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1.1 Background

Nuclear magnetic resonance (NMR) has been a powerful tool in the determina-
tion of condensed phase structures since its introduction. Its ability for studying
both static and dynamic behaviour makes it very attractive for the research
of nanostrucures in semiconductor systems. The resonance transitions of the
istopes within the solid can provide details about lattice defects, dopants or
strain through line shifts, splittings and broadening of the resonance lines. Semi-
conductor heterostructures forming low dimensional systems like quantum wells
or quantum dots are often only a few monolayers thick. It can therefore be ex-
pected that for those small systems, the lattice deviates from a perfect structure,
an effect that should be visible in NMR experiments.

The method of conventional NMR is limited, though, in two ways: for thermal
polarization a sufficiently high number of spins are needed (IV > 10'®) in order to
achieve the necessary signal-to-noise ratio; and since signals are a bulk average,
it is not possible to distinguish signals from the quantum well under investigation
from signals in the barrier or the substrate. One way to overcome these limitations
of the conventional NMR method is to incorporate optical techniques.

Optical pumping of the conduction band electrons of a semiconductor mate-
rial creates a huge polarization of the electron spin system which is transferred
to the nuclear system, analogous to the Overhauser effect in metals [1]. This
effect has been first achieved in semiconductors by Georges Lampel [2] who op-
tically pumped the 2°Si isotopes in n-type silicon. Due to the vast increase of
nuclear polarization, the number of nuclei needed for NMR detection is reduced
by several orders of magnitude. Since the changes of polarization in the nuclear
system are transferred back by the same mechanism to the electron spins, it is
possible to detect the NMR optically (ODNMR).

Pioneering experimental and theoretical work with gallium arsenide (GaAs)
bulk crystals has been carried out in the 1970’s and 1980's by A.l. Ekimov, V..
Safarov, M.I. D’yakonov et al. ([3], [4], [5], [6]); by B.P. Zakharchenya, V.G.
Fleisher et al. ([7], [8], [9], [10]); and by D. Paget ([11], [12], [13]). The main
aspects of optical pumping of nuclei in GaAs and other semiconductor materials
are published in Optical Orientation, edited by F. Meier and B.P. Zakharchenya
[14].

The combination of the high degree of nuclear polarization and the sensi-
tivity of optical detection makes it possible to investigate systems with only a
small number of spins (N ~ 10 or less). The first observation of ODNMR in
GaAs/AlGaAs quantum wells has been published by G.P. Flinn et al. [15] [16] and
later in heterostructures by M. Schreiner et al. [17] [18] [19] and T. Wimbauer
et al. [20]. Various techniques have been demonstrated in either GaAs bulk
or GaAs/AlGaAs heterojunctions by S. Buratto, J.A. Marohn, D.P. Weitekamp
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et al. [21] [22]. Even directly (radio frequency, RF) detected optically pumped
NMR has been observed in GaAs quantum wells by S.E.Barrett, R. Tycko et al.
[23] utilizing only the high degree of nuclear polarization. However, the direct
RF detection method lacks the second high advantage of optical detection of the
NMR signal, which imparts the selectivity to the quantum well of interest. Each
quantum well absorbs and emits light depending on its width. By selectively
exciting and detecting a certain wavelength it is possible to distinguish between
quantum wells of different sizes, the AlGaAs barrier, and the GaAs substrate. The
incredibly high sensitivity and selectivity of this method has been demonstrated
by D. Gammon et al. [24], detecting about N ~ 10° spins in single quantum
dots using ODNMR.

The most recent technique developments have been carried out in the Suter
lab and by J.M. Kikkawa, G. Salis, D.D. Awschalom et al. ([25] [26]). These
groups use an all-optical method wherein the radio frequency field for NMR is
applied by modulation of the intensity or polarization of the exciting laser light.

1.2 Outline

This thesis presents advancements in optically detected nuclear magnetic res-
onance applied to GaAs/AlGaAs quantum wells of various thicknesses and the
application to the investigation of structural problems in nanoscopic systems.

In chapter 2 some basic properties of the sample itself and the sample growths
are summarized. The band structure of bulk GaAs and the deviations in a two-
dimensional structure are discussed. The resulting optical properties such as
absorption and fluorescence are briefly treated and their impact on ODNMR are
analyzed.

Chapter 3 gives an overview of the experimental setup and the components
involved. Each part and its function is explained in the necessary detail to un-
derstand the functionality of the ODNMR spectrometer.

In chapter 4, the main aspects of the electron-nuclear spin coupling are dis-
cussed in detail. The main contribution of electrons to the polarization is evalu-
ated which makes it possible to give an approximation for the maximum nuclear
fields created by optically pumped nuclei. Measurements of the displaced Hanle
curve in different quantum wells reveal the generated nuclear field, and from the
calculations it is possible to obtain a value for the degree of nuclear polariza-
tion. Field dependent experiments show some new aspects of the coupling of the
electron-nuclear spin system.

Chapter 5 presents the observation of optically detected nuclear magnetic
resonance in GaAs quantum wells. The nuclear system is pumped in an oblique
field, and the ODNMR signal is detected by observing the shift of the displaced
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Hanle curve as the nuclear polarization is destroyed under NMR conditions. The
optical signal can be fitted, thereby obtaining the underlying NMR spectrum.
The experimental data are compared with simulated spectra revealing information
about the population distribution of the nuclear system.

In chapter 6, quantum-well dependent ODNMR spectra are presented. The
resonance lines are split which is attributed to a quadrupole interaction. The split-
ting is quantum well-dependent, and a model for explanation of this behaviour is
presented. The satellite lines show significant broadening, and possible reasons
are discussed and compared with simulations.



Chapter 2

Quantum Well Properties
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2.1 Sample Properties

The samples investigated in this thesis are all multi-quantum well structures with
gallium arsenide (GaAs) quantum wells and barriers composed of either aluminum
gallium arsenide (AlGaAs) or aluminum arsenide (AlAs) short period superlattice
(SPS) barriers. They are grown by molecular beam epitaxy (MBE), a well es-
tablished technique for producing high quality crystal structures. The advantage
of MBE compared to other crystal growth techniques, such as metal organic
chemical vapor deposition (MOCVD), is the possibility of in situ characterization
of the growth process.

Each atomic component is provided separately in its own effusion cell which
is controlled by a shutter. In this way, the stoichiometric compilation of the final
compound can be regulated to a very high degree, and one can grow different
materials on a monolayer scale. The substrate (GaAs in the case of the samples
covered in this thesis) is spinned and heated during the growth, preventing inho-
mogeneous distribution of the grown material. It is possible to grow with a rate
of about one monolayer/s, and growth interruptions at each interface of several
seconds provide for high quality interfaces. In the case of GaAs/AlGaAs het-
erostructures, it is possible to produce interfaces with hardly any intermixture of
aluminum into the GaAs quantum well. In addition, the interface defect density
is very low, which is shown by optical characterization of the samples.

The samples are grown by Soheyla Eshlaghi in the laboratory of Andreas D.
Wieck of the Department of Applied Physics at University of Bochum. Details
of the growth process and conditions, as well of the characterization by photolu-
minescence spectroscopy performed here, in the Suter laboratory, are published
in the Ph.D. thesis of S. Eshlaghi [27].

In particular, three different samples are investigated during this thesis. The
main work is carried out at sample with #1431, and some experiments are done
with the samples #1056 and #1294 in order to compare results. The principal
structure of the multi-quantum well samples is depicted in figure 2.1. As a
substrate, a commercial 0.5mm thick GaAs wafer is used, orientated in the
(001) direction. Whereas all quantum wells are intentionally undoped with an
impurity density of less than 10! cm™2, the substrate is doped with tellurium
in sample #1431. Hence, it is semiconducting, which could be used to apply
an external field to this particular sample. Initially a GaAs buffer layer or an
AlAs/GaAs SPS is grown in order to suppress detrimental effects from surface
roughness and lattice defects from the substrate . The detailed structure of the
samples is summarized in table 2.1.

The growth order of the quantum wells is such that the widest well is on the
bottom, and the smallest well is on the top of the sample. This is a condition
that permits optical access to all quantum wells as will be made clear later in the
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growth direction

GaAs <001>
Substrate

Figure 2.1: Principal schematic of the multi-quantum well samples. The relative
dimensions in the picture are not to scale in order to increase readability.

chapter. The samples are grown on one-quarter of the substrate wafer and then
cut into pieces of 2mm by 5 mm. The size of the pieces is chosen to fit onto the
sample holder of the ODNMR apparatus between the RF coils.

GaAs and AlAs are considered to be lattice matched; in other words the
differences in the lattice constant between the two alloys are very small. The
lattice constant of bulk GaAs is a = 0.5653 nm and of bulk is AlAs ¢ = 0.5660 nm
[28]. The properties of ternary compounds such as Al,Ga, ;As are regulated by
variation of the aluminum content, x. The lattice constant of Al,Ga,_;As can
be calculated using Vegard's law [29] [30] [31] (see section 6.4 for details) and
increases linearly from GaAs to AlAs as the ratio of gallium to aluminum is varied.
The small difference in lattice constant facilitates the growth of heterostructures
composed of these alloys and leads to samples which are strain free, to a certain
extent. For thin layers grown onto a thick substrate, the underlying lattice cannot
be distorted significantly. Therefore, the layer is strained in the growth direction
in order to conform to the GaAs lattice positions in the plane of the junction.
Thus, the lattice constant of AlAs or AlGaAs in the lateral plane is that of
GaAs while the usual elastic response causes it to lengthen along the direction
of growth, causing a large amount of elastic energy to build up which in turn
has an impact on the GaAs at the interface. Details about the magnitude of
the relative strain at the interface of GaAs/AlGaAs and its influence on ODNMR
spectra are discussed in chapter 6.
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2.2 Optical Properties

2.2.1 Band Structure

GaAs, AlAs and AlGaAs all possess a zinc blende solid state structure. A small
part of the band structure near the center of the Brillouin zone of GaAs is shown
in figure 2.2. GaAs and AlGaAs with an Al-content of up to about 43% [32]
belong to the group of direct bandgap semiconductors with a maximum of the
valence band and a minimum of the conduction band at the I'-point (k=0). The
band gaps of GaAs and Aly35Gag¢5As are 1.519¢eV and ~ 1.95eV, respectively
[33]. Due to the bandgap energy difference of both materials, the carriers are
confined in the growth direction in the region of lower energy, which is in the
GaAs well.

The carriers in the crystal are subjected to the influence of the periodic lattice
potential which is taken into account by an effective mass. The masses are
different for each carrier type and mirror the curvature of the energy band. Since
the degeneracy of the I's valence bands is removed for k£ # 0, the holes have
different masses depending on which band they belong to. One distinguishes
between light (lh) and heavy (hh) holes. The effective mass for electrons in
GaAs is m. = 0.0665, and for the holes are m;, = 0.094 and my, = 0.34
[34]. The difference in the band gap is distributed by the shifting of both the
conduction and valence bands by a ratio of 65% to 35%, and the potential
well in the conduction band is about 0.28€V high. The GaAs/AlGaAs quantum
wells belong to the class of type I semiconductor heterostructures, meaning that
the minimum of the conduction band and the maximum of the valence band
are both in the well. Hence, the electrons and holes are both situated within
the quantum well, which serves as the source of high recombination rates and
photoluminescence intensities.

As a first approximation, the electron confined in the conduction band of the
quantum well can be treated as a particle in a square potential well with finite
potential height, treated in various textbooks. Movement of the electron in the
growth direction (z-direction) is suppressed by the confinement that produces
simple discrete energy states for the electron, whereas movement in the xy-plane
shows the dispersive energy band similar to that of the bulk crystal. The changes
going from a bulk solid to a quantum well are schematically depicted in figure
2.2 with the parabolic approximation of the energy band at the I' point. Note,
that the split-off valence band, which is much lower on the energy scale, is not
shown in any of the pictures.

The confinement has, in principle, two effects on the electron and hole en-
ergy levels. The levels are shifted to higher energy compared to bulk, and the
degeneracy is removed at the I'-point in the valence band due to the different
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Bulk GaAs GaAs Quantum Well

4 4

............................................... I
1—‘6 - | E
Kx,y,z 3 T
'Y ! Z
Ig i I

GaAs
AlGaAs AlGaAs

Figure 2.2: The band structure of bulk GaAs and that of a GaAs quantum well
near the center of the Brillouin zone. The energy levels become discrete normal to
the well, whereas they are still dispersive in the lateral direction. The degeneracy
of the light (lh) and heavy hole (hh) is removed in the quantum well in the &,
direction.

effective masses of the two highest valence band levels. The size of the valence
band splitting depends on the width of the quantum well according to

(hmn)? (1 1
E.(L,) =E;p+ —F|——— 2.1
(L) = By + S (L L 1)

where L, is the width of the quantum well, m, the free electron mass, n the
order of the energy state, and my, the effective mass of the light or heavy hole.
This equation is valid for an infinitely deep potential well, but it describes the
confinement effects here to a sufficient extent. When calculating the energy
levels, it easy to see, that a lower effective mass for the light hole creates a
bigger splitting than for the heavy hole.

2.2.2 Photoluminescence

Photoluminescence (PL) is an efficient tool for studying electronic properties
since its intensity and wavelength are determined by the density of electrons,
transition probabilities, and populations of the various states. In principle, three
different kinds of photoluminescence are distinguished in semiconductor optics:
intrinsic, extrinsic and excitonic. Intrinsic photoluminescence is connected to
band-to-band transitions of free electrons and holes. Exciton luminescence is
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Figure 2.3: Photoluminescence spectrum of a multiple quantum well structure
(sample # 1431). Each heavy hole emission line is labeled with the width of the
quantum well source. The lines labeled with Ih are attributed to light hole tran-
sitions, assigned by comparison with PLE spectra. The arrows denote the typical
spectral position of the laser and optical spectrometer for resonant excitation and
fluorescence detection, respectively, in an ODNMR experiment.

created in the recombination of free, impurity-bound and localized excitons.
“Impurity” or extrinsic luminescence originates from the recombination of free
electrons with acceptor-bound holes or of electrons bound to donors with free
holes.

Excitonic effects occur as a result of the Coulombic interaction of the hole
and electron and can cause the position of the quantum well emission line [35] to
vary substantially. The transition energy is reduced by the amount of the exciton
binding energy. In sharp contrast to bulk GaAs, the dominant contribution to
the luminescence in these type I quantum wells is of excitonic origin [36]. The
wavelength of the emission depends strongly on the width of the quantum well
due to the confinement (see equation 2.1), as observed in a portion of such a flu-
orescence spectrum from sample #1431 in figure 2.3. The sample is excited into
the continuum of the conduction band, and the spectrum is taken by scanning
the grating of the monochromator. The emission lines can easily be recognized
as the heavy hole transitions of the various quantum wells. Figure 2.3 reveals
one of the two main advantages of ODNMR. Each quantum well can be excited
separately from the others by tuning the laser to be resonant with the heavy hole
transition of the quantum well in question. By setting the optical spectrometer
to the transition line of that quantum well, one also spectrally discriminates the
signal from the excited quantum well from the rest of the sample.
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The energy of the exciton depends on the width of the quantum well; there-
fore, the width of the emission line is a measure of the quality of the sample.
Quantum wells of low quality have defects at the heterostructure interface. Bas-
tard et al. [37] have shown that the in-plane center of mass motion of the
exciton creates bound levels due to localization at interface defects of one to
two monolayers in height. A distribution of defect islands would therefore signif-
icantly broaden the emission line, in some cases from 5 meV to 10 meV [38]. The
emission lines in the PL spectra of the different samples are all very narrow but
show small differences in broadening. Sample #1294 has very sharp and narrow
lines indicating a very high interface quality. According to this argument, sam-
ple #1056 has the most interface roughness and therefore the highest exciton
localization.

The relaxation of the excitons into the potential minima of the interface
defects cause a red shift of the emission line compared to the absorption en-
ergy, called the Stokes shift. Measuring the Stokes shift therefore gives insights,
as well, to the interface quality. However, absorption measurements are only
possible if one removes the substrate from the sample by etching; therefore, pho-
toluminescence excitation (PLE) spectroscopy is used instead. The variation of
the intensity of a given luminescence line is measured versus the wavelength of
the exciting light source in PLE. The information obtained is equivalent to an
absorption spectrum for quantum wells for excitation energies below the contin-
uum. For higher excitations, intra-band transitions are involved which give rise to
discrepancies between absorption and PLE spectra. A schematic PLE spectrum
is shown on the left of figure 2.4.

As shown in figure 2.4, the excitation of the heavy and light hole transitions
occur at different excitation energies. The light holes relax non-radiatively to
the top of the valence band, hence the emission takes place for both heavy and
light hole excitation in the e-hh transition which is recorded with the optical
spectrometer. The PLE spectra from the samples investigated during this work
show no resolvable Stokes shift except for the smaller wells of sample #1056.
This result validates the conclusions drawn from the PL spectra, with regard to
increased interface roughness in the sample. Interface roughness would lead to
trapping of excitons and hence to a Stokes shift of the emission line.

By comparison of the energy of the light hole in the PLE spectra with the
PL spectrum in figure 2.3, the two low-intensity lines are attributed to light hole
transitions.

2.2.3 Optical Pumping

Optical pumping is based on the optical selection rules which apply to both
GaAs bulk and quantum wells. The total angular momentum of the valence



2.2 Optical Properties 12

PLE-Spectrum 1 1 conduction band
j "2 2
z 0
Luminesc_ence
> Intensity ot-light G—-emission
<—
% valence band
c
pe 3—03 ‘% heavy hole
2 T2 20000 00000 _
bt 1 1 light hole
2 j 2 "2
L Z

Figure 2.4: PLE spectrum and discrete n = 1 energy levels of a GaAs quantum
well at k = 0, where the degeneracy of the valence band is removed. Varying
the excitation energy of the laser light resonantly excites the hh-e and then the
Ih-e transition. The emission occurs in both cases for the e-hh transition which is
detected with the optical spectrometer. j, is the projection of the total angular
momentum on the quantization axis.

band is J = 3/2 corresponding to an atomic p-orbital state. The heavy hole
states are j, = £3/2, the light hole states j, = £1/2. The conduction electron
is s-type, and the selection rule for inter-band transitions are the same as for
transitions between the atomic levels, 2P3/2 and 251/2 [39]. Since the total
angular momentum is conserved for absorption of a photon, 0% (o7) circularly
polarized light induces Am = +1 (Am = —1) inter-band transitions, whereas
7 linearly polarized light induces Am = 0 transitions. Figure 2.5 shows the
allowed transitions for the different polarizations of the exciting light. Of course,
the same selection rules hold for the recombination, which changes the helicity
of the fluorescence compared to the corresponding excitation light as shown in
figure 2.4.

