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Chapter 1

Motivation

It was a century ago that Max Planck’s postulation of quantized radiation opened the
door to the quantum world. In the following decades the theoretical framework of mod-
ern quantum mechanics was developed, giving insight into the often anti-intuitive laws
of microscopic physics. This revolutionary theory gives a new meaning to fundamental
physical parameters such as a particles trajectory, which was replaced by a probability
amplitude. One of the most important consequences of quantum mechanics, not only
for scientists, is the uncertainty principle. It gives an upper limit to the accuracy of
a measurement and describes the impact of the measurement itself on the result. No
matter how carefully an experiment is performed, some questions about the quantum
system will remain unanswered. For example, the more precisely we know the momen-
tum of a particle, the less information we have on its position. Determinism, which is
based on the idea, that by knowing the present state of a system we can exactly derive
its entire future evolution had served its time. Or, putting it figurative, Schrödingers
cat expelled the Laplacian demon, which had severe consequences for science just as
much as for philosophy.

At first sight, the implications of quantum mechanics might appear to be an obsta-
cle in the classical understanding of science, as it intrinsically obscures a microscopic
physical system. Indeed, the quantum theory sets severe limitations to the validity
of classical physics, but it gives an alternative theory, which is by far richer in scope
and applicability. In consequence, quantum systems offer a variety of non-classical
phenomena, which give access to new scientific concepts. However, most applications
can still be described as classical systems, as their operation involves a macroscopic
number (N) of particles and variation scales as 1/

√
N . For example, the operation of

integrated circuits etc. can be described by the classical laws of physics. However, we
might be facing real quantum machines in the near future.

Recent progress in fundamental science as well as nanofabrication gives us a tool
at hand for developing new functional units, in which operations take advantage of
peculiar quantum mechanical properties. Many proposals for such quantum machines
have been made. The concept of quantum computation [1, 2] is one of the leading
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ideas. While the realization of this concept for practical use is still in doubt, other
quantum systems are closer to a technical application. Recent progress in the field
of quantum cryptography [3] can lead to technical applications within a decade or
less. However, real quantum engineering is still restricted to laboratory environments.
The study presented here focuses on fundamental aspects that might help to pave a
small step upon the way to future applications. Besides the perspective of potential
applicability, this study is motivated by the fundamental goal of scientific research:
reaching a deeper understanding of the world around us.

Actually the fraction of the world under investigation here is rather specific: exciton-
photon polaritons. As we will see in chapter 2 these particles can be described as
hybrids of light and matter. First, we will develop a quantum mechanical description of
polaritons. Equipped with the fundamental insights, we proceed with an in-depth study
of these quasi-particles. In the course of this work we will meet two types of polaritons:
quadrupole polaritons in bulk semiconductors and dipole polaritons in semiconductor
microcavities. We will start with quadrupole polaritons, which are investigated in
cuprous oxide (chapter 3). Here a novel spectroscopic approach is chosen that provides
an extreme spectral resolution (section 3.1). Using this spectroscopic technique we
will search for ultra slow polaritons in section 3.3; they may be slowed down from the
speed of light to the speed of sound. We also get access to a polariton fine structure
never observed before (section 3.4). This fine structure will be modelled theoretically
and compared to experimental data. This chapter will be concluded by studies in the
high density regime (section 3.5) which will focus on the observation of absorption
linewidths in the nano electron volt (neV) regime, which is exceptional for transitions
in solids.

We will then proceed to the investigation of dipole polaritons in semiconductor
microcavities (chapter 4). First, we will focus on the dynamics of the carriers. Therefore
we apply time resolved pump-and-probe spectroscopy. Using this technique the impact
of disorder in the exciton system is investigated. We will learn how exciton trapping in
potential fluctuations can influence the nonlinear optical response of the cavity (section
4.2). Using these insights we tackle questions concerning the spin properties of cavity
polaritons (section 4.3). After having obtained a deep understanding of polaritons,
we attempt to manipulate their optical properties. In particular we want to tailor
parametric polariton scattering processes by adjusting the resonator geometry (section
4.4). For this purpose polaritons in quasi-zero-dimensional and quasi-one-dimensional
cavities are investigated. Finally, the results are summarized (chapter 5) and an outlook
is given (chapter 6).



Chapter 2

Exciton-photon polaritons

Excitations in solids are often described by the concept of quasi-particles. The proper-
ties of such quasi-particles are determined by their environment; the solid. For example,
elastic waves in solids are successfully treated in this fashion, where the energy quan-
tum of such a lattice vibration is termed a phonon [4]. Electronic states in solids can be
treated as such quasi-particles, where such a quasi-free electron is not to be mistaken
with the elementary particle of negative unit charge. Such an electron feels the back-
ground of the crystal lattice. This gives rise to an effective mass, which differs form
the electron mass. In a semiconductor electrons can be excited from the valence band
into the conduction band. This process leaves an unoccupied state in the valence band.
Again, the concept of quasi-particles can be applied, where the vacancy is described as
a positive unit charge in the valence band and is termed a hole. The benefits of this
concept become evident when treating the interactions between excitations.

For example, Coulomb interaction between the electron in the conduction band
and the hole in the valence band gives rise to the formation of coupled electron-hole
pairs. This quasi particle is referred to as an exciton [4]. We can also think of states,
which consist of an excitation of the solid and a photon, which is the quantum of
an electromagnetic wave. As we will see below, photons can couple, for example,
to excitons via dipole interaction. The quantum of such a coupled state is termed a
polariton [5]. We will now take a closer look at the physics of exciton-photon polaritons.

Typically, a photon travelling through matter is considered to be decoupled from
the excitations in the solid. We can treat the electromagnetic field in the solid by simply
assuming a constant dielectric background. This approximation fails when the energy
of the photon is in resonance with a transition in the solid, where the photon can
be absorbed. The absorption process induces a polarization in the dielectric, which
in turn can again act as a source of an electromagnetic field (photon) [6]. Going
back into the quasi-particle picture, this interplay is described as a cycle of photon
absorption, generating an excitation (i.e. an exciton), radiative recombination of the
particle and emission of a photon. The energy oscillates back and forth between an
exciton population and the electro magnetic field. Under these circumstances we can no
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longer treat a photon as decoupled from its environment. To describe this phenomenon
we treat exciton and photon as coupled oscillators.

The effective second-quantized Hamiltonian H of the coupled eigenmodes can be
written as follows [7, 8]:

H = HP +HX +Hint (2.1)

=
∑
e

∑
k

[EP,k(a
†
k,eak,e + 1

2
) + EX,k(b

†
k,ebk,e + 1

2
) + ~ΩR,k,e(a

†
k,ebk,e + ak,eb

†
k,e)],

where a†k,e, b
†
k,e (ak,e, bk,e) are the bosonic creation (annihilation) operators of photons

and excitons with momentum k and polarization e, respectively. The first terms ex-
press the energy of photon EP and exciton EX . The coupling is given by the interaction
Hamiltonian Hint. The coupling is characterized by the Rabi frequency ΩR [9]. The
interaction between exciton and photon depends on the oscillator strength f of the
transition from the vacuum level |0〉 to the exciton state |X〉:

f ∼| 〈X|H ′|0〉 |2 . (2.2)

For dipole transitions H ′ is the electric dipole operator, but also higher order (i.e.
quadrupole) interaction can give rise to polaritonic coupling. Dipolar coupling will be
treated in chapter 4, while quadrupolar coupling is discussed in chapter 3. The Rabi
frequency scales with the square root of f . Here we neglect dissipative processes [5].
That means e.g. that we assume a perfect crystal in the case of bulk polaritons. For
simplicity, we do not consider interaction with phonons or between excitons. Coupling
mechanisms of higher order are also neglected. This treatment allows for an exact sta-
tionary solution for the polariton modes. As no interaction between states of different
k or e is included, the eigenvalue problem can be solved for each k and e independently.
For the studies presented here, the k dependence (dispersion) of the polariton modes
is of primary importance, hence we will proceed with a sample treatment at fixed e.

The coupling between the eigenmodes is nicely seen in the matrix representation of
H in the basis of exciton |X〉 and photon states |P 〉.

H =

(
EP,k

~ΩR

2
~ΩR

2
EX,k

)
. (2.3)

The Hamiltonian can be diagonalized easily in the polariton basis with the upper | U〉
and lower polariton states | L〉:

|L〉 = Xk|X〉+ Pk|P 〉,
|U〉 = −Pk|X〉+Xk|P 〉. (2.4)

Here Xk and Pk are the Hopfield coefficients, which represent the exciton and photon
fraction of the polariton: This yields the eigenvalues

EU/L,k =
EP,k + EX,k

2
±

√(
EP,k − EX,k

2

)2

+

(
~ΩR

2

)2

. (2.5)
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Figure 2.1: (a) Square of the Hopfield
coefficients of the lower polariton mode
as a function of k. The black (grey)
trace gives the photon (exciton) frac-
tion. (b) Dispersion of exciton-photon
polaritons. The polariton modes are
plotted in grey. The dispersion of the
uncoupled oscillators (exciton and pho-
ton) are given by the black traces.

The corresponding Hopfield coefficients are given by:

|Xk|2 =
1

1 +
(

~ΩR

2(EL,k−EP,k)

)2 ,

|Pk|2 = 1− |Xk|2 =
1

1 +
(

2(EL,k−EP,k)

~ΩR

)2 . (2.6)

These relations are seen in Fig. 2.1. Here the exciton is assumed to have no
dispersion (EX,k = const.). The photon is described by a linear dispersion (EP ∼ k).
The energy difference

∆k = EP,k − EX,k (2.7)

is called the exciton-photon detuning. In the range of negative detunings the upper po-
lariton branch (UPB) is strongly excitonic, while the lower branch (LPB) is photon-like.
With decreasing |∆k| the hybrid character of the polaritons increases. At resonance
(∆k = 0) both modes have equal admixtures of exciton and photon |Pk|2 = |Xk|2 = 1

2
.
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The splitting between UPB and LPB is at its minimum and equals ~ΩR. The reverse
behavior is found when moving towards positive detunings, where the UPB approaches
the light dispersion and the LPB becomes exciton-like. We see the well-known anti-
crossing behavior characteristic of coupled quantum systems. The stronger the normal
mode coupling, the stronger the level repulsion and the more pronounced the anti-
crossing.

The treatment presented above gives a general description of exciton-photon po-
laritons. It is not restricted to the specific exciton and photon dispersion shown in the
example of Fig. 2.1. In the introductions of chapter 3 and 4 we will specify the exciton-
photon system under investigation. The simplified coupled oscillator picture gives an
intuitive description of polaritons. It can easily be extended to a larger number i of
modes, simply by adding these modes and their coupling terms in Eq. 2.3, which leads
to an i × i matrix representation. For example, this can be useful for the description
of polaritons formed by photons coupled to heavy as well as light hole excitons [10],
coupling between two-particle states of photons and excitons [11] or coupling of fine
structure states to light (see chapter 3.4). An example for such an extended treatment
will be given in section 4.4.2.

The rigorous description of excitations coupled to light always requires the polari-
tonic treatment. Obviously, the detection of exciton emission in an optical experiment
intrinsically requires such a coupling. Nevertheless, polaritonic effects are often ne-
glected and both quanta are treated separately. We will now briefly discuss under
which conditions this is justified and where the polaritonic treatment is required. So
far we have considered a system free of dissipative processes. In the present descrip-
tion the energy oscillates between |X〉 and |P 〉 with the frequency ΩR

2π
. This phase

coherent energy transfer is called Rabi flopping [9] and has been observed in many
quantum systems, even for a single atom in a cavity. In real systems the oscillation
will be damped, however [12]. Such damping might be due to scattering with phonons
or other polaritons. Furthermore, the photon component might be affected by losses.
Photons can leak out of the specimen, breaking the circle of absorption and emission.
The relevance of the specific sources of damping will be discussed with the particu-
lar polariton systems. Independently of the origin of such dissipative processes, two
general criteria for the relevance of the polariton description can be formulated [8]:

• temporal coherence: The pure dephasing rate 1/T ′2 and the population decay
rate T1 are slower than the Rabi frequency. With the optical dephasing time T2

( 1
T2

= 1
2T1

+ 1
T ′2

) this can be written as: 1
T2
� ΩR.

• spatial coherence: the coherence length of the exciton must be larger than the
photon wavelength λP inside the dielectric, such that the exciton does not scatter
within one spatial cycle of the electro-magnetic field. Taking the group velocity
vg we find: T2,Xvg � λP .

Typically, the second criterium is the more stringent one. If these criteria are not
fulfilled we speak of the weak coupling or perturbative regime. Here lossy processes
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dominate and the energy transfer between photon and exciton is only a small pertur-
bation. In this regime the dynamics of the system is described by Fermi’s golden rule:
The exciton population decays exponentially. However, even if in this case the mode
coupling is only a small perturbation, the exact description still requires the inclusion
of light-matter coupling.

If both criteria are fulfilled we speak of the strong coupling regime. It is also referred
to as the non-perturbative regime, as the light-matter coupling can not be treated as
a small perturbation. In the course of this work we will stick to the regime of strong
coupling. As we will see, strong coupling does not always imply a strong interaction
between light and matter. The regime of strong coupling is as well the regime of high
coherence. For the polaritons investigated in chapter 3 the light matter coupling is
indeed extremely weak, however the exceptional coherence of the system requires a
description as coupled modes [13].
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Chapter 3

Polaritons in cuprous oxide

The central topic of this chapter is the optical spectroscopy of exciton-photon polari-
tons in bulk semiconductors. In particular, we will investigate these excitations with
extremely high spectral resolution. Besides the experimental challenges, high resolution
spectroscopy also demands samples of extremely high crystallographic quality.

For this task cuprous oxide (Cu2O) is ideally suited, which can also be considered
the classic model system for exciton physics. For technical applications Cu2O is of little
interest, mostly due to is poor conductance and the difficulties in its fabrication. Many
growth techniques have been reported, which typically rely on controlling temperature
and partial pressure close to the melting point (see i.e. Kotsyumakha et al. [14]).
More recently, epitaxial growth methods have been reported, where thin films of Cu2O
have been deposited on MgO. [15, 16] But still single crystal-like films, allowing for
optical studies, are hard to find [17]. For some applications these thin films, which are
typically highly strained, might be advantageous, however the crystal quality of such
artificially grown Cu2O remains poor. A much better quality is found in Cu2O crystals
of natural origin. Not surprisingly, most recent optical studies rely on natural crystals
of cuprous oxide. Unfortunately, natural crystals with little defects, strain etc. are
rare. Cu2O is known as ’cuprite’ among mineralogists or as copper-I-oxide.

A photograph of a natural Cu2O crystal is shown in Fig. 3.1. From the first
days of semiconductor spectroscopy, Cu2O has been investigated [18] and also the first
successful experimental studies of excitons were performed on Cu2O [19, 20]. This
discovery nicely confirmed theoretical predictions [21, 22] and initiated a period of
successful interplay between theory and experiment [23, 24]. The early spectroscopic
studies on excitons in Cu2O are summarized in the review articles by Agekyan [25] and
Nikitine [26]. After examining the linear optical properties and their dependencies on
perturbations, such as electric and magnetic fields [25, 27, 28] or strain [29, 30], studies
concentrated more and more on the lowest exciton series and its 1S ground state.

Nowadays this state plays a key role in proposals for Bose-Einstein condensation
(BEC) of excitons [31, 32]. Even though numerous claims of such collective exciton
coherence have been published [33, 34, 35, 36] no conclusive and unambiguous proof
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Figure 3.1: Left: Photograph of a natural Cu2O crystal. The size of this piece is about
30×30×30 mm3. All samples investigated in this work were cut from this crystal.
Right: Drawing of the Cu2O lattice. Small spheres mark the positions of the copper
ions, while the larger spheres mark the positions of the oxygen ions.

of a condensation of excitons has been given, which lead to retraction [37]. However,
besides studies on vertically coupled quantum wells [38] and microcavities [39, 40] (see
also chapter 4) cuprous oxide keeps on playing a central role in this field. Recent
projects attempt to confine excitons in harmonic strain traps [41, 42], to mimic a
carrier confinement similar to ion traps used for Bose-Einstein condensation of alkali
ions [43]. Here we will demonstrate that even though Cu2O is one of the best inves-
tigated semiconductors, high resolution spectroscopy can add fundamental insight to
the understanding of excitons.

Cu2O condenses in a cubic structure, where the copper ions form a face-centered
sublattice, while the oxygen ions form a body-centered sublattice. The arrangement of
both sublattices is such that a copper ion is found centered between two neighboring
oxygen ions (see right section Fig. 3.1). This arrangement makes Cu2O a simple
cubic crystal with inversion symmetry, described by the point group Oh. This unusual
structure is only shared by Ag2O and Pb2O. The lattice constant of Cu2O is 0.426 nm
[44]. From the lattice structure we now turn to the band structure of this crystal [45].
We find a direct band gap, where the valence band is formed by the Cu 3d orbitals and
the conduction band arises from Cu 4s orbitals1 (see Fig. 3.2) of Γ+

1 symmetry (we will
use the notation of Koster et al. [46]). When considering the crystal field, the five 3d
states of the valence band split further into three states of Γ+

5 type and a twofold Γ+
3

1For the excitons in Cu2O electron and hole can be attributed to the same atom (Cu), which is
very unusual.
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Figure 3.2: Energy levels of
Cu2O close to the band gap. On
the far left the levels as deter-
mined from the relevant atomic
orbitals are shown. They are
split by the crystal field (mid-
dle). Considering spin the level
structure as shown on the right is
obtained. The arrows mark the
transitions associated with the
exciton series indicated.

level, where the Γ+
5 state is higher in energy. Taking also spin-orbit interaction into

account, the Γ+
5 state splits further into a twofold Γ+

7 level and a fourfold degenerate
Γ+

8 level. The Γ+
7 states are shifted by 133 meV to higher energy with respect to the

Γ+
8 states [27]. Including spin, the lowest conduction band is described by a doubly

degenerate Γ+
6 state. The next higher state of the conduction band has Γ−8 symmetry

and is 0.476 eV higher in energy. The minimum band gap Eg = 2.173 eV makes Cu2O
a semiconductor.

With the hole in the Γ+
7 or Γ+

8 valence band and the electron in the Γ+
6 or Γ−8

conduction band several series of excitonic transitions can be identified. The excitonic
transitions with holes in the Γ+

7 band and electrons in the Γ+
6 conduction band give

the so-called yellow exciton series, which is lowest in energy. Exciton series of higher
energy are (see Fig. 3.2):

• the green series, where the hole is in the Γ+
8 state, with the electron in the Γ+

6

state (Eg = 2.304 eV [47]);

• the blue series, where the electron is in the next higher state of the conduction
band (Γ−8 ), with a Γ+

7 hole (Eg = 2.624 eV [47]);

• the violet series with a Γ−8 electron and a Γ+
8 hole (Eg = 2.755 eV [47]).
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The exciton representation is obtained from the direct product of electron and hole
representations and the envelope function

Γex = Γenv ⊗ Γe ⊗ Γh. (3.1)

As the yellow excitons are formed by Γ+
7 and Γ+

6 states they decompose into repre-
sentations of Γ+

5 and Γ+
2 for S-excitons (Γenv = Γ+

1 ) [46]. The threefold Γ+
5 states are

termed orthoexcitons, while the single Γ+
2 level is referred to as paraexciton. Both

levels are split by electron-hole exchange interaction, where the paraexciton is found
12 meV below the orthoexciton [48, 49]. This makes the 1S paraexciton the lowest
exciton level of Cu2O. To understand the coupling of the exciton transitions to light
we develop eikr into a powers of r:

eikr = 1 + i
kr

1!
+ i2 (kr)2

2!
+O[r3]. (3.2)

The constant term corresponds to electric dipole transitions. The next higher orders
are quadrupole and octupole transitions. The transition to the paraexciton state is op-
tically forbidden to all orders in the absence of perturbations. For the yellow excitonic
P series (Γenv = Γ−4 ) we find

Γex = Γ−4 ⊗ Γ+
6 ⊗ Γ+

7 = Γ−2 ⊕ Γ−3 ⊕ Γ−4 ⊕ 2Γ−5 . (3.3)

Due to their Γ−4 components, the P-excitons of the yellow series can couple to the light
field via dipole interaction. They exhibit a perfect hydrogen-like spectrum

Ei = Eg −
Eb

i2
; i ≥ 2, (3.4)

with a band gap of Eg = 2.1725 eV at T = 4.2 K and a binding energy Eb = 97.43
meV [47, 50, 51]. For excitons Eb is the equivalent of the Rydberg energy ERy for the
hydrogen atom. It is given by:

ERy =
e2m0

2~
≈ 13.6 eV. (3.5)

Here m0 is the free electron mass and the momentum of the nucleus is neglected.
In a naive approximation we rescale the Coulomb force in the dielectric e2 → e2/ε0
(ε0 = 7.11 [32] is the dielectric constant in the low frequency limit) and calculate the
reduced exciton mass mr assuming me ≈ mh ≈ m0:

mr =
memh

me +mh

≈ m0

2
. (3.6)

In this picture we find Eb = ERy/(2ε
2
0) = 136 meV. The good agreement between the

real value and the approximation indicates that the effective masses of electron me=
0.99 m0 and hole mh = 0.69 m0 [52] are close to the free electron mass m0 [32]. The
oscillator strengths of these transitions are given by fi = 3.0 · 10−5 i2−1

i5
. This exciton

series has been observed up to i = 10 [25].
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The 1S exciton is found at 2.0326 eV with Eb = 150 meV [25]. The Bohr radius of
the exciton is given by

aX =
2πε0
Eb

. (3.7)

For the 1S exciton aX is extremely small (0.5 nm) and comparable to the lattice
constant [32]. In this case the description as weakly bound Mott-Wannier exciton
becomes problematic and we are approaching the case of Frenkel excitons [4]. This
leads to central cell corrections [53]. In this limit the effective mass of the exciton can
no longer be approximated by the sum of me and the mh and indeed values of mX = 2.7
m0 are measured [54, 55]. The description of this exciton series is further complicated
by mixing between S and D type states [50].

The yellow 1S orthoexcitons will be studied in this chapter. The transition from the
ground state (Γ+

1 ) to the 1S orthoexciton (Γ+
5 ) is dipole (Γ−4 ) forbidden (〈Γ+

5 |Γ−4 |Γ+
1 〉 =

0). The orthoexciton couples to light via quadrupole interaction Γ+
5 (〈Γ+

5 |Γ+
5 |Γ+

1 〉 6= 0).
Unlike the dipole operator, the quadrupole operator depends on the direction of the
light wave vector k relative to the lattice and the polarization vector e. Because of
the k dependence the transition is anisotropic even in a cubic crystal. The amplitudes
(QA1 to QA3) of the orthoexciton quadrupole transitions are given by the symmetric
vector product of k and e [27]: QA1

QA2

QA3

 =

 eykz + ezky

ezkx + exkz

exky + eykx

 . (3.8)

The three components (QA1 to QA3) correspond to the cartesian representations of the
Γ+

5 group: Γ+
5yz,Γ

+
5zx,Γ

+
5xy. A beam propagating along the [110] direction of the crystal

would undergo maximum absorption for e along [001] (|QA1|2 + |QA2|2 + |QA3|2 =
1
2

+ 1
2

+ 0 = 1), while it will be transmitted completely for e = [11̄0] (|QA1|2 =
|QA2|2 = |QA3|2 = 0). The oscillator strength of the quadrupole transition is low (f
= 3.7 · 10−9) [13], which is about 4 orders of magnitude smaller than the value found
for the dipole transitions of the P-excitons of the yellow series.

Even though the coupling to the light is extremely weak, it can not be disregarded.
The observation of polariton beats in the time domain is an unambiguous indication of
coherent energy transfer between photon and exciton via quadrupole interaction [13].
Hence, only polaritons describe the true eigenmodes of the exciton-photon system of
the 1S orthoexciton transition in Cu2O.

Based on the formalism derived in the previous chapter we can now describe this
specific polariton. In the case of bulk polaritons the photon energy is given by

EP (k) = ~
c0√
ε∞
k, (3.9)

where ε∞ = 6.46 is the dielectric constant in the high frequency limit [47]. The
parabolic exciton dispersion is given by the

EX(k) = EX(0) +
~2k2

2mX

, (3.10)
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where the first term gives the potential energy and the second the kinetic energy of
the exciton. This is often referred to as spatial dispersion. The Rabi energy is given
by ~ΩR =

√
fEP = 124 µeV for the 1S orthoexciton at resonance (∆k = 0) [56]. The

resulting dispersions of the LPB and UPB of the yellow 1S exciton are shown in Fig.
3.3 (a). On this energy (k) scale the polariton modes are indistinguishable from the
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Figure 3.3: (a) Dispersion relation of UPB (dashed trace) and LPB (solid trace) for
the yellow 1S exciton in Cu2O. (b) Energy splitting of the polariton branches in the
k-range close to the exciton-photon resonance. (c) Dispersion of the polariton branches
and the uncoupled modes (black solid traces) around the exciton-photon resonance.

exciton and photon modes. Because of its high effective mass, the spatial dispersion of
the exciton is weak and, compared to the steep light dispersion, the exciton dispersion
appears to be flat. The splitting between UPB and LPB is shown in panel (b). Note
the small energy (k) scale with respect to panel (a). When exciton and photon are
in resonance (kR = 2.62 ·107 m−1) the splitting reaches its minimum value ~ΩR. On
this energy scale also the anti-crossing of both branches becomes evident (panel (c)).
For clarity the energy is taken relative to the potential energy of the exciton (EX(0)).
As a reference the uncoupled eigenmodes are given. On this energy scale we can also
identify the contribution from spatial dispersion, which is < 10 µeV.

The extremely small Rabi splitting also implies weak radiative broadening of the
1S orthoexciton. In crystals of high quality, where inhomogeneous broadening due
to strain fields or crystal defects is suppressed, an extremely sharp resonance can be
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expected. From measurements in the time domain, linewidths in the µeV range are
expected [13]. Several problems arise when attempting to study the linewidth in the
spectral domain. First of all the quadrupole character of the transition prohibits an
efficient excitation of this state in a conventional photoluminescence experiment. Unlike
a dipole transition, where the angular momentum transfer is ±1 and hence equals the
angular momentum of the photon, here a momentum transfer of ±2 is required. To
populate the quadrupole states efficiently, a two-photon absorption experiment would
be well suited [51]. However, this would still require a spectrometer with extremely high
resolution. Even using a double grating monochromator with a focal length in the 1 m
range would only provide a spectral resolution of & 2 µeV. This is still insufficient for
the tasks tackled, here. In the following section we will introduce, how spectroscopical
techniques established in the field of atom and molecule spectroscopy can be applied to
problems in the field of condensed matter spectroscopy and how this permits to study
such ultra narrow transitions in the spectral domain, even in a single beam experiment.

3.1 Experimental technique

Typically, a spectral resolution of few µeV is sufficient for tasks in the field of solid state
spectroscopy. In most cases lines are inhomogeneously broadened due to imperfections
of the solid state environment. Additionally, a rich variety of interactions gives rise
to quick carrier dephasing and depopulation of the states under investigation, which
causes homogeneous broadening.

However, systems which are less affected by such perturbations are of increased
interest. It represents a major goal of solid state physics to find or design structures
that come closer to the dephasing rates and homogeneity found in atomic systems.
One prominent example are quantum dots. But self organized quantum dots show
strong variation in size and alloy concentration. This gives rise to undesired variations
in the transition energies. To suppress such inhomogeneous broadening, spectroscopy
of single quantum dots has become fashionable. When isolating such a single quantum
dot, studies with a high resolution spectrometer show a linewidth of ≈ 2 µeV [57].
Unfortunately, here the linewidths are resolution limited, which prohibits an interpre-
tation of the line shapes or measuring a possibly even lower broadening. To deduce
this information, time resolved spectroscopy offers a complementary approach. Instead
of deconvoluting the dynamics of a system from its homogenous broadening, this in-
formation is often directly accessible in a time resolved experiment. Going back to the
example of quantum dots recent studies show that the dephasing times of excitons in
quantum dots are in ns regime at low temperatures, which again puts us in the µeV
regime in the spectral domain (γ = 2~

T2
, with the homogenous linewidth γ) [58]. Other

promising reports on long dephasing times of excitons are found [13]. Again, these data
were obtained in the time domain. Considering the large interest in systems showing
long T2 times a simple straight forward experiment to measure the line shapes of such
highly coherent long lived states is desirable.
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One of the simplest optical experiments is an absorption experiment. One shines
light on the specimen and monitors the transmittance. By tuning the energy of the
exciting light the absorption becomes spectrally resolved. Considering a light source
of continuously tunable wavelength, the spectral resolution of the experiment is only
limited by the linewidth of the exciting light source. Thus the requirements for the
detection unit can be extremely simple. If the transmitted signal is sufficiently intense,
a simple photo detector will do. To successfully perform studies on highly coherent
systems, their interaction with the phonon bath has to be suppressed, which requires
cooling.

Figure 3.4: Principle setup for semiconductor spectroscopy with high spectral resolu-
tion.

Following these ideas the setup for a high resolution absorption experiment shown
in Fig. 3.4 has been developed. It joins elements known from spectroscopy of gases with
those essential for optical spectroscopy of solids. The crucial element of the assembly
is a tunable, frequency-stabilized, ring dye laser (Coherent 899-21). A rough selection
of the operation wavelength is possible by means of a three plate birefringent filter.
The frequency bandwidth is further narrowed down to about 40 neV by an intra cavity
etalon assembly. To stabilize the laser frequency, a fraction of the beam is coupled
into a reference cavity, which is connected to an electronic servo loop. The reference
cavity monitors the laser frequency and sends an electronic signal to the servo loop.
The electronics readjusts the length of the laser cavity according to the reference cavity
signal. The optical cavity length and hence its frequency is kept constant, by moving
one of the mirrors in the cavity. For this purpose this mirror is mounted on a piezo-
electric crystal. To compensate slower changes of the optical cavity length the tilt
angle of an intra cavity Brewster plate is adjusted. The achievable stabilization of the
laser frequency depends on the finesse of the reference cavity. In our case the active
frequency control narrows the bandwidth down to 2 neV (≈ 500 kHz).

In the experiment, we have to be able to tune the laser wavelength. Single mode
scanning is also achieved by feedback from the reference cavity and the servo loop.
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A controlled and continuous tuning of the laser energy is realized by a sophisticated
interplay between tilting the intra cavity Brewster plate and quick fine tuning by the
piezo mirror. A maximum scan range of ≈ 125 µeV is accessible in this fashion. Larger
changes of the laser energy are done by adjusting the birefringence filter and one of the
intra cavity etalons. With a laser bandwidth of 500 kHz (≈ 2 neV) we can measure
linewidths well in the sub µeV range. Furthermore, it will still give access to the line
shape of such extremely narrow lines. As the exciton states investigated are found
at ≈ 2.03 eV, Rhodamine 6G dye was used as gain medium. The dye was excited
by a frequency doubled Nd:YVO4-laser (Coherent Verdi 5 W). Besides the exceptional
spectral resolution, the tunable single mode source permits efficient resonant excitation
of a well-defined state.

For the rough adjustment of the laser energy, a wavelength meter (Coherent Wave-
master) with an accuracy of ≈ 15 µeV is used. The precision of the wavelength meter
gives the upper limit to the absolute energy calibration of the setup. Therefore we will
typically present spectra in terms of relative energies. To calibrate the scan width of
the laser a spectrum analyzer with a free spectral range of 0.617 µeV (149.2 MHz) can
be implemented. After these diagnostics the laser beam is passed through polarization
optics (half-wave plate and polarizer), to ensure precise control of the polarization e of
the exciting laser light. A lens focuses the laser beam onto a spot of about 30 µm on
the sample. The transmitted light again passes through two lenses, which project an
image of the sample into the plane of a spatial filter. An additional polarizer (analyzer)
placed between sample and detector permits selection of the detected polarization com-
ponents. Using a kinematic mirror and a magnifying imaging unit the position of the
excitation spot on the sample can be followed. When the kinematic mirror is moved
out of the beam path, the transmitted light is no longer guided into the imaging unit,
but travels further through a lens combination, which focuses the beam onto the en-
trance slit of an imaging monochromator (focal length 0.46 m). The dispersed light
finally shines onto a liquid nitrogen cooled CCD camera. This detection unit provides
a spectral resolution of ≈ 0.1 meV. As stated above, this is insufficient for the tasks
tackled, here. Therefore the monochromator is only used to monitor a wider spectral
window around the transitions under investigation.

