
Lattice path integral approach

to the Kondo model

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

des Fachbereichs Physik

der Universität Dortmund

vorgelegt von

Michael Bortz

Oktober 2003



Tag der mündlichen Prüfung: 5. Dezember 2003
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Abstract

A lattice regularization of the isotropic single channel spin-1/2 Kondo model is proposed. From sym-
metry arguments, effective models for the more general anisotropic m-channel spin-S case are given.
By application of the Quantum Transfer Matrix formalism, the free energy and other thermodynamic
equilibrium response functions are obtained exactly by a set of max(2S,m)+1 non-linear integral equa-
tions. These are studied analytically in certain limiting ranges of the external parameters (temperature
and magnetic field) and numerically over wide parameter ranges. Both high- and low-temperature
scales are calculated.

Zusammenfassung

Es wird eine Gitterregularisierung des isotropen Kondomodells (ein Kanal, Spin-1/2) vorgeschlagen.
Mit Symmetrieargumenten werden effektive Modelle für den allgemeineren anisotropen, m-Kanal,
Spin-S Fall angegeben. Durch die Anwendung des Quantentransfermatrixformalismus werden die
freie Energie und andere thermodynamische Gleichgewichtsantwortfunktionen exakt durch einen Satz
von [max(2S,m) + 1] nichtlinearen Integralgleichungen erhalten. Diese werden analytisch in gewissen
Grenzfällen der externen Parameter (Temperatur, Magnetfeld) sowie numerisch über weite Parame-
terbereiche untersucht. Sowohl Hoch- als auch Tieftemperaturskalen werden berechnet.
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Chapter 1

Introduction

Theoretical many particle physics develops tools and models to describe systems of interacting elemen-
tary particles. ”Elementary” means that the particles are completely characterized by their properties
and their states. A property cannot be changed, whereas the state is the ensemble of continuous
and/or discrete variables which contain all information about the degrees of freedom. If a particle
is free, its state will always be the same. The interaction with other particles causes the states to
change. Indeed, the interaction is defined by the change of states of the interacting particles.

Let N identical particles, which interact in a pairwise manner, be in a d-dimensional volume Vd. N
and Vd are auxiliary constructs for practical calculations. Each particle may be in one of 2S+1 states.
The corresponding vector in (2S + 1)N dimensional Hilbert space evolves according to Schrödinger’s
equation. A thermodynamic description requires the knowledge of all eigenstates of the Hamiltonian
with their corresponding eigenvalues. These functions depend analytically on the external parameters,
since none of the underlying equations causes any divergence. However, singularities are observed,
namely in phase transitions or critical points. These occur in the thermodynamic limit, N,Vd → ∞
such that N/Vd = const.. The bulk behaviour is expected to be independent of N , Vd. The challenge
is to find ways of describing the system which allow for the thermodynamic limit.

Once the system of N identical particles is understood, one further question is how an impurity is
affected by such a homogeneous background (host) and how it influences the host. New phenomena
only emerge if host and impurity are allowed to interact, that is, if a certain resonance condition is
fulfilled. Then the impurity displays new characteristic features. On the other hand, its influence on
the host is expected to be negligibly small, of the order O(1/N).

The subject of this work is the development of a lattice path integral approach to an exact eval-
uation of thermodynamic equilibrium response functions of the one-dimensional Kondo problem. Let
us embed the method and the model into their respective backgrounds.

The spectrum of the isotropic Heisenberg chain of N sites was obtained by Bethe in 1931, [15].
In his work, the eigenvalues are given by N ≤ N/2 numbers, the Bethe ansatz numbers (BAN).
The exact solvability relies on the factorization of the many body scattering matrix τ into a product
of scattering matrices R between two adjacent particles. This factorization is equivalent to a self-
consistency relation between scattering matrices of two particles, the Yang-Baxter-Equation (YBE).
A review and bibliography are contained in the Baxter’s book, [13].

Contrary to the coordinate approach initialized by Bethe, the algebraic Bethe ansatz (ABA) (see
[62] for a review) provides an algebraic technique to diagonalize various one-dimensional quantum
models. The scattering matrices are parametrized by a spectral parameter x, R = R(x). R now is
the representation of an operator, acting in the direct product of quantum and auxiliary space. A

3



4 CHAPTER 1. INTRODUCTION

product of R-operators in auxiliary space builds up a monodromy matrix T . τ , in this framework
called transfer matrix, is the trace over the auxiliary space entries of the monodromy matrix. The
logarithmic derivative of τ with respect to x, taken at a fixed value x = x0, defines the Hamiltonian
of the model. Since transfer matrices with different x commute due to the YBE, all eigenvalues of the
model are obtained, again determined by BAN.

The next step is the calculation of thermodynamic equilibrium response functions. Takahashi (he
reviews his work in [87]) made a hypothesis concerning the distribution of BAN in the complex plane,
the so-called string hypothesis. With this hypothesis, he classifies the excitations and calculates the
eigenvalues, without constructing the corresponding eigenstates. The eigenvalues known, one arrives
at the free energy. It is encoded in a set of infinitely many coupled nonlinear integral equations.

Klümper pursues a different approach to the classification of the excitation spectra. He starts
from analyticity arguments, [54]. Furthermore, he uses the Trotter-Suzuki mapping [88, 85, 86] of
one-dimensional quantum models onto two-dimensional classical models. The latter previously had
been solved by Baxter. This enables him to represent the free energy of the quantum models in
terms of the leading eigenvalue of the corresponding quantum transfer matrix, QTM. The QTM itself
is diagonalized by ABA. Furthermore, by analyticity arguments the unknown BAN are expressed
through only two (for the spin-1/2 Heisenberg chain) auxiliary functions. These obey two non linear
integral equations (NLIE) and give the free energy.

The application of this technique to fermionic models requires the translation of R-operators to
fermionic annihilators and creators. By making use of the algebraic structure of the underlying super-
algebras, Göhmann [36] develops a fermionization scheme, which avoids the cumbersome expressions
appearing in Jordan-Wigner transformations.

The fermionization scheme, the QTM-approach, the ABA and the derivation of NLIE are the tools
used in this work.

Let us now briefly review the background of the model we study, the Kondo model.
In 1934, de Haas et al [23] measured the resistivity of Au with 10−4 % Cu and found a minimum

at a temperature of about 4 K. For nearly thirty years, this observation remained a puzzle. As
a first guess, the impurity is thought of as an isotropic scatterer, any influence of the surrounding
lattice symmetry is neglected. Thus the scattering is an effectively one-dimensional process, while
the host itself is a free three-dimensional electron gas. Anderson [3] proposed a model of a localized
impurity in a host of electrons with kinetic energy t and onsite Coulomb repulsion U . The impurity
interacts with the host through a hybridization V . In the limit |V |2/U � 1, a localized moment
forms, and the Anderson model turns into the sd-model, [81]. The lesson to be learned from this
limit is that a localized moment occurs if double occupation and hybridization with the environment
on one lattice site are strongly suppressed. The sd-model describes a free host, interacting weakly
with a localized magnetic moment via antiferromagnetic XXX spin exchange with an amplitude J .
”Weak interaction” means that at high temperature, the coupling is negligible and the impurity spin
shows Curie-Weiss behaviour. This model served as starting point for Kondo [61], who performed a
perturbational calculation of the scattering amplitude between host and impurity up to third order in
J . He discovered a lnT/T̃k contribution to the resistivity and thus was able to explain the minimum
observed by de Haas. T̃k is the crossover temperature which indicates the limit of perturbation theory:
A divergence occurs for T ∼ T̃k. This problem is termed ”Kondo problem”; the XXX-sd model is
henceforth called isotropic ”Kondo model”.

The method which overcomes the failure of perturbation theory is scaling. Using perturbational
scaling arguments, Anderson [4] showed that the limit of low temperatures T < T̃k is connected with
a divergent coupling constant J , but still a quantitative approach to this strong coupling limit was
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missing. By the implementation of his numerical renormalization group, Wilson [94] realized a non-
perturbative access to low temperatures down to T = 0. This contribution was recognized in the award
of a Nobel prize in 1982. Wilson assumed a linear dispersion in the conduction band and calculated
the impurity contributions to the magnetic susceptibility χ and the specific heat C at T � T̃k. He
found χ = const. and C ∝ T , that is, Fermi liquid behaviour. Especially, the ratio χ/C is enhanced by
a factor of 2 compared with free fermions, and χ is inversely proportional to T̃k, a high temperature
scale. Let us call the low temperature ratio χ/C the ”low temperature Wilson ratio” and the constant
χ(T = 0) · T̃k the ”high temperature Wilson ratio”. These two numbers contain the whole physics of
equilibrium response functions in the Kondo model.

The Fermi liquid signatures of the many body bound state at low temperatures incited Nozières
[69, 70] to formulate a phenomenological Fermi liquid theory. He also proposed a generalization,
including m electronic species, each with spin 1/2, instead of one. The physical background is the
orbital degeneracy of 3d electrons. This model is known as the multichannel Kondo model.

Wilson realized the first non-perturbative approach to the Kondo model. Andrei [5] and Wiegmann
[93] succeeded in applying the Bethe Ansatz (BA) to the Kondo model and thus obtained the spectrum
exactly. In their works, the host is reduced to one dimension. Since the scattering process itself is
one-dimensional, this is a natural approximation. Two particle-functions of the host are factorized
in a charge and a spin contribution. Only the antisymmetric charge function and the symmetric
spin function is accounted for in order to set up two-particle scattering matrices which obey the
YBE. Although this construction is justified for linear dispersion in the host, ”half” of the host
degrees of freedom is rejected. Thermodynamic equilibrium response functions were calculated in the
following by employing TBA techniques, [27, 28, 73, 6, 7, 90]. These works include the generalization
to the spin-S Kondo model, with an impurity of spin S interacting with a host of m = 1 spin-1/2-
electrons. Furthermore, an anisotropic XXZ-like spin exchange for S = 1/2, m = 1 has been explored.
Finally, Tsvelick and Wiegmann [91, 92, 89] paved the way for the exact description of the isotropic
m-channel, spin-S model. In these works, the impurity contribution to the free energy is encoded
in a set of infinitely many coupled NLIE. These contain the whole information about equilibrium
response functions. Especially, the asymptotic high-temperature expansion due to Kondo and the
Wilson ratios are supposed to be encoded therein. As to the low temperature Wilson ratio and the
high temperature expansion, it was confirmed in the cited works. However, care had to be taken when
calculating the host contributions. In the isotropic m = 1 = 2S case, for example, the susceptibility
was correctly reproduced, but only half of the specific heat of spin-1/2 fermions was obtained. This
artefact is due to the special way the host was included: The magnetic field does not couple to the
antisymmetric (singlet) spin part; but the symmetric part of the charge function contributes as much to
the specific heat as the antisymmetric part. With this prescription in mind, the low-temperature result
by Wilson was obtained exactly by TBA-techniques. To evaluate the high-temperature Wilson ratio,
a perturbational expansion of the free energy by Andrei [8] confirms Wilson’s result. Its derivation in
the framework of the exact solution is still lacking.

Very recently, Schlottmann [79, 80] has generalized the exact solution to the multichannel, aniso-
tropic spin-S Kondo model for special values of anisotropy. He finds evidence for a quantum critical
point at T = 0, h = 0 in the XXZ-case. Affleck [2] considered the isotropic m > 2S Kondo problem
by conformal field theory, and gives analytical expressions of Wilson ratios. These have only partially
been confirmed by an exact solution yet.

The TBA method yields exact results of thermodynamic equilibrium response functions. In princi-
ple, all information necessary to calculate these quantities is available. Nevertheless, questions remain
open:
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i) Is it possible to include the host such that the restriction to two-particle functions with even
spin-, and uneven charge-functions is lifted?

ii) Can Wilson’s high temperature ratio be extracted? Are Affleck’s results accessible by the exact
solution?

iii) Is it possible to include an arbitrary XXZ-like anisotropy?

iv) How to calculate dynamical response functions?

Probably, question ii) was not answered yet since it requires the numerical evaluation of the infinitely
many NLIE, an impossible task. Numerical studies of TBA results demand some cutoff scheme, which
inevitably leads to errors. Question iii) is answered with ”no” in the TBA approach. At the very
fundamentals of this technique is the string-hypothesis. This hypothesis only works for special cases
of the anisotropy parameter. The last question is, since excitation energies are known without their
corresponding eigenstates, out of reach in the TBA. It requires the evaluation of correlation functions
between impurity and host operators.

In this work, questions i), ii) and iii) are answered positively. The door to the answer to question
iv) is opened a little in so far that principally, all eigenvalues and the eigenstates are known.

We shall develop a lattice path integral representation of the free energy of the entire system,
host and impurity, in one dimension. This model can be viewed as a lattice-regularized version of
the continuous Kondo model. A regularized Hamiltonian on a lattice is proposed, which yields the
Kondo model in a certain scaling limit of external parameters. The host relies on a four-dimensional
representation of the Lie superalgebra gl(2|1). The corresponding four states per lattice site are zero,
single (with spin up or down) and double occupation. The impurity degrees of freedom are described
by a three-dimensional representation of gl(2|1). Double occupation on the impurity site is excluded
from the beginning. According to the work by Schrieffer and Wolf [81], one thus expects a localized
moment to occur. In order to regularize the continuous Kondo model, it is quite natural to choose the
superalgebra gl(2|1). Its even subalgebra is u(1)⊗su(2), encoding charge and spin degrees of freedom,
respectively. Spin-charge separation occurs in one dimension for interacting electron systems [41],
and the impurity is supposed to possess exclusively spin degrees of freedom. Indeed, in the impurity
space, gl(2|1) is reduced to one of its subalgebras, su(2), in the scaling limit. Only the spin degrees
of freedom rest on the impurity site. The fact that the same algebra for the host and the impurity
is used can be considered as the resonance condition for interactions of both. Then the free energy
of the host and of the impurity are encoded in eigenvalues of distinct quantum transfer matrices and
can therefore be separated.

It is not our aim to justify the models themselves from physical arguments deeper than the rather
intuitive ideas given in this introduction. Such considerations are of vital importance, since any theory
must be built up on experiments and must find its way back to experiments by predicting measurable
phenomena. As far as the spin-1/2, channel m = 1, 2 models are concerned, this issue is elucidated
in [70, 90]. Furthermore, one model may serve as a benchmark for many theories, and it is of no
less importance to understand the structure, the benefits and the failure of each to estimate their
respective potentials in predicting new phenomena. The subject of this work is the latter challenge.

This work consists of five parts. The first chapter contains the introduction. The next chapter
sets up the models we want to analyse. A gl(2|1) symmetric lattice model with an impurity is given,
and the isotropic m = 1 = 2S Kondo model is recovered therefrom by a canonical transformation
in the limit of a singly occupied impurity site. The free energy is derived and expressed in terms of
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two auxiliary functions, obeying two NLIE formally identical to the analogous equations leading to
the free energy of the XXX-Heisenberg chain. This motivates us to propose a Uq(su(2)) symmetric
effective transfer matrix which yields the free energy of the impurity of the generalized models. It is
given through a set of [max(2S,m) + 1] NLIE.

In the third chapter, the NLIE are studied analytically in the limits of low and high tempera-
tures. The fourth chapter is dedicated to numerical studies over the whole range of temperatures
and magnetic field. Wilson’s two ratios are calculated and Affleck’s results are confirmed within some
numerical errors. Qualitative agreement is found with Schlottmann, however his results differ by
constant prefactors from ours.

Concluding remarks form the last chapter.

To keep the work readable for non-experts of ABA-techniques, the corresponding algebraic manip-
ulations are relegated to the appendix. In the main part, only the results, that is the eigenvalues of
the transfer matrices, are given. Equally, details of the numerical procedure have been excluded from
the main part.

In the whole work we set kB = 1 and gµB = 1, where kB is Boltzmann’s constant, g is the
gyromagnetic factor and µB is the Bohr magneton. The inverse temperature 1/T is denoted by β and
the external magnetic field by h.





Chapter 2

The Impurity Models

We construct Kondo-like impurity models in two steps: In the first part, a spin-1/2-impurity site is
embedded in a host of spin-1/2 fermions. The second part is dedicated to generalizations of this model.
Thermodynamic equilibrium functions are derived from the grand canonical potential Ω = Ω(µ, T, h).
Since we will give the models in second quantization, is is natural to start in the grand canonical
formalism. However, once Ω calculated, we will restrict T, h � D, where D is the bandwidth of
the host. Then µ =const. is readily expressed by the particle number N=const., which effectively
is equivalent to the canonical description. The corresponding potential is denoted by f = f(T, h);
following custom, we call it the ”free energy” - although strictly speaking, it is the free enthalpy. In the
ongoing, no distinction is made between Ω and f , only the latter symbol is used for the thermodynamic
potential.

2.1 Lattice path integral formulation

2.1.1 Constituents of the model

This section provides the tools which are used to construct the impurity model on the lattice. Essen-
tially, these are gl(2|1)-invariant R matrices which satisfy the Yang-Baxter-Equation (YBE). Based
on these matrices, a transfer matrix is constructed, from which the Hamilton operator is derived.
Since the super-algebra gl(2|1) admits both a three-dimensional irreducible representation (irrep) as
well as a one-parameter family of inequivalent four-dimensional irreps, several YBEs intertwining the
different irreps are fulfilled.

Let V (d) be the module giving rise to the d-dimensional irrep of gl(2|1), d = 3, 4. A grading is
assigned to the basis vectors through the parity function p,

d = 4 : p[1] = p[4] = 0 ; p[2] = p[3] = 1
d = 3 : p[1] = p[2] = 0 ; p[3] = 1 .

(2.1)

Note the different parities in three and four dimensions. Then R(d,d′)
i,j (u) ∈End

(
V

(d)
i ⊗ V (d′)

j

)
satisfies

the graded Yang-Baxter-Equation (YBE),[
R

(d,d′)
2,3 (u)

]β,γ
β′,γ′

[
R

(d′′,d′)
1,2 (v)

]α,γ′
α′,γ′′

[
R

(d′′,d)
1,3 (v − u)

]α′,β′
α′′,β′′

(−1)(p[α]+p[α′])p[β′]

=
[
R

(d′′,d)
1,3 (v − u)

]α,β
α′,β′

[
R

(d′′,d′)
1,2 (v)

]α′,γ
α′′,γ′

[
R

(d,d′)
2,3 (u)

]β′,γ′
β′′,γ′′

(−1)(p[α′]+p[α′′])p[β′] . (2.2)

9



10 CHAPTER 2. THE IMPURITY MODELS

Summation over doubly occurring indices is implied in the foregoing equation and in all what follows.
Since the compatibility condition[

R
(d,d′)
i,j (u)

]α,β
γ,δ

= (−1)p[α]+p[β]+p[γ]+p[δ]
[
R

(d,d′)
i,j (u)

]α,β
γ,δ

is satisfied, the redefinition [
R̃

(d,d′)
i,j (u)

]α,β
γ,δ

= (−1)p[α]p[β]
[
R

(d,d′)
i,j (u)

]α,β
γ,δ

makes disappear the minus-signs in eq. (2.2), resulting in the non-graded YBE.
Explicit expressions of the R matrices are given in the following.

R(3,3)(u) =
1

u+ 1

(
u+ (−1)p[a]p[b]eba ⊗ eab

)
(2.3)

R(3,4)(u) =
1

u+ α
2 + 1

(
u+

α

2
+ 1 + (−1)p[a]p[b]eba ⊗ Eab

)
(2.4)

R(4,4)(u) = −
(

1 +
2α
u− α

P̌1 −
2α+ 2
u+ α+ 1

P̌3

)
. (2.5)

eba (Eba) are the nine three- (four-) dimensional generators of gl(2|1), obeying

[eab , e
c
d]± := eab e

c
d − (−1)(p[a]+p[b])(p[c]+p[d])ecd e

a
b

= δad e
c
b − (−1)(p[a]+p[b])(p[c]+p[d])δcb e

a
d , (2.6)

and the same for the Eab . In the four-dimensional case, the generators depend on the extra free
parameter α, which also enters the definition of R(4,4). The latter involves the projectors P̌1, P̌3.1 For
a matrix representation of eab , choose the basis

|1〉 = (1, 0, 0) , |2〉 = (0, 1, 0) , |3〉 = (0, 0, 1) .

Then eab := |b〉〈a| provides the common matrix representation of projectors in three dimensional space.
As to the Eab , we choose a basis in V (4),

|1〉 = (1, 0, 0, 0) , |2〉 = (0, 1, 0, 0) , |3〉 = (0, 0, 1, 0) , |4〉 = (0, 0, 0, 1) .

Then one verifies that the set

E1
1 = −|3〉〈3| − |4〉〈4|, E2

2 = −|2〉〈2| − |4〉〈4|,
E3

3 = α|1〉〈1|+ (α+ 1)(|2〉〈2|+ |3〉〈3|) + (α+ 2)|4〉〈4|,
E2

1 = |2〉〈3|, E1
2 = |3〉〈2|,

E3
2 =

√
α|1〉〈2|+

√
α+ 1|3〉〈4|, E2

3 =
√
α|2〉〈1|+

√
α+ 1|4〉〈3|,

E3
1 = −

√
α|1〉〈3|+

√
α+ 1|2〉〈4|, E1

3 = −
√
α|3〉〈1|+

√
α+ 1|4〉〈2| ,

1As mentioned above, the R(d,d′)-matrices act in V (d) ⊗ V (d′). Generally, V (d) ⊗ V (d′) =
∑⊕
k V

(dk)
k , where the direct

sum is over K modules of dk-dimensional irreps of the underlying symmetry algebra, in this case gl(2|1), [78]. The R

matrices reflect this structure by their spectral decomposition, as shown by Jimbo [44], R(d,d′)(u) =
∑
k ρk(u)P̌k. The

ρk(u) are polynomials of degree K − 1, and the P̌k are projectors from V (d) ⊗ V (d′) onto V
(dk)
k . For d = 3 = d′ and

d = 3 = d′−1, K = 2, whereas in the case d = 4 = d′, K = 3, explaining the different structure of eq. (2.5) in comparison
with eqs. (2.3), (2.4). These rather qualitative statements are made more profound and quantitative by arguments of
group theory, see [19,25].
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satisfies eq. (2.6). It is well known in the literature [18,14,67,71]. Depending on the sign of α, different
types of unitary representations follow, [38]. In the sequel, the real parameter α is restricted to α > 0.

We quote the expressions for P̌1, P̌3 as they occur in the literature [18,71,77]

P̌1 =
4∑

ν=1

|Ψ1
ν〉〈Ψ1

ν | (2.7)

P̌3 =
4∑

ν=1

|Ψ3
ν〉〈Ψ3

ν | (2.8)

|Ψ1
1〉 = |1〉 ⊗ |1〉, |Ψ1

2〉 =
1√
2

(|2〉 ⊗ |1〉+ |1〉 ⊗ |2〉), |Ψ1
3〉 =

1√
2

(|3〉 ⊗ |1〉+ |1〉 ⊗ |3〉)

|Ψ1
4〉 =

1√
2(2α+ 1)

[√
α+ 1(|4〉 ⊗ |1〉+ |1〉 ⊗ |4〉) +

√
α(|2〉 ⊗ |3〉 − |3〉 ⊗ |2〉)

]
|Ψ3

1〉 =
1√

2(2α+ 1)

[√
α(|4〉 ⊗ |1〉+ |1〉 ⊗ |4〉) +

√
α+ 1(−|2〉 ⊗ |3〉+ |3〉 ⊗ |2〉)

]
|Ψ3

2〉 =
1√
2

(|2〉 ⊗ |4〉+ |4〉 ⊗ |2〉), |Ψ3
3〉 =

1√
2

(|3〉 ⊗ |4〉+ |4〉 ⊗ |3〉), |Ψ3
4〉 = |4〉 ⊗ |4〉

These states are orthonormal, so that

〈Ψj
ν | =

(
|Ψj

ν〉
)†
, ν = 1, 2, 3, 4 ; j = 1, 3

(|a〉 ⊗ |b〉)† = (−1)p[a]p[b](|a〉)† ⊗ (|b〉)† ,
(|a〉)† = 〈a| ; a, b = 1, 2, 3, 4

(|a〉 ⊗ |b〉)(|c〉 ⊗ |d〉)† = (−1)p[c]p[d](|a〉 ⊗ |b〉)(〈c| ⊗ 〈d|)
= (−1)p[c](p[b]+p[d])|a〉〈c| ⊗ |b〉〈d| . (2.9)

In the last identity, the multiplication rule for the tensor product has been used,

(a⊗ b)(c⊗ d) = (−1)p[b]p[c](ac⊗ bd) .

Eq. (2.9) is the prescription how to obtain explicit expressions for P̌1,3 from their definitions. Details
are given in appendix A.3.

Apart from the matrices (2.3)-(2.5), which obey eq. (2.2), a further set of matrices is obtained.[
R

(d′,d)(u)
]α,β
γ,δ

= (−1)p[δ](p[γ]+p[α])
[
R(d,d′)(u)

]β,γ
δ,α

. (2.10)

The permutation of the indices means exchanging creators and annihilators in the quantum space of
R, while simultaneously permuting the spaces. For d = 3 = d′ and d = 3 = d′ − 1, one may exchange
the spaces once more, [

R
(d,d′)(u)

]α,β
γ,δ

=
[
R

(d′,d)(u)
]β,α
δ,γ

, d = 3 , d′ = 3, 4

= (−1)p[γ](p[δ]+p[β])
[
R(d,d′)(u)

]α,δ
γ,β

To get from R to R, annihilator and creators are exchanged in the quantum space of R. These
R-matrices satisfy[

R
(d,d′)(−u)

]β,γ
β′,γ′

[
R

(d′′,d′)(−v)
]α,γ′
α′,γ′′

[
R(d′′,d)(v − u)

]α′,β′
α′′,β′′

(−1)(p[α]+p[α′])p[β′]

=
[
R(d′′,d)(v − u)

]α,β
α′,β′

[
R

(d′′,d′)(−v)
]α′,γ′
α′′,γ′′

[
R

(d,d′)(−u)
]β′,γ′
β′′,γ′′

(−1)(p[α′]+p[α′′])p[β′] . (2.11)
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The R-matrices can be translated into a graphical language. Straight lines denote the 4-dim.
space, wavy lines symbolize three-dimensional space.

u γ

v

δ

α

β

=γ,δ
α,β (u−v)](3,3)[R =

β

u γ

v

δ

αγ,δ
α,β[R  (u−v)](4,4)

=

β

u

v

δ

α γγ,δ
α,β[R(3,4) (u−v)] =

β

u γ

v

δ

αγ,δ
α,β[R  (u−v)](4,3)

The two bonds symbolize the two spaces intertwined by Ri,j . Each bond carries a direction
indicated by an arrow; both the vertical and horizontal bonds carry spectral parameters. The argument
of R is given by the difference between the right and the left ”incoming” parameters. The replacement
R→ R means flipping the arrow on the vertical bond. The arrows on the vertex representing R give
the ”direction” of its action: They point towards the out-coming states.

The YBE eq. (2.2) in graphical language reads:

=

u

v

v

u

2
3   

3

1

1

2

”Other” YBEs are obtained by flipping arrows (that means replacing R → R) and/or substituting
straight by wavy lines (that is, changing the dimension in one of the spaces).

”Unitarity” is a further property of the R-matrices.[
R(d,d′)(u)

]β,γ
δ,α

[
R(d′,d)(−u)

]α,δ
γ′,β′

= δββ′ δ
γ
γ′ , (2.12)

and the same for R. The unitarity property fixes normalizing constants of the R-matrices. In the
following, we will speak of ”normalized” R-matrices when they satisfy eq. (2.12); non-normalized
R-matrices differ from those by constant pre-factors, but still fulfill the YBE. Eq. (2.12) is verified for
d = d′ = 3 (d = d′ = 4) by using the projection properties

eab e
c
d = δad e

c
b

P̌i P̌j = δi,jP̌i . (2.13)
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On the contrary, for d = 3 = d′ − 1 in eq. (2.12), one should employ

Eαβ E
β
δ (−1)p[β](p[α]+p[δ]) = −(α+ 2)(−1)p[α]p[δ]Eαδ .

In order to construct a lattice model, one has to ”localize” the R matrices. It is sufficient to define
[ej ]ab , since all matrix entries are combinations of eab⊗ecd (here eab = |a〉〈b|, a, b = 1, 2, 3, 4 or eab = |a〉〈b|,
a, b = 1, 2, 3; for simplicity of notation, a common symbol is used for both cases). Following [36], define

[ej ]
a
b = I

⊗s(j−1)
d ⊗s eab ⊗s I

⊗s(L−j)
d

= (−1)(p[a]+p[b])
∑L
k=j+1 p[ck]I

⊗(j−1)
d ⊗ eab ⊗ e

cj+1
cj+1 ⊗ · · · ⊗ ecLcL ,

with d = 3, 4. Then

[ej ]
a
b [ej ]

c
d = δad [ej ]

c
b (2.14a)

[ej ]
a
b [ek]

c
d = (−1)(p[a]+p[b])(p[c]+p[d])[ek]cd [ej ]ab (2.14b)

(−1)p[a] [ej ]
a
b [ej+1]ba = (−1)p[a]p[b]eab ⊗ eba . (2.14c)

The direct product on the rhs of eq. (2.14c) is taken between spaces Vj , Vj+1. Eq. (2.14c) serves to
”localize” the R-matrices R(3,3), R(3,4), eqs. (2.3), (2.4). R(4,4), eq. (2.5), is ”localized” by eq. (2.9),
where the direct product acts between spaces Vj , Vj+1.

Principally, one could calculate at this point the Hamiltonian. However, it is more convenient to
”fermionize” the R matrices in order to use the more common language of fermionic field operators
c†τ,j , cτ,j , acting on the spin directions τ =↑, ↓ and on the lattice site j. This is done by employing
the technique of Göhmann [35, 36], which consists in identifying the [ej ]ab with certain combinations
of fermionic operators.

