the renormalization con-
stant describing the discontinuity of the electron momentum density at the Fermi
momentum [Kubo 1997, Sch�ulke 1999, Eguiluz et al. 2000, Dobrzy�nski 2000].
Furthermore, it was suggested that temperature e�ects can explain this discrep-
ancy [Dugdale and Jarlborg 1998] and new theoretical approaches were tested
[Baruah et al. 1999, Barbiellini 2000]. Sch�ulke et al. [Sch�ulke et al. 1996] stated
that �nal state interaction may play an important role in interpreting the valence
Compton pro�le of lithium even for relatively high incident photon energies around
30 keV. To investigate the features of the Compton pro�le which are related to the
discontinuity at the Fermi momentum, measurements of the valence Compton pro-
�le have to be performed at low incident energy to obtain an appropriate momen-
tum space resolution [H�am�al�ainen et al. 1996]. Utilizing this low incident energy
may cause problems to ful�ll the prerequisits of the impulse approximation.
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With respect to the unsatisfactory situation in interpreting the valence Compton
pro�les of lithium the aim of this thesis is to examine some of the above mentioned
aspects in detail. The e�ect of the �nal state interaction on the Compton pro�le of
lithiumwill be studied systematically so that the validity of the impulse approxima-
tion can be investigated by a Compton scattering experiment on lithium performed
at low incident energies having a momentum space resolution in the order of a few
percent of the Fermi momentum. Furthermore, the e�ect of temperature on the
lithium valence Compton pro�le will be measured and discussed according to the
theoretical predictions of Dugdale and Jarlborg [Dugdale and Jarlborg 1998].

Within chapter 1 the fundamentals of Compton scattering are presented. The
theoretical formalism to calculate the dynamic structure factor in terms of the
polarization function is discussed in chapter 2. It is shown how �nal state in-
teraction is considered within the calculation of the polarization function using
self-energy and vertex corrections. Then the e�ect of the �nal state interaction in
the Compton scattering limit is discussed. Chapter 3 is dedicated to the high reso-
lution Compton pro�le measurements on lithium which are interpreted in terms of
�nal state interaction followed by the presentation and discussion of the measured
temperature e�ect in chapter 4.
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Chapter 1

Compton scattering

Chapter 1 comprehends the theoretical fundamentals of the inelastic x-ray scat-
tering process. The dynamic structure factor, which describes the dynamical re-
sponse of the electron system to the perturbation mediated by the photon �eld, is
introduced and treated within the so-called Compton limit utilizing the impulse
approximation thus yielding the Compton pro�le in momentum space, which, for
valence electrons, is discussed in terms of electron-electron and electron-ion in-
teraction. Finally, the properties of the reciprocal form factor for interpreting
Compton pro�les are emphasized.

1.1 Inelastic x-ray scattering

Within the inelastic x-ray scattering process the incoming photon with energy
�h!1, wave vector ~k1 and polarization vector ~�1 is scattered into a photon having
energy �h!2, wave vector ~k2 and polarization vector ~�2. The photon transfers the
energy �h! = �h(!1 � !2) and the momentum �h~q = �h(~k1 � ~k2) to the scattering
system. The momentum transfer j~q j and the scattering angle � are related via

j~q j = 2j~k1j sin(�=2) provided ! � !1. The kinematics of the scattering process
are illustrated in Fig. 1.1. Natural units in which �h = c = 1 are used for the
derivation of the double di�erential cross section, the quantity measured in an
IXSS (inelastic x-ray scattering spectroscopy) experiment.

Inelastic x-ray scattering by electrons is well described within the non-relativistic
limit in the lowest order Born approximation (�rst order perturbation theory)
[Van Hove 1954]. The double di�erential cross section of a system of N electrons
within a volume Vc is given by

d2�

d
d!2
= N0

�

I0

X
jii

wjiiPjii!jfi(~q; !) ; (1.1)
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6 1. Compton scattering
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Figure 1.1: The inelastic scattering process.

where N0 denotes the number of incoming photons, � = Vc!
2
2=(2�)

3 the density of
�nal photon states, I0 = N0=Vc the incident photon 
ux, and wjii the probability
for the electron system to be in the initial many-particle state jii [Blume 1985].
According to Fermi's golden rule the transition probability per unit time for the
photon to transfer momentum ~q and energy ! to the system is

Pjii!jfi(~q; !) = 2�
X
jfi

���Df ���Hint

���iE���2Æ�! + (Ei � Ef)
�

(1.2)

with the sum calculated over all many-particle �nal states jfi, the interaction
Hamiltonian Hint and the Æ-function, which speci�es the energy conservation of
the scattering process. The interaction Hamiltonian is given by

Hint =
X
j

e2

2m
~A(~rj)

2 �
X
j

e

m
~pj � ~A(~rj) ; (1.3)

where the vector potential of the photon �eld ~A(~rj) is used within the Coulomb

gauge (~r� ~A(~rj) = 0) and the magnetic contributions are neglected, since they are
smaller in amplitude by !=m compared with the charge terms. ~rj is the position
of the jth electron and ~pj the corresponding momentum operator. The vector

potential can be expanded in terms of the photon annihilation operator a(�;~k)

and creation operator ay(�;~k) via



1.1. Inelastic x-ray scattering 7

~A(~rj) =
X
�;~k

s
2�

Vc!~k

�
~� (�;~k) a(�;~k) ei

~k�~rj + ~� �(�;~k) ay(�;~k) e�i
~k�~rj
�
: (1.4)

~�(�;~k) presents the polarization vector of the transversal electromagnetic wave

(~�(�;~k) �~k = 0) and � denotes its two possible polarizations. In �rst order pertur-

bation theory only the ~A2-term contributes since the scattering process is a two
photon process. As long as ! � kBT , the electron system can be considered to
be in the ground state and the sum over the initial states jii with weight wjii in
Eq. (1.1) may be replaced by the many-particle ground state ji0i. One gets for
the double di�erential cross section

d2�

d
d!2
=

e4

m2
(~�1 � ~�2)2 !2

!1

X
jfi

���Df ���X
j

ei~q�~rj
���i0E���2 Æ�! + (Ei0 � Ef )

�
(1.5)

=

�
d�

d


�
Th

!2
!1

S(~q; !) (1.6)

in which the dynamic structure factor S(~q; !) describes the dynamical response of
the system to the perturbation whereas the Thomson scattering cross section

�
d�

d


�
Th

= r20 (~�1 � ~�2)2 (1.7)

re
ects the coupling of the photon �eld with the electrons of the system.
r0 = e4=m2 denotes the classical electron radius and the polarization of the in-
coming and the outgoing photon is given by ~�1 and ~�2. A detailed discussion of
the dynamical structure factor is presented in chapter 3.

Whenever the transferred energy ! and the transferred momentum q are much
larger than characteristic energies and reciprocal distances of the scattering system,
the impulse approximation can be applied to Eq. (1.5) and the double di�erential
scattering cross section in the Compton scattering limit will be obtained, which is
discussed within the following section.
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1.2 Impulse approximation

Starting from Eq. (1.5) and using the Fourier representation of the Æ-function

Æ
�
! + (Ei0 � Ef)

�
= Æ
�
Ef � Ei0 � !

�
=

1

2�

Z
dt ei

�
!+(Ei0

�Ef )
�
t (1.8)

yields

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�

Z
dt e�i!t

X
jfi

D
i0

���X
j0

e�i~q�~rj0
���fE

�
D
f
���eiEf t

X
j

ei~q�~rj e�iEi0
t
���i0E : (1.9)

The Hamilton operator of the electron system H = H0 + V acting on the corre-
sponding many-particle eigenfunctions ji0i; jfi with the kinetic term H0 and the
potential V is inserted into Eq. (1.9) via

e�iHtji0i = e�iEi0
tji0i ; hf jeiHt = hf jeiEf t : (1.10)

Utilizing the completeness relation

X
jfi
jfihf j = 1 (1.11)

gives

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�

Z
dt e�i!t

D
i0

���X
j0

e�i~q�~rj0 eiHt
X
j

ei~q�~rj e�iHt
���i0E :

(1.12)

Now, the Hamiltonian exponential is expanded into

eiHt � eiH0t eiV t e�
1
2
[H0;V ]t2 (1.13)

neglecting terms of higher order in the time t. The integral in Eq. (1.12) provides
signi�cant contributions only for t � 1=! due to the time dependence of the matrix
element describing the excitation of the system. Thus the approximation
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e�
1
2
[H0;V ]t2 ' 1 (1.14)

is justi�ed as long as

1

2
h[H0; V ]i � E2

c � !2 ; (1.15)

where Ec denotes characteristic energies of the system, i.e. the binding energies of
the core or the valence electrons [Eisenberger and Platzman 1970]. The contribu-
tion of V in Eq. (1.12) cancels since it commutes with ~r, the electron position, so
that

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�

Z
dt e�i!t

D
i0

���X
j0

e�i~q�~rj0 eiH0t
X
j

ei~q�~rj e�iH0t
���i0E
(1.16)

is obtained. Therefore, the essence of the impulse approximation consists in the
assumption that the excitation process evolves under a constant potential V so
that the energy of the system is measured in relation to this constant potential
both in the initial and in the �nal state. Eq. (1.16) is separated into one- and
two-particle contributions by

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�

Z
dt e�i!t

(
N
D
i0

���e�i~q�~r1 eiH0t ei~q�~r1 e�iH0t
���i0E

+2

�
N

2

�D
i0

���e�i~q�~r1 eiH0t ei~q�~r2 e�iH0t
���i0E

)
; (1.17)

where N is the number of electrons. Then the spin-free one-particle density ma-
trix 
(~r1j~r1 0) and the spin-free two-particle density matrix �(~r1~r2j~r1 0~r2 0) can be
introduced, according to L�owdin's convention [L�owdin 1955], yielding

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�

Z
dt e�i!t

(Z
d~r1e

�i~q�~r1 eiH0t ei~q�~r1 e�iH0t 
(~r1j~r1 0)

+ 2

Z Z
d~r1d~r2e

�i~q�~r1 eiH0t ei~q�~r2 e�iH0t �(~r1~r2j~r1 0~r2 0)
)
: (1.18)

In what follows only the �rst term of Eq. (1.18) will be discussed since it has been
shown by Benesch and Smith [Benesch and Smith 1973] that the contribution of
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the two-particle density matrix can be neglected within the limits of the impulse
approximation. Now a complete set

P
j~p i j~p ih~p j of eigenfunctions j~p i of H0

j~p i = 1p
Vc
ei~p�~r (1.19)

is inserted into Eq. (1.18) with H0 j~p i = �~p j~p i and the free-particle energy
�~p = j~p j2=2m. This insertion induces a double ~r integration according to the
L�owdin formalism ending up with

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�Vc

Z
dt e�i!t

X
~p

Z
d~r1e

�i~q�~r1 eiH0t ei~p�~r1

�
Z

d~r1
0 e�i~p�~r1

0

ei~q�~r1
0

e�iH0
0t 
(~r1 j~r1 0) : (1.20)

The Hamiltonian H0 acts on the eigenfunctions j~p i as follows:

e�i~q�~r1eiH0tei~p�~r1 = e�i~q�~r1ei�~ptei~p�~r1 = ei�~ptei(~p�~q)�~r1

e�i~p�~r1
0

ei~q�~r1
0

e�iH0
0t = e�i(~p�~q )�~r1

0

e�iH0
0t = e�i(~p�~q )�~r1

0

e�i�~p�~qt : (1.21)

This yields

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

1

2�Vc

X
~p

Z
dt ei(�~p��~p�~q�!)t

�
Z Z

d~r1d~r1
0ei(~p�~q )�~r1e�i(~p�~q )�~r1

0


(~r1j~r1 0) : (1.22)

Since the one-particle density matrix in momentum space 
(~p j ~p 0) is de�ned as
the 6-dimensional Fourier transform of the spin-free one-particle density matrix in
position space 
(~r1 j~r1 0) [Benesch et al. 1971]


(~p j ~p 0) = 1

(2�)3

Z Z
d~rd~r 0e�i(~p�~r�~p

0�~r 0)
(~r j~r 0) (1.23)

one obtains after rewriting the time integral as a Æ-function

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

(2�)3

Vc

X
~p


(~p� ~q j ~p� ~q )Æ(�~p � �~p�~q � !) : (1.24)
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The sum over ~p is written as an integral and the substitution ~p � ~q = ~p 0 is per-
formed. Finally ~p 0 is replaced by ~p ending up with

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

Z
d~p 
(~p j ~p ) Æ

�
! � ~p � ~q

m
� q2

2m

�
: (1.25)

The double di�erential cross section within the impulse approximation can be
derived directly from Eq. (1.5) utilizing the one-particle picture, if the energy
di�erence Ei0 �Ef is calculated for free particles and the �nal state is assumed to
be a plane wave. The momentum space integral of the electron momentum density
represented by the diagonal elements of the spin-free one-particle density matrix
is called the Compton pro�le, which can be considered as the projection of the
ground state electron momentum density on the direction of the scattering vector
~q and is discussed as follows.
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1.3 Compton pro�le

The Compton pro�le is presented �rst in the non-relativistic limit. Then the
relativistic Compton scattering cross section is described followed by a discussion
of the electron momentum density for valence electrons.

1.3.1 Non-relativistic limit

In the non-relativistic limit the Compton pro�le is de�ned as

J(~p � ~q ) =
Z

d~p 
(~p j ~p ) Æ
�
! � ~p � ~q

m
� q2

2m

�
: (1.26)

with the momentum density 
(~p j ~p ), representing the probability to �nd an elec-
tron with momentum ~p in the ground state. The Æ-function describes the energy
conservation of the process where q2=2m is the non-relativistic Compton shift for
an electron initially at rest and ~p � ~q=m gives the Doppler shift according to the
�nite momentum ~p of the electron in the inital state. When the scattering vector
~q points into z-direction, performing of the pz integration leads to

J(pz) =

Z Z
dpxdpy 
(~p j ~p ) ; (1.27)

where

pz =
m

q
! � q

2
(1.28)

= m
!1 � !2 � !1!2

m
(1� cos �)p

!2
1 + !2

2 � 2!1!2 cos �
: (1.29)

The double di�erential scattering cross section for Compton scattering is directly
proportional to the Compton pro�le J(pz) utilizing Eq. (1.25)

d2�

d
d!2
=

�
d�

d


�
Th

!2
!1

m

q
J(pz) : (1.30)

The total Compton pro�le can be decomposed into contributions from the core
electrons and the valence electrons, of which the core Compton pro�les can be
calculated properly [Holm and Ribberfors 1989]. The Compton pro�les extracted
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from the experiment have to be normalized with respect to the normalization
condition

Z
dpzJ(pz) = N ; (1.31)

where N is the number of electrons per atom.

1.3.2 Relativistic e�ects

Within the non-relativistic limit it was shown that the double di�erential cross
section can be separated into two parts, one describing the coupling of the probe to
the electrons and the other the dynamical response of the scattering system. This
strict separation is lost, when a fully relativistic treatment is applied. Nevertheless,
it was emphasized by Ribberfors [Ribberfors 1975] that in the case of Compton
scattering an approximate relativistic treatment yields

d2�

d
d!2
=

r20
2

!2
!1

X(pz)
m

q
J(pz) : (1.32)

The factorization of the two contributions is recovered and remains to be valid
for arbitrary scattering angles and even anisotropic momentum distributions. The
X-factor for linear polarized photons is calculated by the sum over the two polar-
ization states of the scattered photons to

X(pz) =
R

R 0 +
R 0

R
� 2 sin2 � cos2 � ; (1.33)

where � denotes the angle between the scattering plane and the polarization vector
of the incident photons, � the scattering angle and the factors R and R 0 are given
by

R = !1

�
m� (!1 � !2 cos �)

pz
q

�
R 0 = R� !1!2(1� cos �) : (1.34)

In the case of unpolarized photons the average over all polarization vectors has to
be calculated ending up with

X(pz) =
R

R 0 +
R 0

R
� sin2 � : (1.35)
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If pz = 0 a.u. (atomic units), the X-factor reduces to the Klein-Nishina X-factor
which describes the relativistic photon scattering from a free electron.