For studies with high spectral resolution a second kinematic mirror is flipped into
the beam path. Now the transmitted photons are detected by a photodiode, which is
connected to an oscilloscope. Running the laser in the stabilized frequency scanning
mode, the ramp voltage of the scan is used as trigger input for the oscilloscope. As
the laser wavelength is scanned, the transmittance of the specimen is monitored on the
photodiode. Synchronizing the scan and the photodiode readout on the oscilloscope,
gives the spectrally resolved transmission. Typically, the scan range is set to ≈ 40 µeV
with a scan time of 250 ms. Most measurements were done in a helium immersion
cryostat, where the samples were kept at a temperature of ≈ 1.5 K. For temperature
dependent measurements the samples were placed in a two chamber helium cryostat.
The temperature could be varied from room temperature down to 4.2 K. Lower tem-
peratures (. 1.4 K) were achieved by reducing the pressure above the helium. Besides
these cryostats, a magnet cryostat (B ≤ 6 T) can be implemented.
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4 mm
dS=100 µm5 mm

Figure 3.5: Photographs of two typical Cu2O samples. Left: cube shaped sample.
Right: slab shaped sample.

High resolution experiments are extremely sensitive to perturbations. One such
perturbation is strain. Hence, great care was taken to mount the samples strain-free.
Here two types of samples have to be distinguished. First, cube shaped samples (left
in Fig. 3.5) with dimensions of ≈ 4 mm. These samples were housed in a brass cage,
slightly larger than the sample itself. The second sample type is slab shaped with
lateral extensions of few mm (right in Fig. 3.5), while being only . 100 µm thick.
To ensure a strain free upright mounting, special housings have been fabricated. A
sectional drawing of such a holder is shown in the left half of Fig. 3.6. The sample
is sandwiched between two brass plates. These plates have openings, slightly smaller
than the lateral extensions of the specimen. The sample is placed between those plates,
while a spacer layer slightly thicker than the sample surrounds the specimen. The
spacer layer consists of a metal foil, with a hole housing the sample. The spacer
prevents the sample being squeezed between the brass plates. Two screws hold this
assembly. The specimen is free to move by some tenth of a mm within the holder. The
samples were cut from the same natural Cu2O crystal (see Fig. 3.1) and were oriented
by X-ray diffraction. They were cut such that the surfaces correspond to a main
crystalline axis (e.g. [001], [1̄10], [111], [112]). After cutting the surfaces were polished.
Our studies show that this treatment can give rise to strain in the crystals, especially
if the thickness dS is < 100 µm. Samples showing signatures of strain were annealed.
For this purpose they were slowly heated up to 450 C in an evacuated environment.
The heating process took 6 hours. Then the samples were kept at this temperature
for 12 hours, before they were cooled down to room temperature within 10 hours. To
prevent reduction of the surfaces, the crystals were sandwiched between two quartz
(SiO2) plates, which acted as oxygen donators at high temperatures. The annealing
procedure was found to be successful in some cases, however it does not guarantee a
completely strain free sample.
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Figure 3.6: Left: Drawing of a sample holder for thin Cu2O slabs. Right: Geometry of
the experiential configuration. See text for details.

The mounting in the cryostat allows the rotation of the sample around the vertical
axis by an angle ϕ′, which corresponds to an angle ϕ (sinϕ = sin ϕ′√

ε∞
) for the laser beam

inside the crystal (Fig. 3.6). For demonstrative purposes a crystal is shown, where the
rotation is around the [11̄0] axis. Here for ϕ = 0 the light travels along [110]. For ϕ 6= 0
the light travels along intermediate k directions through the crystal. By means of the
polarization optics the polarization e can be varied in the [001] − [11̄0] plane. The
direction of e will be characterized by the angle ψ in the following. ψ = 0 corresponds
to horizontal e; in our example e (ψ = 0) = [001], while ψ = 90◦ corresponds to
vertical polarization e=[11̄0]. The setup in Fig. 3.4 shows only the core elements. For
the specific issues investigated in the following slight modifications have been made.
These changes will be explained with the corresponding experiments. We will proceed
with the experimental investigations of the yellow 1S exciton in Cu2O. For the first
time, this transition will be investigated with the appropriate spectral resolution.

3.2 High resolution spectroscopy of polaritons

Preliminary absorption experiments were performed on samples comparable to those
investigated, here. For these experiments a simple halogen lamp for illumination of the
sample and a double monochromator photomultiplier combination as detection unit
were used. However, the spectral resolution was limited to & 10 µeV [59]. While this
is still sufficient for the investigation of temperature induced effects and monitoring
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Figure 3.7: (a)
Absorption spec-
trum of a 30 µm
thick Cu2O sample
k=[111]. The black
line gives the data,
while the grey one
gives a fit using the
model introduced
in the text. (b)
Modulation of the
real part of the
refractive index n.
(c) κ as function
of energy. In all
panels relative
energies are shown,
where maximum
absorption defines
∆E = 0.
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the total absorption, this resolution is insufficient to answer the core question arising
in the low temperature regime: How narrow is the yellow 1S exciton transition?

To answer this, natural Cu2O samples have been prepared, as described in section
3.1. To reduce inhomogenous broadening, a thin sample of thickness dS = 30 µm has
been chosen. The absorption of the transition is further reduced by choosing k = [111]
for which

∑
i |QAi|2 = 1

3
for all polarizations. The measured absorption spectrum is

shown in Fig. 3.7. The line shape of the polariton transition can be modelled by the
standard Sellmeier description of polaritons with i exciton transitions at Ei(k) (see Eq:
3.10) which couple to light with the oscillator strength fi [60]:

ε(E) =
~c20k2

E2
= ε∞ +

∑
i

fiE
2
i (k)

E2
i (k)− E2 − iEΓi

. (3.11)

For the sake of simplicity the polarization dependence of the quadrupole transition
has been left out. For a full treatment the oscillator strength has to be scaled by the
quadrupole amplitudes of the specific transitions. Here we have included a damping
parameter Γi, which is assumed to be independent of E. This approximation might
not be correct considering, for example, the energy dependent coupling to phonons etc.
[59]. In the framework of this zero order approach to the polariton lineshape Γi can
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only be understood as a phenomenological parameter. It cannot be interpreted as a
damping in the classical sense of absorption and the linewidth cannot be associated
with the lifetime of the exciton [59]. It was argued that scattering processes that
change k give rise to absorption-like signatures. To account for this we would have
to take propagation effects into account. As the group velocity vg of the polaritons
is strongly reduced close to the exciton-photon resonance (see chapter 3.3), such slow
polaritons are more likely to undergo scattering on their way through the crystal. A
vg dependent Γ proportional to the time of flight in the sample Γ ∼ dS

vg
would yield a

much better description of the damping mechanisms [61]. However, this complicates
the calculations significantly. A full treatment is beyond the scope of this work and
does not change the central points of our analysis.

In the general form (Eq. 3.11) sums over all resonances i. Even though the yellow
1S quadrupole transition is far from all other exciton states on the energy scales of
interest, we cannot completely disregard the other resonances, here. In the case of well
separated resonances, a simplified treatment is appropriate. We assume a background
oscillator (EB, fB,ΓB), which substitutes for the entire set of exciton transitions. This
hypothetic background oscillator is then superimposed by the 1S transition of interest:

ε(E) =
~c20k2

E2
= ε∞ +

f1SE
2
1S(k)

E2
1S(k)− E2 − iEΓ1S

+
fBE

2
B(k)

E2
B(k)− E2 − iEΓB

. (3.12)

From ε(E) we deduce the complex refractive index ñ(E) = n(E) + iκ(E) =
√
ε(E).

The absorption coefficient α is given by α(E) = 2E
c0~κ(E). The transmitted intensity

I(ω) (which is monitored in our experiment) is then given by

I(E) = I0e
−α(E)dS , (3.13)

where I0 is the transmitted intensity outside the absorption resonance (not the intensity
shining on the sample front surface). The problematic evaluation of Γ1S typically leads
to an overestimation of the oscillator strength. Determining f1S from the polariton
dispersion and vg is a more suited approach, which will be described in chapter 3.3. For
simplicity the kinetic energy of the exciton is assumed to be constant in the following.
This is a very good approximation, as the dispersion of the exciton is extremely flat in
the spectral window under investigation.

From the fit of Fig. 3.7 (a) we determine Γ1S = 0.8 µeV. Using quantum beat
spectroscopy exciton coherence times of up to 2 ns were reported [13, 62]. Despite
the crude modelling, this is in good agreement with our results. Previous studies
show that Γ1S is dominated by phonon scattering [61], while contributions from pure
dephasing can be neglected. The radiative exciton lifetime is about 30 ns [63] and
gives no significant contribution to Γ1S. From the absorption spectrum we find T2 =
1.6 ns. From the fit we can directly calculate ñ. The modulation of the real n (Fig.
3.7 (b)) and imaginary (Fig. 3.7 (c)) part κ of the refractive index are also shown.
While κ basically has a dispersion-like form we also find notable modulations in n in
the spectral vicinity of the resonance.
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Figure 3.8: Transmission
spectrum of a 4.9 mm thick
crystal (k=[110]). The
dark line gives the experi-
mental data. The dashed
trace gives the calculated
interference fringes assum-
ing a constant refractive in-
dex. The dotted trace was
calculated using a back-
ground oscillator at the
spectral position of the 2P
exciton (2.1473 eV) with
fB= 4.9 · 10−2.
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3.2.1 Interference phenomena in Cu2O

These modulations in n should become evident in interference experiments, where two
principle cases can be investigated.

• Interferences between the directly transmitted beam and the fraction of the beam
which is reflected at the front and back sample surface (see sketch in Fig. 3.8).

• Interferences between two beams with different polarizations. Depending on k
they can have different QA’s (Eq. 3.8) and hence feel different modulations in n.

Let us begin with interferences between the transmitted beam and the doubly reflected
fraction. The resulting transmitted signal is then described by

I(E) = I0e
− 2κEdS

~c0

[
1 + r4e

− 4κEdS
~c0 + 2r2e

− 2κEdS
~c0 cos

(
2nEdS

~c0

)]
, (3.14)

where r =
√

ε∞−1√
ε∞+1

gives the reflectivity for the field (not the intensity) at the sample sur-
face. The first term in the sum describes the transmitted beam, while the second term
gives the doubly reflected fraction. The third term finally describes the interference
between both. As I0 is defined as the intensity transmitted outside the absorption res-
onance, the transmission coefficients at the front tF = 2

ñ+1
and back tF = 2ñ

ñ+1
surface

do not enter Eq. 3.14. Their slight energy dependence does not affect our calculations.

Interference phenomena were studied on a 4.9 mm thick sample, where the beam
propagates along the [110] direction. When the polarization is along [11̄0] the 1S
quadrupole transition is forbidden (

∑
i |QAi|2 = 0 = f1S), which allows study of the

relevance of the assumed background oscillator (see Eq. 3.12). The experiment shows
a characteristic spectral interference with a period of 33 µeV. When calculating the
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Figure 3.9: Transmission
spectrum of a 4.9 mm
thick crystal (k = [110]).
The dark line gives the
experimental data. The
grey trace gives the cal-
culated interference fringes
with f1S= 2.1 · 10−8, Γ1S=
0.29 µeV.

interference fringes assuming fB = 0 an intensity oscillation with a frequency of 59 µeV
is obtained. Therefore, the data indicate that we cannot disregard the modulation of
the refractive index induced by the other exciton transition. The dotted trace was
calculated using the 2P exciton transition as background oscillator (EB = 2.1473 eV),
where the oscillator strength was taken as adjustable parameter. A good description
of the experiment is achieved for fB = 4.9 · 10−2. The broadening parameter ΓB is
not evaluated quantitatively, as it is only relevant for the damping of the oscillation
and hence the amplitude of the oscillation. A good description is obtained for ΓB ≈
17 µeV. As we are dealing with systems of macroscopic thickness, several thousand
times larger than λ, even the slightest modulation of the refractive index leads to
deviations from the naively expected interference pattern. In the special case of this
quadrupole transition, we can nicely study this effect, as the quadrupole transition is
orders of magnitude weaker than the dipole transitions of the odd parity P excitons.
Selecting a forbidden polarization provides a sufficient suppression of the quadrupole
signal to study the impact of the background oscillators separately. For the following
evaluations, the parameters of the background oscillator are kept fixed.2

We now rotate the polarization of the laser beam to the [001] direction, which makes
the 1S transition allowed. The resulting transmission spectrum is shown in Fig. 3.9
(dark curve). We find the absorption resonance, where in a spectral range of 7 µeV,
the light is completely absorbed. More strikingly, pronounced interference signatures
are found, where the amplitude of the oscillation increases with detuning ∆E from the
resonance. Furthermore, the oscillation period is a function of ∆E. Note, that even
oscillations with a period of 0.5 µeV are clearly resolved. To describe this complex

2The sharp line appearing in the spectrum at about ∆E ≈ 7 µeV arises from a slight misorientation
of the crystal. The exact origin will be discussed in section 3.4.



24 Polaritons in cuprous oxide

behavior we apply Eq. 3.14. The grey trace in Fig. 3.9 gives the calculated spectrum
using the parameters f1S= 2.1 ·10−8, Γ1S= 0.29 µeV. The simulation shows qualitative
agreement with the experiment. The calculated interference fringes strongly depend on
∆E. This is directly understood, when looking at Fig. 3.7 (b) and (c). The amplitude
of the interference is determined by the fraction of the beam travelling through the
sample back and forth. Close to the resonance κ increases drastically, which means
that the beam is strongly absorbed. Consequently, only a very small fraction remains
to interfere with the directly transmitted beam, quenching the interference amplitude.

The period of the interference fringes depends on ∂n
∂E

. In the spectral vicinity of the
resonance, the modulation of n is most pronounced, which gives rise to a fast sequence
of interference maxima and minima. The further we move from ∆E ≈ 0 the more n
flattens and the larger the interference period. Looking closely at Fig. 3.9, we find that
the chosen set of parameters well describes the oscillation in the spectral range close to
the resonance, while the oscillations get out of phase for larger ∆E. In addition, the
amplitude of the oscillation is not well approximated by the set of parameters. The
amplitude could easily be adjusted when assuming a reduced reflectivity of the sample.
However, the fit shown is based on a set of parameters where at least the oscillator
strength is far from the values found above and in literature [13]. The modelling is to
be understood as a first approach. Obviously, the assumption of a Lorentzian with a
constant Γ does not provide a sufficiently good description of the dielectric properties,
such that the modelling of the interference fringes also runs into difficulties. In the
course of the chapter we will take a closer look at the shortcomings of this description.

Besides interferences induced by the superposition of transmitted and a doubly re-
flected beam, we can take advantage of the polarization dependence of the quadrupole
amplitudes to generate interferences between waves of different polarization. In all
following experiments the front and back surfaces of the samples are not perfectly
coplanar. Hence, we no longer observe interferences between the transmitted and the
doubly reflected beam. Taking the same geometry as above (k = [011]) and simply
rotating the polarization by means of a λ/2 retarder we find the spectra of Fig. 3.10.
Looking at panel (a) we see the well-known absorption line (e = [001]). The polariza-
tion is along a good eigenpolarization of the quadrupole and no interference is expected.
As we tilt the polarization plane, we superimpose the remaining fraction of the beam
polarized along [001] (|QA|2 = 1) with a fraction polarized along e = [01̄1] (|QA|2 = 0).
Since the quadrupole transition is forbidden, this polarization component is not subject
to absorption induced modulations of n. As the wavelengths of the two polarization
components differ inside the crystal, they show destructive or constructive interference
on the detector. To be precise, as the polarization components are orthogonal they
cannot show an interference. This is overcome by placing a polarizer (analyzer) be-
tween sample and detector. For simplicity the orientation of the analyzer was fixed
at 1√

2
([001] + [01̄1]). The origin of the interferences can be tested experimentally by

rotating the orientation of the analyzer. When orienting this polarizer along [001] or
[01̄1] no interferences can be observed independently of the incoming e. As long as the
analyzer is along one of the polarization eigenstates, no coherent superposition of the
polarization states can be generated and hence no interference pattern can be observed.
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Figure 3.10: Transmission spectrum of a 4.0 mm thick crystal (k = [110]) for various
orientations of e(ψ). In panel (a) e is along [001]. Step by step the polarization is
rotated towards e = [01̄1] (panel (f)).
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This gives further evidence for the above findings. By changing the orientation of the
analyzer, the amplitude of the interferences can be maximized for each e. We see that
the flattening of the absorption close to the resonance is not an artefact arising from
limited sensitivity of the detector. The interferences can be described as

I(E) =

I0

[
cos2(ψ)e

− 2κEdS
~c0 + sin2(ψ)e

− 2κ0EdS
~c0 + sin(ψ) cos(ψ)e

− (κ+κ0)EdS
~c0 cos

(
(n0−n)EdS

~c0

)]
,

(3.15)

where ψ gives the tilt angle of e from the [001] direction. n0 (κ0) gives the refractive
index (extinction coefficient) for the beam polarized along [11̄0]. Using Eq. 3.15 we
have modelled the experimental findings (Fig. 3.11).

Comparing Figs. 3.10 and 3.11 we find a good description of the data, by using the
set of parameters found for the interference phenomenon. Naturally, the interferences
vanish for e along [001] and [01̄1]. For intermediate polarizations we find a gradual
transition between those limiting cases where the oscillations are most pronounced if
the intensities of both polarization components are equal. The curves remain flat in
this spectral range even if the intensity is nonzero. In general, the amplitude of the
oscillation is a little larger in theory than in the experiment, which might be explained
by additional damping mechanisms not covered in this model. Experimentally, we
resolve oscillation periods down to 0.36 µeV, which become larger as we move out of
resonance. This behavior has been discussed above. In the modelling, we can again
describe this qualitatively. However, theory and experiment do not agree quantitatively
over the entire spectral range.

Comparing the two interference phenomena, we find characteristic differences. In
the case of polarization interferences the amplitude of the oscillation can become much
larger, as both waves travel through the crystal only once and the intensity of both
beams does not differ that much. Coming closer to the resonance, however, the [001]
component is strongly absorbed, damping the interference amplitude. These simpli-
fied and intuitive models identify the origins of the interference patterns and agrees
reasonably well with the experiments on a semi quantitative level.

3.2.2 Polariton damping

Our modelling suffers from an insufficient treatment of the damping. Now we will take
a closer look at potential damping mechanisms. One decay channel for the polariton
would be radiative recombination at the sample surface. The polariton excited in the
sample propagates with its group velocity vg through the crystal. At the sample surface
the translation invariance is broken and the photon is only reabsorbed when reflected
at the surface. For a polished surface, as in the present experiment, the likelihood of
reflection is given by the reflectivity (|r|2) of the sample, which is about 0.2 for the



3.2 High resolution spectroscopy of polaritons 27

0.0

0.5

1.0

1.5

-20 -10 0 10 20

0.0

0.5

1.0

1.5

-20 -10 0 10 20
0.0

0.5

1.0

1.5

-10 0 10 20

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

-10 0 10 20
0.0

0.5

1.0

1.5

ψ = 90oψ = 66o

ψ = 51o
ψ = 36o

ψ = 15oψ = 0o

e = [0-11]

e=[001]

(f)

(d)
(b)

(e)

(c)
(a)

 

 

 

intensity

 

 

 

in
te

ns
ity

 

 

 

 

  

 

 

 

 

 

∆E (µeV)

  

 

∆E (µeV)

Figure 3.11: Calculated transmission spectrum of a 4.0 mm thick crystal (k along [110])
for various orientations of e. In panel (a) e is along [001]. Step by step the polarization
is rotated towards e = [01̄1] (panel (f)). For the calculation the parameters f1S=
2.1 · 10−8 and Γ1S= 0.29 µeV have been applied.
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Figure 3.12: Spectrally resolved
phonon spectrum under reso-
nant excitation of the yellow 1S
orthoexciton. For these mea-
surements a thick crystal (dS=
4 mm) was used. The laser is
strongly absorbed in the speci-
men, which allows resolution of
the weak phonon luminescence
relative to the otherwise intense
laser. The signal is dispersed
by a monochromator and de-
tected by a LN2 cooled CCD
camera. The laser beam prop-
agates along [001]. The spectral
positions of ortho- and paraex-
citon are indicated.
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Cu2O-helium interface at normal incidence. This decay channel would again give an
energy or, more precisely, vg dependent Γ. We expect Γ ∼ vg

dS
, which is inverse to the

scattering induced damping discussed above. Such radiative damping would lead to
line broadening in thinner samples. Even for dS = 15 µm no such effect is found. This
already indicates that the line broadening is not due to losses at the sample surfaces.

In addition to this loss channel polaritons interact with phonons. The final states
of such polariton-phonon scattering processes are found in the excitonic section of
the polariton dispersion and hence outside the radiative region. As the unit cell of
Cu2O has six atoms with three degrees of freedom (x, y, z), there are 3 · 6 zone center
phonons. There are two transverse acoustic and one longitudinal acoustic phonons
and 15 optical phonons remain. Cu2O is of Oh symmetry and the optical zone-center
phonons can be classified as Γ−2 ⊕ Γ−3 ⊕ 2Γ−4 ⊕ Γ−5 ⊕ Γ+

5 [64]. The phonon spectrum
of Cu2O is shown in Fig. 3.12. We see a series of phonons of Stokes type. In the
spectral range under investigation we find all expected phonon related emission lines.
The Γ−5 phonon line 10.6 meV below the orthoexciton, the Γ−3 phonon (13.5 meV), the
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Figure 3.13: Absorption spectra of a 54
µm thick sample (k = [1̄10], e = [001̄]) for
the temperatures indicated. Upper inset:
Spectral shift of the line as a function of
T , relative to the line position at T= 6.2
K. Lower inset: Linewidth as a function
of T . Γ was evaluated using Eq. 3.11.

Γ−4 phonon (18.8 meV), and the Γ−2 phonon (44 meV). The relative intensities strongly
depend on the polarization component detected. While the Γ−3 is polarized orthogonal
to the polarization of the orthoexciton, the other phonons are polarized parallel to the
exciton. Here the analyzer polarization is parallel to e. Still the Γ−3 phonon is most
intense. The Γ−4 line shows a doublet structure. As the Γ−4 phonon is polar, it splits
into a longitudinal and transversal optical mode. Here a splitting of 0.4 meV is found,

which is in good agreement with the Lyddane-Sachs-Teller relation (
ω2

L

ω2
T

= ε0
ε∞

) [65].

The relevance of phonon scattering is tested in temperature dependent measure-
ments (Fig. 3.13). The line shows the expected red shift with increasing temperature.
The line shifts by 0.1 meV for a temperature increase of 8 K (upper inset). More
importantly, the line broadens with T , which is the fingerprint of phonon interaction.
The lower inset gives the linewidth as a function of T . While Γ is in the 1 µeV range for
T ≈ 2 K it is already significantly broadened at moderate T . At 14 K Γ has increased
by one order of magnitude. While this high resolution spectroscopy is well suited to
follow slight changes in the linewidth at low T , a systematic study of the transition
energy as a function of T is complicated, as the line shifts and the linewidth quickly
exceed the available spectral window of the laser scan. Therefore, Fig. 3.13 covers
only a relatively small temperature range. However, we see that phonon interaction
has a severe impact on the linewidth and is probably the most important source of
dephasing, even in the low T regime. In power dependent measurements no significant
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broadening is found with increasing excitation power, hence exciton-exciton scattering
is of little relevance. The effects in the high power regime will be discussed in section
3.5.

One further source of broadening can be deduced from Fig. 3.12. In addition to
phonons coupling to the orthoexciton, we also find a phonon resonance connected to
the paraexciton. This is direct evidence of a paraexciton population and the presence
of relaxation channels from the orthoexciton into the paraexciton. As the paraexciton
is the lowest exciton state in Cu2O and the orthoexciton is the second lowest state, no
further relaxation channels have to be taken into account. Since the paraexciton state
is optically forbidden we cannot resolve it directly in the present experiment. It would
be located slightly above the the Γ−3 phonon. By applying a magnetic field or uniaxial
stress [66], the paraexciton becomes visible in an optical experiment.

Even though the lineshape found in Fig. 3.7 is well approximated by a Lorentzian,
deviations are found. Furthermore, for the paraexciton a linewidth of ≈ 1 µeV is found
at low magnetic fields in a 4 mm thick crystal. We would expect a much narrower line
from the extremely small f and the increased lifetime. This indicates inhomogenous
broadening in addition to the homogenous broadening discussed above. Comparison
of spectra obtained on thick samples compared to those for thin samples (Fig. 3.7)
show that the lines broaden with increasing sample thickness. Considering the ex-
tremely narrow lines, even the slightest residual strain gives rise to a notable line shift.
Variations of the strain along the sample cross section give rise to inhomogenous broad-
ening.3 These studies show that a better understanding modelling of the polariton line
shape has to include phonon interaction and inhomogenous broadening.

3.3 Propagation of polaritons in Cu2O

Wavepackets propagating with ultra slow group velocity have attracted great interest
in solid state as well as atom physics. Ultra slow photons might be of interest, for
example, in quantum computation schemes [67], for highly efficient photon counting
[68] or even for new acousto-optical devices [69]. When talking about the velocity of
a wavepacket, we have to distinguish between group and phase velocity. The phase
velocity is the speed at which the modes of the wavepacket propagate. It is simply
given by vP = c0/n. The phase velocity can be obtained directly from the interference
measurements presented in the previous chapter. In this section we focus on the group
velocity vg, which gives the speed of the envelope of the electromagnetic field. The
group velocity can be deduced from the dispersion of the polariton modes

vgU,L =
1

~
∂EU,L

∂k
. (3.16)

Close to an absorption resonance vg can change by several orders of magnitude. How-
ever, also the absorption of the sample increases drastically, which typically prohibits

3The impact of strain will be discussed in detail in section 3.4.
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measuring such ultra slow vg in a transmission experiment. To overcome this prob-
lem recent experiments use the effect of electromagnetically induced transparency [70],
where quantum interference leads to a cancellation of absorption. In this technique
a first coupling laser field is absorbed in the medium and generates so-called laser
dressed coherent atoms. The second beam travels through the medium and, while it
feels its dispersive properties, it is no longer absorbed. Using this approach vg = c0

165

has been measured in lead vapor [71] and even vg < 90 m s−1 has been measured in a
hot rubidium gas [72]. To reduce vg even further Doppler induced line broadening was
suppressed by cooling sodium atoms. At temperatures around the critical temperature
for BEC vg dropped to 17 m s−1 [73]. Switching the coupling laser off the probe pulse
is effectively stopped. When switching the coupling laser back on after 1 ms, the probe
pulse is regenerated [74]. This trapping of light [75, 76] can be looked at as a coherent
information storage. Such ultra cold atoms are not suited to many of the potential
applications of slow light. It is preferable to use solid state media. In the search for
a solid state realization similar effects have been demonstrated for rare earth doped
insulators [77].

The system we are investigating clearly differs from such ultra-cold atomic systems
and also from doped solid state media. We are not dealing with an isolated optical
transition, free of dispersion. The exciton is a quasi-free particle and its spatial disper-
sion describes the lower limit to vg. The situation for polaritons is still more complex.
They show mixed properties of light and matter. Around the exciton-photon resonance
vg changes over from photon to exciton-like or vice versa (see Fig. 4.2). As photons do
not carry mass, while the excitons have a high effective mass (see chapter 3), the prop-
agation of the polaritons is significantly slowed down, when compared to bare photons,
by their exciton admixture.

The problem of polariton wave packet propagation in a dispersive dielectric has been
tackled earlier in theory [78, 79] and experiment [80]. In bulk GaAs group velocities
as low as 1.5 · 105 ms−1 have been measured in an up-conversion experiment. The
studies have been complicated by the strong absorption of this dipole allowed transition.
Therefore only relatively thin samples could be investigated. This requires a good
time resolution and the usage of short laser pulses. Here we are facing a quadrupole
transition, which permits transmission experiments with rather thick samples. Arising
from the weak exciton-photon coupling, the transition from exciton-like to photon-like
is restricted to an extremely narrow k-range ∆k ≈ 1

1000
kR, here. Consequently the

dispersion shows a pronounced curvature in the optically active region (Fig. 3.3) and
we expect steep changes in vg as shown in Fig. 3.14. For the calculation using Eq. 3.16
and 3.11 the parameters f1S = 3.9 · 10−9, mX = 2.7 m0, and ε∞= 6.46 have been used.
Coming from the low energy (low k) side the upper branch (dashed trace) is exciton-
like and vg is determined by the exciton’s spatial dispersion. At resonance (∆Eexc = 0)
the calculated group velocity is as low as vg = 2.2 · 103 m s−1. For positive ∆Eexc the
upper branch converges to the velocity of the uncoupled photon in the dielectric. For
the lower branch a vice versa behavior is expected. Following these considerations the
polaritons at resonance are predicted to move at a speed about 5 orders of magnitude
slower than c0.
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Figure 3.14: Group
velocity as a function
of energy. Calculations
for the UPB (LPB) are
given by the dashed
(solid) grey line. For
reference the velocity
of the longitudinal
acoustic phonons
(dashed trace) and the
transversal acoustic
(dash-dotted trace) as
well as the speed of
light in the dielectric
medium outside a
resonance (dark solid
trace) are shown. The
open squares (dots)
give data for a 1.96
mm (1.03 mm) thick
sample.
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This demands experimental studies of such ultra slow polaritons. To obtain a
suitable time resolution, the setup as shown in Fig. 3.4 has been extended. An electro-
optical modulator has been placed in the beam path to chop the exciting beam. The
pulses transmitted through the modulator had a Gaussian shape at a temporal width of
≈ 10 ns. To obtain time resolution on the detection side a fast photodetector connected
to a 1.5 GHz oscilloscope was used. To measure the energy dependent slowing down
of the pulse inside the sample, we take advantage of the polarization dependence of
the absorption. If the light propagates along the [110] direction (see Fig. 3.6), the
absorption is maximum for e along [001]. If the polarization points along [11̄0] the
quadrupole transition is forbidden and the light is simply transmitted. To be precise,
the [110] beam is also slowed down in the medium by a factor of

√
ε∞, but this effect

is insignificant compared to the massive reduction of vg expected for the [001]-beam.
The arrival time of the e = [11̄0] polarized pulse marks the zero delay. Then the
polarization is shifted back to e =[001] and the arrival time of this pulse is subtracted
from that of the [001]-pulse. In this time of flight measurement vg is given by vg = dS

τ
,

where τ is the delay between the pulses. Obviously, this delay crucially depends on the
excitation energy. To map vg(E) the spectral shape of the transition was first recorded
with the laser running in the energy scan modus (see chapter 3.1). Then the laser was
switched to stabilized single mode operation, where the photon energy was set to the
low energy tail of the transition. At fixed laser energy τ was measured. Then eexc

was increased by a well defined amount and τ was determined. With this procedure
of consecutively measuring the delay while step by step scanning the spectral domain,
vg(E) was determined.



3.3 Propagation of polaritons in Cu2O 33

For these studies two samples have been prepared, with dS = 1.96 mm and dS

=1.03 mm. For the range of high vg the thicker sample provides a sufficient delay of
the pulses, while at resonance the transmission through thick samples drops below the
detection threshold. To explore this range the thinner sample was investigated. The
results of such time resolved studies are given by the symbols in Fig. 3.14. In the range
of comparably high velocities, the data nicely follow the calculations.4 The closer we
get to the resonance the slower the polaritons propagate. When we finally are only 1
µeV from the resonance a group velocity of 4.5 · 104 m s−1 is measured. This means
that vg has been decreased by almost four orders of magnitude compared to c0. This
value is by more than a factor of three lower than the lowest value reported so far for
the group velocity of polaritons [80]. When getting even closer to the exciton-photon
resonance, significant deviations from the expected behavior arise. vg seems to saturate
at values well above the calculated ones.