The entries
[
X↓j

]a
b

of the matrix

X↓j =

(
nj↓ c†j↓
cj↓ 1− nj↓

)
,

satisfy projection and commutation properties formally identical to eqs. (2.14a), (2.14b) with grading
p[1] = 0, p[2] = 1. Going one step further, one defines projection operators for both spin species,

Xj = X↓j ⊗s X
↑
j

=


nj↓nj↑ nj↓c

†
j↑ c†j ↓nj↑ c†j↓c

†
j↑

nj↓cj↑ nj↓(1− nj↑) −c†j↓cj↑ −c†j↓(1− nj↑)
cj↓nj↑ cj↓c

†
j↑ (1− nj↓)nj↑ (1− nj↓)c†j↑

−cj↓cj↑ −cj↓(1− nj↑) (1− nj↓)cj↑ (1− nj↓)(1− nj↑)

 . (2.15)

The super-product ⊗s is defined by

[A⊗s B]α,γβ,δ := (−1)(p[α]+p[β])p[γ] [A]αβ [B]γδ . (2.16)

Eqs. (2.14a), (2.14b) are satisfied by the [Xj ]
a
b with grading p[1] = p[4] = 0, p[2] = p[3] = 1, in

accordance with eq. (2.1) for d = 4. This is the only constraint on [ej ]
a
b , so that we identify

[Xj ]
a
b ≡ [ej ]

a
b , (2.17)
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and Fermi operators are given by linear combinations of [Xj ]
a
b . Let us shortly comment on the three-

and four-dimensional generators of gl(2|1). By deleting the jth row and column in the matrix Xj , one
gets four possible fermionizations of [ej ]

a
b = [Xj ]

a
b , the ej being three-dimensional generators of gl(2|1)

with the grading resulting without the jth element of the ordered list {0, 1, 1, 0}. To make contact
with eq. (2.1) for d = 3, let us delete the first row and column. In order to get the corresponding
four-dimensional representation Ej , one makes the ansatz [34]

E3
1 = −a∗X3

1 + b∗X4
2 , E1

3 = −aX1
3 + bX2

4

E1
2 = X2

3 E2
1 = X3

2

E3
2 = a∗X2

1 + b∗X4
3 , E2

3 = aX1
2 + bX3

4

The commutators eq. (2.6) are obeyed under the condition

|b|2 − |a|2 = 1 ,

which is accounted for by the parameterization b =
√
α+ 1, a =

√
α, α ∈ R+.2 The ”diagonal”

generators can also be deduced from the above ansatz and eq. (2.6). Note that the limit α→∞ leads
to a = b. The whole set reads

E3
3 = |b|2 −X1

1 +X4
4 = α+ 2− (n↓ + n↑)

E1
1 = −X3

3 −X4
4 = n↓ − 1 E2

2 = −X2
2 −X4

4 = n↑ − 1
E1

2 = −c†↑c↓ E2
1 = −c†↓c↑

E1
3 = −

√
αn↑c↓ −

√
α+ 1 (1− n↑)c↓ E3

1 = −
√
αn↑c

†
↓ −
√
α+ 1 (1− n↑)c†↓

E2
3 =
√
αn↓c↑ −

√
α+ 1 (1− n↓)c↑ E3

2 =
√
αn↓c

†
↑ −
√
α+ 1 (1− n↓)c†↑

(2.18)

The even sub-algebras are manifest: E3
3 is the u(1)-generator, and E1,2

1,2 are the su(2) generators.

2.1.2 Construction of the lattice model

Having the relevant properties of the R-matrices at hand, one proceeds with the definition of a transfer
matrix, from which the Hamiltonian is calculated as a logarithmic derivative.

The monodromy matrices

T (u) = R
(4,4)
a,L (u)R(4,4)

a,L−1(u) . . . R(4,4)
a,1 (u)R(4,3)

a,0 (u+ iu0) (2.19)

T (u) = R
(4,4)
a,L (u)R(4,4)

a,L−1(u) . . . R(4,4)
a,1 (u)R(4,3)

a,0 (u+ iu0)

consist of sequences of R matrices, multiplied in (horizontal) auxiliary space. Note the shift by iu0 on
the zeroth lattice site, where the dimension of the (vertical) quantum space is reduced by one. This
site shall be denoted as ”impurity site”. The shift is done by iu0 ∈ C, for reasons which will become
clear later. Graphically, T (u) is schematically depicted as

u
−

i
0

01L
2The most general parameterization is b = eiφ1 cosh γ, a = eiφ2 sinh γ. However, the α-parameterization is convenient

to distinguish different orders in the limit α� 1.
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The super-trace is called transfer matrix

τ(u) = straT (u) , τ(u) = straT (u) (2.20)
ln [ττ ] (u) = ln [ττ ] (0) + u

[
τ−1(0)τ ′(u) + τ−1(0)τ ′(u)

]
u=0︸ ︷︷ ︸

=:const. H

+O(u2) . (2.21)

In the last line, the Hamiltonian was defined as logarithmic derivative of the two transfer matrices at
zero spectral parameter. By scaling u, one is free to multiply the Hamiltonian by a constant factor.

Before evaluating eq. (2.21), let us shortly comment on the case R(4,3)
a,0 (u) = 1a,0, ie. the absence

of any impurity; we denote the corresponding quantities with a subscript h. This model has been
extensively studied in [10,18,37]. τh(0) (τh(0)) is the right (left) shift operator, and

ln τh(0) = iP = − ln τh(0) , (2.22)

where P is the generator of translations to the right. Following a nice trick due to [54], the Hamiltonian
is derived graphically:

hj,j+1

τ −1(0)

=

j+1 0jL

h

h
τ (0)

The figure shows the jth term of
[
τ−1
h (0)τ ′h(u)

]
u=0

. For u = 0, the vertices decouple and, by taking
the trace, give rise to the right shift operator τh(0). Upon taking the derivative with respect to u, a
sum of L terms emerges, each one containing R′j,j+1 for some j, j = 1, . . . , L. They are supplemented
with Rj,j+1(0)Rj,j+1(0) = 1. One of these factors completes τh(0), the other ”twists” R′j,j+1. The dot
in the figure symbolizes the derivative of Rj,j+1 with respect to u. Thus

Hh =
L∑
j=1

hj,j+1 (2.23)

hj,j+1 = (α+ 1)D
d

du
ln
[
R(4,4)(u)

]
j,j+1

In eq. (2.23), periodic boundary conditions L+ 1 ≡ 1 are assumed. Hh is scaled by D(α+ 1), D is a
bandwidth parameter whose significance will become clear later.

In appendix A.2, we find:

hj,j+1 = (α+ 1)D
(

2
α

(P̌1)j,j+1 −
2

α+ 1
(P̌3)j,j+1

)
= −D

∑
τ

(c†j,τcj+1,τ + c†j+1,τcj,τ )e
− η

2
(nj,τ+nj+1,τ )

+U (nj,↑nj,↓ + nj+1,↑nj+1,↓) + tp

(
c†j+1,↑c

†
j+1,↓cj,↑cj,↓ + c†j,↑c

†
j,↓cj+1,↑cj+1,↓

)
+D(nj + nj+1)− 2D , (2.24)

U =
D

α
= tp , e−η =

α+ 1
α

; τ = −τ .
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This expression agrees with [10, 18, 37]. The dispersion relation of the free fermions is |ε(k)| ≤ 4D,
such that the bandwidth is 4D.

In the limit α→∞,

lim
α→∞

hj,j+1 =: h(ff)
j,j+1 = −D

∑
σ

(c†j,σcj+1,σ + c†j+1,σcj,σ) +D (nj + nj+1 − 2) , (2.25)

which is the free-fermion hopping between sites j and j+1, including a shifted chemical potential and
a shifted zero energy point. On the other hand one can show by a canonical transformation [10] that

lim
α→0

hj,j+1 = htJj,j+1

leads to the t− J-model. In this work, we are interested in the weak coupling limit α� 1.
Due to R(4,3)

a,0 , Hh receives an impurity contribution HI . It can be derived graphically. First observe
that eq. (2.22) does no longer hold; but because of unitarity (2.12), one still has

τ(0) = τ−1(0) .

The graphical translation of τ(0) is:

u
−

i
0

1 L0

The changes induced by the impurity in comparison with the free host stemming from ln τ ′(0) are
depicted as:

u
−

i
0

01

u
−

i
0

0 L1

A vertex with a dot symbolizes the derivative with respect to the spectral parameter. The first term,

∼ R(3,4)
1,0 (−iu0)

[
R

(4,3)
1,0

]′
(iu0) = R

−1 (4,3)
1,0 (iu0)

[
R

(4,3)
1,0

]′
(iu0) ,

couples the impurity to the left neighboring site. The second term,

∼ R(3,4)
1,0 (−iu0)

h0L,1

D(α+ 1)
R

(4,3)
1,0 (iu0) = R

−1 (4,3)
1,0 (iu0)

[
R

(4,4)
1,L

]′
(0)R(4,3)

1,0 (iu0) ,

is a three site coupling. Analogous terms, with L and 1 interchanged, are provided by ln τ ′(0). The
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inverse matrix R−1 (4,3) is found by eq. (2.12). Thus the impurity contribution reads:

HI =
D(α+ 1)

2

[
R
−1 (4,3)
1,0 (iu0)

[
R

(4,3)
1,0

]′
(iu0) +R

−1 (4,3)
1,0 (iu0)

hL,1
D(α+ 1)

R
(4,3)
1,0 (iu0)

−
hL,1

D(α+ 1)
+ (L↔ 1)

]
(2.26)

=
D(α+ 1)

2
(
u2

0 + (α/2 + 1)2
)(−1)p[a][e0]ab

[
[E1]ba + (α/2 + 1)

(
h1,L

D(α+ 1)
[E1]ba + [E1]ba

h1,L

D(α+ 1)

)

− iu0

[
[E1]ba ,

h1,L

D(α+ 1)

]
+ (−1)p[g](p[a]+p[b])+p[a]p[b][E1]bg

h1,L

D(α+ 1)
[E1]ga + (1↔ L)

]
(2.27)

Note that in eq. (2.26), the host-contribution between sites L and 1 is subtracted; however, it is
contained in the rest. In analogy to the host Hamiltonian, the spectral parameter u has been scaled
by D(α + 1), where D is a bandwidth parameter. Since HI is derived from τ(u) and τ(u), a factor
1/2 has to be included.

Eq. (2.27) is conveniently evaluated upon fermionizing the E1,L, e0. The fermionization of [e0]ab is
done with the matrix Y , resulting from X, eq. (2.15) by deleting the first row and column,

Y =

 nd,↓(1− nd,↑) −d†↓d↑ −d†↓(1− nd,↑)
d↓d
†
↑ (1− nd,↓)nd,↑ (1− nd,↓)d†↑

−d↓(1− nd,↑) (1− nd,↓)d↑ (1− nd,↓)(1− nd,↑)

 . (2.28)

Horizontal and vertical lines separate fermionic and bosonic sectors. The boxes on the diagonal of Y
contain the generators of su(2), u(1). Set eba = Y b

a , such that eqs. (2.14a), (2.14b) hold with grading
{1, 1, 0}. As to the algebraic relations eq. (2.14a), (2.14b), that grading is equivalent to {0, 0, 1}, given
by eq. (2.1).

The two matrices X, Y give the impurity Hamiltonian in the conventional, fermionized form. It
contains the free fermion hopping in the host, host-host correlations and a host-impurity coupling.
This coupling contains essentially two terms: A hybridization (i.e. particle hopping onto or off the
impurity), due to E3

1,2e
1,2
3 +h.c., and a spin exchange, going back to E2

1e
1
2+h.c. . These are the

”leading” contributions in terms of powers of α. They are discussed in the ongoing.
Before, add external fields µ, h, by

Hex =
h

2

 L∑
j=1

(nj,↑ − nj,↓) + (nd,↑ − nd,↓)

− µ
 L∑
j=1

nj +
∑
τ

nd,τ (1− nd,τ )

 . (2.29)

Eqs. (2.23), (2.26), (2.29) define the whole Hamiltonian of the impurity model. In appendix A.2.1, it
is shown that Hh +HI displays gl(2|1) symmetry. Hex breaks this symmetry.

Instead of being interested in the explicit form of the entire Hamiltonian, we want to simplify the
problem along the following lines:

i) α can be viewed as a coupling-parameter which tunes the correlations in the host and the
host-impurity coupling. Our strategy is an asymptotical development for α → ∞, both of the
Hamiltonian and of the resulting equations for the free energy. This means that we give all
physical quantities f depending parametrically on α as

f(α) = g(α) + o
(
1/α1+2ε

)
⇔ lim

α→∞
α1+2ε [f(α)− g(α)] = 0 . (2.30)
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ε ≥ 0 is restricted later. Instead of eq. (2.30) the notation [f(α)− g(α)] ∼ 1/α1+2ε is common.
Especially, eq. (2.30) permits to neglect contributions O

(
D/α3/2

)
. In this limit of weak coupling

one distinguishes orders O(D) (free fermion hopping), O
(
Dα3/2/(u2

0 + α2)
)

(hybridization),
O(D/α) (electron-electron-interaction in the host) and O(Dα/(u2

0 + α2) (spin-spin-interaction
between the impurity and the host),

D > D
α3/2

u2
0 + α2

>
D

α
≥ D α

u2
0 + α2

> D
α1/2

u2
0 + α2

>
D

α2
. (2.31)

The bandwidth D is absorbed by introducing electronic density operators of the host (rather than
particle operators, see item iv)). The last two orders in eq. (2.31) are next-leading contributions
of the impurity and the host, respectively. They are neglected. The relation between the third
and fourth term in eq. (2.31) is not given uniquely, it depends on u0: One expects u0 ∼ α1+ε,
with 1/4 > ε ≥ 0. If ε < 0, u0 would be dominated by α and its introduction is meaningless.
For ε = 0, host-host-correlations are exactly of the same order as spin-spin-interaction on the
impurity site. In any case, from eq. (2.30) it ensues that the leading order of spin-exchange
between host and impurity is retained. So it is sufficient to include only the leading terms of the
E1,L, eqs. (2.18). The resulting Hamiltonian will be given explicitly below.

ii) The non-occupied sector of the impurity has a weight ∼ 4Dα−2ε. This gives the one particle-
energy of the impurity ∼ 4D − µ. The host’s one-particle energy is ∼ 2D(cos k + 1) − µ.
Consequently, 0 < µ < 4D, µ ∼ D, is restricted such that the band is neither completely empty
nor completely filled. On the other hand, zero occupation of the impurity is not suppressed (as
would be the case for µ > 4D). However, one finds a canonical transformation which eliminates
hybridization, i.e. the operators which cause transitions between single and zero occupation.
Therefore, the Hamiltonian is written in Fourier space. The canonical transformation induces
correction terms to the original Hamiltonian of order O

(
1/α1+4ε

)
. ε = 0 yields a renormalized

spin exchange coupling, ε > 0 implies that these terms can be neglected. Furthermore, the
fifth order in eq. (2.31) is also given by particle-hopping between the impurity and the host.
Principally, it may equally be eliminated by a suitable transformation (not given explicitly),
which would yield corrections O

(
1/α3+4ε

)
. Thus 0 ≤ ε < 1/2 is the permitted range of ε.

Excitations (i.e. spin-flipping) of the impurity solely arise for single occupation (otherwise, the
impurity contribution is constant). Our aim is to separate this excitation spectrum ofO(1/α1+2ε)
from the zero occupation constant ∼ D.

iii) From the exact solution presented in the next section it follows that D is arbitrarily large: It is
much larger than the spin exchange coupling and T � D always is implicit. This prescription
is meaningful only for a linearized host spectrum.

iv) The linear dispersion approximation involves arbitrary wavelengths in Fourier space. It thus
goes in hand with the continuum limit, which blurs the microscopic details of the impurity-host
interaction and yields a point-like spin exchange. The continuum limit gives a meaning to the a
priori arbitrary scale D. It is found that D ∼ 1/a0, where a0 is the lattice constant.

v) u0, D, α are auxiliary parameters to construct the lattice model; in the equations for physical
quantities (here thermodynamic equilibrium functions), it is possible to combine them to a scale-
invariant constant. This constant is found from the exact solution. It cannot be derived from
the Hamiltonian, but only in the equation for the free energy.

Actually, the discovery of the constant mentioned in item v) motivates steps i)-iv). In the rest of this
section, items i)-iv) are carried out successively. Item v) is elucidated in the next section.
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Let us calculate the different terms in eq. (2.27), consequently neglecting terms of higher order
than D · O(1/α1+2ε), in the sense of eq. (2.30). For the ease of notation, use the shorthand

h
(ff)
1,L =: Dĥ (2.32)

The following relations are helpful to evaluate eq. (2.27):

ĥc1,↑ = −c†1,↓cL,↓c1,↑ − c†L,↓c1,↓c1,↑ − c†1,↑cL,↑c1,↑ − 2c1,↑ + nLc1,↑ + n1,↓c1,↑

c1↑ĥ = ĥc1,↑ − cL,↑ + c1,↑

ĥc†1,↓c1,↑ = −c†L,↓c1,↓c
†
1,↓c1,↑ − c†1,↑cL,↑c

†
1,↓c1,↑ − c†1,↓c1,↑ + nLc

†
1,↓c1↑

c†1,↓c1,↑ĥ = ĥc†1,↓c1,↑ + c†L,↓c1,↑ − c†1,↓cL,↑
c1,↑ĥc

†
1,↓ = −ĥc†1,↓c1,↑ − c†1,↓c1,↑

ĥn↑,1 = −c†1,↓cL,↓c
†
1,↑c1,↑ − c†L,↓c1,↓c

†
1,↑c1,↑ − c†L,↑c↑,1 − n↑,1 + nLn↑,1 + n↑,1n↓,1

n↑,1ĥ = ĥn↑,1 + c†L,↑c↑,1 − c
†
↑,1cL,↑

c↑,1ĥc
†
↑,1 = −ĥn1,↑ + ĥ+ c†1,↑cL,↑ − n↑,1 + 1

c†1,↑ĥc1,↑ = n1,↑ĥ− n1,↑ + c†1,↑cL,↑ .

First note that the commutator
[
[E1]ba , ĥ1,L

]
+ (1↔ L) in eq. (2.27) vanishes. Set

u0 := v0/2 , v0 ∈ R . (2.33)

It is convenient to define a coupling constant

Jα =
2α

v2
0 + α2

> 0 . (2.34)

The leading order in HI is given by the coefficient of [e0]33, since it involves

E3
3 = α+ 2− n .

Then the coefficient of [e0]33 is given by

−DJα
(
α+ 2− n1 + (α+ 2)ĥ− 1

2

(
ĥn1 + n1ĥ

)
− [E1]33

ĥ

α+ 1
[E1]33 − [E1]32

ĥ

α+ 1
[E1]23 − [E1]31

ĥ

α+ 1
[E1]13 + (1↔ L)

)

= −DJα
(
α+ 2− n1 − 2ĥ+

1
2

(
ĥn1 + nLĥ

)
− c†↑,Lĥc↑,L − c

†
↓,Lĥc↓,L + (1↔ L)

)
= −DJα2

(
α+ 2− 2ĥ− c†1,↑cL,↑ − c

†
1,↓cL,↓ − c

†
L,↑c1,↑ − c†L,↓c1,↓

)
=: −DJα2 (α+ F1,L) .

In the last equation, all terms O(1) in the bracket on the rhs have been summarized in an operator
F1,L.
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Consider the coefficient of [e0]11 = nd,↓(1− nd,↑) in eq. (2.27).

DJα

(
[E1]11 +

1
2

(
ĥ [E1]11 + [E1]11 ĥ

)
+ [E1]13

ĥ

α+ 1
[E1]31 + (1↔ L)

)
= DJα

(
c†↓,1c↓,L + c†↓,Lc↓,1

)
.

The term with [e0]22 is obtained from the preceding one by the spin-flip operation.
Concentrating on the off-diagonal elements, one finds for the contribution of [e0]31 = −d†d,↓ (1− nd,↑):

DJα
√
α

[
[E1]13 +

1
2

(
ĥ [E1]13 + [E1]13 ĥ

)
− [E1]13

ĥ

α+ 1
[E1]33 + (1↔ L)

]
= −DJα

√
α (c1,↓ + cL,↓) .

The analogous expression for [e0]32 = −d†d,↑ (1− nd,↓) follows from spin-flipping.

Finally, consider the coefficient of [e0]21 = −d†↓d↑.

DJα

[
[E1]12 +

1
2

(
ĥ [E1]12 + [E1]12 ĥ

)
+ [E1]13

ĥ

α+ 1
[E1]32 + (1↔ L)

]
= −DJα

(
c†1,↓cL,↑ + c†L,↓c1,↑

)
.

All remaining terms are obtained by hermitian conjugating the off-diagonal elements.
The entire impurity contribution reads explicitly up to the relevant order:

HI = −µ
∑
τ

nd,τ (1− nd,τ̄ ) +
h

2
(nd,↑ − nd,↓)− 2DJα(1− nd + nd,↑nd↓) (α+ F1,L)

−DJα
√
α
∑
τ

[
d†τ (1− nd,τ̄ )(cL,τ + c1,τ )− dτ (1− nd,τ̄ )(c†L,τ + c†1,τ )

]
+DJα

∑
τ

nd,τ (1− nd,τ̄ )
(
c†L,τc1,τ + c†1,τcL,τ

)
+DJα

∑
τ

d†τdτ̄

(
c†L,τ̄c1,τ + c†1,τ̄cL,τ

)
+O

(
D/α3/2

)
. (2.35)

Spin exchange occurs only across the impurity, upon hopping L ↔ 1. For completeness, the host
Hamiltonian is given neglecting orders O(D/α3/2).

Hh/D = 2
L∑
j=1

nj − 2−
L∑
j=1

∑
τ

(
c†j,τcj+1,τ + c†j+1,τcj,τ

)[
1 +

1
2α

(nj,τ̄ + nj+1,τ̄ )
]

+
2
α

L∑
j=1

nj,↑nj,↓ +
1
α

L∑
j=1

(
c†j+1,↑c

†
j+1,↓cj,↑cj,↓ + c†j,↑c

†
j,↓cj+1,↑cj+1,↓

)
+O

(
D/α3/2

)
. (2.36)

The whole Hamiltonian

H = Hh +HI +Hex (2.37)

describes a correlated host interacting with an impurity spin via anti-ferromagnetic spin exchange
and hybridization with the host. In the host, particle hopping O(D) dominates the electron-electron
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L 1

0

D

J

Figure 2.1: The host interacting with the impurity. The impurity site 0 is not included in the hopping
of the host. D and J are the hopping amplitude and coupling strength, respectively.

interaction O(D/α) by a factor of α; the latter will be seen to be absorbed in a rescaled one-particle
spectrum. On the impurity site, there is one O(D) contribution ∝ (1 − nd + nd,↑nd,↓). Next-leading
terms cause the host-impurity-coupling. The model eq. (2.37) is already of interest on its own. It is
the sum of the Fano-Anderson model

HF = H
(ff)
h +

∑
k,τ

Vk(d†τck,τ + c†k,τdτ ) (2.38)

with a spin exchange term (in eq. (2.38) host operators are Fourier transformed). We will show that
by suppressing charge fluctuations on the impurity site, the Kondo model results.

The operators acting on the impurity site have been fermionized using the matrix eq. (2.28). These
operators are annihilated by the doubly occupied state. That is, double occupation on the impurity
site is excluded from the beginning.

By a canonical transformation, transitions between the singly and not occupied sectors can be
eliminated. This transformation is very similar to the Schrieffer-Wolf transformation [81] connecting
the Anderson model HA (that is Fano-Anderson model with on-site Coulomb repulsion U on the
impurity site) to the Kondo model,

HA = H
(ff)
h + εdnd +

∑
k,τ

Vk(d†τck,τ + c†k,τdτ )− Und,↑nd,↓ , U > 0 . (2.39)

The essential lesson to be learned is that in the limit U � |Vk|, a localized magnetic moment occurs
on the impurity site. Since in our approach, double occupation of the impurity site is excluded from
the beginning, it is quite natural to discover a ”bare” spin exchange between host and impurity; the
canonical transformation is expected to ”dress” the value of the coupling constant.

The transformation which eliminates zero occupation is conveniently done in Fourier space; the
chemical potential terms are included in Hh, HI and h = 0 is set for the moment. The discrete Fourier
variable k takes L discrete values

k = −π + n
2π
L
, n = 1, . . . , L . (2.40)
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The Fourier representation of the Hamiltonian is found to be:

c†j,τ =
1√
L

π∑
k=−π

c†k,τ eikj

Hh = D

{∑
k

∑
τ

εkc
†
k,τck,τ − 2

+
2
Lα

∑
Q,q,q′

[∑
τ

cos
Q

2
cos
(
q +

Q

2

)
c†q+Q,τcq,τ c

†
q′−Q,τ̄cq′,τ̄

+ c†q,↑cq+Q,↑c
†
q′−Q,↓cq′,↓ − cos(q + q′)c†q+Q,↑cq,↑c

†
q′−Q,↓cq′,↓

]}
(2.41)

Dεk = 2D(cos k + 1)− µ (2.42)

HI = −2DJα(1− nd,↓)(1− nd,↑)(α+ F1,L)− µ
∑
τ

nd,τ (1− nd,τ̄ )

+Jαα1/2 D√
L

∑
k,τ

√
l(Mkd

†
τck,τ +M∗k c

†
k,τdτ )(1− nd,τ̄ )

+Jα
D

L

∑
τ,k,k′

lNk,k′

[
nd,τ (1− nd,τ̄ )c†k,τck′,τ + d†τdτ̄c

†
k,τ̄ck′,τ

]
(2.43)

Mk = − 1√
l

(
1 + eik

)
Nk,k′ =

1
l

(
e−ik′ + eik

)
.

The k-dependence of the coupling parameters M,N results from periodic boundary conditions:

c†Lc1 + c†1cL =
1
L

∑
k,k′

(
e−ik′ + eik

)
c†kck′ . (2.44)

Without the impurity, there are L lattice sites, separated by unit spacing 1. The impurity alters the
corresponding k values, eq. (2.40), but in the limit L → ∞, this change is negligible. Furthermore,
one more lattice site (the impurity) is introduced, without being included in the hopping of the host,
fig. 2.1.

The periodic boundary condition L+ 1 ≡ 1 is kept. The leading term in eq. (2.43) is

H
(0)
I = −µ

∑
τ

nd,τ (1− nd,τ̄ )− 2Jαα(1− nd,↓)(1− nd,↑) . (2.45)

This Hamiltonian does not couple the impurity to the host, only a free spin rests. The challenge in
the thermodynamic description is to separate the impurity’s contribution from the bulk and to keep
the spin-flip terms, while at the same time realizing a free host.

In view of the continuum limit which is done later, one introduces the lattice spacing a0, so that
l = L · a0=const. Let D = 1/a0, so that the chemical potential scales as D, µ ∼ D.

Denote the hybridization term in eq. (2.43) by H(1).

H(1) := Jα
√
αD

∑
k,τ

(Mkd
†
τck,τ +M∗k c

†
k,τdτ ) . (2.46)

The rest H −H(1) =: H(0). The canonical transformation consists in finding an operator A such that[
H(0), A

]
= H(1) . (2.47)
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Then the transformed Hamiltonian H̄ = eAHe−A does not contain linear terms in A:

H̄ = eAHe−A = H(0) +
1
2

[
A,H(1)

]
+

1
3

[
A,
[
A,H(1)

]]
+

1
8

[
A,
[
A,
[
A,H(1)

]]]
. . . (2.48)

Before writing A explicitly, consider orders of magnitude.

H(0) ∼ D

(
εk + εd +

1
α

)
, Dεd = −µ+ 2αJαD

H(1) ∼ Jα
√
αD

⇒ A ∼ Jα

√
α

D

1
εk − εd + 1/α

⇒ [A,H(1)] ∼ J2
αα

(εk − εd)
(2.49)

Use has been made of eq. (2.47). Eq. (2.49) constitutes the first correction to H(0). It depends
crucially on the relation between v0 and α. At this stage, this relation is undetermined; one expects
v0 ∼ α1+ε. For ε > 0, eq. (2.49) is O

(
1/α1+4ε

)
and negligible, if only terms O

(
1/α1+2ε

)
are retained

in the Hamiltonian. For ε = 0, eq. (2.49) is of the same order as the ”bare” spin exchange. ε
undetermined here, we proceed with the evaluation of the canonical transformation.

Higher orders in eq. (2.49) are not accounted for in the definition of A, since they give corrections
O(J2

α) = O(1/α2+4ε) to H(0). Thus the definition (2.47) can be simplified further,[
H

(ff)
h +H

(0)
I , A

]
= H(1) . (2.50)

This defining property of A does neither involve correlations in the host nor the spin exchange inter-
action. Furthermore, it suffices to include the first correction to H(0) in eq. (2.48),

H̄ = eAHe−A ≈ H(0) +
1
2

[
A,H(1)

]
︸ ︷︷ ︸

=:H(2)

. (2.51)

The problem of finding A from eq. (2.50) has been solved by Schrieffer and Wolf, [81], in the
Anderson model eq. (2.39). In our case, A has a similar form to that given in [81]:

A = Jα

√
α

D

∑
k,τ

1
εd − εk

(Mkd
†
τck,τ −M∗k c

†
k,τdτ )(1− nd,τ̄ ) .

This is the operator we are looking for, because∑
k,τ

D εkc
†
k,τck,τ , A

 = Jα
√
Dα

∑
k,τ

−εk
εd − εk

(1− nd,τ̄ )
(
Mkd

†
τck,τ +M∗k c

†
k,τdτ

)
[∑

τ

Dεdnd,τ , A

]
= Jα

√
Dα

∑
k,τ

εd
εd − εk

(1− nd,τ̄ )
(
Mkd

†
τck,τ +M∗k c

†
k,τdτ

)
[nd,↑nd,↓, A] = 0 .

The sum gives H(1).
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The resultant Hamiltonian is H = H(0) +H(2), H(2) being defined in eq. (2.51). The commutator[
(1− nd,τ̄ )d†τck,τ − c

†
k,τ (1− nd,τ̄ )dτ , (1− nd,τ̄ ′)d†τ ′ck′,τ + c†k′,τ ′(1− nd,τ̄ ′)dτ ′

]
= 2δk,k′δτ,τ ′(1− nd,τ̄ )nd,τ − (1− nd,τ̄ )δτ,τ ′

(
c†k′,τck,τ + c†k,τck′,τ ′

)
−(1− δτ,τ ′)d†τdτ̄

(
c†k′,τck,τ̄ + c†k,τ̄ck′,τ ′

)
.

Thus three contributions are identified (note the factor 1/2 in eq. (2.51)):

H(2) = Hd +Hfm +Hpot (2.52a)

Hd = J2
ααε

(2)
d

∑
τ

(1− nd,τ̄ )nd,τ , ε
(2)
d :=

∑
k

|Mk|2

εd − εk
(2.52b)

Hsp = −J
2
αα

2

∑
τ,k,k′

d†τdτ̄Jk,k′c
†
k′,τ̄ck,τ (2.52c)

Hpot = −J
2
αα

2

∑
k,k′,τ

Jk,k′(1− nd,τ̄ )c†k′,τck,τ (2.52d)

Jk,k′ =
MkM

∗
k′

εd − εk
+
M∗kMk′

εd − εk′
.