1.3.3 Electron momentum density

The valence electron Compton pro�le of solids is now discussed by calculating the
electron momentum density of the valence electrons 
(~p j ~p ). Thus, the one-particle
density matrix 
(~r j~r 0) is expressed in terms of the electron �eld operators 	y(~r; t)
and 	(~r; t) [Lundqvist and Lyd�en 1971]


(~p j ~p ) = 1

(2�)3

Z Z
d~rd~r 0ei~p�(~r�~r

0)h	y(~r; 0)	(~r 0; 0)i ; (1.36)

where h i denotes the thermal average of a system of N electrons within the crystal
volume Vc. The �eld operators are expanded in terms of Bloch waves ��;~k(~r )

	(~r; 0) =
X
�;~k

a�;~k(0)��;~k(~r ) (1.37)

with the electron annihilation operator a�;~k(t) for the band � and the Bloch wave

vector ~k. Then the plane wave expansion of the Bloch wave functions with expan-
sion coeÆcients ��(~k + ~g) is introduced via

��;~k(~r ) =
X
~g

1p
Vc
��(~k + ~g)ei(

~k+~g)�~r ; (1.38)

where the sum is over all reciprocal lattice vectors ~g yielding


(~p j ~p ) =
1

(2�)3Vc

X
�;~k;~g

Z
d~re�i(

~k+~g�~p )�~r���(~k + ~g)

�
X

� 0;~k 0;~g 0

Z
d~r 0ei(

~k 0+~g 0�~p 0)�~r 0�� 0(~k 0 + ~g 0)hay
�;~k
a
� 0;~k 0

i : (1.39)

The position space integrations are performed utilizing the integral representation
of the Æ-function and with the de�nition of the mean occupation number for Bloch
states

n�;�0(~k) = hay
�;~k
a� 0;~ki (1.40)
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the electron momentum density can be expressed as


(~p j ~p ) =
X
�;� 0;~k

X
~g

���(~k + ~g)�� 0(~k + ~g)n�;� 0(~k)Æ(~k + ~g � ~p ) : (1.41)

In the case of non-interacting electrons all elements of the mean occupation number
n�;� 0 are zero except the diagonal elements which have the value 1 for p � pF, where
pF denotes the Fermi momentum. For interacting electrons the diagonal elements
represent the mean occupation number of a Bloch state with wave vector ~k in
the band � whereas the non-diagonal elements have non-zero values describing the
mixing of di�erent bands due to electron-electron correlation. Within the nearly
free-electron approximation the contributions from the non-diagonal elements are
assumed to be negligible and the electron momentum density is then given by


(~p j ~p ) =
X
�;~k

X
~g

j��(~k + ~g)j2 n�(~k) Æ(~k + ~g � ~p ) ; (1.42)

where correlation e�ects are predominantly associated with the occupation num-
bers while lattice and core orthogonalization e�ects are mainly assigned to the
squared plane wave expansion coeÆcients [Lundqvist and Lyd�en 1971]. The elec-
tron momentum density and the corresponding valence Compton pro�le will be
discussed as follows in terms of electron-electron correlation and electron-ion in-
teraction.

Free electron gas

In the free electron gas model the electron-electron and electron-ion interaction is
fully neglected. The radial symmetric electron momentum density is presented by


f(~p j ~p ) = �(pF � j~p j) ; (1.43)

where the Heavyside function �(pF�j~p j) has the value 1 for p < pF and 0 otherwise.
The resulting free electron valence Compton pro�le is an inverted parabola with
J(pz) = �(p2F � p2z).

Electron-electron correlation

With respect to electron-electron correlation the electron momentum density of
the free electron like metals is described more properly within the model of the ho-
mogeneous interacting electron gas. Utilizing this model, 
(~p j ~p ) is separated into
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a continuous function 
c(p) which characterizes the contribution of the electron-
electron interaction and a Heavyside function with stepsize zF at the Fermi mo-
mentum,


h(~p j ~p ) = zF�(pF � j~p j) + 
c(j~p j) : (1.44)

zF is called the renormalization constant. The momentum distribution is still
isotropic since lattice e�ects are not considered but now states with p > pF become
occupied. Thus, the valence Compton pro�le exhibits tails and the sharp feature
at pF, referred to as Fermi break, is diminished. This reduction of the Fermi break
is characterized by the value of zF. Fig. 1.2 shows the electron momentum density
and the Compton pro�le of the free electron gas (dashed line) and the homogeneous
interacting electron gas (solid line) in the case of lithium.

Compton pro�les calculated within the limits of the local density approximation
(LDA) necessarily have to be corrected for correlation e�ects utilizing the so-
called Lam-Platzman scheme [Lam and Platzman 1974]: For non-interacting and
interacting electron distributions in Hartree-Fock approximation the momentum
density is given by Eq. (1.36). When solving the Kohn-Sham equations within
density functional theory (DFT) Eq. (1.36) has to be modi�ed by adding the
derivative of the total exchange correlation energy with respect to the individual
electron energies. Then the isotropic term correcting LDA for electron-electron
correlation is calculated utilizing the di�erence of the electron momentum density
of the homogeneous interacting and the free electron gas, both as a function of the
local density �(~r ), via

�
LDA[�(~r )](~p j ~p ) =
Z

d~r�(~r )
�

h[�(~r )](~p j ~p )� 
f[�(~r )](~p j ~p )

�
; (1.45)

where the integral is over the unit cell. The electron momentum densities 
h[�(~r )]
and 
f[�(~r )] as functional of the local density are normalized to one electron.

Electron-ion interaction

The in
uence of the electron-ion interaction on the electron momentum density
can be clari�ed considering Eq. (1.42). By calculating the electron momentum

density for momentum ~p not only states with Bloch wave vector ~k = ~p but also
states having ~k + ~g = ~p contribute. These contributions, arising from the so-
called Umklapp-processes for ~g 6= ~0, are called higher momentum components
which modify the valence Compton pro�le by the appearance of tails at p > pF as
illustrated in Fig. 1.2 by a dashed dotted line.
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Figure 1.2: Electron momentum densities of the free (dashed line) and the ho-
mogeneous interacting electron gas (dotted line) with the corresponding valence
Compton pro�les in the case of lithium. The Compton pro�le in
uenced by the
lattice potential due to Umklapp-processes is plotted for ~q jj [110] as dashed-dotted
line. Electron-electron correlation and electron-ion interaction cause the extension
of the Compton pro�le to pz > pF, pF being the Fermi momentum.
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Due to the in
uence of the lattice potential, momentum density is transferred out
of the primary Fermi sphere of the extended zone scheme.

An appropriate theoretical treatment of the electron momentum density has to
take into account both correlation and lattice e�ects.
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1.4 Reciprocal form factor

The properties of the Compton pro�le are up to now discussed in momentum
space. The reciprocal form factor B(~r ), a quantity in position space, is intro-
duced as the 3-dimensional Fourier transform of the electron momentum density
[Pattison et al. 1977, Weyrich 1978] by

B(~r ) =

Z
d~p 
(~p j ~p )ei~p�~r (1.46)

and can be represented in terms of the non-diagonal one-particle density matrix
in position space 
(~r 0j~r 0 + ~r ) via

B(~r ) =

Z
d~r 0 
(~r 0j~r 0 + ~r ) : (1.47)

B(z) can be expressed as the one-dimensional Fourier transform of the Compton
pro�le

B(z) =

Z
dpzJ(pz)e

ipzz ; (1.48)

so that by measuring many directional Compton pro�les in order to obtain B(~r )
on a �ne grid in position space according to Eq. (1.48), the electron momentum
density 
(~p j ~p ) can be reconstructed [Hansen 1980].

For valence electrons the B(~r ) can be calculated utilizing the electron momentum
density given by Eq. (1.42). Due to the Æ-function the ~p integration ends up with

B(~r ) =
X
�;~k

X
~g

j��(~k + ~g)j2 n�(~k )ei(~k+~g)�~r : (1.49)

This expression can be evaluated at positions of the lattice translation vectors ~R
utilizing the normalization condition of Bloch waves

X
~g

j��(~k + ~g)j2 = 1 (1.50)

and the de�nition of the occupation function

n(~k ) =
X
�

n�(~k ) : (1.51)
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Replacing the sum over ~k by a ~k integration over the �rst Brillouin zone yields the
following result

B(~R ) =
VB

(2�)3

Z
d~k n(~k ) ei

~k�~R ; (1.52)

where VB is the volume of the �rst Brillouin zone. In the case of insulator and
semiconductor B(~R ) = 0 for all ~R 6= ~0, since each band is fully occupied or unoc-
cupied neglecting thermal excitation and correlation. For metals the occupation
function can be expanded into a Fourier series

n(~k ) =
X
~R

B(~R ) e�i
~k�~R (1.53)

which o�ers the possibility to reconstruct n(~k ) from directional valence Compton
pro�les [Sch�ulke 1977] utilizing the experimentally obtained values of the recip-

rocal form factor B(~R ) at di�erent lattice translation vectors. Eq. (1.52) shows

that the reciprocal form factor is sensitive to the modi�cations of n(~k ) caused
by electron-electron correlation. This is of special signi�cance for experimental
studies of electron-electron correlation since the reciprocal form factor for small
~R can be measured properly even with moderate momentum space resolution
[Bauer and Schneider 1985].



Chapter 2

The dynamic structure factor at

metallic densities

The subject of this chapter is the presentation of a theoretical formalism utilized
for the calculation of the dynamic structure factor at metallic densities. The rela-
tion between the polarization function and the dynamic structure factor is shown
and the polarization function is expressed in terms of the so-called proper polar-
ization function. Utilizing the model of the homogeneous interacting electron gas,
the modi�cation of the free electron gas polarizability due to electron-electron cor-
relation is described and discussed using self-energy and vertex corrections to the
free-particle polarization. Finally, the consequences of the correlation corrections
within the Compton scattering limit are emphasized.

2.1 Polarization function

The fundamental property which describes the excitation spectrum as measured
by an inelastic x-ray scattering experiment is the polarization function �(~q; !),
which determines the response of the many-particle sytem to an external probe.
The polarizability is directly related to the experimentally obtained quantity, the
dynamic structure factor S(~q; !), via the 
uctuation-dissipation theorem.

2.1.1 Fluctuation-dissipation theorem

Starting from Eq. (1.5) the dynamical structure factor can be written, following
van Hove [Van Hove 1954], as the Fourier transform in time and space of the pair
distribution function g(~r; t)

S(~q; !) =
N

2�

Z Z
d~rdt g(~r; t) ei(~q�~r�!t) (2.1)

21
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describing the correlation between a particle at time t and position ~r + ~r 0 and a
particle at t = 0 and position ~r 0, averaged over all possible positions ~r 0 of the
reference particle. Thus, the dynamic structure factor yields information about
the correlated motion within the many-particle system caused by the probe. Pines
and Nozi�eres [Pines and Nozi�eres 1966] showed the relation between the density

uctuations of the system speci�ed by the dynamic structure factor S(~q; !) and
the dissipative part of the density-density response or polarization function �(~q; !)
via the 
uctuation-dissipation theorem

S(~q; !)� S(�~q;�!) = � 1

�
Im�(~q; !) : (2.2)

S(�~q;�!) = S(~q; !) e��! can be neglected since ! � 1=� = kBT , where kB is the
Boltzmann factor and T the temperature. In what follows the dielectric response of
the system described by the dielectric function �(~q; !) is related to the polarization
function �(~q; !) and to the proper polarization function �sc(~q; !).

2.1.2 Dielectric response

Response to an external �eld

The response of the many-particle system to an external potential is measured by
the polarization or density-density response function �(~q; !) as long as the coupling
is considered to be weak. The polarization function is represented by

�(~q; !) =
h�(~q; !)i
'(~q; !)

(2.3)

with the density 
uctuations in Fourier space h�(~q; !)i characterizing the response
of the system. The average is over the states of the system in presence of the test
particle. '(~q; !) is the Fourier transform in space and time of the scalar potential
acting on the electron system

'(~q; !) =
4�e2

j~q j2 �e(~q; !) ; (2.4)

where e�e(~q; !) denotes the Fourier transform of the external charge density.
�(~q; !) depends only on the system properties in absence of the probe. The relation
to the dielectric response of the many-particle system is then described utilizing
the dielectric function �(~q; !) via
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1

�(~q; !)
= 1 +

h�(~q; !)i
�e(~q; !)

(2.5)

= 1 + v(q)�(~q; !) (2.6)

with the Fourier transform of the bare Coulomb potential

v(q) =
4�e2

j~q j2 : (2.7)

Response to a screened �eld

If the density 
uctuations are induced by a screened charge the so-called proper
polarization �sc(~q; !), which measures the response of the many-particle system to
the screened external potential, is de�ned as

�sc(~q; !) =
h�(~q; !)i

'(~q; !)=�(~q; !)
(2.8)

= �(~q; !)�(~q; !) : (2.9)

Thus, the dielectric response of the system to a screened �eld is given by

�(~q; !) = 1� v(q)�sc(~q; !) : (2.10)

Proper polarization function

The relation between the polarization and the proper polarization function utilizing
Eq. (2.6) and Eq. (2.10) is

�(~q; !) =
�sc(~q; !)

1� v(q)�sc(~q; !)
; (2.11)

where the polarization function �(~q; !) describes the response of the many-particle
system to an external �eld and the proper polarization function �sc(~q; !) speci�es
the response to a screened �eld. If v(q) � 1 the polarization function can be
replaced by the proper polarization �(~q; !) � �sc(~q; !).
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The proper polarization function �sc(~q; !) may be expressed by the one-particle
Green's function G(~p; �) [Awa et al. 1981]

�sc(~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G(~p; �) G(~p+ ~q; �+ !) ~�(~p; �; ~q; !) (2.12)

with the proper vertex function ~�(~p; �; ~q; !) represented by

~�(~p; �; ~q; !) = 1 +

Z
d� 0

(2�i)

Z
d~p 0

(2�)3
I(~p; �; ~p 0; � 0; ~q; !)

�G(~p 0; � 0) G(~p 0 + ~q; � 0 + !) ~�(~p 0; � 0; ~q; !) ; (2.13)

where I(~p; �; ~p 0; � 0; ~q; !) is the irreducible interaction term. According to Hedin
[Hedin 1965] I(~p; �; ~p 0; � 0; ~q; !) can be expressed by the momentum and energy
dependent screened Coulomb potential

ICsc(~p; �; ~p
0; � 0) =

v(~p 0 � ~p )

�RPA(~p 0 � ~p; � 0 � �)
; (2.14)

where the screening is described by the Lindhard dielectric function
�RPA(~p 0 � ~p; � 0 � �) within the random phase approximation (RPA)
[Lindhard 1954] which is discussed in detail within section 2.2.3. The bare
Coulomb potential cannot be seen as a reasonable approximation as long as
the polarizability of the system is large , especially at metallic densities. The
interaction is mediated by the electron system itself via plasmon excitation and
deexcitation. Two di�erent corrections to the free-particle polarizability have
to be distinguished, one due to the interaction of the particle with the hole left
behind (particle-hole vertex correction) and the other due to the interaction of
the excited particle (hole) with the rest of the many-particle system (self-energy
correction), which is caused by the polarization originating from the existence
of the excited particle (hole). The self-energy contribution to the polarization
function is treated by using the fully dressed one-particle Green's function
GSE(~p; �) = G0(~p; � + �(~p; �)) instead of G0(~p; �), the Green's function of a free
particle, �(~p; �) being the self-energy of the quasiparticle. G0(~p; �) is given by

G0(~p; �) =

�
�(EF � �~p)

�� �~p � i�
+
�(�~p � EF)

�� �~p + i�

�
; (2.15)

where �~p = p2=2m denotes the energy of a free particle, EF is the Fermi en-
ergy and � = 0+. The vertex correction comprises the calculation of the proper
vertex function in Eq. (2.13) utilizing the interaction term ICsc(~p; �; ~p

0; � 0). The



2.1. Polarization function 25

b)a) c)

Figure 2.1: Feynman diagrams for the calculation of the proper polarization func-
tion: (a) free-particle polarizability, (b) self-energy correction in �rst order and (c)
vertex correction in �rst order.

vertex correction is known to cancel to a certain extent the self-energy correction
[Singwi and Tosi 1981] which emphasizes the necessity of a combined treatment of
both corrections in calculating the polarization function. To obtain a consistent
calculation, the same approximation for the irreducible interaction term has to be
used both when calculating the self-energy correction and when calculating the
vertex correction, namely ICsc(~p; �; ~p

0; � 0).

Fig. 2.1 shows the three di�erent types of Feynman diagrams contributing to
the calculation of the proper polarization function. The solid lines represent the
free-particle Green's functions G0(~p; �) and the wiggly line the screened Coulomb
interaction ICsc(~p; �; ~p

0; � 0). Fig. 2.1(a) describes the free-particle polarization. Dia-
grams of type (b), where the screened Coulomb potential acts on the quasiparticle
itself, denote the self-energy type corrections to the polarizability. Diagrams of
type (c), where the interaction acts between the particle and the hole, represent
the type of vertex corrections. Only the �rst order terms in the screened Coulomb
interaction are shown.
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2.2 Self-energy e�ects

In what follows, the self-energy contribution to the free-particle polarizability is
discussed and the limit of the free-particle approximation utilizing the free-particle
Green's function is derived ending up with the well known Lindhard expression.
Furthermore, a concept is presented to consider the �nite lifetime of the parti-
cle corresponding to the imaginary part of the self-energy within the Compton
scattering limit.

2.2.1 Spectral density function

The fully dressed one-particle Green's function GSE(~p; �) takes into account the
self-energy contribution to the proper polarization function up to all orders in the
Coulomb potential screened by the RPA dielectric function [Holas et al. 1979].
This is possible since the series of type (b) diagrams can be summed up into a
geometric series which is demonstrated in Appendix A. GSE(~p; �) can be expressed
utilizing the spectral representation of the self-energy �(~p; E) via the spectral
density function A(~p; E)

GSE(~p; �) =
1

2�

0
@ EFZ
�1

A(~p; E)dE

�� E � i�
+

1Z
EF

A(~p; E)dE

�� E + i�

1
A (2.16)

with

A(~p; E) = �2 ImGSE(~p; E) (2.17)

= �2 Im�(~p; E)

(E � �~p � Re�(~p; E))2 + (Im�(~p; E))2
: (2.18)

The spectral density function A(~p; E) describes the probability to �nd the many-
particle system in a state with energy E(�E) above the ground state right after
injection of a particle (hole) with momentum ~p. Im�(~p; E) is the decay-probability
of the excitation of the system at energy E and Re�(~p; E) yields the deviation of
the energy E of the correlated system from the free-particle energy �~p.