Exciting the electron with a circular polarized laser resonant to the heavy hole
transition (blue arrow in figure 2.4) populates only one of the two spin states in
the conduction band. The polarization of the conduction electron spin system is
defined by

p="r""= (2.2)

ny +n_
where n. are the populations of spin states j, = +1/2 and j, = —1/2, respec-
tively. It is therefore in principle possible to create an electron spin polarization
(P.) of 100 % in the quantum well. This is indeed twice as big as in the bulk
case, where due to the degeneracy of the valence band, both the heavy hole and
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Bulk Quantum Well

Figure 2.5: Relative transition probabilities in GaAs for different excitation polar-
ization. Solid line: o™, dotted line o, dashed line: m. The numbers close to
the energy levels denote the projection of the total angular momentum on the
quantization axis.

the light transitions are excited. A polarization in the bulk case is only created
due to the different transition probabilities of the heavy and light hole transitions
as shown in figure 2.5, and therefore has a maximum value of 50%.

The polarization of the emission light is in the case of the quantum well
100%; the polarization of the photoluminescence is therefore a direct measure of
the electron spin polarization. In contrast for bulk GaAs the photoluminescence
polarization is due to the transition probabilities, which has a maximum of 25%
in maximum. These represent only theoretical values for polarization which are
modified by spin-lattice relaxation, discussed in greater detail in chapter 4.
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sample id #1056 #1294 #1431
buffer GaAs buffer GaAs buffer
composition | Aly31Gage9As/GaAs SPS | AlAs/GaAs SPS | AlAs/GaAs SPS
GaAs buffer
=520nm =278.2nm =78 nm
barrier Aly 35Gag g5As AlAs/GaAs/AlAs | Aly35GagesAs
type SPS
=26.2nm =31.6nm =30.9nm
19.4 nm 19.8 nm 39.3nm
14.9 nm 15.2nm 19.7nm
11.8nm 12.2nm 14.5nm
quantum 9.8nm 9.9nm 11.7nm
well 7.8nm 8.3nm 10.5nm
widths 59nm 7.1nm 8.1nm
6.3nm 6.8nm
5.6 nm 5.8nm
5.1nm 51nm
4.5nm 4.3nm
4.0nm 3.9nm
3.3nm 3.4nm
2.8nm
cladding 12nm 2.9nm 13.4nm

Table 2.1: Thickness of various quantum wells for the different samples. The first
row denotes the number of the sample, the second shows the structure of the buffer
layer with its total thickness. Then the type of barrier with its thickness is given,
and the fourth row summarizes the width of the various GaAs quantum wells. The
last row gives the thickness of the cladding GaAs layer on top of the sample.
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3.1 Introduction

The experiments for this project were performed primarily with the same appa-
ratus. The spectrometer used for optically detected nuclear magnetic resonance
was designed and built in the Suter laboratory at the University of Dortmund.
The system includes the optics and lasers for optical excitation, the magnet and
cryostat holding the sample, and the optics and monochromator for optical de-
tection of the signal. An overall picture of the setup is illustrated in figure 3.1,
and it will be discussed in section 3.2. The remaining sections of this chapter
will treat the different components in detail.

3.2 Experimental Setup

As a laser source for this project, different diode laser systems were used which
will be discussed in section 3.3. Since diode lasers are very sensitive to back-
reflected light from surfaces of other optical components in the setup, special
care was taken to reduce this detrimental effect with an optical isolator. As
shown in figure 3.1, the beam from the laser system is steered with mirrors M1
and M2 through an optical isolator (Ol), which attenuates the reflected light by
40dB. The mirrors M1 and M2 are replaceable mirrors on a kinematic mount.
The top plate of the mount can be removed and replaced automatically to an
exact location. A set of mirrors belongs to each laser (i.e., LD1, LD2, LD3),
hence the mirrors have to be adjusted only once, and lasers can be switched very
easily during the experiment. For fine tuning, the alignment of the laser beam is
steered with the mirrors M1 and M2 through two irises, 11 and 12.

After passing the isolator, the beam is split with a polarizing beam splitter
(PBS). One part is used for analyzing the beam with a wavemeter, and the other
beam with the most intensity goes to the experiment. The wavemeter from
NewFocus has an accuracy of 0.01 A, and the vacuum wavelength is measured.
The A/2-plate (LHP1) is needed to rotate the polarization of the laser beam
and therefore makes it feasible to change the intensities of the splitted beams.
The linearly polarized beam is directed with the mirror (M3) through the lens
(L1) onto the sample. The focal length of lens L1 is 300 mm and focuses the
laser beam down to a minimum of 50 um in diameter. Using a quarter wave plate
(QWP) creates either left-hand or right-hand circularly polarized light, depending
on the angle of the E-field vector with the main axis of the quarter wave plate.
The orientation of the fast and the slow axis of the quarter wave plate cannot
be changed and are parallel and perpendicular to the laser table, respectively. To
rotate the polarization of the laser beam to either 45° or —45° with respect to
one of the QWP axes, a second \/2-plate (LHP2) is placed in front of mirror M3.
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Figure 3.1: The geometry of the experimental setup. The mirrors in front of LD1
and LD2 are easily replaceable in order to change the wavelength of the laser
system. The radio frequency is applied perpendicular to the plane of the diagram.
The photoluminescence is detected with the grating monochromator (GMC) and
the avalanche photodiode (APD).
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In this configuration the sample will be illuminated by a fixed type of polarization
which will create nuclear polarization in the presence of an external field.

The sample is placed into a cold-finger cryostat with the surface perpendicular
to the incoming laser beam. A By-field is created with an electromagnet at an
angle of 74° with respect to the excitation light. The photoluminescence is
emitted backward by the sample, picked up with a large (48 mm clear aperture)
collimating lens (L2), and focused with lens L3 into the spectrometer. The
focal lengths and positions of the lenses are chosen to maximize the collected
luminescence light and to properly illuminate the first spectrometer mirror. The
optical detection system magnifies the picture of the sample by a factor of 1.3.
Lens L2 is placed on three positioning stages with micrometer screws. This setup
allows for highly accurate and reproducible alignment of the collimating lens. If
the sample is not removed from the cryostat, the position on the sample being
investigated in an experimental run can easily be identified with the aid of the
micrometer screws over several days. For analyzing the degree of luminescence
polarization, a photo elastic modulator (PEM) and a linear polarizer (LP) are
placed in front of lens L3.

For experiments in which it is necessary to prevent the nuclear system from
polarizing (for example, Hanle measurements) the PEM is placed into the excita-
tion path taking the place of the quarter wave plate. The helicity of the circular
polarization is modulated with the PEM frequency (50 kHz), hence the polariza-
tion of the electron system is reversed within a time which is very short compared
to the optical pumping time constant. Therefore, the coupling of the electron
and nuclear systems is suppressed. Since the polarization of the luminescence is
now modulated in this setup, the quarter wave plate is placed into the detection
path in front of the linear polarizer in order to analyze the degree of polarization.

3.3 Laser

Several diode lasers are used to provide the requisite optical radiation to excite
electrons in the different quantum wells. The laser excitation system consists of
non stabilized (free running) diode lasers, a tunable external cavity laser with a
Littrow configuration, and a second tunable external cavity laser with a Littman
configuration.

The free running diodes are placed in a homemade vacuum chamber and
are actively cooled with a peltier element. This construction provides the ability
to tune the wavelength of the laser over a range of up to 3nm by varying the
temperature of the diode from about 40° C to —10° C. The output power typically
lies between 80 mW and 100 mW. The wavelength stability of these diode lasers
depends on the current and temperature control; therefore, a controller for the



3.4 Detection of Polarization 19

laser system was developed which met the desired specifications for the beam
stability required.

Tuning the free running diode lasers is limited, and specific wavelengths might
not be reachable due to mode hops of the laser. Therefore, a laser system from
TUI-Optics (now Toptica Photonics) is used with an external cavity in a Littrow
configuration. The laser light is diffracted at an optical grating, and the first
order diffraction beam is directed back into the laser thereby creating the external
cavity. Wavelength selection is achieved by turning the grating; the system has
a tuning range of about +4nm. The output power is reduced by about 50 %
compared to the free running diode lasers, but it is still sufficient for optical
pumping. An automatic scan of the wavelength cannot be implemented because
the angle of the emerging beam depends on the wavelength and changes during
a scan, requiring realignment of the optics.

To accommodate automatic tuning of the laser wavelength in order to take,
for example, a photoluminescence excitation (PLE) trace, a system from EOSI
(Newport) is used. This system has a Littman configuration with a grating and a
retroreflection mirror. The angle of the emerging beam is wavelength independent
and therefore does not move during the scan. A tunable wavelength range of up
to =10 nm can be achieved with an output power of about 10mW to 15 mW.
The entire system including these various lasers covers a wavelength range from
776 nm to 820 nm. However, a gap in the spectral range of the system at 787 nm
impedes the investigation of the 8.1 nm wide quantum well.

3.4 Detection of Polarization

For optical detection of the nuclear magnetic resonance, the degree of the pho-
toluminescence polarization is observed. The timescale for measuring changes in
the polarization must be fast with respect to the physical processes occurring dur-
ing the experiment; in other words, the detection must be faster than the passage
through the resonance. The analysis of the circular polarization is greatly aided
by using the combination of a Hinds Instruments model PEM-90 photo elastic
modulator and a linear polarizer oriented at an angle of 45° to the PEM'’s axis
(see figure 3.1, components PEM and LP). The PEM contains an isotropic opti-
cal element (glass) connected to a piezoelectrical crystal. With a tuned circuit,
the piezoelectric crystal is excited to periodic oscillations at 50 kHz and induces
uniaxial strain into the glass, such that it becomes birefringent. Therefore, the
polarization components of the transmitted light are affected differently by the
two axes of the PEM. The path length of the component of the light parallel to
the strained axis is modulated, and the maximum path length difference between
the strained and the unstrained axes can be arbitrarily chosen. In the case of
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Figure 3.2: The transmission function of the combination of a PEM with a linear
polarizer. In case of purely right- or left-hand polarized light, the transmission is
modulated between zero and 1. For mixed polarizations, the transmission does not
reach the extreme values. The lock-in amplifier measures the difference between
the extrema.

analyzing circular polarization emitted from the sample, it is set to one-quarter
of the wavelength. With the PEM only the changes of the nuclear polarization
can be detected; the precession frequency of the nuclear spin is higher than the
bandwidth of the optical detection system and therefore cannot be observed.
The signal that is measured, after the combination of a PEM and a linear
polarizer, depends on the polarization of the incoming light. The principle of
measuring the polarization is explained by Jasperson and Schnatterly [40]. The
laser excites the sample with either left-hand (LHCP) or right-hand circularly
polarized (RHCP) light. If there are no losses in the sample, the emitted pho-
toluminescence is also circularly polarized. In one extreme of the oscillation (of
the strained glass), LHCP light passing the PEM is transformed into one of the
linearly polarized components. In the other extreme, it is transformed into the
orthogonal linear component. In between, the light is elliptically polarized. With
the linear polarizer after the PEM, only one component of the linear polarization
is selected, thus converting the polarization modulation into an intensity mod-
ulation with a frequency of 50 kHz. For example, in case of LHCP light, the
relative intensity can be modulated between 0 and 1. The signal is depicted in
figure 3.2. The signal for RHCP light is phase shifted by 180° relative to the
LHCP signal. In the usual case of mixed circular polarization emitted from the
sample, light will pass the polarizer in both extrema of the PEM modulation.
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The minimum of the modulated intensity does not reach zero in this case. If I,
is the intensity for RHCP light and 7_ for LHCP light, the difference between
the maximum and the minimum of the signal is proportional to the difference
(I; — 1) of the amount of LHCP and RHCP light passing the PEM. Normalized
to the total intensity (/. + 1) light passing the PEM reveals the relative degree
of polarization emitted from the sample.

The difference signal (I, — I_) is detected with a Stanford Research lockin
amplifier referenced to the frequency of the PEM. A lowpass filter from Stanford
Research works as an integrator and measures the total intensity (1, +/_) passing
the PEM. The division of both signals is carried out by the lockin amplifier. In
order to reveal an absolute value for the degree of circular polarization, the
polarization of the scattered laser light is detected, and the photoluminescence
polarization is normalized to this value.

3.5 Optical Spectrometer

The signal is detected with a spectrometer consisting of a Spex 1704 monochro-
mator and an avalanche photodiode Module C5460-01 from Hamamatsu. The
1 m focal length monochromator is equipped with variable input and output slits
and a motor drive for turning the diffraction grating. The maximum resolution is
0.061 A at a slit width of 8.03 um. During the NMR experiments the slits were
usually 100 um to 200 um wide in order to increase the signal intensity, which
reduces the resolution to 0.075nm and 0.15 nm, respectively.

The avalanche photodiode module (APD) is equipped with the diode and a
low-noise current-to-voltage amplifier circuit, and it is attached to the output slit
of the monochromator. The spectral sensitivity of the APD has its maximum of
0.5A/W in the region of interest at about 800 nm. The current is transformed
to a voltage with a 102 resistor and amplified by a factor of 30. The cut-off
frequency is 100 kHz, sufficiently high to operate as a detector for modulated
signals at 50kHz. The noise equilvalent power (NEP) is 0.02 pW/v/Hz. The
bandwith of the lock-in amplifier is about 500 Hz giving a NEP of 0.44 pW.

3.6 Optical Cryostat

All experiments for this project are carried out below liquid helium temperatures.
To cool the sample, it is mounted on the sample holder and placed into the
vacuum chamber of a home-built stainless steel flow cryostat. The vacuum space
is maintained at a pressure of approximately 10~¢ mbar by continuous pumping
with a Pfeiffer turbo molecular pump. The sample is glued with silver thermal
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epoxy to the copper sample holder which itself is glued to the cold finger of the
cryostat. This method provides the best thermal contact and a maximum of
flexibility to exchange the sample and the sample holder. Helium is transferred
from an external reservoir into the cryostat, and the inner part of the cold finger is
cooled by the liquid helium. Pumping on the helium level reduces the vaporization
temperature, and temperatures down to 2.5 K (measured on the surface of the
cold finger) are reached. Despite the good thermal contact, the sample is only
at a temperature of about 3.5 K. The temperature is measured at the cold finger
and at the terminal end of the sample holder with magnetic field-independent
GaAs diodes (TG-120 CU from Lakeshore). Heating wire attached to the cold
finger provides the ability to set the temperature to values above 2.5K. The
temperature sensors and the heating wire are controlled by a Oxford ITC 502
temperature controller.

For optical access to the sample, the cryostat is equipped with a window
perpendicular to the direction of the external field. Since the sample is in vacuum,
detrimental effects due to helium gas or bubbles of boiling helium are not of any
concern.

3.7 External B, Field

The cryostat is placed between the poles of a Bruker electromagnet. The mag-
net's field can be arbitrarily set up to a maximum of about 1.4T. With the
aid of two shimming coils, a field antiparallel to the electromagnet’s field can
be created, extending the range below 0T to -11mT. The power supply of the
magnet is controlled with a digital-to-analog converter (DAC) and the computer.
The resolution of the DAC is 20 bit, but the stability of the power supply is not
sufficient to permit measurements of chemical or Knight shifts. The size of the
magnetic field is measured with a Hall probe outside of the cryostat and a Hameg
HM 8112-2 voltmeter. The field can be measured with an accuracy of 0.01 mT,
but the absolute value at the position of the sample cannot be obtained because
of the inhomogenity of the field.

3.8 Radio Frequency Field

The sample, mounted on the copper sample holder, is placed between two RF
coils in a Helmoltz configuration as depicted in figure 3.3. This setup allows
optical access to the sample and minimizes photoluminescence losses. Each coil
contains 40 turns wound around a cylinder made out of Teflon. The RF circuit
is not matched with tuning components, resulting in reflected power of about
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Figure 3.3: Sketch of the sample holder and the RF supply to the sample inside
the cryostat (blue). The external field is perpendicular to the plane of the diagram.
The room temperature Hall probe is positioned outside of the cryostat.



3.8 Radio Frequency Field 24

90% measured with directional couplers. Nevertheless, the RF field produced
with this simple circuit is sufficiently high for the ODNMR experiments and can
be used over the entire frequency range of interest, which is from DC to about
20 MHz.

A Hameg HM 8131-2 function generator and a Hameg 8133-2 synthesizer are
used as the primary RF sources. The maximum amplitude of the RF created by
the function generator is 7 Vs, and no amplifier is needed. It is equipped with an
IEEE-488(GPIB) interface for computer control and is used for a single rf-scan
ODNMR experiment. The synthesizer is used for rapid scanning in frequency
modulation mode, for example, in the adiabatic fast passage experiment. The
synthesizer's amplitude is limited to 500 mV,s, and an ENI 350L amplifier must
be used in conjunction with the synthesizer to create sufficient RF power.

The RF power is measured indirectly by observing the time dependence of
the nuclear spin polarization after switching on the RF modulation. For a spin
I = 3/2 system with resolved quadrupolar splitting, the nuclear spin polarization
decays as [41]

L(t) = Ly ™™o 4 Ly Vot 1, e 2 ont (31)

where the indices (¢, 0,qy) refer to the three transitions (+% > +%,+% >
—3,—3% <> —3). The radio frequency saturation can be treated as a time de-
pendent perturbation, and the transition probability between state m and m — 1
is given by
2 9

I/Vm,mfl - ﬁ <m| 7'[int |m - 1> | f(w) (32)
where f(w) is the spectral density function and H;,,; the interaction Hamiltonian.
For calculating the transition probability between different states, the Hamilto-

nian in the rotating frame approximation can be written as
1
Hint = ihwlfi- (3.3)

B = v,w; is the amplitude of the rotating field coupling to the spins I..
According to equations 3.2 and 3.3, the transition probabilities in equation 3.1
become

Weee = gﬂwff(wo — wy) (3.4)
W,, = 21w’ f(wo) (3.5)
W, = gmf Floo +w,) (3.6)

with f(w) being the spectral density function of the relevant transitions and w,
the quadrupole splitting.
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Figure 3.4: (a)Time evolution of polarization during resonant saturation of central
quadrupole transition of ®As. See text for details about the fit. (b)B; field
obtained by the fit depending on the radio frequency voltage applied to the sample.