H(2) ∼ J2
αα, as expected. Estimate ε(2)

d :

ε
(2)
d = (v2

0 + α2)
∑
k

2 cos k + 2
4α2 − (v2

0 + α2)(2 cos k + 2)
(2.53)

Consider the case ε = 0 and assume

v2
0 ∼ α2(1− δ) . α2 , 0 < δ < 1 . (2.54)

Then one continues by writing eq. (2.53) as an integral over the energy (ε(k) = 2 cos k + 2):

ε
(2)
d = −L

π
(2− δ)

∫ 2

−2

ε

4− (2− δ)ε
1√

1− ε2/4
dε

= L
1

4− δ

(
1− 2√

δ(4− δ)

)
< 0 (2.55)

The integral can be done since v0 is restricted by eq. (2.54). It is negative and finite. The pre-factor
L in eq. (2.55) is absorbed in the continuum limit, see below.

Hd shifts εd by ε(2)
d . It can be absorbed by a redefinition of µ, which is small: µ itself is O(D), and

D may be arbitrarily large, so Hd will not be mentioned in the following. Hpot introduces a potential
scattering of host particles only. It is of the same order as correlations in the host. In the next section
we will see that these correlations can be summarized in order O(1/α) into a redefinition of the Fermi
velocity, a one-particle quantity. So neither Hpot is written down in the ongoing. Finally, eq. (2.52c)
constitutes an anti-ferromagnetic spin exchange term, according to the sign of ε(2)

d . It enhances the
coupling which is present from the beginning. The renormalized spin exchange constant differs from
the bare exchange constant merely by a pre-factor.
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Note that if v0 ∼ α1+ε, the sum in eq. (2.53) would become a sum over unity. However, the
pre-factor J2

αα ∼ 1/α1+4ε of the corrections eq. (2.52) is subleading in the sense of eq. (2.30).
In the following, the coupling - either Jα multiplied by some number if ε = 0 or Jα itself if ε > 0 -

is denoted by J .
Once the transformation has been carried out, the impurity operator does not contain any hy-

bridization in the relevant order between the singly and not occupied impurity site. Single occupation
on the impurity site gets a weight comparable to zero occupation by scaling µ ∼ D without filling the
conduction band completely, 0 < µ < 4D. Thus zero occupation cannot be eliminated, but there are
no transitions between zero and single occupation on the impurity site.

In the ongoing, only the subspace with 〈nd〉 = 1 is considered, since the subspace with 〈nd〉 = 0
only yields an additive constant contribution.

Spin exchange between host and impurity is O(J)� D. This interaction is important for electrons
with energy near the Fermi edge, k = kF +∆k. It is most important if the Fermi sea is well populated,

T, h� D . (2.56)

The linearization of the conduction band is worked out in the following, continuing with eq. (2.42).
The Fermi point kF = π

2N/L is taken away from half-filling, zero and complete band occupation
(in the two latter cases a linearization would be meaningless). In the ground state, linearizing the
dispersion ε(k) = 2 cos k,

〈c†k,τck,τ 〉0 = θ(−νkν − kF ) , ν = ± . (2.57)

〈· · · 〉0 is the expectation in the ground state. The handedness ν is plus (minus) for particles moving
to the right (left). Note that ν and k are independent variables in the summations, and Q may take
values Q = 0,±2kF . To avoid divergences due to the unbounded linear spectrum, operator products
are normal ordered:

:c†k,ν,τ ck,ν′,τ ′ : = c†k,ν,τ ck,ν′,τ ′ − 〈c
†
k,ν,τ ck,ν′,τ ′〉0 .

Furthermore, let f(q), g(q′) be operator-valued functions of the c†, c. Then∑
q,q′

f(q)g(q′) =
∑
q,q′

f(±kF )g(±kF ) +O
(
(q − kF )2

)
.

The linear terms in (q−kF ), (q′−kF ) cancel since the q, q′-summations are independent. The quadratic
order is neglected.

Apart from the chemical potential term, eqs. (2.41), (2.43) are written as

Hh/(2D) =
∑
ν,k,τ

(cos kF + 1 + νk sin kF ):c†k,ν,τ ck,ν,τ :

+
1
Lα

∑
q,q′,ν

[∑
τ

cos kF
(

:nq,ν,τnq′,ν,τ̄ : + :nq,ν,τnq′,ν̄,τ̄ : + :c†q,ν̄,τcq,ν,τ c
†
q′,ν,τ̄cq′,ν̄,τ̄ :

)
+:nq,ν,↑nq′,ν,↓: + :nq,ν,↑nq′,ν̄,↓: + :c†q,ν̄,↑cq,ν,↑c

†
q′,ν̄,↓cq′,ν,↓: + :c†q,ν̄,↑cq,ν,↑c

†
q′,ν,↓cq′,ν̄,↓:

− cos 2kF (:nq,ν,↑nq′,ν,↓: + :c†q,ν̄,↑cq,ν,↑c
†
q′,ν̄,↓cq′,ν,↓:)− :nq,ν,↑nq′,ν̄,↓:

−:c†q,ν̄,↑cq,ν,↑c
†
q′,ν,↓cq′,ν̄,↓:

]
(2.58a)

HI =
J

l

∑
q,q′,ν,τ

2 cos kF
[(

:c†k,ν,τ ck′,ν,τ̄ : + :c†k,ν,τ ck′,ν̄,τ̄ :
)
d†τ̄dτ

+
(

:c†k,ν,τ ck′,ν,τ : + :c†k,ν,τ ck′,ν̄,τ :
)
nd,τ (1− nd,τ̄ )

]
. (2.58b)
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ν̄ = −ν and τ̄ = −τ . Terms of the form i
∑

q,q′,ν,τ,τ ′ ν sin kF
(
c†k,ν,τ ck′,ν,τ ′ + c†k,ν,τ ck′,ν,τ ′

)
are omitted;

these are current-like contributions which are negligible in the linear-dispersion-limit considered here.
The potential scattering eq. (2.52d) can be treated in a similar manner; this is not done explicitly
since it does not give more insight.

Generally speaking, the interaction terms are of forward and backward scattering type. Umklapp
scattering is not allowed since kF is chosen away from half filling. The Hubbard- and correlated
pair hopping contributions in Hh cancel except for two-particle excitations at the same Fermi point.
The bond-charge interaction completely remains. Nevertheless, the Hamiltonian eq. (2.58a) is suited
to correctly model the bulk of the ”ordinary” Kondo model, with free fermions. Since D � 1, the
leading bulk behaviour at β � 1 is that of a Fermi liquid. The impurity is influenced by the bulk-bulk
interaction indirectly, with an effective coupling ∼ 1/α2. Such terms will vanish in the scaling limit,
carried out later.3 Furthermore, 1/α-correlations in the host can be cast into a renormalized Fermi
velocity, which is demonstrated in the next section. Right- and left-moving electrons couple with equal
amplitudes to the impurity, both backward and forward scattering appear in the same fashion. In an
analogous manner, H(2) can be approximated.

By carrying out the linear dispersion limit, formally infinitely many more k-states are involved
than originally allowed (the restriction eq. (2.56) rejects most of them afterwards). They probe the
lattice in direct space at arbitrary wavelengths. However, the system’s properties should not depend
on the lattice’s properties. One is thus lead to pass to a continuous description [34]:

c†k,ν,τ =
1√
L

L∑
n=1

eikνnc†n,ν,τ

=
1√
La0

L∑
n=1

ei kν
a0
na0 c

†
n,ν,τ√
a0
a0

=
1√
l

∫ l

0
eiqk,νxψ†ν,τ (x) dx ,

with a0 the lattice constant, l = L · a0 is the (constant) length of the chain, x = n · a0, ψ†ν,τ (x) =

lima0→0
c†n,ν,τ√
a0

, qk = k/a0. ψ†, ψ are now fermionic density (or field) operators. Note that

{
ψν,τ (x), ψ†ν′,τ ′(x

′)
}

= δ(x− x′)δν,ν′δτ,τ ′ .

With these prescriptions, one goes back to eqs. (2.58a), (2.58b), and considers the free fermion
contribution of the host and the impurity-host exchange, as well as the external fields. Again normal
ordering is imposed,

:ψ†ν,τ (x)ψν′,τ ′(x): = lim
ε→0

[
ψ†ν,τ (x+ ε)ψν′,τ ′(x)− 〈ψ†ν,τ (x+ ε)ψν′,τ ′(x)〉0

]
,

where 〈· · · 〉0 is the expectation value in the ground state. Let us summarize the external fields again

3Studies of conformal field theory on a Kondo impurity in a Luttinger liquid [29,30] stress that the stable fixed point
for g = 0 at T = 0 must survive for g 6= 0, otherwise the theory would become non-critical.
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in an operator Hex. Then

Hh/(2D) =
∫ l

0

∑
ν,ν′,τ

[
(cos kF + 1) :nν :− 1ν + iνa0 sin kF :ψ†τ,ν(x)

d
dx
ψτ,ν′(x):

]
dx (2.59a)

HI = 2 cos kFJ
∫ l

0
δ(x)

∑
ν,ν′,τ

[
nd,τ (1− nd,τ̄ ):nν,τ (x): + d†τdτ̄ :ψ†ν,τ̄ (x)ψν′,τ (x):

]
dx (2.59b)

Hex =
∫ l

0
−µ

[
n(x) + δ(x)

∑
τ

nd,τ (1− nd,τ̄ )

]

+
h

2
[δ(x)(nd,↑ − nd,↓) + (n↑(x)− n↓(x))] dx . (2.59c)

nτ,ν = :ψ†τ,νψτ,ν :, nν =
∑

τ nν,τ , nτ =
∑

ν nτ,ν . Since D = 1/a0, the linear dispersion term in the host
is kept.

As far as the terms eqs. (2.59a), (2.59b) are concerned, one may pass to a Weyl basis by the
canonical transformation

φ±,τ (x) =
1√
2

[ψ−,τ (x)± ψ+,τ (−x)]{
φν,τ (x), φ†ν′,τ ′(x

′)
}

= δ(x− x′)δν,ν′δτ,τ ′ .

Interaction terms in the host are non-local in the φ±(x); however, it has been argued that these are
accounted for later by a redefinition of the Fermi velocity vF , sin kF = vF → ṽF = vF (1 + O(1/α)).
The Weyl basis is useful to recognize that the host actually consists of two channels, but the impurity
couples only to the symmetric channel; we give the Hamiltonian density with D = 1/a0:

Hh = 2
∑
τ,ν=±

[
iṽF :φ†ν,τ (x)

d
dx
φν,τ (x): +D(cos kF + 1):nν(x):−D1ν

]
(2.60)

HI = 4J cos kF
∑
τ

δ(x)
[
:φ†+,τ (x)φ+,τ (x):nd,τ (1− nd,τ̄ ) + :φ†+,τ (x)φ+,τ̄ (x):d†τ̄dτ

]
Hex = −µ

[
n(x) + δ(x)

∑
τ

nd,τ (1− nd,τ̄ )

]
+
h

2
[δ(x)(nd,↑ − nd,↓) + n↑(x)− n↓(x)] .

Zero occupation of the impurity site is dropped. The impurity contribution is trivial if n(0) = 0, 2:
The impurity is fixed in one single state, no excitations are possible. If these trivial configurations are
excluded, the operator of unity 10,+ of the impurity site can be expressed solely in terms of occupation
operators, and the exchange operator can be completed to the XXX-exchange operator,

10,+ = (nd,↑(1− nd,↓) + nd,↓(1− nd,↑)):n+(0):

σzI = nd,↑ − nd,↓ , σ+
I = d†↑d↓ , σ

−
I = d†↓d↑

HI = 2Jδ(x)
∑
τ,τ ′

:φ†+,τ (x)στ,τ ′φ+,τ ′(x):σI + 2Jδ(x)10,+ . (2.61)

n+(x) =
∑

τ φ
†
+,τ (x)φ+,τ (x), σ = (σx, σy, σz)T and 2 cos kFJ → J is redefined. The fermionic opera-

tors of the impurity have been expressed in terms of spin operators with index I,

σzI = nd,↑ − nd,↓ , σ+
I = d†↑d↓ , σ

−
I = d†↓d↑ .
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Eqs. (2.60), (2.61) define the isotropic Kondo model. It describes a free host with a linear
dispersion and an interaction between a localized spin and the spin density of the host. Note that
fermionic +, −-operators do not interact among each other and the impurity couples only to one of
both. Therefore, one may conceive the model (2.60), (2.61) as one-half dimensional, with fermionic
operators stemming only from one Fermi point. This is the model which has been solved by coordinate
BA techniques, cf. eq. (4.2.5) in [90]. The parameter u0 = v0/2 is still free in eq. (2.61); as shown
later in the equations for the free energy, it ensures that the ”universal limit” D � 1 can be carried
out, such that D,α, u0 are combined to a constant.

2.1.3 Solution (NLIE)

In this section, the impurity contribution to the free energy of the regularized model is derived in
terms of non-linear integral equations, (NLIE).

Taking account of eq. (2.21),

e−βH
(ff)
h = lim

N→∞
[τ̄0(uN ) τ0(uN )]N/2 , uN = −βD(α+ 1)

N

e−βH = lim
N→∞

[τ̄(uN ) τ(uN )]N/2 e−βHex

e−βHex =
L∏
j=1

e−β[h/2(nj,↑−nj,↓)−µnj ]e−β[h/2(nd,↑−nd,↓)−µ
∑
τ nd,τ (1−nd,τ̄ )] =: e−β

∑L
j=1 hex,je−βHex,I ,

where the factor D(α+1) is contained in uN . The even integer N is referred to as Trotter number and
is the heigth of the fictitious underlying square lattice. The impurity contribution to the free energy
is

fI = − lim
L→∞

lim
N→∞

1
β

{
ln tr

[
[τ̄(uN ) τ(uN )]N/2 e−βHex

]
− ln tr

[
[τ̄h(uN ) τh(uN )]N/2 e−βHex,h

]}
, (2.62)

where Hex,h =
∑L

j=1 hex,j . The crucial idea in calculating eq. (2.62) is to exchange tr and str in the
expression

tr
{

[τ̄(uN ) τ(uN )]N/2 e−βHex
}

= tre−βHex
N/2∏
k=1

stra2ka2k−1

[
R̄

(4,4)
a2kL

(uN ) . . . R̄(4,4)
a2k1(uN )

×R̄(4,3)
a2k0(uN − iu0)R(4,4)

a2k−1L
(uN ) · · ·R(4,4)

a2k−11(uN )R(4,3)
a2k−10(uN + iu0)

]
.

This leads to

str
L∏
j=1

trje−βhex,j
N/2∏
k=1

R̄
(4,4)
a2kj

(uN )R(4,4)
a2k−1j

(uN )

 tr0e−βHex,I
N/2∏
k=1

R̄
(4,3)
a2k0(uN − iu0)R(4,3)

a2k−10(uN + iu0)


=: str

[
τ

(Q)
h (0)

]L
τ

(Q)
I (iu0)

τ
(Q)
h (v) := trj e−βhex,j

N/2∏
k=1

R̄
(4,4)
a2kj

(uN − v)R(4,4)
a2k−1j

(uN + v) =: trjT
(Q)
h (v) (2.63)

τ
(Q)
I (v) := tr0 e−βHex,I

N/2∏
k=1

R̄
(3,4)
0,a2k

(uN − v)R(3,4)
0,a2k−1j

(uN + v) =: tr0T
(Q)
I (v) .(2.64)
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Figure 2.2: Classical lattice representing the free energy of the impurity model. L is the physical, N
the Trotter direction. The dimension in the impurity quantum space (wavy line) is reduced by one.
Crosses stand for twisted boundary conditions, induced by external fields h and µ.

Eqs. (2.63), (2.64) define the Quantum Transfer Matrix (QTM) τ (Q)
h of the host and the QTM τ

(Q)
I of

the impurity, respectively. Note that the host matrix is independent of the lattice site j. Each QTM
is the trace over the auxiliary space of a Quantrum Monodromy Matrix T (Q) (QMM). The auxiliary
space of τ (Q)

h is four-dimensional, of τ (Q)
I three-dimensional. Fig. 2.2 depicts this ”rotation” from

auxiliary space into quantum space. Due to eqs. (2.2), (2.11),[
τ (Q)
ν (v), τ (Q)

ν′ (v′)
]

= 0 , (2.65)

where the symbolical indices ν, ν ′ may take values h, I. The auxiliary spectral parameter is essential
for the diagonalization of τ (Q), the uN are inhomogeneities with alternating signs. Especially, eq.
(2.65) holds for ν 6= ν ′: The impurity and host QTM’s share the same set of eigenvectors. The largest
eigenvalue of τ (Q)

ν is separated by a gap from the rest of the spectrum for any N . The eigenstate
|Φ(Q)

max〉 leading to the largest eigenvalue Λmax
I (v) of τ (Q)

I (v) also leads to the largest eigenvalue Λmax
h (v)

of τ (Q)
h (v). This is shown in appendices A.1, A.3. Although interesting, this is not essential: The host

automatically gives the ”correct” eigenvalue of τ (Q)
I with respect to |Φ(Q)

max〉.

ln
[
str
(
τ

(Q)
h (0)

)L
τ

(Q)
0 (0)

]

= ln

(−1)p[max] (Λmax
h (0))L Λmax

I (u0) +
∑

k 6=max

(−1)p[k]
(

Λ(k)
h (0)

)L
Λ(k)
I (u0)

 (2.66a)

= ln
[
(Λmax

h (0))L Λmax
I (u0)

]
+
∑

k 6=max

(−1)p[k]

(
Λ(k)
h (0)

Λmax
h (0)

)L
Λ(k)
I (u0)

Λmax
I (u0)

. (2.66b)



30 CHAPTER 2. THE IMPURITY MODELS

Generally, the eigenstate of the k 6= max-largest eigenvalue of τ (Q)
h does not lead to the k 6= max-

largest eigenvalue of τ (Q)
I . So with respect to τ

(Q)
I , k does not label the eigenvalues according their

order. The supertrace requires to include the parity of the projector on the eigenstate k. In appendix
A.1, it is shown that p[max] = N/2. One is free to chose N/2 even, so that p[max] = 0. Suzuki [86]
proves that the two limits N → ∞, L → ∞ may be interchanged. Then the thermodynamic limit
L→∞ in eq. (2.66b) can be carried out by observing that only the largest eigenvalues Λmax

h,I survive.
One concludes that the impurity and host contribution to the free energy per lattice site are given

by

fI = − lim
N→∞

1
β

ln Λmax
I (u0) (2.67)

fh = − lim
N→∞

1
β

ln Λmax
h (0) (2.68)

Eqs. (2.67), (2.68) summarize the enormous advantage of considering the QTM: The calculation of
the free energy is reduced to the evaluation of a single eigenvalue.

It is convenient to set v → iv. For this reason, the shift has been done by iu0 in eq. (2.19), with
u0 = v0/2, eq. (2.33).

fh has already been calculated in this approach, [47, 77], with the underlying algebra being
Uq(gl(2|1)). In this work, the rational limit is treated explicitly. In the ongoing, we will concen-
trate on fI and defer the analogous calculation of fh to appendix A.3. The diagonalization of τ (Q)

h is
done by applying techniques of the nested Algebraic Bethe Ansatz (NABA) [26,33, 82]. Some details
of the calculation are given in appendix A.1. There, eigenvalues of the non-normalized QTM are
calculated. In the ongoing, τ (Q)

I and ΛI denote the non-normalized quantities.

ΛI(v) = λ−(v) + λ+(v) + λ0(v) (2.69)

λ−(v) =
q−(v + i)
q−(v)

φ+(v + iα/2)φ−(v − iα/2− i)eβ(µ+h/2)

λ+(v) =
q+(v − i)
q+(v)

φ−(v − iα/2)φ+(v + iα/2 + i)eβ(µ−h/2)

λ0(v) =
q−(v + i)q+(v − i)

q−(v)q+(v)
φ+(v − iα/2)φ−(v + iα/2)

q+(v) =
M∏
j=1

(v − vj) , q−(v) =
M̃∏
k=1

(v − ṽk) .

An external magnetic field h and a chemical potential µ have been introduced. The roots {vj}, {ṽk}
are determined by the analyticity of the eigenvalue:

λ+(vj)
λ0(vj)

=
q−(v)

q−(v + i)
φ−(v − iα/2)φ+(v + i + iα/2)
φ+(v − iα/2)φ−(v + iα/2)

eβ(µ−h/2)

∣∣∣∣
v=vj

= −1 (2.70a)

λ−(ṽk)
λ0(ṽk)

=
q+(v)

q+(v − i)
φ+(v + iα/2)φ−(v − i− iα/2)
φ+(v − iα/2)φ−(v + iα/2)

eβ(µ+h/2)

∣∣∣∣
v=ṽk

= −1 . (2.70b)

These are M + M̃ many nonlinear coupled algebraic equations for the unknown roots. The largest
eigenvalue is obtained for M = M̃ = N/2. Then, for h = 0, {vj} = {ṽ∗k}. A finite magnetic field breaks
this symmetry. From numerical studies for finite N , we know that in the largest eigenvalue case, these
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”particle solutions” obey Im[vj ] > 0 , Im[ṽk] < 0 ∀j, k. Additionally, eqs. (2.70a) and (2.70b) are
solved by sets {v(h)

j }, {ṽ
(h)
k }, respectively, called ”hole” solutions, contrary to the ”particle” solutions.

They are considered in more detail in appendix A.1. From a numerical solution of the BAE for finite
N , one finds that they are distributed in the complex plane as Im[v(h)

j ] < 1, Im[ṽ(h)
k ] > 1 ,∀j, k. The

particle and hole solutions accumulate at points on the imaginary axis with vanishing real part. That’s
why a formulation in terms of densities is not possible. Results of numerical solutions of eqs. (2.70a),
(2.70b) are presented in figs. 2.3, 2.4 at the end of this section.

Let us now formulate non-linear integral equations (NLIE) along arguments similar to the t − J-
model, [45]. Generally speaking, there are six unknown functions in eq. (2.69):

q+ , q−,

q
(h)
− (v) :=

N−M+M̃∏
j=1

(v − v(h)
j )

q
(h)
+ (v) :=

Ñ−M̃+M∏
k=1

(v − ṽ(h)
k )

ΛI,+ , ΛI,− .

The index denotes the part of the complex plane where these functions have zeroes: If a q− function
carries an index + (−), it has zeroes in the upper (lower) half plane. For the degrees of the polynomials
q

(h)
+ , q(h)

− , see appendix A.1. One can eliminate these unknowns by appropriate auxiliary functions.

1
b(v)

:=
λ+(v)
λ−(v)

(
1 +

λ0(v)
λ+(v)

)
=

q+(v − i)
q−(v + i)

φ−(v − iα/2)φ+(v + i + iα/2)
φ+(v + iα/2)φ−(v − i− iα/2)

e−βh

× q−(v)
q+(v)

(
1 +

q−(v + i)
q−(v)

φ+(v − iα/2)φ−(v + iα/2)
φ−(v − iα/2)φ+(v + i + iα/2)

e−β(µ−h/2)

)
︸ ︷︷ ︸

≡
q
(h)
− (v)

φ−(v−iα/2)φ+(v+i+iα/2)

=
1

φ+(v + iα/2)φ−(v − i− iα/2)
q+(v − i)
q−(v + i)

q
(h)
− (v)e−βh (2.71)

The term denoted as q(h)
− has been identified by reasons of analyticity: The zeroes of nominator and

denominator cancel as far as the particle solutions are concerned, the hole solutions rest as zeroes of
the nominator. The polynomials in the denominator are the same as the φ-terms in λ0/λ+. Along the
same reasoning (or simply by taking the complex conjugate and h→ −h), we find another function b:

1
b(v)

:=
λ−(v)
λ+(v)

(
1 +

λ0(v)
λ−(v)

)
=

1
φ−(v − iα/2)φ+(v + i + iα/2)

q−(v + i)
q+(v − i)

q
(h)
+ (v)eβh .

A third function c is introduced,

1
c(v)

:=
λ0(v)

λ+(v)λ−(v)
ΛI(v)

=
φ+(v − iα/2)φ−(v + iα/2) e−2βµ

φ−(v − iα/2)φ+(v + i + iα/2)φ+(v + iα/2)φ−(v − iα/2− i)
ΛI(v) . (2.72)
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Consider B := b + 1, B := b + 1, C := c + 1.

B(v) =
1

λ−(v)
b(v) ΛI(v) =

q−(v)

q+(v − i) q(h)
− (v)

ΛI(v) e−β(µ−h/2)

B(v) =
1

λ+(v)
b(v) ΛI(v) =

q+(v)

q−(v + i) q(h)
+ (v)

ΛI(v) e−β(µ+h/2)

C(v) =
1

b(v) b(v)
c(v) =

q
(h)
+ (v) q(h)

− (v)
φ+(v − iα/2)φ−(v + iα/2)

1
ΛI(v)

e2βµ .

In the following, the largest eigenvalue case is studied. Let us take the logarithmic derivative of these
auxiliary functions. Then constant terms vanish. Since we know the analyticity properties of all
functions in the complex v-plane, we can calculate their Fourier-transforms,

f̂ =
∫ ∞
−∞

[ln f(v)]′ e−ikv dv
2π

. (2.73)

The integration contour is taken along the real axis. This is allowed as long as |α/2| > |uN |, which
certainly is the case for N and α sufficiently large. The final results are independent of this assumption,
the limit α→ 0 is contained and may be carried out after application of the Fourier transform and its
inverse. f̂ vanishes for k < 0 (k > 0) for f(v) analytic in C+ (C−). Thus it is convenient to calculate
the Fourier transforms separately for k < 0, k > 0. For the moment, concentrate on k < 0.

− b̂(k) = −e(α/2+1)kφ̂−(k) + ekq̂+(k) (2.74a)

−b̂(k) = −ekα/2φ̂−(k)− ekq̂+ + q̂
(h)
+ (2.74b)

−ĉ(k) = eα/2k(φ̂+(k)− φ̂−(k))− e(α/2+1)kφ−(k) + Λ̂I,+(k) (2.74c)

B̂(k) = −ekq̂+(k) + Λ̂I,+(k) (2.74d)

B̂(k) = q̂+(k)− q̂(h)
+ (k) + Λ̂I,+(k) (2.74e)

Ĉ(k) = −eα/2kφ̂+(k) + q̂
(h)
+ (k)− Λ̂I,+(k) . (2.74f)

The essential observation is that in eqs. (2.74a)-(2.74f), there appear the three unknowns, namely
q̂+, q̂(h)

+ and Λ̂I,+, and the three auxiliary functions b̂, b̂ and ĉ. This means that one may eliminate
the unknowns through the auxiliary functions, resulting in a set of three algebraic equations coupling
the latter. This avoids the detailed knowledge of q±, q(h)

± and makes it possible to carry out the limit
N →∞ analytically. Add eqs. (2.74e), (2.74f) and combine this sum with eq. (2.74a):

b̂(k) = e(α/2+1)k(φ̂−(k)− φ+(k))− ek(B̂(k) + Ĉ(k)) . (2.75)

Combine eqs. (2.74d) with (2.74a) and these two with eq. (2.75). An expression for Λ̂I,+ results,

Λ̂I,+(k) = B̂(k) + ek(B̂(k) + Ĉ(k)) + e(α/2+1)kφ̂+(k) ,

which is inserted into eq. (2.74c):

ĉ(k) = −eα/2k(φ̂+(k)− φ̂−(k)) + e(α/2+1)k(φ̂−(k)− φ̂+(k))− B̂(k)− ek(B̂(k) + Ĉ(k)) .

Finally, eqs. (2.74d) and (2.74f) give q̂(h)
+ (k), which is inserted into eq. (2.74b),

b̂(k) = eα/2k(φ̂−(k)− φ̂+(k))− (Ĉ(k) + B̂(k)) . (2.76)
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The case k > 0 is obtained by exchanging b̂, b̂, switching k → −k in the exponential terms and
replacing φ− ↔ φ+. The result is summarized:

b̂(k) =


e−α/2k(φ̂+(k)− φ̂−(k))− (B̂(k) + Ĉ(k)) k > 0

−(B̂(k) + Ĉ(k)) k = 0

e(α/2+1)k(φ̂−(k)− φ̂+(k))− ek(B̂(k) + Ĉ(k)) k < 0

(2.77a)

b̂(k) =


e−(α/2+1)k(φ̂+(k)− φ̂−(k))− e−k(B̂(k) + Ĉ(k)) k > 0
−(B̂(k) + Ĉ(k)) k = 0
eα/2k(φ̂−(k)− φ̂+(k))− (B̂(k) + Ĉ(k)) k < 0

(2.77b)

ĉ(k) =


(
e−(α/2+1)k + e−α/2k

)
(φ̂+(k)− φ̂−(k))− B̂(k)− e−k(B̂(k) + Ĉ(k)) k > 0

−B̂(k)− (B̂(k) + Ĉ(k)) k = 0(
e(α/2+1)k + eα/2k

)
(φ̂−(k)− φ̂+(k))− B̂(k)− ek(B̂(k) + Ĉ(k)) k < 0

(2.77c)

Application of the inverse Fourier transform and integration leads to a a system of non-linear integral
equations.

ln b(v) = φ
(N)
b (v + iδ)− [kb ∗ ln B](v + 2iδ)− [kb ∗ ln C](v + iδ) + β(µ+ h/2) (2.78a)

ln b(v) = φ
(N)

b
(v − iδ)− [kb ∗ ln B](v − 2iδ)− [kb ∗ ln C](v + iδ) + β(µ− h/2) (2.78b)

ln c(v) = φ
(N)
c (v)− [kb ∗ ln B](v + iδ)− [kb ∗ ln B](v − iδ)− [kc ∗ ln C](v) + 2βµ (2.78c)

The convolution

[f ∗ g](x) :=
∫ ∞
−∞

f(x)g(x− y)dy (2.79)

is done with local kernels:

kb(v) =
1

2πv(v − i)
, kb(v) = kb(v)∗ , kc(v) = kb(v) + kb(v) =

2
2π(v2 + 1)

.

In order to achieve convergence, the equation for ln b (ln b), eq. (2.78a) (eq. (2.78b)), is taken for
v + iδ, (v − iδ). The argument of ln c, eq. (2.78c), can be moved to the real axis upon replacing
α→ α− ε.

The constant terms are integration constants derived from the asymptotic behaviour of the auxil-
iary functions for large |v|.

lim
|v|→∞

b =
a

1 + ā
, lim
|v|→∞

b =
ā

1 + a
, lim
|v|→∞

c =
aā

1 + a+ ā
(2.80)

a = eβ(µ+h/2) , ā = eβ(µ−h/2) . (2.81)

In this limit, convolutions reduce to simple multiplications,

lim
|v|→∞

[k ∗ f ](v) = f(∞)
∫ ∞
−∞

k(v)dv ,

where f is one of the auxiliary functions ln B, ln B, ln C. The norms of the kernels are∫ ∞
−∞

kb(v + iδ)dv = 1 =
∫ ∞
−∞

kb(v − iδ)dv∫ ∞
−∞

kc(v)dv = 1 .
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The φ(N)-terms are v-dependent,

φ
(N)
b (v) = ln

φ+

(
v + iα2

)
φ−
(
v − iα2 − i

)
φ−
(
v + iα2

)
φ+

(
v − iα2 − i

)
φ

(N)

b
=

[
φ

(N)
b

]∗
φ

(N)
c = φ

(N)
b + φ

(N)

b

Once the auxiliary functions are known, the eigenvalue can be calculated from eq. (2.72):

− ln c(v) =
βD(α+ 1)α
v2 + α2/4

− 2βµ+ ln
ΛI(v)

φ+(v + i + iα/2)φ−(v − iα/2− i)
. (2.82)

The denominator of the last term is the norm of τ (Q)
I . The free energy, eq. (2.67), is given by the

eigenvalue of the normalized QTM. Furthermore, one identifies the coupling constant Jα, eq. (2.34).