Fig. 2.2 presents Im�(~p; E) and Re�(~p; E) as a function of energy E for di�erent
momenta ~p calculated for rs = 3:25, where rs is the free electron gas parameter.
The crossings of the straight line with Re�(~p; E) give the solutions of the Dyson
equation E� �~p = Re�(~p;E). From Eq. (2.18) it follows that A(~p; E) has a signif-
icant spectral weight for the solutions of the Dyson equation if the corresponding



2.2. Self-energy e�ects 27

-1.5

-1

-0.5

0

0.5

1

-20 -10 0 10 20

R
e 

Σ 
(→ p 

, E
) 

, |
Im

 Σ
 (

→ p 
, E

)| 
[a

rb
. u

ni
ts

]

0.5 kF
-1.5

-1

-0.5

0

0.5

1

-20 -10 0 10 20

1.5 kF

0

 0.5

1

1.5

2

-20 -10 0 10 20

A
 (

→ p 
, E

) 
[a

rb
. u

ni
ts

]

E [eV]

0.5 kF

0

 0.5

1

1.5

2

-20 -10 0 10 20

E [eV]

1.5 kF

Figure 2.2: Real part (solid) and the absolute value of the imaginary part (dashed)
of the self-energy together with the Dyson plot � = E � �~p (thin solid line)
for di�erent momenta ~p compared to the corresponding spectral density function
A(~p; E), calculated for lithium having a free electron gas parameter of rs = 3:25.
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values of Im�(~p;E) are small, otherwise the excitation is strongly damped due
to the imaginary part of the self-energy characterizing the small lifetime of the
excitation. Typically, the spectral density function shows one quasiparticle peak
and two side bands. The quasiparticle peak describes the excitation probabil-
ity of the particle or the hole, respectively. For j~p j < pF a second excitation
gets dominant spectral weight. This excitation, the so-called plasmaron, is due
to a hole state modi�ed by a coherent contribution from hole-plasmon pair states
[Lundqvist 1967].

2.2.2 Self-energy correction

To focus on the in
uence of the self-energy to the proper polarization function
the vertex correction is neglected. Then Eq. (2.12) is calculated in zeroth order
while the proper polarization function has to be expressed in terms of the fully
dressed Green's function GSE(~p; �), which includes the self-energy contribution to
the free-particle polarizability up to all orders, yielding

�SEsc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
GSE(~p; �) GSE(~p+ ~q; � + !) : (2.19)

GSE(~p; �) is replaced using Eq. (2.16) and the � integration is performed by calcu-
lating the resulting Cauchy integrals. Finally, the Heavyside function �(x� x0) is
introduced ending up with

�SEsc (~q; !) = 2

Z
d~p

(2�)3

Z
dE

(2�)

Z
dE 0

(2�)

�
�
A(~p; E)A(~p+ ~q; E 0)
! + E � E 0 + i�

�(EF � E)�(E 0 � EF)

� A(~p; E)A(~p+ ~q; E 0)
! + E � E 0 � i�

�(E � EF)�(EF � E 0)
�
: (2.20)

Im�SEsc (~q; !), the quantity which is related to the experiment via the dynamic
structure factor, is calculated for � ! 0 by introducing the Æ-function Æ(!+E�E 0)
and performing the E 0 integration , resulting in

Im�SEsc (~q; !) = �
Z

d~p

(2�)3

EFZ
EF�!

dE

(2�)
A(~p; E)A(~p+ ~q; E + !) ; (2.21)
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where the E integration limits are determined by the evaluation of the
corresponding Heavyside functions.

As a main result of the calculus it can be stressed, that the excitation spectrum
characterized by Im�SEsc (~q; !) is given by the convolution of the spectral density
function of the hole state A(~p; E) and the particle state A(~p+ ~q; E + !) for given
momentum transfer ~q and energy transfer !. Before the consequences of the self-
energy correction to the Compton excitation spectrum are discussed, the proper
polarization function in the Lindhard approximation will be derived.

2.2.3 Lindhard approximation

For the case of a non-interacting (free) electron gas the spectral density function for
a free particle A0(~q; !), which determines the excitation probability of quasiparticle
states having in�nite lifetimes, can be written as

A0(~p; E) = 2�Æ(E � �~p) : (2.22)

This relation is obtained from Eq. (2.18) setting Re�(~p; E) = 0 and
Im�(~p; E)! 0� and leads to the free-particle Green's function G0(~p; �) of Eq.
(2.15). Then the well-known Lindhard equation for the proper polarization func-
tion is obtained [Green et al. 1987] via

�0sc(~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G0(~p; �) G0(~p+ ~q; �+ !)

= 2

Z
d~p

(2�)3

�
�(EF � �~p)�(�~p+~q � EF)

! + �~p � �~p+~q + i�
� �(�~p � EF)�(EF � �~p+~q)

! + �~p � �~p+~q � i�

�

= 2
X

j~p j<pF<j~p+~q j

�
1

! + �~p � �~p+~q + i�
+

1

�! + �~p � �~p+~q + i�

�
: (2.23)

The density-density response �0sc(~q; !) for a single particle-hole pair is the dominant
contribution to �sc(~q; !) at high electron densities and leads to the RPA result for
the polarization function �(~q; !) via the sum over the electron-hole pair excitations
coupled by the bare Coulomb potential (see Eq. (2.11)). Utilizing Eq. (2.10) the
RPA dielectric function is given by

�RPA(~q; !) = 1� v(q) �0sc(~q; !) : (2.24)
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2.2.4 Self-energy e�ects on the dynamic structure factor in the

Compton limit

The dynamic structure factor S(~q; !) can be expressed by the proper polarization
function in terms of the spectral density function for the excited particle and the
remaining hole using the 
uctuation-dissipation theorem with Eq. (2.21)

SSE(~q; !) =
1

�

Z
d~p

(2�)3

EFZ
EF�!

dE

(2�)
A(~p; E)A(~p+ ~q; E + !) ; (2.25)

where SSE(�~q;�!) is negligible and �(~q; !) = �SEsc (~q; !) for v(q)� 1. According
to the impulse approximation the energy of the ground state E is replaced by
the energy of a free particle �~p = p2=2m in the spectral density function of the
�nal state and the energy shift due to the real part of the self-energy is neglected,
Re�(~p+ ~q; �~p + !) = 0, yielding

AIA(~p+ ~q; �~p + !) =
�2 Im�(~p+ ~q; �~p + !)

(�~p + ! � �~p+~q)2 + (Im�(~p+ ~q; �~p + !))2
: (2.26)

The energy di�erence between the initial and the �nal state is given by the energy
di�erence of free-particle states, ! = �~p+~q � �~p, so that AIA(~p+ ~q; �~p+!) describes
a free-particle �nal state having a �nite lifetime due to the imaginary part of the
self-energy. Finally, the fully correlated electron momentum density 
(~p j ~p ) is
introduced [Mahan 1981] via


(~p j ~p ) = 2

(2�)3

EFZ
�1

dE

2�
A(~p; E) : (2.27)

In the Compton limit, ! � EF, one ends up with

SSE
IA (~q; !) =

1

2�

Z
d~p 
(~p j ~p ) AIA (~p+ ~q; �~p + !) ; (2.28)

the 3-dimensional convolution of the fully correlated electron momentum density

(~p j ~p ) with the spectral density function of the excited particle in the limit of
Compton scattering AIA(~p+ ~q; �~p + !).
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Neglecting the self-energy e�ects within this approximation by setting
Im�(~p + ~q; �~p + !)! 0� yields

A0
IA(~p+ ~q; �~p + !) = 2�Æ(! + �~p � �~p+~q)

= 2�Æ(! � ~p � ~q=m� q2=2m) (2.29)

the energy conservation of the Compton scattering process. Thus, the direct rela-
tion between the dynamic structure factor S(~q; !) and the Compton pro�le J(pz)
using Eq. (1.27) with ~q pointing into z-direction is given by

SIA(q; ! = pz q=m+ q2=2m) =
m

q
J(pz) : (2.30)

Until now, the theoretical treatment of the self-energy in
uence in calculating the
proper polarization function was discussed in terms of the spectral density function
within the model of the free electron gas in the Lindhard approximation and in
the limit of Compton scattering. However, the excitation spectrum characterized
by the imaginary part of the proper polarization function is not only a�ected by
the self-energy of the quasiparticles but also by the interaction between the excited
particle and the remaining hole, which will be examined as follows by calculating
the vertex correction.
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2.3 Vertex correction

The interaction between the excited particle and the hole is described by the vertex
correction to the proper polarization function �sc(~q; !). First, the vertex correction
is discussed in the limit of the local �eld approximation. Then the �rst order vertex
correction utilizing the Coulomb interaction ICsc(~p; �; ~p

0; � 0) screened by the RPA
dielectric function is analyzed and one type of second order vertex correction is
presented.

2.3.1 Local �eld approximation

The local �eld approximation is a correction to the free-particle proper polarization
function �0sc(~q; !) assuming a screened Coulomb interaction I(q; !) between the
excited particle and the hole

I(~p; �; ~p 0; � 0; ~q; !) = 2I(q; !) = �2v(q) g(q; !) ; (2.31)

g(q; !) being the local �eld, which accounts for the screening by an e�ective correc-
tion to the bare Coulomb potential v(q) [Green et al. 1987]. Within this approxi-
mation the interaction is not mediated by the many-particle system, which means
that both the momentum and the energy of the excited particle and the hole are
not changed due to the interaction between these quasiparticles. If either a time
dependent or a static local �eld is used to describe the interaction, Eq. (2.12) can
be expressed as a geometric series, shown in Appendix B, yielding

�LFsc (~q; !) =
�0sc(~q; !)

1 + v(q)g(q; !)�0sc(~q; !)
: (2.32)

In this approximation the vertex correction is considered up to all orders in I(q; !).

If the interaction between the excited particle and the hole is mediated by the
rest of the many-particle system, energy and momentum is transferred between
the quasiparticles, which means that the irreducible interaction term becomes de-
pendent on ~p; �; ~p 0; � 0. Then Eq. (2.12) can no longer be written as the sum of a
geometric series and the di�erent contributions to the vertex correction have to be
calculated separately.

Using the time dependent or the static local �eld is the only approximation which
decouples the Green's function integrals.
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2.3.2 First and second order vertex correction

The calculation of the vertex correction is performed using ICsc(~p; �; ~p
0; � 0) so that

the self-energy correction and the vertex correction are consistent, based on the
same theoretical approximation for the interaction term in Eq. (2.13). The corre-
sponding Feynman diagrams are presented in Fig. 2.3.

Starting from Eq. (2.12) with the fully dressed Green's functions GSE(~p; �),
GSE(~p+~q; �+!) and using the Coulomb potential screened by the Lindhard dielec-
tric function, the �rst order vertex correction is calculated applying the diagram
representation of Fig. 2.3(b) as follows

�VE1sc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
GSE(~p; �) GSE(~p+ ~q; �+ !)

�
Z

d� 0

(2�i)

Z
d~p 0

(2�)3
v(~p 0 � ~p)

�RPA(~p 0 � ~p; � 0 � �)

�GSE(~p 0; � 0) GSE(~p 0 + ~q; � 0 + !) : (2.33)

c)b)a)

Figure 2.3: The fully self-energy corrected particle-hole bubble is shown in diagram
(a). Diagrams (b) and (c) present the �rst and the second order vertex correction
to the proper polarization function. The thick solid lines denote the fully dressed
Green's functionsGSE(~p; �) including the total self-energy correction and the wiggly
line represents the screened Coulomb interaction ICsc(~p; �; ~p

0; � 0).
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The calculation of the second order vertex correction (Fig. 2.3(c)) leads to

�VE2sc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
GSE(~p; �) GSE(~p+ ~q; �+ !)

�
Z

d� 0

(2�i)

Z
d~p 0

(2�)3
v(~p 0 � ~p)

�RPA(~p 0 � ~p; � 0 � �)

�GSE(~p 0; � 0) GSE(~p 0 + ~q; � 0 + !)

�
Z

d� 00

(2�i)

Z
d~p 00

(2�)3
v(~p 00 � ~p 0)

�RPA(~p 00 � ~p 0; � 00 � � 0)

�GSE(~p 00; � 00) GSE(~p 00 + ~q; � 00 + !) : (2.34)

The vertex corrections �VE1sc and �VE2sc obviously include the time inversed counter-
parts of the diagrams (b) and (c) of Fig. 2.3. Within the utilized approximation
for I(~p; �; ~p 0; � 0) in Eq. (2.13) only contributions to the basic self-energy corrected
free-particle polarization diagram, shown in Fig. 2.3(a), are included. Beyond this
type of second order vertex correction there exist diagrams including two particle-
hole bubbles interacting via plasmon excitation and deexcitation in second order
of the screened Coulomb potential, which are neglected within the presented theo-
retical approach [Green et al. 1985] so that a second order treatment of this kind
is just of exemplary nature.



Chapter 3

Final state interaction in Compton

scattering from lithium

The availability of high intense synchrotron radiation allows for a momentum space
resolution in Compton scattering experiments down to a few percent of the Fermi
momentum, which gives the unique possibility to investigate experimentally cor-
relation induced features of the electron momentum density close to the Fermi
momentum. However, this high momentum space resolution along with an ap-
propriate statistical accuracy has been obtained until now only at low incident
x-ray energies around 10 keV [H�am�al�ainen et al. 1996]. At these low incident en-
ergies the validity of the impulse approximation becomes a serious problem in
interpreting Compton pro�les. Indeed, measurements of the Compton pro�le of
e.g. neon, helium [Wong et al. 1982] and aluminium [Holt et al. 1979] resulted in
an asymmetry of the Compton pro�le with respect to pz = 0 a.u. and a lot of
e�ort has been spend to explain these deviations from the impulse approximation
on the theoretical side [Issolah et al. 1988, Holm and Ribberfors 1989].

The aim of the present study is to examine how �nal state interaction e�ects af-
fect the valence Compton pro�le of lithium and thus, how the deviations from the
impulse approximation modify the results of a Compton pro�le measurement and
the information on the electron momentum density drawn from it. A systemati-
cal study of the validity of the impulse approximation is urgently requested since
Sch�ulke et al. [Sch�ulke et al. 1996] pointed out that �nal state interactions play an
important role in the interpretation of valence Compton pro�les, even for simple
metals like lithium, while it was generally assumed so far that the valence Compton
pro�le measured at incident photon energies around 10 keV can be discussed within
the limits of the impulse approximation [Platzman and Tzoar 1965]. The inves-
tigation, how �nal state interaction e�ects in
uence the features of the electron
momentum density around the Fermi momentum of lithium, is of special interest
since strong discrepancies between experimentally obtained valence Compton
pro�les [Sakurai et al. 1995, Sch�ulke et al. 1996] and calculations utilizing LDA
[Sakurai et al. 1995] or Quantum Monte Carlo (QMC) [Filippi and Ceperley 1999]

35
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schemes have been found as far as the Fermi break is concerned.

In this chapter the high resolution Compton scattering experiment on single crys-
talline lithium is described. The results of the experiment are discussed in terms of
�nal state interaction, i.e. self-energy and vertex correction. Finally, the valence
Compton pro�les are analyzed utilizing the reciprocal form factor.
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3.1 Experiment

The experiment was performed at the inelastic x-ray scattering beamline G3 of
HASYLAB (Hamburger Synchrotronstrahlungslabor) at DESY (Deutsches Elek-
tronen Synchrotron). The experimental setup is represented followed by a descrip-
tion of the data evaluation procedure extracting the valence Compton pro�les from
the measured spectra.

3.1.1 Experimental setup

The experimental setup is illustrated in Fig. 3.1. The synchrotron radiation from
a bending magnet source was monochromatized utilizing a Ge(311) double crystal
monochromator and the scattered photons were analyzed in Rowland geometry
using a spherically bent Ge(800) analyzer crystal and detected by a Ge detector
[Sch�ulke and Nagasawa 1984]. Two monitor detectors were used, a Ge and a NaI
detector detecting the radiation from the sample and from a Kapton scattering
foil, respectively.

180 − θ sample

Ge detector

monochromator

incident
        beam

analyzer

Ge monitor detector 

NaI monitor detector 

Figure 3.1: Experimental setup of the inelastic x-ray scattering beamline G3 of
HASYLAB/DESY utilizing inverse geometry. Sample, analyzer and Ge detector
are �xed on the Rowland circle. The incident energy is varied using a double
crystal monochromator.
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The measurement was accomplished using the so-called inverse geometry, i.e.
by scanning the incident energy !1 and keeping the analyzer energy �xed at
!2 = 8789 eV corresponding to a Bragg angle of 86Æ, so that the Compton pro�le
was measured as a function of the incident energy.

The lithium single crystal was a cuboid with 6.5 mm side length and 9 mm height.
The crystallographic orientation of the single crystal, which is sketched in Fig. 3.2,
was tested utilizing Laue di�raction in transmission geometry and was precisely
adjusted with a goniometer setup. Lithium oxidizes in a humid atmosphere and
loses its metallic shine of the surface. Therefore, the sample was stored within
water-free paraÆn oil. At the beginning of the measurement the oil was removed
using heptan. Then the sample was etched in highly pure methanol to metallic
luster and again cleaned by xylol. Just after the etching process the lithium sample
was mounted into the scattering chamber, which was evacuated to 10�5 mbar
to avoid oxidation. The sample retained the metallic shine until the end of the
measurements, so that a contamination of the sample surface by oxidation which
could in
uence the experimental result can be ruled out.

[110]

[110]

[100]

incident beam

sample

Figure 3.2: Crystallographic orientation of the lithium single crystal.