Let us now evaluate the origin of this systematic deviation. Around ∆Eexc = 0
delays of few ns are obtained, which are smaller than the length of the exiting laser
pulses. However, the delay should increase the closer we get to the resonance, which
again should allow resolving of τ . Hence, the limited time resolution cannot cause
the saturation effect. Another issue is the spectral width of the laser pulses. With a
temporal width of 10 ns the pulses have a spectral width of at least 0.15 µeV for a
Fourier transform limited Gaussian pulse. In the range of interest vg drops by a factor
of 2 (see Fig. 3.14) in this spectral window. It means that the measured τ is averaging
over the range of group velocities covered by the pulse. In addition, the absorption
increases as we move closer to the resonance. The slower the polaritons propagate,
the less signal reaches the detector. Consequently, the weight of slower polaritons is
lowered and we measure a seemingly higher vg. Following these considerations the
saturation of vg is explained by the width of the exciting pulse and the extreme chirp
around the resonance.

At resonance polaritons from both branches propagate with the velocity of the lon-
gitudinal acoustic phonon and our experimental values are only about one order of
magnitude from this sonic limit. It can be expected that the interaction of phonons
and polaritons is strongly enhanced if both propagate at the same speed. Acousto-
optic phenomena have always been studied with photons propagating much faster than
sound. Let us, for example, look at stimulated Brillouin scattering: If the photon is
faster than the phonon phase matching between the fields constrains scattering to the
backward direction. When the group velocity of the wavepacket equals the velocity of
sound in the medium an anomalous stimulated Brillouin scattering is expected, where
the generated sound is strongest in the forward direction and vanishes in the backward
direction. Furthermore, it has not been possible to measure vg of the exciton dominated
polaritons. These polaritons couple only weakly to light, which hinders their observa-
tion. Previous studies show that the damping increases as vg decreases [61]. Hence,
these ultra slow polaritons are strongly damped, which makes their observation even

4f1S = 3.9 ·10−9 gives a good agreement with the data. This value is slightly higher than the value
reported in literature [13].
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more difficult. However, the extremely weak light-matter coupling of the quadrupole
transition and the high crystal quality should in principle allow observation of such
extremely slow polaritons. Therefore it might be rewarding to improve the experiment
in order to be able to measure even lower vg’s.

From above considerations we conclude that the current limitations can be overcome
by using spectrally sharper pulses, which in turn means losing on the time resolution
side. This should, however, be more than compensated, as the expected delays are
supposed to increase strongly in the direct vicinity of the resonance. In this case τ will
reach values of ≈ 1 µs in a 1 mm thick specimen, which permits the use of spectrally
sharp pulses. A second improvement can be done on the detection unit. In the present
experiment a simple photodiode is used. The sensitivity can be improved by several
orders of magnitude when using a fast photomultiplier. The signal to noise ratio could
also be improved by using a lock-in or differential detection scheme. Considering the
potential of such simple modifications, it seems realistic to measure group velocities
below the velocity of sound.

3.4 Wavevector dependent exchange interaction

The spin properties of excitations in semiconductors are one of the main foci of re-
search in the field of solid state physics. While nowadays most efforts concentrate on
spin phenomena in micro- and nanostructures, bulk semiconductors offer a challenging
variety of unanswered questions [81]. In this section we will study spin-spin interac-
tions and, in particular, exciton exchange interaction. It couples the spins of electron
and hole and splits excitonic levels of different total angular momenta. Taking advan-
tage of the exceptional spectral resolution, we can put the conventional description of
electron-hole exchange in solids to a test [82].

While electron-electron exchange is well understood in atomic systems, the picture
is of increased complexity for the electron-hole exchange interaction in semiconductors.
Investigations of electron-hole exchange, beginning with bulk semiconductors [83, 84],
have been extended to quantum wells [85] and, recently, also to quantum dots [86].
Coulomb interaction couples an excited electron in the conduction band to the vacant
state (hole) in the valence band. Consequently, the exciton properties are determined
by both bands, which arise from the atomic orbitals of the lattice constituents. Due
to the complexity of the semiconductor band structure difficulties in calculating the
exciton exchange microscopically arise. Attempts to describe it on a quantitative level
can hardly be found [87]. For simplicity, in higher dimensional structures exchange is
normally treated as a wavevector independent spin-spin interaction. This is in agree-
ment with the experiments reported so far. These studies, however, were performed
with modest spectral resolution of typically & 20 µeV. Spectroscopic studies of the ex-
change fine structure are often hindered as the exchange splittings are rather small. In
addition, difficulties arise from inhomogenous line broadening. Both complications can
be overcome, here. As we have seen above, the yellow 1S orthoexciton resonance is ex-
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tremely sharp and the absorption experiment introduced above allows for the spectral
resolution of lineshifts well below the µeV regime.

3.4.1 Theory

From the theory of exchange a wavevector (k) dependence of the interaction is expected.
However, typically the theoretical treatment does not go beyond the k-independent
terms, as this already provides a reasonable agreement with the data reported so far.
For our purposes such a treatment is insufficient and terms of higher order in k need to
be taken into consideration. In the following we will develop the electron-hole exchange
up to order k2.

In the most general case the exchange interaction Jex is given by the Coulomb
interaction of the two charge distributions ρ and ρ′ [83]

Jex = δk,k′

∑
R

eik·R
∫ ∫

ρ∗(r1)ρ
′(r2)dr1dr2

|r1 + r2 −R|
, (3.17)

with the lattice vectors R and the spatial vector r. The orthoexciton exchange is
determined by the interaction of the spin-singlet exciton charge distributions, which
are given by ρ(r) = e

∑
R Ψ(R)

∑
σ a(r)b(r + R)∗, whereby a(r) and b(r + R) denote

the conduction and valence band Wannier functions and
∑

σ denotes a summation over
all spin states [83]. The exchange is diagonal in k as expressed by δk,k′ , or in other
words, only charges with identical k’s interact with each other.

Introducing the Fourier transform of the charge distributions

M(k) =

∫
drρ(r) exp(−ik · r), (3.18)

the exchange integral is transformed into a sum over all reciprocal lattice vectors Ki

[83]

Jex = δk,k′
4π

Ω

∑
i

M∗(k + Ki)M′(k + Ki)

(k + Ki)2
. (3.19)

The exchange can be split into a long range (LR) and a short range (SR) fraction. The
LR exchange splitting of excitons originates from the interaction of an electron and a
hole located in different unit cells. The SR gives the interaction between an electron
and a hole in the same unit cell. First, we concentrate on the LR exchange (Ki = 0 in
Eq. 3.19) of quadrupolar excitons

JQ
ex = δk,k′

4π

Ω

M∗(k)M′(k)

k2
. (3.20)

We expand exp(−ik · r) in Eq. 3.18 into spherical harmonics Yl,m

exp−ik·r =
∞∑
l=0

m=+l∑
m=−l

4π(−i)ljl(kr)Y
∗
l,m(α, β)Yl,m(θ, φ), (3.21)
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where θ, φ are the polar angles of k and α, β those of r with respect to the x, y, z
coordinate system (cubic axes). jl(kr) is the modified Bessel functions of order l [88].

The Bessel function of order l = 2 is given by j2(kr) = (kr)2

15
+ . . . , where we neglect

higher order terms. Decomposing ρ into multipoles [89]

ρl,m =

∫
drrl

√
4π

2l + 1
Y ∗

l,mρ(r), (3.22)

we find the quadrupole moments (l = 2)

qm =

√
4π

5

∫
drr2Y ∗

2,mρ(r). (3.23)

Using the relations Eqs. 3.21 and 3.23 we find for the Fourier transform of the charge
distribution:

M(k) =

∫
drρ(r)

m=+2∑
m=−2

4π(−i)2j2(kr)Y
∗
2,m(α, β)Y2,m(θ, φ)

= −4π

15

√
5

4π
k2

m=+2∑
m=−2

√
4π

5

∫
drr2Y ∗

2,m(α, β)ρ(r)Y2,m(θ, φ)

= −
√

4π

45
k2

m=+2∑
m=−2

qmY2,m(θ, φ). (3.24)

Substituting Eq. 3.24 into Eq. 3.19 the LR quadrupole-quadrupole exchange is given
by

JQ
ex = δk,k′

16π2

45Ω
k2

2∑
m1,2=−2

q∗m1
q′m2

Y ∗
2,m1

(θ, φ)Y2,m2(θ, φ). (3.25)

To explicitly calculate the exchange, we take a look at the specific charge distribution.
For the 1S orthoexciton the spin singlet part of the Wannier functions can be written
as φc,s for the conduction and φv,yz, φv,xz, φv,xy for the valence band, with S- and D-like
character, respectively. Ortho- and paraexciton are not pure spin states, as the Γ+

7

hole states (|↑H〉, |↓H〉) are not pure hole spin states |↑h〉, |↓h〉. |↑H〉, |↓H〉 have to be
expressed as total angular momentum states:

|↑H〉 = − 1√
3
[φv,xy |↑h〉+ (φv,yz + iφv,zx) |↓h〉],

|↓H〉 = − 1√
3
[−φv,xy |↓h〉+ (φv,yz − iφv,zx) |↑h〉]. (3.26)

Together with the electron states (|↑e〉, |↓e〉) we can construct four exciton basis states

|↑e, ↑H〉 = −1√
3
φc,s[φv,xy |↑e, ↑h〉+ φv,yz |↑e, ↓h〉+ iφv,zx |↑e, ↓h〉],

|↑e, ↓H〉 = 1√
3
φc,s[φv,xy |↑e, ↓h〉 − φv,yz |↑e, ↑h〉+ iφv,zx |↑e, ↑h〉],

|↓e, ↑H〉 = −1√
3
φc,s[φv,xy |↓e, ↑h〉+ φv,yz |↓e, ↓h〉+ iφv,zx |↓e, ↓h〉],

|↓e, ↓H〉 = 1√
3
φc,s[φv,xy |↓e, ↓h〉 − φv,yz |↓e, ↑h〉+ iφv,zx |↓e, ↑h〉].
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By coupling the spins of electron and hole we get a singlet | S〉 and three triplets | T+1〉,
| T−1〉, and | T0〉 states:

| S〉 = 1√
2
(|↑e, ↓h〉− |↓e, ↑h〉),

| T0〉 = 1√
2
(|↑e, ↓h〉+ |↓e, ↑h〉),

| T−1〉 = |↓e, ↓h〉,
| T+1〉 = |↑e, ↑h〉. (3.27)

The four 1S exciton states in the momentum basis are given by

| J = 0, Jz = 0〉 = 1√
2
(|↑e, ↓H〉− |↓e, ↑H〉),

| J = 1, Jz = 0〉 = 1√
2
(|↑e, ↓H〉+ |↓e, ↑H〉),

| J = 1, Jz = −1〉 = |↓e, ↓H〉,
| J = 1, Jz = 1〉 = |↑e, ↑H〉, (3.28)

where the J = 0 state is the paraexciton and the J = 1 states describe the orthoex-
citons. For convenience we will treat the exchange interaction not in the momen-
tum basis, but in the cartesian basis Γ+

5,xy,Γ
+
5,yz,Γ

+
5,zx with the orthoexciton states

| Oyz〉, | Ozx〉, | Oxy〉 plus the Γ+
2 paraexciton state | P 〉 where the exciton states are

written as

| P 〉 = | J = 0, Jz = 0〉
= 1√

2
(|↑e, ↓H〉− |↓e, ↑H〉),

| Oxy〉 = | J = 1, Jz = 0〉
= 1√

2
(|↑e, ↓H〉+ |↓e, ↑H〉),

| Oyz〉 = −1√
2
(| J = 1, Jz = 1〉− | J = 1, Jz = −1〉)

= −1√
2
(|↑e, ↑H〉− |↓e, ↓H〉),

| Ozx〉 = i√
2
(| J = 1, Jz = 1〉+ | J = 1, Jz = −1〉)

= i√
2
(|↑e, ↑H〉+ |↓e, ↓H〉), (3.29)

or using the singlet-triplet notation the exciton states can be written as

| P 〉 = 1√
6
φc,s[φv,xy

√
2 | T0〉+ φv,yz(| T−1〉− | T+1〉) + iφv,zx(| T−1〉+ | T+1〉)],

| Oxy〉 = −1√
6
φc,s[φv,xy(−

√
2 | S〉) + φv,yz(| T+1〉+ | T−1〉)− iφv,zx(| T+1〉− | T−1〉)],

| Oyz〉 = 1√
6
φc,s[φv,xy(| T+1〉+ | T−1〉) + iφv,yz

√
2 | S〉+ φv,zx

√
2 | T0〉],

| Ozx〉 = −i√
6
φc,s[φv,xy(| T+1〉− | T−1〉) + φv,yz

√
2 | T0〉+ iφv,zx

√
2 | S〉]. (3.30)

After having put up a basis, we can now use the wavefunctions to calculate the ex-
change. As electron-hole exchange interaction affects states with opposite spin, only
the singlet | S〉 terms contribute to the exchange interaction. Or, more mathematically,
the sum over the spin configurations leads to vanishing ρ and hence the exchange for
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the spin triplet terms vanishes [83]. Looking at Eq. 3.30 we find that the paraexciton
| P 〉 is a pure triplet state and therefore does not contribute to the exchange. The
quadrupole moments in the cartesian Γ+

5 basis can now be calculated from the singlet
fractions of the wavefunctions with the singlet charge densities

ρP (r) = 0,

ρxy(r) = e

√
2

6
φc,sφv,xy,

ρyz(r) = e

√
2

6
φc,sφv,yz,

ρzx(r) = e

√
2

6
φc,sφv,zx. (3.31)

The valence band Wannier functions can be written as

φv,xy = d(r) sin2 θ cosφ sinφ = d(r)(Y2,2 − Y2,−2)/2i,

φv,yz = d(r) sin θ cos θ sinφ = d(r)(Y2,1 − Y2,−1)/2i,

φv,zx = d(r) sin θ cos θ cosφ = d(r)(Y2,1 + Y2,−1)/2. (3.32)

Plugging Eqs. 3.31 and 3.32 into Eq. 3.23 and using the orthogonality relation of
the spherical harmonics, one sees that φv,zx, φv,yz contribute only to q1 and q−1, while
φv,xy contributes to q2 and q−2. q0 is always equal to zero. Calculating the quadrupole
moments and decomposing it into the contributions from the basis states | Oyz〉, | Ozx〉, |
Oxy〉 we find

q−2

q−1

q0
q+1

q+2

 = C0



−i
0
0
0
i


|Oxy〉

+


0
−i
0
i

0


|Oyz〉

+


0
1
0
1
0


|Ozx〉

 . (3.33)

The amplitude of the transition quadrupole is given by

e

∫ ∞

0

r4φc,s(r)d(r)dr. (3.34)

Together with all other constant prefactors it has been included in C0. We now express
the LR exchange in matrix form in the basis of | Oyz〉, | Ozx〉 and | Oxy〉. Each element
(JQ

ex (ij,i’j’); (ij=xy,yz,zx)) of the matrix representation of JQ
ex can be calculated as

JQ
ex((ij, i

′j′)) = δk,k′
16π2

45Ω
k2

2∑
m1,2=−2

(q∗m1
)ij(q

′
m2

)i′j′Y
∗
2,m1

(θ, φ)Y2,m2(θ, φ), (3.35)

which gives the matrix representation of the exchange

JQ
ex ∼ sin(θ)2 ·

 (cos θ sinφ)2 cos θ2 cosφ sinφ sin θ cos θ cosφ sinφ2

cos θ2 cosφ sinφ (cos θ cosφ)2 sin θ cos θ cosφ2 sinφ
sin θ cos θ cosφ sinφ2 sin θ cos θ cosφ2 sinφ (sin θ cosφ sinφ)2

 ,
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or in terms of k and introducing the constant LR quadrupole-quadrupole exchange
parameter ∆Q

JQ
ex = ∆Q ·

1

k2

 k2
zk

2
y k2

zkxky k2
ykzkx

k2
zkxky k2

zk
2
x k2

xkykz

k2
ykzkx k2

xkykz k2
xk

2
y

 . (3.36)

In contrast to dipole excitons, the LR part of the quadrupole-quadrupole exchange
scales as k2 and is analytic at k = 0. The first attempt to calculate the quadrupolar
exchange interaction was recently done by Moskalenko et al. [90]. In their treatment
the quadrupolar interaction between the exciton states was given as an effective dipole-
dipole interaction, but did not take the off-diagonal interaction matrix elements into
account. As these are of the same magnitude as the diagonal terms, their treatment is
an unjustified oversimplification.

We now turn to the derivation of the SR exchange. The ki 6= 0 terms of Eq.
3.19 give the SR exchange, which we expand into orders of k and treat each order
by the method of invariants [83, 91]. The Hamiltonian has to be invariant under the
operations of the cubic group and has to retain its scalar form. The well-known k-
independent SR contribution splits the orthoexcitons from the paraexciton by ∆0=12
meV [48], but leaves the orthoexcitons degenerate. The next higher-order term would
scale linearly with k, but vanishes due to the inversion symmetry of the lattice. The
SR exchange of order k2 gives non-vanishing contributions: The electron and hole spin
operators (Je, Jh) transform as Γ+

4 , while k is a polar vector and transforms as Γ−4 .
The direct product of the spin operators and k · k terms is decomposed into invariant
representations as follows:

Γ+
4 ⊗ Γ+

4 = Γ+
1 ⊕ Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 ,

Γ−4 ⊗ Γ−4 = Γ+
1 ⊕ Γ+

3 ⊕ Γ+
4 ⊕ Γ+

5 . (3.37)

Consequently, the SR exchange is given by representations of Γ+
1 , Γ+

3 , Γ+
4 , and Γ+

5 [46].
Now the total exchange Hamiltonian can be split into invariant representations (Hi) of
symmetry Γ+

i . As the representations are linearly independent, each component scales
with the constant exchange parameter ∆i. Each exchange representation is formed by
the electron and hole spin operators and contributions of k · k type.

The exchange Hamiltonian of Γ+
1 symmetry is given by

H1 ∼ (Je · Jh)(k · k). (3.38)

Using the wavefunctions of Eq. 3.30 we can calculate the matrix elements of the SR
exchange contribution in the orthoexciton basis (〈Oij|H1|Oi′j′〉). After lengthy algebra
(see appendix) we find the matrix representation of the Γ+

1 electron-hole exchange
energy

J1 = ∆1 ·

 k2
x + k2

y + k2
z 0 0

0 k2
x + k2

y + k2
z 0

0 0 k2
x + k2

y + k2
z

 = ∆1k
2 · 1. (3.39)
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J1 is proportional to the identity matrix and causes identical spectral shifts for all three
orthoexciton states. Since J1 scales as k2 it contributes to the spatial dispersion where
it can be interpreted as a correction to the effective mass. As ∆1 cannot be determined
independently in the current experiment. It will be included in the energy E0 of the
degenerate orthoexciton states.

The Hamiltonian of Γ+
3 symmetry is given by

H3 ∼ 1
6
(Je · Jh − 3Je,zJh,z)(k · k− 3k2

z) + 1
2
(Je,xJh,x − Je,yJh,y)(k

2
x − k2

y), (3.40)

with the matrix representation

J3 = ∆3 ·

 2k2
x − k2

y − k2
z 0 0

0 2k2
y − k2

x − k2
z 0

0 0 2k2
z − k2

x − k2
y

 . (3.41)

Again, all off-diagonal elements vanish and no mixing of the basis states occurres.
However, the discriminative k-dependence of the diagonal elements should give rise to
a fine structure. This will allow to determine the magnitude of the J3 contribution
(∆3).

The Γ+
4 electron-hole exchange is given by

H4 ∼ [ (Je,yJh,z − Je,zJh,y) (kykz − kzky)

+(Je,zJh,x − Je,xJh,z) (kzkx − kxkz)

+(Je,xJh,y − Je,yJh,x) (kxky − kykx)] = 0. (3.42)

Obviously, this term vanishes, which finally leaves the contribution of Γ+
5 symmetry

H5 ∼ (Je,yJh,z + Je,zJh,y) (kykz)

+(Je,zJh,x + Je,xJh,z) (kzkx)

+(Je,xJh,y + Je,yJh,x) (kxky), (3.43)

with the matrix form

J5 = ∆5 ·

 0 kxky kxkz

kxky 0 kykz

kxkz kykz 0

 . (3.44)

J5 has only off-diagonal terms. As for the long-range term (Eq. 3.36), a k-dependent
mixing of the orthoexciton states is also expected. Summarizing: we have derived
three terms of order k2, that can give rise to an orthoexciton fine structure: the LR
quadrupole interaction Jex

Q , and the SR contributions J3, J5, where the absolute split-
tings are determined by the exchange parameters ∆Q, ∆3, and ∆5, which remain to be
determined.

For high symmetry k’s (see Fig. 3.15) the matrices 3.36, 3.41, and 3.44 can be
diagonalized analytically. The new eigenstates are linear combinations of |Oxy〉, |Oyz〉,
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Figure 3.15: Energy level diagram of the exciton fine structure. E0 gives the orthoex-
citon energy including the exchange shifts ∆0 and ∆1. Panels (a), (b), and (c) give the
energy schemes for k = [1̄10], [001], and [111], respectively (∆Q = 5 µeV, ∆3 = - 1.3
µeV, ∆5 = 2 µeV ).

and |Ozx〉. For k along [1̄10] exchange should lift the degeneracy of the orthoexcitons
and three separate lines are expected (Fig. 3.15 (a)), where the E2 − E1 splitting
directly gives ∆5. For k along [001] there is no contribution from Jex and J5. One thus
expects a doubly degenerate level E1,2 and a single level E3 with a total splitting of
3∆3. In the [111] direction we expect to find a degenerate low energy state besides a
single high energy level.

3.4.2 Experiment

The k-dependence of the exchange can be investigated experimentally in an absorption
experiment, where the laser beam propagating along k directly probes the correspond-
ing fine structure. Rotating the samples around the vertical axis by an angle ϕ′ gives
access to intermediate k-directions (see Fig. 3.6). The dependence of the orthoexciton
energies E1, E2, and E3 on ϕ (angle inside the sample) could thus be measured. The
k-dependence of the exchange has not been resolved in experiments with limited spec-
tral resolution (& 20 µeV). Thus the splittings are expected to be not larger than few
µeV. Again, special care was taken to insure a strain free mounting in the helium bath
cryostat (T = 1.4 K).

The exchange at k along [1̄10] is investigated in the experiments presented in Fig.
3.16, where the left panels show the expected transition amplitudes for ϕ = 0 (a)
and ϕ = 4◦ (b) (rotation around the [111]-axis). Calculating |QA2|2 at k along [1̄10]
(ϕ = 0) shows that for ψ = −36◦ (e(−36◦) = [001̄]) the transition E2 is maximally
allowed (Fig. 3.16 (a)). In the corresponding experiment, given by the full line in
Fig. 3.16 (c) one indeed finds a strong absorption. For ψ = +54◦ (e(54◦) = [110])
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Figure 3.16: (a) Calculated intensities |QA1|2, |QA3|2 (triangles), and |QA2|2 (full line)
as a function of ψ for ϕ = 0. k is along [1̄10] and for ψ = 0 the polarization vector e(ψ)
points along [112̄]. (b) Calculated intensities |QA2|2 (full line), |QA1|2 (open dots) and
|QA3|2 (full dots) as a function of ψ for ϕ = 4◦. Note the different scales for |QA1|2,
|QA3|2 (right axis) and |QA2|2 (left axis). (c) Transmission spectra of a 4 mm thick
crystal. The full line and the triangles show the transmission spectra for ψ = -36◦ (e
= [001̄]) and ψ = 54◦ (e = [110]), respectively. The spectrum for ψ = 54◦ and ϕ = 4◦

(rotation around [111]-axis) is shown by open dots (E1 resonance in Fig. 3.15 (a)) and
full dots (E3 resonance in Fig. 3.15 (a)).

the E2 transition is forbidden, as confirmed by the experiment (triangles in Fig. 3.16
(c)). The transitions E1 and E3 are forbidden for all ψ (triangles in Fig. 3.16 (a)). No
absorption is found in the entire spectral range investigated for ψ = +54◦ (e = [110]).
This confirms the calculations of panel (a) and demonstrates the high crystallographic
quality of the sample and the absence of symmetry breaking perturbations. The picture
changes drastically if the sample is tilted slightly from ϕ = 0◦ to ϕ = 4◦, where k no
longer points exactly along [1̄10]. In this case the strong quadrupole absorption is again
found for ψ = -36◦. For ϕ 6= 0 and ψ = +54◦, however, E1 and E3 should become
weakly allowed (|QA|2 6= 0), while E2 remains forbidden (Fig. 3.16 (b)). This might
allow for the observation of the predicted fine structure. The dots in Fig. 3.16 (c) show
the results of the corresponding experiment and we indeed observe the E1−E3 doublet
with a splitting of 4.0 µeV. Both lines are extremely narrow with a width . 1 µeV.
Apparently the degeneracy of the orthoexciton has been lifted. Besides the spectral
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Figure 3.17: E1, E2, E3 as
a function of ϕ for 4 mm
thick samples. Dots mark
the experimental data. Full
lines give the calculated val-
ues. (a) For ϕ= 0, k is along
[001]. ϕ describes a rotation
around the [11̄0]-axis. (b)
For ϕ= 0, k is along [1̄10]. ϕ
describes a rotation around
the [111] axis.

signatures, we observe that the E1 absorption is smaller than the E2 absorption, as
predicted by calculations (Fig. 3.16 (b)).

Having demonstrated qualitative agreement between theory and experiment, we
proceed with the quantitative analysis of the three exchange parameters ∆Q, ∆3, and
∆5. For k along [001] the fine structure is only determined by J3, which gives us the
chance to measure ∆3 independently. We expect two lines (E1,2 and E2) (Fig. 3.15
(b)) split by 3∆3. Indeed, this fine structure is observed in the experiment (Fig. 3.17
(a)). The levels E1,2 and E3 are distinguished by analyzing |QA1,2|2 and |QA3|2 as a
function of ψ, which allows us to determine the sign of ∆3= -1.3 µeV. In the angular
range investigated no significant line shifts are expected and the degeneracy of E1 and
E2 is only slightly lifted, which is masked by their spectral widths. For the sample
orientation of Fig. 3.16 E1, E2 and E3 are shown as a function of ϕ in Fig. 3.17
(b). E2 − E1 gives directly ∆5 = 2 µeV. Finally, ∆Q = 5 µeV is determined from
E3. These parameters also give the correct relative line positions, when comparing
the absolute energies obtained for k along [001] to those for k along [1̄10]. The direct
comparison of two measurements is non trivial, as the absolute laser energy is not
known with sufficient accuracy. Therefore, the experiments were performed with two
samples mounted in the cryostat. While keeping the laser locked on one mode, two
consecutive measurements were performed on both samples which allows comparison
of the relative energies of the absorption lines. Typically, the sample shown in Fig.
3.16 with the characteristic E1-E3 doublet was taken as spectral reference.
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Figure 3.18: Transmis-
sion spectra for ϕ =
−9◦ (a), 0 (b), and +9◦

(c), where the sample
(dS = 85 µm) was ro-
tated around the [112̄]
axis and k is along [111]
at ϕ = 0. (d) E1, E2,
and E3 versus ϕ. Full
dots give the data, while
full lines mark the the-
ory.

-20 -15 -10 -5 0 5 10 15 20

-3

0

3

6

-2 0 2 4-2 0 2 4

0.0

0.5

1.0
-2 0 2 4

E
-E

0 (
µe

V
)

ϕ (o)

E1

E2

E3

tra
ns

m
is

si
on

(d)

 

 

 

 

 

 

  

 E-E0 (µeV)

(c)(b)(a)

ϕ = + 9oϕ = 0o

 

 

ϕ = -9o

 

 

Now all exchange parameters haven been evaluated at k’s of high symmetry. Ac-
cording to theory, these exchange parameters should apply for any arbitrary k. Hence,
the crucial test for our description is done by measuring the exchange fine structure for
lower symmetry k’s. As a test of consistency we present data for k along [111] (Fig.
3.18). According to Fig. 3.15 (c) we expect for ϕ → 0 a degenerate level E1,2 plus a
high energy state E3, where |QA3|2 should be much weaker than |QA1,2|2. Looking at
the experimental data in Fig. 3.18 (b), we find the pronounced E1,2 absorption plus a
weak line (E3) at higher energy. The degeneracy of E1 and E2 should be lifted for ϕ 6=
0. In agreement with theory E1,2 splits into a doublet at ϕ ±9◦ (Fig. 3.18 (a) and (c)).
Also the asymmetric changes in |QA3|2 coincide with the theoretical treatment. In
panel (d) E1, E2, and E3 are shown versus ϕ. The E1−E2 splitting increases with |ϕ|,
while E3 shows only slight shifts. The fine structure is modelled (full lines) using the
parameters obtained above. Obviously, ∆Q, ∆3, and ∆5 allow a consistent description
for these k-directions. In samples of dS > 1 mm lines of large |QA|2 become rather
broad. This hinders the precise quantitative evaluation of the fine structure (see e.g.
error bar for E2 in Fig. 3.17 (b)). To overcome this broadening a thin sample (ds =
30 µm) had to be employed, which permits resolving the E1 − E2 splitting (Fig. 3.18
(a) and (c)).
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Figure 3.19: Transmission spec-
tra for ϕ = 4◦ (rotation around
the [111] axis) and ψ = 54◦ (close
to e = [110]). The spectra
are recorded for excitation in the
sample center (solid line) and ex-
citation close to the edge of the
sample (dotted line).

3.4.3 Impact of strain

The degeneracy of the orthoexcitons could also be lifted by perturbations, such as
strain[30, 29]. Considering the energy scales we are dealing with, even slightest strain
of the order of 1 · 103 N m−2 can cause a notable effect. Two sources of strain have
to be taken into account. First, external strain originating from the sample mounting.
Our sample holders (see section 3.1) exclude this source. Second, the crystal itself
can also be intrinsically strained. Such stress can originate from imperfections in
the lattice structure, cutting and polishing during the sample preparation, or thermal
stress. These issues were examined with great care. For example, to avoid thermal
stress the samples were slowly cooled down to 2 K, were the temperature was lowered
from room temperature to ≈ 100 K within ≈ 10 h. In addition, the annealing procedure
as described in section 3.1 was applied to samples which showed signatures of strain.
Despite these efforts we cannot completely exclude strain. In the following we will
evaluate to which extent this can explain our experimental findings [92].

Let us first focus on cube shaped samples with extensions of ≈ 4 mm. Because of
the relatively large size of the specimen, an inhomogeneous strain distribution across
the sample is expected. The central parts should be less affected by strain than the
outer sections of the cube, where cutting and polishing can give rise to an increased
stress. Hence, a strain induced fine structure should depend on the sample section
being probed.