− βfI(T, h) = − ln c(v0/2)− 2β(α+ 1)Jα + 2βµ . (2.83)

Let us shortly comment on an approximate solution of the Bethe Ansatz equations (2.70a), (2.70b).
Set a := λ0/λ+. Then a root vj yields

a(vj) = −1
ln a(vj) = (2j + 1)πi .

For large β and without external fields, µ = 0 = h, the driving terms dominate the integral equations,
permitting for the approximate solution

ln a(vj) ≈
[
φ

(N)
b (v∗k)

]∗
vj ≈ − i

2
+ i

√
(α+ 1)2

4
+ u2 + iu(α+ 1) cot

2k + 1
N

π (2.84)

lim
N→∞

vj ≈ − i
2

+ i

√
(α+ 1)2

4
− i

βD(α+ 1)2

(2k + 1)π
.

Values from eq. (2.84) are used as initial values for µ, h finite with finite N . Initial values for hole
solutions v(h)

j are also given by eq. (2.84), with a negative sign in front of the square root. Note that
the Trotter limit N →∞ could be taken.

Obviously, the limit N →∞ can be carried out analytically also in the integral equations, resulting
in terms limN→∞ φ

(N) =: φ:

φb(v) = −βD(α+ 1)
α+ 1

(v + iα/2)(v − iα/2− i)
, φb = φ∗b (2.85)

φc(v) = −βD(α+ 1)
(

α

v2 + α2/4
+

2 + α

v2 + (α/2 + 1)2

)
(2.86)

= φb(v) + φb(v) .

Let us write the NLIE (2.78) with these terms once more:

ln b(v) = φb(v + iδ)− [kb ∗ ln B](v + 2iδ)− [kb ∗ ln C](v + iδ) + β(µ+ h/2) (2.87a)
ln b(v) = φb(v − iδ)− [kb ∗ ln B](v − 2iδ)− [kb ∗ ln C](v + iδ) + β(µ− h/2) (2.87b)
ln c(v) = φc(v)− [kb ∗ ln B](v + iδ)− [kb ∗ ln B](v − iδ)− [kc ∗ ln C](v) + 2βµ (2.87c)
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In close analogy to the treatment of the Hamiltonian in the preceding section, we are interested
in an asymptotic expansion of the free energy in the limit α → ∞. The essential observation from
the study of the Hamiltonian was that after the canonical transformation, excitations of the impurity
stem exclusively from the singly occupied state. However, this spectrum is sub-leading by an order of
α compared to the constant contribution from zero occupation. So our strategy is again to perform
an asymptotic expansion in the spirit of eq. (2.30), now in the framework of the NLIE.

Let us scale v → αv. The kernels decay algebraically in v, they shrink to δ-functions, with
corrections O(1/α2). The leading correction O(1/α) thus solely stems from the driving terms φb,b,c:

φc(αv) =
1

v2 + 1/4
+

1
α

[
3

v2 + 1
4

− 1(
v2 + 1

4

)2
]

+O(1/α2)

=:
1

v2 + 1/4
+ 2Rα(αv) (2.88)

Eq. (2.88) summarizes corrections O(1/α) in a function Rα. Higher orders O(1/α2) are omitted,
consistently with the approximations in the Hamiltonian realized in the preceding section. We end up
with algebraic equations for the auxiliary functions:

ln b(v) = − βD

v2 + 1/4
+Rα(αv) + β(µ+ h/2)− [ln BC](v)

ln b(v) = − βD

v2 + 1/4
+Rα(αv) + β(µ− h/2)− [ln BC](v)

ln c(v) = − 2βD
v2 + 1/4

+ 2Rα(αv) + 2βµ− [ln BBC](v)

These equations are solved by

b(v) =
a(v)

1 + ā(v)
, b(v) =

ā(v)
1 + a(v)

, c(v) =
a(v)ā(v)

1 + a(v) + ā(v)
(2.89a)

a(v) = exp
[
− βD

v2 + 1/4
+Rα(αv) + β(µ+ h/2)

]
ā(v) = exp

[
− βD

v2 + 1/4
+Rα(αv) + β(µ− h/2)

]
. (2.89b)

Note the formal identity to eqs. (2.80), (2.81) (in fact, a = lim|v|→∞ a(v)). As to Jα, scale v0 → αv0,
so that

lim
α→∞

(α+ 1)Jα =
2

v2
0 + 1

=: J0 .

From the expression of fI , eq. (2.83) it follows that the free energy is that of an uncoupled impurity,

lim
α→∞

fI(T, h) = −T ln
[
(aā)−1(v0/2) + a−1(v0/2) + ā−1(v0/2)

]
+ 2DJ0 − 2µ

= −T ln
[
eβ2DJ0 + eβ(µ+h/2) + eβ(µ−h/2)

]
. (2.90)

The free energy reflects the three possible impurity states, namely empty and singly occupied with up
or down spin. This result corresponds to the Hamiltonian which would result from the limit α → ∞
before the canonical transformation, eq. (2.45).
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The more interesting case is to eliminate charge fluctuations on the impurity site, so that the
spectrum of a localized moment is recovered. This is done by performing an asymptotic expansion
defined by eq. (2.30). The auxiliary functions exhibit a crossover from b, b, c � 1 to b, b, c > 1 in
regions around ”Fermi points” ±Λc defined by

− φc (Λc) ∼ 2βµ

Λc = ±α

√
D

µ
− 1

4
. (2.91)

Set h� µ. The influence of h on the Fermi points is neglected, since it enters quadratically.
The more common parameterization is

v

α
=

1
2

tan
k

2
, (2.92)

where k is the wave-vector used in the Fourier representation of the Hamiltonian in the preceding
section (and not the Fourier variable conjugate to v). At v = Λc, eq. (2.91) is equivalent to

2D(cos kF + 1) = µ , (2.93)

which defines kF at constant µ at T � D, such that µ = εF (µ in turn is defined by the particle number
N such that kF = πN/(2L). Then eq. (2.93) yields a relation between µ and N - this demonstrates
that the formally grand-canonical description is effectively canonical, because T � D. The analysis
of the NLIE is most conveniently done in the grand-canonical formalism and in v-parameterization,
rather than in k-space).

The energy-dependent density of states for the dispersion ε(k) = 2D(cos k + 1) is

%(ε) =
∑
k

δ(ε− εk) =
l

π
√

1−
(
ε

2D − 1
)2 .

For T � D, the Fermi energy equals the chemical potential, µ = εF , so that

%(εF ) =: %0 =
l

π
√

1−
( µ

2D − 1
)2 .

Without loss of generality, one may set l = π.
The crossover at ±Λc becomes pronounced in the low-temperature limit, very similar to the be-

haviour of the corresponding functions in the t− J-model, [45]. Consider [57]

ln C = ln c + ln
C

c
. (2.94)

The second term gives its leading contribution for |v| < Λc, since in the asymptotic regime, c =
C + O

(
1, eβh

)
, cf. eqs. (2.80), (2.81). This statement is made quantitative by the observation that

asymptotically, including terms O(1/α),

C

c
=

1
aā

(1 + a)(1 + ā) = O
(

1
bb

)
(2.95)

ln
C(v)
c(v)

= ln [(1 + a(v)) (1 + ā(v))]|v|<Λc
+
[
2βD

α2

v2 + α2/4
− 2βµ+ 2Rα(v)

]
|v|<Λc

. (2.96)
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The first term in eq. (2.96) is exponentially small, the second term dominates. The second summand
in eq. (2.94) is of the same order as b, b, eq. (2.95). The convolution of eq. (2.94) with the relevant
kernels becomes

kc,b ∗ ln C(v) = kc,b ∗ ln c(v) +
∫
|w|<Λc

kc,b(v − w) ln
C(w)
c(w)

dw . (2.97)

fI is determined by ln c(u0). The second term in eq. (2.97) shall be considered as a next-leading
correction compared to the driving terms in eq. (2.87). Set

|u0| = |v0/2| =
b

2
α1+ε > Λc ∼ α , (2.98)

with some constant of proportionality b. Then |v0| > Λc. (2.98) gives a lower bound on the scaling
of v0 with α. ε = 0 is allowed if factors are chosen such that the inequality (2.98) is fulfilled, which
is possible. We rather choose 0 < ε < 1/4. This choice is not of crucial importance, but justifies
a posteriori that the canonical transformation performed in the preceding section does not dress the
bare coupling

J = 2 cos kFJα ∼ 4 cos kFα−1−2ε/b2 =
4 cos kF
bv0

α−ε .

From the preceding equation, α−ε =
(

Jb2

4 cos kF

)ε/(1+2ε)
. Choose b = 2π%0 cos kF . Then

πv0

2
=

1
J%0

(
Jπ2 cos kF%2

0

) ε
1+2ε . (2.99)

The reason for the choice of b, which leads to eq. (2.99), will become clear below.
We proceed with eq. (2.97)

kc,b ∗ ln C(v)
v>w
≈ kc,b ∗ ln c(v) + kc,b(v)

∫
|w|<Λc

ln
C(w)
c(w)

dw +O(1/v4) .

Since the free energy is to be taken for v0 ∼ α1+ε, higher orders in approximating the convolution are
neglected. As an estimate for the integral, one uses the leading term of eq. (2.96):

ln
C(v)
c(v)

= 2β
[

Dα2

v2 + α2/4
+Rα(v)− µ

]
+O (exp[−βD])∫

|w|<Λc

ln
C(w)
c(w)

dw ≈ 4βαD [2 arctan 2Λc − µΛc/D +O(1/α)] =: βκ > 0 . (2.100)

The sub-leading order O(1/α) originates in Rα; it is neglected in the following (which is justified
rigorously below). The factor in brackets in eq. (2.100) takes values between π and 0. It is a
monotonously decreasing function of r := µ/(4D), since Λc and kF are defined by r, eqs. (2.91), (2.93)
(note that by virtue of eq. (2.92), κ = 4αD

[
kF − µ

4D tan kF
2

]
). Summarizing,

kb,c ∗ ln C = kb,c ∗ ln c + βκkb,c . (2.101)

The Fourier transforms of φb, φb, φc, eqs. (2.85), (2.86) are:

φ̂b(k) = −βD(α+ 1)
{

e−α/2k , k ≥ 0
e(α/2+1)k , k < 0

φ̂b(k) = −βD(α+ 1)
{

e−(α/2+1)k , k ≥ 0
eα/2k , k < 0

φ̂c(k) = φ̂b(k) + φ̂b(k) = −βD(α+ 1)
{

e−α/2k
(
1 + e−k

)
, k ≥ 0

eα/2k
(
1 + ek

)
, k < 0

(2.102)
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Inserting eq. (2.101) gives, using eq. (2.87):

ĉ(k) =

 φ̂c

1+e−k
− 1

1+ek
βκ− B̂+e−kB̂

1+e−k
k ≥ 0

φ̂c

1+ek
− 1

1+e−k
βκ− B̂+ekB̂

1+ek
k < 0

(2.103a)

b̂(k) = − 1
1 + e−k

βκ+
1

1 + e|k|
(B̂− B̂) (2.103b)

b̂(k) = − 1
1 + ek

βκ+
1

1 + e|k|
(B̂− B̂) (2.103c)

The careful analysis in eq. (2.97) is of vital importance to retain a non-zero driving term: Otherwise,
the resulting equations are trivially solved; ln b = βh = − ln b, and B = 1 + exp(βh), B = 1 +
exp(−βh),

fI = const. + ln
(

eβh/2 + e−βh/2
)
. (2.104)

This is the free energy of a free, uncoupled spin. No strong coupling fixed point would occur at low
temperatures. This situation corresponds to the limit µ → ∞, such that C(v) = c(v)∀v. Then the
band is filled completely, and single occupation is enforced on the impurity site.

The NLIE eq. (2.103) are transformed back to direct space,

ln b(v) = −Φ(v + iδ) + βh/2 + [k ∗ ln B](v)− [k ∗ ln B](v + 2iδ) (2.105a)
ln b(v) = Φ(v − iδ)− βh/2 + [k ∗ ln B](v)− [k ∗ ln B](v − 2iδ) (2.105b)

ln c(v) = −βD(α+ 1)
α

v2 + α2/4
− k(v)βκ+ βµ

+[Φ ∗ ln B](v − iδ)− [Φ ∗ ln B](v + iδ) . (2.105c)

The driving term and integration kernel read:

Φ(v) =
iπ

sinhπv
βκ

k(v) =
1

2π

∫ ∞
−∞

e−|k|/2

2 cosh k/2
eikvdk .

Choose δ = 1/2, to remove the divergence in Φ(v) and scale v by 1/π. Since Φ decays exponentially,
it is possible to absorb κ and v0 in a new constant. Substitute

v = x− ln(2πκ) (2.106)

and remember that κ scales with αD, eq. (2.100) and therefore may be arbitrarily large. All parameters
can be combined in the free energy such that TK remains constant,

− ln(2πκ)− πv0/2 = − lnTK
TK = 2πκeπv0/2 . (2.107)

The range of |v0| has been identified in eq. (2.98), we take v0 = −|v0|. This is no restriction as will
be seen below. From the definition (2.99):

TK ∼ 2πD exp
[
− 1
J%0

(
1− ε

1 + 2ε
lnJ + . . .

)
− ln(J%0)

]
(2.108)

D ∼ eα/α . (2.109)
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Starting directly from eq. (2.61) (without the constant) and a three-dimensional host whose dispersion
relation is not specified, one finds [1]

T̃K = D̃e−1/(J%̃0)+ 1
2

ln(J%̃0)+... (2.110)

D̃ is the bandwidth of a three-dimensional host and %̃0 the density of states at the Fermi edge. Eqs.
(2.108), (2.110) differ, but they have been derived from different assumptions. The cut-off schemes
are not the same: The one-dimensional density of states %(ε) diverges at the band edges contrary to
the three-dimensional case. Furthermore, our model still contains the constant for zero occupation
(which is omitted in eq. (2.61)). In the derivation of eq. (2.107), it was vital not to fill the system
completely, so that the non-occupied sector still is finite. We do not want to dwell on the comparison
between eqs. (2.108), (2.110) at this point. Rather, it is possible to extract the ratio TK/T̃K from the
NLIE, which is done in section 3.2.1. This shows that TK ∝ T̃K . Thus both the models underlying
perturbation theory and our derivation of the NLIE are equivalent in the scaling limit.

The shift eq. (2.106) scales the driving term Φ(v + i/2):

− Φ(v/π + i/2) = − βπκ

cosh v
(2.111)

= − 2βπκ
ex−ln(2πκ) + e−x+ln(2πκ)

κ→∞= −βex .

In the second line, eq. (2.106) has been employed. At this point it is clear that sub-leading orders in
eq. (2.100) can safely be neglected. This scaling opens the door to understand the impurity behaviour
for all temperatures: The driving term ∝ κ/ cosh v is bounded for each finite D; only in the limit
κ→∞ it is scaled to the unbounded exponential ∝ ex. This alters the auxiliary functions such that
at low temperatures, ln B, ln B decay exponentially fast towards zero. Such a behaviour is neither
predictable heuristically on the basis of the Hamiltonian, nor from the definition of the auxiliary
functions. One needs the exact solution of the problem, which incorporates the many-particle physics,
to discover the strong coupling fixed point at low temperatures. This discovery has first been made
by Wilson, necessitating a non-perturbative solution.

We rewrite the equations in the scaling limit:

ln b(x) = −βex + βh/2 + [k ∗ ln B](x)− [k ∗ ln B](x− iπ + iε) (2.112a)
ln b(x) = −βex − βh/2 + [k ∗ ln B](x)− [k ∗ ln B](x+ iπ − iε) (2.112b)

−βfI = βµ+ βκk(v0/2) +
1

2π

∫ ∞
−∞

[ln BB](x)
cosh (x− lnTK)

dx , (2.112c)

with

k(x) =
1

2π

∫ ∞
−∞

e−π/2|k|

2 coshπ/2k
eikxdk . (2.113)

Shifts by ±iε ensure integrability. These shifts will not be mentioned explicitly in the ongoing. Note
that the shift in the ground state energy due to the non-occupied state has vanished in eq. (2.112c).
The chemical potential contributes a constant to fI , it is dropped in the following. The term ∝ κ in
eq. (2.112c) is of order O(D/α). It originates in the ground state energy and also is omitted, since
excitations are exclusively contained in ln BB. Eqs. (2.112a)-(2.112c) are similar to the equations
for the isotropic anti-ferromagnetic spin-1/2 Heisenberg chain, [55]. They result from scaling these
equations in the high-temperature regime [56].
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Furthermore, a factor β can be absorbed by shifting x → x − lnβ. Let us write the NLIE once
more:

ln b(x) = −ex + βh/2 + [k ∗ ln B](x)− [k ∗ ln B](x− iπ) (2.114a)
ln b(x) = −ex − βh/2 + [k ∗ ln B](x)− [k ∗ ln B](x+ iπ) (2.114b)

−βfI =
1

2π

∫ ∞
−∞

[ln BB](x)

cosh
(
x+ ln T

TK

)dx . (2.114c)

These are the NLIE of the single channel isotropic spin-1/2 Kondo model, where the impurity con-
tribution to the free energy has been identified with the largest eigenvalue of the impurity QTM, eq.
(2.67). Note that without a careful asymptotic expansion for α→∞, the end of the impurity’s story
would have been eq. (2.104). This is the high-temperature limit T � TK of eqs. (2.114a)-(2.114c).
Eqs. (2.114a), (2.114b) do neither depend on α nor on D. Eq. (2.114c) is the free energy of the
impurity site - a quantity which is infinitesimally small in the continuous limit a0 → 0. This is not
visible in the scaled equations, they are independent from any parameters of the model. Also note
that the shift in the integral of the free energy is now temperature-dependent.

The system eq. (2.114) involves two auxiliary functions B, B in comparison to three in eq. (2.87).
The function C encoding charge fluctuations could be eliminated by an asymptotic expansion, so
that the excitations described by B, B are retained. This is conceptually analogous to the canonical
transformation of the Hamiltonian.

The choice v0 = |v0| leads to the same result: Instead of eq. (2.106), one would substitute
v = x+ln(2πκ), resulting in a driving term −e−x and TK = 2πκe−πv0/2. The shift in the convolution of
the free energy would be − lnT/TK instead of + lnT/TK in eq. (2.114c). However, by the substitution
x→ −x one recovers eqs. (2.114). The restriction of v0 to one of the two Fermi points occurs naturally
and does not mean any loss of generality. This is consistent with the observation that the Hamiltonian
eqs. (2.60), (2.61) can be viewed as one-half dimensional, as explained in the sequel of eq. (2.61).

u0 enables one to attain the limit T � TK , the regime of ”strong coupling”. The way how D,α, v0

are scaled (eq. (2.107)) is, despite simple, by no means obvious. Apparently, it does not make sense
to reinsert v0 from eq. (2.107) into Jα, eq. (2.34), and realize rigourously the limits D,u0, α → ∞
(mathematically speaking, this is due to Jα decaying algebraically with v0 - the driving term in eq.
(2.111) decays exponentially in the spectral parameter). We will come back to this point in chapter 5.

Let us now turn our attention to the host. The problem of finding the largest eigenvalue, eq. (2.68),
is solved in an analogous manner as above. In appendix A.3, it is shown that:

ln Λh(v) = η(v) + [ζ ∗ ln B](v) + [ζ̄ ∗ ln B](v) + [(ζ + ζ̄) ∗ ln C](v) (2.115)

2πζ(v) = − φb(−v)
Dβ(α+ 1)

, η(v) = 2βD
(α+ 1)2

v2 + (α+ 1)2
.

The ln B, ln B, ln C are given by eqs. (2.78a)-(2.78c) (!), with driving terms (2.85), (2.86). The
technical differences on this level between host and impurity are the functional dependence of the
eigenvalue on the auxiliary functions and the lack of a free parameter u0; the auxiliary functions
themselves are the same. Note that the limit µ → ∞ would lead to fh = 2µ, the contribution of a
fully occupied band. Instead, one rather employs eq. (2.94) in eq. (2.115). The ln C/c-term is given
by (2.96). Now it is vital to use the full expression of eq. (2.96) (otherwise, the free energy would be
a trivial constant - as is expected for the host in the limit T → 0, since a crossover TK is missing).
These manipulations are conveniently done in Fourier space. The result for the eigenvalue Λh(0) is
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given in direct space:

ln Λh(0) = η(0) +
1

2π

∫ Λc

−Λc

1
v2 + 1/4

ln [(1 + a(v))(1 + ā(v))] dv .

The functions a, ā are defined in eq. (2.89).
Observe the relation between the elementary excitation energy ε(v) and the momentum k(v) as

functions of the spectral parameter v (cf. eq. (2.92)),

ε(v) =
d
dv
k(v) . (2.116)

Then one confirms that limα→∞ ln Λh(0) = −βf (ff) contains the free-fermion contribution to the free
energy per lattice site:

ε(v) =
1

v2 + 1/4
→ k(v) = 2 arctan 2v

ε(k) = 4 cos2 k

2
= 2 cos k + 2 (2.117)

−βfh = 2βD +
1

2π

∫ kF

−kF
ln
[
1 + e−β(D(1+3/α)ε(k)−Dε2(k)/α−h/2−µ)

]
×
[
1 + e−β(D(1+3/α)ε(k)−Dε2(k)/α+h/2−µ)

]
dk . (2.118)

The function k(v) in the first line is given by eq. (2.116). This is the free energy per site of the host,
corresponding to eq. (2.42). From eq. (2.109), D gets arbitrarily large. This makes sense only for a
linear dispersion in the host, while βD � 1. Then it suffices to keep only the leading orders in T 2, h2

in fh. The constant shift in the ground state energy is dropped. The linear dispersion approximation
and the continuum limit are realized by a procedure similar to the analogous transformation of the
Hamiltonian. Substitute qk = k/a0, D = 1/a0. Then the entire free energy of the host, Fh = L · fh,
results:

Fh = −La0 lim
β�1

T

2π

∫ kF /a0

−kF /a0

ln
[
1 + e−β(D′+ṽF |qk|−h/2−µ)

] [
1 + e−β(D′+ṽF |qk|+h/2−µ)

]
dqk (2.119)

D′ := 2D
((

1 +
3
α

)
(cos kF + 1)− 2

α
(cos kF + 1)2

)
ṽF = 2

(
1 +

3
α
− 4
α

(cos kF + 1)
)

sin kF .

kF 6= 0, π/2, π. La0 = l is the length of the chain, it is kept constant. Fh/l then is the free energy
density in the host. The diverging constant D′ vanishes upon taking the derivative of eq. (2.119) in
order to calculate static response functions. Note that interactions in the host of order O(1/α) can be
absorbed into a redefinition of vF = 2 sin kF , resulting in effectively free fermions. This rescaling of
the one-particle spectrum is very important: Including the order of spin-exchange coupling between
impurity and host, the host is indeed free.

Strictly speaking, the Fermi sea separates into two parts for spin up and spin down particles, giving
rise to four Fermi points ±k(↑,↓)

F . However, this modification is negligible in eq. (2.118): The Fermi
points are scaled by 1/a0 in the continuum limit, eq. (2.119). The first contribution to the free energy
is quadratic in h. More generally, we were justified to neglect h� µ in eq. (2.91): The leading order
which enters the impurity equations is the second term in eq. (2.96), where h also enters quadratically.
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The leading orders of the specific heat and magnetic susceptibility are

Ch(T ) = T
π2

3
2
πṽF

=: T
π2

3
ρ̃h (2.120)

χh(T ) =
1
4

2
πṽF

=:
1
4
ρ̃h . (2.121)

An effective density of states per spin degree of freedom in the host, ρ̃h, has been defined.
One may speculate whether a localized magnetic moment also shows up in the host, if at one lattice

site the spectral parameter is shifted by iu0. Without calculating the corresponding Hamiltonian, we
can exclude such a scenario: Insert eq. (2.105c) into (2.115). Then the leading orders of ln B, ln B

cancel. This agrees with the intuitive picture that with four states per lattice site available in the
host, a localized moment cannot form unless the doubly occupied state is suppressed.

Let us throw a view back and forward. Using four- and three-dimensional representations of gl(2|1),
an impurity model has been constructed on a lattice. The impurity site is realized by dimension three,
whereas each host site has dimension four, thereby excluding double occupation on the former. The
Hamiltonian contains four parameters, D,α, u0, µ (and h, but this is not scaled). 0 < µ < 4D, so
there are three independent parameters.

The model describes spin-1/2-fermions with a Hubbard and bond-charge interaction, interacting
with the impurity site via hybridization and spin exchange. The hybridization can be suppressed in
first order by a canonical transformation. The spin-exchange coupling J is much smaller than the
bandwidth, J � D. Consistently, the dispersion relation of the host particles is linearized. This
linearization is directly connected to the continuum limit. The result is the well known Kondo model:
It describes an effectively free host with linear dispersion, interacting with a localized spin via spin
exchange. The underlying symmetry of this model is su(2), a sub-algebra of gl(2|1). So one may view
the Kondo model as an effective su(2) continuum model of the underlying gl(2|1) lattice model.

The exact solution reveals a scaling law which combines the parameters of the Hamiltonian in such
a way that only TK is constant, eq. (2.107). This means that only two of the three parameters are
independent. In the solution, a relation between v0 and α had to be required, v0 ∼ α1+ε, which implies
that D and α are independent. D is a scale of the whole Hamiltonian, and α tunes the interactions
on the host. In other words, interactions in the host (which can be absorbed by a rescaling of the
one-particle spectrum in the interesting order) and the spin-exchange coupling between impurity and
host are determined by the same parameter. We postpone speculations about this issue to chapter 5.

The free energy both of the host and the impurity depend on two external parameters, T, h. Both
are restricted by eq. (2.56), where T, h are small compared to the bandwidth D, a quantity induced
by the host. This reduces the host to free fermions with linear dispersion, showing the common Fermi
liquid properties. However, a crossover scale TK is found which characterizes the behaviour of the
impurity. Referring to this scale, T, h� TK and T, h� TK are to be distinguished, while eq. (2.56)
is still obeyed. In the rest of this work, we will concentrate on the impurity; T, h� TK is denoted the
regime of ”low” temperatures/fields and T, h� TK is the range of ”high” temperatures/fields.

Generalizations of that Kondo model have been proposed:

i) The spin exchange may be generalized to XXZ type, of Uq(su(2|1) symmetry, [90].

ii) The localized impurity may a S-spin, corresponding to 2S + 1-dimensional representations of
Uq(su(2|1), [90].

iii) The host may consist of m types of mutually non-interacting fermions, [91,92]. These m degrees
of freedom are called ”flavors” or ”channels”.
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We suppose that it is possible to find an underlying lattice model to all these generalizations principally
in a somehow similar manner as above. Item i) may be solved by considering Uq(gl(2|1) as a possible
symmetry instead of gl(2|1) as for the isotropic case. The challenge of items ii) and iii) is the realization
of higher dimensions in the impurity and host spaces. We leave these questions open as a playground
for further work.

Nevertheless, we are able to treat the generalized models i)-iii) in the QTM framework, by setting
up an effective Uq(su(2))-symmetric QTM, without caring about the regularized underlying lattice.
This approach results in NLIE for the impurity’s degrees of freedom alone. This is shown in the next
section.
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Figure 2.3: Particle solutions for two values of h and α > 0 in the complex plane.
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Figure 2.4: Particle (filled symbols) and hole (open symbols) solutions for two values of µ and α > 0
in the complex plane.
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2.2 Generalized models

The striking feature of eqs. (2.114a)-(2.114c) is that they can be obtained from the corresponding
NLIE of the isotropic S = 1/2 Heisenberg model. Let us appreciate this delightful connection in
detail. It allows to formulate the thermodynamics of the generalized models presented at the end of
the preceding section in terms of a system of NLIE.

We proceed in two steps: The first part contains the explicit construction of the generalized models.
Their free energy is obtained by diagonalizing a certain transfer matrix. This diagonalization is done
in appendix A.4. NLIE are formulated in the second part.

2.2.1 Construction of the generalized models

The super-algebra gl(1|2) possesses two even sub-algebras, u(1) and su(2). In the three-dimensional
representation, these correspond - roughly speaking - to charge and spin degrees of freedom. The
R-matrix belonging to the S = 1/2 representation of su(2) reads

R(2,2)(u) =
1

u+ 1

(
u+ f ba ⊗ fab

)
=

1
u+ 1

(
u+

1
2

(1 + 2~S · ~σ)
)
.

It acts in the direct product of 2-dimensional auxiliary and quantum spaces. fab = |b〉〈a|, a, b ∈ {1, 2}
denote the four non-vanishing matrix elements in the S = 1/2 representation of the three generators
of su(2) [

Sz, S±
]

= ±S±
[
S+, S−

]
= 2Sz[

σz, σ±
]

= ±2σ±
[
σ+, σ−

]
= σz .

Note that the eigenvalues of Sz, σz are ±1/2,±1. In the ongoing, we will express R by these operators
rather than by the fab . Applying the QTM-formalism to this model, one has to diagonalize the matrix
defined in eq. (2.64), with R(4,3) interchanged by R(2,2) and an external field h coupling to the spin
degree of freedom. Let us call this matrix τxxx(x); the spectral parameter is denoted by x. In appendix
A.4, it is shown that the corresponding eigenvalue reads:

Λxxx(x) = λ−(x) + λ+(x) (2.122)

λ−(x) =
q(x+ i)
q(x)

φ+(x)φ−(x− i) eβh/2

λ+(x) =
q(x− i)
q(x)

φ−(x)φ+(x+ i) e−βh/2

q(xk + i)
q(xk − i)

e−βh = −φ−(xk)φ+(xk + i)
φ+(xk)φ−(xk − i)

q(x) =
M∏
j=1

(x− xj) , φ±(x) = (x± iu)N/2 .

u = Jβ/N , with the coupling constant J . The eigenvalue is the sum of two terms, corresponding to
spin down and up. These are determined by one set of (real) BAN, guaranteeing analyticity. It is
interesting to observe that eq. (2.122) follows from eq. (2.69) by µ → ∞: Then in eq. (2.69) the
terms with eβµ dominate exponentially, and the two (conjugate) sets of particle BAN shrink together
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to only one, placed on the real axis. Applying techniques similar to section 2.1.3, one finds NLIE for
the largest eigenvalue (M = N/2),

ln Λxxx(x0) =
1

2π

∫ ∞
−∞

1
coshπ(x− x0)

ln AA(x)dx

ln a(x) = − Jxxxβ

coshπx
+
βh

2
+
[
k ∗ ln A− k− ∗ ln A

]
(x) . (2.123)

k(x) is the kernel defined in eq. (2.113), and k± = k(x ± iπ). Jxxx is the coupling constant, and
ln A results from ln A by complex conjugation and h → −h. One sees that we again arrived at eqs.
(2.112a)-(2.112b), which can be scaled x→ x− 1

π ln(2Jxxxβ), Jxxx →∞ analogously, resulting in eqs.
(2.114a)-(2.114c). Then TK = 2Jxxxe−πx0 and −βfI = ln Λxxx(x0).