Directional Compton pro�les were measured with scattering vector
~q jj [100]; [110]; [111] and [311] at a scattering angle of � = 164Æ. The inci-
dent energy was scanned from 8770 eV to 9650 eV with a stepsize of 0.7 eV. The
momentum transfer j~q j ranged from 4.66 a.u. to 5.12 a.u. and reached the value
of 4.83 a.u. at the maximum of the Compton pro�le. For each direction of ~q 7 - 8
single spectra were measured, summed up and normalized to the monitor signal
of the NaI detector detecting the scattered photons from the Kapton foil. Fig. 3.3
shows a raw spectrum, which consist of the quasi-elastic line, the lithium K-edge
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and the total Compton pro�le. The total Compton pro�le can be separated into
two components, the broad core electron contribution and the valence electron
Compton pro�le, respectively.
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Figure 3.3: Raw spectrum of lithium for ~q jj [100] with quasi-elastic line, K-edge,
core and valence Compton pro�le.

3.1.2 Data evaluation

The Compton pro�les are evaluated from the sum spectra after calibrating the
energy scale considering background subtraction, absorption, the elastic and in-
elastic scattering detected by the NaI monitor detector, the relativistic correction
of the double di�erential scattering cross section and the subtraction of the multiple
scattering contribution. The resulting Compton pro�les are normalized utilizing
Eq. (1.31). The measured normalized intensity I can be expressed as a function
of the incident energy !1 via

I(!1) =
Idetector(!1)

Imonitor(!1)
= B +

S(!1)

M(!1)
C (J(pz(!1)) +MS(pz(!1))) (3.1)
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B being the scattering background, M(!1) the energy dependent corrections of the
monitor signal, S(!1) the energy dependent corrections of the detector signal, and
MS(pz(!1)) the multiple scattering contribution. The constant C contains all fac-
tors which are not energy dependent and can be evaluated using the normalization
condition.

Energy scale

The K absorption edges of lithium, beryllium and graphite were measured and each
energy position is determined by the position of the maximum of the �rst derivative
in the regime of the absorption edge. Then the energy scale is calibrated according
to the energy positions of the absorption edges of EKLi

= 54:7 eV, EKBe
= 111:5

eV and EKC
= 284:2 eV [Cardona and Ley 1978] and the error of the energy

axis is evaluated to be �!abs
1 � 0:5 eV. After performing the energy dependent

corrections, the energy scale can be converted to the momentum scale using Eq.
(1.29). Together with the uncertainty of the absolute value of the scattering angle
��abs � 1Æ de�ned by the spectrometer setup, the position of pz = 0 a.u. is �xed
to �0:006 a.u. assuming a quadratic error propagation for the two contributions.

Radiation background

The background radiation, determined at the low energy tail of the quasi-elastic
line, is assumed to be constant over the whole energy range and found to be of the
same value for all measured directions of ~q. This constant radiation background
B is subtracted as shown in Eq. (3.1).

Energy dependent corrections of the monitor signal

If inverse geometry is utilized, the monitor signal becomes energy dependent since
the incident energy !1 is varied. The NaI detector detects the elastic and the
inelastic scattered photons from the Kapton scattering foil, where the energy of
the scattered photons !f is given by !1 for elastic scattering and is approximated by
!CP
max, the energy position of the maximum of the corresponding Compton pro�le,

for inelastic scattering. !CP
max can be calculated utilizing Eq. (1.28) by setting

pz = 0 a.u. with the incident energy !1 and the scattering angle �monitor = 90Æ.
Thus, the energy dependent correction factor of the monitor signal can be expressed
as M(!1) = M el(!1) +M in(!1; !

CP
max) performing the correction separately for the

elastic M el(!1) and the inelastic M in(!1; !
CP
max) scattering.

The radiation from the Kapton scattering foil passed a Kapton window at the exit
of the vacuum tube and a distance in air before it reached the entrance beryllium
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window of the NaI detector. The intensity measured by the NaI detector is cor-
rected due to absorption of the Kapton scattering foil M foil

abs , the Kapton window
MKap

abs , the beryllium window MBe
abs and air Mair

abs. Furthermore, the energy depen-
dent scattering intensities for inelastic I in(!1) and elastic Iel(!1) scattering have
to be considered. Thus, the separated total energy dependent correction factors of
the monitor signal can be written as

M el(!1) = Iel(!1)M
foil
abs(!1; !1)M

Kap
abs (!1)M

air
abs(!1)M

Be
abs(!1)M

t
abs(!1) (3.2)

and

M in(!1; !
CP
max) = I in(!1)M

foil
abs(!1; !

CP
max)M

Kap
abs (!

CP
max)M

air
abs(!

CP
max)

�MBe
abs(!

CP
max)M

t
abs(!1) ; (3.3)

where the absorption of the transmitted beam by the Kapton scattering foil and the
Kapton window between the vacuum tube and the scattering chamber is corrected
via M t

abs(!1).

The intensity of the incident beam is attenuated by the absorption of the Kapton
scattering foil, which holds as well for the scattered radiation. The correction to
this absorption is then given by

M foil
abs(!1;!f) =

1� e�(�Kap(!1)+�Kap(!f))dfoil= cos�foil

(�Kap(!1) + �Kap(!f)) = cos�foil

; (3.4)

dfoil = 0:025 mm being the thickness of the scattering foil, �foil = 45Æ the angle
between the direction of the incident beam and the surface normal of the scattering
foil and �Kap the absorption coeÆcient of Kapton. The directions of the incident
and the scattered beam are symmetrical with respect to the surface normal. Fur-
thermore, the beryllium window (dBe = 0:3 mm), the air distance (dair = 5 mm)
and the Kapton window (dKap1 = 0:1 mm) cause an absorption of the scattered
beam which is considered via

MBe
abs(!f) = e��Be(!f )dBe

Mair
abs(!f) = e��air(!f )dair

MKap
abs (!f) = e��Kap(!f)dKap1 : (3.5)
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The absorption correction for the transmitted beam is given by

M t
abs(!1) = e�Kap(!1)dfoil= cos�foil e�Kap(!1)dKap2 ; (3.6)

dKap2 = 0:025 mm is the thickness of the Kapton window between the vac-
uum tube and the scattering chamber, in which the sample is mounted. All
absorption coeÆcients are calculated using ln-ln mass attenuation coeÆcients
[McMaster et al. 1970].

The energy dependent scattering intensities Iel(!1) and I in(!1) are calculated uti-
lizing the corresponding elastic and inelastic scattering factors according to Wang
et al. [Wang et al. 1993]. Within this calculation the scattering intensity of a free
electron for elastic and inelastic scattering is described by the Thomson and the
Klein-Nishina scattering cross section, respectively.

Energy dependent corrections of the detector signal

The signal of the Ge detector is corrected due to the sample absorption and due
to the relativistic treatment of the double di�erential scattering cross section by

S(!1) = Ssample
abs (!1)Srel(!1) (3.7)

utilizing the absorption correction

Ssample
abs (!1) =

1� e�(�Li(!1)+�Li(!2))dLi= cos�Li

(�Li(!1) + �Li(!2))= cos�Li
(3.8)

for �xed analyzer energy !2. dLi = 6:5 mm denotes the sample thickness and
�Li = 8Æ. The relativistic correction of the Compton scattering cross section
discussed in section 1.3.2 is considered to be as follows

Srel(!1) =
r20
2

!2
!1

�
R

R 0 +
R 0

R
� 2 sin2 � cos2 �

�
; (3.9)

where the incident beam is linear polarized in the scattering plane so that � = 0.

Fig. 3.4 shows the total correction factor of the NaI signal along with the relativis-
tic scattering cross section correction and the sample absorption. After performing
the energy dependent corrections, the energy scale is converted to momentum scale
utilizing Eq. (1.29).



3.1. Experiment 43

0.85

0.9

0.95

1

1.05

8.8 8.9 9 9.1 9.2 9.3 9.4 9.5 9.6

co
rr

ec
tio

n 
fa

ct
or

 [
ar

b.
 u

ni
ts

]

incident energy [keV]

absorption of the Li sample
relativistic correction

total correction factor of the NaI signal

Figure 3.4: Energy dependent correction factors for the measured lithium spectra.
The �rst value of each correction factor is normalized to one what enables the
comparability of the di�erent contributions.

Multiple scattering

In the course of the scattering process a �nite probability is given for multiple scat-
tering within the sample. The multiple scattering contribution to the measured
spectra is modeled utilizing a Monte Carlo code [Felsteiner and Sch�ulke 1997]
which simulates the scattering of the p hotons within the sample considering sample
geometry, scattering angle, incident energy and polarization of the radiation. To
account for inelastic scattering processes the simulation is performed on the basis
of the experimentally obtained Compton pro�les neglecting the multiple scattering
contribution. 2 � 107 photons are simulated for each calculated multiple scattering
spectrum. Since the code cannot be applied to experimental setups accomplishing
inverse geometry, the distribution of the multiple scattered photons as a function of
the analyzed energy is determined for 10 incident energies ranging from 8.8 keV to
9.4 keV. This is done for all measured directions of ~q considering the corresponding
sample geometry. The multiple scattering spectra show a slight asymmetry (see
Fig. 3.5) but exhibit neither a signi�cant dependence on the incident energy nor
on the direction of the scattering vector. Thus, the average over all calculated
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Figure 3.5: Total pro�le after energy dependent corrections for ~q jj [100] plotted as
thin solid line together with the calculated asymmetrical core electron Compton
pro�le (bold solid line) and the multiple scattering contribution (dashed line),
enhanced by a factor of 5.

multiple scattering distributions is assumed to be a good approximation to correct
the experimental spectra for multiple scattering. The integral intensity of the to-
tal multiple scattering contribution is calculated to be roughly 2:3% of the total
intensity where the triple scattering accounts only for 0:06% of the total intensity.
The multiple scattering contributionMS(pz(!1)), presented in Fig. 3.5 as a dashed
line, is subtracted from the total pro�le following Eq. (3.1).

Core Compton pro�le

The total Compton pro�le of lithium consists of the 1s core electron and
the valence electron contribution. The valence electron Compton pro�le can
be extracted utilizing core electron pro�les, which can properly be calculated
using Hartree-Fock wave functions provided the impulse approximation is valid
[Biggs et al. 1975]. However, deviations from the impulse approximation resulting
in an asymmetry of the core Compton pro�le have been found by several exper-
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iments [Holt et al. 1979, Wong et al. 1982]. On the theoretical side the asym-
metrical 1s core electron contribution of graphite was calculated for 12.8 keV
incident energy and 135Æ scattering angle utilizing the hydrogenic approxima-
tion [Issolah et al. 1988] and a �rst correction to the non-relativistic Compton
scattering cross section in the impulse approximation was discussed by Holm
and Ribberfors [Holm and Ribberfors 1989] explaining the asymmetry of the core
Compton pro�le for aluminium [Holt et al. 1979]. Their calculation scheme is
applied to correct the symmetric Hartree-Fock core Compton pro�le of lithium
obtaining an asymmetrical 1s core electron Compton pro�le which is plotted in
Fig. 3.5 as a bold line compared to the total pro�le and to the multiple scattering
contribution. The calculated core electron Compton pro�le �ts the total pro�le at
high incident energies between 9.25 keV and 9.45 keV, where the contribution of
the valence electron Compton pro�le is negligible. However, in the regime of the
lithium K-edge between 8.85 keV and 8.90 keV the core pro�le deviates from the
total Compton pro�le due to the strong in
uence of the absorption edge. The sub-
traction of the core electron contribution and their in
uence on the interpretation
of the valence electron Compton pro�le of lithium will be discussed in detail later.

Normalization

The Compton pro�les are obtained on absolute scale utilizing the normalization
condition of Eq. (1.31). To calculate the normalization constant C, Eq. (3.1) is
integrated as follows

C =

pvR
�pv

dpz
M(!1)
S(!1)

(I(!1)� B) 
Nval +

pvR
�pv

dpz(Jcore(pz(!1)) +MS(pz(!1)))

! ; (3.10)

where the total Compton pro�le J(pz) is separated into the valence electron con-
tribution Jval(pz) and the core electron Compton pro�le Jcore(pz). As long as the
valence Compton pro�le contributes to the total pro�le only within the integration
range from �pv to pv, the normalization condition of Eq. (1.31) can be applied.
Nval, the number of valence electrons, equals one in the case of lithium.

Momentum space resolution

The momentum space resolution �pz is determined by the energy resolution of
the spectrometer �! and the full width of half maximum (FWHM) of the certain
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Figure 3.6: Contribution of the energy resolution �! and of the distribution of
scattering angles �� to the total momentum space resolution �pz as a function of
pz.

distribution of scattering angles �� accepted by the analyzer crystal. This distri-
bution is determined by the diameter of the analyzer crystal of 40 mm and the
distance between analyzer and sample of 860 mm. The FWHM of the distribution
is then given by �� = 2:31Æ. The energy resolution is �! = 2:3 eV estimated by
the FWHM of the quasi-elastic line. Thus, the total momentum space resolution
is obtained using Eq. (1.29) to

�pz =

s�
@pz
@�

�2

��2 +

�
@pz
@!1

�2

�!2 : (3.11)

The resolution function slightly varies as a function of pz and is shown in Fig.
3.6. If the experimentally obtained Compton pro�les are compared to theory,
the resolution function of the experiment is considered by convoluting the calcu-
lated Compton pro�les with a Gaussian resolution function. The FWHM of this
Gaussian is assumed to be constant, namely �pz = 0:022 a.u., corresponding to
the total momentum space resolution at the Compton pro�le maximum.



3.2. Experimental results 47

3.2 Experimental results

The experimentally obtained Compton pro�les of lithium for ~q jj [100]; [110]; [111]
and [311] are presented in Figs. 3.7 and 3.8. The total Compton pro�le, which
consist of the core and the valence electron Compton pro�le, is normalized to
the number of electrons and thus presented on an absolute scale. The relative
statistical error at the maximum of the total Compton pro�le is about 0:7%.
The experimental results are compared to a calculation of the valence electron
Compton pro�les performed by Bansil and Kaprzyk [Sakurai et al. 1995] utilizing
a self-consistent KKR (Korringa-Kohn-Rostocker) bandstructure scheme within
the LDA, which includes the Lam-Platzman correction to electron-electron cor-
relation [Lam and Platzman 1974]. The core electron contribution is calculated
using the �rst correction to the non-relativistic Compton scattering cross section
as discussed in section 3.1.2 and is added to the LDA valence pro�les. Finally,
the computed total Compton pro�les are convoluted with the momentum space
resolution function of the experiment.

The experimentally observed Compton pro�les exhibit a clear asymmetry with re-
spect to pz = 0 a.u. and the maxima of the valence Compton pro�les, obtained
after subtraction of the asymmetrical core contribution, are shifted to negative
pz values which are given in Tab. 3.1. The pz position of the valence Compton
pro�le maximum is determined by the maximum of a parabola �tted to the exper-
imentally obtained valence Compton pro�les within the range between �0:3 a.u.
and 0:3 a.u. The averaged position of the valence Compton pro�le maximum is
pCPmax
z = �0:031 � 0:004 a.u. It can be ruled out that this asymmetry is due to
the uncertainty of the pz scale since pz = 0 a.u. could be �xed to �0:006 a.u. Fur-
thermore, the Fermi breaks are signi�cantly broadened beyond the experimental
resolution compared to the LDA calculations for all measured directions of ~q. No
sharp Fermi break can be resolved.

This is stressed even more by concerning the second derivatives of the valence
Compton pro�les, since the width and the amplitude of the second derivative gives
an estimate for the smearing of the Fermi break. The positions, the width and the
amplitudes of the second derivative at the Fermi breaks for positive and negative
pz are determined by �tting the second derivative utilizing the following model
function F (pz)

F (pz) = a1 exp

 
�4 ln(2)

�
pz � p1

f

�2
!
+ a2 exp

 
�4 ln(2)

�
pz � p2

f

�2
!

+ a3

�
arccot

�
b

p1 � pz

�
+ arccot

�
b

p2 � pz

��
: (3.12)
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Figure 3.7: Experimental lithium Compton pro�le for ~q jj [100] and [110] compared
to LDA theory
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Figure 3.8: Experimental lithium Compton pro�le for ~q jj [111] and [311] compared
to LDA theory.
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The positions p1;p2 and the amplitudes a1;a2 of the Gaussians are �tted indepen-
dently and the FWHM f is choosen to be identical for both Gaussians since the
variation of the momentum space resolution of 0.002 a.u. in the regime of the va-
lence Compton pro�le is negligible. The arccot function accounts for the negative
contribution to the second derivative for jpzj < 0:5 a.u. and its amplitude is �tted
by variing the parameter b. Due to the statistical error of the experimental data,
both the theoretically and the experimentally obtained Compton pro�les have to
be convoluted by a Gaussian before calculating the second derivatives. The low-
est additional convolution for which the �t procedure yields reasonable results is
fa = 0:12 a.u. The second derivatives are analyzed with respect to di�erences be-
tween experiment and theory appearing in spite of this additional convolution. For
larger additional convolutions fa the information obtained from the experimental
spectra is reduced, whereas for smaller additional convolutions the results are more
and more a�ected by the statistical error of the experiment. If fa < 0:07 a.u. the
�t procedure fails. The error in analyzing the second derivatives is estimated by
applying the �t procedure to the experimental Compton pro�les utilizing various
additional convolutions between 0.07 a.u. and 0.17 a.u.

The symmetrized second derivatives of the valence Compton pro�les compared to
the corresponding LDA results are shown in Fig. 3.9, where the derivatives are cal-
culated at fa = 0:12 a.u. extra convolution. The results for F (pz) are symmetrized
and plotted as a thin solid line in Fig. 3.9 exhibiting a good agreement with the
experimental results. In contradiction to the predictions of LDA theory the sec-
ond derivatives of the experimentally obtained Compton pro�les are signi�cantly
smaller in amplitude and show a larger FWHM around pF.