To clarify this issue the experiment of Fig. 3.16 was repeated for illumination of
the specimen in the sample center (solid line) and close to the sample edge (dotted
line) in Fig. 3.19. Otherwise the experimental conditions are identical to those for
the data given by the dots in Fig. 3.16. In both spectra two lines with a splitting of
≈ 4 µeV are found. The comparison of the spectra shows that the spectral shifts of
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E1 and E3 are insignificant when compared to the splitting. Additional spectra were
recorded covering the entire surface area of the sample and the fine structure remained
more or less the same. This indicates that the fine structure cannot be interpreted as
being stress induced. A second argument along these lines is the following: In a thick
sample a rather large volume of the specimen is probed, even with a focused beam.
Thus, inhomogeneous strain would give rise to an inhomogeneous broadening of the
lines. However, for the laser beam passing through the sample center the lines remain
extremely narrow (FWHM ≤ 1 µeV) and Lorentzian in shape. For the beam travelling
along the edge of the sample, the line shape of E3 deviates from a Lorentzian. The
shoulder on the high energy side might arise from a strained section of the sample. The
data show that slight stress can be found in the surface regions of the sample. However,
this does not have a significant impact on the fine structure and can be disregarded
when the laser strikes the center of a thick sample. The situation is more complex

200 µm

a b
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m

p
le

e
d
g
e

Figure 3.20: Microscopic pictures of two slab shaped samples. The specimens were
positioned between two crossed polarizers. Hence, bright areas indicate where the
sample is stressed. The bright white line is the sample edge. The dark areas in the
upper right corners give a reference without sample. Both samples are about 100 µm
thick.

for thin samples of ds < 1 mm. For such slab shaped samples surface effects gain
importance and stress induced perturbations can no longer be disregarded a priori.
Each sample has to be examined carefully. A first impression can be obtained via
polarization microscopy: The crystal is placed between two crossed polarizers. In a
strain free sample, the polarization of the transmitted light is unchanged and the light
is blocked by the second polarizer. If the crystal is strained, it acts as a birefringent
material. The transmitted light becomes elliptically polarized and thus some light
passes through the second polarizer. In Fig. 3.20 sections of two samples are shown.
For the sample on the left we find clear signatures of strain, which is inhomogeneous
across the specimen. The picture on the right shows a weakly strained sample (the
bright spots arise from dirt particles). Although it is rather homogenous, weak traces
of strain can still be found. Such tests are only preliminary. Even if a crystal appears
to be perfectly strain free in the polarization microscope, it does not mean that it
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is free of strain. High resolution spectroscopy provides a much more sensitive tool.
Therefore each sample is tested for homogeneity by probing various sections of the
specimen. Only if the spectral positions of the exciton resonances do not depend on
the sample section being probed and agree with those measured on thick crystals, is
the sample is suited for our purposes, even though this still does not prove that the it
is absolutely unstrained. It only shows that the strain induced perturbation is of the
same magnitude as the k2 exchange and homogenous across the crystal.

As we still cannot exclude this perturbation we have to clarify how such residual
strain affects the orthoexciton fine structure. The impact of strain can be approached
by symmetry considerations: The strain tensors possess the same symmetry as the
SR k2-exchange terms. Therefore the effect of strain on | Oxy〉, | Oyz〉, and | Ozx〉 is
described by the same types of symmetry operators as given in equations 3.39 to 3.44.

Replacing kx,y,z by the corresponding elements of the strain tensor
↔
ε we find:

S1 = δ1 ·

 εxx + εyy + εzz 0 0
0 εxx + εyy + εzz 0
0 0 εxx + εyy + εzz

 , (3.45)

S3 = δ3 ·

 2ε2xx − ε2yy − ε2zz 0 0
0 2ε2yy − ε2xx − ε2zz 0
0 0 2ε2zz − ε2xx − ε2yy

 , (3.46)

S4 = 0; S5 = δ5 ·

 0 εxy εzx

εyx 0 εyz

εxz εyz 0

 , (3.47)

where εij is an element of the strain tensor. Hence, the stress can be quantified by
three parameters δ1, δ3, and δ5, where S1 simply shifts all three states and S3 and S5

give rise to a splitting. With the tensor

↔
ε=

 1
2

1
2

1
2

1
2

1
2

0
1
2

0 1

 (3.48)

we can now model the strain induced effects quantitatively. Strain induced shifts can
be discriminated from exchange as they are fixed to the lattice and hence depend only
on the orientation of the crystalline axes, but not on k. Therefore, when turning the
crystal one would not expect any dependence of the energy levels on ϕ for stain induced
effects.

In Fig. 3.21 the spectral positions of the orthoexciton resonances are studied vs. ϕ
with k = [111](ϕ = 0) and rotation around [112̄]. The experimental data are given by
the dots in both panels. In panel (a) the exchange splittings according to the parameter
set obtained on unstrained (dS = 4 mm) samples are shown (solid traces). Apparently
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the calculations do not match the data, as the E1,2-E3 splitting is by a factor of two
too large in the experiment. The experiments also show an asymmetry with respect to
ϕ = 0. The data seem to be shifted towards lower angles by about 2◦. Nevertheless, we
find the qualitative structure as known from Fig. 3.18. In panel (b) the calculations
include strain of Γ+

3 and Γ+
5 type, while the exchange parameters remain unaltered.

When subtracting the exchange induced shifts, we end up with constant energy levels
(dashed lines in Fig. 3.21 (b)), while the sum of strain and k2 exchange gives a good
description of the data (solid lines in Fig. 3.21 (b)). As evident from this modelling,
the ϕ (k) dependence solely arises from exchange, while the increased splittings arise
from residual strain. Most convincingly, the k dependence is very well described by
the set of exchange parameters established above. The inclusion of strain also gives
the explanation for the shift towards lower ϕ observed in the data. It simply originates
from the strain offsets on E1 and E2. In total the strain induced shifts are about as
large as the exchange induced ones.
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Figure 3.21: Dispersion of the orthoexciton resonances vs. ϕ (rotation around the [112̄]
axis) measured on a 30 µm thick Cu2O slab (k ≈ [111]). The experimental data are
given by open squares. In panel (a) calculations based on the parameters ∆Q= 5 µeV,
∆5= 2 µeV and ∆3= - 1.3 µeV are plotted. In panel (b) the calculations also include
strain of Γ+

3 (δ3 = - 1.4 µeV) and Γ+
5 (δ5 = - 2.1 µeV) type, keeping the exchange

parameters fixed. The dashed lines give the strain offsets.

As a final test for the analysis of k2 exchange, we proceed with a k direction of even
lower symmetry. For this crucial experiment we have chosen a crystal with k along
[112̄] at ϕ = 0. The experimental findings are shown in Fig. 3.22, where the left panel
shows E1, E2, and E3 versus ϕ and the right panel gives the corresponding |QA|2 for
each level. Including slight strain offsets again gives a good agreement between theory
and experiment. Especially the characteristic k dependence is well described by the
same exchange parameters. As the exchange parameters determine the mixing between
|Oxy〉, |Oyz〉, and |Ozx〉, they also have impact on the quadrupole amplitudes of the
transitions. The calculated values deviate slightly from the measured ones. Despite
these discrepancies, qualitative agreement is found.
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Figure 3.22: (a) Dispersion of the orthoexciton resonances as a function of ϕ for a
slightly strained sample (dS = 95 µm, k along [112̄] at ϕ = 0, axis of rotation [1̄10]).
The experimental data are given by the symbols. Calculations based on the parameters
∆Q= 5 µeV, ∆5= 2 µeV and ∆3= -1.3 µeV are plotted (solid traces). The calculations
also include strain of Γ+

3 (δ3 = 0.7 µeV) and Γ+
5 (δ5 = 1.0 µeV) type. The strain offsets

are given by the dotted lines. (b) |QAi|2’s of the quadrupole transitions, where symbols
give experimental data (the symbols in panel (b) correspond to the one in panel (a)),
while the solid traces give the calculated |QA|’s. e is along [111] ([1̄10]) for the solid
(open) symbols.

Concluding this section, we have derived and demonstrated k2-dependent exchange
interaction of excitons. For the yellow 1S orthoexcitons in Cu2O the exchange param-
eters ∆Q = 5 ± 1.5 µeV, ∆3 = -1.3 ± 0.2 µeV and ∆5 = 2 ± 0.3 µeV are obtained,
where the errors are estimated by evaluating a series of experiments performed on
crystals of various thicknesses and orientations. The k2 dependent exchange can also
be interpreted as an anisotropic effective mass. The magnitude of this mass is of the
same order as the effective mass derived from the spatial dispersion. In addition to
the corrections due to ∆Q, ∆3, and ∆5, which are direction dependent, we predict an
isotropic correction due to ∆1, which is expected to be of the same magnitude as the
other exchange parameters. Naturally these contributions have been disregarded so
far. Possibly these findings might help to explain the discrepancies found in measure-
ments of the effective mass of the 1S orthoexciton. The exchange parameters apply
only for this specific exciton transition, however the k2 exchange is a fundamental
property of spins in solids. Even though this effect has not been observed before, it
should be present for every exciton transition in bulk solids. The theoretical approach
presented here is a semi empirical analysis and the exchange parameters are only ac-
cessible experimentally. A microscopic calculation of the higher order exchange terms
can be rewarding, as it also determines the magnitude of these exchange parameters.
However, considering the complexity of such calculations and experiences with earlier
microscopic descriptions of exchange, a quantitative agreement between theory and
experiment is not expected.
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3.5 High density effects

The studies presented above were performed in the low density regime. In this chapter
we will investigate phenomena appearing at high excitation densities. Ground state ex-
citons represent the lowest electronic transition in a nonmetallic crystal. This motivates
studies at high carrier densities, as further relaxation is suppressed. When increasing
the exciton density inter-particle interactions gain importance. A well-known example
is the formation of an exciton molecule (biexciton). A second example is the formation
of an electron-hole liquid [4], where the excitons form a new collective phase. In Cu2O
the situation is different. The formation of a biexciton [93], as well as the formation
of an electron-hole liquid are inhibited as electron-hole exchange compensates the at-
tractive exciton-exciton interaction. This makes Cu2O an interesting candidate for
the study of excitons at high densities. This interest is increased further by the facts
that these excitons have a small Bohr radius (see chapter 3). Hence, the Mott density,
where excitons transform into an electron-hole plasma, is extremely high. Furthermore,
the lowest exciton states show long lifetimes, as they are dipole forbidden. The initial
question was whether the ortho- and paraexciton at high densities can be described by
Bose-Einstein statistics. After this was successfully demonstrated [94], studies focused
on the demonstration of BEC of excitons [32, 95]. Here studies concentrated on the
paraexciton [36, 34]. Despite tremendous effort no conclusive demonstration of BEC
of para- nor orthoexcitons has been reported.

The appeal of BEC of excitons lies in the high critical temperatures, which can
reach 10 K and above for realistic carrier densities, as compared to 50 nK required for
alkali atoms. This advantage is due to the small mass of excitons. In contrast to ions,
excitons do not carry a nucleus, which reduces the mass by 5 orders of magnitude.
The major obstacle to the creation of high 1S exciton densities in Cu2O is the weak
oscillator strength of these transitions, orders of magnitude lower than that of dipole
excitons. Therefore a direct optical excitation is inefficient for resonant excitation.
Typically, the excitation was done by resonantly pumping a phonon side band or using
non resonant ns pulses from Ar+ lasers at E = 2.41 eV. An alterative is a two-photon
absorption experiment [51, 96, 97, 98, 41].

In the previous sections, we have seen that our high resolution absorption experi-
ment gives access to the yellow 1S orthoexciton state. As we can tune the laser energy
precisely to the orthoexciton resonance, a significant fraction of the laser power can
be absorbed even in crystals of dS = 100 µm. In Fig. 3.23 (left panel) the absorption
spectrum is shown for increasing excitation powers (top to bottom). At low Pexc we
find the well-known sharp symmetric line. With increasing Pexc the absorption shifts
towards lower energies and becomes asymmetric. While the low energy side becomes
more and more steep, the high energy side transforms into a rather flat tail. Increasing
the power further we find a step-like onset of the absorption followed by a more and
more flat tail. Even though the absolute peak of the absorption decreases as Pexc in-
creases, the spectrally integrated absorption remains constant within the experimental
accuracy. We note that these experiments were performed in helium gas at T ≈ 2 K.
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When repeating the same experiment with the sample immersed in liquid helium these
features can not be observed. At high Pexc density fluctuations in the liquid helium at
the helium-sample interface give rise to diffuse diffraction of the beam. This obscures
the line shape of the absorption resonance.
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Figure 3.23: Left: Absorption spectrum for various Pexc (k along [111], ds = 30 µm).
From top to bottom Pexc has been increased. For clarity the spectra have been shifted
vertically. Right: Absorption spectrum for Pexc = 35 mW. Inset: closeup of the spike.
Symbols mark the data points. All spectra were recorded at T ≈ 2 K in helium gas.

Looking closely at the high density spectra a sharp spike at the low energy edge
of the absorption resonance is seen. In the right panel of Fig. 3.23 we take a closer
look at the peculiar absorption line shape at higher Pexc. We find an abrupt absorption
onset and the extremely sharp line that changes over into a tail of constantly decreasing
absorption. This tail extends over a range of ≈ 10 µeV. In the inset of Fig. 3.23 a close
up of the absorption onset is shown. On this energy scale we see that the absorption
onset coming from the low energy side is smooth at first and becomes extremely steep
close to the absorption maximum. On the high energy side a reverse behavior is
found. While the absorption drops quickly at first, it changes over into the decay tail
described above. Deriving a linewidth from the low energy flank of the spike a FWHM
of 15 neV is found! This is about two orders of magnitude lower than any exciton
linewidth reported so far. This exciting observation raises several questions: Is it at
all feasible to interpret the absorption spectrum in this fashion? Can experimental
artefacts be excluded? What is the physical origin of the red shift, the high energy tail
and, especially, what gives rise to such a spectrally narrow absorption feature?

This experiment has been repeated for various samples with different orientations.
Different states of the exchange fine structure have also been investigated (see chapter
3.4) and in all thin samples similar features are found. The reproducibility of the effect
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Figure 3.24: Absorption
spectra for various temper-
atures under high power
excitation (k along [11̄0],
ds = 54 µm, Pexc = 73
mW). In the left panel the
spectra have been shifted
vertically for clarity. In
the right panels the spectra
have been shifted spectrally.
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shows that this is not an experimental artefact. Furthermore, repeating the experiment
with a slower energy scan or with a wider scan range not influence the outcome. Hence,
we conclude that the experiments indeed give the absorption spectrum of the sample at
high exciton densities. It should be noted that the laser energy was scanned from low
to high energy. Coming from the high energy side a similar effect is observed, however
the spike is not found.

To obtain further insight we have investigated the temperature dependence of the
effect (Fig. 3.24. Under intense excitation the temperature has been increased from
T = 5 K to T = 18 K. In the left panel the relative spectral positions are to scale.
The right panels cover the same relative spectral range, but the absolute line positions
are not to scale.5 Comparing Fig. 3.24 to Fig. 3.13 we find the same thermal line
shift under high and low power excitation. In Fig. 3.23 we found a total line shift of
-6.5 µeV from the lowest to the highest excitation powers. This would correspond to
a temperature increase of ≈ 1.5 K. Hence, the red shift with increasing Pexc could be
explained by a slight heating of the sample, but we cannot exclude additional mech-
anisms which will be discussed below. More strikingly, the characteristic absorption
edge is not only found at the lowest temperatures, but can also be observed even for
T = 20 K. Though the absorption edge becomes less pronounced at high T and no
spike is found the line shape is still observed.

5As a temperature change of 2 K already shifts the line out of the spectral range covered by one
energy scan, keeping track of the relative spectral positions of the spectra is difficult.
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The sharp cutoff at the low energy flank of the absorption with increasing power
density might indicate the transition from a Maxwell-Boltzmann type of thermal carrier
distribution to a Bose-Einstein-like energy distribution. So far only indirect evidence
of this changeover was found by analyzing the line shape of the ortho- and paraexciton
phonon lines [35, 33, 36]. The line shape of the phonon directly reflects the energy
distribution of the corresponding exciton state. Here we can take the direct way. Let
us assume that the carriers are weakly interacting which is justified, as we are still well
below the Mott density. As excitons have integer spin we can describe their kinetic
energy distribution ζ by Bose-Einstein statistics:

ζ(Ekin, µ) =
1

e
Ekin−µ

kBT − 1
, (3.49)

where µ is the chemical potential and kB is the Boltzmann constant. The number of
particles N(E) with energy Ekin is then given by

N(Ekin) ∼ ζ(Ekin, µ) ·D(Ekin), (3.50)

where D(Ekin) gives the density of states, which is ∼
√
Ekin for the free exciton. Fig.

3.25 shows N for various values of − µ
kBT

. At the transition from Maxwell-Boltzmann
(− µ

kBT
> 0.5) to Bose-Einstein distribution the carriers shift towards lower energy. As

also observed in the experiment the energy distribution shows a sharp cutoff and a high
energy tail. For µ/kBT → 0 N transforms into a spike shaped spectral feature, followed
by a pronounced tail. The comparison between the particularities of the experiments
at increased carrier densities and the calculated carrier distributions indicate that the
formation of a cutoff energy, the red shift and the absorption tail on the high energy side
might indicate a changeover from a Maxwell-Boltzmann to a Bose-Einstein statistics.
A quantitative comparison with the experiment is not feasible, as we assume a constant
carrier density in the entire spectral range, disregarding polaritonic effects. This leaves
the most interesting question open: How large is µ and can we possibly observe the
phase transition towards an exciton condensate for µ → 0? For a condensation we
would expect a sharp peak near zero kinetic energy. This puts the focus on the few
neV sharp spike shown in Fig. 3.23. Does this indicate that a fraction of the exciton
gas already forms a macroscopic coherent phase?

Let us estimate the carrier density generated inside the sample: We excite the
sample with Pexc = 40 mW. After losses at the focusing optics and the cryostat windows
about 3

4
Pexc reaches the sample. The focus diameter is df ≈ 10 µm. With a photon

energy of E = 2.033 eV this leads to photon flux N = 4Pexc

πd2
f E

= 1.2 · 1027m−2s−1 photons

per second per m2 at the sample surface. To calculate the actual carrier density we
have to take into account the group velocity of the carriers which crucially depends on
the carrier energy. At resonance the polaritons are slowed down to vg = c0 · 10−5 (see
chapter 3.3). This leads to a massive ’polariton traffic jam’ inside the sample and the
carrier density n̄ is increased by a factor of c0

vg
. Now we calculate the critical density

for the condensation of the exciton gas n̄crit. The kinetic energy of the exciton is given
by Ekin = ~k2

2mX
(compare Eq. 3.10). In a thermal distribution the number of particles
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Figure 3.25: (a) Thermal energy distribution of bosons for various µ/(kbT ). (b) Critical
temperature for BEC of the 1S orthoexciton as a function of the excitation energy and
Pexc. ∆Eexc is measured from the exciton-photon resonance. The dotted (solid) trace
gives the values for the UPB (LPB).

in the volume V is given by the integral of N over all k [32]

n̄ = lim
V→∞

N

V
=

g

2π3

∫ +∞

−∞

dk

e
1

kBT
( ~2k2

2mX
−µ) − 1

, (3.51)

with g the spin degeneracy of the state. Due to the wavevector dependent exchange
(see previous section) g equals one. For µ = 0 the thermal distribution changes over
into the BEC. Solving the integral for µ = 0 we obtain:

n̄crit = 2.612 · g ·
(
mXkBT

2π~2

) 3
2

, (3.52)

or for Tcrit

Tcrit =

(
2π~2

mXkB

)
·
(

n̄

2.612g

) 2
3

. (3.53)

In Fig. 3.25 Tcrit is shown as a function of the excitation energy relative to the exciton-
photon resonance ∆Eexc of various Pexc. The energy dependence arises from the changes
in vg and hence n̄. Looking at Tcrit(∆E =exc 0) we find for the highest Pexc = 40 mW a
Tcrit of 7 K. Even for Pexc = 10 mW a critical temperature above helium temperature
is found.

From these considerations we can conclude that condensation phenomena can not
be excluded a priori. The relatively small red shift (see Fig. 3.23) shows that the



3.5 High density effects 55

sample temperature is well below 5 K, even for the highest Pexc. Still it would be
desirable to identify the origin of the red shift. The magnitude of the shift ≈ 7 µeV is
comparable to the kinetic energy of the excitons at k = 2.62·107 m−1 (compare Fig. 3.3
(c)). The red shift could also be attributed to attractive exciton-exciton interaction.
Further insight into the origin of the red shift could be gained by chopping the laser
beam. Adjusting the chopper such that the laser light shines onto the sample only in
spectral vicinity of the resonance does not change the spectrum. Hence, slow sample
heating can be excluded. It might be argued, however, that the red shift is caused
by quick temperature changes on a µs timescale. Temperature changes on the time
scale of the energy scan can give an alternative explanation for the line shape. In this
framework the spike can be interpreted as an increased absorption, present in a time
window ≈ 200 µs (derived from the scan speed). By chopping the beam on ns timescale
and adjusting the chopping rate the time averaged laser power can remain constant
while increasing peak powers. In this fashion the impact of temperature changes can
be identified.

To date a clear identification of the origin of this absorption feature is not possible.
We have seen that the asymmetry in the line shape suggests an explanation by consid-
ering a bosonic thermal distribution. For a better estimate of the critical density etc.
it is necessary to include the full polaritonic picture. The photon admixture reduces
the effective mass further and lowers the density of states in the resonance region. At
present it is unclear which state could show a macro occupation. In principle, one
would expect condensation in the ground state at k = 0, which is about 8 µeV below
the exciton at k = 2.62 · 107 m−1. The spike is already observed well above the ground
state energy. This would imply a propagation of the macro population, which will lead
to decoherence at the sample surface. From the linewidth (15 neV) a T2 of 120 ns is
derived. For a 30 µm thick sample this gives an upper limit to vg = 250 ms−1. This
would imply that we are dealing with excitons at k ≈ 0 (compare Fig. 3.14), which
does not agree with the spectral position of the spike. The data available at present
are insufficient to judge whether the spike is a fingerprint of a macroscopic collective
exciton coherence. For its demonstration several aspects have to be clarified:

• the T 3/2 dependence for the critical density,

• the collective coherence of the carriers,

• the actual occupation numbers of the states.
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Chapter 4

Polaritons in microcavities

In section 3 we have discussed exciton-photon polaritons in bulk crystals. Due to the
translational invariance of the crystal, exciton and photon describe Rabi oscillations.
Both modes cannot be described independently, but form coupled eigenmodes. If we
now turn to a heterostructure, where the dielectric properties change on a wavelength
scale, no cycle of radiative recombination and reabsorption is expected. The emitted
photon leaves the sample without further interaction with the exciton system. Hence,
the uncoupled exciton typically gives a good description of the processes in quantum
dots or quantum wells. In the course of this chapter we will see how careful design of
a semiconductor heterostructure permits the observation of exciton-photon polaritons
in so-called semiconductor microcavities. Unlike in bulk, where the lattice determines
the polariton properties, we can here tailor the polariton properties by designing the
chemical composition and geometry of the heterostructure. The potential of such
custom-made polariton systems will be explored.

4.1 Basic microcavity physics

How can polaritons form in systems of broken translational invariance? This obstacle
can be overcome by a simple idea: When placing the exciton system (here we consider
excitons in a quantum well (QW)) between high reflectivity mirrors we mimic trans-
lational invariance. The exciton decays radiatively and emits a photon. The mirror
reflects the photon back into the optically active layer where it can be reabsorbed.
This allows the energy transfer between exciton and electro-magnetic field, just as in
bulk material. This is the key principle of a semiconductor microcavity (MC). The
structure of the cavity used in the following experiments is shown in Fig. 4.1. The
hybrid nature of cavity polaritons reflects in the design of the MC-structure, which is
a hybrid of two types of heterostructures: a photon confining resonator plus an exciton
confining QW. Having in mind the general discussion of chapter 2, we now introduce
the particularities of exciton-photon coupling in a semiconductor MC [7, 99, 100, 101].
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Figure 4.1: Schematic drawing
of the cross section of a semi-
conductor microcavity.

The core of the MC is the resonator layer with thickness LR (here GaAs). To keep
the photons inside the resonator, it is sandwiched between two stacks of Bragg mirrors.
In our case the mirrors consist of layers of GaAs with refractive index nGaAs = 2.95 and
AlAs (nAlAs = 3.65). These materials have almost identical lattice constants, which
allows the growth of the heterostructure by molecular beam epitaxy. The reflectivity
of the mirrors is close to unity in a wide spectral region, which is referred to as the
stop-band. The resonator design is such that the mode with wavelength λ/nGaAs = LR

lies in the stop-band of the Bragg mirrors. Hence, we speak of a λ-cavity and the
electromagnetic field is described by a standing wave with the field maximum at the
resonator center. The field amplitude also has maxima at the resonator edge. Hence, it
penetrates into the Bragg structure [99]. The reflectivity of each double layer is given
by the ratio of the refractive indices nGaAs

nAlAs
≈ 0.8. Including the penetration depth of

the field in the Bragg mirrors we can define an effective cavity length Leff . It is given
by

Leff = LR +
λ

2nGaAs

nGaAsnAlAs

nAlAs − nGaAs

. (4.1)

The total reflectivity of a Bragg mirror scales with the power of the number of double
layers N [7]:

R = 1− 4
1

nGaAs

(
nGaAs

nAlAs

)N

, (4.2)

The evanescent field penetrating through all layers determines the total reflectivity of
the structure. In the structures under study, 23 mirror pairs are found on the substrate
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side, while 20 mirror pairs form the sample top mirror. This assures a reflectivity >
99.9 % in the stop-band. In analogy to a Fabry-Pérot-interferometer the energies of
the cavity modes (EP (i)) are determined by the thickness of the resonator (see Fig.
4.1):

EP (i) = i
hc0

2LRn
i = 1, 2, . . . (4.3)

In our case the i = 2 mode is the relevant one. In this simplified picture the momentum
of the photon in the resonator plane k|| is neglected. The dispersion, including the in-
plane momentum of the photon, is given by

EP (k||) =
~c0
n

√(
2πi

2LR

)2

+ k2
||. (4.4)

For k|| � 2πi
2LR

the dispersion is well approximated by a parabola and an effective mass
can be attributed to the photon mP = hn/c0LR, which is about 5 orders of magnitude
lower than the effective exciton mass.

The quality of a MC is determined by the finesse of the resonator, which is given by
the ratio of the linewidth to EP . For the investigated high quality samples the cavity
mode is at EP ≈ 1.4 eV with a radiative broadening of Γ ≈ 0.2 meV. Hence, on average
a photon is confined in the cavity for ≈ 10 picoseconds (ps) and an excellent finesse
of ≈8000 is achieved. The energy of the cavity mode can be tuned by changing the
resonator thickness. During the growth process the sample rotation was stopped. This
leads an inhomogeneous growth velocity across the waver and gives rise to a slight
wedge shape of the resonator. This means that EP varies systematically across the
sample. By moving the spot of excitation along this wedge we find that EP shifts by
≈ 5 eV m−1 (see Fig. 4.2).

This concludes the description of the photon component of MC polaritons and
brings us to the exciton component. In a MC the exciton is defined by the properties
of the so-called active layer. This active layer typically consists of quantum dots or
a quantum well. Even configurations with several active layers can be found. In our
case a single 7 nm thick In0.14Ga0.86As QW was chosen. The exciton dispersion is then
given by

EX(k||) = EX(0) +
~2k2

||

2mX

, (4.5)

where mX is the effective exciton mass in the resonator plane. In the studied cavity
the QW is centered in the resonator, where the confined photon field has maximum
amplitude. Because of the unidirectional confinement in the QW, EX is discretized
in this direction (z-direction). We will solely concentrate on the lowest exciton level.
The highest valence band has angular momentum L = 1. Together with the spin
we find a hole quadruplet (Γ8 symmetry) [Jh = 3

2
, Jz,h = (±3

2
,±1

2
)] and a doublet

(Γ7 symmetry) [Jh = 1
2
, Jz,h = (±1

2
)], where the doublet is lower in energy. For the

bulk case the quadruplet states are degenerate at k = 0 (Γ-point), but have different
effective masses, which gives rise to a splitting for k 6= 0. The components with higher
mX are termed heavy hole [Jh = 3

2
, Jh,z = (±3

2
)], while the others are termed light hole



60 Polaritons in microcavities

[Jh = 3
2
, Jh,z = (±1

2
)]. Because of the quantization of the QW potential in z-direction

the heavy hole states are at higher energy, lifting the quadruplet degeneracy at k =
0. While the heavy hole has higher effective mass in the growth direction, it has a
lighter in-plane mass. Therefore, a crossing between heavy and light hole band would
be expected. Because of band mixing effects both bands anti-cross. In the following we
will disregard this band mixing and treat the highest valence band state as pure heavy
hole. The exciton of interest here is formed with the lowest conduction band electron
(Je,z = ±1

2
). This gives the exciton momenta M = ±1 and M = ±2. The excitons

with M = ±2 are optically inactive (dark excitons). Therefore only the optically
active excitons with M = ±1 (bright excitons) are of interest, here. The confinement
in the QW increases the overlap of the electron and hole wave functions, which in turn
increases the oscillator strength of the transition. The exciton resonance broadens due
to imperfections of the QW, such as alloy fluctuations. In our case the indium content
(14%) of the QW is rather high, which gives rise to interface roughness and thickness
fluctuations. Therefore the exciton mode shows a linewidth of about 1 meV.

To describe the coupled exciton-photon eigenmodes the same formalism as intro-
duced in chapter 2 is applied. To achieve maximum exciton-photon coupling the ge-
ometries of QW and cavity are adjusted such that EX ≈ EP for k|| = 0. If a photon is
emitted from the QW and the likelihood of reabsorption after reflection at the Bragg
mirror is greater than the likelihood of leaking out of the cavity, the cavity moves from
the weak coupling regime into the regime of strong coupling, where we are dealing with
cavity polaritons [102]. The Rabi splitting in a MC is given by [100]

~ΩR ≈ 2~

√
2c0ΓX

nGaAsLeff

, (4.6)

where ~ΓX is the radiative width of the free exciton, which is again proportional to f .
As with in the case of polaritons in bulk semiconductors ΩR scales with

√
f [7], but in

contrast to chapter 3 we are here dealing with a dipole transition. To increase ΩR a
large contrast in the refractive indices of the mirror materials is desirable. The splitting
can be enhanced further by growing several QW’s with a spacing of λ/2. The figure
of merit for a MC is not the Rabi splitting itself, but the ratio between splitting and
linewidth. As increasing the number of QW’s necessarily gives rise to inhomogeneous
broadening, this might compensate partly the increase in ΩR. To increase f various
material systems can be thought of. Besides the common InGaAs (~ΩR ≈ 4 meV),
AlGaAs or CdMgTe cavities are also investigated. As II-VI materials have a larger
exciton binding energy and hence a larger f , splittings of ~ΩR ≈ 22 meV are reported
[103]. The splitting can be increased by one order of magnitude by using organic
materials [104, 105], however the splitting to linewidth ratio does not improve.

Unlike bulk polaritons we can now adjust ∆ in two ways: As the resonator is
wedge shaped EP relative to EX can be manipulated by exciting specific regions of
the specimen. This is shown in Fig. 4.2. The measured energies of the two polariton
modes are given by open symbols. The solid lines were calculated using the coupled
oscillator model. The resulting dispersion relations of the uncoupled modes are given
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Figure 4.2: (a) EL and EU as the excitation spot is moved across the sample. Symbols
give the data. The solid lines give a fit to the data using the coupled oscillator model.
The dashed lines give the uncoupled eigenmodes obtained from the fit. (b) Cavity
transmission spectra for various detunings.

by the dashed lines. EP shows strong dispersion to higher energies as the excitation
spot is moved towards the sample edge (smaller LR), while EX shifts only slightly.
The latter can be due to alloy fluctuations or variations of the QW thickness. In the
right panel of Fig. 4.2 the corresponding transmission spectra are shown. For negative
∆ (lower traces) the LPB is strongly photonic. Therefore it has high intensity and is
spectrally sharp. As the UPB is exciton-like its intensity is rather low. As we move
towards positive detuning both branches gradually exchange their character. We see
nicely how the LPB loses intensity, broadens and its dispersion becomes flat. The UPB
exhibits the vice versa behavior. The normal mode coupling causes the anti-crossing of
the polaritonic modes. The normal mode splitting at resonance gives the Rabi energy
~ΩR = 3.8meV. The spectra shown above were obtained for k|| = 0. A second way to
shift EP is by taking advantage of the strong dispersion of the photon mode relative to
the exciton [106]. The in-plane momentum k|| is directly related to the external angle
of emission θ:

sin θ =
k||~c0
E

. (4.7)

Hence, angle resolved spectroscopy gives access to the dispersion EU/L(k||). The calcu-
lated angular dispersions are shown in Fig. 4.3. Here and in the following ∆ denotes
the EP −EX at k|| = 0. Due to their photon fraction both polariton modes show strong
dispersion in an angular range easily accessible in an optical experiment. Note also
the characteristic curvature of the polariton branches, as compared to the uncoupled
modes. The dispersion shown here gives only a cut through the momentum space,
where the one of the components (k2

|| = k2
x + k2

y) of the in-plane momentum (e.g. ky)
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is fixed. The full two-dimensional picture in momentum space is obtained by rotating
the dispersion around the energy axis (k|| = 0).
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Figure 4.3: EL and EU (grey traces) and EX and EP (black traces) as a function of k||
(lower scale) and θ (upper scale) for three different detunings ((a) ∆ = -2 meV, (b) ∆
= 0, and (c) ∆ = +2 meV.)