Thus it has been demonstrated that the NLIE of the su(2) Heisenberg model can be mapped onto
those of the impurity in the Kondo model. This relation was discovered heuristically in [60]. Since
we did not employ any special features of the S = 1/2 representation, this mapping holds for general
su(2) symmetric matrices R(d,d′) with arbitrary dimensions in auxiliary and quantum space. This will
be exploited below. Without the background which leads to eqs. (2.114a)-(2.114c), this mapping
is somehow unsatisfactory: The shift x0 in Λxxx is introduced a posteriori. Neither the scaling of
Jxxx, x0 is justified by an underlying model.

This puzzle becomes even more exciting when one tries to map the TBA-equations by Tsvelick et
al., [90], onto NLIE. In [90], a monodromy matrix is considered:

T (2,2)(x, x0) = R̂
(2,2)
a,N (x) R̂(2,2)

a,N−1(x) . . . R̂(2,2)
a,1 (x) (2.124)

R̂
(2,2)
a,j (x) = ρ

(
x+

i
2

(
1 + 2~S · ~σ

))
.

R̂(2,2) differs from R(2,2) by the pre-factor. If ρ and x0 are chosen appropriately,

ρ = e−iJ cos 2J , x0 = 1/g = 1/(tan 2J) , (2.125)

then

R̂
(2,2)
a,j (1/g) = eiJ~σa⊗~σj . (2.126)

This is just the exponential of the impurity contribution to the Kondo Hamiltonian eq. (2.61), with
an exchange constant J . In [90], it is shown by a coordinate BA that the logarithm of T (x, x0), eq.
(2.124), includes the spectrum of the whole Hamiltonian in the linear dispersion approximation, eqs.
(2.60), (2.61), under a further restriction on the host: The two-particle wave function of two host
particles is factorizable in a charge-function fc and a spin-function fs. The product of both must be
antisymmetric, such that (a: antisymmetric, s: symmetric) f (a)

c ·f (s)
s and f (s)

c ·f (a)
s are the two allowed

combinations. In the coordinate BA, only the former combination is accounted for. Consquently, only
half of the specific heat of the host is found; the susceptibility is reproduced correctly (because the
symmetric spin function couples in the same way to the magnetic field as two separate spin-1/2-
functions).

The spectrum can be calculated by BA techniques, and therefore also the thermodynamics by
applying the TBA. One finally separates the impurity contribution from the host. The corresponding
equations are formally equal to the TBA equations of the S = 1/2 su(2) model, for a review, see [87].
The only difference is the spectral parameter dependent driving term: Instead of −Jβ/ coshx, one
finds −2Dβ arctan ex. D is some cutoff, related in an unknown manner to the bandwidth of the host.
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Let us ask the question: What is the corresponding transfer matrix whose largest eigenvalue is given
by the NLIE with precisely this driving term, −2Dβ arctan ex, i.e.

− βfI = ln Λ̂(x0) =
1

2π

∫ ∞
−∞

1
cosh(x+ x0)

ln[DD](x)dx (2.127)

ln d(x) = −2Dβ arctan ex +
βh

2
+
[
k ∗ ln D− k− ∗ ln D

]
(x) . (2.128)

The answer (to be derived later) is

τ
(2,2)
eff (x = 1/g) := tr

{
e−βhS

z
I /2R̂

(2,2)
I,N (x) . . . R̂(2,2)

I,1 (x)
∣∣∣
x=1/g

}
. (2.129)

The external field h is included in the form of an imaginary twist angle, depending on the spin of
the auxiliary space. The auxiliary space a is now the quantum space of the impurity. If one chooses
N = iDβ ∈ C , one arrives at eq. (2.128). These relations are quite appealing and suggest an
intuitive path integral representation of the impurity. However, the host is by no means included in
the effective matrix eq. (2.129). It is contained implicitly in a crucial manner: The prescription of
taking the largest eigenvalue of τeff . To discover its real presence in the form of a linearized spectrum,
the ”detour” of section 2.1.2 is necessary. This is confirmed by the D-cutoff scheme, in contrast to
the D-scheme. Both are related non-trivially, as shown in section (3.2.1). τ defined in eq. (2.129)
carries a subscript eff to make clear that it is an effective matrix, whose largest eigenvalue leads to
the impurity contribution of the free energy.

At this point, it is well worth commenting on the formal equivalence of the NLIE for ln a, ln b,
ln d, which differ from each other only in the functional form of their x-dependent driving terms.
This is not too surprising when remembering the functional form of the eigenvalue, resulting from
ABA: It is the sum of terms λj , each one being a product of φ- and q-functions. The φ-functions are
the vacuum eigenvalues, they are known. The q-functions originate in the creation operators acting
on the vacuum, which are necessary to create the largest eigenvalue. They are unknown. The φ-
functions lead to the driving terms, the q-functions to the convolutions. The convolutions provide the
”dressing” of the driving terms. The contributions from φ- and q-functions separate because one treats
the logarithms of the relevant equations. These become algebraic equations for the unknowns. The
functional dependence of the eigenvalue on the q functions is exclusively determined by the underlying
algebra, in the form of the YBE. The conclusion to be drawn is that within the same representation
of the same algebra, the NLIE are formally identical, and different vacuum eigenvalues can be directly
translated into different driving terms. Take eq. (2.128) as starting point. Then the driving term in
the NLIE for the eigenvalue of τxxx(x) is

−N arctan ex+u +N arctan ex−u = −uN 1
coshx

+O
(
Nu2

)
.

With u = β/N , next leading order terms vanish in the limit N →∞ and one is back at eq. (2.123).
Next we want to reveal that the mapping includes also the q-deformed algebra Uq(su(2)) with

commutators [
Sz, S±

]
= ±S± ;

[
S+, S−

]
= [2Sz] (2.130)

[u] =
sinh iγu
sinh iγ

,

The S = 1/2 dimensional Uq(su(2)) symmetric R-matrix reads with these operators

R̂(2,2)(x) = ρ
[
sinh

(
x+ i

γ

2
(1 + 2Sz ⊗ σz)

)
+ i sin γ(S− ⊗ σ+ + S+ ⊗ σ−)

]
.
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T (x) is defined as in eq. (2.124). Now

R̂
(2,2)
I,j (x0) = exp

[
i
(
J||σ

z
I ⊗ σzj + 2J⊥

(
σ−I ⊗ σ

+
j + σ+

I ⊗ σ
−
j

))]
cos γ =

cos 2J||
cos 2J⊥

(2.131)

(cothx0)2 =
sin2 2J||

sin 2(J|| + J⊥) sin 2(J|| − J⊥)

ρ = e−iJ||
sinhx0(

cosh2 x0 cos2 γ + sinh2 x0 sin2 γ
)1/2 .

Eq. (2.131) induces an Ising like anisotropy. Without any further ado, we give the corresponding
NLIE for γ ≤ π/2, citing results for similar Uq(su(2)) models, [55]:

− βfI = ln Λ̂(x0) =
1

2π

∫ ∞
−∞

1
cosh(x+ πx0/γ)

ln DD(x)dx

ln d(x) = −2Dβ arctan ex +
βh

2(1− γ/π)
+
[
k ∗ ln D− k− ∗ ln D

]
(x)

Fk[k(x)] =
sinh π

2

(
π
γ − 2

)
k

2 cosh π
2k sinh π

2

(
π
γ − 1

)
k
.

The crucial difference is the modified kernel, which is now γ-dependent and decays exponentially in
direct space.

Generalizations of the S = 1/2 model are to include an arbitrary impurity spin S and an arbitrary
”channel number” m of electronic channels. Mathematically speaking, this means to allow for arbitrary
dimensions l + 1,m + 1 in the auxiliary and quantum spaces of R̂, preserving Uq(su(2)) symmetry
(which contains the isotropic case su(2) through the limit q → 0) and the YBE. The isotropic l,m
models have been solved in the TBA approach, [90, 91, 92, 89]. The rest of this chapter is dedicated
with the generalization of these models to the anisotropic case with γ ≤ π

2max(l,m) .
The R-operator, which is Uq(su(2)) symmetric with dimensions l+ 1, l = 2S of the auxiliary space

and m+ 1 of the quantum space is denoted by R̂(l,m)(x). Let R̂(1,1) act in Va⊗ Vq, the direct product
of auxiliary and quantum space. Vq ' Va ' C2. Then R̂(l,m) is constructed to fulfill the YBE with
arbitrary dimensions in the involved spaces, eq. (2.2). This goal is achieved by fusing a lattice of
m × l operators R̂(1,1), by projectors Pa, Pq onto the subspaces of completely symmetric tensors in
Va1 ⊗ . . . Val and Vq1 ⊗ Vqm . The result is [52]:

R̂(l,m)(x) = ρ(x)
(
A(l) ⊗A(m)

)
(Pa ⊗ Pq)

l∏
j=1

m∏
k=1

R(1,1)
ajqk

(x+ iγ(1/2 + l −m− k − j))

× (Pa ⊗ Pq)
(
A(l)−1 ⊗A(m)−1

)
(2.132)

A(l) =
∑
a

|Ra|1/2 P(a)

∏
k<j

Rakqj (iγ(k − j)) =:
∑
a

RaP(a) .

The last equation defines Ra and P(a). For l = 1, R̂(1,m) is expressed through the generators of
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Uq(su(2)),

R̂(1,m)(x) = ρ

[
sinh

(
x+

iγ
2

(1 + 2Sz ⊗ σz)
)

+ i sin γ(S+ ⊗ σ− + S− ⊗ σ+)
]
. (2.133)

The algebra (2.130) implies the following explicit representations of S−, S+, Sz:

S−|k − 1〉 =
√

[m− k + 2][k − 1] |k〉 , k = 2, . . . ,m+ 1 (2.134a)
S+|k + 1〉 =

√
[m− k + 1][k] |k〉 , k = 1, . . .m (2.134b)

Sz|k〉 =
(m

2
− k + 1

)
|k〉 , k = 1,m+ 1 (2.134c)

In the isotropic case γ = 0,

R̂(1,m)(1/g) = exp
[
i2J ~S ⊗ ~σ

]
(2.135)

ρ = e−iJ cos J (l + 1) , g =
2

l + 1
tanJ (l + 1) .

In eq. (2.135), one recognizes the spin-scattering between the impurity with spin S = l/2 and one
electron. Unfortunately, one is, up to now, not able to write the general case, eq. (2.132), analogously.
So we give a formal expression for the Hamiltonian density in analogy to the l = m = 1 case, namely

H = Hh +Hsd +Hex

Hh = −iDvf
∑

ν,σ=±1/2

m∑
k=1

:ψ†ν,σ,k(x)
d

dx
ψν,σ,k(x): (2.136a)

Hsd = −iδ(x)
∑
ν,σ,σ′

:ψ†ν,σ(x)
[
ln R̂(l,m)(x0)

]σ′
σ
ψν,σ′(x): (2.136b)

Hex = −µ

[∑
ν

m∑
k=1

nν,k(x) +
S∑

τ=−S
nd,τ (1− nd,τ̄ )

]

+
h

2

∑
ν

m/2∑
σ=−m/2

σnν,σ(x) +
S∑

τ=−S
τnd,τ (1− nd,τ̄ )

 (2.136c)

nν,σ,k := :ψ†ν,σ,kψν,σ,k: , nν,k =
∑
σ

nν,σ,k , nν,σ =
∑
k

nν,σ,k .

ν = ± denotes the handedness of host operators stemming from the right and left Fermi points
respectively. σ, σ′ = −m/2, . . . ,m/2 in eqs. (2.136a), (2.136b). In eq. (2.136b), R̂(l,m) is a matrix in
auxiliary space with operator-valued entries in the (quantum) impurity space. Eqs. (2.136a), (2.136b)
are unsatisfactory, in several regards:

• The details of spin exchange do not show up explicitly for m > 1, neither for γ 6= 0.

• The host is not understood at all. In the bulk, the m species, each of spin-1/2, are free. However,
they form a totally symmetric fused state when interacting with the impurity, somehow glued
together with an effective spin m/2: The quantum numbers σ, k are combined to a new ”spin”
number σ ∈ [−m/2,m/2]. This is justified mathematically to keep integrability; the physical
reason (if there is one) is unclear up to now. Possibly, the indirect coupling between the electrons
mediated by the impurity is so large at low temperatures that they are fused together. These
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compound objects also couple with their effective spins to the magnetic field. This makes no
difference in the susceptibility, but reduces the specific heat in comparison to free particles in m
independent channels.

These questions are known since long [92] and as long remained open. To answer them, one should
find a lattice path integral formulation in analogy to the S = 1/2, m = 1, γ = 0 case in section 2.1.2.
We leave this task as a future challenge.

In the ongoing, eqs. (2.136a) and (2.136b) are taken as definitions of the S-spin, m-channel,
anisotropic Kondo model. The chemical potential has no influence on the impurity’s behaviour, so
it is dropped. We will not bother about the normalizing factor ρ(x) and omit it in the sequel, while
keeping the same symbols for the non-normalized quantities. Fortunately, in order to diagonalize the
corresponding transfer matrix

T
(l,m)
eff (x) = e−βS

z/2R̂
(l,m)
a,N (x)R̂(l,m)

a,N−1(x) . . . R̂(l,m)
a,1 (x) (2.137)

τ
(l,m)
eff (x) = traT (l,m)(x) ,

the full expression eq. (2.132) is not needed. Details of the diagonalization, which is done by ABA,
can be found in appendix A.4.

In the ongoing discussion, we replace, for reasons of symmetry, x and each member in the set {xν}
by

x− iγ/2 . (2.138)

This shift will be reversed after the calculation of the largest eigenvalue. In appendix A.4, it is shown
that:

Λ(l) (x) =
l+1∑
j=1

λ
(l)
j (x)

:=
l+1∑
j=1

e−βh(l+2−2j)/2
j−1∏
p=1

φ

(
x+

iγ
2

(1 + l −m− 2p)
) l−j+1∏

p=1

φ

(
x+

iγ
2

(3 + l +m− 2p− 2j)
)

×
q
(
x+ iγ

2 (l + 1)
)
q
(
x− iγ

2 (l + 1)
)

q
(
x+ iγ

2 (1 + l − 2j)
)
q
(
x+ iγ

2 (3 + l − 2j)
) (2.139)

With

φ(x) = sinhN (x)

q(x) =
N∏
ν=1

sinh(x− xν)

φ
(
xν + iγ2m

)
φ
(
xν − iγ2m

) = eβh
N∏
µ 6=ν

sinh (xν − xµ + iγ)
sinh (xν − xµ − iγ)

. (2.140)

It is crucial to observe that Λ(l) (x) is analytic if the BAE (2.140) are fulfilled. To see this, set
x = xν − iγ(l + 1 − 2j)/2. Then the j-th and the j + 1-st summand show poles, due to q(xν) in the
denominator. The requirement that these poles cancel each other leads to eq. (2.140).

Before proceeding further, let us make three remarks:
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• Λ(l)(x) is real-valued. Therefore observe that

λ
(l)
j (x) =

[
λ

(l)
l−j+2

]∗
,

where ∗ denotes complex conjugation.

• The φ-factors cause a zero of Λ in the strip of interest: It occurs for m = l − 1 at x = 0 and is
of order N . Then all λ(l)

j have one factor in common, φ(x). Thus for m = l − 1,

Λ̃(l)(x) := Λ(l)(x)/φ(x) (2.141)

is analytic and non-zero (anz) for Imx ∈ [−iγ/2, iγ/2]. For m 6= l − 1, Λ(l) is anz for Imx ∈
[−iγ/2, iγ/2]. In the ongoing, Λ̃(l) denotes the zero-free eigenvalue.

• For the ongoing, it is important to define strips in the complex plane where the functions are
anz.

φ(x) anz −π < Imx < 0
q(x) anz −π + γ

2 (l − 1) < Imx < −γ
2 (l − 1)

Λ̃(l)
anz −γ

2 < Imx < γ
2

The anisotropy parameter is restricted to

γ <
π

2 max(m, l)
. (2.142)

Then q(x) is anz in a strip of maximal (minimal) width π (π/2), and centered symmetrically
around Imx = −π/2.

2.2.2 Solution (NLIE)

One is interested in calculating the largest eigenvalue of the transfer matrix; it is given by N = N/2
Bethe-Ansatz numbers {xν}. As in the preceding section, it is possible to derive functional equations
between certain auxiliary functions which, together with the analyticity properties of Λ(x) itself, make
it possible to set up non-linear integral equations, determining the largest eigenvalue.

In the following, the index m and the dependence on {xν} are not noted explicitly. By inserting
explicit expressions, one shows that

Λ(1)

(
x− iγ

2
(l + 1)

)
Λ(l)(x) = g(l)(x)Λ(l−1)

(
x+

iγ
2

)
+ Λ(l+1)

(
x− iγ

2

)
(2.143)

g(l) = φ

(
x− iγ

2
(l −m− 1)

)
φ

(
x− iγ

2
(l +m+ 1)

)
.

In [59], a similar case has been treated by complete induction. We borrow this idea and deduce from
eq. (2.143) by complete induction the conversion relation

Λ(l)

(
x+

iγ
2

)
Λ(l)

(
x− iγ

2

)
= f (l)(x) + Λ(l−1) Λ(l+1)(x) (2.144)

f (l) = λ
(l)
1

(
x+ i

γ

2

)
λ

(l)
l+1

(
x− i

γ

2

)
=

l∏
p=1

φ

(
x+

iγ
2

(2 + l +m− 2p)
)
φ

(
x+

iγ
2

(l −m− 2p)
)
,
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where f (l) has the property that

f (l)

(
x− iγ

2

)
f (l)

(
x+

iγ
2

)
= f (l−1)(x) f (l+1)(x) .

Eq. (2.144) is proved by complete induction, following [59]. Consider the identity

Λ(l)

(
x+

iγ
2

)[
Λ(l−1)(x)Λ(1)

(
x− iγ

2

)]
=

[
Λ(l)

(
x+

iγ
2

)
Λ(l−1)(x)

]
Λ(1)

(
x− iγ

2

)
.

The products in brackets can be treated by eq. (2.143), then one isolates Λ(l)
(
x+ iγ

2

)
Λ(l)

(
x− iγ

2

)
and substitutes eq. (2.144) with the shift l → l − 1. Eventually, one ends up with eq. (2.144) itself.
Note that these relations between the eigenvalues are equally valid for the corresponding matrices,
since they commute, m being fixed.

The conversion relation converts shifts in l, that is the dimension of the auxiliary space, into
shifts of the spectral parameter. It permits to formulate successively coupled functional equations for
suitably chosen auxiliary functions yl, Yl, [63, 84].

yl(x) :=
Λ(l−1)(x)Λ(l+1)(x)

f (l)(x)

Yl(x) := 1 + yl(x) =
Λ(l)

(
x− iγ

2

)
Λ(l)

(
x+ iγ

2

)
f (l)(x)

(2.145)

⇒ Yl+1(x)Yl−1(x) = yl

(
x− iγ

2

)
yl

(
x+

iγ
2

)
(2.146)

It is crucial to observe that this Y -hierarchy can be closed. This was first done by Suzuki for the
isotropic S-spin Heisenberg model, [84]. Closing the Y -hierarchy means that we can find convenient
functions Bl,Bl and functionals F and G, such that F [Bl,Bl] = Yl and G[Bl,Bl] = Yl−1. Then the
equation

yl−1(x− iγ/2)yl−1(x− iγ/2) = F [Bl,Bl]Yl−2

is the last one in the Y -hierarchy. We show that

F [Bl,Bl](x) := Bl(x) ·Bl(x)

G[Bl,Bl](x) = bl

(
x+

iγ
2

)
bl

(
x− iγ

2

)
Bl = 1 + bl, are suitable with

Bl(x) =
Λ(l)

(
x− iγ

2

)
λ

(l)
l+1

(
x− iγ

2

) , Bl(x) =
Λ(l)

(
x+ iγ

2

)
λ

(l)
1

(
x+ iγ

2

) (2.147)

BlBl = Yl (2.148)

Eq. (2.148) follows from eq. (2.147) by definition. It is this identity, eq. (2.148), which contains the
closure of the Y -hierarchy. One should be aware of the analyticity properties of the different functions:
The zero caused by the φ-functions in Imx ∈ [−γ/2, γ/2] of yk(x) is located at x = 0, if k = m, and of
order 2N . Similarly, bl possesses a zero of order N at x = 0, if m = l. Let us distinguish three cases:
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• m < l: ”Under-screening” of the impurity by the host. There are l + 1 unknown functions; the
free energy results from the eigenvalue Λ(l).

• m = l: ”Exact screening” with as many unknowns as in the under-screened case.

• m > l: ”Over-screening”. m + 1 auxiliary functions are needed. The equations are identical to
the exactly screened case with m + 1 unknowns as shown later. The functional dependence of
the eigenvalue on the auxiliary functions is different: The free energy is given by Λ(l), resulting
from Yl, eq. (2.145).

This means that we can close the Y -hierarchy with at least max(l,m) + 1 functions. In the following,
we set

l := max(l,m) ,

so that we do not need to introduce a further index. Then the preceding derivation and analysis of
Λ(l) holds for the general case.

Our choice to close the hierarchy after l+ 1 equations is optimal in our approach, but it is not the
only possibility. Indeed, the hierarchy may be closed after arbitrary many equations l′ > l. Especially,
l′ = ∞ is permitted. In the isotropic case, this is just the set of TBA equations by [90]. In other
words, fusion proves the equivalence of the NLIE approach with TBA results for γ = 0; for further
details, cf. [46]. For γ 6= 0, the equivalence is not shown as easily: TBA is restricted to the ”root
of unity” case 2γ/π =integer. At least for the spin-1

2 XXZ model, the equivalence has been shown
in [64].

By inserting explicit expressions one furthermore finds

bl(x) = e
βh
2

(l+1)
q
(
x− iγ

2 (l + 2)
)

q
(
x+ iγ

2 l
) φ

(
x− iγ

2 (l −m)
)

∏l
p=1 φ

(
x+ iγ

2 (l −m− 2p)
) Λ(l−1)(x)

bl(x) = e−
βh
2

(l+1)
q
(
x+ iγ

2 (l + 2)
)

q
(
x− iγ

2 l
) φ

(
x+ iγ

2 (l −m)
)

∏l
p=1 φ

(
x+ iγ

2 (2 + l +m− 2p)
) Λ(l−1)(x)

bl and bl are related to Yl−1 by

bl

(
x+

iγ
2

)
bl

(
x− iγ

2

)
= Yl−1(x) . (2.149)

Employing the anz-property of Λ(l), it is possible to convert the functional relations into integral
equations for the auxiliary functions, eliminating the unknown q-function. We list some properties of
the auxiliary functions.

• bl and bl are related by complex conjugation and the substitution βh → −βh. They approach
constant values for |x| → ∞:

lim
|x|→∞

bl(x) = e
βh
2

(l+1) sinh βh
2 l

sinh βh
2

lim
|x|→∞

bl(x) = e−
βh
2

(l+1) sinh βh
2 l

sinh βh
2

.

Therefore

lim
|x|→∞

Bl(x) = e
βh
2
l sinh βh

2 (l + 1)

sinh βh
2

lim
|x|→∞

Yl(x) = lim
|x|→∞

yl(x)− 1 =

[
sinh βh

2 (l + 1)

sinh βh
2

]2

.
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• With a glance to eqs. (2.146), (2.149), it is possible to extract the functional form of the zeros
in yk, bl, bl. Make use of

tanh
(
ax− i

π

4

)
tanh

(
ax+ i

π

4

)
= 1 , a ∈ R . (2.150)

By comparing with eq. (2.150), one recognizes that eqs. (2.146), (2.149) determine the functional
form of the zeros uniquely:

yk(x) =: tanh2N

(
π

2γ
x

)
ỹk(x) , bl(x) =: tanhN

(
π

2γ
x

)
b̃l(x) (2.151)

ỹk and b̃l are then free of zeroes in the strip of interest. One proceeds similarly with bl.

We now want to convert the functional relations into integral equations. Therefore, the logarithmic
derivatives of the zero-free auxiliary functions and the eigenvalue are Fourier transformed (note that
these display zero asymptotes for |x| → ∞). The shifts in the arguments of the functions appear then
as exponential pre-factors in Fourier-space, resulting into convolutions with exponentially decaying
kernels in the direct space after transforming back and integrating twice, taking account of the known
asymptotes. Explicitly, for the y-hierarchy one finds

ln yk(x) = δk,m2N ln tanh
(
π

2γ
x

)
+ [s ∗ (lnYk−1 + lnYk+1)] (x) , k ≤ l − 2

ln yk(x) = δk,m2N ln tanh
(
π

2γ
x

)
+
[
s ∗ (lnYk−1 + ln BlBl)

]
(x) , k = l − 1

s(x) = Fk
[

1
2 cosh γk

]
Next, remember the analyticity of Λ̃(l)(x) in the strip Imx ∈ [−γ/2, γ/2]. This means that ln Λ(l) can
equally be Fourier transformed along the two paths x± iγ/2,

e−
γ
2
k Fk

[
ln Λ̃(x− iγ/2)′

]
= e

γ
2
k Fk

[
ln Λ̃(x+ iγ/2)′

]
. (2.152)

Care has to be taken that the transforms of the different functions are done in their respective anz-
domains. q(x− iγl/2), q(x+ iγl/2) are anz in

− π + γ

(
l − 1

2

)
< x <

γ

2

−π − γ

2
< x < −γ

(
l − 1

2

)
,

respectively. To obtain a common anz strip with Λ(l), one shifts the argument x + iγl/2 in the
q-functions to x+ i(γl/2− π).

One expresses the brackets on the left-hand and right-hand site of eq. (2.152) in terms of
Fk[ln B′l], Fk[ln B

′
l], Fk[lnλ′] according to eqs. (2.147). In the resulting equation, the q functions

are isolated and written in terms of Fk[ln B′], Fk[ln B
′],Fk[lnφ′]. One then takes the Fourier trans-

form of the logarithmic derivative of bl and inserts the expression for Fk[ln q′]. One is left with

Fk[ln b′l] =
sinh π−γ(l+1)

2 k

2 cosh γ
2k sinh π−γl

2 k

[
Fk[ln B′l]− e−γk Fk[ln B

′
l]
]

+
1

2 cosh γ
2k
Fk[lnY ′l−1] + Fk[d′φ] ,
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and similarly for ln bl. The driving term Fk[d′φ] consists of the Fourier transforms of all φ-factors which
appear in the above expression. They account for the zero of ln bl and for the poles of the different func-
tions. Being aware of the common strip of analyticity, they are contracted to Fk[ln tanh2N (π/(2γ)x)].
This result can be anticipated by eq. (2.151): The functional form of the zeroes is known. Thus

ln bl(x) = ln tanhN (π/(2γ)x) +
βh

2 (1− lγ/π)
+ [s ∗ lnYl−1](x)

+[k ∗ ln Bl](x)− [k ∗ ln Bl](x− iγ + iε)

ln bl(x) = ln tanhN (π/(2γ)x)− βh

2 (1− lγ/π)
+ [s ∗ lnYl−1](x)

+[k ∗ ln Bl](x)− [k ∗ ln Bl](x+ iγ − iε)

k(x) =
1

2π

∫ ∞
−∞

sinh π−γ(l+1)
2 k

2 cosh γ
2k sinh π−γl

2 k
eikx dk .

Shifts by ±iε ensure integrability. They shall not be written down explicitly in the ongoing. The
βh-dependent constant has been determined such that the asymptotes x→∞ are the same on both
sides. These are discussed later. Finally, the largest eigenvalue is given by the regular part of the
functions Bl, Bl, (see eq. (2.147)). The non-regular terms are traced back to the fact that we operated
with the non-normalized eigenvalue. So

ln Λ(x) = [s ∗ ln BlBl](x)

One now performs the shift x → x + iγ/2 which reverses eq. (2.138). It is done simultaneously with
the replacement N = iβD. The equations rest the same, except the driving-term, which is converted
to

ln tanhN (π/(2γ)x)→ −2Dβ arctan e−
π
γ
x
.

Then the logarithm of the largest eigenvalue represents the free energy of the impurity f ,

ln Λ(x0) = −βfI

fI = −T
∫ ∞
−∞

ln[Y2S ](x)
2γ coshπ/γ(x− x0)

dx .

Lastly, rescale x → γ/πx. After this substitution, the isotropic limit γ → 0 can be directly carried
out. Finally, by translation of the spectral parameter the bandwidth D can be absorbed. Substitute

x→ −x− ln(2Dβ) .

Then the limit D → ∞ can be taken, leaving −ex as spectral dependent driving term. Defining the
temperature scale

TK = 2De−πx0/γ , (2.153)
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one is left with the following system of NLIE (l = max(l,m)):

y(x) = d(x) + [k̂ ∗Y](x) (2.154)

y :=
(
ln y1, ln y2, · · · , ln yl−1, ln bl, ln bl

)T
Y :=

(
lnY1, lnY2, · · · , ln Bl, ln Bl

)T
d(x) :=

0, 0, . . . , 0, −ex︸︷︷︸
mthentry

, 0, . . . , 0, cβh,−cβh


T

k̂(x) =



0 s(x) 0 · · · · · · 0

s(x) 0 s(x) · · ·
...

0
. . . . . . . . . · · · 0

0 . . . s(x) 0 s(x) s(x)
0 . . . 0 s(x) k(x) −k(x− iπ)
0 . . . 0 s(x) −k(x+ iπ) k(x)


(2.155)

k(x) =
1

2π

∫ ∞
−∞

sinh π
2k
(
π
γ − (l + 1)

)
2 cosh πk

2 sinh π
2k
(
π
γ − l

) eikx dk

γ→0
=

1
2π

∫ ∞
−∞

e−
π
2
|k|

2 cosh πk
2

eikx dk (2.156)

s(x) =
1

2 coshx

c =
1

2(1− lγ/π)
γ→0
=

1
2
.