Figure 3.4(a) shows an example of the time evolution of the polarization.
It is obvious that there is more than one decay process occurring, attributable
to the central transition (fast decay) and the satellite transitions (slow decay).
The red line in figure 3.4(a) is a fit using equation 3.1. The photoluminescence
polarization depends on the nuclear field that is proportional to I, as will be
pointed out in chapter 4. Utilizing equations 4.12, 4.40 and 3.1, simulation of
the detected optical signal is possible, giving a value for the radio frequency field,
B;.

The radio frequency absorption is measured for different RF-powers applied to
the circuit. The B;-values obtained by the fit are presented in figure 3.4(b). B,
shows a linear dependence on the rf-voltage supplied by the function generator,
as expected. The uncertainty of the fit stems from the inexact determination of
the different fit parameters. However, the fit is reliable enough to give a good
approximation of the radio frequency field applied to the sample.

3.9 Data Acquisition and Evaluation

Most parts of the experimental apparatus are controlled with a computer, espe-
cially the monochromator, the external field, and the EOSI laser. Data acquisition
is done with the computer which is equipped with an IEEE-488(GPIB) interface



3.9 Data Acquisition and Evaluation 26

and an analog-to-digital converter (ADC). In the case of NMR experiments, the
timing is too critical for the data acquisition with the computer, and a LeCroy
9310A 400 MHz digital oscilloscope is used instead. The synchronization of the
experiments is done with the computer for single RF scans or with a Stanford
Research Systems DG 535 pulse generator for adiabatic fast passage experiments.
All data is evaluated with software developed in-house. For fitting the theo-
retical functions to the data, the Levenberg-Marquardt algorithm is used.



Chapter 4

Coupling of Electron and
Nuclear Spin Systems

27
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4.1 Optical Pumping

Optical pumping of the nuclear spin system is based on a transfer of the polar-
ization from the orientated electron spin system to the nuclei. The spin polarized
electrons in the conduction band are coupled to the nuclei by hyperfine interac-
tion. For electrons in the conduction band described by s-type wavefunctions the
Fermi contact hyperfine interaction prevails, given by this Hamiltonian:

~

th = —aNa(rZ»)IA -5 (4.1)

with the coupling constant

9
ana(r;) = gﬁgououma 0, ()| (4.2)

where gq is the free electron g-factor, 1 the permeability of free space, up the
Bohr magneton, 7, the nuclear gyromagnetic ratio, and |¥,(r;)|” the probability
of finding the electron at the location, r;, of the nucleus. The interaction of the
nuclei with the p-orbital symmetry holes in the valence band is of a dipole-dipole
type [42] and therefore considerably weaker.

For a nucleus, i, at position, r;, the hyperfine interaction is equivalent to a
Zeeman interaction in a magnetic field of electronic origin [11]:

. 9 .
B, = —390Holis Z Sy |y (x| (4.3)
q

In the same way, a conduction electron in an orbital state, 1/, and an effective
g-factor, g*, feels a nuclear magnetic field [11]:

~ 2 9o ~

The magnetic fields in equations 4.3 and 4.4 between the electron and nucleus
have several consequences in magnetic resonance; they are responsible for: the
Knight shift of nuclear resonance lines, the Overhauser shift in conduction elec-
tron resonance experiments, and dynamic polarization (also known as the Over-
hauser effect [1]).

4.1.1 The Coupling Constant

In order to calculate the coupling constant, ay,(r;), one has to find an expression
for the wavefunction, W,(r;). Electrons near the bottom of the conduction band
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are usually described as a product of an envelope function, Fy(r), of the g-th
electron and a rapidly varying periodic function, uy(r) [43]:

v

Uy (r) = Fy(r)uy(r) = Fy(r)uo(r)y/ 5 (4.5)
where uy(r) is the k = 0 Bloch function, V' the volume of the sample, and
) the volume of the primitive unit cell. The values for the electronic density,
dy = |ul(rs)|?, have been calculated by Paget et al. [11]

9.8 x 103t m—3
5.8 x 103t m—3

d7s as

N
N

d69Ga — d”Ga (46)
For delocalized electrons at the bottom of the conduction band, the value of
F,(r) is \/Q/V inside the crystal and zero outside. Therefore, the coupling of
delocalized electrons can be neglected. The quantum wells contain almost no
impurity centers which means that electrons are not bound to any donor states.
Instead, they usually form an exciton, which is a coupled electron hole pair,
attracted to each other through Coulomb interaction. The wavefunction for the
exciton in a quantum well has been derived by Grundmann and Bimberg [44] and
by Bastard et al. [37] [45]. It is a product of the electron wavefunction, ¥, (z.),
the hole wavefunction in the potential well, W) (z,), and an envelope function,
®..(p), describing the extension of the exciton in the plane of the well:

qjem(% p) = \Ile(ze)\ph(zh)q)ex(p) (47)

where z is the coordinate in the growth direction of the quantum well and p the
distance from the center of the exciton in the xy-plane. Since the wavefunction
of the hole has p-orbital symmetry, the interaction of the hole with the nuclei is
much weaker compared to that with the electron and will therefore be neglected.
The envelope wavefunction of the electron in a potential well is given by:

F(z,p) = %cos(kz)e‘p/“% for 2| < L,/2 48
F(z,p) = %e*’“e*p/“% for |z| > L,/2 (4.8)

where k and k are the wave vectors in the quantum well and the barrier, re-
spectively; L, is the width of the quantum well; and A, a normalizing factor to
meet the continuity conditions at the interface between the quantum well and
the barrier. The effective Bohr radius, a%, of the exciton in the xy-plane of the
quantum well is proportional to the square root of the width, L, [44]. a7} can
be calculated from the data in [44] assuming that it has the 3D-value for the
20 nm quantum well, a?? = 16 nm [46]. The values of the Bohr radii for different
quantum wells are listed in table 4.1.
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L, [nm] | a[nm] | F%(0)-107° | an(™As)/h | ax(™Ga)/h | an(®*Ga)/h
20 16 1.01 0.112 0.118 0.093
15 14 1.7 0.189 0.199 0.157
10 11 3.9 0.433 0.456 0.359
5 8 12.7 1.410 1.486 1.170

Table 4.1: Effective Bohr radii and hyperfine coupling constants calculated for
different well widths. The hyperfine constant is specified in units of MHz. The
gyromagnetic ratios used in equation 4.10 are yrspg = 45.82:10% rad(sT) !, yrig, =
81.58 - 10 rad(sT)~! and 7ssg, = 64.21 - 105 rad(sT) L.

The envelope function is normalized to the volume of the primitive unit cell

/_Oo F(z, p)2dPr = O (4.9)

where Q) = 1aj [47]. The lattice constant of GaAs is a; = 0.565nm [28], and
therefore 2 = 0.045nm?. The depth of the potential well is 1.071€V [28], and
the gap between valence and conduction band is 1.52¢€V. After normalization
of the electron wavefunction one can rewrite U (r;) = F(0)t,(r;), and the
hyperfine coupling is

ana(r) = ana [1h(r:)]”

4.10
ana = 3hgopopsadeF?(0) (4.10)

The values of F%(0) for different quantum well widths are listed in table 4.1. The
coupling constant has been calculated for the three isotopes and for different
quantum well widths. The values are also listed in table 4.1. The strength of the
coupling in the wide wells is comparable with the coupling in doped bulk GaAs
crystals [11] but is an order of magnitude bigger in the small wells.

4.1.2 Nuclear Magnetic Field

The nuclear field felt by the electrons consists of the fields created by each
nucleus summed over all nuclei that couple to the electron during its lifetime. As
described by equation 4.4, the maximum nuclear magnetic field can be calculated
with the aid of the wavefunction from section 4.1.1 and the assumption of a

homogeneously polarized nuclear spin system. In this case, I; can be replaced
by its average value <fz> which is independent of the position of the nucleus.
Hence, there is no difference between the field “seen” by an exciton diffusing in
the xy-plane of a homogeneously polarized quantum well or a trapped exciton,

and the field is calculated for the latter case.
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L. [nm] | u[nm] [ v[nm] | s[nm] | Vel [nm’] | Vi Inm®] | NGe | NgE
20 | 111 | 11.3 [ 0.006 | 4453 23 [24740| 13
15 86 | 9.9 |0010| 2648 29 | 14710 | 16
10 60 | 78 |0019| 1147 36 | 6370 | 20
5 34 | 57 |0053| 347 5.4 1930 | 30

Table 4.2: discussed in the text for different well widths. w is the effective height in

growth direction, and v the effective radius of the exciton in the xy-plane. Vq?,‘\c,f and
Vbe:rf are the effective volumes of the exciton in the quantum well and the barrier,
respectively. N{'¢ and Nf’fcr are the numbers of unit cells in the quantum well or

barrier volume.

Suppose the electron is trapped at a position, r = 0. The interaction proba-
bility of each nucleus is given by equation 4.10. One has to calculate the coupling
constant of each nucleus at a distance, r = r;, and sum over all nuclei in the
sample (which is cumbersome). Instead, the exciton can be modeled as a cylin-
der with its circular base of radius, v, in the xy-plane of the well and height,
h = u + s, in growth direction. wu is the height of the associated cylinder in
the quantum well, and s the height of the cylinder part in the barrier. The sum
over all nuclei in equation 4.4 can be replaced by an integral over the whole
sample. The coupling strength of each nucleus within the cylinder is ay, and
zero outside. The probabilities for the interaction have to hold for the following
conditions:

L./2
[ cos®(kz)dz = u z-direction in quantum well, |¥,|?

~L./2
27 00 ) 9
[ [ pe~2l%sdpdy = mv? xy-plane in quantum well and barrier, |®.,|
00

2 [ Ae*™dz = s z-direction in barrier, |, |°
L./2

(4.11)
The values for u ,v and s and the resulting volumes, V¢//, of the cylinder in the
quantum well and the barrier have been calculated and are summarized in table
4.2,

A comparison of the effective volumes of the quantum well and the barrier
shows that the influence of nuclei in the barrier can be neglected in most cases.
Even in the 5nm well, the fraction of nuclei in the barrier is only 1.5 % of the
total amount of the nuclei. Therefore, no signal of 27Al situated in the barrier
should appear in NMR experiments.

N{Z and NP are the numbers of unit cells in the effective volumes of the
quantum well and the barrier part of the exciton, respectively. Each unit cell



4.1 Optical Pumping 32

contains eight atoms, four ®As and four /7' Ga. The nuclear field created by a
uniform nuclear polarization is therefore

Ba = ONq "
9 UB

4-Nyc - g <fa> (4.12)
Zq is the fraction of the nuclear species
T30 — 1 T69Gy — 0.6 T71Gy — 0.4 (4.13)

The maximum nuclear fields appear for a fully polarized system <fa> =3/2 and
are listed in table 4.3

L.nm] | ¢* | Brsas[T] | Beoga [T] | Briga[T] | 3 Bw [T]
20 -0.4 -2.97 -1.25 -1.48 5.7
15 -0.3 -3.41 -1.44 -1.70 -6.55
10 -0.25 -4.74 -2.00 -2.36 -9.1
5 0.1 11.8 4.99 5.90 22.69

Table 4.3: The maximum nuclear field of each isotope calculated for a homoge-
neous polarization. The values for g* are taken from Snelling et al. [48]

Comparison with the nuclear field calculation by Paget et al. [11] shows good
agreement with the values calculated above. The sum of the nuclear fields in a
20 nm quantum well is 5.7 T, which is about three times smaller than in [11], on
the other hand, the coupling constant is also scaled by a factor of three.

4.1.3 Electronic Magnetic Field

The static magnetic field created by the electrons acting on one nucleus can
be calculated in a similar way to the calculation of the nuclear field in section
4.1.2. The maximum field created by an electron (spin, S = 0.5) at r = 0 and
with an infinite lifetime is given by the coupling constant, ay,, divided by the
gyromagnetic ratio, 7,, of the nucleus, o and multiplied by |;/)e(r)|2 = ﬁ For
As in the 20 nm quantum well, the field would be B, = 0.08 xT at each nucleus.
A nucleus interacts only a fraction (I';) of the total time with an electron. Thus,
the strength of the magnetic field of electronic origin acting on a nucleus at a
distance, r, from the center of the exciton is
. L1 2/ A
(B2() =T avag—0e(e)* () (4.14)
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The value of I'; depends on the number of electrons in the sample and therefore
on the intensity of the light. The power absorbed in a quantum well is

1% = [o(1 — ™" L2) (4.15)

where I is the intensity of the laser and * the absorption coefficient. a?® =
10° cm~! has been measured by Marquezini et al. [49] for a 7nm quantum well
and is taken to be independent of L, here. The intensity of the laser is usually
about 30 mW/area and is focused down to 100 um in diameter. Therefore, the
intensity absorbed in a 20 nm well is 5.4 mW /area. The energy of a photon in
this quantum well is E,, = h - ¢/, and the number of photons absorbed per
area and time is 19/ E,,. With A\ = 810 nm, the number of photons per time is
2.2-10% s~!. Each absorbed photon creates an electron in the conduction band,
and the number of electrons per unit volume with a lifetime of 1 ns present in
a 20nm quantum well is about 2.2 - 10". The number of atoms in the excited
volume is 3.6 - 10!, therefore one electron is excited every 10000 nuclei. The
electrons form excitons with a diameter that extends over several unit cells. With
the values listed in table 4.2, one finds that each exciton in the 20 nm well extends
over 10° ™As nuclei, meaning that each nucleus feels 10 excitons at the same
time. This gives the occupation rate to I',; ! = 10. The maximum field created
by the electrons without trapping is therefore 0.8 uT (= B, - I', !).

4.1.4 Dynamic Nuclear Polarization

~

The electron spin, S, precesses in the external magnetic field, By. The pro-
jection of S on the external field creates a magnetic field of electronic origin
which is static during the lifetime of the electron. The components of S per-
pendicular to the external field create a fluctuating field felt by the nuclei. As
in thermal relaxation, [41] these modulations of the hyperfine interaction cause
dynamic polarization of the nuclear spin system as a relaxation process. The
spin is transferred from the electron to the nuclear system by flip-flop processes
which conserve the total spin. Hence, the balance equation for the steady state
populations, N,,, of the nuclear spin levels has the form [42]

mem,len, = WmflymNm,1n+, (416)

where, m, is the projection of the nuclear spin on the direction of the external
magnetic field, Bo; W, ,,—1 the probability for a transition from state m to m—1;
and ny = 1/2 4+ S are the populations of the electronic states with spin up or
down. D’yakonov and Perel’ [50] calculated the transition probabilities taking the
modulation of the hyperfine interaction as a random perturbation to the external
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field. The populations for each energy state, m, follow the thermodynamic
relation

Ny = %em“f“ (4.17)
e (1+28)(1 — 257)
””‘I<kBT+'” {(1_25)(1+25T)D’ (4.18)

where Z = > e™*/1 is a normalization factor, S is the mean value of the
projection of the electron spin along the direction of the magnetic field, By, 2.
the precession frequency of the electron in the external magnetic field, and

1 ppg*B
= —_tanh 4.1
St 5 tan ( kT (4.19)

is the equilibrium value of the average electron spin. The temperature, T, in
equation 4.18 is the temperature of the lattice, which has an infinite heat capacity
[41] meaning that the lattice temperature is not affected by the optically pumped
spin systems. The energy needed for the spin transitions is provided by the lattice
[42].

A convenient way to calculate the populations of the different spin systems
is the concept of a spin temperature [51], which will be used in this thesis. The
basic idea of spin temperature theory is the assumption that the spin systems
behave like systems described by thermodynamics. According to Goldman [51],
the spin temperature hypothesis can be stated as follows: “A spin system isolated
from the lattice and subjected to spin-spin interactions proceeds toward a state of
internal equilibrium such that the probabilities of finding the system in any of its
energy levels are given by a Boltzmann distribution, e~ /%875 " The distribution
defines the spin temperature, 7.

For the optically cooled electron system one can define a spin temperature,
Ts, and the second term of equation 4.18 can be written as —hf)./kgTs. The
average nuclear spin, (I) = > mN,, created by dynamical polarization is
expressed in terms of the Brillouin function [47]

Iy = 1B;(x) (4.20)

Equation 4.20 describes the polarization of the nuclear spin system due to a
difference of spin temperature between the electrons and the lattice. The ra-
tio, (I,) /1, is the limiting value of nuclear spin polarization depending on the
polarization of the electron system.

The time dependence of the mean nuclear spin is, according to [50]:

d{l,) 1 1
dt — T(r) (L) = Io) — 7 (L2) (4.21)

I
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where T} is the lattice relaxation time, and I, the steady state nuclear spin
calculated with equation 4.20. The longitudinal nuclear spin relaxation time,
Tie(r;), due to the hyperfine interaction is given by

1 1 r
— =T, ' —a? P (1—4 — 4.22
Tle(ri) t 72 AN |77Z)8(rl)| ( SST) Fg Qg ( )

where Ft_l is the degree of occupation of a nucleus, I';! is the time the electron
is in the interaction range of a nucleus, and €, is the precession frequency of the
electron in the external field.

Non-localized excitons do not contribute to the polarization as can be shown
by estimating I, for these excitons. Assuming the diffusion of the excitons within
the quantum well to be unrestricted, one can estimate the diffusion radius in a
two-dimensional system with

(r*) = 4Dt (4.23)

With a diffusion coefficient, D = 20cm?/s, [52] and the lifetime, 7, = 107,
[53] one gets r = 2.8 um. Comparing this radius with the effective radius of
the exciton in a 20 nm well from table 4.2 shows that the mobile exciton sees
6 - 10* more nuclei than a trapped exciton. Hence, the electron spends a time of
;! =7.-(6-10*)"1 = 1.7-10 s at a nucleus. Therefore, the relaxation time at
r = 0 in zero field, setting ', = 10s (s. section 4.1.3) and I';! = 1.7-107 !5,
gives T1,(0) = 10°s for ™As in a 20 nm quantum well. This value is much longer

than spin lattice relaxation time, 77, of the nuclei which is on the order of a few
100 seconds.