Comparing bulk polaritons to cavity polaritons, one important advantage of cavity
polaritons has been pointed out already: we can tailor the mode energies at will by
adjusting e.g. the QW thickness and composition or by choosing LR. Furthermore,
the light matter coupling can be adjusted to some extent (see above). A third im-
portant difference is the accessibility of the dispersion in an optical experiment. For
bulk polaritons directly measuring the dispersion of the polariton modes is a difficult
task. Different nonlinear optical methods can be applied to measure resonances on
the two polariton branches [107]. The lower polariton branch is always outside the
light cone. To map its dispersion resonant two-photon Raman scattering was used,
where the recombination process includes a lower polariton state [108]. Mapping the
upper polariton is also non trivial; The first study was done on CuCl in a two-photon
experiment [109]. In a linear experiment the momentum conservation constraint limits
the k-space to be probed to the intersection between exciton and photon dispersion.
In a two-photon absorption experiment this limitation can be overcome, as the relative
angle between the two exciting beams offers an additional degree of freedom. The po-
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lariton become most evident when studying propagation effects [13] such as the group
velocity of a polaritonic wave packet (see chapter 3.3).

In a MC the spectral signature of the normal mode splitting is the most evident
sign of strong light-matter interaction. The reason for the accessibility of this spectral
feature lies in the dispersion of the photon. In cavities the linear dispersion of the
free photon is replaced by a parabolic one with EP 6= 0 at k|| = 0 and the k|| range
of interest lies entirely inside the light cone. Typically, the cavity photon intersects
with the exciton at wavevectors one order of magnitude smaller than the intersection
of exciton and free photon. We can therefore map the dispersion simply by sending
light at different angles through the cavity. Another aspect is the process of emission;
a bulk polariton is typically ’invisible’. It can only be detected if it propagates to
the sample surface, where it is converted into a photon. The exact mechanisms for
the polariton-photon conversion are non trivial and still under discussion [107]. In a
MC, this process is different, as the polariton does not propagate in this sense. The
exciton is locked in the QW and the photon travels back and forth between the cavity
mirrors. The detected photons are simply those which penetrate through the Bragg
mirror [110, 111].

Being equipped with a basic understanding of cavity polaritons we proceed with
a brief glance back at the history of nonlinear processes in microcavities. Ever since
the discovery of the strong coupling regime optical nonlinearities in semiconductor
microcavities have attracted considerable interest. The hybrid nature of cavity polari-
tons inspired several proposals of low threshold lasing, based on bosonic stimulation
[112, 113]. The corresponding experiments [114] showed a super-linear behavior, which
goes in line with a reduced Rabi splitting. Hence, the strong coupling is broken and
the validity of the bosonic description can be questioned. This is supported by detailed
calculations [115], which showed that the super-linear phenomena are not related to
bosonic effects, but can be interpreted as conventional laser action [116]. However,
in the low density regime, where the strong coupling remains unbroken, polaritonic
nonlinearities are also observed [103, 117]. The basic ideas behind these efforts can be
understood from the unique properties of cavity polaritons.

Looking at the dispersion of the LPB (∆ = 0), we find that it deviates from the flat
exciton dispersion in the radiative region around |k||| < 3 · 106 m−1. The light-matter
coupling pushes these polaritons away from the exciton dispersion. Let us discuss in
which way polaritons can be scattered from excitonic states into the radiative region.
One candidate would be scattering with phonons, however an acoustic phonon would
take away a large momentum but little energy. This prohibits a phonon cascade towards
k|| ≈ 0 [118, 119]. Also, exciton-exciton scattering is only efficient in the excitonic
section of the dispersion, where energy and momentum conservation can be satisfied
simultaneously. For population of the radiative states exciton-exciton scattering is
inefficient [120, 121]. Changing the perspective and looking from the point of view of
a polariton at k|| ≈ 0 this means that it cannot be scattered out of this k-space region
easily [122, 123, 124]. The strong coupling isolates the carriers at k|| ≈ 0 from the
exciton reservoir. This can be interpreted as a kind of polariton trap in momentum
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Figure 4.4: Parametric polari-
ton scattering: The solid line
gives the LPB dispersion ∆ = 0.
The dots mark the signal, idler
and pump states. See text for
details.
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space. As a side effect the density of states is strongly reduced. These aspects triggered
the initial studies on low threshold lasing and bosonic stimulation. Having a low
density of states and little interaction with the environment, cavity polaritons inspired
proposals to achieve quantum degeneracy at low absolute excitation densities. In the
photon picture this would lead to low threshold lasing. For the exciton component
this brings us back to BEC scenarios discussed in chapter 3.5. The photon admixture
again decreases the mass by four orders of magnitude with respect to the exciton (nine
orders with respect to alkali ions). For this purpose an efficient population of the ’trap’
is desired.

The key to a systematic study of polaritonic nonlinearities was the demonstration
of so-called parametric polariton scattering [125, 126]. To overcome the relaxation
bottleneck the peculiar polariton dispersion is utilized. Due to the changeover from the
steep photon dispersion to the flat exciton dispersion, a point of inflection is found in the
dispersion of the lower polariton branch (see Fig. 4.4). If polaritons are now resonantly
excited in the vicinity of the point of inflection, a parametric polariton conversion is
observed1; One polariton is transferred into the signal state at the bottom of the LPB
(k|| = 0, E = Eexc−∆E), while a second polariton compensates the excess energy and
momentum by being lifted into the so-called idler state (k|| = 2kexc, E = Eexc + ∆E).
The efficiency of this parametric conversion process relies on the proper adjustment of
the excitation parameters. The pump state has to be chosen such that the parametric
process conserves energy as well as momentum for final states on the LPB dispersion.
In angle resolved pump-and-probe experiments this efficiency can be demonstrated

1Due to similarities to optical parametric oscillation the vocabulary established for such systems
will be used.
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[125]. The pump pulse excites the initial while the probe pulse tests the signal state
k||= 0.

These experiments triggered a variety of studies on parametric processes in cavities
[127, 128]. The scattering can be understood as a coherent wave mixing process between
the pump and probe states giving rise to the up-converted idler emission [129, 130].
Under continuous wave excitation these polariton conversion processes can be demon-
strated, as well [131, 132]. They are explained by so-called parametric luminescence
driven by the correlations between the polariton populations [133]. In particular, the
aspect of a macroscopic filling of the polariton states [134, 135] attracted considerable
interest. The findings were interpreted in terms of a polariton condensate [39, 136] and
lead to a revival of proposals on Bose-Einstein condensation in microcavities [137, 40]
and several forms of polariton lasers [138, 139, 140]. In the following various aspects
of nonlinear processes in microcavities will be discussed.

4.2 Exciton localization in microcavities

So far we have treated QW excitons exclusively as quasi-free particles, which demands
a perfectly homogenous QW. Considering the large indium content (14%) and the
linewidth of 1 meV this approximation becomes questionable, here. It can be expected
that surface roughness gives rise to localization of excitons at the resulting steps in
the QW potential. We will have to investigate to which extent the excitons can still
be treated as quasi-free particles and where this description fails. In many cases the
free exciton assumption is justified, even in disordered systems, because relatively weak
fluctuations of the confinement potential do not change the exciton dispersion. Nor do
they cause strong scattering of polaritons because of their large coherence size of a few
µm.

However, the ultra fast nonlinearities in the emission from the LPB observed in
time resolved experiments with ps pulses occur [125, 129, 141, 142] at about one or-
der of magnitude higher excitation densities than those observed for cw-excitation
[103, 117, 121]. It can be argued that the parametric scattering as described in the
previous section cannot account for a variety of nonlinear effects observed in micro-
cavities. Indications of additional nonlinear processes are, for example, found in initial
studies on parametric scattering, where the fast gain was followed by a slowly decay-
ing tail (Fig. 4.5) [141, 143]. While the initial fast contribution can be identified as
parametric polariton scattering, the origin of the incoherent (slow) contribution could
not be resolved. A scattering process between two excitons with large k|| involving
the UPB was suggested (see arrows in Fig. 4.5 (b)) giving an intuitive explanation,
but this demanded further investigation. As nonlinear processes are also observed in
cw-experiments at much lower excitation densities this suggests that excitons trapped
in potential fluctuations close to the free exciton energy might be responsible for the
slowly decaying nonlinearities.
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Figure 4.5: Spectrally integrated nonlinear transmission as a function of delay (∆ = 0),
when the LPB is pumped in the parametric polariton scattering resonance. The solid
dots represent data for co-circular pump-and-probe excitation. The solid line shows
the fitted intensity and is calculated from the sum of parametric scattering (dotted
line) and incoherent processes (dashed line). The postulated process for the incoherent
gain is shown in the right panel, where the black arrows mark the proposed scattering
channel (see Dasbach et al. [141, 143] for details).

This problem will be tackled in the following by pump-and-probe spectroscopy.
This technique allows for a time resolved study of dynamic processes. The idea of a
pump-and-probe [144] experiment is straight forward. The setup used for this type of
experiment is shown in Fig. 4.6. The specimen is excited by an intense pump pulse,
which is typically resonant with the transitions under investigation. The state of the
system is tested by a weak probe pulse. By stepwise adjusting the delay between pump
and probe pulse the carrier dynamics can be monitored.

In our case ultra short laser pulses (pulse width≈ 80 fs) are generated by a titanium-
sapphire oscillator, which is inverted by an Ar+-laser. The pulse is diffracted by an
optical grating (1200 groves mm−1). The zero order reflection remains spectrally broad
(≈ 30 meV) and is used as probe pulse. The first order diffraction pattern passes
through a slit, where slit width and position determine the spectral components pass-
ing through. In this fashion grating and slit function as a pulse shaper, adjusting the
spectral components and the temporal width of the pump pulse. The pump pulse
was spectrally tailored for selective excitation of the LPB (Eexc = EL(kexc)). It had a
duration ≈ 1.6 ps and a spectral width ≈ 1.5 meV. The pump pulse is then directed
onto a delay stage, which allows for precise adjustment of the temporal delay between
the two pulses (τ = tprobe − tpulse). After passing through polarization optics both
pulses are focused onto the same spot of the sample. The angle of incidence of both
beams (θexc, θprobe) could be adjusted independently, which means that we were able
to select which states in momentum space were pumped and which states were probed.
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The transmitted pump beam was blocked by a spatial filter, while the transmitted
probe was focused onto the entrance slit of monochromator (focal length 30 cm). The
spectral diffraction pattern is finally detected by a liquid nitrogen cooled charged cou-
pled devices camera (CCD). This detection unit provides a spectral resolution of ≈
100 µeV, while the time resolution is limited by the duration of the spectrally sharper
pump pulse. The sample is placed in a helium cryostat, which allows for studies in the
temperature range 2-300 K. If not explicitly stated, all experiments were performed at
T = 2 K. When investigating optical nonlinearities by pump-and-probe experiments
the following principle difficulty arises: An amplification of the transmission signal can
either be due optical gain, or due to an increase of the sample transmission (decrease
of absorption). For a clear separation of these phenomena, besides measurements in
transmission geometry, the reflected nonlinear signal has been recorded. To minimize
absorption in the GaAs substrate, the thickness of the substrate has been reduced in
a polishing procedure.

Figure 4.6: Setup of the pump-and-probe experiment.

From previous studies we know that, because of momentum conservation, the para-
metric polariton scattering shows a sharp angular resonance [125, 141]. To distinguish
other nonlinearity from this process it is essential to study their angular dependence.
While θexc was kept fixed, θprobe was varied to scan k||. The experimental conditions
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Figure 4.7: Angular configuration of the pump and the probe beam. (a) The grey line
gives the LPB dispersion at ∆ = −3 meV. Arrows mark the polariton states being
pumped and probed. The black line marks the uncoupled exciton level. (b) Schematic
of the pump-and-probe geometry.

are depicted in Fig. 4.7, where the dispersion relations of the LPB and EX are shown
vs. θ. The probe angles (θprobe = 0,−4◦,−8◦) and the pump angle θexc are indicated
by arrows. Fig. 4.7 (b) shows this configuration.

Fig. 4.8 (a) displays MC transmission spectra recorded for θprobe under resonant
excitation (Eexc ∼ 1.408 eV) of the LPB under θexc = 8◦ for a series of τ and a cavity
detuning of ∆ = −3 meV. Hence, the probe beam tests the k|| = 0 ground state of the
polariton system. For this detuning a strong stimulated polariton pair scattering would
be observed at θexc = 11◦. To suppress this scattering channel θexc = 8◦ was chosen (see
Fig. 4.7). The probe signal is detected either for co-circular (both pulses have the same
circular polarization) or anti-circular (σ± probe and σ∓ pump polarization) excitation
conditions. Looking at the case of co-circular excitation we find pronounced nonlinear
behavior, i.e. the transmission increases by a factor of 8 under the influence of the
pump pulse. The nonlinearity is observed in the entire delay range recorded, here. The
rise of the signal goes in line with a blue shift of the transmission line, where the shift
∆EL is maximum for maximum transmission. It decreases as the transmission signal
decays. In addition, the linewidth γ of the transmission resonance decreases as the
signal increases. Looking at the same experiment for anti-circular polarization we find
no superlinear behavior. Obviously, the underlying nonlinear process satisfies strict
polarization selection rules.

The findings of Fig. 4.8 are summarized in Fig. 4.9. Panel (a) shows the changes
in the spectrally integrated differential intensity of the LPB line δT = ∆T+T0

T0
, where T0

is the probe transmission signal in the absence of the pump beam and ∆T denotes the
nonlinear transmission signal. In Fig 4.9 δT , ∆EL, and γ are shown for two intensities
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Figure 4.8: (a) MC
transmission spectra
recorded at θprobe = 0
under resonant exci-
tation at θexc = 8◦ for
various τ . Solid (dot-
ted) traces indicate
co-circular (anti-
circular) excitation.
(b) Corresponding
calculations for co-
circular excitation.
For reference the
linear transmission
(T0) of the probe in
the absence of the
pump pulse is shown
on top of each panel
(grey trace).

Iexc. In the low intensity regime δT rises quickly and decays nearly exponentially with
a time constant τD

1 ≈ 60 ps. Strong deviations from this behavior are observed at high
Iexc: We find an enhancement of δT at τ ≈ 10− 30 ps. ∆EL and its time evolution are
shown in panel (c). While the line does not shift for anti-circular excitation, we find
blue-shifts of up to 0.15 meV for co-circular excitation, which is about the linewidth
of the linear transmission (compare Fig. 4.8). Again, the shift increases with Iexc and
decays on timescales comparable to the intensity decay. Finally, the changes in the
linewidth are shown in panel (e). As already expected from Fig. 4.8 the nonlinear
signal narrows significantly as compared to the linear probe transmission.

Besides the density dependence, the dependence on k|| is of crucial importance.
This is tested by scanning of θprobe = 0,−4◦,−8◦. In panel (a) of Fig. 4.10 we see
that δT becomes larger, when we move along the dispersion of the LPB from the
energy minimum (θ = 0) towards higher energies (θprobe = −4◦). Further up (θprobe =
−θexc = −8◦) the signal decreases again. The line shift increases with θprobe even
at the highest angles recorded (see panel (c)), however we should keep in mind that
the line also becomes broader for higher θprobe, as the exciton fraction increases. The
qualitatively similar behavior for all probe angles confirms that the effect observed here
differs from parametric scattering, which would be restricted to an angular range of
< ±2◦ [125, 141]. Independently of the probe configuration and the pump intensity,
the changes in δT , EL and γ with τ are correlated, however, the maximum in δT is
delayed as compared to the maximum in ∆EL that occurs at τ = 0.

Let us compare the changes of the LPB transmission under resonant excitation
to those under above band gap excitation investigated by Jahnke et al. [145]. The
latter also causes a blue-shift of the LPB but there are two decisive differences [145]:
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Figure 4.9: Experimental (left panels) and calculated (right panels) dependencies of the
δT (a) and (b), ∆EL (c) and (d), and the linewidth γ (e) and (f) on τ for intensities
Iexc = 0.9µJcm−2 (circles) and Iexc = 0.35µJcm−2 (triangles). Full (open) symbols
indicate co-circular (anti-circular) excitation configurations. The theoretical traces are
given for Iexc= 0.4 µJ cm−2 (solid traces) and Iexc =0.15 µJ cm−2 (dashed traces).
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Figure 4.10: Experimental
(left panels) and calculated
(right panels) dependen-
cies of the differential
transmission δT (a, b) and
EL (c, d) on the time delay
for θprobe = 0 (squares,
solid line), θprobe = −4◦

(circles, dashed line)
and θprobe = −8◦ (trian-
gles, dotted line). Full
(open) symbols indicate
co-circular (anti-circular)
excitation configura-
tions. Theory is given for
co-circular excitation only.

At moderate excitation densities the line shift is accompanied by (i) a reduced rather
than an enhanced transmission and (ii) a strong broadening rather than a narrowing
of the LPB line. These effects are caused by free carriers excited in the QW for above
band gap excitation. The blue shift of EL is connected to the reduction of the exciton
oscillator strength by phase-space filling and screening by the carriers, whereas the
decrease of the line intensity and its broadening are caused by additional absorption
due to enhanced exciton scattering with carriers. Intensity enhancement and spectral
narrowing appear only at very high excitation densities close to the transition from
strong- to weak-coupling where the cavity approaches the lasing regime.

In contrast, in our experiments the excitation below EX generates mainly excitons
instead of free carriers. Therefore, the concentration of unbound carriers is too small
to produce significant effects on the susceptibility. In turn, exciton-exciton interaction
and filling of localized exciton states can become important in causing changes in the
polariton properties. Indeed, unlike unbound carriers, filling of localized states leads to
a reduced, rather than enhanced, absorption and therefore to an enhanced transmission
and a reduced γ. The differences in the nonlinear optical response between co- and
anti-circular pump-and-probe configurations can also be explained by this approach.
The σ polarized pump light fills potential fluctuations with excitons of a given spin.
Subsequent transitions of excitons with the same spin into the localized exciton states
are forbidden by the Pauli exclusion principle. However, the Pauli exclusion principle
does not forbid transitions into states of opposite circular polarization. Consequently,
the excitation with σ+ light leads to different changes in the susceptibility for σ+ and
σ− polarized probe pulses, which is observed in the present experiment. Within this
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Figure 4.11: Dependence of δT on the
cavity detuning at fixed excitation in-
tensity. Circles mark experimental data
while the solid trace shows calculated
values.

-5 -4 -3 -2 -1
1

10

∆ (meV)
δT

 
  

approach, a strong dependence of δT on the cavity detuning is predicted, since the
density of localized states D decreases quickly with increasing separation from the
exciton level. This is investigated in Fig. 4.11. Indeed, we find that the maximum
in δT decreases from 15 to 1.8 when ∆ changes from -1.5 to -5 meV and the LPB
becomes photon dominated. The strict polarization selection rules indicate, that the
localized exciton states are indeed circularly polarized. The localization sites, however,
are not expected to be perfectly circular in shape. Hence, one would expect elliptically
polarized exciton eigenstates.

A theoretical model to describe the impact of exciton localization on the nonlinear
optical response of a MC has been developed in cooperation with N. A. Gippius, V.
D. Kulakovskii, and S. G. Tikhodeev. We can assume that δT is independent of Iprobe.
This means that the nonlinear effect solely arises from the temporal modulation of the
exciton susceptibility by the pump pulse, while the weak, probe induced modulation
does not cause nonlinear effects. This assumption is justified, as the probe pulse is
more than one order of magnitude weaker than the pump pulse. First, we reconstruct
the susceptibility χ of the unexcited QW in the spectral vicinity of EX . This is done by
measuring the linear absorption near EX . It is determined by fluctuations in the QW
potential which can be described within an approach for the optical interband density
that considers the localization of the excitonic center of mass motion, as described by
Schnabel et al. [146]. In this approximation, the QW susceptibility is given by

χ(E) =
~2J2

0

E2

∫
dEX D(EX)

EX − E − iΓX

, (4.8)

with an interband density of states

D(E) =
1√
πσΛ

∫ ∞

0

dEKe
−(E∗

X+EK−E)2/σ2 · e−EK/Λ. (4.9)

J0 = evcvΦX(0)
∫
dzψe(ze)ψh(zh) is the exciton current with vcv the electron velocity.

χ contains three energy parameters characterizing the exciton: σ is a measure of the
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inhomogeneous broadening of the exciton, Λ characterizes the disorder induced exciton
states with in-plane wave numbers larger than the light momentum, and ΓX is the
homogeneous exciton linewidth.
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Figure 4.12: (a) LPB transmission as a function of EL for the unexcited QW. (b)
Calculated effective density of states D∗ for τ = 0 (dashed trace), τ = 20 ps (solid
trace), and τ = 80 ps (dotted trace) as a function of energy. The grey trace gives the
density of states D without excitation.

Fig. 4.12 (a) shows the MC transmission of the LPB mode versus energy. The
symbols give the experimental data obtained from angle resolved transmission studies
in the range θprobe = 0 − 25◦. The data can be well described (solid line) using the
parameters σ = 1.5 meV, Λ = 3 meV, and ΓX = 0.08 meV, which are similar to
those used by Schnabel et al. [146]. Pauli blocking results in a strict limitation of
the number of excitons N sat

X with the same spin that can be localized in a fluctuation
with localization area Aloc. N

sat
X can be estimated by simply dividing the localization

area by the area occupied by a single exciton: N sat
X = Alocπ

−1a−2
X . The mean number

NX of localized excitons found in the fluctuation is also proportional to Aloc due to
the increase of the exciton-photon interaction with increasing exciton delocalization. In
consequence, the fluctuation occupation NX/N

sat
X is independent of Aloc and a function

of the localized exciton energy and the excitation parameters, only.

Since excitons trapped in a localization site behave similarly to carriers confined in
a quantum dot, we can treat them as a set of two level systems. The dynamics of an
inhomogeneously broadened exciton ensemble embedded in a MC can thus be described
by a density matrix formalism. We assume that all direct interactions between the
localized states can be treated in the relaxation approximation, i.e. the trapped carriers
interact only with the photon field at the QW. The Hamiltonian of the i-th localized
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state is given by

H i =

(
0 (V i)

∗

V i Ei
X

)
, (4.10)

where V i = i
evcvΦX(0)

ωcv

√
Ai

locE(rX,i, t), ωcv is the exciton transition frequency, Ei
X is the

energy of the state with coordinate rX,i. E(r, t) = Ek(t)e
i(kr−ω0t) is the electric field in

rotating wave approximation [144].

The dynamics of the system is determined by the following set of equations:

−i~ ˙̃iρ = [ρ̃i, H i], (4.11)

(i~∂t − EP,k)Ek(t) = αkJk(t) + βkEexc
k (t), (4.12)

Jk(t) =
∑
EX

evcvΦX(0)
√
Aloc ρ̃

EX
2,1 (t)Ñ(EX). (4.13)

In Eq. 4.11 ρ̃i is the density matrix of the localized exciton state. Eq. 4.12 gives the
evolution of the electric field in the cavity at energy EP,k. Jk(t) is the exciton interband
current and Eexc

k (t) is the field of the incident light pulse. The coefficients αk and βk

were calculated using the transfer matrix formalism. Eq. 4.13 finally connects the
exciton current Jk(t) to the density matrices ρ̃EX and the localized exciton distribution
Ñ(EX).

The calculations for our MC with ∆ = -2.7 meV are shown in Fig. 4.8 (b) for the
σ+σ+ configuration. Two adjustable parameters have been used in the calculations,
the exciton radiative lifetime τD

X =40 ps and a density dependent relaxation time
τD
r of the excitons. At low excitation intensity we find τD

r (Iexc = 0.05 µ J cm−2)
= 20 ps, it decreases to τr(Iexc = 0.5 µ J cm−2) = 2 ps due to enhanced exciton-
exciton scattering. Spin relaxation is neglected as the signal observed in anti-circular
polarization is negligible. For the high excitation regime we are dealing with a density of
photoexcited excitons in the order of ≈ 2 ·1010 cm−2. The comparison of the calculated
spectra with the experimental ones in Fig. 4.8 shows that they exhibit qualitatively
the same behavior, namely the transmission increases, its blue shift, and its narrowing.

The right panels in Figs. 4.9 and 4.10 show the results of calculations at various
Iexc and θprobe, respectively. In particular, the two main results of the experiments
are well reproduced: (i) At high excitation, maximum transmission occurs at delays of
about 10 ps. (ii) At long delays, δT decays with a time constant of ∼ 60 ps. ∆EL is
relatively small and does not exceed 0.3 meV as compared to a Rabi splitting of 3.8
meV, which means that the cavity remains in the strong coupling regime. The line shift
is determined by the changes in the refractive index that result from the difference in
the localized exciton occupations above and below the observation energy. The strong
(more than exponential) decrease of the density of states of localized excitons with
decreasing energy prevents a strong change of this occupation. This explains that the
maximum line shift occurs at τ ≈ 0. The reduction of ∆EL with τ results mainly from
changes in the refractive index due to recombination of localized excitons.
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The changes in δT are very sensitive to filling of localized states at the probe energy
and hence are strongly influenced by energy relaxation of excitons. In particular,
relaxation explains the strong increase of δT at small τ > 0 for θ = 0 and −4◦, for
which the probe energy is smaller than Eexc. For θprobe = -8 ◦ the probed state is as
high in energy as the pumped stated (EL,exc = EL,probe). Therefore the probe state is
not accessible in a simple relaxation process. This explains why δT drops for higher
θprobe.

The calculations show that the large amplification coefficients observed at θ = 0 and
−4◦ are only possible for an inversion of the localized exciton population ( NX

Nsat
X

> 1
2
)

[147]. This is shown in Fig. 4.12 (b) illustrating the saturation effects on the density of
vacant states D∗(E) = D(E)(1−2 NX

Nsat
X

) due to Pauli blocking. The grey solid line gives

D∗(E)(= D(E)) for the unexcited cavity. For short delays and high excitation density,
D∗(E) decreases strongly around the excitation energy Eexc and even becomes negative
indicating that the filling of localized states due to energy relaxation of photoexcited
excitons exceeds 1

2
. Here the system demonstrates a negative absorption coefficient,

i.e. light amplification, and approaches the lasing threshold. This leads to the strong
narrowing of γ and the increase of δT . For long delays, exciton recombination results in
a recovery of the density of states of the unexcited QW D∗(E) ≈ D(E). As expected,
the maximum δT calculated at fixed excitation intensity decreases strongly (about 5
times) with changing ∆ from -2 to -5 meV (solid trace in Fig. 4.11). This decrease is
connected to a lower density of localized states and is in qualitative agreement with
the data. The amplification of the transmission signal is limited by two factors:

• the energy relaxation rate of excitons,

• the enhanced exciton broadening at high exciton densities resulting in enhanced
losses in the low energy tail of the exciton line.

This explains the observed saturation of δT at high Iexc (Fig. 4.9). When the exciton
source is exhausted, the differential transmission decreases quickly to the level charac-
teristic for a site occupation of 1

2
. Then it decays on a time scale of ≈ 60 ps, which is

comparable to the localized exciton lifetime.

Hence, bleaching of the exciton absorption due to occupation of localized exciton
states can explain the slowly decaying nonlinearity observed earlier [141]. This process
is simply caused by a decrease in the QW absorption. This has to be distinguished
from optical gain. In such a process, like for example in parametric polariton scattering
into the k|| = 0 state, the population of this state is increased. This leads to a rise in
the emission from this state, which should be observable in the differential transmission
[141], as well as in the differential reflection [125]. In contrast, the spectral hole burning
as described above gives rise to a positive signal in the differential transmission, while
causing a negative signal in the differential reflection.

The separation of both processes becomes feasible, when comparing the transmis-
sion signal to the reflection signal, as will be demonstrated in the following. For these
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Figure 4.13: (a) Spectrally resolved dif-
ferential transmission at ∆ = 0 for the
indicated τ ’s (θexc = 8◦, co-circular ex-
citation). Panel (b) shows the same
for the differential reflection. The thin
curves at τ = 0 give the linear transmis-
sion (reflection) of the LPB.
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experiments a detuning close to zero was chosen. Under these conditions the ’magic
angle’ for parametric polariton scattering agrees with the excitation angle used in the
present experiment (θexc = 8◦). In two consecutive measurements under identical ex-
citation conditions first the transmitted signal and then the reflected signal have been
recorded as a function of τ . The left panel of Fig. 4.13 shows the time evolution of the
transmission starting from τ = 0 in steps of 10 ps to τ = 100 ps. The τ = 0 trace gives
the transmission signal under pump excitation and when the pump is switched off (thin
trace). We find that the signal increases by a factor of 60 under influence of the pump
excitation. As compared to the situation where θexc is detuned from the ’magic angle’,
the nonlinear signal increases by about one order of magnitude. This is attributed to
additional parametric polariton scattering, which is no longer suppressed. As expected
this signal decays quickly, while the signal at long delays is dominated by the spectral
hole burning described above. The right hand side shows the corresponding signal
recorded in reflection geometry.

Looking at the data, we find the superposition of both phenomena: At zero delay
we observe a strong positive signal on the low energy side and a pronounced dip on
the high energy side. Comparing the magnitude of the nonlinear signal to that of the
linear signal shows that the positive signal exceeds the linear signal by a factor of 15,
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while the dip is about 6 times deeper than observed in the linear regime. At zero delay
gain and bleaching partly compensate each other. While the positive signal arising
from parametric scattering decays rather quickly, the dip in the differential reflection
remains observable in the entire delay range recorded, here. At τ = 100 ps the relative
magnitude of the signals in reflection and transmission geometry are comparable. The
comparison of both signals and their time evolution shows that we are dealing with a
superposition of two processes. One of them takes place only in the short delay regime.
It shows positive signals in both geometries, which means that we are facing a gain
process where the polariton population at k|| = 0 is increased. This process is identified
as parametric polariton scattering. In addition, a second process is resolved where we
find positive signal in transmission and negative signal in reflection. This observation
gives further evidence of the interpretation of the slow process in terms of filling of
localized excitonic states, giving rise to a reduced absorption.

4.3 Exchange interaction in strained cavities

In the previous section we demonstrated that describing excitons and polaritons only
by their energy and momentum is insufficient. It is essential to also include the spin
of the particle to obtain a reasonable description of the system. The spin properties
of carriers in semiconductors attract considerable attention, in particular because of
their long decoherence times [148, 149, 150] as compared to the charge degrees of
freedom. Exciton spins are coupled by exchange interaction. This interaction acts on
the angular momenta electron and hole and leads to an energy splitting between the
different spin configurations (see section 3.4). The resulting fine structure multiplet
has been studied intensively during the past years [151, 152, 85], mainly in quantum
dots [153, 154, 155]. Very little attention has been paid to the fine structure of cavity
polaritons. Only recently, efforts have been undertaken to understand the spin of cavity
polaritons [156, 157, 158]. The spin shows a rich phenomenology and its understanding
is far from complete. The rewarding perspective of a highly spin polarized quantum
system, where exchange couples the spins demands further investigation. In contrast to
section 3.4, here we will concentrate on conventional wavevector independent exchange.
As wavevector dependent contributions are expected to be on the order of few µeV,
they are not resolvable in the present experiment.