The integration kernel k depends on the entire system size via l if γ 6= 0. The asymmetric driving
term −ex in the m-th equation gives rise to different asymptotes in the limits x→∞, x→ −∞. The
x → −∞ asymptotes of the auxiliary functions can be read of their definition eqs. (2.145), (2.147).
For x → ∞, however, the exponentially large driving term in the m-th equation decouples the first
m− 1 equations from the last l−m+ 1 ones. Denote limx→∞ lnYj by lnY (∞)

j . The resulting system
for the first m− 1 functions

ln y(∞)
j =

1
2

lnY (∞)
j−1 Y

(∞)
j+1

ln y(∞)
1 =

1
2

lnY (∞)
2 (2.157)

ln y(∞)
m−1 =

1
2

lnY (∞)
m−2 (2.158)

is solved by

Y
(∞)
j =

[
sinh(ja+ b)

sinh a

]2

; (2.159)

The constants a, b are determined by the boundary conditions eqs. (2.157), (2.158): a = b = iπ
m+2 .
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Thus

Y
(∞)
j<m =

[
sin π

m+2(j + 1)
sin π

m+2

]2

(2.160)

As to j ≥ m, the system reads

ln y(∞)
j =

1
2

lnY (∞)
j−1 Y

(∞)
j+1 (2.161a)

lnY (∞)
m = 0 (2.161b)

ln b
(∞)
l =

βh

2
(
1− γ

π l
) +

1
2

lnYl−1 +
ln B

(∞)
l − ln B

(∞)
l

2
1− γ

π (l + 1)
1− γ

π l
. (2.161c)

One remarks that there are l −m+ 1 equations, formally identical to the l + 1 equations in the limit
x → −∞. The Y -hierarchy, eq. (2.161a), is again solved by eq. (2.159), with different boundary
conditions. Eq. (2.161b) leads to b = a(1−m). As to ln Bl, we make the ansatz

ln B
(∞)
l = ln

[
ea(l−m) sinh a(l −m+ 1)

sinh a

]
ln b

(∞)
l = ln

[
ea(l−m+1) sinh a(l −m)

sinh a

]
,

allowing for an effective rescaling of the magnetic field. Eq. (2.161c) is solved provided that

a =
βh

2
(
1− γ

πm
) . (2.162)

Note that since a depends on m and not on l, the relation BlBl = Yl, l ≥ m, originating in the closure
of the fusion hierarchy (eq. (2.148)) still holds. In the isotropic limit, the expressions reduce to:

Y
(∞)
j≥m =

[
sinh βh

2 (j −m+ 1)

sinh βh
2

]2
h=0= (j −m+ 1)2

B
(∞)
j≥m = e

βh
2

(l−m) sinh βh
2 (l −m+ 1)

sinh βh
2

h=0= l −m+ 1 .

The result implied by eq. (2.162) is a unique solution of the system (2.161a)-(2.161c), determining
the only free parameter a. This is in contradiction with findings of Schlottmann, [79,80].
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The asymptotes are summarized in the following:

lnY (−∞)
j = 2 ln sinh βh

2
(j+1)

sinh βh
2

β→∞→ j βh lnY (∞)
j<m = 2 ln

sin π
m+2

(j+1)

sin π
m+2

lnY (∞)
j≥m = 2 ln sinh βh

2
(j−m+1)

sinh αβh
2

β→∞→ (j −m)αβh

ln B
(−∞)
l = ln

[
e
βh
2
l sinh βh

2
(l+1)

sinh βh
2

]
β→∞→ l βh ln B

(∞)
l = ln

[
e
αβh

2
(l−m) sinh αβh

2
(l−m+1)

sinh αβh
2

]
β→∞→ (l −m)αβh

ln B
(−∞)
l = ln

[
e−

βh
2
l sinh βh

2
(l+1)

sinh βh
2

]
β→∞→ 0 ln B

(∞)
l = ln

[
e−

αβh
2

(l−m) α sinh αβh
2

(l−m+1)

sinh αβh
2

]
β→∞→ 0

ln y(−∞)
j = ln

(
elnY

(−∞)
j − 1

)
β→∞→ j βh ln y(∞)

j<m = ln
(

elnY
(∞)
j<m − 1

)
ln y(∞)

j≥m = ln
(

elnY
(∞)
j≥m − 1

)
β→∞→ (j −m)αβh

ln b
(−∞)
l = ln

[
e
βh
2

(l+1) sinh βh
2
l

sinh βh
2

]
β→∞→ l βh ln b

(∞)
l = ln

[
e
αβh

2
(l−m+1) sinh αβh

2
(l−m)

sinh αβh
2

]
β→∞→ (l −m)αβh

ln b
(−∞)
l = ln

[
e−

βh
2

(l+1) sinh βh
2
l

sinh βh
2

]
β→∞→ −βh ln b

(∞)
l = ln

[
e−

αβh
2

(l−m+1) sinh αβh
2

(l−m)

sinh αβh
2

]
β→∞→ −αβh

(2.163)

with α = (1−mγ/π)−1.

One is allowed to close the hierarchy after l + n equations, n arbitrary, as was argued above.
Especially, n→∞ is allowed. In the isotropic limit, this results in

lnY0 = 0
ln yj = −δj,mex + [s ∗ lnYj−1Yj+1] (x) (2.164)

lim
j→∞

ln yj
j

= βh

−βfI =
∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

) lnY2S(x) dx .

These are the TBA equations, found by Tsvelick [89] for the isotropic spin-S, m-channel Kondo model.
In contrast to the TBA approach, the system of NLIE comprises the same information in a finite set,
namely max(l,m) + 1 many, equations. This makes the latter formulation particularly useful for
numerical calculations. As will be seen, also analytical investigations can be compactly performed.

Numerical calculations of the entropy, magnetization, specific heat and magnetic susceptibility are
based on systems of NLIE for these quantities themselves - rather than taking numerically derivatives
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of the free energy with respect to temperature or the magnetic field.

y(ν)
κ :=

(
y

(ν)
1,κ, y

(ν)
2,κ, · · · , y

(ν)
l−1,κ, b

(ν)
l,κ , b̄

(ν)
l,κ

)T
Y(ν)
κ :=

(
Y

(ν)
1,κ , Y

(ν)
2,κ , · · · , Y

(ν)
l−1,κ, B

(ν)
l,κ , B̄

(ν)
l,κ

)T
Y

(1)
j,κ =

yj
1 + yj

y
(1)
j,κ (2.165)

Y
(2)
j,κ =

yj
1 + yj

y
(2)
j,κ +

yj
(1 + yj)2

(
y

(1)
j,κ

)2

y(ν) = d(ν)
κ + k̂ ∗Y(ν) (2.166)

The index κ stands for one of the symbols S,m,C, χ, abbreviating entropy, magnetization, specific
heat, susceptibility, respectively. f (ν) denotes the ν-th derivation of f with respect to the relevant
parameter. ν = 1 for κ = S,m and ν = 2 for κ = C,χ.

d(1)
S = (0, . . . , 0, −ex︸︷︷︸

mthentry

, 0, . . . , ch,−ch)T

d(1)
m = (0, . . . , 0, c,−c)T

d(2)
C = (0, . . . , 0)T

d(2)
χ = (0, . . . , 0)T

f(T, h) = −T
∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

) lnY2S(x) dx (2.167)

S(T, h) =
∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

) [lnY2S − βY (1)
2S,S

]
(x) dx

m(T, h) =
∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

)Y (1)
2S,m(x) dx

C(T, h) =
∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

)Y (2)
2S,C(x) dx

χ(T, h) =
1
T

∫ ∞
−∞

1

2π cosh
(
x+ ln T

TK

)Y (2)
2S,χ(x) dx

Let us ask the question: Are the sets of NLIE (2.78a)-(2.78c) and (2.154) minimal in the sense
that there does not exist a set containing less equations which exactly describes the thermodynamics?

Consider first eqs. (2.78a)-(2.78c). Eqs. (2.78a), (2.78b) are redundant: Eq. (2.78b) results from
eq. (2.78a) by complex conjugation and negating h → −h; there are only two independent NLIE.
On the other hand, there are two independent sets of BAN, and therefore two unknown q-functions,
namely q+ and q

(h)
+ . The two others, q− and q

(h)
− , also result upon complex conjugation and h→ −h

from the former. So the set of eqs. (2.78a)-(2.78c) is minimal.
In the same spirit, eq. (2.154) constitutes a set of l seemingly independent equations. On the

other hand, there is only one set of BAN, composed of l subsets. Each subset is characterized by
the imaginary part of its members, eq. (A.78). Consequently, it should be possible to find only one
equation which contains all information of the set eq. (2.154). This does not mean that such an
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equation is better conditioned, especially for numerical investigations. Further exploration of this
statement may be the task of future research.

For the time being, we will be content with the set of eqs. (2.154), obtained from closing the
fusion hierarchy. These are as many equations as the maximum of the impurity’s and host’s degrees
of freedom. In the next two chapters, they will be solved analytically in some limitting regions of the
external parameters and numerically over the full parameter range.



Chapter 3

Analytical Investigation

The system of NLIE eq. (2.154) is analytically solvable in certain limiting ranges of the external
parameters β, h. The natural scale for T given by eq. (2.167) is TK . One expects a similar scale
Th ∝ TK , Th = O (TK) for h. These scales provide the reference points for high energies (T, h� TK)
or low energies (T, h� TK).

The analytical investigations are carried out in two steps. The first part contains the discussion of
low temperatures. In the second part, the limit of high temperatures is dealt with.

3.1 Low temperature evaluation

3.1.1 2S = m: Lowest orders

The first non-vanishing order in a low temperature, low field expansion of the free energy in the exactly
screened case can be obtained by approximating the corresponding integral

lim
T,h�TK

fI(T, h) = − lim
T,h�TK

T

2π

∫ ∞
−∞

1

cosh
(
x+ ln T

TK

) ln
[
BlBl

]
(x) dx

= − T 2

πTK

∫ ∞
−∞

ex ln
[
BlBl

]
(x) dx+O

(
T 3

TK

)
(3.1)

The temperature and the field are supposed to be small compared to TK . The integral in eq. (3.1) exists
if lim|x|→∞ ln

[
BlBl

]
(x) = O

(
e−x−δ|x|

)
, δ > 0. Since ln BlBl approaches a constant for x→ −∞, this

is a restriction on the behaviour in the region x → ∞: An exponential decay only occurs for l = m,
so that the validity of eq. (3.1) is restricted to the exactly screened case. The above approximation
makes sense if T � TK (so that higher-order contributions can be neglected) and h� TK . The latter
condition follows since the largest error is certainly made in the region x < 0 of the integrand, where
the constant asymptotes of ln Bl, ln Bl increase monotonously with βh. It is exciting to observe that
with these approximations, the integral in eq. (3.1) can be done exactly, by a generalization of the
method discovered in [58] and applied to the isotropic spin-S Heisenberg chain in [84].

In the notation of eq. (2.154), consider the integral

I(T, h) :=
∫ ∞
−∞

(
d

dx
y(x)

)
·Y(x)− y(x) ·

(
d

dx
Y(x)

)
dx . (3.2)

First use the fact that the kernels are local and the auxiliary functions (symbolically denoted by f in

61
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the following equation) have constant asymptotes:

d
dx

[s ∗ f ](x) = [s ∗ f ′](x) .

Secondly, one employs the symmetry of the integration kernels in the matrix k̂, namely k̂(x − ia) =
k̂(−x+ ia), a ∈ R. It leads to the cancellation of all the convolutions in the integral eq. (3.2):∫ ∞

−∞
lnYj(x)[s ∗ lnY ′k](x)dx =

∫ ∞
−∞

[s ∗ lnYj ](x)(lnYk)′(x)dx

⇒ I(T, h) = −2
∫ ∞
−∞

ex ln
[
BmBm

]
(x)dx− cβh

(
ln Bm − ln Bm

)∞
−∞

= −2
∫ ∞
−∞

ex ln
[
BmBm

]
(x)dx+ c(βh)2m (3.3)

Thus

lim
T,h�TK

fI(T, h) =
T 2

2πTK
I(T, h)− c

2πTK
h2l . (3.4)

From eq. (3.2), it follows that I(T, h) = I(T,−h). Here we restrict ourselves on the first non-vanishing
orders in T , h, so that we set I(T, h) = I(T, 0) + O(h2) in eq. (3.4) and neglect the term O(T 2h2).
Then one finds a closed expression of the integral I(T, 0) ≡ I(T ), exploiting that the asymptotes of
the auxiliary functions do not depend on βh: substitute y := yk(x), b := bm(x), b := bm(x) in eq.
(3.2), leading to

I(T ) =
m−1∑
k=1

∫ yk(∞)

yk(−∞)

ln(1 + y)
y

− ln y
1 + y

dy +
∫ bm(∞)

bm(−∞)

ln(1 + b)
b

− ln b
1 + b

db

+
∫ bm(∞)

bm(−∞)

ln(1 + b)
b

− ln b
1 + b

db

=
m−1∑
k=1

[∫ yk(∞)

0

ln(1 + y)
y

− ln y
1 + y

dy −
∫ yk(−∞)

0

ln(1 + y)
y

− ln y
1 + y

dy

]

−2
∫ bm(−∞)

0

ln(1 + b)
b

− ln b
1 + b

db .

Since h = 0 here, bm(±∞) = bm(±∞). The crucial observation at this point is that

I(T ) = 2 ·
m−1∑
k=1

[L+ (yk(∞))− L+ (yk(−∞))]− 4L+ (bm(−∞)) (3.5)

= −2 ·
m−1∑
k=1

[
L

(
k(k + 2)
(k + 1)2

)
− L

(
sin πk

m+2 sin π(k+2)
m+2

sin2 π(k+1)
m+2

)]
− 4L

(
m

1 +m

)
. (3.6)

Dilogarithm functions were identified; a good account is Lewin’s book, [65]. L+(x) is related to Rogers’
dilogarithm function by L+(x) = L

(
x

1+x

)
,

L+(x) :=
1
2

∫ x

0

ln(1 + y)
y

− ln y
1 + y

dy

L(x) := −1
2

∫ x

0

ln(1− y)
y

+
ln y

1− y
dy
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In eq. (3.6), the asymptotic values yk(±∞) and bm(±∞) have been inserted explicitly. Ref. [51]
contains a collection of relations satisfied by L, among which the following three are most useful in
the present case:

L(x) + L(1− x) =
π2

6

2L
(

1
m+ 1

)
+
m−1∑
k

L

(
1

(1 + k)2

)
=

π2

6

m−1∑
k=1

L

(
sin2 π

m+2

sin2 π(k+1)
m+2

)
+
π2

6
=
π2

6
3m
m+ 2

Consequently,

I = −2π2 m

m+ 2
. (3.7)

Combining results (3.3), (3.7), one gets the first term in an expansion of the free energy for low fields
and temperatures:

lim
T,h�TK

f(T, h) = − T 2

πTK

∫ ∞
−∞

ex ln
[
BmBm

]
(x) dx = − T 2

2TK
πm

m+ 2
− m

4(π −mγ)
h2

TK
. (3.8)

The anisotropy γ only enters through the βh-dependent driving terms in eq. (2.154).
From eq. (3.8),

lim
T,h�TK

C(T ) =
T

TK

πm

m+ 2
lim

T,h�TK
χ(h) =

1
TK

m

2(π −mγ)
. (3.9)

TK is seen to be a normalized to the single-channel low temperature susceptibility, up to a factor of
2π. That’s why it is referred to as ”low temperature scale”.1

According to eq. (3.9), the impurity’s contribution to the specific heat and magnetic susceptibility
are Fermi liquid like at T, h � TK in the exactly screened case. This is the regime of ”strong cou-
pling”: The anti-ferromagnetic spin exchange leads to the formation of a many particle state between
the impurity and the host electrons, which screens the impurity’s magnetic moment. Elementary
excitations of this bound state are Fermi like. Noziéres [69, 70] built up a phenomenological Fermi
liquid theory to describe this regime.

This Fermi liquid behaviour is to be compared with the host, eqs. (2.120), (2.121). Since in the
present context, the host consists of spin-1/2-fermions of m non-interacting channels (or of m flavors),
the density of states is enhanced by a factor of m.

lim
T,h→0

Ch(T ) = T
mπ2

3
ρh lim

T,h→0
χh(h) =

mρh
4

. (3.10)

Define the coefficient of the linear T -dependence of C0 by δ0. The low-temperature Wilson ratio R is
defined and calculated as

R := lim
T→0

χ

χh

δh
δ

=
2(m+ 2)

3
(
1−m γ

π

) ≥ 2 . (3.11)

The lower bound 2 is reached for m = 1, γ = 0. The striking feature in comparing eqs. (3.9), (3.10)
is that C is reduced by a factor of 3/(2m+ 4) in comparison to Ch, if the constant ρh is chosen such
that χ = χh for γ = 0. This may be interpreted by the localization of the impurity: Contrary to the
host electrons, it does not move, so that the specific heat is reduced.

1TK , defined by eqs. (2.107), (2.153), could have been found by scaling the (non-scaled) NLIE in the low-temperature
limit and taking eq. (3.9) as definition.
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3.1.2 Linearization for T = 0, h 6= 0

The limit T → 0 can be performed by linearizing the NLIE for h 6= 0. From eqs. (2.163) one observes
that if h 6= 0, in the limit β →∞ the asymptotic values in the limit x→ −∞ of the auxiliary functions
scale with βh, with one exception, namely ln Bl. In the limit β →∞, ln bl � 0, so that

lim
β�1

ln Bl = 0 +O
(

e−βh
)
.

Thus one can neglect ln Bl with exponential accuracy.
One introduces the scaling functions εj ,

ln yj(x) =: βhKm εj(−x+ lnβhKm) j = 1, . . . , l − 1
ln bl(x) =: βhKm εl(−x+ lnβhKm) .

lnKm is defined by the zero of ln ym,

ln ym(lnβhKm) = 0 .

The shift in the spectral parameter is performed in order to deal with functions which have a zero
in the origin,

εm(0) = 0 . (3.12)

The ε-functions are inserted into the original set of NLIE. It is convenient to define a matrix Â−1

by its Fourier transform

Â−1
i,j (k) :=

{
1−Fk[k] i = j = l
δi,j −Fk[s](δi,j+1 + δi,j−1) otherwise

. (3.13)

In order to write the NLIE solely in terms of ε-functions, manipulate

ln y = (ln y − lnY ) + lnY = − ln
(

1 + e− ln y
)

+ ln
(

1 + eln y
)
.

Then the ε functions fulfill the equations[
Â−1
ij ∗

1
βhKm

ln
(

1 + eβhKmεj
)]

(x) = −e−xδi,m +
c

Km
δi,l +

1
βhKm

ln
(

1 + e−βhKmεi(x)
)

(3.14)

c =
1

2(1− lγ/π)
.

The logarithms can be linearized by noting that

εj(x)


> 0 , x > lnKm ; j = m
< 0 , x < lnKm ; j = m
> 0 ; otherwise

. (3.15)

First consider the case j > m. Both asymptotic values of lnYj scale linearly with βh, such that one
expects the whole function to do so. Explicitly, in the limit β →∞,

lim
β�1

ln
(

1 + eβhKmεm<j≤l
)

= βhKmεm<j≤l +O
(

e−βh
)
.
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Because of the zero of εm,

ln
(

1 + eβhKmεm(x)
)

= βhKmεm(x)θ(x) + ln
(

1 + e−βh|εm(x)|
)

= βhKmεm(x)θ(x) + ln
(

1 + e−βhε
′
m(0)|x|

)
+O

(
e−βhε

′′
m(0)x2

)
=: βhKmθ(x)

(
εm,0(x) + Ũm(x)

)
+
π2

6
1

βhKm ε′m(0)
δ(x) . (3.16)

In the region around x = 0, the leading behaviour of εm(x) is expected to be given by its tangent,

εm(x) = xε′m(0) +O(x2ε′′m) .

In eq. (3.16), a formal saddle-point approximation of the sharply peaked ”integrand”
(

1 + e−βhε
′
m(0)|x|

)
has been made, since it will be seen to occur exclusively in convolutions with local kernels. Lastly,
εm = εm,0 + Ũm is split into two functions. It has to be determined iteratively: First, the linearization

ln
(

1 + eβhKmεm(x)
)

= βhKmθ(x)εm,0(x)

is made; in a second step, Ũm is derived from the known εm,0. We will see below that the first T -
dependent correction to εm,0 is of order O(T ), such that it gives a contribution of O

(
T 2
)

in the free
energy. The physical picture behind this formalism is intuitive: lnKm is the ”Fermi-point” which
limits the ”Fermi sea”, completely filled for T = 0. Then the system is described by the ”bare”
energy function εm,0. The sharp cutoff is softened with increasing temperature, the ”bare” functions
becoming ”dressed” to εm. This dressed energy picture is common in the low-temperature description
of integrable models, see [45,48].

If j < m, one proceeds somehow similarly,

ln
(

1 + eβhKmεj(x)
)

= βhKmεj(x)θ(x) + ln
(

1 + e−βhKmε
′
j(0)x

)
θ(x) + ln

(
1 + eβhKmεj(x)

)
θ(−x)

= βhKmθ(x)
(
εj,0(x) + Ũj(x)

)
+ lnY (∞)

m θ(−x) . (3.17)

However, the last summand does not scale with βh, but is rather constant in the limit x → −∞.
Contrary to εm(x), which has a zero at x = 0 with known derivative, the βhεj<m(x) show step-like
behaviour, with constant, i.e. non βh-dependent asymptotes at −∞. In order to consistently linearize
the whole system of auxiliary functions, let us set

lim
x�0

εj<m,0(x) ≡ 0 . (3.18)

By doing so, one has to accept that for the function εj<m, the first correction to εj,0 is of constant
order, giving a contribution O(T ) to the free energy. Higher orders for j < m need the knowledge of
the functions around the origin (especially ε′j(0

+)), where the ”crossover” from constant behaviour to
βh-scaling takes place. The analysis of this nonlinear dependence is beyond the scope of this work
and will not pursued further here. Nonetheless, one can treat the first T -dependent contribution to
the specific heat for 2S ≥ m by formally dealing with the second derivative of the NLIE with respect
to T .

For further calculations, we introduce the shorthand-notations

εj(x) θ(x) =: ε+j (x) , εj(x) θ(−x) =: ε−j (x)
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for functions in direct space. Their Fourier transforms are denoted as

Fk
[
ε+j

]
=

1
2π

∫ ∞
−∞

ε+j (x)eikxdx

=: ε+j (k) ,

where the index + denotes analyticity in the upper half of the complex k-plane. Note that the Fourier
transform is defined with changed ”-”-signs compared to eq. (2.73). Then the system (3.14) is, up to
the indicated orders, written as

j < m : ε+j,0(k) + Ũ+
j (k) + Âj,m(k)

(
ε−m,0(k) + Ũ−m(k)

)
+

lnY (∞)
j

βhKm
Fk[θ(−x)]

= Âj,m(k)dm(k) + Âj,l(k)
c

Km
+

1
βhKm

m−1∑
p=1

Âjp(k) lnY (∞)
p Fk[θ(−x)]

j ≥ m : ε+j,0(k) + ε−j,0(k)δj>m + Ũ+
m(k)δj,m + Âj,m(k)

(
ε−m,0(k) + Ũ−m(k)

)
+

π2

6 (βhKm)2ε′j(0)
δ(k)

= Âj,m(k)dm(k) + Âj,l(k)
c

Km
+ Âj,m(k)

π2

6(βhKm)2ε′m(0)

+
1

βhKm

m−1∑
p=1

Âjp(k) lnY (∞)
p Fk[θ(−x)] . (3.19)

dm(k) := Fk [−e−x] has been defined, the inverse of Â−1 is calculated below.
Define a new energy scale

Th :=
TK
Km

. (3.20)

Then in complete analogy, the free energy is given by

lim
β→∞

f(β, h) = −hKm

2π

∫ ∞
0

1

cosh
(
x+ ln h

Th

)εl,0(x) dx+ ∆fl(T, h)δl≥m .

By the same reasons as described previously, we are able to calculate the first T -correction to f(T =
0, h) only for l ≥ m.

We begin with the calculation of εj,0. Until the calculation of Ũm(x), the index 0 is suppressed,
εj,0 =: εj .

The free energy is only h-dependent,

f(h) = −hKm

2

∫ ∞
−∞

1
cosh πk

2

εl(k)e−ik ln h
Th dk

M(h) = −∂f(h)
∂h

=
Km

2

∫ ∞
−∞

1− ik
cosh πk

2

εl(k)e−ik ln h
Th dk . (3.21)

We aim at calculating the magnetization.
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Under-screened and exactly screened cases, l ≥ m

First consider the case l > m. The resulting linear system is written in a compact form:

~ε(k) :=
(
Fk
[
ε+1
]
, . . . ,Fk

[
ε+m
]
,Fk [εm+1] , . . . ,Fk [εl]

)T
=:

(
ε+1 (k), . . . , ε+m(k), . . . , εl(k)

)T
~d(k) :=

0, . . . , 0, dm(k)−Fk
[
ε−m
]︸ ︷︷ ︸

mthentry

, 0, . . . ,
c

Km
δ(k)


~ε(k) = Â(k) · ~d(k) . (3.22)

All ε(+)
j now can be expressed in terms of ε−m and the driving terms. The matrix Â−1(k) is inverted

to give a matrix Â(k) with elements

[
Â(k)

]
i,j

=
1

detÂ−1(k)
αi,j(k) , (3.23)

αi,j being the adjunct to
[
Â−1

]
i,j

in detÂ−1. Both quantities are seen to satisfy recursion relations,

which can be solved by applying the Z-transformation. In appendix B.1, one finds:

detÂ(k) =
sinh π

γ
πk
2(

2 cosh πk
2

)l
sinh

(
π
γ − l

)
πk
2

(3.24)

Âj,j(k) =
2 cosh πk

2 sinh j πk2 sinh
(
π
γ − l

)
πk
2

sinh πk
2 sinh

(
π
γ − (l − j)

)
πk
2

, j < l

Âj,l(k) =
2 cosh πk

2 sinh j πk2 sinh
(
π
γ − l

)
πk
2

sinh πk
2 sinh π

γ
πk
2

Other matrix elements are not needed. Then

ε+m(k)
Âm,m(k)

= −ε−m(k) + dm(k) +
Âm,l(k)

Âm,m(k)
c

Km
δ(k) (3.25)

εl(k) =
Âm,l(k)

Âm,m(k)
ε+m(k) +

(
Âl,l(k)−

Â2
m,l(k)

Âm,m(k)

)
c

Km
δ(k) . (3.26)

Eq. (3.25) is solved by observing that Âm,m can be factorized into two functions G±, G+ (G−) being
analytic in the upper (lower) half of the complex k-plane. This factorization is done using

Γ
(

1
2

+ ik
)

Γ
(

1
2
− ik

)
=

π

coshπk

Γ(1 + ik) Γ(1− ik) =
πk

sinhπk
.
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Then one finds

Âm,m(k) = G+(k)G−(k) (3.27)

G+(k) =

(
2πm

(
1− γ

π l
)

1− γ
π (l −m)

) 1
2 Γ

(
1− ik2

)
Γ
(

1− ik2
(
π
γ − (l −m)

))
Γ
(

1
2 − ik2

)
Γ
(
1− imk

2

)
Γ
(

1− ik2
(
π
γ − l

)) e−iak

G−(k) = G+(−k) .

The constant a is chosen such that lim|k|→∞G±(k) = 1. It is not explicitly determined here, but
later in the isotropic limit γ → 0. Consider the derivative of eq. (3.25) with respect to the spectral
parameter in direct space (the constant then vanishes). We find

Fk
[
(ε+m)′

]
= − 1

2πi
G+(k)G−(−i)

k + i
(3.28)

ε+m(x) =
∫ x

0
(ε+m)′(x′)dx′ (3.29)

ε+m(k) =
1

2π
G+(k)G−(−i)

(k + i0+)(k + i)
.

Eq. (3.29) follows since εm(x = 0) = 0. The constant Km can be determined from its defining property
εm(x = 0) = 0 in direct space. From eq. (3.25), one calculates εm(x = 0) =

∫∞
−∞ εm(k)dk.

0 =
∫ ∞
−∞

ε+m(k)
Âm,m(k)

dk −
∫ ∞
−∞

ε+m(k)dk −
∫ ∞
−∞

dm(k)dk −
Âm,l(0)

Âm,m(0)
c

Km∫
C−

ε+m(k)
Âm,m(k)

dk = −1 +
G−(−i)
G−(0)

∫
C+
ε+m(k)dk = 0

∫
C−
dm(k)dk = 1

Km = c
Âm,l(0)

Âm,m(0)
G−(0)
G−(−i)

. (3.30)

The integrals are done by closing the integration contour over the upper (C+) or lower (C−) half plane.
One is now ready to compute εl in Fourier space, by inserting εm in eq. (3.26).

εl(k) =
sinh πk

2

(
π
γ − (l −m)

)
sinh πk

2
π
γ

ε+m(k) +

(
All(0)−

A2
m,l(0)

Am,m(0)

)
c

Km

The magnetization is written down from eq. (3.21),

M(h) =
Km

2
G−(−i)

2π

∫ ∞
−∞

sinh πk
2

(
π
γ − (l −m)

)
cosh πk

2 sinh πk
2

π
γ

iG+(k)
k + i0+

e−ik ln h
Th dk

+
c

2

(
Âll(0)−

Â2
m,l(0)

Âm,m(0)

)
(3.31)

=
m

4π3/2

(
1− γ

π
(l −m)

)∫ ∞
−∞

i
Γ
(

1
2 + ik2

)
Γ
(

1 + iπk2γ

)
Γ
(
1− ik2

)
Γ
(

1− iπk2γ

)
Γ
(

1 + ik2
(
π
γ − (l −m)

))
Γ
(
1− imk2

)
Γ
(

1− ik2
(
π
γ − l

))
×e−iak e−ik ln h

Th

k + i0+
dk +

l −m
2

(
1 +m

γ

π

)
. (3.32)
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The integral can be calculated by closing the contour in the lower (h > Th) or in the upper (h < Th)
half plane. This results in two power series in Th/h for h > Th and in h/Th for h < Th with integer
and non-integer powers, depending on the poles of the integrand. Although the determination of
the residuals is straightforward, we do not write down the power series here; it is quite lengthy and
does not give more physical insight. It is interesting however to extract the asymptotic behaviour for
h� Th, h� Th. In the latter case, the pole at k0 := −i0+ contributes,

M(h) →


l−m

2

(
1 +m γ

π

)
+O

((
h
Th

)2γ/π
)
, h� Th

l
2 +O

((
h
Th

)−2γ/π
)
, h� Th

(3.33)

Thus for h = 0, a non-integer rest-spin remains in the case γ 6= 0, l > m and h-dependent corrections
are of non-integer powers of h. This is in qualitative agreement with [79,80], who investigated the same
model by TBA-techniques. However, there is quantitative disagreement in the non-integer pre-factor.
It remains to be explored how this disagreement, which already appeared in the asymptotes of the
auxiliary functions, eq. (2.163), is solved. In [79, 80], the non-integer rest spin is traced back to a
quantum critical point at T = 0, H = 0 for the anisotropic over-screened model. We will come back
to this picture later.