4.1.5 Electron Localization

As has been seen in the previous chapter, the hyperfine interaction of nuclei
with electrons of non-localized excitons is too small to produce significant nu-
clear polarization. The samples under investigation in this thesis are MBE-grown
materials and therefore are very ordered and pure, meaning localization due to
impurities can be excluded due to the low concentration of defects in the inves-
tigated samples. The most probable reason for localization is trapping of the
excitons at defects of the interface between the GaAs and AlGaAs layers [37]
[54] [55] [56] [57]- Even in high quality MBE-grown quantum wells, the hetero-
interface is not truly smooth but usually shows deviations in the well width of 1
monolayer. These deviations of thickness are on different lateral length scales,
L. Depending on the size of the lateral defects, a classification of the interface
roughness can be obtained [58]. The interface is called pseudo smooth if L is
much smaller than the diameter of the exciton, a};. The exciton sees, in this
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case, a distribution of different well widths. When L is larger than a};, the inter-
face is called smooth. Finally when L is on the order of the exciton Bohr radius,
the interface is called rough. The excitons are trapped in islands of different
thickness which have diameters much larger than [59], or on the order of [58],
the Bohr radius of the exciton. Jahn et al. [60] have shown that the localization
in the wide well regions is stronger than in the narrow well regions because of
the low confinement energy. Hence, after creating an exciton anywhere in the
quantum well, it diffuses to a wide well region. At low temperatures, subsequent
diffusion between different islands does not occur [54] because of the monolayer
potential step. This effect leads to various regions in the quantum well with high
and low exciton concentrations.

Unfortunately, there is no information about the exact size, density and dis-
tribution of the trapping islands in the samples investigated herein. In order to
demonstrate the influence of localization on the polarization of the nuclei, one
can use the following model.

Picture a quantum well with lateral de-
- O ~. fects having radii of L = 50nm within
L N a distance of 1 um from center to center
) ' (R = 0.5 um) as depicted in figure 4.1. An
exciton created between these defects has
O @ a diffusion radius of 0.5 um during its life-
- time. The probability for an exciton to be
\ R . trapped by the nearest neighbor trapping
* . site is given by the ratio of the circumfer-
MR Ll ence of the diffusion circle to the diameter
O of the interface defects multiplied by their

number

Figure 4.1: Model for exciton
trapping at interface defects. The f= 2rR = Eﬂ (4.24)
4-2L AL

exciton X (red) is excited between

defect islands of radius, L, and This means that after f~1-3.125-10~'s =
diffuses within the diffusion ra- 5 15-10¢ the exciton is trapped in a region
divs, R. of wider well width (see equation 4.23).
The exciton stays at the trapping site for 5 - 107°s and diffuses within this
area. The number of nuclei interacting with the electron is 10 times bigger than
for the case of non-diffusing excitons. This leads to an interaction time of the
electron per nucleus of T';! = 5-107!!s, reducing the hyperfine relaxation time
to 71.(0) = 40s.
Despite the simplicity of this model it demonstrates the enormous influence
of trapping the excitons at interface defects. Following the classification of
roughness [58], the interface in the model is considered to be “smooth” but still
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1 <S(0)> = - <S(0)>det
~ <S(B)>det
<S(B)>

~ -

Figure 4.2: The classical picture of the Hanle effect. Left: Optical excitation of
the spins creates average spin (S(0)) in zero external field colinear with the laser
excitation axis. By is only shown to indicate the z-direction of the coordinate
system. Right: Applying an external field, By = B, causes precession of the spin
component perpendicular to the field, (S(B)) . The parallel component, (S(0)),.
remains constant. Therefore, the average spin (S(B)) becomes field dependent,
for which the projection on the excitation axis is detected.

it is rough enough to trap excitons. The PL spectra of the samples investigated
during this work show very narrow emission lines implying smooth interfaces.
However, even a small density of defects can lead to a huge increase in the
interaction probability between electrons and nuclei as was shown by the model.

4.2 Optical Detection

In the previous sections, the transfer of the polarization of the optically oriented
electrons to the nuclear spin system has been discussed in detail. The influence
of the nuclear field on the optical orientation of the electrons will be the subject
of this section. This influence on electrons in semiconductors was directly proven
by Ekimov and Safarov [3], who discovered resonance changes in the degree
of circular polarization of luminescence under NMR. These changes are due to
variations of the absolute value and the direction of the nuclear field during
the passage of magnetic resonance. The influence of magnetic fields on the
polarization of orientated electrons is called the Hanle effect. This effect will
be discussed in detail for two cases, with purely external fields, and with both
external and nuclear fields in sections 4.2.1 and 4.2.2, respectively.

The Hanle effect was first discovered and studied in the resonance fluores-
cence of gases [61], but it also plays an important role in spin orientation in
semiconducting materials. In the classical picture the electron spins start to pre-
cess in the presence of a magnetic field, By, which is oblique with respect to the
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orientation of light propagation. Because of spin relaxation and the finite life-
time of the excited electrons, the average spin component perpendicular to the
magnetic field, (S(B)),, decreases with increasing field strength. This leads to
an observable decrease in the average electron spin in the direction of detection,
(S(B)), as shown in figure 4.2. The source for a magnetic field in the case of
semiconductor materials is an external magnetic field, By, as well as the field
produced by the nuclei, By, through the hyperfine interaction. The influence
of the different sources of magnetic fields are treated separately in the following
sections.

4.2.1 The Hanle Effect in an External Field

In the experiment, an average spin is observed which involves a large ensemble
of electron spins. A powerful method to treat a large spin system is the density
matrix formalism as shown by Fano [62]. The spin system as a whole is repre-
sented by its density matrix, p, and the Hamiltonian operator, . The diagonal
components, p;;, of the density matrix represent the populations of the different
energy levels, and the off-diagonal components are coherence terms. Throughout
this work, rows and columns of the density matrix are sorted in the following way:
m,m —1,...,—(m — 1), —m from left to right and top to bottom. The time
evolution of the density matrix is described by the Von Neumann equation, which
has been extended by including the relaxation rates and the optical pumping rate

P’
op i

ot h[
where T, is the matrix which describes the recombination of the electron from
the conduction to the valence band, and fs is the matrix for the spin relaxation
within the conduction band. The continuous optical pumping of electrons from
the valence band to the conduction band is represented by the matrix, P’. The
values for transverse and longitudinal relaxation times can be taken to be equal
[41].

The geometry of the optical pumping setup in an external field is depicted
in figure 4.3. Defining the z-direction as the direction of the magnetic field, the
Hamiltonian is diagonal and has the form

H,p|-T, -T,+ P (4.25)

H=w-S,=—0,. (4.26)

With pure left-hand circularly polarized light and a wavelength tuned to the
heavy hole transition, only the spin state, p;;, in the conduction band becomes
populated. The matrix for optical pumping in the coordinate system of the
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Excitation

Detection

Figure 4.3: The orientation of the excitation light with respect to the external field.

P= (103 8) (4.27)

The optical excitation takes place under an angle, 0, with respect to the external
field. To include the optical pumping into equation 4.25, P has to be rotated
around the y-axis by 6

excitation is

P! = 5% Pe 2% (4.28)

Therefore, the equations of motion for each of the density matrix components,
Pij, are

P11 = —Lrpi —%Fs(Pu — p22) —I—Pcoszg

P2 = =L pa2 —%Fs(Pm — p11) +P8in2§ (4.29)
prz = —iwprz —Lrpio —Lsp12 —PSingcosg '
po1 = iwpn  —Lepa —Lspa —PSin5008§

The average spin in the magnetic field direction (S,) is proportional to the pop-
ulation difference, and the average transverse spin components, (S;) and (S,),
are proportional to the real and imaginary part of the coherence, respectively.
Therefore, equation 4.29 is rewritten in the following way

A = ~T,A —T,\ +Pcost

Y = I, 4P

X = —wY -IX -I,X —Psinf (4.30)
Y = wX -I,Y -I,V

with the substitutions: A = py; — po2, ¥ = p11 + pa2, X = p12 + po1, and
Y = i(p1a — po1). The detection rate of the experiment is much slower than the
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precession and relaxation rates of the electrons, which means that the system is
always in the steady state. Thus, the derivatives of equation 4.30 vanish and can
be solved exactly.

_ cosl
o PFT+FS

P

tr (4.31)
_p (Fr+Fs)sinQ

(Tr+Ts)24w?

_ wsind
= Prary

S ==
[

The expectation value, (A), of an operator, A, is calculated in general as
(A) = Tr{Ap}. Normalized to the total population in the conduction band,
the expectation values of the three electron spin components are

(Sz) = Tr{Sep} = 1% = —Soﬁiii’fﬁg
(Sy) = Tr{Syp} = 35 = —Se R (4.32)
(S:) = Tr{S.p} = 3% = Socost)

The equilibrium spin, Sy, is the value of the spin in the absence of a magnetic
field and therefore determined by the relaxation rates, I', and I'; by:

1 T,
= — 4,
%= oT 4 (4.33)
The quantity
Aw =T, + T (4.34)

is also defined by the relaxation rates and will turn out to be the width of the
Hanle curve. Equation 4.32 mirrors what has been explained classically in the
introduction. The component parallel to the external field is independent of
the field, whereas the two other components show a field dependence. The
components decrease with increasing field due to the precession in the magnetic
field. The detection polarization, (S,)*", can be calculated by transforming the
vector, (é) = ((Sz), (Sy), (Sz)), into the coordinate system of detection. The
orientation of the sample is shown in figure 4.4. The detection is antiparallel to
the excitation with a deviation, &, giving a transformation angle, ¢ = 180°+6+¢&.
The angle, &, is determined by the geometry of the experiment and the refraction
of light at the interface:

€= aresn (22000 (4.35)

NGaAs
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Excitation } Detection

Figure 4.4: Sketch of the orientation of the quantum well sample in the experi-
mental setup. The external field points in the z-direction. The excitation is parallel
to the growth direction of the quantum wells, and the detection is antiparallel and
slightly off-angle from the excitation. The deviation, &, can be neglected, as shown
in the text.

Using ngeas = 3.3 [63] and 6 = 74° as typical values from the experiment, gives

—

¢ = 4.8°. This small value can be neglected for simplicity, and (S) is rotated by
¢ = 180° + 0 around the y-axis, giving the well-known equation for the detected
spin polarization (Hanle curve)

AB? + Bicos*0

det
(9:)™ = S AB? + B2

(4.36)

This equation describes a Lorentzian curve with the maximum, Sy, and the
width, AB = yAw, which have been defined previously. The maximum is at
By = yw = 0, and the polarization drops to zero for high fields for the transverse
case (6 = 90°). The polarization has the constant value, Sy, in the longitudinal
setup (# = 0). Figure 4.5 shows Hanle curves for different angles, 6, between
the external field and the excitation path.

4.2.2 Influence of Nuclear Fields

If polarization of the nuclear spin system is established, the electrons feel a
magnetic field of nuclear origin as shown in section 4.1.2, termed the nuclear
field. In steady state conditions, such as when the transverse components of the
nuclear field are relaxed, the Hamiltonian in equation 4.26 changes to

H= (w+wn,): S,
Ew-‘rUJNz)N ) (437)

= 72 O'Z

where wy, is the nuclear field component parallel to the external field. Inserting
this Hamiltonian into equation 4.25 leads to a new set of equations of motion for
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Figure 4.5: Calculated Hanle curves for different angles, #. The red curve is the
theory trace for the angle used in the experimental setup.

the elements of the density function. With the substitution for p;; in expressions
A, ¥, X and Y as explained in the previous section, the equations of motion
become

A = —I,A—T,A+ Pcost

Y = -I[LY+P

: 4.38
X = —(wHwy.)Y —I,X —I,X — Psinf (4.38)

YV = (wWHwy)X -T,Y -1,V

In the steady state, this system can be solved exactly as in the case without
nuclear polarization. The expectation values for the three spin components then
become

_ Aw?sind
<Sx> - _SO A2+ (wtwn, )2
Aw-(wtwpn ) sind
(Sy) = =5 sz(—&——é—W—f-vwz)w)z (4.39)

_ Aw?cos+(wtwy )2 cosh
(S2) = S Aw?+(wtwny: )2
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Figure 4.6: Hanle curve with (red) and without (black) the influence of the nuclear
field.

The transformation into the coordinate system of detection is accomplished as
before, resulting in the Hanle curve with a nuclear magnetic field, given by:

AB? + (By + By)*cos*0

det
(507 = So—Rxpr (By + By)?

(4.40)

A calculated example for a Hanle curve with and without the influence of the
nuclear field is given in figure 4.6. These are Lorentzian curves, and the Hanle
curve with the nuclear filed has a maximum at —By = v 'wy, in other words,
when the nuclear field compensates the external magnetic field. As can be seen
from equation 4.40, the shift of the Hanle curve is a direct measure of the size of
the nuclear field acting on the electrons. Any changes in the nuclear polarization
lead to changes of the nuclear magnetic field and hence to a shift of the Hanle
curve. Therefore, nuclear magnetic resonance can be detected by observing
changes in the amplitude of the luminescence polarization.

For low external fields, a second peak appears at B = 0. If the external
field is smaller than the local field due to nuclear spin—spin coupling, no nuclear
polarization can be established. Thus, the nuclear field is very small, and the
electrons experience a zero total field so that their mean spin is Sy. This results
in the extra peak centered at zero field and is superimposed on the Lorentzian
curve.
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4.3 Experimental Results

The optically detected nuclear magnetic resonance experiment in an oblique field
is based on the shift of the Hanle curve due to changes of the nuclear polarization.
Since the optically detected signal is a convolution of the Hanle curve with the
resonance line of the nuclear system, it is necessary to know the details of the
Hanle curve in order to deconvolute the NMR signal. In the following section,
measurements of the Hanle curve without nuclear polarization are presented.

The investigation of the depolarization function of the electrons with the
influence of nuclear magnetic fields offers the possibility to measure the size of
these fields. These studies have been carried in detail for the 19.7 nm quantum
well, and the results are presented in section 4.3.2.

4.3.1 Hanle Curves

The setup for measuring the Hanle curves in an oblique field is shown in figure
3.1. In order to suppress the buildup of nuclear polarization, the PEM is placed
into the excitation path, as discussed in section 3.2. Since the nuclear relaxation
rate due to optically orientated electrons is much shorter than the modulation
frequency, no nuclear polarization can occur.

The quantum wells are excited resonantly, and the wavelength of the spec-
trometer is shifted to a higher wavelength for a few tenth of nanometers. This
setup suppresses most of the stray laser light from the sample.

Examples for Hanle curves from different quantum wells are depicted in figures
4.7 to 4.12, which all stem from sample #1431. The experimental data can be
fitted with equation 4.40, and the fit of each Hanle curve is also plotted as the
superimposed red line in each of figures 4.7 to 4.12. Unfortunately, the stray
laser light cannot be suppressed completely; therefore, a polarization offset from
the laser must be taken into account for the fit. The results of the fits are given
in the caption of each figure.

From section 4.2.1, it is clear that the width of the Hanle curve is inversely
proportional to the gyromagnetic ratio of the electron, and therefore inversely
proportional to the effective g-value, g*. As experimentally shown by Snelling et
al., [48] the g-value has a strong dependence on the well width. The electron in
the quantum well sees in the growth direction a mixture of the g-values of GaAs
(9 = —0.44 [28]) and AlGaAs (g = +0.4 [64]) with an increasing influence of
the barrier at small well widths. This mixture of g-values also means that the
effective g-value, ¢*, is zero for a certain well width. Variation in g* should lead
to a well width (L,) dependence of the Hanle width, AB, resulting in very broad
Hanle curves for small wells with g-values close to zero. Figure 4.12 shows an
example for such a broad Hanle curve. It is not possible to fit the data with
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Figure 4.7: Hanle curve of the 19.7 nm quantum well. The fit parameters are:
amplitude 0.34, Hanle width 0.19 T, laser offset 0.10.

high certainty in this case because the magnetic field in this experiment is much
smaller than the Hanle width. However, it is clear that the width is on the order
of several Tesla.

The well width also depends on the recombination (7. = 5-) and spin re-
laxation (75 = ) times of the electrons, both of which have a temperature
dependence. Flgures 4.10 and 4.11 both show Hanle curves from the 10.5nm
wide quantum well. These have been measured on different days, and the sample
has been re-glued between these two experiments. The width of the Hanle curve
in figure 4.11 is about twice as big as in figure 4.10 indicating some difference in
the physical properties leading to different curve widths. Recall that the polar-
ization is proportional to the recombination rate, I',, and inversely proportional
to the Hanle width, AB. Since the polarization is constant in both experiments
within the error of the fit, the recombination time is twice as long in the case
of figure 4.10 as in figure 4.11, indicating a higher temperature of the sample in
the latter case.

Unfortunately, the experimental setup does not provide the possibility of direct
measurement of the temperature of the sample, which depends strongly on the
intensity of the laser, the thermal contact with the sample holder, and the spot
size of the laser. The latter two points are hard to control in the setup and might
change from experiment to experiment. Therefore, the width of the Hanle curve
is an important indicator of the actual temperature of the sample.

The effective g-values for the quantum wells under investigation in this project
are not known. For an estimation of the recombination times, one can use the
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Figure 4.8: Hanle curve of the 14.5nm quantum well. The fit parameters are:
amplitude 0.14, Hanle width 0.18 T, laser offset 0.16.
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Figure 4.9: Hanle curve of the 11.7 nm quantum well. The fit parameters are:
amplitude 0.16, Hanle width 0.26 T, laser offset 0.13.
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Figure 4.10: Hanle curve of the 10.5nm quantum well. The fit parameters are:
amplitude 0.09, Hanle width 0.22 T, laser offset 0.21.
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Figure 4.11: Hanle curve of the 10.5nm quantum well. The fit parameters are:

amplitude 0.10, Hanle width 0.48 T, laser offset 0.14. The difference in width from
figure 4.10 is due to different sample temperatures, as explained in the text.
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Figure 4.12: Hanle curve of the 6.8 nm quantum well. The fit parameters are:
Hanle width about 8 T. The sharp increase at zero magnetic field indicates high
laser intensities, as discussed in the text.

values from Snelling et al. [48]. Snelling reports recombination times on the
order of a nanosecond, which were used in the calculation for the magnetic
fields in the theory sections of this chapter. It is not possible to determine the
recombination times with higher accuracy, since the g-values in reference [48]
are different from the ones in the experiments described here (to be shown in
section 4.3.2). One reason for the difference is the different barrier material in
the investigated samples, and the other is a dependence of the g-value on the
hole concentration, which is not controlled in the experiments carried out during
this work.