For this study, we apply uniaxial strain in the cavity plane (x, y-plane), to lower the
symmetry of the QW. In turn the exciton eigenstates are no longer circularly polarized.
This gives rise to an exchange splitting of the exciton spin configurations, as we will
see below. To apply uniaxial strain, two approaches have been followed:

• A planar MC was placed in a brass holder. Due to the difference in the coefficients
of thermal expansion, stress is applied to the cavity when the temperature is
lowered from room temperature to 2 K. The design of the holder is such that the
cavity is free to expand in one lateral direction, while the force is applied normal
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Figure 4.14: (a) Schematic picture of a planar microcavity in a brass holder. Cooling
causes uniaxial strain, as indicated by the arrows. (b) SEM-micrograph of wire shaped
cavities. The arrow marks the width of the wire. The inset shows the resonator layer
with the neighboring layers of the Bragg mirror. The resonator and the top mirror are
etched, while the bottom mirror remains mostly unpatterned.

to this direction. Between the edge of the cavity sample and the brass holder a
thin layer of indium protects the sample from damage (Fig. 4.14 (a)) [159].

• From planar cavities, wire structures with a lateral width of Ly = 3 µm have been
fabricated by lithography and etching. Fig. 4.14 (b) shows a SEM-micrograph of
the structure. The sample is etched through the top mirror and the cavity itself
whereas the bottom mirror remains mostly unpatterned (see magnified section of
Fig. 4.14 (b)) [160].

Because of the lateral photon confinement in the wire structure, the cavity mode fans
out into a series of subbranches. The subbranches correspond to optical modes that
are discretized normal to the wire direction and are characterized by an index iy =
0, 1, 2 . . ., which gives the number of nodes in the electric field distribution across
the wire [161]. In the strong coupling regime each of these photon modes i forms
polaritons with the QW exciton. For the coupled modes the usual polaritonic dispersion
is observed along the wire (see Fig. 4.29) [162]. The details of this modification of the
mode spectrum will be treated in section 4.4. In the following we will only focus on the
lowest polariton mode that is formed by the photonic iy = 0 mode and the heavy hole
exciton. The same Rabi splitting is observed for those resonators (~ΩR = 3.8 meV) as
in a planar cavity.

Again, pump-and-probe experiments with the setup as described in section 4.2 were
performed in transmission geometry. To achieve a spectral resolution of ≈ 30 µeV we
used a monochromator with a focal length of 0.6 m. For both sample types a detuning
of ∆ = -3.5 meV was chosen. For clarity the spectral positions of the various resonances
are sketched in Fig. 4.15 (a). The shaded Gaussian curve gives the spectral shape of
the pump pulse, while the solid line indicates a section of the spectrally broad probe
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Figure 4.15: (a) Energy level scheme: EL marks the spectral position of the bottom
of the lowest polariton mode. In addition, the uncoupled resonances of the heavy hole
exciton (EX) and the iy = 0 cavity mode (EP ) are shown. The spectral shape of the
pump pulse is given by the shaded Gaussian. The solid curve shows a spectral section
of the probe pulse. (b) Schematics of pump-and-probe configuration. The dark lines
give the orientation of the wires. The probe beam is directed normal to the sample
surface. The pump beam is tilted by θexc = 8◦ in the plane defined by the sample
normal and the wires.

pulse. Both beams were focused onto the same spot of the sample, having a diameter
of ≈ 100 µm. While the probe beam was directed normal to the surface (probing the
polariton population at k|| = 0), the pump beam hits the sample under an angle of 8◦.2

The pump pulse was centered at an energy slightly above the bottom of the LPB, to
be resonant with the polariton mode at the chosen θexc (Eexc = EL(θexc)).

First, we present the experimental data, before we develop an explanation for the
observed phenomena. Fig. 4.16 (a) gives the transmission of the planar cavity. In
the linear transmission spectrum of the probe beam (no pump excitation) we observe
the LPB in the shown energy range (solid grey trace). The dashed (dotted) line gives
the pump-and-probe transmission signal at τ = 3 ps for excitation with co-circularly
(anti-circularly) polarized pulse trains at a pump power of Pexc = 10 mW. In the co-
circular configuration we find a pronounced rise of δT caused by Pauli blocking. Since
Pauli blocking does not occur for pulses of opposite circular polarizations, thus leaving
the transmission unchanged (dotted trace) [163]. At very short delays there are also
contributions from residual parametric wave mixing, which is restricted to co-circular
excitation as well (see the spikes at τ = 0 in Fig. 4.17) [125, 126, 129, 141].

This selectivity with respect to the relative pulse polarizations vanishes when cor-
responding experiments are performed on stressed resonators (Fig. 4.16 (b) and (c)).
For the planar cavity stressed in the brass holder an increase of the probe transmis-

2We note that for the present exciton-photon detuning the magic angle for parametric polariton
scattering [125] would be 11◦. Therefore this scattering process is strongly suppressed (see the previous
chapter).
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Figure 4.16: MC transmission spectra for various pump-and-probe polarizations. The
grey solid traces mark the linear transmission (no pump). The dotted (dashed) lines
correspond to the anti-circular (co-circular) pump-and-probe signal. Panel (a) shows
the data for the unstrained planar MC, (b) that for the strained planar resonators, and
(c) that for wire shaped cavities with a width of 3µm.

sion still occurs for co-circular excitation, but now it is also observed for anti-circular
excitation. The magnitude of the amplification stays well below the values observed
in the unperturbed cavity. However, finding comparable intensities for co- as well as
anti-circular excitation demonstrates that the cavity modes are no longer circularly
polarized. The same applies for the wire shaped resonators. Here the sum of both sig-
nals reaches the value observed in the 2D-cavity. Obviously, the lateral patterning also
has destroyed the in-plane symmetry, breaking the polarization selection rules. As the
principle behavior is the same for strain applied via external force or via patterning of
the cavity structure, we will concentrate on results obtained on the patterned sample,
where it is experimentally easier to keep the stress at a constant level.

Next we investigate the time evolution of δT . The left panel of Fig. 4.17 shows the
spectrally integrated pump-and-probe signal obtained for the wire shaped microcavities
for different Pexc. At low Pexc = 5 mW, after its rise the time evolution of the signal
can be described by an exponential decay for both polarizations. When increasing Pexc

we find pronounced oscillations superimposed on the signal which are in anti-phase for
the two configurations: The σ+σ− signal reaches a maximum when the σ+σ+ signal is
at its minimum and vice versa.

The oscillations are observed also in the spectral domain and become even more
evident there. Fig. 4.17 (b) shows the spectral position of the pump-and-probe signal
at Pexc = 15 mW. At τ = 0 the signal is blue-shifted with respect to the initial energy
of the LPB. With increasing τ the peak position relaxes back. However, the shift is
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not monotonous but it shows oscillations which are phase-shifted by π for the σ+σ+

and σ+σ− configuration. The beat period is identical to that observed in the intensity
domain. The solid line in Fig. 4.17 (b) is calculated by averaging the line positions for
both polarizations. No oscillation can be found in this case, but the line shifts back
smoothly, as is the case for a planar cavity [163].

We have performed a detailed polarization analysis of the pump-and-probe signal,
for which we placed a linear polarizer between the sample and the detector and excited
in σ+σ+-configuration (Fig. 4.18). We find an energy splitting between the polar-
ization states along and perpendicular to the wire axis and even more convincing is
the fact that no beating occurs. The line polarized perpendicular to the wire axis is
lowered in energy with respect to that polarized along the wires. When rotating the
polarization plane to be tilted by 45◦ with respect to the wire axis we observe beatings
again. This demonstrates that the oscillation results from a coherent superposition of
polariton spin states, which are polarized along and perpendicular to the wire. The
emission of the two linearly polarized states is slightly different in energy. We excite a
coherent superposition of these states, either with linear polarization, where the polar-
ization axis is not along one of the eigenpolarizations or with circular polarization. The
superposition of the emission from both states can now interfere, where the interference
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Figure 4.17: (a) Spectrally integrated pump-and-probe signal (logarithmic scale) as a
function of delay for three different pump powers (for clarity the corresponding spec-
tra are shifted vertically). (b) Spectral position of δT as a function of τ for Pexc =
15 mW. Open (solid) symbols mark anti-circular (co-circular) excitation conditions.
The solid line was calculated by averaging the line positions for the two polarization
configurations.
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Figure 4.18: Spectral position
of δT as a function of τ for Pexc

= 15 mW. A linear polarizer is
placed between sample and de-
tector. For open (solid) symbols
the linear polarization is paral-
lel (perpendicular) to the wire
axis.
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period Tosci directly gives the energy difference

h

Tosci

= ∆E = E⊥ − E||. (4.14)

As this is a coherent phenomenon, the damping of the beat amplitude gives the de-
coherence time of the spin system [164, 144]. We have demonstrated that the linearly
polarized eigenstates replace the circularly polarized ones of the conventional planar
cavity. In principle, this might originate from either the photonic or the excitonic
contribution, a question to be discussed below.

Fig. 4.19 shows the energies of the transmission resonance after subtracting the
averaged line shift (compare solid trace in Fig. 4.17 (b)) for increasing Pexc. At low
Pexc the polarization splitting can be described by an exponential decay. No oscilla-
tion is observed, here. With increasing Pexc oscillations become observable and more
pronounced. Looking at the first half period we find Tosci ≈ 29 ps.

After having presented the experimental data we now turn to the discussion of the
results. The oscillations in δT and EL at high pump densities and their polarization
selection rules suggest that the beats originate from a spin precession of the polariton
population at k|| ≈ 0. As derived from the beat period, we expect a splitting ∆E =
130 µeV = h

Tosci
. Taking into account the large linewidth, the latter is in reasonable

agreement with the splitting of 100 µeV found in the spectral domain.

Let us first clarify the origin of the polariton splitting: At first sight, one might
consider the optical mode splitting observed earlier in wire shaped resonators. Each
mode iy splits into two components which are polarized either along (TE) or normal
(TM) to the wires. Calculations show that in 3 µm wide wires the TE mode is the
one of lower energy, lying about 50 µeV below the TM mode [161]. However, this
splitting can be excluded, since the order in energy observed in the experiment for the
two linearly polarized states is opposite to that expected for the TE and TM modes:
The state with polarization parallel to the wire is located at higher energies in our
studies. The same applies to the TE-TM splitting in a planar cavity where a splitting
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Figure 4.19: Evolution of the line shift as a function of τ , where the averaged line
position has been subtracted from the data. The dotted (solid) line marks co-circular
(anti-circular) excitation conditions. From top to bottom Pexc has been increased from
5 mW to 23 mW.
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Figure 4.20: Schematic of the
exciton energy levels. Here we
assume pure heavy hole and
light hole character. SR and
LR exchange split the bright
from the dark excitons. Leav-
ing the bright doublet degener-
ate. When reducing the sym-
metry of the QW, LR exchange
splits the bright exciton dou-
blet into two linearly polarized
states.
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of the TE and TM modes occurs, due to the different boundary conditions at the Bragg
mirror interface. Here the spectral position of the TE mode is also lower than that of
the TM mode. Furthermore, this splitting is negligible for the small angles used in the
present studies [165]. Finally, it should also be observable in an unstrained cavity and
not only in a cavity under strain. Thus we conclude that the observed splitting does
not originate from the photon contribution, but rather arises from a splitting of the
exciton fraction of the polariton.

Since the splitting is not observed in an unstrained planar MC it has to be caused by
uniaxial strain either arising from patterning or the externally applied force. Because of
the lattice mismatch between GaAs and In0.14Ga0.86As the QW is strained. The stress
however is uniform in the quantum well plane. In the wire structures the translational
invariance is broken by the patterning. The strain can relax perpendicular to the wire
axis. This uniaxial strain release leads to a reduction of the QW symmetry. The
energy of the two bright, quasi-two-dimensional heavy hole excitons can be described
as [152, 166]

E1 =
cz
2
− 1

2
(cx + cy) E2 =

cz
2

+
1

2
(cx + cy), (4.15)

where cx, cy and cz are the electron-hole exchange parameters. The unstrained ideal
QW has symmetry D2d and a fourfold rotation-reflection axis. In this symmetry we
find cx =−cy, which leaves the excitons degenerate. When uniaxial strain is applied to
the quantum well we lower the symmetry to C2,v with cx 6= −cy lifting the degeneracy
of the excitons due to exchange [151, 85, 166].
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In quantum structures, particularly in those under strain, heavy hole-light hole
mixing often is considered to be negligible due to the large energy splitting between
those states (see chapter 4). Pure heavy hole character is attributed to the ground
state exciton. The states in this exciton manifold are characterized by the angular
momentum projection M = Jh,z + Je,z along the heterostructure growth direction z.
The long range exchange contributes to a splitting between the bright excitons with
|M | = 1 and dark excitons with |M | = 2 (see Fig. 4.20). In addition, when the
symmetry of the system is reduced, it leads to a further splitting of the bright exciton
into the states |⊥〉 and |||〉, whereas it does not affect the dark states. The short-ranged
part, on the other hand, contributes as well to the splitting of bright and dark excitons.
It does not affect the bright exciton doublet, except for effects of higher order which
typically are small. This is summarized in Fig. 4.20. If, however, mixing with the light
hole is not negligible, the short range interaction will contribute to the bright exciton
splitting when the symmetry of the system is reduced [85].

Summarizing the effects of electron-hole exchange interaction, it will cause a hy-
bridization of the excitons with angular momentum |M | = 1 in low symmetry systems.
The resulting states |⊥, ||〉 = 1√

2
(|+ 1〉 ± | − 1〉) are split by an energy ∆E. They can

be excited independently by light with linear polarization either along or normal to
the direction of uniaxial strain with the state polarized perpendicular to the wire being
higher in energy [152], in agreement with the present experiments. For spectrally broad
excitation with circular polarization (or linear polarization that does not point along
or perpendicular to the wire) coherent superpositions of these linear combinations are
excited. These superpositions are described by |⊥〉± i|||〉 in the cases of σ± excitation
and |⊥〉 ± |||〉 for excitation with light linearly polarized at ±45◦ with respect to the
strain (wire) axis. The splitting ∆E leads to a spin precession. Changing the circular
polarization gives rise to a π phase shift, which explains why the signals for co- and
anti-circular excitation are exactly out of phase.

The long decay time of the beats supports their assignment to different spin config-
urations, for which the dephasing time is significantly longer than for charge excitations
[148, 149, 150]. Previous studies have shown that carrier dephasing due to polariton-
polariton scattering is almost an order of magnitude faster than the decay of the beats
observed here [167, 120]. Moreover, increasing Pexc leads to strongly accelerated de-
phasing in the polariton system, just opposite to the effect described above.

After having discussed the origin of the splitting, we turn our attention to the
power dependence of the beating behavior as seen in Fig. 4.19. The probe beam tests
the population in (i) the k|| = 0 state of the LPB and (ii) in the exciton localization
sites. Let us first discuss the behavior at low pump densities. Here δT rises is due to
Pauli blocking [163]. The localized electron-hole pairs are either created directly by the
pump pulse or originate from polaritons, which are scattered into such long living states.
This process becomes relevant for pump generated polaritons, since direct relaxation
into the polariton ground state (k||=0) is strongly suppressed [121]. Scattering into
localized excitonic states conserves spin coherence. Carriers that are transferred from
the localization sites into k|| = 0 states are quickly emitted from the cavity on a time
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scale of few ps, which is given by the finesse of the resonator. Therefore the polariton
density at the bottom of the LPB is negligible in the low power regime and does not
influence the optical response of the system.

The strain is well oriented but changes strongly from the wire edge to the center,
causing a variation of the state splitting ∆Ei among the localization sites i. In each site
the spin precesses with the period Tosci,i = h

∆Ei
. In the experiment the superposition of

the signal from many localization sites is detected. Due to the differences in Tosci,i no
uniform beatings can be observed [168]. The long lifetime of the localized states gives
rise to a homogeneous linewidth of ≈ 10 µeV. As the homogeneous linewidth is smaller
than the exchange splitting it would allow for the observation of the spin precession in
studies resolving single localization sites.

Let us now discuss the origin of the quantum beats observed at increased Pexc.
When the site population saturates, elastic scattering of polaritons into these sites is
prevented. Because of this complete ’bleaching’ of the localization sites the transmission
is not affected any further by Pauli-blocking from them. Still, in the experiment δT
increases further which is traced to a strong increase of the polariton population in the
k|| ≈ 0 states, where a macro filling of the polariton states can be reached [134]. Such
a population could arise from two processes:

• Relaxation of polaritons by polariton-polariton scattering, which is effective among
particles of the same spin orientation in the high density regime [120]. Due to
the short cavity lifetime, it will contribute to the generation of a high polariton
density mainly at short delays.

• Feeding of the macroscopic population at k|| ≈ 0 by a seeded transfer from exciton
states. These exciton states can be either localized excitons or free excitons with
large wave numbers, which are only weakly coupled to the light field. The free
exciton population is generated in the high Pexc regime since the absorption of
the polariton line is bleached. Furthermore, these excitons are generated by the
high energy tail of the pump pulse. They have wavenumbers significantly larger
than that of the light (klight ≈ 1 · 107m−1).

The macro filled state at k|| ≈ 0 reaches a spatial extension on the order of a
few µm. This coherent state averages over the fluctuations in the exchange splittings
∆Ei. The coherent spins of this macro population oscillate in phase between the

states with an effective splitting ∆E =
∑

i ∆Ei

i
, which allows the observation of the

oscillations. The long spin coherence time observed here excludes a generation of the
k|| ≈ 0 population exclusively by polariton-polariton scattering, since such scattering
has been shown to result in a fast loss of exciton spin coherence [167]. Furthermore, the
loss of spin coherence would become faster with increasing carrier density, in contrast
to the present findings. Hence, the experimental data support a seeded feeding from
the exciton reservoir.

The population in the exciton reservoir undergoes a rather fast dephasing. There-
fore, the spin coherent population at the bottom of the LPB has to be fed by a stimu-
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These results indicate that the energy position of the optical
response depends on the excitation intensity that is trans-
ferred from the pump. These expressions also show that there
is no threshold excitation power, which is different from the
case for the short delay time amplification discussed in the
previous section. Therefore the optical gain here will be
smaller. It is also evident thatP0↑ andP0↓ are out of phase
by p for the different spin-polarization probings, which is
consistent with the experiments in Ref. 5.

The experimental results in Ref. 5 also show a variation in
the position of thek50 peak as a function of the delay time
between pump and probe. We address this issue here. Note
that Eqs.~17! and~18! for thea excitations together with the
similar equations for theb excitations can be solved simul-
teneously. We obtain two independent second-order differen-
tial equations for each excitation. The equation fora is
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The optical gain atk50 can be calculated by performing
a Fourier transformation for the excitationsa andb. In Fig.
3 the energy of the peak line position for different excitation
powers is given as a function of delay time. These time-
dependent results have a similar appearance to those ob-
served experimentally.5 The experiments in Ref. 5 found that
the peak position for thes1 probe polarization was shifted
by p in time with respect to that fors2 probe.

In the calculations in Fig. 3 as the pump power is in-
creased, energy oscillations start to appear as a function of
the delay time and of excitation power. These oscillations are

controlled by the exchange splitting and by the excitation
density through the parameteru. At low excitation the oscil-
lation period is determined by the exchange splittingD,
which is relatively very small. Thus we do not see oscilla-
tions at low powers, and indeed no oscillations are seen ex-
perimentally. This is shown in Fig. 3~a!. As the excitation
power is increased, more free excitons become available, the
VN̄ factor becomes dominant, and pronounced oscillations
are seen@Figs. 3~b! and 3~c!#. From this work there are two
implications for experiment. One is that exchange splitting
accounts for the out-of-phase beats in terms of thes1 and
s2 probe polarizations. The second is that nonlinear exciton-
exciton interaction and phase space filling are responsible for
the period of the beats as a function of excitation power.

Finally, we notice that the role of the polariton linewidthg
in this case is expressed only through the exponential decay
of the energy line splitting, whereas for the short delay time
optical amplification discussed aboveg is one of the param-
eters that determines the threshold power.

IV. CONCLUSION

We have presented a microscopic treatment for polariton
effects in photonic wire systems. Results are obtained for the
parametric wave mixing of a high optical gain at short delay
times for which energy momentum is conserved for the three
macroscopically occupied states, the probe, pump, and idler
states. Scattering between the lower and upper polariton sub-
branches, which is not possible in planar cavity, is found

FIG. 3. Line position as a function of pump-probe delay time for
three values of the excitation power.

NONLINEAR POLARITONIC EFFECTS IN PHOTONIC WIRES PHYSICAL REVIEW B67, 115336 ~2003!

115336-5

Figure 4.21: Line po-
sition (EL(k||) = 0)
as a function of de-
lay, for both circu-
lar polarization config-
urations. From top
to bottom the excita-
tion power has been
increased. Taken from
L.M. Woods and T.L.
Reinecke Phys. Rev.
B 67, 115336 (2003).

lated transfer from the reservoir. In contrast to conventional relaxation, such a stimu-
lation will take place only for excitons with a spin phase identical to the phase of the
macro-population. In this way a high degree of spin coherence of the k|| = 0 states will
be maintained and the quantum beats can be observed in a large delay range. From
the envelope of the oscillations a spin coherence time of ≈ 30 ps is obtained, which
is in first approximation independent of Pexc. The beatings are to be understood as
a spin precession of the collective polariton phase between the linearly polarized and
exchange split states.

Finally, in Figs. 4.17 and 4.19 we find one half period of an oscillation at negative
delays. It is observed even at the lowest Pexc, where no oscillations appear at positive
delays. The absorption of the probe pulse in the QW and the substrate is weak.
Therefore a significant fraction of the pulse hits the sample back surface and gets
reflected there. The reflected probe pulse generates polaritons which now can interfere
with polaritons generated by the pump pulse. This interpretation is supported by the
fact that any signal at negative delays disappears with increasing temperature, which
leads to enhanced absorption in the QW. The interference will depend on the relative
spin phase of the two polariton populations, which is given by the spin precession. The
period of the oscillation (24 ps) is determined by the substrate thickness.
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Recently, this phenomenon was investigated theoretically by L.M. Woods and T.L.
Reinecke [166]. Their treatment is based on a polariton Hamiltonian, initially derived
to describe parametric wave mixing of polaritons in planar microcavities [129]. This
Hamiltonian has been extended by an exchange term [169] treating the exchange split-
ting of the bright exciton doublet in the low symmetry quantum well. Applying the
pump and probe fields and assuming a macroscopic population in the pump and probe
states the nonlinear optical response of the cavity is derived analytically. As k||,exc is
clearly off the wave mixing resonance, no macroscopically populated idler is expected.
Hence, the assumption of only two macro populated states is well justified. For co- and
anti-circular pump-and-probe configurations the energy of the LPB was calculated as
a function of delay time. The results are shown in Fig. 4.21. As in the experiment
(compare Fig. 4.19) beats between the exchange split states appear only at increased
excitation densities. In the theoretical modelling, the appearance of oscillations at
higher Pexc is attributed to the higher number of free excitons, that become available.

Even more exciting, the calculations indicate that Tosci decreases with increasing
Pexc. The calculations show that this effect is due to phase space filling and nonlinear
exciton-exciton interaction [166]. It is not attributed to an increase in the exchange
interaction. As a consequence the line shifts at τ = 0 remain constant for all excitation
powers. Looking closely at Fig. 4.19 a similar, even though much less pronounced
effect can be seen. Seemingly the oscillation period deceases with increasing Pexc as
well. Intuitively, this effect was interpreted as an increase of the exchange interaction.
Indeed, also a slight increase in the splitting at τ =0 is seen in Fig. 4.19. A first
explanation of this effect was given by considering an increase of the coherence size of
the exciton by the cavity light field [159]. This in turn should give rise to an increase
in the LR exchange. The calculations show that this is not the case but a consequence
of the nonlinearities gaining importance at high excitation densities.

In summary, in this section we have observed broken polarization selection rules for
optical nonlinearities in wire shaped semiconductor microcavities, which are explained
by the reduced symmetry of the QW. This goes in line with an exchange splitting of the
bright exciton doublet caused by uniaxial strain relaxation. At high excitation powers
the polariton ground state becomes macro occupied. This spin coherent population
gives rise to quantum beats due to the strain induced splitting of polariton states with
|M | = 1 into |⊥, ||〉 = 1√

2
(| + 1〉 ± | − 1〉) states. The macro occupation allows for

spin coherent transfer of excitons into the polariton ground state, maintaining a spin
coherent polariton phase way beyond the cavity lifetime.

4.4 Tailoring parametric polariton scattering chan-

nels

While carriers are confined by potential barriers, photons can be confined by dielectric
discontinuities. In a MC the mirror boundaries keep photons inside the resonator. So
far we have been dealing with photons confined along the growth direction z of the
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Figure 4.22: Calculated mode spectrum of a planar resonator (a), a photonic wire
(Ly = 4 µm) (b) and a photonic dot (Ly = Lx = 4 µm) (c) versus kx. The cavity
geometries are sketched in each panel, the orientations are defined by the coordinate
system sketched in panel (a). The modes are labelled as described in the text. E0

P was
set to 1.40 eV.

heterostructure. We will now turn to additional photon confinement in the resonator
plane. Recent developments in nanofabrication techniques allow for producing high
quality resonators with lateral dimensions comparable to the photon wavelength in the
optical range [170]. Lateral photon confinement modifies the optical mode spectrum
of a planar MC. In growth direction cavity photons are confined by the Bragg mirrors,
while they are free to propagate within the resonator plane (x-y-plane). From Eq. 4.4
the photon dispersion can be written as:

E2
P (k) =

(
~c0
n

)2
((

2π

LR

)2

+ k2
y + k2

x

)
= (E0

P )2 +

(
~c0
n

)2

k2
|| . (4.16)

Here E0
P is the energy of the fundamental cavity mode that is determined by the

resonator thickness. Typically, E0
P ≈ EP , so that the dispersion is well approximated

by a parabola (see Fig. 4.22 (a)).

In the next step an uniaxial discontinuity of the refractive index in the resonator
plane is introduced by preparing wire-shaped structures from the planar structure (see
Fig. 4.14). The wire width Ly is typically on the order of few µm. In these systems
the light is still free to propagate along the wire axis (x), while perpendicular to the
wire (y) the electric field is confined at the discontinuity of the refractive index which
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jumps from n ∼ 3 to unity at the resonator edges. Equation 4.17 gives the energy of
the photon modes in such a quasi-one-dimensional cavity [161]:

E2
P (kx, iy) = (E0

P )2 +

(
~c0
n

π

Ly

(iy + 1)

)2

+

(
~c0
n

)2

k2
x, (4.17)

where the index iy = 0, 1, ... gives the number of nodes in the electric field distribu-
tion across the wire. The unidirectional confinement gives rise to a splitting of the
fundamental mode of the planar cavity into a multiplet of branches. Along the y-
direction the photon modes show no dispersion (EP (ky) = const.). On the other hand,
when EP (kx) is mapped, each mode (iy) of the multiplet shows quadratic dispersion,
as found in planar resonators (compare Fig. 4.22 (b)). Due to the analogy with other
quasi-one-dimensional systems we will refer to these structures as photonic wires in the
following.

From the one-dimensional case we proceed to the treatment of quasi-zero-dimensional
resonators, which means also shrinking the cavity extensions along the x-direction to
be comparable to the photon wavelength. Technically, this is realized by etching mi-
cropillars from a planar cavity [171, 172]. In case of resonators with a rectangular cross
section the cavity modes are described by [172, 173]:

E2
P (ix, iy) = (E0

P )2 +

(
~c0
n

π

Ly

(iy + 1)

)2

+

(
~c0
n

π

Lx

(ix + 1)

)2

. (4.18)

Here EP is the sum of three quantized energies; no momentum dependent term occurs.
The energy levels of 4x4 µm wide cavities are shown in Fig. 4.22 (c). The modes are la-
belled as (ix, iy), where the ix,y again gives the number of nodes in the field distribution
along x, y. In comparison to photonic wires, the bands arising from propagation along
the wire now split further into a series of discrete modes. This gives direct evidence
of the three dimensional field trapping [173]. These characteristics justify the term
’photonic dots’ for such micropillars.

Photonic wires and dots can be looked at as the prototype model systems for low
dimensional cavities. Starting from here a rich variety of geometries can be thought
of. In varying the geometry we are in effect manipulating the photon mode spectrum.
We can think of modelling a crystal-like mode spectrum by building chains of coupled
photonic dots [153]. We can also mimic molecule-like modes by simply coupling two
photonic dots [174]. Several review articles give an overview on this fascinating field
[175, 176, 177].

For demonstrative purposes we will stick with the most simple cases of quasi-zero-
dimensional and quasi-one-dimensional systems. Whereas the linear optical properties
of these resonators have been investigated in quite some detail [178, 173, 174, 153,
161, 179, 180, 181], the study of the optical nonlinearities [182, 183], particularly in
the strong coupling regime [184, 160, 185], is still at the very beginning. After hav-
ing obtained a far reaching control of the photonic mode spectrum by lateral cavity
confinement, we want to discuss to which extent this can be exploited to manipulate
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polariton properties. For this purpose we have to go back into the strong coupling
regime. Now we not only couple a single photon mode EP (k||) to the exciton, but we
couple the entire mode spectrum defined by the cavity geometry to the QW exciton.
This can easily be described in the framework of the coupled oscillator model, where
now the 2 × 2 matrix is extended to the number of photon modes plus the exciton
mode. Eq. 4.19 gives an example for four photon modes coupled to the exciton:

H =


EP (kx, 0) 0 0 0

~ΩR,0

2

0 EP (kx, 1) 0 0
~ΩR,1

2

0 0 EP (kx, 2) 0
~ΩR,2

2

0 0 0 EP (kx, 3)
~ΩR,3

2
~ΩR,0

2

~ΩR,1

2

~ΩR,2

2

~ΩR,3

2
EX(kx)

 . (4.19)

After having introduced parametric scattering in a standard planar cavity (see
introduction of chapter 4), we now move forward towards parametric scattering in low
dimensional cavities. Our goal will be to modify scattering channels at will, as the
limited polaritonic phase space in planar cavities restricts the number and properties
of potential pair scattering channels. We will explore how we can tailor parametric
polariton scattering among the polariton modes in low dimensional resonators.

Tailoring scattering processes means obtaining some control of the kinetics of car-
riers in semiconductors. Depending on the goal to be achieved, an enhancement or a
suppression of scattering is desirable. For applications in quantum information pro-
cessing, for example, scattering has to be avoided as it destroys the phase coherence
of the carriers. On the other hand, to facilitate carrier transfer and relaxation it is
preferable to optimize the efficiency of certain scattering channels. In the past decade
tailoring of scattering has been aimed at by proper design of heterostructures. One of
the most sophisticated examples for such engineering is the quantum cascade laser. Its
operation crucially relies on adjusting carrier energy levels and wave functions [186].
Typically, in semiconductor heterostructures the carrier phase space is tailored. In our
approach we design the photon spectrum and use the strong exciton-photon coupling
to create polaritons. Polaritons can scatter like conventional carriers, but now we want
to control the scattering channels by choosing the appropriate cavity geometry.