~q jj [100] [110] [111] [311]

pCPmax
z [a.u.] -0.030 -0.031 -0.021 -0.041
p+F + p�F [a.u.] 0.007 -0.002 -0.004 0.002

Table 3.1: Position of the valence Compton pro�le maximum pCPmax
z and the dif-

ference of the Fermi break positions p+F + p�F determined from the experiment.

The positions of the Fermi break determined via the model function F (pz) are
found to be symmetric with respect to pz = 0 a.u. within experimental error. Tab.
3.1 shows the shift of the position of the Fermi breaks p+F +p�F

1 obtained by �tting
the model function to the second derivatives and its error is estimated to be �0:01
a.u. as described above.

The asymmetry of the Compton pro�les and its additional broadening is discussed
in detail and interpreted in terms of �nal state e�ects in what follows.

1p+
F
and p�

F
corresponds to positive pz and to negative pz, respectively.
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Figure 3.9: Second derivatives of the experimentally observed lithium Compton
pro�les for ~q jj [100]; [110]; [111] and [311] (dots) compared to LDA theory (bold
line). The second derivatives are calculated at fa = 0:12 a.u. extra convolution
and the thin solid line represents the result obtained for the model function F (pz).
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3.3 Valence Compton pro�le asymmetry

The asymmetry of the total Compton pro�le is calculated by the di�erence
J(pz)� J(�pz) and represented in Fig. 3.10 (upper panel) for all measured direc-
tions of ~q. For clarity only each fourth experimental datapoint is plotted and the
experimental error is presented exemplarily in the case of the [110] asymmetry.
The asymmetries exhibit no signi�cant ~q dependence. Thus, the average over all
directions is calculated and shown in Fig. 3.10 (lower panel). Its error is given by
the standard deviation of the several asymmetries from the average and is in the
order of the experimental error of the asymmetry for one single direction.

The total asymmetry can be separated into two di�erent regimes: (i) For jpzj > pF
(= 0.589 a.u. for jellium) the core asymmetry dominates. The experimentally
obtained asymmetry of the core electron Compton pro�le is in good agreement with
the predictions of Holm and Ribberfors [Holm and Ribberfors 1989] even though
its shape is a�ected by the lithium K-edge for jpzj > 1:4 a.u. The asymmetry of the
calculated core Compton pro�le is plotted as a solid line in Fig. 3.10 (lower panel).
Nevertheless, the amplitude of the core asymmetry is dependent on the asymmetry
of the multiple scattering contribution and is also sensitive to small changes of
the energy dependent correction factors. Therefore, the comparison between the
measured asymmetry of the core Compton pro�le and the theoretical predictions
should be considered with care. (ii) For jpzj < pF the shape of the total asymmetry
changes rapidly with pz due to the asymmetry of the valence Compton pro�le. To
extract this contribution from the total asymmetry, the calculated asymmetry of
the core Compton pro�le is subtracted. The result, shown in Fig. 3.11, is hardly
in
uenced by small changes of the energy dependent correction factors and is well
separated from the widespread asymmetries of the core Compton pro�le and the
multiple scattering contribution.

Di�erent theoretical approaches within the impulse approximation, e.g. LDA
[Sakurai et al. 1995] or QMC [Filippi and Ceperley 1999], failed to overcome the
discrepancies between experiment and theory in the case of the valence Compton
pro�le of lithium. Thus, in this study the jellium model is chosen to go beyond the
impulse approximation to interpret the experimental results presented so far. It is
stated that this choice is justi�ed since no signi�cant ~q dependence of the asym-
metry is found. In terms of the jellium model the interpretation of the impulse
approximation is, to neglect all �nal state e�ects, namely the interaction of the
excited particle with the many-particle system and the interaction of the particle
with the hole left behind. These two e�ects are theoretically described by the
self-energy correction and the vertex correction to the free-particle polarizability
�0sc(~q; !). Within the range of energy and momentum transfer of the experiment
the polarization function �(~q; !), which is directly related to the dynamic structure
factor S(~q; !), can be replaced by the proper polarization function �sc(~q; !).



3.3. Valence Compton pro�le asymmetry 53

-0.2

-0.15

-0.1

-0.05

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

J(
p z

) 
- 

J(
-p

z)

pz [a.u.]

total profile asymmetries

→q || [100]
→q || [110]
→q || [111]
→q || [311]

-0.2

-0.15

-0.1

-0.05

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

J(
p z

) 
- 

J(
-p

z)

pz [a.u.]

averaged total profile asymmetry

total asymmetry (experiment)
core asymmetry

Figure 3.10: Total Compton pro�le asymmetry of lithium for ~q jj [100]; [110]; [111]
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Figure 3.11: Valence Compton pro�le asymmetry of lithium.

3.3.1 Self-energy correction

The self-energy �(~p; E) is calculated according to Hedin [Hedin 1965] within the
standard GW approximation and by screening the bare Coulomb potential dynam-
ically with the RPA dielectric function, see Eq. (2.14). Within this calculation
the self-energy is separated into its particular components to overcome integration
problems. Then the spectral density function A(~p; E) is determined utilizing Eq.
(2.18). The self-energy correction of the proper polarization �SEsc (~q; !) up to all
orders in the screened Coulomb potential is represented by Eq. (2.20) and thus,
the dynamic structure factor S(~q; !) reads as

S(~q; !) =
1

�

Z
d~p

(2�)3

EFZ
EF�!

dE

(2�)
A(~p; E)A(~p+ ~q; E + ! � !s) (3.13)

utilizing a slightly modi�ed expression compared to Eq. (2.21) by introducing !s.
The adjustable parameter !s takes approximately into account the deviations of
the excitation energies from the jellium model which are induced by the lattice
potential [Borstel 1985]. This parameter is estimated to be !s = �3:5 eV by
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�tting the energy positions of the Fermi breaks of the calculated dynamic structure
factor to the experimentally obtained peak positions of the second derivatives at
pF, which are symmetrical with respect to pz = 0 a.u. The calculated asymmetry
S(pz) � S(�pz) is presented in Fig. 3.12 compared with the asymmetry of the
valence Compton pro�le of the experiment.
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Figure 3.12: Lithium valence Compton pro�le asymmetry obtained from the ex-
periment compared to the calculated asymmetry taking into account the full self-
energy correction (short dashed line).

The fully self-energy corrected proper polarization function yields an asymmetry
which is di�erent from the asymmetry of the experiment in sign and in ampli-
tude. A similar disagreement is found within a jellium calculation of the dynamic
structure factor of aluminium taking into account the full self-energy correction
[Ng and Dabrowski 1986]. The measurement of the dynamic structure factor of
aluminium shows that even in the liquid phase the shape of the experimental re-
sult disagrees with the calculation a fact which is assigned to the cancellation of
the self-energy correction by the vertex correction [Sternemann et al. 1998]. Thus,
it is necessary to account for the vertex correction within the calculation of the
fully self-energy corrected proper polarization function.
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3.3.2 Vertex correction

The particle-hole vertex correction in �rst order to the fully self-energy corrected
proper polarization function �SEsc (~q; !) is calculated utilizing Eq. (2.33) according
to diagram (b) of Fig. 2.3. The corresponding asymmetry is shown in Fig. 3.13
and compared to the experimental �ndings. The vertex correction to the fully self-
energy corrected proper polarization function changes the sign and the amplitude
of the asymmetry. A good qualitative agreement between theory and experiment
is obtained. This agreement is slightly improved, if the vertex correction in second
order according to Eq. (2.34) by calculating diagram (c) of Fig. 2.3 is added
(see Fig. 3.13). It has to be stressed that there exist diagrams of second order
in the dynamically screened Coulomb interaction, which are neglected within the
presented calculation. Due to this fact only an estimate of the magnitude of
the second order corrections is given. The vertex corrections in third order will
contribute to the asymmetry by less than the experimental error.
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Figure 3.13: Lithium valence Compton pro�le asymmetry obtained from the ex-
periment compared to the calculated asymmetry taking into account the full self-
energy correction and in addition the �rst order (dashed line) and the �rst together
with the second order vertex correction (solid line).
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To summarize, the asymmetry of the valence Compton pro�le is attributed to
an incomplete cancellation of the vertex correction and the self-energy correction.
A signi�cant deviation from the impulse approximation for the valence electron
Compton pro�les is found in the sense, that �nal state e�ects have to be considered
to explain the asymmetry, which is a direct evidence of the electron-hole interaction
in the course of the Compton scattering process.
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3.4 In
uence of the spectral density function of

the particle on the valence Compton pro�le

The e�ect of the �nite lifetime of the excited particle on the dynamic structure
factor in the Compton scattering limit consists in a convolution of the fully corre-
lated electron momentum density 
(~p j ~p ) with the spectral density function of the
excited particle AIA(~p + ~q; �~p + !), which can be written according to Eq. (2.26)
as

AIA

�
~p + ~q;

p2

2m
+ !

�
=

�2 Im�
�
~p+ ~q; p2

2m
+ !

�
�
! � ~p�~q

m
� q2

2m

�2
+
�
Im�

�
~p+ ~q; p2

2m
+ !

��2 : (3.14)

This function is presented in Fig. 3.14 calculated for three di�erent momentum
transfers j~p+ ~q j. 2

The shape and the amplitude of the particle spectral density function varies hardly
within the considered range of momentum transfer. Thus, AIA(~p + ~q; p2=2m + !)
can be approximated in shape and in amplitude by the spectral density function
of the excited particle for j~q j = 4:83 a.u. corresponding to the Compton pro�le
maximum. This means, that in Eq. (2.28) AIA(~p+~q; p

2=2m+!) can be substituted
by ACPmax(! � ~p � ~q=m � q2=2m), which is the spectral density function of the
excited particle calculated corresponding to the maximum of the Compton pro�le
but centered at the energy position ! = ~p�~q=m+q2=2m. If ~q points into z-direction,
it follows

SSE
CP(~q; !) =

1

2�

Z
d~p 
(~p j ~p ) ACPmax

�
! � pz q

m
� q2

2m

�
: (3.15)

Performing the px and the py integration yields

SSE
CP(~q; !) =

1

2�

Z
dpz J(pz) ACPmax

�
! � pz q

m
� q2

2m

�
: (3.16)

Finally, ~! = pz q=m + q2=2m is substituted and the valence Compton pro�le on
the energy scale ~J(~!) = J(pz = ~!m=q � q=2) is introduced, ending up with

2The spectral density functions of the particle centered at the energy positions
! = ~p � ~q=m+ q2=2m are shifted to ! = 0 eV and ~p = ~0 a.u.
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SSE
CP(~q; !) =

m

q

Z
d~!

2�
~J(~!) ACPmax

(! � ~!) : (3.17)

Within this approximation the �nite lifetime of the �nal state due to the imaginary
part of its self-energy a�ects the fully correlated valence Compton pro�le by a
convolution with the spectral density function of the excited particle on the energy
scale, resulting in an additional broadening of the valence Compton pro�le.
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Figure 3.14: Spectral density function of the excited particle for di�erent j~q j.
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In Fig. 3.15 the measured total Compton pro�les are plotted in the range from
0.5 a.u. to 0.7 a.u. around the Fermi momentum and compared to the LDA
Compton pro�les with and without convolution with the spectral density function
of the excited particle, where the asymmetrical core Compton pro�le is added to
the LDA valence Compton pro�les.

Taking into account the �nal state interaction given by the convolution of Eq.
(3.17) results in a clear broadening of the Fermi break, which improves the agree-
ment between experiment and theory. To quantify this broadening it is most
suitable to investigate the second derivatives of the Compton pro�les around pF.

Since the second derivatives of the experimentally observed valence Compton pro-
�les at the Fermi break are found to be symmetric with respect to pz = 0 a.u., the
symmetrized second derivatives are shown in Fig. 3.16 with the corresponding LDA
calculations and the results obtained by convoluting the LDA valence Compton
pro�les with the spectral density function ACPmax (! � ~!). Before calculating the
second derivatives an additional convolution with a Gaussian having fa = 0:12
a.u. is applied to the experimentally and theoretically obtained valence Compton
pro�les as discussed in section 3.2. The consideration of the �nal state interaction
by the convolution of Eq. (3.17) signi�cantly improves the agreement between ex-
periment and theory and explains most of the broadening of the Compton pro�le
beyond the experimental momentum space resolution.

The averaged amplitude a = (a1+ a2)=2 and the FWHM of the second derivatives
of the calculated at; ft and the experimentally determined ae; fe valence Compton
pro�les are estimated using the model function of Eq. (3.12) and the results are
shown in Tab. 3.2 3.

The di�erence of the squares of the FWHM of theory ft and experiment fe given by
� =

p
f 2e � f 2t yields the additional Gaussian convolution needed to get the same

broadening in theory as observed in the experiment. The error of this di�erence
is determined by evaluating the FWHM for di�erent additional convolutions fa
between 0.7 a.u. and 1.7 a.u. as described in section 3.2 and the negative sign of
� indicates fe < ft.

The FWHM of the Gaussian which causes the same broadening as a convolution
with the spectral density function (SDF) is estimated to be 0.088 a.u. at fa = 0:12
a.u. extra convolution. This value is in good agreement with the averaged value

3The statistical error of ae and fe is estimated as follows: The LDA Compton pro�le con-
voluted with the spectral density function is randomly noised by the statistical error of the
experiment. Then the additional convolution with fa = 0:12 a.u. is applied to the noised spectra
and their averaged amplitude an and their FWHM fn is determined utilizing the �t of the model
function from Eq. (3.12). This procedure is repeated until the standard deviation of the various
an and fn converges. Assuming a Gaussian distribution of the obtained an and fn the error of
ae and fe is given by its standard deviation.
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Figure 3.15: Experimental Compton pro�les plotted around the Fermi break (dots)
compared to the LDA calculations with (solid line) and without (dashed line)
convolution with the spectral density function of the excited particle (SDF).
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Figure 3.16: Symmetrized second derivatives of the experimentally obtained va-
lence Compton pro�les (dots) compared to LDA results with (solid line) and with-
out (dashed line) convolution with the spectral density function of the excited
particle (SDF).
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of �SDF = 0:092 a.u. calculated from the LDA result for ft with and without
convolution by the spectral density function of the excited particle and con�rms
the assumption of Gaussian distributions in calculating �.

~q jj [100] [110] [111] [311]

amplitude
at (LDA) 28.10 21.83 25.24 27.18
at (LDA*SDF) 20.86 18.60 19.25 20.77
ae (Experiment) 17.83�0.06 17.51�0.06 15.79�0.10 17.50�0.06
FWHM [a.u.]
ft (LDA) 0.106 0.168 0.126 0.121
ft (LDA*SDF) 0.135 0.188 0.164 0.153
fe (Experiment) 0.154�0.005 0.179�0.005 0.189�0.007 0.172�0.005
� [a.u.]
Exp. - LDA 0.112�0.042 0.062�0.039 0.141�0.029 0.122�0.022
Exp. - LDA*SDF 0.074�0.058 -0.057�0.063 0.094�0.030 0.079�0.028
�SDF [a.u.]
LDA*SDF - LDA 0.084 0.084 0.105 0.094

Table 3.2: Amplitude and FWHM of the second derivatives at the Fermi momen-
tum of experiment, LDA and LDA convoluted with the spectral density function
of the excited particle (SDF). � gives the additional Gaussian convolution needed
to obtain in the theory the same broadening as in the experiment and �SDF rep-
resents the Gaussian convolution assigned to the convolution with the spectral
density function. The presented values are determined for fa = 0:12 a.u. extra
convolution.

The agreement between theory and experiment concerning the width and the am-
plitude of the second derivatives at the Fermi momentum is highly improved, if
the convolution with the spectral density function of the �nal state is consid-
ered. Thus, the main part of the observed smearing at the Fermi momentum of
the experimentally determined valence Compton pro�les beyond the experimental
momentum space resolution is attributed to the �nite lifetime of the �nal state
due to the imaginary part of the self-energy. This causes an intrinsic resolution
limit for Compton scattering experiments at low incident energies and momentum
transfers. In the present experiment the intrinsic momentum space resolution limit
is 0.06 a.u., the width of the spectral density function of the excited particle for
an incident energy around 9 keV and a momentum transfer of 5 a.u.
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Nevertheless, even after convolution of the LDA valence Compton pro�les with
the spectral density function of the excited particle a discrepancy between experi-
ment and theory remains. The second derivatives of the experimentally obtained
Compton pro�les are still broader than those of the theoretical ones, which con�rms
the well-known discrepancy between LDA or QMC calculations and experiment in
the case of lithium. This discrepancy is often attributed to the inadequate treat-
ment of electron-electron correlation e�ects in the Compton scattering process and
forced a lot of discussion on the value of the renormalization constant zF. To exam-
ine the high resolution Compton pro�les on this basis, the reciprocal form factor
B(~R) will be considered.
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3.5 Reciprocal form factor

The valence Compton pro�les are obtained by subtracting the asymmetrical core
Compton pro�le and the multiple scattering contribution after the energy depen-
dent corrections were performed. Then the reciprocal form factor B(r) of the
valence Compton pro�les for ~q jj[100]; [110]; [111]; and [311] is calculated at the

corresponding lattice translation vectors ~R. The uncertainties in extracting the
valence Compton pro�le caused by the subtraction of the core and the multiple
scattering contribution have no signi�cant in
uence on the values of the recipro-
cal form factor for r > 5 a.u. since these contributions vary slowly as a function
of pz. In contrast, the valence Compton pro�le is localized in momentum space
having a delocalized B(r) function. For r = j~R j the reciprocal form factor yields

information about the occupation function n(~k) according to Eq. (1.52) and thus
information, how electron-electron correlation a�ects the valence Compton pro-
�le. Fig. 3.17 shows the B(~R ) values calculated from the experimental valence
Compton pro�les compared to the LDA theory, Lam-Platzman corrected, with and
without convolution with the spectral density function of the excited particle.