In the isotropic limit γ → 0

lim
γ→0

G+(k) =
√

2πm
Γ
(
1− ik2

)
Γ
(

1
2 − ik2

)
Γ
(
1− ikm2

) (−ikl
2e

)−i lk
2
(
−ik(l −m)

2e

) ik(l−m)
2

e−iak

a =
1
2

(m lnm− l ln l + (l −m) ln(l −m)−m) < 0

lim
γ→0

Aml(k)
Amm(k)

= e−
π|k|

2
(l−m) =

(
−ik(l −m)

2e

)− ik(l−m)
2

(
ik(l −m)

2e

) ik(l−m)
2

M(h) =
m

4π3/2

∫ ∞
−∞

i
Γ
(

1
2 + ik2

)
Γ
(
1− ik2

)
Γ
(
1− imk2

) (
− ikl

2e

)−i kl
2
(

ik(l −m)
2e

)i
k(l−m)

2 e−ik(a+ln h
Th

)

k + i0+
dk

+
l −m

2
(3.34)

→
{

l−m
2 , h� Th
l
2 , h� Th

.

In the last line, only the leading behaviour due to the simple pole at −i0+ for high fields has been
included. The integral in eq. (3.34) has already been found by Tsvelick and Wiegmann, [92]. We want
to evaluate it explicitly, since it reveals exciting physical insight. First of all, distinguish between the
following cases of the analyticity properties of the integrand eq. (3.34) in the complex k-plane:

i) m = 1, l = 1: Simple poles occur in the upper half plane and a cut along the negative imaginary
axis. This case is illustrated in figure 3.1.

ii) m = 1, l > 1: The cut along the whole imaginary axis dominates the poles in the upper half plane
(the latter give power law contributions ∼ (h/Th)n, whereas the cut leads to ∼ (lnh/Th)−m, as
will be shown below).

iii) m = l 6= 1: Poles are distributed in the upper and lower plane, in the latter case dominated by
a cut along the negative imaginary axis.
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iv) 1 6= m < l 6= 1: A cut along the whole imaginary axis goes along with sub-leading poles in both
the upper and lower half planes.

b

6

-
-

×
×
×
×

6

� �

?

=k

<k

Figure 3.1: Integration contours in the exactly screened case l = m = 1. For h < Th, poles in the
upper half plane are encircled, for h > Th, one encounters a cut in the lower half plane and a pole
near the real axis.

Singularities in the lower (upper) half plane are relevant for h > Th (h < Th). Poles kn = i(2n+1), n =
0, 1, . . . in the upper half plane only give a contribution in the exactly screened case. They have
residuals −(−1)n2i/n!, such that the magnetization is a series

M(h < Th) m=l=
m√
π

∞∑
n=0

(−1)n

(2n+ 1)n!
Γ
(
n+ 1

2

)
Γ
(
m
(
n+ 1

2

)) (m (n+ 1
2

)
e

)m(n+ 1
2)

e(2n+1)a

(
h

Th

)2n+1

.

One recognizes the signature of a Fermi liquid in the first order : M(h) ∝ h and χ(h = 0) =const.
Upon inserting explicit values, one finds agreement with eq. (3.9). We shall establish this agreement
explicitly for arbitrary γ in section 3.1.2, eqs. (3.59), (3.60).

Let us draw our attention to the cut in the lower half plane, for values l ≥ m. The contour is
deformed in a way depicted in figure (3.1). Only the paths next to the cut give a non-zero contribution,
so the integral can be written

M(h > Th)− l

2
l>m=

− m

2π3/2

∫ ∞
0

Γ
(

1
2 + p

2

)
Γ
(
1− p

2

)
Γ
(
1− mp

2

) (
pl

2e

)−pl
2
(
p(l −m)

2e

) p(l−m)
2 sinπ pl2

p− 0+
e−(p+a) ln h

Th dp .

Substitute p lnh/Th =: q and expand the integrand in a Taylor series. All terms can be integrated.
We will content ourselves with a linearization of the integrand, using

Γ
(

1
2 + p

2

)
Γ
(
1− p

2

)
Γ
(
1− mp

2

) =
√
π

(
1− 1

2
(Cm+ 2 ln 2)p

)
,
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and C ≈ 0.5772 is the Euler constant. We find

M(h > Th)− l

2
l≥m= −ml

4

(
1

ln h
Th

+
m

2

ln ln h
Th

ln2 h
Th

+
A

ln2 h
Th

+O
(
ln−3 h/Th

))
A =

1
2

[−m lnm+ (m− 2) ln 2−m] . (3.35)

The contribution O(ln−2 h/Th) is absorbed by the definition

Th = e−AT̃h (3.36)

M(h > T̃h)− l

2
l≥m= −ml

4

 1
ln h

T̃h

+
m

2

ln ln h

T̃h

ln2 h

T̃h

+O
(

ln−3 h/T̃h

) (3.37)

Note that the ratio T̃h/TK does not depend on l.
Finally, upon ”encircling” the cut in the upper half plane, one only replaces the pre-factor l in eq.

(3.37) by l −m and sets − lnh/Th = lnTh/h:

M(h < T̃h)− l −m
2

l>m=
m(l −m)

4

(
1

ln T̃h
h

− m

2
ln ln T̃h

h

ln2 T̃h
h

+O
(
ln−3 Th/h

))
(3.38)

Note that this simple replacement does not hold for γ 6= 0, as can already be seen from the lowest
order, eq. (3.33).

The free spin value of the magnetization is approached logarithmically at high fields. This ”asymp-
totical freedom” in the ”low coupling limit” is a genuine feature of the Kondo model. An analogous
effect occurs for low fields in the under-screened case; however, the first correction is of opposite sign
compared to the high-temperature case, cf. eqs. (3.37), (3.38). Classical Fermi liquid behaviour ap-
pears at low temperatures if the impurity is exactly screened. The physics quantified by these results
has been given by Nozières [70] already before the exact solution of the Kondo model was known: At
high fields, corrections to the asymptotical freedom of the impurity spin are due to the weak antifer-
romagnetic coupling with the host particles. At low fields, the impurity spin is partially screened due
to strong antiferromagnetic exchange. Two kinds of interactions with this impurity-electron system
may occur: On the one hand, a weak ferromagnetic coupling of the residual spin S −m/2 with the
host, due to the Pauli principle (this explains the change of sign in the leading order on the rhs of eqs.
(3.37), (3.38)). On the other hand, a polarization of the bound complex by host electrons, analogously
to the Fermi liquid excitations at S = m/2. The latter are given by the poles and dominated by the
asymptotic Kondo interactions, reflected by the the cuts in the complex plane.

After the calculation of εj,0, one proceeds with Ũj . As pointed out above, corrections to εj>m,0 are
of exponentially small order O

(
e−βh

)
, which are negligible in comparison with corrections to εj≤m.

Since εl is essentially given by εm, consider the equation for εm. One defines a kernel k̃m(k)

1− k̃m := Â−1
mm(k) .

For m = 1, k̃1 ≡ k̃ is the integration kernel from eq. (2.156), with l = 1 there. Consider the case
j = m in eq. (3.19):

ε+m,0 + ε−m,0 + Ũ+
m + Ũ−m = dm +

Âm,l

Âm,m

c

Km
δ(k) + k̃mε

+
m,0 + k̃mŨ

+
m +

π2

6(βhKm)2ε′m(0)
k̃m

+
1

Âmm(k)
1

βhKm

m−1∑
p=1

Âmp lnY (∞)
p Fk[θ(−x)] . (3.39)
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The contribution of the bare function εm,0 is identified by eq. (3.25). Then eq. (3.39) determines Ũm,

Ũ+
m + Ũ−m = k̃mŨ

+
m +

π2

6(βhKm)2ε′m(0)
k̃m +

1
Âmm(k)

1
βhKm

m−1∑
p=1

Âmp lnY (∞)
p Fk[θ(−x)] . (3.40)

Corrections to εl,0 are given by corrections to εm,0 and result from inserting eq. (3.39) into eq. (3.26):

εl = εl,0 +
Âm,l

Âm,m

Ũ+
m +

π2

6(βhKm)2 ε′m(0)
δ(k) +

1
βhKm

m−1∑
p=1

Âmp lnY (∞)
p Fk[θ(−x)]

 (3.41)

+
m−1∑
p=1

Âlp
1

βhKm
lnY (∞)

p Fk[θ(−x)] .

Since there are two different orders of magnitude in the corrections (namely O(1/β) and O
(
1/β2

)
, we

split Ũm into two parts:

Ũm(x) =
π2

6(βhKm)2 ε′m(0)
Um(x) +

1
βhKm

Ûm(x) . (3.42)

The order O(T ) is not accessible analytically: The calculation of Ũ should be done by the Wiener-
Hopf-technique, which requires the splitting of the inhomogeneity into a sum of functions analytic in
the upper- and lower part of the complex plane. We could not solve this problem for

∑
k Âmk(k),

occurring in eq. (3.40) for m > 1.
The best we can do at this stage is to restrict ourselves to the determination of Um, that is to

contributions O(T 2) to the free energy. Formally, this restriction is justified by forming the second
derivative of eq. (3.41) with respect to T . The order O(T ) thus is omitted in the following. Then
one expects the leading low-temperature contribution to the specific heat. From eq. (3.9), the low-
temperature specific heat is related to the low-field magnetic susceptibility for m = l. At least for low
fields, the O(T 2)-correction to εm=l is expected to confirm eq. (3.9). The lhs of eq. (3.41) is written
as

εl = εl,0 +
π2

6(βhKm)2ε′m(0)
Um ,

where εl,0 is the function εl calculated in the preceding paragraph. Let us drop the index m and set

Um ≡ U (3.43)

From eqs. (3.39) and (3.42) it follows that

U(x) = k̃(x) +
∫ ∞

0
k̃(x− y)U(y) dy

=
[
k̃ ∗ (U+ + δ)

]
(x) , (3.44)

and δ(x) is Dirac’s δ-distribution. From eq. (3.41), one finds for the free energy

lim
T�TK

f(T, h) = −hKm

2π

∫ ∞
0

1
cosh (x− lnh/Th)

εm,0(x) dx

− π2

12πK1hβ2ε′m(x = 0)

[∫ ∞
0
Sl(x− lnh/Th)U(x) dx+ Sl(lnh/Th)

]
=: f0(h) + ∆fl(T, h)

Fk[Sl] := s(k)
Âml(k)
Âmm(k)

. (3.45)
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A function V (x) is introduced which describes the T -dependent correction ∆fl(T, h) (note that Sl(x) =
Sl(−x)),

V (x) :=
∫ ∞

0
Sl(x− y)U(y) dy + Sl(x)

= [Sl ∗ (U+ + δ)] (x) (3.46)

− π2

12πKmhβ2ε′m(x = 0)
V (lnh/Th) ≡ ∆fl(T, h) . (3.47)

From eq. (3.46) one recognizes that it suffices to know [U+(x) + δ(x)], which can be calculated from
eq. (3.44) in Fourier representation. Let us consider

u(x) :=
∫ ∞
x

U(x′) dx′ , u(k) =
iU(k)
k + i0+

v(x) :=
∫ ∞
x

V (x′) dx′ , v(k) =
iV (k)
k + i0+

,

where the k-dependent functions denote as usual the Fourier transforms. The reason for considering
u, v instead of U, V is merely technical; the integrated functions are preferred for the application of
the Wiener-Hopf-technique. The kernel is separated as

k̃ = 1− Â−1
mm = 1− 1

G+G−
.

This is the factorization of eq. (3.27). Then eq. (3.44) can be written as

u+(k) +
i

k + i0+
=

i
k + i0+

G−(0)G+(k) . (3.48)

The lhs of eq. (3.48) is Fk[
∫

(U+ + δ)]. From the definition of v(k) one deduces

v(k) =
i

k + i0+
G−(0)Sl(k)G+(k)

v(x) =
G−(0)

2

∫ ∞
−∞

1
2 cosh πk

2

Âml(k)
Âmm(k)

iG+(k)
k + i0

e−ikxdk

v (lnh/Th) =
2πG−(0)
KmG−(−i)

M(h/Th) (3.49)

V (lnh/Th) =
2πG−(0)h
KmG−(−i)

χ̃(h/Th) =
2πG−(0)h
G−(−i)

χ(h/TK) . (3.50)

χ̃(h/Th) := Kmχ(h/TK). In the exactly screened case for low energies, χ̃ ≡ χ. In order to arrive
at eq. (3.49), use has been made of eq. (3.31). The result of eq. (3.50) is remarkable: It states
that for all fields, the low-temperature specific heat is proportional to the low temperature magnetic
susceptibility. This relation holds in the under-screened and exactly screened cases, 2S ≥ m. Note
that in eq. (3.50), we included the constant Km in the definition of χ since it scales Th, eq. (3.20).
From eqs. (3.47), (3.50), the specific heat results:

lim
T�TK

C(T, h) = T
π2

3
G−(0)

KmG−(−i)ε′m(0)
χ (lnh/Th) . (3.51)

Finally, go back to eq. (3.39) to determine ε′m(0) (this cannot be done with eq. (3.28), since there
ε′m,0(0) is dealt with). Consider k · εm, (εm denotes the Fourier transform of εm(x)), by multiplying
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eq. (3.39) with the variable k. Upon accomplishing the inverse transform, only the driving term rests,
and

ε′m(0) = 1 .

Insert Km from eq. (3.30) into eq. (3.51),

lim
T�TK

C(T ) = T
2π2

3
1− γ

π l

1− γ
π (l −m)

χ(TK , h) (3.52)

This relation is valid for arbitrary fields. It gives the low-temperature Wilson-ratio for l ≥ m, which
is partially accessible (namely m = l) by the trick using dilogarithms. Formally, eq. (3.52) is of Fermi
liquid type. However, χ(h � Th) is finite only for S = m/2, otherwise it diverges as shown in eqs.
(3.37), (3.38):

lim
T�TK

C(T ) = T
2π2

3
1− γ

π l

1− γ
π (l −m)

m

4


l−m

Kmh ln2 T̃h
h

h < T̃h

m
Kmh ln2 h

T̃h

h > T̃h
. (3.53)

One may consider the field h as the Fermi temperature, so that such a behaviour is called a ”field
tuned Fermi liquid” in [20]. In the ongoing, we rather prefer to speak of a ”formal Fermi liquid”.

Over-screened and exactly screened cases, l ≤ m

If l ≤ m, there are m equations, the last one being

εm(x) = −e−x +
c

Km
+ [s ∗ εm−1 + k ∗ εm](x) .

In the driving vector ~d(k) on the right-hand site of eq. (3.22), only the last entry is different from
zero,

[
~d(k)

]
m

= dm(k) + c/Km δ(k). Consequently,

ε+m

Âm,m
= −ε−m + dm +

c

Km
δ(k) (3.54)

εl =

[
Âl,m

Âm,m

]
ε+m (3.55)

Eqs. (3.25), (3.54) are solved by the Wiener-Hopf method, afterwards ε+m is inserted in eqs. (3.26),
(3.55). The relevant matrix entries read

Âm,m(k) = 2 cosh
π

2
k

sinh πk
2 m sinh πk

2

(
π
γ −m

)
sinh πk

2 sinh πk
2
π
γ

Âl,m(k) = 2 cosh
π

2
k

sinh πk
2 l sinh πk

2

(
π
γ −m

)
sinh πk

2 sinh πk
2
π
γ

.
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The auxiliary functions are then given by

ε+m(k) =
G+(k)G−(−i)

−2π(k + i0+)(k + i)

Âm,m(k) = G+(k)G−(k)

G+(k) =
(

2mπ
(

1−mγ

π

)) 1
2

Γ
(
1− ik2

)
Γ
(

1− iπγ
k
2

)
Γ
(

1
2 − ik2

)
Γ
(
1− imk

2

)
Γ
(

1− ik2
(
π
γ −m

))
Km = c

G−(0)
G−(−i)

Note that c = 1
2(1−γ/πm) here. Remember eq. (3.18): The linearization can be fully exploited only in

the regime of high fields h� Th. In this limit, the magnetization reads

M(h) =
l

4π3/2

∫ ∞
−∞

i
Γ
(

1
2 + ik2

)
Γ
(
1 + imk

2

)
Γ
(
1− ik2

)
Γ
(

1− ik2
π
γ

)
Γ
(

1− ik2
(
π
γ −m

))
Γ
(
1− il k2

)
Γ
(
1 + il k2

) e−ik ln h
Th

k + i0+
dk (3.56)

h�Th→ l

2
.

The isotropic limit γ → 0 yields

lim
γ→0

G+(k) =
√

2mπ
Γ
(
1− ik2

)
Γ
(

1
2 − ik2

)
Γ
(
1− imk

2

) (− ikm
2e

)−imk
2

M(h) =
l

4π3/2

∫ ∞
−∞

i
Γ
(

1
2 + ik2

)
Γ
(
1 + imk

2

)
Γ
(
1− ik2

)
Γ
(
1− il k2

)
Γ
(
1 + il k2

) (
− ikm

2e

)−imk
2 e−ik ln h

Th

k + i0+
dk

Note that for γ = 0, a cut along the negative half of the imaginary axis occurs. It dominates the
poles in the lower half of the complex plane, and one is faced with the expected Kondo behaviour for
h > Th.

A novel characteristic appears for h < Th. Care has to be taken in this case, so that we only
extract the leading behaviour. It is given by the poles with smallest positive imaginary part.

M(h� TK) ∝
(
h

TK

)2/m

(3.57)

χ(h� TK) ∝
(
h

TK

)2/m−1

. (3.58)

The constants of proportionality are not of importance here. In words: Over-screening induces non-
integer exponents, independent of γ, at low energies. We will see in section 3.2 that this is true also
for low temperatures at h = 0, as to the specific heat and susceptibility.

Finally note that for l = m, the two expressions eqs. (3.34), (3.56) coincide. It is shown that the
first non-vanishing order linear in h of the magnetization leads to the T = 0, h = 0 susceptibility,
calculated in eq. (3.9). For l = m, the magnetization reads

M(h) =
m

4π3/2

∫ ∞
−∞

i
Γ
(

1
2 + ik2

)
Γ
(
1− ik2

)
Γ
(

1− iπk2γ

)
Γ
(
1− imk2

)
Γ
(

1− ik2
(
π
γ −m

)) e−ik ln h
Th

k + i0+
dk .
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Being interested in fields h < Th, one takes account of the poles at kn := i(2n + 1) with residuals
−2i(−1)n/n!. These result in the series

M(h) =
1

π1/2
(
1− γ

πm
) ∞∑
n=0

(−1)n

(2n+ 1)n!

Γ
(

1
2 + n

)
Γ
(
π
γ

(
n+ 1

2

))
Γ
(
m
(

1
2 + n

))
Γ
((

π
γ −m

) (
n+ 1

2

)) ( h

Th

)2n+1

.

The constant Km is, for l = m, determined to be

Km =
mΓ

(
m
2

)
Γ
(

1
2

(
π
γ −m

))
2π Γ

(
π
2γ

) .

From the definition of Th, eq. (3.20), one gets to first order in h:

lim
h�Th

M(h) =
m

2π
(
1− γ

πm
) h

TK
(3.59)

χ(T = 0, h = 0) =
m

2π
(
1− γ

πm
) 1
TK

. (3.60)

This result is expected from eq. (3.9).

3.1.3 Asymptotic linearization for T, h� TK, j < m

As pointed out in the preceding section, we are not able to account for corrections of the linearized
functions εj<m, m > 1 in the framework above. Such corrections essentially concern the region around
the origin, where for large magnetic fields, we have set εj<m(x) ≡ εj<m(x)θ(x). In the following,
we consider the case j < m for small magnetic fields and low temperatures. This case was treated
previously in [92] by the TBA-equations. Corrections to lnY (∞)

j are expressed through a correction
function Dj(x),

lnYj(x) = lnY (∞)
j +Dj(x) , lim

x→∞
Dj(x) = 0 .

Linearizing ln yj to first order in Dj ,

ln yj(x) =
1
2

lnY (∞)
j−1 Y

(∞)
j+1 +

f2
j

fj−1 fj+1
Dj(x) +O

(
D2
j

)
fj :=

(
Y

(∞)
j

)1/2
=

sin π
m+2(j + 1)
sin π

m+2

lim
x�0

f2
j

fj−1 fj+1
Dj(x) = [s ∗ (Dj−1 −Dj+1)] (x) , j = 1, . . . ,m− 1 (3.61)

Dm ≡ ln BmBm .

It is emphasized that this approximation gets not automatically better by taking into account higher
order terms O(D2

j ), but rather with increasing x. Eq. (3.61) has been derived for x � 0. This
is approximately accounted for by writing Dj(x) ≡ Dj(x) θ(x). The linearized equations form an
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algebraic system by Fourier transforming. Each unknown function Dj(x) can be expressed in terms
of Dm,

Dj(x) = [tj ∗Dm] (x) (3.62)

tj(k) :=
fj−1 sinh(j + 2)πk2 − fj+1 sinh j πk2

fj
g(k) .

As usual, Fk [tj(x)] := tj(k). As can be seen by direct calculation, Dj from eq. (3.62) satisfies eq.
(3.61) for j = 1, . . . ,m− 2. The function g(k) has to be determined from the last equation j = m− 1
and is found to be

g(k) =
[
2 cos

π

m+ 2
sinh(m+ 2)

πk

2

]−1

. (3.63)

The first equation, j = 0, is already contained in eq. (3.62) by t0 ≡ 0 and therefore Dj=0 ≡ 0.
For 2S < m, the impurity part of the free energy then reads

fI(T, h� TK) = −T ln
sin π(2S+1)

m+2

sin π
m+2

− T

2

∫ ∞
−∞

1
cosh πk

2

D2S(k) eik lnT/TK dk .

Since T < TK , only negative imaginary values for k are allowed.
Consider the analyticity properties of the integrand. It has a pole of second order in k = 0 (Dm(x)

is a steplike function and therefore its Fourier transform has a simple pole in k = i0+. The zero in
the denominator of g(k = 0) gives the second singularity). This second order pole is circumvented
by choosing an integration path slightly below the real axis. Then the leading order of the integral is
given by the pole with imaginary part next to the real axis, corresponding to large values of x. There
are simple poles at

kn = −(2n+ 1)i , n = 0,±1,±2, . . .
kp = −2pi/(m+ 2) , p = ±1, . . . .

The residuum in kp=1 vanishes. Depending on the value of m, there is a pole of first order (m uneven)
or of second order (m even) in k = −i. However, its residuum vanishes, so that the value m = 2 is
excluded here. It will be treated separately below. With m > 2, the leading behaviour therefore is
given by the residuum in kp=2:

fI(T, h� TK) =−T ln
sin π(2S+1)

m+2

sin π
m+2

− Tα2(h/T )
(
T

TK

) 4n
m+2

αp =
(−1)p

(
sin 2πSp

m+2 sin 2π(S+1)
m+2 − sin 2πS

m+2 sin 2πp(S+1)
m+2

)
(m+ 2) cos π

m+2 cos πp
m+2 sin π(2S+1)

m+2

∫ ∞
−∞

e
2πpx
m+2 ln[BmBm](x) dx (3.64)

The specific heat and susceptibility are derived:

CI(T, h = 0) = α2|h=0

4(m+ 6)
(m+ 2)2

(
T

TK

) 4
m+2

(3.65a)

χI(T, h = 0) =
(
T

TK

) 4
m+2

−1 ∂2

∂(βh)2
α2

∣∣∣∣
h=0

(3.65b)
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Note that for h = 0, ln BmBm does not depend on T . The derivative in eq. (3.65b) only acts upon
the integrand in eq. (3.64). Both CI and χI show the same T -dependence, so that one may again
calculate the low-temperature Wilson ratio, defined in eq. (3.11), once Bm, Bm and its derivatives
with respect to βh are known:

Rw =
χI(T )
CI(T )

Ch(T )
χh(T )

=
4π2

3
(m+ 2)2

4(m+ 6)

∂2α2
∂(βh)2

α2

∣∣∣∣∣∣
h=0

; m = 3, 4, . . . . (3.66)

Despite the simple form of the integral eq. (3.64), we did not succeed in evaluating it analytically.
Instead, ln BmBm and its derivatives are calculated numerically, cf. chapter 4. The results are given
below.

The case m = 2, 2S = 1 is excluded from the above linearization scheme. The Wilson ratio is
found analytically in this case. The relevant equations are:

ln y1(x) =
[
s ∗ ln B2B2

]
(x)

ln b2(x) = −ex +
βh

2
+ [s ∗ lnY1](x) + [k ∗ ln B2] (x)−

[
k− ∗ ln B2

]
(x)

fI(T, h) = − T

2π

∫ ∞
−∞

lnY1(x)

cosh
(
x+ ln T

TK

) dx . (3.67)

In section 3.1.1, we found (eq. (3.8) specialized to m = 2):

lim
x�0

[s ∗ ln B2B2](x) = e−x
(
π

4
− (βh)2

2(π − 2γ)

)
.

Consequently,

lim
x�0

lnY1(x) = ln 2 + e−x
(
π

8
− (βh)2

4(π − 2γ)

)
. (3.68)

This is just the region of interest in the integral of the free energy, eq. (3.67). One approximates the
kernel in the same scheme as in eq. (3.8),

lim
T�TK

1
2 cosh (x+ lnT/TK)

=
T

TK
ex +O

(
T 2 e2x

)
, x ≤ lnT/TK . (3.69)

The latter restriction is necessary for reasons of convergence: The integral eq. (3.67) exists. However
the integrand after the approximation, eqs. (3.68), (3.69), is constant and therefore diverges when
integrated over the whole real axis. The divergence is the same in both summands, so asymptotically,

lim
T,h�TK

fI(T, h) = − T

4π
ln 2− T 2

TK

[
1
8

+
(βh)2

4π(π − 2γ)

] ∫ lnT/TK

D
dx , D � 0

An auxiliary cutoff D has been introduced. The divergence connected with D � 0 is controlled since
it occurs with a factor of T 2 or h2, and both of them are assumed to be small, we therefore neglect it
in the following. The occurrence of the logarithm lnT/TK is more interesting. It leads to

lim
T,h�TK

CI(T, h) = −1
4
T lnT/TK

TK
(3.70a)

lim
T,h�TK

χI(T, h) = − 1
2π(π − 2γ)

lnT/TK
TK

(3.70b)

Rw|m=2,2S=1 = Rw|m=2,2S=2 =
8

3(1− 3γ/π)
. (3.70c)
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Numerically, we find by methods described in appendix C for γ = 0 (note that 1/(2π2) = 0.05066 . . .):

lim
T,h�TK

CI(T, h) = −
(
0.25± 10−2

) T lnT/TK
TK

lim
T,h�TK

χI(T, h) = −
(
0.05± 10−2

) lnT/TK
TK

(3.71)

These results agree with numerical findings by Sacramento et. al. [75] (γ = 0), who treated the
TBA equations within an approximative cutoff scheme. The Wilson ratio is in accordance with the
prediction by Affleck [2], who performed an analytical investigation of the over-screened case (with
γ = 0) using conformal field theory. He finds

CI(T ) =

{
−λ2π29T ln(aT ) ; m = 2

λ2δ 3π
2

(
4

2+m

)2
(m+ 4)T

4
2+m ; m = 3, 4, . . .

χI(T ) =

{
−18λ2 ln(aT ) ; m = 2
λ2δ2

(
2 + m

2

)2
T

4
m+2

−1 ; m = 3, 4, . . .

δ =
Γ
(

1
2 −

2
2+m

)
Γ
(

1
2

)
Γ
(

1− 2
2+m

)
Rw =

(2 +m/2)(2 +m)2

18
; m = 2, 3, . . . .

a is some distance cutoff constant and λ2 is the spin-exchange coupling constant. One observes that
the T -dependence agrees with eqs. (3.65a), (3.65b), (3.70a), (3.70b). The amplitudes are difficult to
compare, since the relation between the coupling constants, λ2 and TK , is unknown. However, whereas
the coefficients found by Affleck are S-independent, those obtained from the asymptotic linearization
depend on S. For illustrative reasons, define

CI(T ) = T
4

2+m ζc ; m = 3, 4, . . . (3.72)

χI(T ) = T
4

m+2
−1ζχ ; m = 3, 4, . . . . (3.73)

In table 3.1, our findings are compared with those by Affleck. One observes a relative deviation of 4%
for m = 3, 4 and of 10% for m = 5. This is due to numerical errors in predicting the low-temperature
behaviour of the susceptibility, as shown in chapter 4. Finally, we give results for finite anisotropy in
table 3.2. As expected, the coefficient of the specific heat is nearly not affected by γ, but only the
susceptibility, which grows with growing γ, in analogy to the result in the exactly screened case, eq.
(3.9). One expects a 1/(1−mγ/π) dependence; however, the accuracy of the data does not suffice to
confirm this expectation.

The results of this section shall be summarized together with those of the next section at the end
of this chapter.
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Affleck Asymptotic linearization

m ζc/λ
2 ζχ/λ

2 3/(4π2)Rw ζc/T
4/(m+2)
K ζχ/T

(2−m)/(2+m)
K 3/(4π2)Rw

3 298.7 110.3 0.369 7.45 5.72 0.384
4 131 79.6 0.608 1.75 2.05 0.585
5 79 73.5 0.931 0.633 1.05 0.830

Table 3.1: Comparison of results for the low temperature Wilson ratio in the over-screened case
m > 2S between Affleck’s CFT approach and the asymptotical linearization of the exact solution,
applied here.

m γ (2m)/π ζc/T
4/(m+2)
K ζχ/T

(2−m)/(2+m)
K 3/(4π2)Rw

3 0.2 7.455 6.371 0.4273
0.5 7.454 7.718 0.517
0.9 7.439 10.91 0.733

4 0.2 1.76 2.29 0.651
0.5 1.76 2.76 0.786
0.9 1.75 3.85 1.097

5 0.2 0.633 1.17 0.924
0.5 0.633 1.41 1.113
0.9 0.633 1.951 1.541

Table 3.2: Low temperature Wilson ratio in the over-screened case m > 2S for finite anisotropy γ.
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3.2 High Temperature Evaluation

In the limits of high (low) temperature, T � TK (T � TK), the main contribution in the integral of the
free energy stems from the regions x→ −∞ (x→∞) of the auxiliary functions or of convolutions with
these functions. By this we mean that the convolutions are carried out over the half axis x ∈]−∞,∆]
(x ∈ [∆,∞[ ), with some cutoff ∆. Such an approximation only makes sense if the results are
independent of ∆.