For this purpose the following setup has been developed. As the polariton modes are
typically separated by . 1 meV excitation with pulses of few ps inevitably excites more
than one polariton state. To obtain a well defined resonant excitation of a single polari-
ton state a Ti:Sapphire laser operating in cw-mode was used. The studies of Stevenson
et al. [131] and Ciuti et al. [133] demonstrate that parametric stimulated scattering
is not restricted to excitation with ps pulses, but also occurs for cw-excitation. The
laser energy Eexc can be tuned continuously, at least on the energy scales of relevance
here, by a birefringent crystal. This is controlled by a computer. The laser beam was
focused onto the sample with a focal spot of about 50 µm in diameter. The sample
is mounted on the cold finger of a micro-photoluminescence cryostat, which allows a
variation of the temperature. The experiments were performed at a temperature of
≈ 5 K. As the sample surface is only a few mm’s from the cryostat window this mount-
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Figure 4.23: Setup for angle resolved studies on parametric scattering.

ing permits angle resolved studies in a range of ≈ ±80◦. The emitted photons pass
through an aperture providing an angle resolution of . 0.5◦. The light is then coupled
into an optical fiber. A linear polarizer placed between sample and aperture blocks
reflected and scattered light from the exciting laser. This arrangement is mounted on
a rail. The rail is fixed exactly below the sample and is free to rotate around this point
by the angle θ. Hence, rotating the rail permits scanning the polariton momentum
without further alignment. The light exiting the fiber is focused onto the entrance slit
of a monochromator, where the emission was spectrally analyzed and finally detected
by a CCD-camera. This combination gives a spectral resolution of ≈ 0.1 meV. For
characterization of the sample, an Ar+-laser (λ = 514 nm), which normally pumps the
Ti:Sapphire laser, was used for above band gap excitation. The photoluminescence
was then detected in the standard way. While this setup marks the final and most
convenient configuration, much of the data shown in the following were obtained using
a conventional bath cryostat in transmission geometry. Due to the limited aperture of
the cryostat windows only an angle range of ±8◦ was accessible. Higher angles could
only be realized by tilting the sample, which naturally also affects the pump angle and
requires realignment.
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Figure 4.24: (a) Scanning electron micrograph of an ensemble of photonic dots. The
arrow marks the width of the structure (Lx = Ly = 4 µm). In the experiment the
direction of detection is tilted with respect to the cavity normal by the angle θ (see
coordinate system). (b) Energy of the three lowest modes of the photonic dot as a
function of θ. The intensity is plotted on a logarithmic grey scale.

4.4.1 Parametric polariton scattering in photonic dots

As a starting point investigate optical nonlinearities in quasi-zero-dimensional cavities.
The investigated sample is based on a planar λ-cavity as described earlier. A scanning
electron micrograph of a section of an array of photonic dots is shown in Fig. 4.24 (a).3

Fig. 4.24 (b) shows the spectrally resolved emission of the three lowest modes of
photonic dots plotted on a logarithmic grey scale versus the detection angle. Non-
resonant, above band gap, excitation with an Ar+-laser was used. The photolumines-
cence recorded normal to the sample plane (θ = 0) is dominated by emission from
thermalized carriers in the ground mode. In addition, weak emission from the excited
modes is seen. For increasing θ the higher excited modes become dominant in the spec-
trum. The first excited mode reaches maximum intensity for θ ≈ 10◦ and the second
excited mode reaches its maximum for a detection angle of 20◦. The intensity in the
far field is the Fourier transform of the near field distribution of the electromagnetic
field. As the near field is strongly localized, the modes are delocalized in k-space. This
means they extend over a wide range of angles. All modes show no dispersion, that
is their energies do not vary with θ, demonstrating the 3D-confinement of the electro-
magnetic field. Since E0

P ≈ EP the energy spacing between the ground (0,0) and the

3We note that the first excited mode is two-fold degenerate (neglecting the polarization of the
electromagnetic field). Its field distribution has a nodal plane which can be either along the x-
direction (1, 0) or along the y-direction (0, 1). For simplicity we will use here only the notation (1, 0)
for the first excited mode.
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first excited mode (1,0) is equal to the spacing between the first excited (1,0) and the
second excited mode (1, 1) (see Eq. 4.18) with a splitting of ≈ 1.5 meV. Because of the
considerable energy separation from the exciton mode (EX = 1.411 eV), as compared
to the Rabi splitting, this equidistance is hardly changed by the excitonic admixture.
In principle, an increased excitonic admixture would increase the parametric scattering
efficiency, as it is mediated by exciton-exciton interaction. However, as it destroys the
equidistance between the modes, it would make this scattering channel inaccessible.
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Figure 4.25: Logarithmic contour plot of the spectrally resolved emission as a function
of Eexc − EP (1, 0). The excitation angle was fixed at 10◦, while the detection angle
was 0◦ (panel (a)) and 20◦ (panel (b)). The dots in the left panel represent polaritons,
which undergo parametric scattering as sketched by the arrows.

In the second stage of the experimental investigations we focus on the behavior
under resonant excitation. Fig. 4.25 shows the spectrally resolved emission of the
resonators versus the detuning of the laser energy from the first excited mode in a
logarithmic grey scale for two different detection angles. The left panel shows the
emission normal to the resonator, the right panel was recorded for θ = 20 ◦. In both
cases the laser beam hits the sample under an angle of 10◦, where the emission from
the first excited mode has maximum intensity (compare Fig. 4.24 (b)). The ordinate
shows the mode energies, while the abscissae are calculated from the energy separation
of Eexc and the EP (1, 0) resonance. The laser energy is therefore represented by the
line running from the upper right to the bottom left of the graphs: Eexc is scanned
from above the (1, 1) mode to below the ground mode.

At θ = 0, for excitation above the EP (1, 1) mode only luminescence from the
ground mode is visible. Decreasing Eexc down to the (1, 1) mode causes a slight
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enhancement of the emission from this mode. Lowering Eexc further the (1, 1) emission
drops again. However, when Eexc becomes resonant with the first excited mode (1,
0) (Eexc = EP (1, 0)) pronounced emission from the energetically higher (1, 1) mode
appears. This goes in line with a strong increase of the signal from the (0,0) mode.
When Eexc is decreased further below EP (1, 0) the emission from the ground mode and
the second excited mode decrease towards zero. When Eexc finally resonantly excites
the (0,0) mode a strong signal from this mode is detected. However, for this situation,
no (1, 1) or (1, 0) emission is observed. These findings also hold qualitatively for the
large detection angle in panel (b) where the mode intensities are considerably smaller,
as compared to the laser intensity. We find emission from the high energy mode as
soon as the middle mode is resonantly pumped. In line with the rise of this emission
feature the ground mode emission increases. The drop in intensity goes in parallel in
both modes, just as much as the rise does. This documents that the emission features
are correlated.

In addition, as expected from Fig. 4.24 (b), at such high angles emission from
the (1, 0) resonance is observed. This feature appears only as long as Eexc is larger
than EP (1, 0). In particular, it does not show up for Eexc = EP (0, 0). This indicates
that thermal excitation effects can be excluded when explaining the (1, 1) emission
for Eexc = EP (1, 0). To double check this, the sample temperature has been increased
from 2 K to 10 K while resonantly pumping the (1, 0) mode. This should lead to a
significant increase of the thermal population in the (1, 1) mode, considering splittings
in the 1 meV range. However, we observed no increase of the (1, 1) emission; the
effect even decreases for increasing temperature. Hence, the polaritons are not lifted
into the (1, 1) mode via phonon interaction or other thermal activation processes. The
data clearly suggest a parametric polariton conversion process as an explanation for
the observed emission features. This process is sketched in Fig. 4.25 (a): The laser
resonantly generates polaritons in the (1, 0) mode. Due to carrier-carrier scattering one
polariton is down-converted into the ground state and a second one is up-converted into
the second excited mode. The total energy has to be conserved in such a two polariton
scattering mechanism, which is satisfied here due to the harmonic mode spacing. The
ground mode gives the signal state, while the idler is found in the (1, 1) mode. As soon
as the laser energy becomes off-resonant with the (1, 0) mode the initial state of the
pair scattering processes loses its macroscopic population and the scattering process is
truncated.

We noted already that the scattering induced emission from the (0,0) mode and
the (1, 1) mode are closely correlated, as expected for signal and idler states. We
further see that, as the laser energy is tuned through the (1, 0) mode, the emissions
from the (0,0) and (1, 1) modes both shift, which is surprising at first sight. These
line shifts are analyzed in detail in Fig. 4.26. In panel (a) the energies of the emission
lines of signal (open dots) and idler (full dots) are plotted against Eexc. As Eexc is
increased both modes are blue shifted, with the second excited mode stronger than the
ground state one. While the lines shift, the energy spacing between Eexc (diamonds)
and the ground mode and the spacing between the second excited mode and the laser
energy increase. However EP (1, 1) − Eexc equals Eexc − EP (0, 0) for all Eexc. This is
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direct evidence of the energy conservation. However, the microscopic reason for the
line shift remains to be identified. Let us first consider the origin of the linewidth of
the modes observed in the PL-spectra. From studies of single resonators we know that
the finesse is about 8000 for structure sizes of Lx = Ly = 4 µm, corresponding to
a linewidth of less than 0.2 meV.4 Hence, the homogenous linewidth is considerably
smaller than the linewidth of 0.5 meV that we observe in the experiments. Therefore,
the emission is inhomogeneously broadened. In the experiment a focus spot of 50 µm
excites an ensemble of about 100 photonic dots with slight size fluctuations (see inset in
Fig. 4.26 (b)). With shrinking lateral resonator size the confinement energy increases,
resulting in larger mode splittings. The broadening observed here corresponds to size
fluctuations in the range of ≈ ±0.4 µm.
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Figure 4.26: (a) Spectral position of the (1, 1) mode (solid dots) and the (0,0) mode
(open dots) as a function of Eexc. The diamonds mark the position of the exciting
laser. (b) Peak intensity of the (0,0) mode, as a function of Eexc. The solid line shows
a Gaussian fit to the data which serves as a guide to the eye. The data were obtained
for θ = 20◦. The inset illustrates the illumination of the dot ensemble by the focused
laser beam.

Now let us consider the consequences of this inhomogenous broadening for the
parametric polariton scattering process: As the Eexc approaches the low energy tail
of the inhomogeneously broadened (1, 0) mode the energy conservation condition is
satisfied only for the largest dots in the ensemble, with the smallest mode splittings.
Tuning the laser to higher energies makes this scattering channel accessible for smaller

4At such large negative detuning the weak exciton admixture has no significant impact on the
linewidth.
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dots while excluding the larger cavities from the scattering process. Consequently, the
emissions from the (0,0) mode and the (1, 1) mode shift as Eexc is scanned through
the first excited mode. Fig. 4.26 (b) shows how the corresponding amplitude of the
parametric scattering evolves, as a function of the excitation energy. Shown is the peak
intensity of the (0,0) mode (circles) as a function of Eexc. We see how the parametric
scattering gains intensity as the laser energy reaches EP (1, 0). This is followed by a
decay symmetric to the rise. In principle, this amplitude should reflect the number of
dots having the size corresponding to the required energy spacing. Hence, it should
directly give the size distribution of the dot ensemble. The data can be approximated
by a Gaussian (solid line) with a full width of ≈ 0.5 meV which agrees with the
linewidth of the (1, 0) mode in Fig. 4.24 (b).
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Figure 4.27: (a) Normalized intensity of the (1, 1) mode (solid dots) and the (0,0)
mode (open dots) as a function of the excitation power plotted on a log-log scale. (b)
Angle dependence of the parametric scattering for photonic dots (open symbols) and
a planar cavity (solid symbols), as a function of the detection angle.

To obtain further insight into the proposed scattering processes, in particular to map
out similarities as well as differences to parametric scattering in planar cavities, the
excitation power Pexc has been varied. The spectrally integrated, normalized intensity
of the (1, 1) mode ((0,0) mode) under resonant excitation of the (1, 0) resonance is
illustrated by the solid (open) symbols in Fig. 4.27 (a) on a log-log scale. In the low
Pexc regime the signal from the ground mode remains almost constant, which indicates
a reduced relaxation by acoustic phonons between the discrete polariton modes. The
emission from the (1, 1) mode is negligible. In the high excitation regime a strong
correlation between the increase of the emission from the (0,0) mode and the (1, 1)
mode is evident. Here the intensities of both modes increase superlinear ∼ P 2

exc, as
one would expect from a population that is created by exciton-exciton scattering. At
even higher powers, a strong exponential increase of the emission would be expected.
However, this range was not accessible in the present experiment.
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In Fig. 4.27 (b) the angle dependence of the conversion process is analyzed. The
open dots mark the intensity of the (1, 1) mode as a function of θ. For the photonic dots
idler emission is resolved in a wide angular range of ≈ 12◦. For comparison, data for a
planar cavity is shown (dark symbols) [141]. The symbols mark the intensity of the idler
emission. For the planar cavity case, a sharp angle resonance is observed, permitting the
parametric scattering only in a range of ±2◦. In both cases energy conservation is the
crucial parameter which has to be satisfied. In the two-dimensional case additionally
momentum conservation is of equal importance. This results in an observability of
the idler emission and hence parametric scattering in a narrow angle range only. For
the zero dimensional system conservation of k|| is not required. Because of the broken
translational invariance and the photon confinement no in-plane momentum can be
attributed to the polariton states. Hence, k|| is no longer a good quantum number and
the momentum conservation constraint does no longer apply. As a consequence the
idler emission intensity follows the field amplitude of the (1, 1) mode observed under
above band gap excitation (see Fig. 4.24 (b)). The (1, 1) mode idler emission can be
observed as well, when the angle of excitation is tuned over a similarly wide range and
only drops as the field amplitude of the (1, 0) mode vanishes.

Let us take a look at the symmetry of the states involved in the scattering process.
All states can be classified by the parity of the electromagnetic field distribution along
the x- and y-direction. While the ground mode has even parity in x- as well as y-
direction, the (1, 0) mode has odd parity in x-direction and even parity in y-direction
(see Fig. 4.28). We have to keep in mind, that the (1, 0) mode is degenerate with
the (0, 1) mode, which has even parity in x-direction and odd parity in y-direction.
The (1, 1) mode has odd parity in both directions. Looking at the potential scattering
events of Fig. 4.28, we find that the process on the left does not conserve the total
parity in y- direction. The process on the right, where the initial states are in the (1, 0)
state and the (0, 1) state, would conserve the total parity in the pair scattering event.
If parity conservation is relevant for parametric scattering in photonic dots, could be
investigated by adjusting the polarization of the exciting laser beam. This question
remains to be clarified.

Finally, the detuning dependence of the process has to be discussed. All data pre-
sented above were obtained for rather large negative detunings. In the experiment the
parametric scattering is observed for even larger negative detunings. When the photon
lines are shifted further up towards the exciton, a clear identification of parametric
scattering becomes difficult: With increasing excitonic admixture, the modes become
broader, complicating the spectral resolution of the parametric scattering. Intuitively,
we expect an increase of the scattering efficiency as the excitonic fraction of the modes
is increased. However, the level repulsion will lead to a violation of the equidistance of
the modes and truncation of the process.

It can, however, be thought of parametric processes in higher polariton modes,
which have no equidistant photon modes. The mode spacing can then be tuned by
adjusting the cavity detuning. As the higher lying modes feel the polaritonic level
repulsion much more strongly they can be pushed towards the lower lying modes to
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Figure 4.28: Electric field distribution of the three lowest optical modes in photonic
dots. The arrows mark potential scattering channels. Left: process violating parity
conservation. Right: parity conserving process.

achieve equidistance. So far we have not discussed the impact of the dot size. Here we
have chosen Lx = Ly = 4 µm. The dot size has no impact on the relative mode spacing,
but it determines the absolute energy differences. This tool at hand, we can tune the
energy transfer of the parametric scattering by simply adjusting the size of the cavity.
Naturally, there are limits to this, as for Lx,y < 1 µm the photon confinement becomes
less perfect. Increasing the size further, line broadening and mode spacing become
comparable. We still have one degree of freedom left. Reducing the symmetry of the
resonator Lx 6= Ly lifts the degeneracy of the modes into doublets. Proper design
of the cavity geometry again allows for equidistant states and possibly parametric
scattering. In general, we can even think of process among non neighboring modes.
We now, however, turn our attention to a case which is fundamentally different from
the quasi-zero-dimensional case: Parametric scattering in wire shaped resonators.

4.4.2 Parametric polariton scattering in photonic wires

A rich polariton mode spectrum is obtained by unidirectional lateral optical confine-
ment in quasi one dimensional wire shaped cavity structures. From the planar cavity
wire structures with a width of Ly = 3 µm were fabricated by lateral patterning. The
confinement leads to a splitting of the polariton modes known from planar cavities
into a fan of subbranches (see Fig. 4.22 (b)) [161], labelled iy = 0, 1, 2.... As iy gives
the number of nodes in the field distribution, it indicates the parity of the field. Even
(odd) iy corresponds to a symmetric (antisymmetric) electro-magnetic field distribution
across the wire.
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Fig. 4.29 (right half) shows the dispersion of the mode multiplet in the strong cou-
pling regime at an exciton-photon detuning ∆ = −7.5 meV.5 The data were obtained
by angle-resolved photoluminescence spectroscopy under non-resonant excitation. Four
optical modes are resolved below EX . Each of these modes couples strongly to the ex-
citon. In the dispersion this leads to pronounced anti-crossings as θ is scanned. In
addition, faint traces of the upper polariton multiplet are found. The data are well
described by a coupled oscillator model of Eq. 4.19 (see solid traces in Fig. 4.29) [162].
From the fits to the data we obtain ~ΩR = 3.8 meV for each anti-crossing, which equals
the Rabi splitting in the planar resonator.
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Figure 4.29: Angle resolved photoluminescence of wire shaped cavities with Ly = 3
µm. In the left half the detection angle φ was scanned perpendicular to the wire axis
while in the right half θ (kx) was scanned along the wire axis (logarithmic grey scale).
The solid traces give the calculated mode dispersions. Dots mark the signal and idler
states (full) plus the pump state (open).

In the LPB multiplet all subbranches have a point of inflection. Therefore within
each subbranch elastic pair scattering should occur when the laser energy is tuned to its
point of inflection. Figs. 4.30 (a) and (b) show the corresponding photoluminescence
spectra for the iy = 0 polariton resonance (kexc,x = 1.7µm−1 corresponding to θexc =

5∆ is determined from the energy spacing between the exciton and the photon energy E0
P , as

defined in a planar cavity.
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13◦). θdet was tuned to θsignal = 0 (Fig. 4.30 (a)) and θidler = 2θexc = 26◦ (Fig. 4.30
(b)). Above a cw-excitation power level of P T

exc > 200 mW emission from the idler state
with kx = 2kexc,x is observed (Fig. 4.30 (a)), which is accompanied by strong emission
from the (kx = 0, iy = 0) signal state (Fig. 4.30 (b)). The power density dependence of
the emission from the signal state gives further evidence for resonant pair scattering,
as it shows a threshold-like dependence (see Fig. 4.30 (c)). In the low Pexc regime a
linear increase of the intensity is observed, which emerges into a strongly superlinear
increase above the threshold P T

exc for elastic pair scattering.

1.400 1.405 1 10 100
10-1

101

103

105

 

(c)

(b)

(a)

  

energy (eV)

intensity (a. u.)in
te

ns
ity

 (a
.u

.)

 

Pexc (mW)

 

  

Figure 4.30: (a) and (b) Spectrally resolved emission for θdet = 0 (a) and θdet = 26◦

(b) for Eexc = E0(θexc = 13◦) above the excitation power threshold. (c) Emission from
the signal state as a function of Pexc on a log-log scale.

The process occurs on a time scale of a few ps’s [125]. Due to the cw-character of
the experiment we are not sensitive to dynamics. Thus the spectra show contributions
from parametric luminescence superimposed on signals from polariton populations that
build up after the coherence is destroyed. Below P T

exc the emission is determined by the
decay of such populations that have relaxed into the ground mode via phonon emission.
This gives rise to a linear power dependence for low Pexc. At Pexc > P T

exc this emission
is superimposed with signal arising from polaritons that are transferred into the signal
state by coherent pair scattering. This signal dominates at high excitation powers.

All branches of the lower multiplet converge towards the exciton level at higher kx.
Therefore they are very closely spaced in energy at kx = 2kexc,x and it is not clear from
the spectra to which branch iy the idler emission has to be attributed. Insight into
this question can be derived from a symmetry consideration. The parity of the product
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Figure 4.31: (a) and
(c) Schematics of the
scattering processes
where the solid traces
give the mode dis-
persion. (b) and (d)
Spectrally resolved
emission obtained for
the angles indicated.
Arrows mark emission
features correspond-
ing to final states of
the scattering process.
In panel (b) the ex-
citation is resonant
with the iy=1 mode
at θexc = 10◦. In
panel (d) the iy=1
mode is excited under
θexc = 6◦.
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state of the two initial polaritons is always even, independent of the parity of the branch
iy into which they are excited optically. For the specific process under study, the signal
state has even parity (iy = 0). To conserve the total parity in conversion process the
idler state has to have even parity as well. This represents an additional constraint
besides energy and momentum conservation. For the scattering process described in
Fig. 4.30 parity conservation requires that the idler state can only be located in the
iy = 0 or in the iy = 2 branch, but not in the iy = 1 or iy = 3 branch. It is expected
that scattering into higher lying modes is less efficient and the idler emission originates
from the iy = 0 mode. The process described here is most similar to the conventional
pair scattering in a planar resonator: From the point of inflection polaritons scatter into
the polaritonic ground state, while polaritons scattered into the excitonic section of the
LPB compensate energy and momentum transfer. Besides the parity argument there
is no qualitative difference to the planar cavity case. However, taking a closer look at
the LPB multiplet, several additional pair scattering channels can be postulated. For
example, within each subbranch energy and momentum conservation can be satisfied
for excitation close to the specific point of inflection.

More interestingly, scattering events within the LPB multiplet that do involve
more than one subbranch can be proposed. For example, pair scattering from the
(iy = 1, kx = 1.2 µm−1) pump state into the signal state at (iy = 0, kx = 0) with the
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Figure 4.32: (a) and
(c) Schematic pictures
of pair scattering
process (compare
Fig. 4.31 (a) and
(c) and see text for
details). (b) Emission
spectra for θexc = 10◦

(Eexc = E(iy = 2; θ =
10◦)). (d) Spectrum
for θexc = 0 (Eexc =
E(iy = 2; θ = 0)) at
θ = 10◦. The arrows
mark the emission fea-
tures corresponding to
the final states of the
scattering process.

idler at (iy = 0, kx = 2.4 µm−1) (Fig. 4.31 (a)) should be observable. Photolumi-
nescence spectra, where the excitation conditions match this resonance for parametric
luminescence, are shown in Fig. 4.31 (b) for Pexc > P T

exc. At θ = 20◦ (0) we find strong
emission from the idler state (signal state) in the iy = 0 branch, giving evidence of
inter-subbranch scattering between iy = 0 and iy = 1 states. The linewidth observed
for the idler mode (< 0.5 meV) is significantly smaller than the linewidth observed for
photoluminescence under above band-gap excitation (≈ 1 meV). Spectral narrowing is
characteristic for coherent parametric scattering [125, 129]. Going one step further, a
scattering channel where all three states are found in different modes opens up when
reducing Eexc and θexc slightly, following the dispersion of the iy = 1 branch (see Fig.
4.31 (c)). Doing so, we switch off the channel described in Figs. 4.31 (a) and (b) but
we obtain access to a process for which the idler state is lifted into the iy = 2 mode.
This resonance is obtained for θexc = 6◦. In these experiments (see Fig. 4.31 (d))
emission from the idler is observed at θ = 12◦. Again, all conservation laws are obeyed
by down-conversion of a second polariton into the (iy = 0, kx = 0) signal state. Com-
paring both processes we find that the idler was shifted from one even parity branch to
the next higher even parity branch, as required by the parity conservation constraint.

So far the signal state was the polariton ground state as in a planar cavity. The
mode fan gives us the freedom to study scattering events that do not involve this state
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e.g. when the laser excites the iy = 2 branch at kexc,x = 1.2 µm−1, θexc = 10◦ (see Fig.
4.32 (a)). For this process the signal state is located at (iy = 2, kx = 0), while the idler
state is found at (iy = 0, kexc,x = 2.4 µm−1). In the experiment the idler is nicely seen
in the photoluminescence recorded at θ = 20◦ (Fig. 4.32 (b)). The spectrum at θ = 0
shows emission from all (iy ≤ 2, kx = 0) states. Below threshold the intensity of the
(iy = 0, kx = 0) state dominates followed by the (iy = 1, kx = 0) state and the (iy = 2,
kx = 0) state intensities, in decreasing order. Above threshold the emission from the
iy = 2 mode, which is the signal state of the parametric conversion process, is strongly
enhanced. In the spectrum at θ = 0 we find a line doublet in the iy = 2 mode. Due
to size fluctuations in the wire ensemble, the polariton modes are broadened. Energy
conservation is only satisfied for the smallest wires in the ensemble for this excitation
condition. Therefore, the pair scattering signal appears in the high energy tail of the
iy = 2 mode. Its spectral distance to Eexc exactly equals the spacing between Eexc and
Eidler (see previous section) [184]. We note that for all pair scattering processes about
the same P T

exc is observed.

In the following we want to test the validity of the parity conservation in more
detail. For this purpose we consider a specific scattering channel, where signal and
idler are located on opposite sides of kx = 0. When the laser energy is tuned to the
(iy = 3, kx = 0) state, energy and momentum conservation permit a process in which
the signal state is located in the iy = 2 branch at kx = +1.2 µm−1 while the idler is
found at kx = −1.2 µm−1 in the iy = 3 branch (grey dots in Fig. 4.32 (c)). Due to the
inversion symmetry of the polariton dispersion (E(−kx) = E(+kx)), the wavenumbers
can be reversed in this process, the signal may also be located at (iy = 2, kx = −1.2
µm−1) with the idler at (iy = 3, kx = +1.2 µm−1), as indicated by the black dots in
Fig. 4.32 (c). However, as the signal state has even parity while the idler state has
odd parity (grey dots) or vice versa (black dots), this process should be forbidden due
to parity conservation. Fig. 4.32 (d) shows the corresponding spectrum which has
been recorded at very high Pexc � P T

exc. Symmetrically to the laser line, two modes
appear which have to be attributed to signal and idler emission, indicating a breaking
of the parity selection rule. However, the intensities of the corresponding emissions are
rather weak when compared to the emission from the iy = 1 and the iy = 0 branches,
which cannot be resolved separately due to their small energy separation. This thermal
emission clearly dominates, although it purely originates from phonon relaxation and
thus should be weak for the used Pexc. Therefore parity conservation is only weakly
broken. The violation of this constraint must be due to symmetry breaking in the
system, the origin of which is not completely clear. Possible candidates are the wedge
shape of the cavity or imperfections of the lateral sidewalls.

After having demonstrated intra- as well as inter-subbranch polariton-polariton
scattering within the LPB multiplet we move on to parametric processes involving the
upper polariton modes, which are prohibited in a planar cavity. For these studies, the
detuning was reduced to ∆ = −6 meV to increase the exciton admixture to the UPB
modes and thus the efficiency of the scattering process (see Fig. 4.33 (a)). A scattering
channel can be proposed (see arrows Fig. 4.33 (a)), where polaritons, generated in the
lower (iy = 2, kexc,x = 1.4 µm−1) state, are transferred into the (iy = 0, kx = 0)



4.4 Tailoring parametric polariton scattering channels 105

1.404

1.408

1.412

1.416

0 10 20

1 10 100

100

101

102

1.405 1.410 1.415

-4 0 4

 

θ = 24o

in
te

ns
ity

intensity (a.u.)
intensity (a.u.)

Pexc(mW) θ (o)

θ (o) 

(a)
 

en
er

gy
 (e

V
)

 

(d)
(b)

 

 

energy (eV)

 

 

 

(c)

  

Figure 4.33: (a) Mode
energies (squares) as a
function of θ. The
solid traces give a fit
to the data. (b) Spec-
trally resolved emis-
sion for θ = 24◦

(θexc = 12◦, Eexc =
E(iy = 2; 12◦)). (c)
Signal state emission
as a function of Pexc

on a log-log scale.(d)
Signal state emission
as a function of θ.
The solid trace gives
a Gaussian fit to the
data.

state of the LPB’s and into the (iy = 0, kx = 2.8 µm−1) state of the upper polariton
manifold. The corresponding experiments are shown in Fig. 4.33 (b): When θ matches
kidler,x, intense emission from the upper iy = 0 resonance is detected for Pexc > P T

exc.
In line with the idler emission goes a considerable rise of the intensity from the signal
state. Fig. 4.33 (c) shows the power density dependence of the signal emission, which
is similar to the findings of Fig. 4.30 (c). We observe a linear increase at low Pexc

followed by a strongly superlinear behavior above threshold. The signal arising from
parametric down conversion around kx = 0 is monitored as a function of θ in Fig. 4.33
(d). Due to momentum conservation, the emission shows a sharp angular resonance,
which can be described by a Gaussian (solid trace) with a full width at half maximum
of . 3◦. In addition, sharp dependencies on Eexc and θexc are found (not shown).

Involving the UPB’s allows for investigation of another scattering channel for which
the parity conservation can be tested. For this purpose we return to ∆ = −7.5 meV
with the dispersion relation given in Fig. 4.29. If the laser beam is directed under
an angle of ∼ 9◦ (kexc,x = 1.1 µm−1) onto the sample to be resonant with the lower
iy = 3 polariton branch, a scattering channel with the signal state in the lower (iy = 0,
kx = 0) state and the idler at (iy = 3, kx = 2.2 µm−1) in the upper polariton resonances
satisfies energy and momentum conservation. However, it violates parity conservation.
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We have tested this channel intensively, but no indication of parametric scattering could
be found whatever level of excitation power we applied. Further potential scattering
channels obeying energy and momentum conservation, but breaking the parity selection
rule, have been searched for at various detunings. However, no experimental evidence
for such parametric scattering could be obtained.

As can be seen in Fig. 4.29 wire shaped cavities have a twofold nature, while polari-
tons posses a momentum along the wire axis, they are perfectly confined perpendicular
to the wire. We will now focus on polariton conversion processes which do not require
a momentum transfer. In analogy to photonic dots we find a discrete set of levels when
scanning φ. However, here the mode spacings are different as we are facing quantiza-
tion only along one direction. In wire shaped cavities the three lowest cavity modes are
not equidistant and E(iy) grows as ∼ (iy + 1)2. As proposed in the previous section,
the polaritonic level repulsion can be utilized to adjust the mode spacings. Looking
at the left panel of Fig. 4.29 we find that the iy = 1, iy = 2 and iy = 3 modes show
almost harmonic mode spacing. By adjusting the detuning we can achieve equidistance
between those modes for ∆ = −5.5 meV.

The harmonic mode spacing is evident in the upper panel of Fig. 4.34. The laser
energy is tuned slightly above EX . We can resolve the first four resonances. The
lower part shows the mode emission on a logarithmic grey scale. The laser energy was
continuously tuned from above EX (upper edge of panel (b)) to below the iy = 2 mode
(lower edge of panel (b)). In the contour plot the laser energy is represented by the line
running from the upper right corner towards lower energies. The energy scale on the
ordinate gives the detuning between Eexc and the second excited mode. As long as the
excitation energy is equal or higher than the energy of the iy = 3 mode, emission from
all four modes is observed. For Eexc < E(iy = 3) the emission from the iy = 3 mode
drops to zero. Only when Eexc becomes resonant with the iy = 2 mode, is emission
from the third excited mode again resolved. This emission disappears as soon as Eexc

is tuned below the iy = 2 mode. The emission above the excitation energy and the
sharp energy resonance show that polaritons generated in the second excited mode
undergo parametric conversion into the neighboring modes in a pair scattering event.
The behavior observed here is very much comparable to that observed for photonic
dots. Again, the high energy line shifts as the Eexc is tuned through the (iy = 2)-
resonance, giving proof of the relevance of energy conservation [184]. As in photonic
dots the constraint of momentum conservation does not apply.

The parametric scattering in planar cavities shows a blue shift of the nonlinear
emission. This blue shift was found to be comparable to the linewidth of the polariton
mode [125, 133, 184]. Here only a slight shift is observed. For example, in Fig. 4.32
(b) the nonlinear signal shows a slight shift towards higher energy with respect to iy
= 3 mode. However, the shift is smaller than the linewidth. To understand this, we
again have to take into account that the lines are broadened due to size fluctuations in
the wire ensemble. This inhomogeneous broadening does not influence the line shift.
Furthermore, because of the large negative detuning the exciton fraction is rather
small. From these considerations the blue shift is expected to be < 0.2 meV and it is
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Figure 4.34: (a) Mode
spectrum of photonic wires
(Ly = 3 µm) at kx =
0. E(iy = 1), E(iy = 2)
and E(iy = 3) show har-
monic mode spacings. (b)
Spectrally resolved emis-
sion while Eexc is scanned.
Intensities are given on a
logarithmic grey scale.

not surprising that it is masked by the inhomogeneous broadening of the lines.