The theoretical valence Compton pro�les are convoluted with the momentum space
resolution function and the experimental error of B(~R ) is calculated according to

the approximate equation �B(~R ) =
Btot(0)p
Ntot

[Pattison and Schneider 1978] to 0:0011

a.u. Here Btot(0) denotes the value of the reciprocal form factor of the total

Compton pro�le at j~Rj = 0 and Ntot is the total number of counts measured in

the pz regime, in which B(~R ) is determined.

The theoretical values of B(~R ) lie closer to the experimental ones, if the convo-
lution with the spectral density function of the excited particle is applied to the
LDA calculation. However, a strong discrepancy between experiment and theory
remains, con�rming the conclusions made at the end of section 3.4 . As follows,
the discrepancy obtained in the present experiment is confronted with the discrep-
ancy between LDA and experimental results found in former valence Compton
pro�le measurements of lithium [Sch�ulke et al. 1996, Sternemann et al. 2000 (b)].

Tab. 3.3 represents the experimentally found values of B(~R ) calculated for the

smallest �ve lattice translation vectors ~R utilizing the corresponding directional
valence Compton pro�le. These values are compared to the results obtained from
valence Compton pro�les measured at 30 keV [Sternemann et al. 2000 (b)] for
~q jj [110] with a momentum space resolution of �pz = 0:10 a.u. and at 31 keV
[Sch�ulke et al. 1996] for ~q jj [100]; [110]; [111] and [311] with �pz = 0:17 a.u. 4 The

4In the paper of Sch�ulke et al. [Sch�ulke et al. 1996] the momentum space resolution is deter-
mined to be �pz = 0:14 a.u. This estimate neglects the distribution of e�ective scattering angles
on the momentum space resolution as discussed in section 3.1.2. If this distribution is considered
a momentum space resolution of �pz = 0:17 a.u. is obtained.
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Figure 3.17: Values of the reciprocal form factor B(~R ) calculated at the lattice

translation vectors ~R for ~q jj [100]; [110]; [111] and [311]. The experimental results
(dots) are compared to LDA theory (squares) and LDA theory convoluted with
the spectral density function of the excited particle (triangles).

values of B(~R ) obtained from the experimental valence Compton pro�les B(~R)exp
are confronted with the results of the LDA valence Compton pro�le computations
(Lam-Platzman corrected) B(~R)theory, which are convoluted with the momentum
space resolution function of the corresponding experiment. The convolution with
the spectral density function e�ects only the measurement at 9 keV signi�cantly
since the FWHM of the �nal state spectral density function at incident energies
around 30 keV and 31 keV is in the order of 0.009 a.u. on a pz scale and thus
negligible with respect to the experimental momentum space resolutions of 0.10
a.u and 0.17 a.u., respectively.

It has to be stressed that in the present study the discrepancy between LDA
theory and the experimental valence Compton pro�les, �B = Bexp � Btheory, is
found to be roughly of the same order as obtained from measurements performed at
larger incident energies having di�erent momentum space resolutions. This means,
that even though the broadening of the Compton pro�le is mainly attributed to
the in
uence of the spectral density function of the excited particle, the �nal
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j~R j [a.u.] ~q jj �pz [a.u.] B(~R)theory B(~R)exp j�Bj
5.743 [111] 0.17 0.196 0.159 0.037

0.02 0.208 0.173 0.035
6.633 [100] 0.17 0.082 0.060 0.022

0.02 0.086 0.066 0.020
9.384 [110] 0.17 -0.061 -0.043 0.018

0.10 -0.071 -0.051 0.020
0.02 -0.068 -0.060 0.008

11.000 [311] 0.17 -0.045 -0.026 0.019
0.02 -0.054 -0.039 0.015

11.486 [111] 0.17 -0.023 -0.016 0.007
0.02 -0.028 -0.020 0.008

Table 3.3: Values of the reciprocal form factor B(~R ) obtained from Compton
pro�le measurements at di�erent incident energies having di�erent momentum
space resolutions.

state interaction cannot account for the widely discussed discrepancy between
LDA theory and experiment. Since the reciprocal form factor calculated at lattice
translation vectors is directly related to the occupation function as emphasized in
section 1.4, the observed discrepancy may be due to the inadequate treatment of
electron-electron correlation within the Lam-Platzman correction.
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3.6 Summary

The high resolution measurements of directional Compton pro�les of lithium for
~q jj [100]; [110]; [111] and [311] have shown that the sharp features at the Fermi
momentum predicted by LDA theory, which should be resolved with the highly
improved experimental momentum space resolution of �pz = 0:022 a.u., are still
smeared out. The main part of this additional broadening can be attributed to
the convolution of the valence Compton pro�le with the particle spectral den-
sity function, so that the broadening can be considered as a direct evidence of
the interaction of the excited particle with the rest of the many-particle system.
Thereby, an intrinsic resolution limit due to the �nal state interaction is given,
when Compton pro�le measurements at low incident energies are performed. The
contribution of the particle spectral density function to the momentum space res-
olution of Compton pro�le measurements at incident energies of 30 keV and 60
keV is estimated to be 0.009 a.u. and 0.002 a.u. FWHM, respectively. This em-
phasizes, that the improvement of the momentum space resolution beyond 0.05
a.u. in high resolution Compton scattering experiments requires incident photon
energies larger than at least 30 keV. At these energies the in
uence of the spectral
density function of the excited particle becomes more and more negligible. Recent
Compton pro�le measurements of beryllium have shown a similar broadening of the
Compton pro�les beyond experimental resolution at an incident energy around 10
keV [Huotari et al. 2000] which may also be attributed to �nal state interactions.
On the basis of the reciprocal form factor it is shown that the convolution of the
lithium valence Compton pro�le with the particle spectral density function can-
not account for the well-known discrepancy between LDA theory and experiment
as found in Compton pro�le measurements performed at higher incident energies.
Furthermore, the valence Compton pro�le exhibits an asymmetry, which agrees in
sign, shape and amplitude with the predictions of the �rst order vertex correction
to the fully self-energy corrected proper polarization function. The magnitude of
the second order type vertex correction is presented, slightly improving the agree-
ment between experiment and theory. Thus, this asymmetry is a direct indication
of the particle-hole interaction in the course of the Compton scattering process and
gives an evidence for the overcompensation of the self-energy by the vertex correc-
tion. In interpreting the measured valence Compton pro�les it is necessary to go
beyond the impulse approximation in the sense that �nal state interactions have
to be considered within a many-particle calculation. This means, that the require-
ments of the impulse approximation are not ful�lled within the considered regime
of energy and momentum transfer. The reliability of the presented experimental re-
sults is strongly con�rmed since a second experiment performed by H�am�al�ainen et
al. under similar experimental conditions at the beamline X21 of NSLS (National
Synchrotron Light Source) yields the same conclusions [Sternemann et al. 2000].



Chapter 4

Temperature e�ects in Compton

scattering from lithium

Recent high resolution Compton scattering studies on lithium [Sakurai et al. 1995,
Sch�ulke et al. 1996, Sternemann et al. 2000] and lithium-magnesium alloys
[Stutz et al. 1999] have shown signi�cant discrepancies between the experimentally
observed valence Compton pro�les and Korringa-Kohn-Rostoker LDA computa-
tions, in which the electron-electron correlation is generally included via the Lam-
Platzman correction [Lam and Platzman 1974]. The calculated valence Compton
pro�les are above the experimental ones around pz = 0 a.u. and below at pz � pF
as shown in Fig 4.1. The valence Compton pro�le anisotropies are overestimated
by theory and the Fermi breaks are predicted to be much sharper in theory than
in the experimental �ndings.

This discrepancy incited a lot of theoretical work, especially the value of the renor-
malization constant zF for lithium was widely discussed, since it is a direct measure
for the e�ect of electron-electron correlation on the electron momentum density
describing the stepsize of the occupation function n(~k) at the Fermi momentum.
An experimental work of Sch�ulke et al. [Sch�ulke et al. 1996] suggests zF to be
0.1. This anomalous small value is in strong contradiction to jellium calculation
results, where zF = 0:7 was obtained [Takada and Yasuhara 1991]. A �rst princi-
ple calculation of the spectral density function utilizing the GW approximation by
Kubo [Kubo 1997] shows much better agreement with the experimental valence
Compton pro�les than LDA theory, yielding zF � 0:25 avaraged over the three
principal crystallographic symmetry directions. However, Sch�ulke emphasized that
Kubo's calculations exhibit an unphysical behaviour of the imaginary part of the
self-energy at the Fermi level and obtained zF = 0:75 using a similar computation
[Sch�ulke 1999]. Roughly the same result, namely zF = 0:72, was found by Eguiluz
et al. [Eguiluz et al. 2000]. A Bayesian analysis of the renormalization constant
utilizing the high resolution Compton data of Sakurai [Sakurai et al. 1995] and
Sch�ulke [Sch�ulke et al. 1996] yields zF � 0:5 [Dobrzy�nski 2000].
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Figure 4.1: Lithium valence Compton pro�le measured for ~q jj [110]
[Sch�ulke et al. 1996] compared to the result of a Lam-Platzman corrected LDA
calculation of Bansil and Kaprzyk [Sakurai et al. 1995] which is convoluted with
the experimental momentum space resolution of �pz = 0:17 a.u.

Recent QMC calculations have shown that their correlation correction is in agree-
ment with the Lam-Platzman correction used within LDA computations and over-
comes only 30% of the discussed discrepancy [Filippi and Ceperley 1999], whereas
a full-potential LAPW (Linearized Augmented Plane Wave) calculation by Baruah
et al. [Baruah et al. 1999] exhibits a somewhat better agreement to the experimen-
tal valence Compton pro�les and its �rst derivatives. However, the Compton pro�le
anisotropies are still far from the experimental ones, which is traced back having
neglected the anisotropic part of the electron-electron correlations within the Lam-
Platzman scheme. Barbiellini [Barbiellini 2000] has criticized all these calculations
[Sakurai et al. 1995, Sch�ulke 1999, Eguiluz et al. 2000, Filippi and Ceperley 1999,
Baruah et al. 1999] which utilize many-body wave functions within the free
fermion nodal structure (FNS) and stated, that schemes like the antisymmetrized
geminal product (AGP) going beyond the FNS could account for important cor-
relation e�ects in the lithium valence Compton pro�les. The deviation from the
impulse approximation in terms of �nal state e�ects was discussed to be negligible
at least for incident photon energies higher than 30 keV and thus cannot be the
reason for the observed discrepancy [Sternemann et al. 2000].
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A di�erent approach to explain this discrepancy was tried by Dugdale and Jarlborg
[Dugdale and Jarlborg 1998]. They simulated thermal disorder by introducing a
static disorder within a supercell calculation utilizing a self-consistent LMTO (Lin-
ear MuÆn-Tin Orbital) scheme in the case of lithium and sodium. They found an
increasing broadening of the Compton pro�le in momentum space with increasing
temperature resulting in a better agreement between theory and experiment. The
calculated total Compton pro�les are presented in Fig. 4.2. This approach seems
to be reasonable since LDA, QMC, LAPW and GW calculations usually neglect
the e�ect of temperature on the electron momentum density and their result has
to be veri�ed by an appropriate experiment.
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Figure 4.2: Temperature dependence of the total Compton pro�le of
lithium for ~q jj [110] calculated utilizing a LMTO supercell approach
[Dugdale and Jarlborg 1998] (Fig. 1(a) of their paper).

Such an experiment along with its interpretation is the topic this chapter. The
experimental setup to measure the temperature e�ect on the lithium Compton
pro�le is described. Then the valence Compton pro�le temperature di�erences are
presented and compared to results obtained from temperature dependent jellium
calculations and computations using a temperature dependent local pseudopoten-
tial.
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4.1 Experiment

The experiment was performed at the Compton scattering beamline ID15B of
ESRF (European Synchrotron Radiation Facility). After presentation of the ex-
perimental setup the data treatment is discussed and the temperature di�er-
ences of the lithium valence Compton pro�les are compared with the temper-
ature e�ect predicted by the thermal disorder model of Dugdale and Jarlborg
[Dugdale and Jarlborg 1998].

4.1.1 Experimental setup

The experimental setup of the scanning-type x-ray spectrometer of ID15B is il-
lustrated in Fig. 4.3. The incident beam supplied by an asymmetrical multipole
permanent-magnet wiggler was focussed on the lithium sample utilizing a Si(111)
bent-crystal monochromator. The incident energy was 29.24 keV and the scatter-
ing angle was 173Æ. The scattered photons were analyzed in Rowland geometry
utilizing a Si(400) bent analyzer crystal and were detected by a large-diameter
NaI scintillation counter. A detailed description of the experimental setup is given
elsewhere [Suortti et al. 1999]. The spectrometer was calibrated using the Sn K�1

and K�2 
uorescence lines having 
uorescence energies of EK�1
= 25:271 keV and

EK�2
= 25:044 keV.

θ

analyzer Ge monitor detector 

sample

Ge monitor detector

Si diode

NaI detector

monochromator

incident beam

Figure 4.3: Experimental setup of the scanning-type x-ray spectrometer at the
Compton scattering beamline ID15B of ESRF.
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The lithium single crystal, a cuboid of 7 mm sidelength and 9 mm height, was
mounted into a vacuum chamber which was evacuated to 10�5 mbar to avoid ox-
idation. The sample was etched as described in section 3.1.1 and retained the
metallic shine until the end of the measurements, so that a contamination of the
surface by oxidation can be excluded. Since the experimental momentum space
resolution �pz depends strongly on the sample thickness, the e�ective scattering
volume seen by the analyzer was restricted using a wolframcarbide rod, which was
placed in the scattered beam obtaining an appropriate momentum space resolution
(see Fig. 4.4). The Ge monitor detector was placed directly above the scattered
beam to detect the scattering from the same e�ective sample volume as the ana-
lyzer does. Thus, the monitor signal was independent of beam position movements
on the sample. A closed cycle cryostat was utilized with a temperature controller
to stabilize the sample temperatures of 95 K and 295 K with an acurracy of �5 K.
Lithium Compton pro�les were measured for ~q jj [110] at 295 K, 95 K and again
295 K to validate the reversibility of the temperature e�ect. The total number
of counts in the maximum of the Compton pro�le in the second measurement at
room temperature was only about 1:3� 105 in contrast to 2:8� 105 obtained for
the other pro�les due to the lack of beamtime. The low temperature measurement
was taken above 75 K, where the martensitic phase transition of lithium occurs
[Smith 1987]. For each temperature several single spectra were measured, summed
up and normalized to the signal of the Ge monitor detector.

monitor detector

incident beam

rod

sample

analyzer slit
analyzer

Figure 4.4: Reduction of the e�ective scattering volume utilizing a wolframcarbide
rod. The monitor detector is placed directly above the scattered beam.
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4.1.2 Data evaluation

The experimental Compton pro�les are evaluated considering all energy dependent
corrections S(!2), namely the vertical acceptance of the spectrometer, re
ectivity
of the analyzer crystal, absorption of the sample, air absorption, scale and relativis-
tic correction and, at last, the subtraction of the multiple scattering contribution
MS(pz(!2)). The background B is assumed to be constant. In the case of the
Compton spectrometer of ID15B the measured normalized intensity I(!2) is given
by

I(!2) = B + CS(!2) (J(pz(!2)) +MS(pz(!2))) : (4.1)

C contains all factors which are not energy dependent. The deadtime correction
of the detector signal is negligible due to the small counting rates.

Energy dependent corrections

The vertical acceptance of the spectrometer is limited either by the vertical open-
ing of the analyzer slit (hS = 35 mm), the height of the analyzer crystal itself
(hA = 61 mm) or the vertical opening of the detector (hD = 70 mm), depending
on the values of the distances between sample and analyzer p and analyzer and
detector q. The distance between sample and analyzer slit (d = 1083 mm) is
constant, whereas p and q are functions of the Bragg angle �B. Then the vertical
acceptance is given by

Sac(!2) =

�
Min

�
hS
d
;
hA
p(�B)

;
hD

p(�B) + q(�B)

��
: (4.2)

The re
ectivity of the analyzer crystal Sref(!2) is computed on the basis of the
dynamical theory of di�raction utilizing the program REFLECT availible at ID15B
taking into account the polarization of the scattered photons [Erola et al. 1990].

The sample absorption Ssample
abs (!2) is accounted for according to Eq. (3.8) and the

air absorption Sair
abs(!2) is expressed as

Sair
abs(!2) = e��air(!2)(p(�B)+q(�B)) : (4.3)

The scanning spectrometer measures the intensity of the scattered photons as a
function of the Bragg angle and not as function of energy. Thus, a scale correction
has to be performed via
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d2�

d
d!2
=

d2�

d
d�B

d�B
d!2

; (4.4)

which yields

Sscale(!2) =
d!2
d�B

=
!2

tan �B
: (4.5)

Since the incident photons were linear polarized with respect to the scattering
plane the relativistic correction Srel(!2) is performed using Eq. (3.9). Then the
total energy dependent correction factor can be expressed by

S(!2) = Sac(!2)Sref(!2)S
sample
abs (!2)S

air
abs(!2)Sscale(!2)Srel(!2) : (4.6)

After performing the energy dependent corrections the energy scale is transformed
to the momentum scale. The correction factors are shown in Fig. 4.5.
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Figure 4.5: Energy dependent correction factors for the experimental lithium spec-
tra measured with the scanning-type x-ray spectrometer of ID15B. The �rst value
of each correction factor is normalized to one which allows for a comparison of the
di�erent corrections.
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Multiple scattering, core Compton pro�le and normalization

The multiple scattering contribution is modeled using the Monte Carlo simulation
described in section 3.1.2 and the result is shown in Fig. 4.6 together with the
calculated core electron Compton pro�le utilizing the �rst correction to the non-
relativistic Compton scattering cross section [Holm and Ribberfors 1989].
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Figure 4.6: Total pro�le after energy dependent corrections for ~q jj [110] at 295
K plotted with the calculated core electron Comtpon pro�le and the multiple
scattering contribution, which is enhanced by a factor of 5.