In figure 4.12 a peak at zero field is very noticeable but is significantly atten-
uated in the other graphs of the Hanle curves. An explanation for this effect is
proposed by Ekimov et al. [4]. The modulated electron polarization can create
nuclear polarization if the electronic field is oscillating at a frequency close to the
NMR frequency [65]. This condition is fulfilled for low external magnetic fields.
The electrons lose their polarization due to the hyperfine coupling with the nuclei,
and they themselves lose their polarization with some time constant. If the cou-
pling time constant is longer than the nuclear relaxation constant, the electrons
therefore will couple with unpolarized nuclei continuously. At high excitation in-
tensities, however, the electrons couple with the already polarized nuclei, slowing
down the spin relaxation of the electrons on the nuclei and causing an increase
in the stationary spin orientation of the electrons. This situation is valid only
at low magnetic fields. At higher fields, no nuclear polarization can be created;
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Figure 4.13: Hanle curves of 19.7nm quantum well (sample #1431). Before
measuring, each curve of the system has been polarized for a long time at the
external field, B,,. The curves are a compound of two scans, one from B,, —
Binaz and one from B, — 0

therefore, the electrons couple with unpolarized nuclei, as in the low excitation
situation. Therefore, the stationary orientation decreases rapidly. This effect is
more intense when the electronic field is larger, which is observed in the smallest
quantum well, as can be seen from the figures 4.7 to 4.12.

4.3.2 Direct Measurement of the Nuclear Field

It has been shown in section 4.2.2 that a nuclear magnetic field, By, shifts the
maximum of the Hanle curve from zero to —By. In order to measure this shift,
the nuclear spin system has to be polarized. Nuclear polarization in quantum
wells is established in all samples, even in sample #1294, which has the highest
interface quality.

Displaced Hanle curves are measured after a pumping time which is suffi-
ciently long to polarize the nuclear system to an equilibrium value. After pump-
ing, the external field is scanned up to its maximum value, and simultaneously
the luminescence polarization is recorded. Then, the field is set to the previous
value again to pump the system to its equilibrium polarization. Another scan
down to zero external magnetic field with the same scan rate as before yields
a complete picture of the displaced Hanle curve. Examples for displaced Hanle
curves in a 19.7 nm quantum well are shown in figure 4.13.

Each curve in figure 4.13 has been taken after pumping at a different external
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magnetic field. The graph clearly shows that the maximum of the Hanle curve
is always positioned at the value of the external field where the nuclear system
has been pumped. Hence, the equilibrium nuclear field is always By = —B,.
This effect cannot be explained by the spin temperature concept from D'yakonov
(introduced in section 4.1.4) in which the maximum nuclear polarization depends
only on the size of the electron polarization. The experimental results clearly
reveal a dependence of the equilibrium value of the nuclear polarization on the
external field. The positions of the Hanle curves indicate a preference of the
electron-nuclear system to establish an effective field for the electrons close to
zero. The Hamiltonian for the coupled system in a magnetic field is:

H = —Qegz — WOZIZ — aNZfiQ (4.41)

where €2, is the Larmor frequency of the electron in the external magnetic field,
wo the nuclear precession frequency, and the sum is over all nuclei within the
Bohr radius of the exciton. Presumably, the transfer of the polarization is most
effective for equal energy splittings of the electron and nuclear system. In that
case, the transfer is energy conserving, and the lattice does not have to provide
the energy for the spin flip. This situation is achieved if the coupling term in the
Hamiltonian almost cancels out the Zeeman term of the electron. The nuclei are
still exposed to the external field ( in other words, the effect of the electronic field
can be neglected as shown in section 4.1.3). As the nuclear system is polarized,
the coupling efficiency increases, until the effective field for the electrons is close
to zero. Further increase of nuclear polarization would reverse the sign of the
effective field; therefore, the system tries to reduce nuclear polarization, in order
to increase coupling efficiency again. Hence, the Hanle curve is locked at the
position of the polarizing external field.

The locking of the Hanle curve is very obvious in figure 4.14, measured for
each isotope separately. During the scan from high field to negative low field,
the Hanle curve is pulled by the external field within some range. The noise of
the polarization is most likely due to the unstable effective magnetic field of the
unsaturated nucleus experienced by the electrons since it vanishes on the edges
of the "Hanle curve".

The displaced Hanle curves in figure 4.13 are broadened compared to the ones
without nuclear polarization. This fact indicates a distribution of nuclear fields
felt by the electrons during their lifetime. As pointed out in section 4.1.5, only the
electrons trapped at interface defects create a discernable nuclear polarization.
In the space between two trapping sites, the remaining nuclear spins can be
polarized only by spin diffusion. If the density of interface defects is low, in
other words, the distance between two trapping sites is bigger than the nuclear
spin diffusion radius, no homogeneous nuclear polarization can be established.
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Spin diffusion is a spin-energy conserving process driven by the nuclear spin-spin
couplings [41]. The spin diffusion rates determine to what extent nuclei outside
the trapping site are polarized. The spin diffusion constant has been calculated
and measured for As to be 107!3 cm? /s [13]. Since the electrons are created at
any place within the spot of the laser in the quantum well, they feel an average
of the nuclear magnetic fields within their diffusion radius. Since some electrons
are trapped for most of their lifetime and some are free (not trapped at any
time), the electron polarization reveals a distribution of nuclear fields at the time
of recombination which broadens the observed Hanle curve.

The equilibrium value of nuclear polarization has a maximum value which is
indicated by the decrease of the amplitude of the displaced Hanle curves. At
high fields, other relaxation processes become more efficient than the relaxation
due to optically oriented electrons. The maximum of the total nuclear field (as
a sum of the fields of each isotope, ®*Ga, ™ Ga and "As) is bigger than the
maximum external field created by the magnet. Therefore, in order to measure
the maximum field, each isotope is investigated separately. The polarization of
two isotopes is destroyed by saturating the NMR transitions at the pumping
field; the depolarization of the electrons then depends only on the external field
and the nuclear polarization of the one remaining isotope. The luminescence
polarization is measured by changing the pumping field stepwise and saturating
the NMR transitions at each step. This way the maximum nuclear field can
be measured with an error of approximately 20 mT, and sample values for the
19.7 nm quantum well are:

9Ga: 475mT
MGa: 460mT
BAs: 880mT

These are very high values for the nuclear field compared to the theoretical
values calculated in section 4.1.2. Based on the theoretical nuclear fields, the
polarization of each isotope is:

“Ga: 38%
Ga: 31%
BAs: 29%

These polarizations are much higher than predicted by the spin temperature con-
cept using the average electron spin polarizations observed (about 10% electron
polarization, which can generate a maximum of 15% nuclear polarization).

The measurement of the nuclear fields in the 14.5 nm quantum well is carried
out in a different way. The system is polarized at maximum field (1.292 T), and
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the polarizations of two isotopes are destroyed under NMR conditions. After a
sufficient time of pumping, the RF is turned off, and the field is scanned down to
negative field very rapidly while recording the luminescence polarization and the
external field value. The scans for all three isotopes are depicted in figure 4.14.

The positions of the maximum fields are marked in the graphs, and the field
values are

“Ga: 480mT = 28%
Ga: 460mT 32%
BAs: 830mT = 24%

>

The polarization is calculated by comparing the experimental values with the
theoretical values for a 15 nm quantum well calculated in section 4.1.2.

For smaller quantum wells the maximum field cannot be measured with this
setup. The maximum field is close to or even larger than the maximum magnetic
field produced externally. Since the displaced Hanle curves are very broad in the
small wells, the maximum of the Hanle curve cannot be identified unambiguously.

However, it is possible to measure the sign of the effective g-value, ¢*. If the
sign changes from one quantum well to another, the Hanle curve shifts to the op-
posite direction. This effect can be seen for the 6.8 nm quantum well, indicating
that ¢* > 0 and emphasizes the argument from section 4.3.1 that the effective
g-values in these samples are different from those reported previously[48].

4.4 Summary

In this chapter, the principles of the coupling of the electron and nuclear spin
system and their experimental appearance are presented.

The hyperfine coupling constant, governing the electron-nuclear interaction,
is derived for quantum wells of various thicknesses. It is pointed out, that the
coupling can be described as magnetic fields of nuclear and electron origin. The
subsequent calculation of the nuclear magnetic field acting on the electrons shows
significant well width dependence and reaches values of over 20T in a 5nm
wide well. It is shown, that nuclei situated in the barrier do not contribute
noticeably to the ODNMR signal, due to the small penetration depth of the
electron wavefunction into the barrier. The effective electronic magnetic field on
the nuclei is calculated for a 20 nm wide quantum well and is at a maximum on
the order of micro tesla.

Trapping of excitons at interface defects is assumed to play the key role in
amplifying the hyperfine interaction compared to the interaction with delocalized
electrons. A model is presented, to approximate the effect on the hyperfine
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Figure 4.14: Rapid field scans to measure the maximum nuclear magnetic field of
all three isotopes together (a) and separately (b)-(d) in the 14.5 nm well of sample
#1431. For the separate measurements, the two other isotopes are saturated. The
field scan from 1.292 T to -0.011 T over the 40s of scan time is not linear. The
start at 1.292 T of the scan is indicated by the red arrows; the end at -0.011 T by
the blue arrows. The zero field peak can be clearly observed in pictures (a)-(c).

For "'Ga, zero field is indicated by the green arrow.
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relaxation time 17., and it is found, that the relaxation time is decreased by one
to two orders of magnitude compared to unbound excitons. Therefore, optical
pumping becomes more efficient than other relaxation processes, and eventually,
a nuclear polarization can build up.

The dependence of the luminescence polarization on both the external and
nuclear magnetic fields, the so called Hanle effect, is derived. This dependence
enables optical detection of nuclear magnetic resonance. Hanle curves for dif-
ferent well widths are shown, and temperature and laser intensity influences are
discussed.

The maximum nuclear magnetic field is obtained separately for each isotope
by measuring the shift of the Hanle curves. The dependence of the nuclear
field on the pumping field applied externally, reveals new information about the
hyperfine coupling mechanisms of the electron-nuclear spin system. Within some
range of external magnetic field strengths, the nuclear field tries to cancel out the
the external field, creating nearly a zero effective field felt by the electrons. This
behavior is observed as locking of the top of the Hanle curve to the externally
applied field during a field scan.
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Figure 5.1: Model of the optical NMR signal

5.1 Introduction

In NMR the nuclear system is perturbed by applying a radio frequency field,
wy perpendicular to the external field that alters the populations of the nuclear
energy levels if the RF field is of sufficient strength. The changes of nuclear
polarization are, in principle, detected by changes in the inductance of the RF coil.
In this chapter the observation of the NMR signal by optical means (ODNMR)
will be explained. In this experiment, the RF coil is the only source for the radio
frequency field, whereas the signal is detected optically by observation of the
photoluminescence polarization.

It has been shown in chapter 4 that the optical signal strongly depends on
the magnetic field that is either applied externally or created by the nuclei via
the hyperfine interaction. By measuring the position of the displaced Hanle
curve, it is possible to obtain an approximation of the nuclear polarization for
each isotope. Changes of the polarization under NMR conditions therefore can
be directly measured by observation of the luminescence polarization. If one of
the isotopes is resonant with the applied RF field, the associated nuclear field
decreases which shifts the Hanle curve to lower field values. This effect can be
observed by a sharp change of polarization, as depicted in figure 5.1. The figure
shows the signal for a scan of the external field while applying a constant RF field
with the frequency w = ynoBy. The red line represents the detected signal. As
long as the field is less than By, the displaced Hanle curve is measured with its
maximum at B = — By, the total nuclear field. If the external field meets the
resonance condition of isotope «, the associated nuclear field is destroyed, and
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the maximum of the Hanle curve is shifted to B = —(By — Byg). Therefore, the
nuclear resonance becomes observable in the sharp decrease of the luminescence
polarization at B = B,,;.

In the experiments throughout this work, the magnetic field is usually kept
constant, and the radio frequency is swept through the resonance. This does not
change the principle of the detection but modifies the signal to some extent. Since
the field is constant, one only detects a particular portion of the Hanle curve.
At resonance, the Hanle curve is shifted to lower field values, and the change of
the nuclear polarization again becomes observable in the sharp decrease of the
luminescence polarization.

In conventional (dark) NMR experiments the change of the nuclear magne-
tization with respect to the frequency is measured, which leads to the typical
spectra with peaks at the resonance. Instead in this ODNMR experiment, the
nuclear magnetization is measured directly. Hence, the observed signal is obvi-
ously a convolution of the Hanle curve with the integrated “conventional” NMR
spectrum. The fit routine and simulation discussed in the subsequent sections
are based on this fact and give good results in obtaining details from the spectra.

Section 5.2 discusses the main features of the ODNMR spectra and the
fitting and simulation routine. The time evolution of the pumping process and
the relaxation of the nuclei are discussed in section 5.3. Finally, section 5.4
explains a slightly different ODNMR experiment by adiabatic fast passage.

5.2 Resonance Spectra

A typical ODNMR spectrum is depicted in figure 5.2 wherein the RF is swept from
low to high frequencies. The spectrum is taken from the 19.7 nm wide quantum
well and clearly reveals many characteristics of an ODNMR signal. Resonances
of all three host lattice constituents of the quantum well occur at frequencies of
4.36 MHz, 6.12 MHz and 7.78 MHz for "®As, %°Ga and "' Ga, respectively, in an
external field of 600 mT. Evidence for the occurrence of an 27Al signal has not
been observed in any quantum well sample, which supports the results of the
calculation of the penetration of the electron wavefunction from section 4.1.2.
Therefore, it appears that the ODNMR signal stems solely from the 19.7 nm
quantum well, and the wavefunction of the electron penetrates the barrier only
to a very small amount.

The spectrum in figure 5.2 is a single scan experiment demonstrating the
excellent signal-to-noise ratio of the optical method. The high noise level before
the first resonance is due to the unstable electron-nuclear system as described in
section 4.3.2. After each resonance, the luminescence polarization rises indicating
the continuous optical pumping of the nuclear system. As the nuclear field builds
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Figure 5.2: ODNMR spectrum of the 19.7nm quantum well. The single scan
was done with a rate of 100 kHz/s in an external field of 600 mT. The maximum

polarization of the electrons is about 10% with an offset from the laser of about
5%.

up again, the Hanle curve is shifted to its prior position. The pumping rate of the
nuclear system is slow relative to the timescale of the RF scan, that causes the
resonance line intensities to decrease. Note that the optical signal decreases in
overall intensity later in the scan (i.e, at higher frequencies), since the detection
of 99/7'Ga takes place in the wing of the Hanle curve.

In the rising polarization signal after the ">As and ®Ga resonances, a kink can
clearly be observed. This feature indicates that the pumping process becomes
more efficient at a critical value for the nuclear field, and the relaxation rate of the
hyperfine interaction changes. These facts are consistent with the observation of
the dragging of the Hanle curve with the scanned external field, shown in figure
4.14, which also terminates if the external field reaches a critical value.

The resolution of the spectrum is too low to find an accurate result for the
line widths. A higher resolution is achieved in the spectra of figure 5.3 in which
the frequency scan range has been reduced. The NMR signal of each isotope
is recorded separately by single shot experiments during a scan time of 20s. In
order to interpret the data, a phenomenological fit function is used that decon-
volutes the NMR signal and the Hanle curve. For the NMR signal, Gaussian and
Lorentzian line fits have been tried out, where only the Gaussian gives satisfying
results. The optical signal is calculated by integrating the Gaussian resonance
line, that is, the error function, thereby revealing the nuclear polarization.

The optical pumping is taken into account as a relaxation process with a
specific time constant. For the fit, we make the approximation that the optical
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Figure 5.3: Resonance lines of all three isotopes in the 19.7 nm quantum well. The
scan rate is 3kHz/s in a 516 mT field. Circles denote the data; red lines denote the
fit. The lines are fitted with the assumption of quadrupole splitting which cannot
be resolved but is likely the reason for the broadening. a:

"'Ga, Av = 2.3kHz
(HWHM), b: °Ga, Av = 1.8 kHz (HWHM), c¢: ®As, Av = 2.1 kHz (HWHM)
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central line | satellite line | quadrupole splitting
Av, [kHz] | Av, [kHz] Av, [kHz]
Scan up (5.4a) 0.7 35 33.4
Scan down (5.4b) 0.8 3.9 34.6

Table 5.1: Results from the fitting of the spectra shown in figure 5.4. The
linewidths Av, and Av, are HWHM values.

pumping starts after passing half of the resonance, which partially takes into
account the fact that the resonance lines are inhomogeneously broadened. This
approximation certainly simplifies the real situation to some extent, but provides
a sufficient parameter for the fit routine. The value for this artificially included
relaxation time is by no means a measurable time and will not be stated in this
work.

As will be pointed out in chapter 6, quadrupole interactions are very important
for the ODNMR spectra in GaAs quantum wells. Therefore, the fit routine
includes quadrupole splitting, Ay, of the resonance lines. In order to get a
satisfying fit result for the spectra in figure 5.3, quadrupole splitting is assumed
to be present. The line widths obtained range from 1.8 kHz to 2.3 kHz (HWHM),
which are comparable to other results reported in publications using different
experimental techniques [66] [23]. Nevertheless, it has to be noted that the lines
are broadened by unresolved quadrupole splitting.

In case of larger quadrupole splitting, the lines are separated and can be easily
resolved as in the spectra of figure 5.4. The figure shows resonance lines of As
from the 19.7 nm quantum well obtained by scanning the RF from low to high
values (figure 5.4a) and vice versa (figure 5.4b). Note the excellent match of the
phenomenological fit with the data. The linewidths as a result of the fit are given
in table 5.1 for the two scan directions. The differences of the values between
the two scans are presumably due to the uncertainty of the fit, rather than being
an effect of reversing the scan direction.

The reasons for the broadening of the satellite lines are discussed in chapter
6 and will therefore be neglected here. However, attention should be drawn
to the intensities of the resonance lines. Since the widths of the lines are not
equal, one must compare the integrated intensities of the resonance lines (see
labels in figures 5.4c and 5.4d). For the scan in figure 5.4c, the intensities of
the resonance lines increase linearly with the increasing radio frequency. The
intensity distribution is also linear but reversed for the scan from high to low
frequency values. This experimental result shows a contradiction to the intensity
distribution in the common literature of quadrupolar nuclei, where the quadrupole
satellite lines each should have 3/4 of the central line intensity [67].