Unfortunately, the present experiment is not sensitive to the dynamics of the polari-
ton conversion processes. Also, an estimate of the efficiency of the scattering channels
is difficult. This analysis would become possible in a pump-and-probe experiment, as
described in sections 4.2 and 4.3. The drawback of such an experiment is the spec-
tral width of the ultra short laser pulse, which inevitably excites states neighboring
the pump state. A recent theoretical study by L.M. Woods and T.L. Reinecke [166]
provides valuable insight to these questions. They focused on a scattering process
involving the UPB. Their analysis shows that scattering in photonic wires is indeed
very similar to its analogue in planar cavities. It takes place on timescales of a few
picoseconds, where the process slows down with increasing cavity finesse. The higher
the losses, the quicker the wave mixing signal decays. This can be understood when
looking at the density dependence of the process. In agreement with the experiment
the theory shows a threshold in the excitation power dependence. In a lossy cavity this
threshold density is maintained in a much shorter delay range, giving rise to dynamics
on a sub picosecond timescale for a cavity linewidth of 1 meV. This goes in line with an
increased power threshold and reduced optical gain. To verify this theoretical finding
experimentally reducing the wire width seems to be a feasible concept. This increases
the mode spacing and using spectrally broad pulses is less critical. However this re-
duces the cavity finesse significantly for a wire width below ≈ 1 µm. Theory tells us
that this broadening is extremely critical for the parametric polariton conversion and
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using spectrally sharper pulses again blurs the dynamics of the system. Hence, it is
questionable wether a time resolved experiment can answer these questions.

In summary, parametric polariton scattering has been demonstrated in quasi-one-
dimensional resonators. Various such scattering processes have been demonstrated, in
contrast to the findings in planar cavities, where the mode spectrum strongly limits
the number of elastic pair scattering channels to one. Furthermore, these scattering
channels can be tailored by adjusting the exciton-photon detuning or the resonator ge-
ometry. Besides the conservation laws of energy and momentum, the cavity symmetry
gives rise to the constraint of parity conservation.



Chapter 5

Summary

The presented studies add to the understanding of the optical properties of polaritons.
Bulk quadrupole polaritons were studied with extremely high spectral resolution. This
gave new fundamental insights into the electron-hole exchange fine structure. It could
be demonstrated that exchange interaction in solids is not limited to wavevector in-
dependent contributions, but, as theory predicts, exchange in solids indeed shows a
dependence on the exciton wavevector. This dependence could be identified for the
first time using a novel approach to high resolution solid state spectroscopy. Beyond
the elaborate treatment of exchange the potential of this spectroscopic technique is
demonstrated. The most remarkable outcome of these studies is the observation of an
absorption phenomenon in the high density regime, which shows a linewidth of ≈ 15
neV. This is orders of magnitude below all previous reports.

The investigation of cavity polaritons focused on the optical properties beyond
the linear regime. It was demonstrated that exciton localization can give rise to hole
burning in the cavity absorption. Furthermore, using quantum beat spectroscopy a
coherent precession of the polariton spin was demonstrated. The spins precess between
fine structure split exciton states, where the splitting arises from exchange interaction
in QW’s of lowered symmetry.

Finally it was pointed out how polariton band structure engineering gives access
to a controlled manipulation of polariton pair scattering channels. For this purpose
micro structured cavities were designed to create the desired polariton mode spectrum.
Resonantly driving one selected polariton state the proposed scattering processes with
well defined final states could be triggered. It was also shown that the selection rules
for such processes depend on the resonator geometry. The constraint of momentum
conservation can be lifted along a direction of confinement. Furthermore, parametric
scattering has to conserve the total parity. This was demonstrated for inter-subbranch
scattering in wire shaped cavities.
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Chapter 6

Outlook

Using frequency stabilized lasers for the spectroscopy of semiconductors opens doors
in the field of high resolution spectroscopy and the studies presented here mark a
starting point and can be understood as a successful proof of principle. Some future
aspects have already been pointed out in the corresponding chapters. In this outlook
we want to explore the potential of this technique in a broader context. Concerning
the studies on Cu2O the most appealing aspect is the investigation of BEC of excitons.
The phenomena described in section 3.5 are a promising starting point. Currently
there are many experiments and proposals to the realization of such collective exciton
coherence. For all of them, resonant single mode pumping would present a significant
improvement and an absorption experiment demonstrating quasi zero broadening of the
exciton resonance would be one of the most characteristic signatures of condensation.
Conversely the experiment described here can be improved significantly by taking into
account the results of previous studies on BEC in Cu2O. Potential improvements can
be done by:

• Trapping excitons in a harmonic strain trap [42, 98]. As in atomic physics [187],
it is desirable to trap the carriers as it is much easier to provide well defined
experimental conditions in such a trap. Furthermore, the trap prevents the car-
riers from drifting apart. Using a single mode laser even the discretized levels
in the trap could be resolved. The interaction with the environment can also be
reduced by carrier confinement. Our approach excites excitons with a finite k,
which implies a propagating condensate. This brings along further difficulties.

• Instead of attempting BEC of the orthoexciton one could investigate the paraex-
citon. Using strain or magnetic fields the paraexciton can be excited optically.
As this is the true ground state of the exciton system no further relaxation is pos-
sible. The coupling to light can also be adjusted for the paraexciton by adjusting
e.g. the strength of the magnetic field. First studies have proven the feasibility
of this approach. Even a pulsed magnetic field can be used to populate the state
optically during the pulse, while trapping the carriers in the optically forbidden
state after the pulse.
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• One advantage of exciton BEC, compared to BEC of ions, is the comparably high
critical temperature. Our experiments were carried out at about 2 K. This is still
a high temperature for condensation phenomena. By using conventional He3/He4

cryogenic equipment the mK regime becomes accessible, which will decrease the
critical density significantly.

Besides studies on the 1S excitons of Cu2O single mode spectroscopy is appeal-
ing whereever systems with long lifetime and little dephasing are investigated. The
first candidates for such studies would be quantum dots, which show dephasing on
a ns timescale. So far, all studies on quantum dots in the spectral domain using a
monochromator are resolution limited. This could be overcome using single mode
excitation. Besides the spectral resolution, single mode spectroscopy provides an al-
ternative access to single dot spectroscopy: The emission energy of a quantum dot
ensemble is inhomogeneously broadened by size fluctuations in the ensemble. Exciting
with a single mode laser would provide a spectral selection tool to pick a single dot
out of this ensemble. This approach might prove superior to current approaches, where
etched mesa structures or shadow masks are used to spatially isolate single dots. These
approaches are critical, as both techniques represent a modulation in the dielectric en-
vironment of the dot. A second side effect of conventional spectroscopy can also be
avoided: If the excitation energy does not match the energy of the exciton state addi-
tional carriers are excited in the environment of the dot. These carriers again interact
with the carriers in the dot, which gives rise to a spectral wandering of the quantum
dot emission [188, 189]. For such studies we can take advantage of the large spectral
range covered by a dye laser, as compared to single mode diode lasers. The flexibility
permits the investigation of several material systems such as CdTe. If these studies are
successful it might be desirable to extend them to GaAs/InGaAs quantum dot systems,
which would require replacing the dye by a Ti:Sapphire oscillator as active medium.

The study of parametric scattering in low dimensional cavities showed encouraging
results, while not exploring the full potential of this approach. Studies in the weak
coupling regime demonstrate that designing the cavity geometry is a powerful tool for
engineering the photonic band structure [177]. The full flexibility of this approach not
nearly fully exploited. Based on the results shown here, we expect that a broad range
of scattering channels could be designed at will.

Currently, extensive activities are undertaken to achieve polariton condensates and
polariton lasers. Increasing the critical temperature for polariton condensates is the
main focus in this active field of research. So far, this issue has been tackled by inves-
tigating various material systems [134, 139, 140]. Calculations, however, predict a rise
of the critical temperature with shrinking cavity size [190]. This makes photonic dots
a promising system for potential high temperature applications of these phenomena.



Appendix

In this appendix we will explicitly calculate the matrixes for the SR exchange of order
k2 (Eqs. 3.39, 3.41, and 3.44). First, we will extract the spin operators in H1, H3, and
H5. Using these operators we will develop a spin algebra, that is then applied to the
orthoexciton states | Oyz〉, | Ozx〉 and | Oxy〉. Finally, we will calculate the individual
matrix elements.

H1 is given by
H1 ∼ (Je · Jh)(k · k). (6.1)

and contains the spin operator

Je · Jh = Je,zJh,z + Je,xJh,x + Je,yJh,y

= Je,zJh,z + Je,+Jh,+ + Je,−Jh,−
!
= Ô. (6.2)

Here we have used the momentum ladder operators, to replace the x and y components
of the momenta, as follows:

Je,x = 1
2
(Je,+ + Je,−),

Je,y = 1
2
(Je,+ − Je,−),

Jh,x = 1
2
(Jh,+ + Jh,−),

Je,y = 1
2
(Jh,+ − Jh,−). (6.3)

Thus we can rewrite Eq. 6.1 as

H1 ∼ Ô · (k · k). (6.4)

As shown in section 3.4 the SR exchange of Γ+
3 symmetry is given by

H3 ∼ 1
6
(Je · Jh − 3Je,zJh,z)(k · k− 3k2

z) + 1
2
(Je,xJh,x − Je,yJh,y)(k

2
x − k2

y), (6.5)

In Eq. 6.5 we find in addition to Ô the spin operators

Je,zJh,z
!
= O, (6.6)

Je,xJh,x − Je,yJh,y = 1
2

(Je,+Jh,+ + Je,−Jh,−)
!
= Õ. (6.7)
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Thus we can rewrite Eq. 3.40 as

H3 ∼ 1
6

(Jh · Jh − 3Je,zJh,z) · (k · k− 3k2
z) + 1

2
(Je,xJh,x − Je,yJh,y) · (k2

x − k2
y)

= 1
6

(Ô − 3O) · (k · k− 3k2
z) + 1

2
Õ · (k2

x − k2
y). (6.8)

The exchange of Γ+
5 is given by

H5 ∼ (Je,yJh,z +Je,zJh,y) · (kykz)

+ (Je,zJh,x +Je,xJh,z) · (kzkx)

+ (Je,xJh,y +Je,yJh,x) · (kxky)

and remains to be rewritten. It contains the spin operators

Je,yJh,z + Je,zJh,y = −i
2

[(Je,+ − Je,−)Jh,z + Je,z(Jh,+ − Jh,−)]
!
= O1 , (6.9)

Je,zJh,x + Je,xJh,z = 1
2

[Je,z(Jh,+ + Jh,−) + (Je,+ + Je,−)Jh,z]
!
= O2 , (6.10)

Je,xJh,y + Je,yJh,x = −i
2

[Je,+Jh,+ − Je,−Jh,−]
!
= O3 . (6.11)

and can expressed as

H5 ∼ O1 · (kykz) + O2 · (kzkx) +O3 · (kxky). (6.12)

To calculate the impact of the spin operators on the orthoexciton states, we start with
the fundamental relations for single spins:

Je/h,+ |↑e/h〉 = 0 Je/h,+ |↓e/h〉 =|↑e/h〉
Je/h,− |↓e/h〉 = 0 Je/h,− |↑e/h〉 =|↓e/h〉
Je/h,z |↑e/h〉 = 1

2
|↑e/h〉 Je/h,z |↓e/h〉 = −1

2
|↓e/h〉.

Now we apply the spin operators to the electron-hole spin states. For Ô we obtain:

Ô |↑e, ↑h〉 = |↑e, ↑h〉,
Ô |↓e, ↓h〉 = |↓e, ↓h〉,
Ô |↑e, ↓h〉 = − |↑e, ↓h〉+ 2 |↓e, ↑h〉,
Ô |↓e, ↑h〉 = − |↓e, ↑h〉+ 2 |↑e, ↓h〉.

(6.13)

In the same fashion we find for O and Õ:

O |↑e, ↑h〉 = 1
4
|↑e, ↑h〉,

O |↓e, ↓h〉 = 1
4
|↓e, ↓h〉,

O |↑e, ↓h〉 = −1
4
|↑e, ↓h〉,

O |↓e, ↑h〉 = −1
4
|↓e, ↑h〉,

(6.14)
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Õ |↑e, ↑h〉 = 1
2
|↓e, ↓h〉,

Õ |↓e, ↓h〉 = 1
2
|↑e, ↑h〉,

Õ |↑e, ↓h〉 = 0,

Õ |↓e, ↑h〉 = 0.

(6.15)

The results for O1, O2, and O3 are given by:

O1 |↑e, ↑h〉 = i
4
(|↓e, ↑h〉+ |↑e, ↓h〉),

O1 |↓e, ↓h〉 = i
4
(|↑e, ↓h〉+ |↓e, ↑h〉),

O1 |↑e, ↓h〉 = −i
4
(|↓e, ↓h〉+ |↑e, ↑h〉),

O1 |↓e, ↑h〉 = −i
4
(|↑e, ↑h〉+ |↓e, ↓h〉),

O2 |↑e, ↑h〉 = 1
4
(|↑e, ↓h〉+ |↓e, ↑h〉),

O2 |↓e, ↓h〉 = −1
4
(|↓e, ↑h〉+ |↑e, ↓h〉),

O2 |↑e, ↓h〉 = 1
4
(|↑e, ↑h〉+ |↓e, ↓h〉),

O2 |↓e, ↑h〉 = −1
4
(|↓e, ↓h〉+ |↑e, ↑h〉),

O3 |↑e, ↑h〉 = i
2
|↓e, ↓h〉,

O3 |↓e, ↓h〉 = −i
2
|↑e, ↑h〉,

O3 |↑e, ↓h〉 = 0,

O3 |↓e, ↑h〉 = 0.

(6.16)

Using the equations above, we can evaluate the impact of the spin operators on the
orthoexciton states | Oyz〉, | Ozx〉, | Oxy〉, which we write as:

| Oyz〉 =
1√
6
φc,s [φv,yz(|↑e, ↓h〉− |↓e, ↑h〉) + iφv,zx(|↑e, ↓h〉+ |↓e, ↑h〉) + φv,xy(|↑e, ↑h〉+ |↓e, ↓h〉)] ,

| Ozx〉 =

− i√
6
φc,s [φv,yz(|↑e, ↓h〉+ |↓e, ↑h〉) + iφv,zx(|↑e, ↓h〉− |↓e, ↑h〉) + φv,xy(|↑e, ↑h〉− |↓e, ↓h〉)] ,

| Oxy〉 =

− 1√
6
φc,s [φv,yz(|↓e, ↓h〉+ |↑e, ↑h〉)− iφv,zx(|↑e, ↑h〉− |↓e, ↓h〉) + φv,xy(|↓e, ↑h〉− |↑e, ↓h〉)] .
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Using Eq. 6.13 we find for Ô:

Ô | Oyz〉 = 1√
6
φc,s

[
(φv,yz + iφv,zx)(|↓e, ↑h〉 − 1

2
|↑e, ↓h〉)

− (φv,yz − iφv,zx)(|↑e, ↓h〉 − 1
2
|↓e, ↑h〉) + φv,xy

1
2
(|↑e, ↑h〉+ |↓e, ↓h〉)

]
,

Ô | Ozx〉 =− i√
6
φc,s

[
(φv,yz + iφv,zx)(|↓e, ↑h〉 − 1

2
|↑e, ↓h〉)

+ (φv,yz − iφv,zx)(|↑e, ↓h〉 − 1
2
|↓e, ↑h〉) + 1

2
φv,xy(|↑e, ↑h〉− |↓e, ↓h〉)

]
,

Ô | Oxy〉 =− 1
2
√

6
φc,s

[
(φv,yz + iφv,zx) |↓e, ↓h〉

+ (φv,yz − iφv,zx) |↑e, ↑h〉+ φv,xy3(|↑e, ↓h〉− |↓e, ↑h〉)
]
.

(6.17)

For O we find with Eq. 6.14:

O | Oyz〉 = 1
4
√

6
φc,s

[
φv,yz(− |↑e, ↓h〉+ |↓e, ↑h〉)

− iφv,zx(|↑e, ↓h〉+ |↓e, ↑h〉) + φv,xy(|↑e, ↑h〉+ |↓e, ↓h〉)
]
,

O | Ozx〉 =− i

4
√

6
φc,s

[
−φv,yz(|↑e, ↓h〉+ |↓e, ↑h〉)

+ iφv,zx(− |↑e, ↓h〉+ |↓e, ↑h〉) + φv,xy(|↑e, ↑h〉− |↓e, ↓h〉)
]
,

O | Oxy〉 =− 1
4
√

6
φc,s

[
φv,yz(|↓e, ↓h〉+ |↑e, ↑h〉)

− iφv,zx(|↑e, ↑h〉− |↓e, ↓h〉) + φv,xy(− |↓e, ↑h〉+ |↑e, ↓h〉)
]
.

(6.18)

The operator Õ transforms the spins as:

Õ | Oyz〉 = 1
2
√

6
φc,s

[
φv,xy(|↑e, ↑h〉+ |↓e, ↓h〉)

]
,

Õ | Ozx〉 = i

2
√

6
φc,s

[
φv,xy(|↑e, ↑h〉− |↓e, ↓h〉)

]
,

Õ | Oxy〉 = − 1
2
√

6
φc,s

[
(φv,yz + iφv,zx) |↑e, ↑h〉+ (φv,yz − iφv,zx) |↓e, ↓h〉)

]
.

(6.19)
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Finally, for O1, O2, and O3 we find:

O1 | Oyz〉 = 1
2
√

6
φc,s

[
−i2(φv,yz + iφv,zx)(|↓e, ↓h〉+ |↑e, ↑h〉)

+ i
2
(φv,yz − iφv,zx)(|↑e, ↑h〉+ |↓e, ↓h〉) + iφv,xy(|↓e, ↑h〉+ |↑e, ↓h〉)

]
,

O1 | Ozx〉 =− 1
4
√

6
φc,s

[
(φv,yz + iφv,zx)(|↓e, ↓h〉+ |↑e, ↑h〉)

+ (φv,yz − iφv,zx)(|↑e, ↑h〉+ |↓e, ↓h〉)
]
,

O1 | Oxy〉 =− i

4
√

6
φc,s

[
(φv,yz + iφv,zx)(|↑e, ↓h〉+ |↓e, ↑h〉)

+ (φv,yz − iφv,zx)(|↓e, ↑h〉+ |↑e, ↓h〉)
]
,

O2 | Oyz〉 = 1
2
√

6
φc,s

[
1
2
(φv,yz + iφv,zx)(|↑e, ↑h〉− |↓e, ↓h〉)

+ 1
2
(φv,yz − iφv,zx)(|↓e, ↓h〉− |↑e, ↑h〉) + φv,xy(|↑e, ↓h〉+ |↓e, ↑h〉)

]
,

O2 | Ozx〉 =− i

2
√

6
φc,s

[
1
2
(φv,yz + iφv,zx)(|↑e, ↑h〉− |↓e, ↓h〉)

− 1
2
(φv,yz − iφv,zx)(|↓e, ↓h〉− |↑e, ↑h〉) + φv,xy(|↑e, ↓h〉+ |↓e, ↑h〉)

]
,

O2 | Oxy〉 =− 1
4
√

6
φc,s

[
−(φv,yz + iφv,zx)(|↓e, ↑h〉+ |↑e, ↓h〉)

+ (φv,yz − iφv,zx)(|↑e, ↓h〉+ |↓e, ↑h〉)
]
,

O3 | Oyz〉 =− i

2
√

6
φc,s

[
φv,xy(|↑e, ↑h〉+ |↓e, ↓h〉)],

O3 | Ozx〉 =− 1
2
√

6
φc,s[φv,xy(|↓e, ↓h〉− |↑e, ↑h〉)

]
,

O3 | Oxy〉 = i

2
√

6
φc,s

[
(φv,yz + iφv,zx) |↑e, ↑h〉 − (φv,yz − iφv,zx) |↓e, ↓h〉

]
.

(6.20)

Now we can evaluate the explicit matrix elements of the exchange matrices. Starting
with H1 we calculate:

〈Oij | H1 | Oi′j′〉 ∼ 〈Oij | (k · k) · Ô | Oi′j′〉
= (k2

x + k2
y + k2

z)〈Oij | Ô | Oi′j′〉.
(6.21)
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The Wannier functions are orthonormal (φv,ij · φv,i′j′ = δij,i′j′). For ij = i′j′ = yz we
find

(k2
x + k2

y + k2
z)〈Oyz | Ô | Oyz〉

=1
6
(k2

x + k2
y + k2

z)
[

3
2
(〈↑e, ↓h| −〈↓e, ↑h|)(|↓e, ↑h〉− |↑e, ↓h〉)

+ 1
2
(〈↑e, ↓h| +〈↓e, ↑h|)(|↓e, ↑h〉+ |↑e, ↓h〉)

+ 1
2
(〈↑e, ↑h| +〈↓e, ↓h|)(|↑e, ↑h〉+ |↓e, ↓h〉)

]
= 1

6
(k2

x + k2
y + k2

z)
[

3
2
(0− 1− 1− 0) + 1

2
(0 + 1 + 1 + 0) + 1

2
(1 + 0 + 0 + 1)

]
=− 1

6
(k2

x + k2
y + k2

z).

(6.22)

This holds for all diagonal elements. For ij 6= i′j we find:

(k2
x + k2

y + k2
z)〈Oij | Ô | Oi′j′〉 = 0. (6.23)

Consequently the matrix representation of the SR exchange of Γ+
1 symmetry.

J1 = ∆1 ·

 k2
x + k2

y + k2
z 0 0

0 k2
x + k2

y + k2
z 0

0 0 k2
x + k2

y + k2
z

 = ∆1k
2 · 1. (6.24)

Using the relations 6.14 and 6.15 we derive the matrix form of H3. In addition to
〈Oij | Ô | Oi′j′〉 we have to evaluate 〈Oij | O | Oi′j′〉 and 〈Oij | Õ | Oi′j′〉

〈Oyz | O | Oyz〉 = − 2
18
, (6.25)

〈Ozx | O | Ozx〉 = − 2
18
, (6.26)

〈Oxy | O | Oxy〉 = 1
18
, (6.27)

〈Oij | O | Oi′j′〉 = 0 ij 6= i′j′, (6.28)

〈Oyz | Õ | Oyz〉 = 1
6
, (6.29)

〈Ozx | Õ | Ozx〉 = −1
6
, (6.30)

〈Oxy | Õ | Oxy〉 = 0, (6.31)

〈Oij | Õ | Oi′j′〉 = 0 ij 6= i′j′. (6.32)
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Using Eq. 6.8 this gives us for the diagonal elements of the exchange matrix

〈Oyz | H3 | Oyz〉
∼ 1

6
(−1

6
− 3−2

18
)(k2

x + k2
y − 2k2

z) + 1
2
· 1

6
(k2

x − k2
y)

= 1
18

(2k2
x − k2

y − k2
z),

〈Ozx | H3 | Ozx〉
∼ 1

6
(−1

6
− 3−2

18
)(k2

x + k2
y − 2k2

z) + 1
2
· −1

6
(k2

x − k2
y)

= 1
18

(−k2
x + 2k2

y − k2
z),

〈Oxy | H3 | Oxy〉
∼ 1

6
(−1

6
− 3 1

18
)(k2

x + k2
y − 2k2

z)

= 1
18

(−k2
x − k2

y + 2k2
z).

(6.33)

The off-diagonal elements are zero and we end up with the matrix form of H3:

J3 = ∆3 ·

 2k2
x − k2

y − k2
z 0 0

0 2k2
y − k2

x − k2
z 0

0 0 2k2
z − k2

x − k2
y

 . (6.34)

This brings us to term of Γ+
5 symmetry. Using the relations in Eq. 6.16 we evaluate

〈Oij | O1 +O2 +O3 | Oi′j′〉 and obtain

〈Oij | O1 +O2 +O3 | Oi′j′〉 = 0 ij = i′j′. (6.35)

For the off-diagonal terms we explicitly treat one example.1

〈Oxy | O1 · kykz +O2 · kzkx +O3 · kxky | Oyz〉

∼ −
[
−i
4

(φv,yz + iφv,zx)
∗(φv,yz + iφv,zx)kykz − 1

4
(φv,yz + iφv,zx)

∗(φv,yz + iφv,zx)kzkx

+ i
4
(φv,yz − iφv,zx)

∗(φv,yz − iφv,zx)kykz − 1
4
(φv,yz − iφv,zx)

∗(φv,yz − iφv,zx)kykz

]
= kzkx.

All other off-diagonal terms are evaluated in the same fashion. Finally, this gives us
the exchange matrix of Γ+

5 symmetry:

J5 = ∆5 ·

 0 kxky kxkz

kxky 0 kykz

kxkz kykz 0

 . (6.36)

1In principle, the other elements can also be derived from symmetry considerations and cyclic
permutations
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[50] C. Uihlein, D. Fröhlich, & R. Kenklies, Phys. Rev. B 23, 2731 (1981).
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[108] B. Hönerlage, A. Bivas, & V. Phach, Phys. Rev. Lett. 41, 49 (1978).
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Fabry-Pérot-interferometer, 59
Fermis golden rule, 7
finesse, 59, 86, 96

group velocity, 6, 21, 30, 53

Hamiltonian, 39
exchange, 39
polariton, 4, 88

heavy hole, 6, 59, 85
hole, 3

heavy, 59
light, 59

hole state, 36
Hopfield coefficients, 4

idler, 64
in-plane momentum, 59
interference, 22

polarization, 24, 26
thickness, 22

Laplacian demon, 1
laser

Ar+, 66, 92
bandwidth, 17
cw, 91
dye, 16
microcavity, 63
Nd:YVO4, 17
polariton, 65
quantum cascade, 91
ring, 16
titanium-sapphire, 66, 91

lattice constant, 10
lifetime, 6
light

cone, 63
ultra slow, 31

light hole, 6, 60
linewidth

homogenous, 96
power dependence, 29

localization, 65
lower polariton branch, 5

macro filling, 86



INDEX 135

mass
effective, 60
exciton, 59
reduced, 12

Maxwell-Boltzmann distribution, 53
method of invariants, 39
microcavity, 57

II-VI, 60
organic, 60

micropillar, 90
momentum

in-plane, 59, 61
space, 62

monochromator, 15, 17, 67, 78, 92
Mott density, 50, 53

octupole, 12
operator

annihilation, 4
creation, 4
ladder, 113

orthoexciton, 12
oscillator strength, 4, 20, 60, 71

P-exciton, 12
S-exciton, 13

paraexciton, 12, 30, 111
parametric scattering, 64, 65

angle dependence, 69
blue shift, 106
efficiency, 94
photonic dot, 93, 99

parity, 99
conservation, 102

Pauli blocking, 65, 73, 79
perturbative regime, 6
phase velocity, 30
phase-space filling, 71
phonon, 3, 28, 29, 33, 95, 97

acoustic, 63
longitudinal, 28
optical, 28
relaxation, 104
scattering, 21
Stokes, 28
transverse, 28

photoluminescence
angle-resolved, 100

photon, 3
disperion, 13
effective mass, 59

photon energy
bulk, 13

photonic dot, 90
parametric scattering, 93, 99

photonic wire, 78, 89, 90
point group, 10
polariton, 3, 57, 60

branch, 4
bulk vs. cavity, 63
condensate, 65
exciton-photon, 6
laser, 65
propagation, 30, 31

polariton laser, 63
polariton trap, 64
polaritons, 3

bulk, 9
polarization microscopy, 46
polarization selection rules, 80
pulse shaper, 66
pump-and-probe, 66

setup, 67

Q-factor, 96
quadrupole, 12
quadrupole amplitude, 13, 48
quadrupole moment, 36
quantum beat, 82
quantum cascade laser, 91
quantum computing, 1
quantum cryptography, 2
quantum dot, 112
quantum dots, 15
quantum machines, 1
quantum mechanics, 1
quantum well, 57, 59

strain, 84
symmetry, 77, 84

Rabi energy, 61
1S orthoexciton, 14



136 INDEX

Rabi flopping, 6
Rabi frequency, 4
Rabi splitting

microcavity, 60
orthoexciton, 14
photonic wire, 78

radiative losses, 28
reduced mass, 12
reflectivity, 22
refractive index, 21
resonator, 58
ring laser, 16
Rydberg energy, 12

sample
annealing, 18
holder, 18
mounting, 18
preparation, 18

sample
preparation, 136

scattering
Brillouin, 33
exciton-exciton, 30, 63, 97
exciton-phonon, 63
polariton-polariton, 85, 86, 104
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Symbols and abbreviations

symbol meaning
|↓H〉, |↓e〉 hole state, electron state
| 0〉 vacuum level
a†, (a) creation (annihilation) operator of photon
α absorption coefficient
Aloc localization area
aX exciton Bohr radius

b†, (b) creation (annihilation) operator of exciton
BEC Bose-Einstein condensation

c0 speed of light in vacuum (299 792 458 m s−1)
CCD charged coupled devices camera
cw continuous wave
cx, cy, cz electron-hole exchange parameters

D density of states
D∗ density of vacant states
δi strain parameter
∆Q long range exchange parameter
∆i exchange parameters of the short range exchange
∆k = EP,k − EX,k detuning
δT normalized differential transmission
∆T differential transmission

E electric field
e unit charge (1.602176 ·10−19 C)
e polarization vector
ε0 static dielectric constant
ε∞ dielectric constant in the high frequency limit
Eb binding energy
Eg gap energy
EP , EX photon energy, exciton energy
E0

P energy of fundamental cavity mode
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ERy Rydberg energy (13.60569 eV)
eV electron volt (1.602176 ·10−19 J)

f oscillator strength (unit less)
fs femtosecond
FWHM full width at half maximum

g spin degeneracy
Γ damping constant
γ homogenous linewidth

H Hamilton operator
~ h/2π= 1.054571· 10−34 J s= 6.582118· 10−16 eV s

I intensity
i complex unity
i integer index i = 0, 1, 2 . . .

Jex exchange interaction
JQ

ex long range quadrupole exchange
Je(h) momentum of electron (hole)
Je(h),z z-component of the momentum of electron (hole)
Ji matrix representation of the short range exchange
jl Bessel function
Jk(t) exciton interband current

k momentum vector
k|| in-plane momentum
kx, ky x, (y) component of the in-plane momentum k||
kB Boltzmann constant 1.38062 · 10−23JK−1

κ imaginary part of the refractive index (extinction coefficient)
Ki reciprocal lattice vector

λ wavelength
Leff effective cavity length
LR long range exchange
LR resonator thickness

M Fourier transform of charge distribution
M exciton angular momentum
MC microcavity
m0 electron mass (9.109381 · 10−31 kg)
me effective electron mass
mh effective hole mass
mr reduced mass
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mP effective photon mass
mX effective exciton mass
µ chemical potential

Ñ(EX) exciton distribution
ñ complex refractive index
n real part of the refractive index
neV nano electron volt
ns nanosecond
NX number of excitons

| Oyz〉, | Ozx〉, | Oxy〉 orthoexciton basis states

| P 〉 paraexciton state
Pexc excitation power
P T

exc excitation power threshold
Pk,Xk Hopfield coefficients
φv, φc Wannier functions of valence and conduction band
ψ angle of the polarization vector e (ψ=0 horizontal e)
ps picosecond

QA quadrupole amplitude
qm quadrupole moment
QW quantum well

r reflectivity
R lattice vector
r position vector
ρ̃ density matrix
ρ charge distribution

| S〉 singlet state
Si strain matrix
SR short range exchange

T temperature
| T 〉 triplet state
T0 linear transmission
T1 population lifetime
T2 dephasing time
T ′2 pure dephasing time
τ delay time
τX exciton radiative lifetime
τr exciton relaxation time
θprobe, θexc probe and pump angle



140 Symbols and abbreviations

Tosci oscillation period

| U〉, | L〉 upper and lower polariton state
UPB, LPB upper and lower polariton branch

vP phase velocity
vg group velocity

ΩR Rabi frequency

| X〉, | P 〉 exciton state, photon state
χ susceptibility

Yl,m spherical harmonics

ζ energy distribution function
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