The calculation of the multiple scattering contribution remains somehow
ambiguous corresponding to the complicated scattering geometry by using the
wolframcarbide rod. However, the sample geometry is identical for all measure-
ments so that the multiple scattering contribution cancels out if Compton pro�le
di�erences are considered. Utilizing the normalization condition (Eq. (1.31)), the
Compton pro�les are obtained on absolute scale and the constant C is given by

C =

pvR
�pv

dpz
I(!2)�B
S(!2) 

Nval +
pvR

�pv
dpz (Jcore(pz(!2)) +Ms(pz(!2)))

! : (4.7)
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Nval denotes the number of valence electrons and �pv to pv determines the mo-
mentum range where the valence electrons contribute to the Compton pro�le.

momentum space resolution

The momentum space resolution is given by

�pz =

s�
@pz
@�

�2

��2 +

�
@pz
@!2

�2

�!2 : (4.8)

with a negligible uncertainty of the scattering angle of �� = 0:21Æ and an energy
width of the quasi-elastic line of �!0 = 51 eV. The energy dependence of the

resolution function of the spectrometer is estimated to be �! �
�
!2
!1

�3
�!0 with

!1 = 29:24 keV [Suortti et al. 1986]. Fig. 4.7 shows the total momentum space
resolution �pz as a function of pz. In the regime of the valence Compton pro�le the
momentum space resolution is assumed to have a constant value of 0.1 a.u. This
de�nes the width of the Gaussian used to simulate the in
uence of the experimental
resolution within the calculations.
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4.2 Experimental results

The experimentally observed total Compton pro�les of lithium are in agreement
with the symmetrized lithium Compton pro�le for ~q jj [110] obtained from the
measurements performed with the Compton spectrometer at the beamline W2
of HASYLAB [Sch�ulke et al. 1996]. Fig. 4.8 shows the result of this experiment
compared with the �rst measurement at T = 295 K, which is additionally con-
voluted with a Gaussian of 0.137 a.u. FWHM to simulate the momentum space
resolution �pz = 0:17 a.u. of the HASYLAB measurement.
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Figure 4.8: Lithium Compton pro�le measured at ID15B / ESRF (solid line)
compared with the W2 / HASYLAB result (dashed line) [Sch�ulke et al. 1996].

In Fig. 4.9 the total Compton pro�les at T = 295 K and T = 95 K are presented.
The upper panel shows the result measured at room temperature before the sample
was cooled down to 95 K (�rst measurement), whereas the lower panel shows the
Compton pro�le at room temperature taken after the measurement at 95 K (second
measurement). The Compton pro�les obtained at room temperature (solid line)
lie above the Compton pro�le measured at 95 K (dashed line) around pz = 0 a.u.
and below at pz � pF = 0:589 a.u., the jellium Fermi momentum.
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Figure 4.9: Total Compton pro�les measured at T = 295 K (solid line) and
T = 95 K (dashed line).
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To extract the small temperature e�ect, the Compton pro�le di�erences
J(pz; T = 95K)� J(pz; T = 295K) are calculated. The obtained di�erences are
expressed in percent of the maximum value of the valence Compton pro�le mea-
sured at 95 K. By calculating the Compton pro�le di�erences all systematic errors
cancel out provided the Compton pro�le asymmetries Jasym = J(pz) � J(�pz) of
the pro�les utilized to calculate the di�erence are identical. The di�erences of the
Compton pro�le asymmetries Jasym(T = 95K) � Jasym(T = 295K) are shown in
Fig 4.10 together with its smoothed curve plotted as a solid line. The asymmetries
of the Compton pro�les measured at room temperature and at 95 K are almost
identical if the �rst measurement at room temperature is considered, whereas the
di�erence of the asymmetry of the second measurement at room temperature and
the asymmetry of the Compton pro�le observed at 95 K exhibits a signi�cant dis-
crepancy around pz � 0:75 a.u. marked by the arrow. This indicates that possibly
a systematic error occured in the measurement of the second room temperature
Compton pro�le, so that the di�erence calculated utilizing the second measurement
will exhibit some structure due to this artefact. The systematic error may be due
to normalization problems since the normalized counts Ntot = Ndetector=Nmonitor

of the total pro�le are identical for the �rst measurement at 295 K and the 95
K measurement but di�er signi�cantly from the second measurement at 295 K of
about 9%. Thus, the second di�erence has to be considered with care in the pz
regime between 0.5 a.u. and 0.9 a.u.

The Compton pro�le di�erences are presented in Fig. 4.11 compared to the tem-
perature e�ect calculated by Dugdale and Jarlborg taken from Fig. 1(a) of their
paper [Dugdale and Jarlborg 1998]. Within this calculation a momentum space
resolution of �pz = 0:12 a.u. was assumed. The theoretical temperature di�er-
ence is rescaled to the value of the valence Compton pro�le at pz = 0 a.u. to
enable the comparability with the experimentally obtained di�erences. The dif-
ference including the second measurement at room temperature is close to the
di�erence utilizing the �rst measurement within experimental error as long as the
pz regime is considered, where no systematic error occured. However, both spectra
di�er signi�cantly between 0.6 a.u. and 0.8 a.u. due to the fact that the Compton
pro�le asymmetries are not identical (see the arrow in Fig. 4.11). Nevertheless,
the main features of the experimental temperature e�ect are found in both dif-
ferences. The valence Compton pro�les measured at room temperature lie above
the valence Compton pro�le measured at 95 K around pz = 0 a.u. and below at
jpzj � pF which means that the valence Compton pro�le is narrowed with increas-
ing temperature. For jpzj � 1:8 a.u. the experimental di�erences vanish within
experimental errors indicating that no temperature e�ect with respect to the core
electron contribution could be detected.
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Figure 4.10: Di�erences of the Compton pro�le asymmetries
Jasym(T = 95K)� Jasym(T = 295K). The solid line denotes the smoothed
di�erences and the arrow marks the signi�cant deviation of the asymmetries
occuring if the second measurement at room temperature is used.
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Figure 4.11: Compton pro�le di�erences J(pz; T = 95K)� J(pz; T = 295K) com-
pared with the temperature di�erence extracted from the thermal disorder model
of Dugdale and Jarlborg [Dugdale and Jarlborg 1998]. The calculation is scaled
by a factor of 0.3 and plotted as a solid line. The arrow marks the position of the
feature due to the deviation of the Compton pro�le asymmetries (see text).
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The experimentally observed temperature e�ect is in contrast to the predictions of
the thermal disorder model since the result of the calculation deviates in sign and
also in amplitude from the measured one. Thus it can be excluded that the dis-
cussed discrepancy between usual band calculation theory and experiment can be
attributed to thermal disorder. Furthermore, the experimental result suggests that
the agreement between experiment and theory should get worse, when temperature
e�ects are included within a bandstructure calculation.

In the following sections the experimental �ndings will be discussed in terms of the
temperature e�ect on the lattice constant and on the crystal potential, respectively.
Temperature dependent jellium calculations and computations using a temperature
dependent empirical local pseudopotential scheme are performed to �nd a suitable
model for the theoretical description of the temperature e�ect obtained by the
experiment.
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4.3 The homogeneous interacting electron gas

The homogeneous jellium is described by a system of N electrons embedded into
a uniform positive charge background. This simple system is fully determined by
the free electron gas parameter rs, which is the radius of the sphere occupied by
one electron in units of the Bohr radius (0.529 �A). The free electron gas parameter
can be written as

rs =

�
3

4�

Ve
Ne

� 1
3

=

�
9�

4

� 1
3 1

pF
(4.9)

with the volume of the unit cell Ve and the number of atoms in the unit cell Ne.
Via Ve the electron gas parameter rs is directly related to the lattice constant l.
Since no lattice e�ects are considered the valence Compton pro�le is obtained from
Eq. (1.27) to

J(pz) =

Z Z
dpxdpy n(p) (4.10)

utilizing a radial symmetric occupation function n(k) in Eq. (1.42). Sch�ulke et
al. [Sch�ulke et al. 1996] proposed a model for the correlated occupation function
which contains the renormalization constant zF as single free parameter. This
model found successful application in the interpretation of lithium and aluminium
valence Compton pro�les [Sch�ulke et al. 1996, Suortti et al. 2000] and is given by

n(k) = (1� a)� 1

2
(1� a� zF)

�
k

pF

�8

k < pF

=
1

2
(1� a� zF)

�pF
k

�8
k > pF: (4.11)

The constant a equals to 9
64
(1 � zF) as calculated by using the normalization

condition

4�

1Z
0

n(k)k2dk =
4�

3
p3F : (4.12)

Within the simple n(k) model presented in Eq. (4.11) the temperature in
uence
on the valence Compton pro�le has to be accounted for utilizing a temperature
dependent lattice constant l [Eisenmann and Sch�afer 1986]. This a�ects the renor-
malization constant zF and the Fermi momentum pF via rs. Takada and Yasuhara
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[Takada and Yasuhara 1991] calculated the correlated occupation function n(k=pF)
for rs = 1; 3; 5. By interpolating the occupation functions for a given rs the renor-
malization constant zF is estimated. Tab. 4.1 shows the temperature dependence
of the model parameters l; rs; zF; and pF used within the jellium calculations.

T [K] l [ �A] rs [a.u.] zF pF [a.u.]

295 K 3.5104 3.2662 0.6994 0.5876
95 K 3.4848 3.2424 0.7011 0.5919

Table 4.1: Temperature dependence of the model parameters used within the
jellium calculation.

The renormalization constant zF varies by about 0:24% which causes a negligible
in
uence on the valence Compton pro�le di�erences, so that the main temperature
e�ect is due to the variation of the Fermi momentum with temperature (0:73%).
The temperature di�erence obtained from the jellium computations is presented
in Fig. 4.12 as a thick solid line in comparison to the experimental results.

The jellium calculation shows a qualitative agreement with the experiment. The
theoretical di�erence is negative around pz = 0 a.u. and positive at pz � pF. How-
ever, there exist discrepancies. The experimentally found temperature di�erence
exhibits contributions for pz > pF and shows a larger negative amplitude around
pz = 0 a.u. A chi-square test was performed utilizing the de�nition

�2 = 1=N
NX
k=1

(�Jexp
k ��Jcalc

k )2

�2k
; (4.13)

N being the number of datapoints, �Jexp
k ;�Jcalc

k the experimentally determined
and the calculated values of the valence Compton pro�le temperature di�erences,
respectively, and �k the statistical error of the experimental di�erences.

The chi-square test yields �2 = 2:1 (�rst measurement) and �2 = 1:8 (second
measurement) which is far from �2 = 1. If �2 > 1, there exists signi�cant de-
viations between the theoretical and the experimental �ndings, whereas �2 < 1
indicates an overestimation of the experimental error. In calculating �2 for the
second measurement only the part of the valence Compton pro�le is considered
which corresponds to negative pz to exclude the artefact marked by the arrow in
Fig. 4.12 .

In contrast experimental results obtained in temperature dependent valence
Compton pro�le measurements of aluminium [Sternemann et al. 2000 (c)] show
a good overall agreement (�2 = 0:97) between the experiment and a jellium calcu-
lation as presented in Fig. 4.13.
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Figure 4.12: Compton pro�le di�erences J(pz; T = 95K)� J(pz; T = 295K) com-
pared to the result of the temperature dependent jellium calculation. The arrow
indicates the artefact (see text).
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Figure 4.13: Temperature e�ect on the valence Compton pro�le of aluminium
J(pz; T = 15K)� J(pz; T = 560K) compared to a temperature dependent jellium
calculation [Sternemann et al. 2000 (c)].

The di�erence between the lithium and the aluminium results can be understood,
when the calculated electron momentum densities [Papanicolaou et al. 1991] are
considered. Aluminium seems to be a good example for a nearly free elec-
tron system since the electron momentum density including its lattice induced
higher momentum components is approximately isotropic and the directional va-
lence Compton pro�le di�erences are found to be small compared to lithium
[Suortti et al. 2000]. Thus, the main contributions of the Umklapp-processes
cannot be attributed to a single directional valence Compton pro�le so that
the variation of the lattice constant dominates the temperature e�ect measured
for aluminium [Sternemann et al. 2000 (c)]. In contrast, the electron momen-
tum density of lithium exhibits a strong lattice induced contribution centered at
~p = (0:6; 0:6; 0) a.u. [Papanicolaou et al. 1991]. Thus, the corresponding valence
Compton pro�le measured for ~q jj [110] is strongly a�ected by the higher momentum
contributions compared to the directional valence Compton pro�les for ~q jj [100]
and [111]. Due to this fact it is necessary to consider the temperature in
uence on
the crystal potential within a calculation of the lithium valence Compton pro�les.
The easiest way to include temperature e�ects into bandstructure calculations is
to utilize a temperature dependent local empirical pseudopotential.
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4.4 Pseudopotential calculation

Pseudopotential based model calculations were successfully applied in the inter-
pretation of lattice induced �ne structures in the dynamic structure factor S(~q; !)
of simple metals like lithium, beryllium and aluminium [Sch�ulke et al. 1986,
Sch�ulke et al. 1989, Sch�ulke et al. 1993]. The temperature dependence of the crys-
tal potential can be considered within these calculations, if the pseudopotential
coeÆcients are weighted by a Debye-Waller factor. This method is routinely used
if temperature e�ects have to be included in band calculations to determine semi-
conductor band gaps [Ke�er et al. 1968, Zollner et al. 1991]. Furthermore, the
temperature dependence of the one-peak one-shoulder structure appearing in the
dynamic structure factor of aluminium was properly described by a temperature
dependent empirical local pseudopotential [Sternemann et al. 1998]. In what fol-
lows, the pseudopotential scheme utilized to describe the temperature in
uence on
the lithium Compton pro�les is presented and then the results of the calculations
are compared to the experimental �ndings.

4.4.1 Pseudopotential scheme

The valence Compton pro�le is directly related to the electron momentum density
given in Eq. (1.42). The plane wave expansion coeÆcients ��(~k+~g) of Eq. (1.38)
can be estimated utilizing Schr�odinger's equation

�
� �h2

2m
~r2 + VPseudo(~r )

�
��;~k(~r ) = E�;~k��;~k(~r ) (4.14)

which relates the energy eigenvalues E�;~k with bandindex � to the Fourier compo-
nents of the crystal potential V~g by solving the eigenwert problem

�
1

2
(~k + ~g)2 � E(~k)

�
��(~k + ~g)�

X
~g 0

V~g�~g 0 ��(~k + ~g 0) = 0 : (4.15)

The Fourier expansion of the pseudopotential VPseudo(~r ) and the Bloch functions
��;~k(~r ) are given by

VPseudo(~r ) =
X
~g

V~g e
i~g�~r (4.16)

��;~k(~r ) =
X
~g

��(~k + ~g) ei(
~k+~g)�~r : (4.17)
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Within this type of calculation the number of reciprocal lattice vectors ~g and poten-
tial coeÆcients V~g taken into account to solve the eigenwert problem numerically
has to be limited. Nevertheless, calculations of the aluminium Fermi energy can
be performed using at least �fteen reciprocal lattice vectors with its two corre-
sponding pseudopotential coeÆcients, namely V200 and V111, [Harrison 1960] and
even within the two-band model, where only ~g;�~g and ~0 are considered, �ne struc-
tures in the dynamic structur factor of lithium and beryllium could be assigned to
zone-boundary collective states [Sch�ulke et al. 1986, Sch�ulke et al. 1989].

4.4.2 Temperature dependent pseudopotential calculation

The empirical local pseudopotential coeÆcients V~g are obtained by �tting the
calculated directional Compton pro�le di�erences to the experimental directional
Compton pro�le di�erences taken from the lithium Compton pro�le measurement
performed at room temperature by Sch�ulke [Sch�ulke et al. 1996]. It is suÆcient
to use only the pseudopotential coeÆcients of the < 110 > and the < 200 > type
to �t the Compton pro�le di�erences properly with V110(T = 295K) = 0:1 a.u.
and V200(T = 295K) = 0:02 a.u. The temperature in
uence on the crystal poten-
tial is now accounted for by multiplying the pseudopotential coeÆcients with the
corresponding Debye-Waller factor, making use of

V (~g; T ) = V (~g; T = 0K) exp

�
�B(T )j~gj

2

16�2

�
(4.18)

with the Debye parameter B(T ) derived from results of recent phonon density
of states measurements [Peng et al. 1996]. B(T ), including the zero-point energy
parameter B0 and the thermal Debye parameter BT , is directly related to the mean
square of the vibrational atomic displacement < u2 >, describing the thermal
disorder of the system, via

B(T ) = B0 +BT =
8�2

3
< u2 > : (4.19)

The introduction of the Debye-Waller factor can be considered as taking into ac-
count the reduction of the amplitude of the Bloch wave re
ected by the correspond-
ing Bragg plane. The pseudopotential coeÆcients for T = 95 K are determined
using Eq. (4.18) and are shown within Tab. 4.2 along with the other parameters
used in the calculation.