In order to explain this behavior, the spectra are simulated numerically. As
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Figure 5.4: ODNMR spectra of As from the 19.7 nm quantum well (a and b)
and the calculated NMR spectra from the fit (c and d). The red lines in a and b
overlaying the spectra are the fits. The direction of the RF scan is reversed from
figure a to b, revealing the effect of population transfer to subsequent energy levels
during the scan. The scan rate is 5kHz/s. The numbers in figure c and d above

the peaks denote the integrated intensity of each resonance line.
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already pointed out, the resonance lines observed by ODNMR are a complicated
convolution of both optical and NMR phenomena. Therefore, simulation of the
spectra involves calculation of the time evolution of the nuclear system under
the resonance condition and calculating the resulting Hanle curve for each time
step.

5.2.1 Simulation of NMR Spectra
Time Evolution of the Nuclear Spin System

As already pointed out in section 4.2.1, one feasible description of the time evo-
lution of a spin system utilizes density matrix formalism. The main contribution
to the Hamiltonian, H, is basically the Zeeman interaction. Thus, the z-axis of
the system is chosen to be parallel to the external field, and the Hamiltonian is
diagonal [41].

Hz = —wohl, (5.1)
In chapter 6 the interaction of the nuclear quadrupole moment with an electric
field gradient at the site of the nuclei due to external and internal strain will
be discussed in detail. The quadrupole interaction in both cases is very small
compared to the Zeeman energy and therefore can be treated as a perturbation.
At this point, only a constant field gradient with axial symmetry is considered,
and the quadrupole interaction is the same for all nuclei of one isotope.

Hq = wohl? (5.2)

Note that wg is proportional to the shift of a single energy level of the nuclei,
thence the resonance line is shifted by Aw ~ 2wg. The radio frequency field,
wy, rotating with the frequency, w, is applied in the z-direction and can also be
treated as a perturbation to the Zeeman interaction.

1 . .
Hrr = —iwlh(ezm +e NI, (5.3)

All three isotopes, %°Ga, "'Ga, and "As have spin I = %; therefore, p is a 4 x 4-
matrix in all three cases. The time evolution is calculated with the Von Neumann
equation which leads to the following differential equation:

p= —%[Hzap] - %[HQap] - %[HRF,P] (5.4)
The interaction with the electron system will be neglected at this point and later
included as a relaxation process. Utilizing equations 5.1 to 5.4, the differential
equation for each component of the density matrix becomes

pr = (iwo(IF* — L)) — iwg[(1:")* — (I)?]) pr

W W —iw m m 5.5
F (¢ S (17— pron L) (55)
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The indices k, 1, m go from 1 to 4, indicating the four spin states of the nuclei
(% ; —%, ——) For the density matrix the relation pg; = pj;. holds, which means
that only the upper diagonal matrix has to be calculated.

For this set of equations, the last term on the right-hand side is time depen-
dent which makes it cumbersome to solve. Thus, the equations 5.5 are trans-
formed from the laboratory frame into the frame rotating with the frequency,
w, around the z-axis. In addition to the transformation, the rotating frame ap-
proximation (RFA) is used. The components of the density matrix are separated

into a slowly-varying part, p®4, and an oscillating part and can be written for

a single spin:
= pre = iy
- 5.6
O = kalFA6Z|k l|wt ( )

Inserting equation 5.6 into 5.5 leads to terms which are rotating with the reference
frame and are therefore time independent. Other terms are oscillating with 2w
and are neglected in the rotating frame approximation. The diagonal elements
of the density matrix are real; the complex off-diagonal elements are divided into
their real and imaginary parts, pif4 = x5, + iy This leads to a set of 16
differential equations in which the radio frequency detuning, A = wy — w, is
introduced.

jjll = %\/3912

Toy = — 2 (\/3y12 — 2y33)

T33 = — 9 (2ys3 — V/3ys4)

Ty = —\/3ys4

T = —(A=2w)y2 +%uyis

e = (A—2wg)r2 +% (\/_$22 — V3w — 2113)

T3 = —(2A = 2wq)y13 wj( 2012 — V/3y1a + V3y23)

3 = (2A —2wg)ry3 +%( 2719 — V/3T14 + \/33323)

_ (5.7)
Ty = —3Ay14 — 9L (—/3y13 + V/3yo4)

Ve = 3Aw14 +9(— V3213 4+ V322)

Toz = —Ayo3 —<L(V/3y13 — V3y24)

Yoz = Amys +%(\/_913 + 2233 — 2392 — V/3Y24)
Gos = —(2A+2wq)y2s —2(—V3yss + V3y1a + 2y34)

3)24 = (QA + 2&)@).’[24 %( \/31‘23 + \/31‘14 + 2.’1534)

B35 = —(A+2wo)yss —you

Usa = (A4 2wg)rss %(\/_$44 + 2194 — V/3733)

So far, no relaxation processes have been taken into account which will be made
up in a phenomenological way. Only spin lattice relaxation that connects neigh-
boring states, will be considered here. Since the relaxation into thermal equi-
librium plays only a minor role compared to the optical pumping during the RF



5.2 Resonance Spectra 64

scan, all other relaxation processes, such as quadrupole relaxation, will be ne-
glected. Longitudinal relaxation in the simplest case occurs with the rate, Iy,
between neighboring diagonal matrix elements. Since the thermal equilibrium
polarization at 4 K can be neglected, longitudinal relaxation basically equalizes
the populations in the four spin states. The differential equations for the diagonal
elements change to:

Ty — T — %(3311 — w)[

Tygp — Toy — %(2«’1022 —xy — w33))

) % o (5.8)
B33 — 33 — 5(2w33 — Top — waa) [y

Tag — Tag — %($44 — w33)[

The coherence terms decay on a shorter time scale with a rate, I'y. This rate
determines the linewidth of the resonance lines. As will be shown later, the line
widths for the central and the two satellite transitions are not equal. The reasons
for the broadening of the satellite lines will be discussed in chapter 6. Since the
relaxation is equal for the real and imaginary parts of each matrix element, p;,
is used in the differential equations. The off-diagonal elements vanish in thermal
equilibrium giving the following set of equations:

pri = ot =Topi ™t for k£ (5.9)
At this point, the different line widths can in principle be modeled by different
relaxation rates for the central and the satellite transitions. In this case, I'; has
to be replaced by I's* for the satellite transitions 1 — 2 and 3 — 4.

Optical Pumping and Detection

As already pointed out in section 4.1.4, one possible way to understand the
coupling of the electron and nuclear systems is cooling of the nuclear spins by
the electron spin bath, applying the concept of spin temperature. According to
this concept, the probabilities of finding the system in any of its energy levels
are given by a Boltzmann distribution which defines the spin temperature, Ty.
The number of spins in each state is defined by (N;) = Le=Fi/ksTs with the
partition function, Z = Y e~/#s7s and kp being the Boltzmann constant.
For normalized populations (3_; N; = 1), N; are the matrix elements of the
density matrix in "thermal" equilibrium. The spin temperature for the degrees of
polarization at normal experimental frequencies (about 10 MHz) is on the order
of 1073 K, where the high temperature approximation applies. The population
distribution of the four spin states of the I = 3/2 spin system is therefore linear
and can easily be calculated for each degree of polarization in the simulation.
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(=)
1

be calculated. Using the relation (I,) = Tr{I,p} the polarization is

The polarization is defined by P =

from which the spin temperature can

10 hu)o
— 5.10
3 [4kBTS — h(GWO — 4WQ)] ( )

Equation 5.10 can be solved for an arbitrary degree of polarization which in turn
reveals the populations.

With the concept of spin temperature and the equilibrium values, zy,, optical
pumping can be described as a longitudinal relaxation process with a rate, I';,.
This modifies only the differential equations of the diagonal elements of the
density matrix which become:

11— d1— (11— 2110) e

Tog — dop — (Ta2 — Tagy)[1e (5.11)
B33 — 33— (T33 — T330)[1e '
oy — Tag — (Taa — Tago) e

In the ODNMR experiment the radio frequency, w, is scanned over the reso-
nances making the detuning, A, in equations 5.7 time dependent. For simulations
of the spectra, the differential equations together with the three relaxation terms,
5.8, 5.9 and 5.11, have to be numerically integrated. Hence, the average spin,
(I,), is calculated for each time step, giving a nuclear field, By ~ (I).

The optical signal is determined by the Hanle curve developed in section
4.2. Inserting By for each time step into equation 4.40 gives the value of the
luminescence polarization for every moment during the ODNMR experiment.
The simulations performed here neglect effects such as dipole-dipole coupling,
quadrupole processes, Knight shift, etc. These effects should in principle be
considered separately, but they do not change the intensity distribution of the
resonance lines.

5.2.2 Results of Simulation

Some simulated spectra are shown in figure 5.5. The spectra are calculated
without longitudinal relaxation nor optical pumping effects. For low RF fields
(1 = 0.01kHz), (figure 5.5a) the intensity distribution of the peaks is 3:4:3
as claimed in the literature [67]. However, as the RF intensity increases, the
intensities of the resonance lines change. If the RF power is sufficiently high, the
NMR transitions are saturated, meaning that the population difference between
each state is equalized. In a continuous wave experiment, scanning over the
resonances transfers population from the lower energy state to the higher energy
one, increasing the population difference in the next higher transition. Since the
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Figure 5.5: Calculated NMR spectra for different RF field strengths (v, = 5%)

with scan rate 25kHz/s. a: vy, = 0.01 kHz, b: v; = 0.08 kHz scan direction up, c:
1 = 0.08 kHz scan direction down, d: v; = 0.29 kHz.
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Figure 5.6: ODNMR spectrum of ®As in the 19.7 nm well of sample #1056. The
scan rate is 5kHz/s with an RF field of about 50 4T (i.e. v; ~ 0.36 kHz). The
blue arrows denote single-quantum transitions; the red arrows denote two-quantum
transitions, as explained in the text.

intensity of each resonance line is proportional to the population difference of its
associated transition, the intensity increases for the high energy transitions in a
scan from low to high frequency values. This effect can clearly be observed in
figure 5.5b. If one reverses the scan direction, for linear population distributions
one expects a reversed order of the intensities of the resonance lines which is
shown by figure 5.5c.

Increase of the RF field, wy, does not only alter the intensities of the resonance
lines but also permits multi-quantum transitions that appear as small lines to the
left and right of the central line in figure 5.5d. They belong to the transitions
1 — 3 and 2 — 4 with the transition frequencies, Av = 2 - (1 £ $vq). These
lines usually do not appear in the experimental spectra, but an example for the
appearance of double quantum transitions can be seen in figure 5.6. The figure
shows the ">As spectrum in the 19.7 nm well of sample #1056 applying an w;-field
of about 50 uT (i.e. v; ~ 0.36 kHz). Between the two satellites and the central
transition, two resonance lines appear. These resonances can be attributed to
two-quantum transitions of "*As. The simulation predicts the appearance of
multi-quantum transitions at high RF fields, whereas the experiment shows these
transitions already at low intensities. This fact might be explained by J. Winter
[68], who analyzed the selection rules and showed that if the RF field, w;, has
a component parallel to the external field, two quantum transitions can appear.
This presumably is the case for the RF field due to the split solenoid RF coil
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Figure 5.7: Normalized line intensities of calculated and measured ODNMR-
spectra. The RF field in the simulation is measured in frequency units. The
experimental data is taken from figure 5.4, the simulated data are shown in figure
5.5. The data point of 0.29kHz (green) and the scan up (blue) overlap for the
central transition.

configuration of this experiment.

Even if the intensities of these multi-quantum transitions are comparatively
small (as in figure 5.5d), and therefore do not appear in other ODNMR signals,
it is worth noting that their influence on the populations and therefore on the
intensities of the single-quantum transitions might be sufficiently high to make
quantitative analysis of these line intensities difficult.

Figure 5.7 shows the normalized intensities of the spectra from figure 5.4 and
5.5. The graph shows that the slopes and relative intensities of the experimental
data from the two different scans are not equal, indicating that the population
distribution is not linear and therefore cannot be described by a Boltzmann dis-
tribution. This is another indication that the proposed theory by D'yakonov with
the spin temperature concept does not apply in the case of the system under
investigation of this thesis.

5.3 Relaxation Times

Several relaxation processes take place in the nuclear spin system and influence
the ODNMR signal. Basically, they can be divided into two groups: the relaxation
due to optically oriented electrons, and the “dark” relaxation processes i.e. spin
lattice relaxation. Both types of relaxation are investigated, and the results will
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Figure 5.8: Stroboscopically measured luminescence polarization to obtain the
“dark” relaxation time, 7}. The data shown belong to the relaxation of "*As in an
external field of 186 mT

be discussed in the subsequent sections.

5.3.1 “Dark” Relaxation

As indicated by the name, “dark” relaxation processes include all types of relax-
ation that occur without the influence of the optically oriented electrons, such
as the relaxation of the optically pumped nuclear spin system after turning off
the laser. The relaxation of each isotope is measured separately by pumping the
nuclear system at a fixed external field and simultaneously saturating two of the
three isotopes by RF scans over the resonances with two RF generators. After
pumping the system for a sufficiently long time for the system to reach its steady
state value, By, the laser light is then blocked with a shutter. The laser is
turned on for 0.2 s with a repetition rate of 0.1 Hz in order to measure the degree
of luminescence polarization. Repeating this procedure for several minutes allows
one to stroboscopically observe the Hanle curve moving to zero as the nuclear
polarization relaxes. An example of such a signal is presented in figure 5.8. The
influence of the light can be neglected during the short period when the shutter
is open, since the hyperfine coupling constant is much larger (see next section),
and therefore essentially no transfer of polarization does occur. The effect can
be fitted by inserting the time dependent nuclear field

Bya(t) = B e T (5.12)
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By | Ga | "Ga | As
186 mT | 300s | 340s | 1855
250mT | 325s | 370s | 230s

Table 5.2: “Dark” relaxation times (77) for all three isotopes measured for different
external magnetic fields, By.

into equation 4.40. The resulting relaxation times for all three isotopes are listed
in table 5.2. Over this relatively small range of magnetic fields, a weak increase
of the relaxation time with the strength of the field is apparent.

These values are shorter than data published earlier (77 = 10%s — 10*s)
[69] [70]. The difference may be due to spin diffusion: in the optically detected
experiment, mainly nuclear spins within the Bohr radius of the localized excitons
contribute to the signal. Spin diffusion distributes the nuclear polarization over
a wider area, the size of which is determined by the diffusion constant and the
relaxation to thermal equilibrium. Therefore, spin diffusion in ODNMR reduces
the polarization of those nuclear spins that couple to the (localized) excitons and
could reduce the relaxation time. The total nuclear spin polarization measured
by conventional RF detection, however, is not affected by spin diffusion.

It is not possible to distinguish different relaxation processes; the separate
contributions of the spin lattice relaxation and spin diffusion cannot be resolved.
However, the relatively short values for 17 in this particular case show that even
with decent pumping efficiency, it can sometimes be difficult to create sufficient
nuclear polarization. This is the case in the bulk substrate material of the sam-
ples, where there is minimal localization of excitons, and therefore, the losses
due to “dark” relaxation are bigger than the relaxation due to optically oriented
electrons.

5.3.2 Pumping Time

The buildup of the polarization proceeds with the pumping time, Tlf. This time
constant involves different relaxation processes such as hyperfine coupling with
optically oriented electrons, spin diffusion, and dark relaxation. Unfortunately,
these effects are complicated to measure separately, since the processes bringing
the nuclear system into thermal equilibrium are present at any time.

To measure the pumping time, 7'/, the transition of one isotope is saturated
to destroy any polarization, and then the buildup of the polarization is observed.
An example of this behavior is visible in Figure 5.2. Figure 5.9 summarizes the
result for the "As nuclei.

The graph shows that at intermediate fields (~ 0.5T), the polarization is
established within a few seconds, while the pumping time increases by an order
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Figure 5.9: The dependence of the optical pumping time, Tlf, of "As on the
magnitude of the external field.

of magnitude at weak (< 0.3T) and strong (> 0.8T) fields. The hyperfine
relaxation time, 77, from equation 4.22 determined by D’yakonov [50] depends
quadratically on the external field. This trend might apply to the data in figure
5.9 if one keeps in mind that Tlf is composed of several field-dependent relaxation
times. At intermediate fields, though, the pumping time remains in a very narrow
range. The hyperfine relaxation time, 77, has its minimum at zero effective
field, making the hyperfine coupling most efficient at this point. This is another
indication that the electron-nuclear spin system tries to establish a zero effective
field for the electrons over a wide range of external fields. Below and above
some critical external field value, this behavior of the system vanishes, and the
D'yakonov rule for the relaxation time seems to hold.

While only saturating the 7®As polarization, it is found that the polarization of
all three nuclear isotopes increased during the subsequent pumping period. This
effect becomes apparent if one saturates the "As transition a second time, after
the optical signal has reached its initial value. The second ODNMR spectrum
has less intensity than the first one, indicating that the nuclear field of "As
has not reached its steady state value. Therefore, the equilibrium polarization
is determined by the total nuclear field rather than by an equilibration between
individual nuclear spins with the electron spin.

Quantitative comparisons of the pumping times in the three different samples
show that the pumping is most efficient in sample #1056 and least efficient in
sample #1294. An example of an ODNMR spectrum of "®As measured in the
19.7nm quantum well of sample #1056 is depicted in figure 5.10. Between
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Figure 5.10: ODNMR spectrum of >As measured in the 19.7 nm quantum well of
sample #1056. The spectrum is taken with a scan rate of 5kHz/s (the spectrum
shows a scan lasting 50s). The pumping time is on the order of 2s.

each quadrupole splitted resonance line, the polarization is almost completely
restored, indicating large hyperfine coupling and therefore, high localization of
the electrons. This supports the theory that exciton trapping is the primary
factor for the large hyperfine coupling. From PL spectra it can be seen that
sample #1056 has the most interface defects; therefore, excitons are trapped
very easily, increasing the hyperfine interaction compared to the other samples.
The PL spectra indicate that sample #1294 has very smooth interfaces, which is
reflected is reflected by the lower observed intensities in the ODNMR experiments.

The interface roughness of sample #1431 is in between the two others, shown
by PL and ODNMR.

5.4 Adiabatic Rapid Passage

The continuous wave experiment described in the previous sections completely
destroys the spin polarization of the measured isotope when the populations of
the neighboring spin states are equalized. While the buildup of polarization under
optical pumping is faster than through thermal polarization, the optical pumping
time is still on the order of 10-100s for field strengths used here, as shown above.
It is therefore advantageous to detect the signal without destroying the nuclear
spin polarization.

For this purpose, adiabatic rapid passage [51] is used to invert the nuclear
spin polarization rather than saturate it. Therefore, the direction of the particular
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nuclear field changes from —By, to By,. In ODNMR, this change becomes
obvious in a rapid shift of the Hanle curve. The procedure is implemented by
scanning the radio frequency over the resonance line while keeping the magnetic
field fixed. Figure 5.11 shows an example of such an experiment carried out
for the %9Ga isotope; the radio frequency is scanned from v, = 4.34 MHz to
v, = 4.54 MHz, thereby inverting the %°Ga spins. Reversing the scan direction
from v back to vg, the polarization of the luminescence reaches nearly its initial
value, indicating that the loss of nuclear spin polarization was very small. For this
experiment, the scan rate was 4 MHz/s. The figure displayed here represents an
average over 60 scans, with delays of 2s between scans to allow the polarization
to be reestablished.

The high efficiency of the adiabatic scan-
ning is shown in figures 5.12 and 5.13, again
for ®*Ga. For each adiabatic scan, the ra-
dio frequency was scanned from 3.57 MHz
to 3.67 MHz and back with a scan rate of
300kHz/s. The time constant of the de-
tection is too slow compared to the scan
rate; therefore, the experiment only mea-
sures the polarization between inversions of
‘ the nuclear magnetization. The data show

Vo Vi Vo "oscillations" rather than steps, as in fig-
ure 5.11, representing successive inversions
Figure 5.11: Adiabatic inver-  of the ®*Ga nuclear field. The relative am-
sion of %Ga. The frequency is  plitude of each inversion and the absolute
scanned from vy = 4.34MHz to  amplitude of the signal depend on the po-
v1 = 4.54MHz and back to vy, sition of the Hanle curve and on the size
thus, inverting the nuclear field  of the inverted nuclear field. Small losses
twice. during each inversion cause shifts of the
Hanle curve, altering the signal amplitude for subsequent inversions. However,
the losses are compensated by the two other isotopes, ' Ga and ">As; therefore,
the total nuclear magnetic field changes only slightly. The trace, for example, in
figure 5.13 shows some 120 reversals of the spin polarization before most of the
%Ga spin polarization is lost.

However, adiabatic inversion broadens the resonance lines due to the high
RF field needed for the scan. This broadening reduces the resolution of the
experiment, and fine structure such as small quadrupole splittings cannot be
observed. Adiabatic inversion is carried for %°Ga and ™ Ga (not shown), whereas
the losses for inversion of the As polarization are too large to reestablish the
initial polarization.

Lum. Pol.
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Figure 5.12: Polarization of the luminescence during successive adiabatic scans of
the %Ga resonance. The scan was from 3.57 MHz to 3.67 MHz with a scan rate of
300 kHz/s. The inset shows an example of the Hanle curve. Before the adiabatic
scan starts, the nuclear system has reached its equilibrium value; therefore, one
detects the top of the Hanle curve, indicated by position 1. The first inversion of
the nuclear field shifts the Hanle curve to the left; therefore, one detects position
2. The reverse of the scan shifts the Hanle curve back, but due to the losses, only
position 3 is reached. The subsequent scans show further losses, which accumulate
and reduce the relative amplitude. The absolute amplitude of the signal reaches
its initial value, indicating that the other isotopes are pumped during the process.
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Figure 5.13: Successive adiabatic scans of the %°Ga resonance with the same
parameters as in figure 5.12. The system has in this case not reached its steady
state, which is indicated by the decrease in the luminescence polarization before
the scan. The position of the Hanle curve is on its left shoulder (1) initially. After
the first inversion, the Hanle curve is shifted to the left changing the position on
the curve to 2. However, the expected increase of the signal during the inversion by
moving across the top of the Hanle curve cannot be observed due to the long time
constant of the detection system. Reversing the scan direction brings the curve
back to position 1. Due to losses, after several scans the signal is shifted between
symmetrical points on both sides of the Hanle curve (1 and 3), thereby causing
no change in the photoluminescence polarization since the levels are nearly equal.
Persistent optical pumping of the two other isotopes eventually shifts the Hanle
curve further to the right; therefore, the position moves up the shoulder of the
Hanle curve. At position 4, the maximum of the Hanle curve is reached, giving the
maximum signal in the figure. Successive losses of ®*Ga and optical pumping of
"1Ga and ™ As reduce the relative and absolute amplitude of the signal, respectively.
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5.5 Summary

In this chapter, optically detected NMR spectra of GaAs/AlGaAs quantum wells
are presented. The resonances are identified as belonging to the major com-
ponents of the quantum well heterostructure. In agreement with the previously
presented calculations, no evidence for signals from the barrier is observed. The
resonance lines show large splittings which are attributed to quadrupole interac-
tions with the perturbed nuclear system. Using a phenomenological fit function
permits the ODNMR signal to be deconvoluted from the underlying NMR spec-
trum and reveals the widths and intensities of the resonance lines. The line widths
are comparable to values published earlier using different NMR techniques, in-
dicating that the ODNMR method does not influence them. However, the line
intensities differ from the commonly accepted ones of quadrupole systems. Nu-
merical simulation of the NMR spectra confirm this deviation from the common
intensity distribution. Simulations also reveal, that the population distribution
for the nuclei are different from a Boltzmann distribution. Therefore, the spin
temperature concept proposed by D'yakonov does not apply in the systems under
investigation. Two-quantum transitions are predicted by the simulation and are
found experimentally, even at low RF field strengths.

Different relaxation times are measured. The field dependent relaxation times,
T), obtained with the optical relaxation suppressed, reveal that spin diffusion plays
an important role as a relaxation process. The pumping time, T/, is measured in
different magnetic fields, revealing almost no field dependence within some field
range, in contrast to D'yakonov's theory.

Adiabatic inversion of the %°Ga nuclear polarization and its influence on the
ODNMR signal is shown. The trace of over 120 reversals of the nuclear field
indicates that the two other isotopes tend to compensate the losses of the °Ga
nuclei.



Chapter 6

Electric Quadrupole Effects

77
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6.1 Introduction

So far only magnetic interactions of the nuclei with the external field and the
electrons have been considered, whereas electric field couplings have been ne-
glected. But due to the asymmetric charge distribution occurring within the
nucleus, all nuclei with spin I > 1 posses a nuclear quadrupole moment, Q. If
the nucleus is at a site of lower than cubic symmetry, the quadrupole moment
couples to the electric field gradients created by the surroundings.

Crystalline GaAs in general has cubic symmetry; therefore, no quadrupole
interaction occurs at the site of the nucleus. However, in low-dimensional systems
or heterostructures, the symmetry might be reduced by strain or dimensionality
effects. The strain can be applied externally, or its source can be internal due to
lattice mismatch of the different materials.

In the following sections the relationship between the quadrupole coupling
and strain will be discussed. The influence of the two different sources of strain
on the signal will be modeled and compared with experiment.

6.2 Quadrupole Splitting

The quadrupole interaction can be described by the nuclear quadrupole moment,
@, coupling to the electric field gradient, V;;. The tensor coupling can be sim-
plified by choosing the set of principal axes relative to which V;; = 0 for i # j.
From Laplace’'s equation one obtains the following condition for the diagonal

elements:
Z Vii=0 (6.1)

Hence, for a nucleus at a site of cubic symmetry with Vyyx = Vyy = V4, all
three derivatives vanish, and no quadrupole interaction occurs. The Hamiltonian
describing the interaction of the nuclear quadrupole moment, (), with an electric
field gradient generated by its surrounding charges is then given by [71]

e

"= rpro)

[V2z(31; — I*) + (Vxx — Vay) (I3 — I})] - (6.2)
Capital indices denote the principal axes of the field gradient tensor. The
quadrupole interaction therefore removes the degeneracy of the nuclear spin
states in zero magnetic field.

In high magnetic fields, as is the case in the experiments of this work, the
quadrupole interaction can be taken as an perturbation to the Zeeman energy. In
most cases the field gradient has axial symmetry meaning that Vxx — Vyy =0
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for uniaxial strain. If the external field is applied in z-direction which lies in the
X Z plane, the coordinates of equation 6.2 transform to
I;=1,cos80+ I,sinf (6.3)

where @ is the angle between Z and the direction of the external magnetic field,
z. The Zeeman Hamiltonian is diagonal in this case, and the energy levels can

be calculated by first-order perturbation theory:

B = —yahiBym + ——%
Tl BOm T T or - 1)

e 3cos?h — 1
© Vzz <7

> (3m* —I(I +1)) (6.4)

The effect of the quadrupole coupling is depicted schematically in figure 6.1.

The energy levels are slightly shifted
to higher or lower energy for |m| = 3/2
or |m| = 1/2, respectively. Hence the
transition frequencies for 3/2 <+ 1/2 and
—1/2 < —3/2 are shifted by Av com-
pared to the unperturbed system, whereas
the central transition is not affected by the

<

coupling. The splitting of the spectrum,
Av,,, for the transition m < m — 1 is
given by

NjWw N N~ N|W

. Figure 6.1: Effect of a quadrupole
Ay, = 3eQ(2m — 1) s <3COS -1 coupling to first order
AI(2I = 1)k 2
(6.5)

For spin I = 3/2 the spectrum has a central resonance line and two symmetrically
shifted satellite lines. If the geometry and symmetry of the quadrupole system
in the magnetic field is known, measuring the splitting yields the electric field
gradient.

As already mentioned above, gallium and arsenic in bulk materials are sitting
at sites of cubic symmetry where they do not experience quadrupole interactions.
However, if the system is exposed to strain, the cubic symmetry is broken, and
there will be nonzero electric field gradients at the nuclear positions due to
changes in the neighboring atom positions and in the chemical bonds. Lemanov
[72] and Sundfors et al.[73] have introduced the tensor, S, which relates the
nuclear electric field gradient, V, to the elastic strain tensor, ¢, of the lattice

Vij = E Sij,lmﬂm

Im

(6.6)
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It is common to use Voigt notation in this context which obeys the following
rules [74]:

Vi=> Sier, jk=1...6, (6.7)
k

1=z, 4=yz,
2 =yy, 5= zx, (6.8)
3 =2z, 6 = xy.

It has been shown by Shulman et al. [75] that for any cubic point-group sym-
metry, S has only two independent elements: S, and Sy. The values, Si; and
Sy, for ™ As have been measured by Sundfors [76]:

S;; = #13.2-10% statcoulombcm ™3 = £3.96- 10*Vm™  (6.9)
Sy = £26.5-10% statcoulombecm™3 = £7.96 - 102 Vm 2  (6.10)

The conversion from esu to Sl units can be done by multiplying the esu value with
the factor (47e¢)~! and converting statcoulomb to coulomb: 1 statcoulomb =
3.34-10°1°C.

The final result for the relationship between the field gradient and the strain
in the cubic case is then

1
Vxx = Sn <€XX - §(€YY + €Zz)> (6.11)

Vxy = Suéxy (6.12)

Cyclic permutations, of X,Y and Z reveal all other field gradient components.

6.3 Resonance Line Splitting

The quadrupole splitting is measured with the setup described in chapter 3. Each
isotope is investigated separately in order to have the highest possible resolution.
The external field is usually set to a value such that the resonance of each
isotope appears around 10 MHz. The frequency is scanned over a region of 100
or 200 kHz within 40's, and the data is recorded with a digital oscilloscope.

In figure 6.2 NMR spectra of all three isotopes are shown, which have been
recorded at the same position of the sample. The spectra stem from the 19.7 nm
wide quantum well in sample #1431.

On the left side of figure 6.2 one can see the optical data together with the
fits, and on the right side the calculated NMR signal from the fit is shown. One
can clearly observe the splitting of the "As resonance line into three transitions.
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Figure 6.2: NMR spectra of all three isotopes. Figures a-c each show the ODNMR
spectra (black line) plotted together with the fits (red line). Figures d-f each show
the calculated NMR spectrum using the fitted parameters. All three isotopes are
fitted with the assumption of quadrupole splitting, though the splitting can only
be resolved for "As.
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It has been ensured by measuring the splitting at different field strengths, that
the splitting is independent of the external field. Therefore, the cause of the
splitting is assigned to a quadrupole interaction.

The resonances of the two gallium isotopes do not show such a significant
splitting, which is typically observed in the experiments with these three samples
during this work. However, the lines are broadened and are best fit with the
assumption of a small quadrupole splitting. The splitting is in this case on the
order of 1kHz or less, which cannot be resolved in this experiment.

Examples of typical spectra of "®As for each quantum well measured at arbi-
trary positions are given in figures 6.3 to 6.7. Even without fitting the spectra,
it is obvious that the satellite lines are broadened compared to the central line.

The quadrupole splitting is measured in five quantum wells with different
thicknesses. The experiment is designed so that all measurements can be carried
out within two days, taking special care to ensure that the position of excitation
on the sample did not change between two measurements. The line widths for
the satellite lines depend on the width of the quantum well, whereas the central
line appears to be independent of the well width, as shown in figure 6.8. However,
the satellite lines show a dependence on the width of the quantum well which
becomes especially broad for the smallest well.

The line shapes of the satellite lines also change, depending on the quantum
well width. For the 19.7 nm wide well, shown in figure 6.3, their shape is similar
to that of the central line, except for the broadening. In smaller wells, a deviation
from the underlying Gaussian resonance appears. It seems, that the signal for the
satellite transitions in some quantum wells is kinked, with two different slopes,
as indicated by the red lines in figures 6.4 and 6.5. This behavior becomes
most evident for the smallest quantum well. It cannot be explained simply by a
broadening of the Gaussian resonance line and is therefore not incorporated in
the fit.

As already pointed out in the introduction of this chapter, strain reduces the
symmetry at the site of the nucleus and induces quadrupole splitting. In order
to decide which source of strain is responsible for the splitting, the broadening,
and the line shape modification, two possible models will be discussed: internal
and external strain.

6.4 Internal Strain

Quadrupole splitting is not observed in solids possessing cubic symmetry, such
as GaAs; therefore, the symmetry in this system under study must have been
reduced. As has been shown, strain would create electric field gradients at the
nuclear sites. One possible reason for strain to occur is microscopic stress induced
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Figure 6.3: "As spectrum of 19.7 nm wide quantum well.
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Figure 6.4: ">As spectrum of 14.5nm wide quantum well. The red lines indicate
the different slopes for the satellite transitions. Blue arrows indicate possible two-
quantum transitions, as already pointed out in section 5.2.2.
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Figure 6.5: ">As spectrum of 11.7 nm wide quantum well. The red lines indicate
the different slopes for the satellite transitions.
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Figure 6.6: ">As spectrum of 10.5nm wide quantum well.
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Figure 6.7: ™As spectrum of 6.8nm wide quantum well. The satellite lines are
completely smeared out.
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internally by the growth of the heterostructure.

Although the growth of AIGaAs onto GaAs is considered to be lattice matched,
the two materials differ in lattice constant by a small amount. Such lattice mis-
match can be accommodated by uniform lattice strain in sufficiently thin layers
[77]. The in-plane lattice constant, a), of such a so-called “pseudomorphic” in-
terface remains constant throughout the structure. To calculate the strain in
each layer, the interface is at first assumed to be ideal; in other words, the bulk
atomic structure is maintained up to the interface. For a system with a thin
layer of AlGaAs grown on a GaAs substrate buffer layer that is much thicker
than the AlGaAs layer, the in-plane lattice constant of the system is that of the
GaAs substrate [78]: a = a“*** = 0.5653nm [28]. Thus, the in-plane lattice
constant in the GaAs quantum wells grown onto the AlGaAs barrier is equal to
the bulk one. The in-plane strain is given by [78]:

a_

eﬁ = 1 (6.13)
where i denotes the two different materials, GaAs and AlGaAs. The lattice
constant of Aly35GagesAs can be calculated using Vegard's law, which claims
that the material properties such as the lattice constant change linearly with the
concentration of aluminum in the material from GaAs to AlAs. Taking a4!4% =
0.5660 nm [28], the lattice constant of Alg35GaggsAs is a4 = 0.56555 nm.

The in-plane strain of GaAs for the ideal interface is ¢** = 0 according to

equation 6.13, and Gﬁ”G“AS = —4.42-107* for AlGaAs . The strain perpendicular

to the interface is given by:
€ =L _ (6.14)

with the lattice constant, a’,, perpendicular to the interface. This parameter is
not equal in the two materials and depends on the elastic constants (c11, ¢,
c44) of the material and the orientation of the interface [78]:

il = d [1 202 (4 )] (6.15)
C11 at

The elastic constants for Alg35Gag ¢5As can also be calculated with Vegard's law
from the constants of GaAs and AlAs, and the results are summarized in table
6.1. Again, the strain in GaAs for an ideal interface is zero, and in the AlGaAs
layer the lattice constant perpendicular to the interface is a; = 0.56578 nm,
resulting in €4¢945 = 4.07 - 10=%. Inserting these results into equation 6.11
reveals axial symmetry for the electric field gradient, and the resulting line shift
due to internal strain can be calculated with equation 6.5.

The investigated layers have certainly non-ideal interfaces, hence the strain
is distributed across the interface, causing nonzero strain in the GaAs quantum
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a [nm] C11 C12 Cq4
GaAs | 0.5653 1.223 0.547 | 0.600
AlAs | 0.5660 1.250 0.534 | 0.542
Alg.35Gag.esAs | 0.56555 | 1.23245 | 0.55805 | 0.5797

Table 6.1: Lattice constant, a, and elastic constants, ci1, c12 and ca4, for GaAs
and AlAs taken from [78] and for Alg 35Gag5As calculated by Vegard's law.

xlU4
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AlGaAs
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GaAs QW
4 AlGaAs
2

>
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Figure 6.9: On the left, the distribution of the €,,-component of the strain tensor
as a result of finite element calculations is shown. On the right, the structure of
the sample is depicted. The strain is calculated with respect to the GaAs substrate
lattice constant, which gives about a factor of 2 for the maximum strain compared
to eflG“As calculated in this section.
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wells parallel and perpendicular to the plane of the interface. Simulations with a
commercial program (Marc Mentat 2000) using the finite element (FE) method
is carried out in order to determine the strain distribution. The program uses
a continuum model and the elastic theory, as briefly explained in this section.
The sample is modeled as being pseudomorphic, grown on a thick GaAs sub-
strate (100 nmx100 nmx100 nm). One SPS layer is set on top of the substrate,
followed by a 30 nm AlGaAs barrier, a 10 nm GaAs quantum well, and a 30 nm
barrier on top. Since the dimension in the lateral direction is much bigger than
its thickness, the quantum well is not assumed to be “free standing” which is
taken into account by setting the appropriate boundary conditions. This condi-
tion suppresses the strain relaxation towards the sample-side planes in the x- and
y-direction; therefore, no shear strain components can arise.