The valence Compton pro�les for ~q jj [110] obtained from the pseudopoten-
tial calculation have to be corrected with respect to electron-electron correla-
tion since directional di�erences were �tted, in which the isotropic part of the
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T [K] l [ �A] V110 [a.u.] V200 [a.u.] B [ �A2 ] pF [a.u.]

295 K 3.5104 0.100 0.020 4.842 0.5876
95 K 3.4848 0.114 0.026 1.560 0.5919

Table 4.2: Temperature dependence of the model parameters used in the pseu-
dopotential calculation.

electron-electron correlation contribution cancels out. The correlation correc-
tion is performed using the n(k) model (see Eq. (4.11)) by calculating the
di�erence of the jellium valence Compton pro�les determined for zF = 1 and
zF(T = 295K) = 0:699 (zF(T = 95K) = 0:701), respectively. The obtained di�er-
ences are close to the Lam-Platzman correction used within the LDA scheme and
are added to the corresponding calculated valence Compton pro�les. This isotropic
correction is justi�ed since the in
uence of the lattice on zF is found to be small
[Sch�ulke 1999, Eguiluz et al. 2000]. Finally, the pro�les are convoluted with a
Gaussian of 0.1 a.u. FWHM to simulate the momentum space resolution of the
experiment. As for the experimental di�erences, the theoretically determined dif-
ferences J(pz; T = 95K)�J(pz; T = 295K) are given in percent of the value of the
calculated pseudopotential valence Compton pro�le for 95 K at pz = 0 a.u. The
result of the calculation is plotted as a solid line in Fig. 4.14 compared with the
experimental �ndings.

A good overall agreement is obtained between the experimental �ndings and the
theoretical computations, in which both the variation of the lattice constant and
the change of the crystal potential with temperature is considered. Especially the
contributions of the temperature e�ect at pz > pF are nicely reproduced. These
are attributed to the temperature dependence of the Umklapp-processes. With
increasing temperature electron momentum density is transferred back into the
primary Fermi sphere of the extended zone scheme which reduces the delocaliza-
tion of the valence Compton pro�le in momentum space. The values given by the
chi-square test are �2 = 0:89 (�rst measurement) and �2 = 1:21 (second measure-
ment).

A second pseudopotential calculation is performed utilizing the room temperature
pseudopotential coeÆcients for both temperatures and variing only the lattice con-
stant. This allows to separate the temperature e�ect originating from the change
of the crystal potential due to thermal disorder from the one attributed to the lat-
tice expansion. The result is shown as a dashed line in Fig. 4.14 and is close to the
jellium result presented in section 4.3. The corresponding values of �2 = 2:2 (�rst
measurement) and �2 = 1:87 (second measurement) are in good agreement with
the ones obtained from the jellium computation. The temperature in
uence due to
the change of the crystal potential is determined by calculating the di�erence be-
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Figure 4.14: Experimentally obtained valence Compton pro�le di�erences
J(pz; T = 95K) � J(pz; T = 295K) compared to the pseudopotential calculations
with (solid line) and without (dashed line) consideration of the temperature e�ect
on the crystal potential via the Debye-Waller factor (DWF).
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tween the pseudopotential calculation with temperature dependent Debye-Waller
factor (with DWF) and the pseudopotential calculation using a constant Debye-
Waller factor (without DWF). This di�erence is presented in Fig. 4.15 compared
to the di�erence of the symmetrized experimentally observed temperature e�ect
(�rst measurement) and the jellium calculation.
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Figure 4.15: Temperature dependence of the contribution of the higher momentum
components (HMC's) to the valence Compton pro�le. The dashed line denotes the
correlation correction for zF = 0:7 which is similar to the Lam-Platzman correction
and demonstrates the magnitude of the thermal disorder e�ect.

Thus a signi�cant contribution to the total temperature e�ect could be assigned
to the decrease of the higher momentum component contribution to the valence
Compton pro�le with increasing temperature. The order of magnitude of the
temperature e�ect related to thermal disorder is illustrated in Fig. 4.15 by com-
paring the contribution due to Umklapp-processes with the correlation correction
of the valence Compton pro�le for zF = 0:7, which is close to the corresponding
Lam-Platzman correction. The in
uence of the zero-point lattice motion on the
valence Compton pro�le is not accessible within the limits of the present experi-
ment. Nevertheless, it should also reduce the contribution of the higher momentum
components to the valence Compton pro�le and is usually neglected in standard
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Compton pro�le calculations. Since thermal disorder causes a narrowing of the
valence Compton pro�le, the experimental �ndings suggest, that the considera-
tion of thermal disorder within bandstructure calculations of the valence Compton
pro�les would enlarge the discrepancy between experiment and theory.
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4.5 Summary

Measurements of temperature dependent Compton pro�les of lithium for ~q jj [110]
have shown a principal temperature e�ect which is caused by the variation of
the lattice constant. The valence Compton pro�le becomes narrower with in-
creasing temperature. This temperature e�ect is in agreement with the results
found for aluminium valence Compton pro�les [Sternemann et al. 2000 (c)]. In
Compton pro�le measurements on metallic sodium as a function of pressure a
similar e�ect was found and interpreted in terms of the jellium model, where
the main pressure e�ect is also attributed to the variation of the Fermi mo-
mentum with changing lattice constant [H�am�al�ainen et al. 2000]. Beyond this,
a signi�cant contribution of the temperature in
uence on the crystal potential
due to thermal disorder is found and well described utilizing an empirical pseu-
dopotential scheme, where the temperature in
uence is simulated by the use of
Debye-Waller factors on the pseudopotential coeÆcients. With increasing tem-
perature electron momentum density is transferred back to the primary Fermi
sphere of the extended zone scheme and the valence Compton pro�le becomes
more and more free electron like. This interpretation is in agreement with the
experimental results of positron annihilation measurements on potassium showing
that the contributions of higher momentum components decrease with increas-
ing temperature [Manuel et al. 1993]. Finally, the measured temperature e�ect
di�ers in sign and amplitude from the results of the thermal disorder model pre-
sented by Dugdale and Jarlborg [Dugdale and Jarlborg 1998]. Thus it can be
ruled out that the discrepancy between experiment and commonly used band
structure calculations in the case of lithium Compton pro�les is due to ther-
mal disorder. The comparison of the experimental results with the computations
shows that the disagreement will be enlarged, if thermal disorder is considered
within the computations, which is most important, since the e�ect of the zero-
point lattice motion is not negligible for light elements like lithium, B0 = 0:96 �A2

[International Tables for X-ray Crystallography 1968], and usually is not consid-
ered in any bandstructure calculation.



Conclusion

The decisive argument to study the Compton pro�le of lithium with very high res-
olution at low incident energies and as a function of temperature at high incident
energies was to clarify some aspects of the widely discussed discrepancy between
experiment and theory and thus to bring some light into the unsatisfactory situa-
tion with the valence Compton pro�le of lithium.

Measurements of the lithium Compton pro�les have been performed with an inci-
dent energy around 9 keV and a momentum space resolution of �pz = 0:022 a.u.
to investigate the e�ect of �nal state interaction and thus to test the validity of the
impulse approximation in interpreting the valence Compton pro�le. Furthermore,
the temperature dependence of the Compton pro�le of lithium has been studied
at 30 keV with �pz = 0:10 a.u. momentum space resolution. Both experiments
were discussed with respect to the above mentioned discrepancy.

It was shown that the predicted sharp features at the Fermi momentum, which
should be resolved with the highly improved momentum space resolution obtained
for the low energy experiment, are still smeared out and that the valence Compton
pro�le exhibits a clear asymmetry. This experimentally found asymmetry agrees
well with the predictions of the �rst and the second order vertex correction to the
fully self-energy corrected proper polarization function which is a direct evidence
of the particle-hole interaction. The main part of the additional smearing of the
Compton pro�le beyond experimental resolution was attributed to the convolution
of the Compton pro�le with the spectral density function of the excited particle.
This �nal state e�ect causes an intrinsic resolution limit for Compton measure-
ments performed at low incident energies. It is emphasized that the smearing of
the valence Compton pro�le due to the spectral density function becomes more
and more negligible with increasing incident energy so that the highly demanded
improvement of the momentum space resolution beyond 0.05 a.u. requires incident
photon energies larger than 30 keV. The application of the impulse approximation
is de�nitely not justi�ed for this high resolution experiment performed at low in-
cident energies in the sense that it is necessary to consider �nal state e�ects in
interpreting the experimental results. Furthermore, the discussion of the experi-
mental results utilizing the reciprocal form factor has shown that the discrepancy
between experiment and theory still remains. Due to this fact the discrepancy may
be attributed to the inadequate treatment of electron-electron correlation e�ects,
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since the reciprocal form factor determined at lattice translation vectors is hardly
in
uenced by lattice e�ects. It can be ruled out that the discrepancy can be ex-
plained by the �nal state interaction, since the in
uence of the spectral density
function of the excited particle on the Compton pro�le vanishes with increasing
incident energy.

Furthermore, the lithium Compton pro�le has been measured as a function of
temperature at 30 keV incident energy, where the impulse approximation can be
applicated to valence electrons. The valence Compton pro�le gets narrower with
increasing temperature and the di�erence of the valence Compton pro�les mea-
sured at 95 K and 295 K exhibits signi�cant contributions for momenta larger
than the Fermi momentum. No temperature dependence of the core Compton
pro�le could be detected within the limits of the experiment. This temperature
e�ect was confronted with a temperature dependent jellium calculation and com-
putations using an empirical local pseudopotential, where the in
uence of thermal
disorder is considered via the Debye-Waller factor. By comparing the calcula-
tions with the experiment the temperature e�ect is attributed to the expansion of
the lattice constant and to the diminishing of the higher momentum component
contribution to the Compton pro�le with increasing temperature. The measured
temperature e�ect is opposite in sign and di�erent in amplitude compared to the
predictions of the LMTO calulations [Dugdale and Jarlborg 1998] so that it can be
ruled out that the discrepancy between experiment and theory is due to thermal
disorder. The experimental results suggest that the discrepancy will be enlarged
if thermal disorder is included into the bandstructure calculations of the lithium
valence Compton pro�le.

The presented results don't solve the lithium puzzle but give some important indi-
cations which way to go to explain the discrepancy between experiment and theory.
The e�ect of temperature and of the �nal state interaction cannot account for it and
the high resolution measurement suggests that the treatment of electron-electron
correlation in the calculation schemes has to be reconsidered. New theoretical ap-
proaches may be promising [Baruah et al. 1999, Barbiellini 2000]. Furthermore,
a study of the predicted sharp features appearing at the Fermi break would be
useful, when measured with a momentum resolution around 0.03 a.u. and at high
incident energies to exclude the in
uence of the �nal state interaction. A study on
beryllium exhibits similar conclusions concerning the electron-electron correlation
and the in
uence of the �nal state interaction [Huotari et al. 2000] and results
for sodium are highly requested [H�am�al�ainen 2000]. In contrast, aluminium va-
lence Compton pro�les are in good overall agreement with the present theories
[Suortti et al. 2000].

With the use of synchrotron radiation sources Compton scattering became a pow-
erful tool to investigate very small changes of the electron momentum density,
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which incited a fruitful interplay between experimentalists and theoreticians. With
this progress on the experimental side temperature [Sternemann et al. 2000 (b)]
and pressure [H�am�al�ainen et al. 2000] e�ects are accessible. Even small signa-
tures of the Fermi surface can be resolved as shown in the case of beryllium
[Huotari et al. 2000] and Compton scattering is exposed to be a valuable probe
of many-particle calculations if studied under experimental conditions where the
impulse approximation is not valid [Sternemann et al. 2000]. However, in spite of
this exciting progress in Compton scattering on the experimental and the theoret-
ical side it is still critical from an experimental point of view to correct the data
for multiple scattering, to have a reliable monitorization of the incident photon
beam, to account for the background and to overcome the problems connected
with the detector dead time. In interpreting ground state properties the failure of
the impulse approximation and the treatment of electron-electron correlation turn
out to be serious problems from a theoretical point of view.
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Appendix A

The fully dressed Green's function

Within Appendix A the relation between the free-particle Green's functionG0(~p; �)
and the fully dressed Green's functionGSE(~p; �) which includes the total self-energy
contribution to the free-particle polarization function is discussed.

The correction of the free-particle polarization function �0sc(~q; !) by the self-energy
contributions is presented in Fig. A.1, which shows the �rst terms of the self-
energy series expanded in terms of the Coulomb potential screened by the Lindhard
dielectric function. The self-energy corrected polarizability is then determined by
the calculation of the whole Feynman diagram series. The thin solid lines denote
the free-particle Green's functions of the hole and the particle, respectively. The
interaction term ICsc(~p; �; ~p

0; � 0) is plotted as wiggly line and the resulting fully
dressed Green's functions are given by the bold lines.

+ . . .  =++ ++

Figure A.1: Self-energy series expanded in terms of the screened Coulomb inter-
action (wiggly line).

The calculation of the �rst diagram yields

�0sc(~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G0(~p; �) G0(~p+ ~q; � + !) ; (A.1)
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the proper polarization function of a free particle. The �rst order self-energy
correction is performed by calculating the diagrams (2) and (3) of Fig. A.1, which
results in

�SE1sc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G0(~p; �) G0(~p+ ~q; �+ !)

� �
�(~p; �) G0(~p; �) + �(~p + ~q; �+ !) G0(~p+ ~q; �+ !)

�
(A.2)

with the self-energy of the hole �(~p; �) and the particle �(~p+~q; �+!), respectively:

�(~p; �) = �
Z

d� 0

(2�i)

Z
d~p 0

(2�)3
v(~p 0 � ~p)

�RPA(~p 0 � ~p; � 0 � �)
G0(~p 0; � 0) (A.3)

�(~p+ ~q; �+ !) = �
Z

d� 0

(2�i)

Z
d~p 0

(2�)3
v(~p 0 � ~p)

�RPA(~p 0 � ~p; � 0 � �)

�G0(~p 0 + ~q; � 0 + !) : (A.4)

Following Eqs. (A.1) and (A.2) the total self-energy series, �0sc + �SE1sc + terms of
higher order in the screened Coulomb potential , can be expressed utilizing the fully
dressed Green's function GSE(~p; �) in Eq. (A.1) instead of G0(~p; �), where GSE(~p; �)
is determined by the self-consistent Dyson equation [Holas et al. 1979]

GSE(~p; �) = G0(~p; �) +G0(~p; �)�(~p; �)GSE(~p; �) : (A.5)

The recursive insertion of this expression into Eq. (A.1) describes the series pre-
sented in Fig. A.1. The solution of the Dyson equation yields

GSE(~p; �) =
G0(~p; �)

1� �(~p; �)G0(~p; �)

= G0(~p; �+ �(~p; �)) : (A.6)

Thus the self-energy correction can fully be taken into account by Eq. (A.1), if
the free-particle Green's function is replaced by the fully dressed Green's function
including the self-energy:

�SEsc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G0(~p; �+ �(~p; �))

�G0(~p+ ~q; �+ ! + �(~p+ ~q; �+ !))

= 2

Z
d�

(2�i)

Z
d~p

(2�)3
GSE(~p; �) GSE(~p+ ~q; �+ !) : (A.7)
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The calculation of the self-energy in GW approximation [Hedin 1965] can be
extended by the so-called cumulant expansion since therein a diagrammatic
expansion in the Green's function and not in the self-energy is performed
[Aryasetiawan et al. 1996]. Both the GW calculation and the cumulant expan-
sion can also be performed self-consistently utilizing a variable Green's function
[Holm and Aryasetiawan 1997]. Concerning the spectral density function these
extended calculation schemes hardly in
uence the results obtained for the quasi-
particle peak compared to a GW computation but give rise to a more realistic
description of its satellite structure.



102



Appendix B

Local �eld approximation

In the local �eld approximation the irreducible interaction term is represented by
I(~p; �; ~p 0; � 0; ~q; !) = 2I(q; !) = �2v(q) g(q; !), where the bare Coulomb potential
is screened by the local �eld g(q; !). Then Eq. (2.12) can be expressed in terms
of the free-particle Green's function

�LFsc (~q; !) = 2

Z
d�

(2�i)

Z
d~p

(2�)3
G0(~p; �) G0(~p+ ~q; �+ !)

�
"
1 + 2

Z
d� 0

(2�i)

Z
d~p 0

(2�)3
I(q; !)G0(~p 0; � 0) G0(~p 0 + ~q; � 0 + !)

+ 2

Z
d� 0

(2�i)

Z
d~p 0

(2�)3
I(q; !)G0(~p 0; � 0) G0(~p 0 + ~q; � 0 + !)

� 2

Z
d� 00

(2�i)

Z
d~p 00

(2�)3
I(q; !)G0(~p 00; � 00) G0(~p 00 + ~q; � 00 + !)

+:::

#
: (B.1)

With the de�nition of the free-particle polarization function �0sc(~q; !) from Eq.
(2.23) the proper polarization function yields

�LFsc (~q; !) = �0sc(~q; !)(1 + I(q; !)�0sc(~q; !) + I(q; !)2�0sc(~q; !)
2 + :::) ; (B.2)

which can be identi�ed as a geometric series. The geometric series is summed up
to

�LFsc (~q; !) =
�0sc(~q; !)

1 + v(q)g(q; !)�0sc(~q; !)
: (B.3)
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