The simulation calculates the strain in comparison to the GaAs bulk lattice
constant for the whole sample. Hence the maximum strain value in the AlGaAs
layer is about twice as big as the value given for ¢//“®4$ just prior to this section.
The calculation reveals only a strain component perpendicular to the interface
plane. It is linearly distributed over the GaAs/AlGaAs interface and reaches
about 2.5 nm into the quantum well. The strain at the interface is about half of
the maximum strain in the AlGaAs barrier. The center of the quantum well is
strain-free, down to a well width of 5 nm, where the influence of both interfaces
interfere, as is shown by calculations of different well widths.

This result of the distribution of the strain is used in order to simulate the
NMR spectra for different quantum well widths. The total NMR spectrum is
yielded by calculating the spectrum for each monolayer separately and then
adding all monolayer signal contributions together. Each signal is weighted with
the expectation value of the electron.

The total quadrupole splitting, dv,, consists of a constant part, (5V§“"t, of
presumably an external source, as will be pointed out in sections 6.5 and 6.6, and
a strain-dependent part, 51/3”? The latter is calculated using equations 6.5 and
6.11, with the strain, €,,, from the FE calculations. The Gaussian resonance lines
all have all equal widths (1kHz HWHM) and intensities in the simulation. The
simulated NMR spectra together with their integrated signals for three different
quantum well widths are depicted in figure 6.10.

It is clear that the influence of the strain becomes less important for wider
wells, since the number of strained monolayers remains constant for each quan-
tum well. The FE simulation shows, that about 9 monolayers within the quantum
well at each interface are strained, which means that the splitting varies by about
2 kHz from monolayer to monolayer. The effect of this huge variation of split-
ting is manifested in small wiggles in the spectra of figure 6.10. However, these
wiggles have an effect on the integrated signal. They appear as broad wings in
addition to the resonance, and their contribution to the signal is big enough in
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Figure 6.10: Simulation of NMR spectra exposed to internal strain due to lattice
mismatch. On the left, the integrated NMR signal is shown; on the right side,
the calculated spectra are depicted. The simulation is carried out for different
quantum well widths: (a,b) 20nm, (c,d) 10 nm and (e,f) 6.5 nm. The influence of
the strain arises as small wiggles on either side of the satellite lines, and becomes
most evident for small well widths.
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order to be detectable by ODNMR. The width and slope of the wings depend on
the quantum well width and on the constant splitting, 5y§“’t, for which the fitted
values are used in the simulation.

Comparison of the integrated NMR spectra with the measured ODNMR spec-
tra in figures 6.3 to 6.7 indicates that these data also might show a similar trend.
However, the simulation is not fully consistent with the data. The simulation
still shows sharp resonances that do not appear in the ODNMR spectrum. One
interpretation is that the strain perpendicular to the interface plane is not the
only contribution to the line broadening. An important contribution to the in-
terface strain, which is not included in the simulation, is the strain arising from
monolayer splittings. In an ideal model this splitting creates a new interface
parallel to the growth direction.

The FE simulation for a monolayer step in the x-direction reveals that in
addition to the hydrostatic strain, ¢,,, a shear strain component, €,,, of the
same order of magnitude appears. This should have an important influence
on the NMR signal for two reasons: the NMR signals to the left and right of
the monolayer step are different due to the presence of a different number of
monolayers, but more importantly, the EFG-tensor components, Vyx and Vyy,
are not equal anymore. Hence, the electric field gradient lacks axial symmetry
in the vicinity of the step, and an asymmetry factor must be introduced into
equation 6.2 [71]. Therefore, the quadrupole splitting due to the two strain
components becomes different in regions close to the monolayer step compared
to the rest of the quantum well. The interface defects usually form islands
with varying sizes, meaning that monolayer splitting occurs in the x- and y-
directions. These different orientations of interfaces in the well create some
distribution of strain amplitudes and directions. This distribution should smear
out the broadened satellite resonance line, which has not been simulated but
might be observed in the spectra.

6.5 External Strain

The broadening of the satellite lines can be attributed to internal strain, as shown
in the previous section. However, internal strain does not explain the very large
splitting, which is included in the simulation of the NMR spectra as a constant
splitting, dv¢™. The reason for this constant splitting is likely to be externally
applied strain.

The sample is glued with silver based thermal epoxy to the sample holder,
meaning the sample is affixed with the GaAs bulk substrate down onto copper.
These two materials have different thermal expansion coefficients, whereby the

changes of contraction during the cooling process cause strain at the GaAs/copper
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interface. The linear expansion coefficient, «, for expansion over a temperature
range, AT, in one dimension is defined by

Al
= — QAT (6.16)
Ly
where Al is the expansion and L the original length. The relative strain, ¢, is
also defined as the change of length, Al, over the total length, L.
Hence the strain induced at the inter-
face can be estimated with |I QW i

e = (% — % AYAT.  (6.17) |‘.‘ GG:AS >'|

The values for the temperature-dependent

expansion coefficients for GaAs and copper _>| A |4_
are taken from [63] and [79], and the rel-

ative strain after cooling from room tem- Copper

perature down to 4K is approximately € ~

2 - 102 parallel to the plane of the inter-

face. The strain perpendicular to this plane Figure 6.11: Cross section of the
should be on the same order of magnitude sample holder. The quantum well
since all components of the elasticity ten- sample has a bulk GaAs substrate
sor of GaAs are of the same order of mag- base and is glued to the copper
nitude. Since a%?4* is smaller than %, sample holder.

the sample is contracted at the interface with the sample holder as depicted
schematically in figure 6.11. The strain is certainly not constant throughout the
sample but weakens drastically in the growth direction, meaning that the strain
per layer is the smallest on the top of the sample. Therefore, one expects a de-
pendence of the externally induced strain on the vertical position of the quantum
well within the sample. Most of the sample thickness is bulk material (500 zm),
and the MBE-grown portion on top of the buffer layer is 660 nm thick. The
quantum wells are grown with the widest ones at the bottom and the smallest
ones on top of the sample; hence, the external strain can be expected to be
weakest in the smallest quantum well.

The dependence of the splitting of the resonance lines on the quantum well
position is measured for five different quantum wells (see figures 6.3 to 6.7).
The results are shown in figure 6.12, where the splitting is plotted against the
distance of the middle of each quantum well from the top of the sample.

A dependence of the strain from the position of the quantum well can be
clearly observed as predicted by the model. However, it is too simple to extract
detailed information about the distribution of strain within the sample. In par-
ticular, the influence of the thermal expansion coefficient of the epoxy is not
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Figure 6.12: Dependence of the quadrupole splitting on the position of the quantum
well in the growth direction. The distance of the middle of each quantum well is
measured from the top of the sample.

considered. However, if one assumes for the sake of simplicity an uniaxial strain
distribution in the lateral direction of the sample in each layer, the electric field
gradient has axial symmetry. The strain can then be calculated from the split-
ting with equations 6.5 and 6.11 and is depicted on the right scale in figure 6.12.
The strain is reduced by one order of magnitude from the bottom to the top
and is comparable to other experiments involving external strain applied to GaAs
quantum wells published in [80].

The strain distribution is not as simple as shown in figure 6.11 but shows
inhomogeneities, resulting in differences of quadrupole splitting of the resonances
across the sample. The splitting is measured for different positions on the sample,
and the results are depicted in figure 6.13. The splitting varies from about 1 kHz,
which is not resolvable, to about 12kHz (or even more in measurements not
shown here) and are probably caused by inadequately affixing the sample to the
holder. These variations in strain might lead to a broadening of the resonance
lines, since the detected signal stems from a relatively large area of 100 um in
diameter. The simulation of the NMR signal from section 6.4 shows, that a
small broadening could be induced by very small strain variations on the order
of Ae = 107°. Small variations of external strain within the excitation radius
would affect all monolayers in the quantum well and therefore have an impact
on the NMR signal. However, the distribution of the strain differences can be
assumed to be of the same type for all quantum wells, and the broadening is
therefore expected to be constant in all layers. Therefore, the distribution of
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Figure 6.13: Quadrupole splitting in the ™ As of 19.7 nm quantum well for different
positions on the sample. The spectra show the evolution of the luminescence
polarization during the rf scan. The width of the central line is about 0.9 kHz
in all figures. Ay, denotes the width of the satellite lines (HWHM) and év, is
the quadrupole splitting. For position 2 the quadrupole splitting is not resolved;
therefore, it is fitted with, d, = 0, in order to obtain the linewidth Av of the
resonance line.
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external strain might be one reason for the broadening of the satellite lines, but
does not explain the quantum well width-dependence of the broadening.

6.6 Electric Field Effects

Another source for quadrupole splitting not considered thus far is the influence
of homogeneous electric fields in the sample and the influence of excitons. Since
the nuclei in GaAs are located at positions that lack inversion symmetry, the
quadrupole moment of the nuclei couples to a homogeneous electric field [81].
The matrix element of the induced EFG of this indirect process is [82] [83]

Vi = (Vig)p=0 + Z Cijk Ly (6.18)
k

The coupling constant, Cj;i, vanishes except for i # j # k, and all these elements
are equal, leaving C14 in Voigt notation as the only independent element. The
coupling constant of As is Cj4 = 1.55- 102 m~! [82].

The electric field across the quantum wells is on the order of 107 Vm~!, which
is measured by applying an external electric field, compensating the internal one,
which is evident from blue shifts of the PL line. This field creates an electric
field gradient of about 10' Vm=2, which creates a splitting on the order of
10* Hz. This is on the order of the splitting that is attributed to external strain.
Experiments with an external electric field applied to the sample show that the
quadrupole splitting can be modified by several kHz; therefore, the electric field
is part of the source for the quadrupole splitting.

The electric field is constant in all quantum wells; therefore, a quantum well
width dependence of the splitting as depicted in figure 6.8 should not occur.
As already pointed out, the splitting is most obvious for the arsenic transition
in most experiments, whereas the splitting is hardly resolvable for the gallium
resonances. This cannot be explained by the different quadrupole moments of
the three isotopes, because the ratio of the coupling constants are not equal to
the ratio of the splittings. However, if one assumes that the splitting by the
external strain is partially compensated by the splitting due to the coupling to
the electric field, the derivation of the splitting ratios can be understood.

A further source of electric fields has its origins in the optical means of the
experiment, i.e., the excitons. The exciton is an electron-hole pair that interacts
through an attractive Coulomb interaction. Hence, the exciton creates an electric
field at the site of the nucleus. In order to obtain an upper limit approximation
for the field created by the exciton, only the field created by a spherical electron
cloud with the radius of the exciton is considered. The field on the “surface” of
this electron with a radius of 10 nm is about 10° Vm~!. The electric field gradient
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is therefore at least an order of magnitude smaller than the one discussed above.
The influence of the excitonic electric field can therefore be neglected as a source
for quadrupole splitting.

The direct electric field gradient for such a simple complex can be estimated
to be —2-10' Vm~2 at a distance of 10 nm away from the center of the exciton.
This is significantly smaller than any other electric field gradient discussed so far,
and therefore does not contribute significantly to the splitting or the broadening
of the quadrupole satellite lines.

6.7 Summary

In this chapter the influence of quadrupole interaction of the nuclei with elec-
tric field gradients caused by the neighboring atoms is discussed. The experi-
mental data clearly reveal splitting of the resonance lines that was produced by
quadrupole interactions. The data also show significant broadening of the satel-
lite lines. The reduction of the cubic symmetry of GaAs is attributed to strain
within the quantum well and an electric field across the sample. Two possible
reasons for strain are discussed, and their influence on the spectra is modeled.
From these models it can be deduced that the source of the splitting is externally-
applied strain by the mounting of the sample and a homogeneous electric field
across the sample. These two effects partially cancel each other, resulting in
quadrupole splitting ratios which cannot be explained by the quadrupole mo-
ment ratios of the three isotopes. Excitonic effects are shown to play only a
minor role for the spectra. The broadening of the resonance lines is caused by
internal strain created by lattice mismatch of GaAs and AlGaAs and by monolayer
splitting, which creates an additional shear strain component.
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This thesis presents advancements in the spectroscopic method of optically
detected nuclear magnetic resonance (ODNMR) applied to semiconductor het-
erostructures to investigate nanoscopic structural details in these systems. Exper-
iments are carried out on type I GaAs/AlGaAs quantum wells of various thick-
nesses, investigating new aspects about the behavior of the coupled electron-
nuclear spin system. Characterization and interpretation of the specific features
of the ODNMR spectra are carried out, providing spectroscopic applications for
studying low-dimensional heterostructure systems. Utilizing the sensitivity and
selectivity of ODNMR, structural information is revealed about GaAs/AlGaAs
interfaces and quantum wells.

A high degree of nuclear spin polarization is achieved by optically pumping
the coupled electron-nuclear spin system. The hyperfine coupling constant, gov-
erning the electron-nuclear interaction, is derived for quantum wells of various
thicknesses by calculating the electronic wavefunction within a quantum well.
The coupling can be described as magnetic fields having both nuclear and elec-
tronic origins, and values of these fields are estimated.

The dependence of the luminescence polarization on both the external and
nuclear magnetic fields, the so called Hanle effect, is derived. This dependence
enables optical detection of nuclear magnetic resonance. Hanle curves for dif-
ferent well widths are shown, and temperature and laser intensity influences are
discussed. Hanle measurements are carried out by suppressing nuclear polar-
ization and are compared to Hanle curves shifted by the influence of nuclear
magnetic fields. The size of the maximum magnetic field is measured separately
for each isotope in quantum wells of different thicknesses.

Continuous wave ODNMR is applied to the quantum wells in three samples
of different interface quality. The spectra show the very high sensitivity of the
ODNMR technique, allowing the detection of less than 10! nuclear spins. Uti-
lizing the spectral selectivity of the optical method allows separate investigations
of quantum wells of specific thicknesses. Using a phenomenological fit function
permits the ODNMR signal to be deconvoluted from the underlying NMR spec-
trum and reveals the widths and intensities of the resonance lines. The results
are compared with numerical simulations using density matrix formalism.

The ODNMR technique is used to investigate different relaxation processes
governing the optical pumping process. The field dependence of the optical
pumping relaxation time is measured, and the “dark” relaxation time is obtained
separately for each isotope by suppressing optical pumping.

As a polarization-conserving method, adiabatic rapid passage through the
nuclear resonance is implemented. The nuclear polarization is inverted rather
than saturated; therefore, reversal of the RF scan direction restores the initial
polarization. More than 120 scans are possible, implying that losses are relatively
small during the inversion of the nuclear polarization.
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It is shown that delocalized optically oriented electrons do not contribute
to polarizing the nuclear spin system. It is assumed that trapping of excitons
at interface defects plays the key role in amplifying the hyperfine interaction.
A model is presented, to approximate the effect on the hyperfine relaxation
time, T, and it is found that the relaxation time is decreased by one to two
orders of magnitude compared to unbound excitons. Therefore, optical pumping
becomes more efficient than other relaxation processes, and eventually, a nuclear
polarization can build up. The theoretical model is supported by comparison of
different samples, revealing a dependence of the hyperfine relaxation time on the
interface quality.

The calculation of the nuclear magnetic field acting on the electrons shows
significant well width dependence and reaches values of over 20T in narrow
(5nm) wells. Comparison with experimentally obtained nuclear fields from Hanle
curve shifts show that the nuclear system is polarized to a very high degree,
reaching levels of 20% or more. The effective electronic magnetic field acting on
the nuclei is calculated for a 20 nm wide quantum well and is, at best, on the
order of a few micro tesla, too small to be resolved with the current experimental
setup.

New information about the hyperfine coupling mechanisms of the electron-
nuclear spin system is obtained and demonstrates that the coupling to the elec-
trons becomes very efficient at zero effective magnetic field. This coupling results
in an external field dependence of the optically pumped nuclear field. It is found
experimentally that within some range of external magnetic field strengths, the
nuclear field tries to cancel out the external field, creating an effective field nearly
equal to zero felt by the electrons. This behavior is observed as a locking of the
top of the Hanle curve to the externally applied field during a field scan and
becomes apparent in the field dependence of the optical pumping time, Tlf. De-
stroying the polarization of only one isotope will cause the other two isotopes
to compensate the losses of total nuclear field, which becomes obvious in the
adiabatic rapid passage experiments.

The ODNMR resonances are identified as belonging to the major compo-
nents of the GaAs quantum well heterostructure. It is shown from calculations
that nuclei situated in the barrier do not contribute noticeably to the ODNMR
signal, due to the small penetration depth of the electron wavefunction into the
barrier. In agreement with the wavefunction calculations, no evidence for signals
from the barrier is observed. The line widths are comparable to values published
earlier using different NMR techniques, indicating that the ODNMR method
does not drastically influence them. However, the line intensities differ from
the commonly accepted ones of quadrupolar systems. Numerical simulations of
the NMR spectra confirm this deviation from the common intensity distribution.
The simulations also reveal that the population distribution for the nuclei are
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different from a Boltzmann distribution. Therefore, the spin temperature con-
cept proposed by D'yakonov does not apply for the quantum well systems under
investigation. Two-quantum transitions are predicted by the simulation and are
observed experimentally, even at low RF field intensities.

Nuclear spin diffusion distributes the polarization from nuclei within the ex-
citon trapping site to neighboring nuclear spins. This effect causes broadening
of the shifted Hanle curves due to an inhomogeneous nuclear magnetic field dis-
tribution. The field dependent “dark” relaxation times, 77, obtained with the
optical relaxation being suppressed, reveal that spin diffusion plays an important
role as a relaxation process in optically detected nuclear magnetic resonance.

The resonance lines show large splittings which are attributed to quadrupole
interactions of the nuclei with electric field gradients caused by the neighboring
atoms. The reduction of the cubic symmetry of GaAs is attributed to interfacial
effects at the AlGaAs/GaAs barrier, to strain within the quantum well applied
externally by the mounting of the sample, and to a homogeneous electric field
across the sample. These latter two effects partially compensate each other,
leading to splitting ratios between the three isotopes in the GaAs quantum well,
which deviate from the ratios of the quadrupole moments between the isotopes.
The ODNMR data also show significant broadening of the satellite lines, which
arises from internal strain created by lattice mismatch of the heterostructure and
by monolayer splitting (interface roughness), which creates an additional shear
strain component.
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