Our interest is on a systematic expansion of the auxiliary functions around the asymptotic values.
It turns out that qualitatively, the T � TK , h = 0 behaviour resembles the h � Th, T = 0 results,
as revealed in section 3.1.2 by rigorous linearization. In the under-screened case, this is also true for
T � TK , h = 0. On the other hand, in section 3.1.2 it has been shown that for h 6= 0, the over-screened
models still fulfill the Fermi liquid relation C ∝ Tχ, but limT�TK χ ∼ (h ln−2 h/TK), eq. (3.53). The
scenario of h→ 0 is not contained in this approach. This case is also treated in this section.

This section is divided into four parts. In the first part, the isotropic limit γ = 0 is considered,
without magnetic field. A finite magnetic field is included in the second part. The third part treats
the low-temperature limit of the under-screened case, which is conceptually very similar to the regime
of high temperatures. The anisotropic case is treated in the last part.

The anisotropic case differs qualitatively from the isotropic one. The auxiliary functions show ex-
ponential corrections to their asymptotic values. However, we are not able to determine the coefficients
of these corrections.

3.2.1 Isotropic case γ = 0 , h = 0

In the high temperature regime, the first corrections to the asymptotic value of the free energy are
merely given by the first asymptotic corrections of the concerned auxiliary function for x→ −∞, and
one can neglect the rest of the integration range. These corrections are of algebraic and logarithmic-
algebraic nature and can be found within an asymptotic linearization scheme (contrary to the rigorous
linearization T → 0 with h 6= 0, cf. section 3.1.2). This is still true in the low-temperature limit,
referring to the region x→∞. In this region, the set of l equations decouples into two sets of m and
l−m equations. For an under-compensated impurity spin, l > m, the high-temperature-linearization
is directly transferable. In contrast to the case with magnetic field, the specific heat diverges as
ln−4 T/TK . In the exactly screened and over-screened cases, the integral over the whole integration
range is of importance, the asymptotic linearization scheme is more involved.

We begin with the asymptotic expansion of ln Bl, ln Bl, l ≥ m in the region x → −∞. The case
m > l is obtained therefrom afterwards. Consider the equations for Bl, Bl in the h = 0-case:

ln bl = s ∗ lnYl−1 + k ∗ ln Bl − k− ∗ ln Bl (3.74a)
ln bl = s ∗ lnYl−1 + k ∗ ln Bl − k+ ∗ ln Bl (3.74b)

k±(x) = k(x± iπ)

We shall show that ln Bl(x), ln Bl(x) approach their asymptotes x → −∞ as x−3 and calculate the
corresponding coefficient b(l)3 .

The first l − 1 integral equations determine the j-dependence of lnYj(x), j = 1, . . . , l − 1. To see
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this, define

lnYj(x) = 2 ln(j + 1) + 2δj(x) ln Bl(x) = ln(l + 1) + δl(x)
lim

x→−∞
δj(x) = 0

lim
x�0

ln yj(x) = ln j(j + 2) + 2
(j + 1)2

j(j + 2)
δj(x) +O

(
δ2
j

)
lim
x�0

ln bl(x) = ln l +
l + 2
l
δl(x) +O

(
δ2
l

)
. (3.75)

ln Bl (ln bl) is related to ln Bl (ln bl) by complex conjugation. The crucial approximation is

[s ∗ δj ](x) ≈ δj(x)/2 +O(δ′′j (x)) . (3.76)

s being an exponentially decaying kernel, this approximation is justified for algebraically decaying
δj . Such an algebraic behaviour is indeed expected from the integration kernel k(x), which itself
decays algebraically for γ = 0. In the anisotropic case γ 6= 0, this is not true, since δj(x) also decays
exponentially. The δj satisfy the recurrence relations

2
(j + 1)2

j(j + 2)
δj(x) = δj+1(x) + δj−1(x) (3.77a)

δ0(x) ≡ 0 (3.77b)
l + 1
l
δl(x) = δl−1(x) + a

fl
x3

. (3.77c)

These equations determine δj and fl up to a constant factor. Note that from eqs. (3.77a), (3.77b)

δj(x) = j(j + 2)d(x) .

Summarizing,

lnYj(x) = 2 ln(j + 1) + 2j(j + 2)d(x) , ln Bl(x) = ln(l + 1) + l(l + 1)d(x) . (3.78)

According to eqs. (3.74a), (3.74b), Bl, Bl are related by complex conjugation, the Yi are real-
valued.

ln Bl =: B1,l + iB2,l , ln Bl =: B1,l − iB2,l . (3.79)

Define the sum and the difference of the integration kernels,

k(s) (x) = k
(
x+ i

π

2

)
+ k

(
x− i

π

2

)
= F−1

k

[
e−

π
2
|k|
]

k(d) (x) = k
(
x+ i

π

2

)
− k

(
x− i

π

2

)
= F−1

k

[
e−

π
2
|k| sinh π

2 k

cosh π
2 k

]
.

Asymptotically,

k(s)
(
x+ i

π

2

)
∼ 1

2x2
− iπ

2x3
, |x| → ∞

k(d)(x) ∼ −i
π

2x3
, |x| → ∞ . (3.80)
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The convolutions with the k-kernels are written in the following way:

k ∗ ln Bl − k− ∗ ln Bl = k
(d)
− ∗Bl,1 + i k(s)

− ∗Bl,2
k

(ν)
± (x) = k(ν)

(
x± i

π

2

)
, ν = s, d .

The first non-vanishing term in an asymptotic expansion of Bl,1(x) around |x| → ∞ is

Bl,1(x) ∼ ln(l −m+ 1) + ln
l + 1

l −m+ 1
θ(−x) .

The θ-function has to be understood asymptotically for large x. This regime is equivalent to small
k-values in Fourier-space, Fk[θ(−x)] = −i/k+πδ(k). In this region around the origin in Fourier space,
πkFk[k(s)]/2 ∼ Fk[k(d)]. Thus it follows that[

k
(d)
− ∗Bl,1

]
(x) ∼ ln

l + 1
l −m+ 1

(
π2

4x3
− i

π

4x2

)
+O(ix−3) . (3.81)

It is useful to define correction terms to the asymptotic behaviour for x� 0:

lim
x→−∞

ln Bl(x) = ln(l + 1) +
b
(l)
1,3

x3
+ i

b
(l)
2,2

x2
. (3.82)

One then performs the asymptotic expansion

i
[
k

(s)
− ∗Bl,2

]
(x) ∼ i

x2

(
1
2

∫ ∞
−∞

Bl,2(x) dx+ b
(l)
2,2

∫ ∞
−∞

ks(x) dx
)

(3.83)

− π

x3

(
1
2

∫ ∞
−∞

Bl,2(x) dx+ b
(l)
2,2

∫ ∞
−∞

ks(x) dx
)

∫ ∞
−∞

k(s)(x) dx = 1∫ ∞
−∞

Bl,2(x) dx =
π

2

(
−(m± 10−5) + ln

l + 1
l −m+ 1

)
.

The last integral is done numerically with the indicated precision, for technical details cf. appendix
C. In the following, we set ∫ ∞

−∞
Bl,2(x) dx =

π

2

(
−m+ ln

l + 1
l −m+ 1

)
. (3.84)

In order to relate it to b(l)1,3, b(l)2,2, we observe that eq. (3.79) implies

ln bl = ln
(

eln Bl − 1
)

= ln l +
l + 1
l
δl +O

(
δ2
l

)
.

Insert eq. (3.82) and keep only the linear order in δl,

ln bl(x) ∼ ln l +
l + 1
l

(
b
(l)
1,3

x3
+ i

b
(l)
2,2

x2

)
(3.85)

ln bl(x) ∼ ln l +
l + 1
l

(
b
(l)
1,3

x3
− i

b
(l)
2,2

x2

)
.
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Combining eq. (3.81), (3.83), (3.85) one expands eq. (3.74a) around x→ −∞:

ln l +
l + 1
l

b
(l)
1,3

x3
= ln l + (l − 1)(l + 1)d(x) + ln

l + 1
l −m+ 1

π2

4x3
− π

x3

(
1
2

∫ ∞
−∞

B2,l(x)dx+ b
(l)
2,2

)
l + 1
l

b
(l)
2,2

x2
=

1
x2

(
−π

4
ln

l + 1
l −m+ 1

+
1
2

∫ ∞
−∞

B2,l(x)dx+ b
(l)
2,2

)
.

Using eq. (3.84), we find:

d(x) =
π2

12
m

x3

b
(l)
2,2 = − l mπ

4

b
(l)
1,3 =

l(l + 2)m
3

π2

4

lim
x→−∞

lnYj(x) = 2 ln(j + 1) + j(j + 2)
mπ2

6x3

lim
x→−∞

ln Bl(x) = ln(l + 1)− i
ml π

4x2
+
ml(l + 2)π2

12x3

lim
x→−∞

ln Bl(x) = ln(l + 1) + i
ml π

4x2
+
ml(l + 2)π2

12x3
.

Note that the x-dependence of the corrections is determined through the asymptotic behaviour of the
kernel in the convolutions k ∗ ln Bl, k ∗ ln Bl. The amplitudes follow from the Y -hierarchy.

We proceed with the asymptotic evaluation of ∂βh lnYj(x), ∂βh ln Bl(x) in the regime x� 0. The
lnYj are symmetric with respect to βh: The system of NLIE remains the same upon replacing βh→
−βh and substituting Bl by Bl. So ∂βh lnYj vanishes identically for h = 0. Define B(m)

l := ∂βh ln Bl.
Then the only equations which rest are

B
(m)
l (x) =

(
1− e− ln Bl(x)

)[1
2

+ [k ∗B(m)
l − k− ∗ B̄(m)

l ](x)
]

(3.86a)

B̄
(m)
l (x) =

(
1− e− ln Bl(x)

)[
−1

2
+ [k ∗ B̄(m)

l − k+ ∗B(m)
l ](x)

]
. (3.86b)

B
(m)
l and B̄

(m)
l are related by negation and complex conjugation,

B
(m)
l =: B(m)

l,1 + iB(m)
l,2 B̄

(m)
l = −

[
B

(m)
l

]∗
= −B(m)

l,1 + iB(m)
l,2 .

However, since [s ∗ (B(m)
l + B̄

(m)
l )](lnT/TK) is a physical quantity (namely the magnetization), the

imaginary part of B(m)
l vanishes for h = 0. Thus B(m)

l ≡ B
(m)
l,1 is real valued. We shall determine

asymptotic corrections to B
(m)
l up to order O

(
x−2

)
, so that corrections to ln Bl(±∞) (of order

O
(
x−3

)
), can safely be neglected. In this approximation,

lim
x→−∞

(
1− e− ln Bl(x)

)
=

l

l + 1

(
1 + i

π

4x2

)
lim
x→∞

(
1− e− ln Bl(x)

)
=

l −m
l −m+ 1

(
1 + i

π

4x2

)
,(3.87)
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and one finds the asymptotic equation for B(m)
l ,

lim
x�0

B
(m)
l (x) =

l

l + 1

(
1 + i

π

4x2

)(1
2

+ k
(s)
− ∗B

(m)
l

)
=

l

l + 1

(
1
2

+ k(s) ∗B(m)
l

)
. (3.88)

The imaginary contributions vanish as expected. The only unknown in eq. (3.88), namely B(m)
l , enters

linearly. Therefore eq. (3.88) is well suited for further analytical studies. Note that this possibility
does not exist in the TBA-approach, where one deals with the infinitely many Yj and their derivatives.
As mentioned above, Y (m)

j ≡ 0∀j.
The constant asymptotic behaviour of B(m)

l is

lim
x→−∞

B
(m)
l (x) =

l

2
lim
x→∞

B
(m)
l (x) =

l −m
2

.

This behaviour is written in the compact form

B
(m)
l (x) = ∆+ −∆−sgnx (3.89)

∆+ =
2l −m

4
∆− =

m

4

∆+ + ∆− =
l

2
∆+ −∆− =

l −m
2

.

Eq. (3.89) and similar equations in the following have to be understood asymptotically, for |x| → ∞.
As is shown in appendix B.2,

k(s) ∗ sgnx = sgnx− 1
x
, k(s) ∗ sgnx

x
=

sgnx
x

+
ln |x|
x2
− Ψ(2)

x2
(3.90a)

k(s) ∗ 1
x

=
1
x
, k(s) ∗ ln |x|

x2
=

ln |x|
x2

(3.90b)

k(s) ∗ 1
x2

=
1
x2

+
1

2x2
ε . (3.90c)

Ψ(x) is the digamma function; Ψ(2) = −C + 1, C = 0.577 . . . is Euler’s constant. The asymptotic
evaluation of the convolutions has been done using distributions. Taken literally, these approximate
B

(m)
l by step-like functions with jumps at the origin. A test in how far one can rely on this asymptotic

expansion is done by considering the integral

I∆(x) :=
∫ ∆

−∞
k(x− y) fcorr(y) dy , (3.91)

where fcorr(x) = x−1+ln |x|/x2+x−2 and ∆ is some negative cutoff near to the origin, thus avoiding the
singularities of fcorr in the integral. The use of distributions for describing the asymptotic behaviour
only makes sense when the asymptotic expansion of the integral in eq. (3.91) does not depend on
∆. Indeed, this is the case in the orders O

(
x−1, ln |x|/x2

)
. In the order x−2, however, the result

does depend on ∆ (in the form ∆/x2). In other words, to determine accurately the x−2-coefficient,
the precise behaviour of the auxiliary functions around the origin must be known. The quantity ε in
eq. (3.90c) accounts for the error made in the analytical evaluation, it is the integral over the whole
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function which decays as 1/x2, see appendix B.1. We cannot determine ε analytically in this approach.
It can be determined numerically as shown later on.

We make the following ansatz for B(m)
l , which consists in extrapolating the asymptotic behaviour

over the whole axis with the aid of distributions:

B
(m)
l (x) = ∆+ −∆−sgnx+

1
x

(∆(1)
+ −∆(1)

− sgnx) +
ln |x|
x2

(∆(1)
+ −∆(1)

− sgnx)

+
1
x2

(∆(2)
+ −∆(2)

− sgnx) (3.92)[
k ∗B(m)

l

]
(x) =

∆+ −∆−sgnx
2

+
1

2x

(
∆− + ∆(1)

+ −∆(1)
− sgnx

)
−
(

∆(1)
− −∆(l)

+ + ∆(l)
− sgnx

) ln |x|
2x2

+
(

∆(1)
− Ψ(2) + ∆(2)

+ −∆(2)
− sgnx+

ε

2

) 1
2x2

. (3.93)

The convolutions are done with the help of eqs. (3.90a), (3.90b), (3.90c). One observes that only the
terms sgnx and sgnx/x give the next higher order contribution when convoluted with the kernel. The
asymptotic form of eq. (3.88) is found by inserting eqs. (3.92), (3.93).

By comparing coefficients, one finds

∆(1)
+ + ∆(1)

− = l∆− =
m · l

4
∆(1)

+ =
m(2l −m)

8

∆(1)
+ −∆(1)

− = (l −m)∆− =
m(l −m)

4
∆(1)
− =

m2

8

∆(l)
+ + ∆(l)

− = −l∆(1)
− = −m

2 · l
8

∆(l)
+ −∆(l)

− = (l −m)∆(1)
− = −m

2(l −m)
8

∆(2)
+ + ∆(2)

− = l(∆(1)
− Ψ(2) + ε/2) = Ψ(2)

m2 · l
8

+
l ε

2
(3.94)

∆(2)
+ −∆(2)

− = (l −m)(∆(1)
− Ψ(2) + ε/2) = Ψ(2)

m2 · (l −m)
8

+
(l −m) ε

2
(3.95)

In the high-temperature regime, the x→ − lnT/TK � 0 behaviour is of importance,

lim
x�0

B
(m)
l (x) =

l

2
+
ml

4x
− m2 l

8
ln |x|
x2

+
l

x2

(
m2 Ψ(2)

8
+
ε

2

)
. (3.96)

Compare eq. (3.96) with the low temperature results eqs. (3.37), (3.38). Both are formally identical
up to the order ln |x|/x2, x = − lnT/TK in eq. (3.96), x = − lnh/T̃h in eqs. (3.37), (3.38).

We shall focus on the x→ +∞ asymptotes in the next paragraph.

Our analysis is continued by expanding ∂2
βh lnYj =: Y (χ)

j , ∂2
βh ln Bl =: B(χ)

l , ∂2
βh ln Bl =: B̄(χ)

l .
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These functions are given by the system

Y
(χ)
j =

(
1− e− lnYj

)
s ∗
(
Y

(χ)
j−1 + Y

(χ)
j+1

)
(3.97a)

Y
(χ)

0 ≡ 0 (3.97b)

B
(χ)
l =

e− ln Bl

1− e− ln Bl

[
B

(m)
l

]2

+
(

1− e− ln Bl

)
s ∗ Y (χ)

l−1 +
(

1− e− ln Bl

)(
k ∗B(χ)

l − k− ∗ B̄(χ)
l

)
(3.97c)

B̄
(χ)
l =

e− ln Bl

1− e− ln Bl

[
B̄

(m)
l

]2
+
(

1− e− ln Bl

)
s ∗ Y (χ)

l−1

+
(

1− e− ln Bl

)(
k ∗ B̄(χ)

l − k+ ∗B(χ)
l

)
(3.97d)

B
(χ)
l =: B(χ)

l,1 + iB(χ)
l,2

B̄
(χ)
l =

[
B

(χ)
l

]∗
.

The vanishing of B(m)
2 helps to expand B

(χ)
1 :

B
(χ)
l,1 =

1
l

[
B

(m)
l,1

]2
+

l

2(l + 1)
Y

(χ)
l−1 +

l

l + 1
Re
(
k

(d)
− ∗B

(χ)
l,1 + ik(s)

− ∗B
(χ)
l,2

)
(3.98a)

B
(χ)
l,2 = −πm

4x2

[
B

(m)
l,1

]2
+

lm

l + 1
π

8x2
Y

(χ)
l−1 +

l

l + 1
Im
(
k

(d)
− ∗B

(χ)
l,1 + ik(s)

− ∗B
(χ)
l,2

)
. (3.98b)

From eq. (3.98b), B(χ)
l,2 = O

(
x−2

)
. Together with eq. (3.80), one concludes that the last term

in brackets in eq. (3.98a) is O
(
x−3

)
. This means that for our purposes, the convolutions in eq.

(3.98a) can be entirely neglected. Thus in the asymptotic limit, eqs. (3.97a)-(3.97c) are simplified
considerably:

Y
(χ)
j =

j(j + 2)
2(j + 1)2

(
Y

(χ)
j−1 + Y

(χ)
j+1

)
Y

(χ)
0 ≡ 0

B
(χ)
l =

1
l

[
B

(m)
l

]2
+

l

2(l + 1)
Y

(χ)
l−1

This system bears similarity with eqs. (3.77a)-(3.77c). From the solution of those equations, we
conclude

lim
x→−∞

Y
(χ)
j (x) =

j(j + 2)
6

(
1 +

m

x
− m2 ln |x|

2x2
+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
lim

x→−∞
B

(χ)
l (x) = b

(χ)
l,0 +

b
(χ)
l,1

x
+ b

(χ)
l,2

ln |x|
x2

+
b
(χ)
l,2

x2

=
l(l + 2)

12

(
1 +

m

x
− m2 ln |x|

2x2
+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
ε is the error made in this analytical analysis. Concluding, a systematic asymptotic expansion of the
auxiliary functions around their x → −∞-asymptotes is possible. It can be done analytically up to
the indicated orders.
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We can go one step further with numerical efforts. In appendix C, a procedure for numerically
determining the coefficient ∆(2)

+ −∆(2)
− sgnx of the x−2-decay is described. It deviates slightly from the

analytical estimate with ε = 0. We introduce an extra symbol φ,

φ(m) :=
(

∆(2)
+ + ∆(2)

−

)
/(lm3) =

1
m3

(
m2

8
Ψ(2) +

ε

2

)
(3.99)

Numerically, φ is found to be independent of l. However, our data do not suffice to exclude a depen-
dence on m. These results are given in appendix C, table C.3. Let us cite the special case m = 1,

φ(m = 1) = 0.04707± 2 · 10−7 (3.100)

One makes use of the knowledge of the asymptotic behaviour of the auxiliary functions to extract the
high-temperature behaviour of the free energy, the specific heat and magnetic susceptibility without
magnetic field. Employing once again the approximation eq. (3.76), this time in the integral of the
free energy, we find

lim
T�TK

f(T, h = 0) = −T ln(l + 1) +
T

ln3 T
TK

ml(l + 2)π
12

(3.101a)

lim
T�TK

C(T, h = 0) =
T

ln4 T
TK

ml(l + 2)π2

4
(3.101b)

lim
T�TK

χ(T, h = 0) =
l(l + 2)

12T

(
1− m

ln T
TK

− m2 ln lnT/TK
2 ln T

TK

+
4m3φ(m) +m2/4

ln2 T
TK

)
(3.101c)

The leading orders of the specific heat and magnetic susceptibility are for the first time calculated for
general m. Note that the ln−4 T/TK divergence of C(T � TK , 0) in contrast to the T/(h ln2 h/TK)
behaviour in the case with finite field and T � TK , eq. (3.53). The single-channel case m = 1 agrees
with known TBA-results, [90]. The same is true for the corrections to the magnetic susceptibility.
Especially, note that we firstly determine the coefficient of the (lnT/TK)2-coefficient of the magnetic
susceptibility in the framework of an exact solution. This allows for the calculation of Wilson’s ratio,
relating the high-temperature to the low-temperature scale, see below.

In section 2.2.2, the equivalence between the TBA equations and the NLIE has been established,
based on the fusion hierarchy. In the framework of TBA equations, (2.164), it is possible to calculate
the coefficient of the 1/ ln3 T/TK contribution to the free energy analytically for m = 1, [90]. The
result agrees with eq. (3.101b). However, the TBA method fails for m > 1.

The over-screened case m = l is obtained by setting m = l and inserting lnYj=l and its derivatives
into the definitions of the free energy, specific heat and susceptibility. The results are identical with
eqs. (3.101a), (3.101b), (3.101c).

Wilson’s ratio

In this section, we want to calculate Wilson’s ratio, relating the low-temperature scale TK to some
high-temperature scale T̃K , to be defined.

Let us first draw our attention to the exactly screened spin-1/2 case, l = 1 = m. In his numerical
renormalization group approach, Wilson started from high temperatures and rescaled the temperature
dependent coupling constant upon lowering the temperature. In this way, the low temperature regime
of the impurity susceptibility was for the first time obtained non-perturbatively. His result [94] for
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the zero-field spin-1/2 susceptibility is

lim
T→0

χ(T ) =
1

2πTK
=

0.1032± 0.0005

T̃K

T̃K
TK

= 2π · (0.1032± 0.0005) =: 2πξ . (3.102)

This ratio relates the low-temperature scale eq. (2.107) to the high-temperature scale T̃K , defined by
absorbing the term O(x−2) in the asymptotic expansion

lim
T�TK

χ(T ) =
1

2πT

∫ ∞
−∞

1
cosh (x+ lnT/TK)

∂2
βh

[
ln B1B1

]
(x)dx

=
1

2T
∂2
βh

[
ln B1B1

]
(x = − lnT/TK) +O

([
∂2
βh ln B1B1

]′′ (x)
)

= b
(χ)
1,0 +

b
(χ)
1,1

x
+
b
(χ)
1,1 ln |x|
x2

+
b
(χ)
1,2

x2

∣∣∣∣∣
x=− lnT/TK

(3.103)

= b
(χ)
1,0 +

b
(χ)
1,1

x− b
(χ)
1,2

b
(χ)
1,1

+
b
(χ)
1,l ln |x|
x2

∣∣∣∣∣∣∣∣
x=− lnT/TK

.

Wilson’s ratio is identified to be

2πξ = exp

(
−
b
(χ)
1,2

b
(χ)
1,1

)
. (3.104)

The reason for searching a scale T̃K such that the term O(ln−2 T/TK) is absorbed in the asymptotic
expansion of the zero-field high-temperature susceptibility is the aim to write physical quantities in a
way that exhibits scaling behaviour. This means that it is possible to find an expansion

lim
T�TK

χ(T ) =
1

4T
(
1 + z + cz2 +O

(
z3
))

, (3.105)

where the dynamical coupling constant2 z is scale-invariant: It is the product of two functions; the first
depending on D,J (both changing upon rescaling), the second on the energy parameter ε, (T in this
case), and invariant under scaling. Indeed, perturbation theory confirms eq. (3.105): By evaluating
the relevant Green’s functions, the result to order J2 is [1, 94]:

χ(T ) =
1

4T

(
1− J

2
+
J2

4
lnT/D + cJ2 + . . .

)
.

Upon defining

z =
J/2

1 + J lnT/D
, J > 0 ,

the susceptibility is written as in eq. (3.105).

2In [90], z is called the invariant charge.
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z does not change as

D → D′ , J → J ′ =
[
J−1 − lnD/D′

]−1
.

The cited form of z has been found in [1] by summing the leading ln-contributions to the Green’s func-
tions. The phenomenological introduction of a dynamical or temperature dependent coupling constant
in the framework of perturbation theory is justified in the renormalization group (RG) approach. A
RG-transformation consists in changing the bandwidth D, resulting in a change of the initial coupling
constant J , preserving the form of the initial Hamiltonian. Thus J gets the energy-dependent z and
D is scaled until reaching the physical energy scale ε. Since z is assumed to show scaling behaviour,

dz
d ln ε

= β(z) (3.106)∫ ε

D
d(ln ε′) =

∫ z

J

1
β(z′)

dz′ .

where β is itself a function of z, which is determined perturbationally for |z| � 1. In [4, 42], it is
shown that β(z) = −z2 + 1

2z
3. Then with the definition of the ”high-temperature scale”

T̃K := De−1/J+1/2 ln J+O(J) (3.107)

one gets

ln
ε

T̃K
=

1
z
− 1

2
ln z . (3.108)

One inverts eq. (3.108) asymptotically by defining z = z1 + z2 + z3 + . . ., with lim
ε�T̃K zi+1/zi = 0.

The zi are identified upon successively considering the ith leading order of magnitude. One finds:

z1 =
1

ln ε/T̃K

z2 = −z
2
1

2
ln z1 =

1

2 ln2 ε/T̃K
ln ln ε/T̃K

z3 =
z2

2

2(z1 − z2)
≈ z2

2

2z1
+O(z3

2/z
2
1) =

z3
1

8
ln2 z1 +O(z3

2/z
2
1) (3.109)

Especially we see that there is no term O
(

ln−2 ε/T̃K

)
occurring in eq. (3.109).3 This is the defining

property of T̃K . The scale ε may be either the magnetic field (when T = 0, then we rather write T̃h)
or the temperature. In the former case, at T = 0, one finds T̃h analytically by linearizing the NLIE,
section 3.1.2. With the help of the preceding paragraph, it is possible to give a numerical value for T̃K .
Note that our approach is somehow inverse to Wilson’s: We defined TK through the zero-temperature
susceptibility, and rescaled it in the high-temperature regime.

The relation between TK , T̃K is given by eq. (3.102). This means that eq. (2.107) implies

TK =
D

2πξ
e−1/J+1/2 ln J+O(J) .

When looking at TK , defined from the effective model, eqs. (2.125), (2.153) in the isotropic limit
for |J | � 1, agreement is found only in the leading order in J . This is due to the different cutoff-
schemes denoted by the parameters D,D. The latter is employed in the derivation of (2.153), justified
heuristically.

3There would be such a term if on the rhs of eq. (3.108), a constant was added.
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Andrei and Lowenstein [8] carried out a perturbative expansion of the 2S = m = 1 free energy,
both for h/T � 0 and T/h � 0. By requiring that in the first case, the result should depend on
h/Th, in the second case on T/T̃K , they deduced the ratio Th/T̃K . Moreover, they determined the
ratio Th/TK from the (conventional) BA. Arguing that the ratios of the energy scales are universal
(unlike the scales themselves, which do depend on the cutoff-scheme used), they found by combining
their two results (the analytical expression is due to Hewson, [42])

ξ =
eC+3/4

4π3/2
= 0.102676 . . . (3.110)

We generalize Wilson’s definition (3.104) to the general spin-S case, in the presence of m channels.
A scheme of numerically solving the integral equations is given in appendix C which allows for the
calculation of the corresponding ratios. For general l, m, eq. (3.104) reads in the notation of section
3.2.1

2πξ = exp
[
−m2

(
4φ(m) +

1
4

)]
,

which does only depend on m, analogously to the ratio T̃h/TK for T = 0, eqs. (3.35), (3.36). This
is in contradiction with [31]. There, the Wilson ratios for S arbitrary, m = 1 are calculated. The
ratio TK/Th for T = 0 is found by BA techniques and agrees with ours, eq. (3.20) for γ = 0. Th/T̃K
is found by conventional perturbation theory (unfortunately without the explicit calculations). The
resulting TK/T̃K depends exponentially on S(S + 1). We leave this question to be clarified.

By inserting eq. (3.100), one gets for m = 1:

ξ = 0.102678± 2 · 10−6 .

This result agrees with eq. (3.102) and with eq. (3.110). Note that for 2S > m, the susceptibility
at low temperatures can be obtained from that at high temperatures by replacing l → (l −m). This
does not change the value of ξ, which means that in the under-screened cases, only one scale (namely
T̃K) governs the low- and high-temperature behaviour.

3.2.2 High temperature expansion, h 6= 0

The strategy of asymptotically linearizing the equations is the same as above, the calculations are
more involved. We want to include this case explicitly, since the first correction is needed for the
numerical solution of the equations.

Therefore, define correction functions Dl, Dj ,

ln Bl(x) = ln B
(∞)
l + Dl(x) , ln Bl(x) = ln B

(∞)
l + Dl(x)

lnYj(x) = lnY (∞)
j +Dj(x)

Dl + Dl = Dl . (3.111)

The last equation follows from the fusion hierarchy. Dl, Dl, Dj depend parametrically on

ζ := βh/2 ,

especially Dl|ζ = Dl|−ζ , since we expect D(x), D(x) to be real-valued. Furthermore, the x-dependence
is the same as in the h = 0-case, because merely the asymptotic values are altered. So one can again
approximate [s ∗ δ](x � 0) = δ(x)/2, with δ = Dl, Dl, Dj . We want to carry out the calculation
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explicitly for the coefficients of the 1/x-correction, coefficients of higher orders follow along the same
lines. Inserting values for the asymptotes, one gets

2
sinh2 ζ(j + 1)

sinh ζj sinh ζ(j + 2)
Dj(x) = Dj+1(x) +Dj−1(x) (3.112)

D0 ≡ 0

2e−ζ
sinh ζ(l + 1)

sinh ζl
Dl(x) = Dl−1(x) +

(
Dl(x)−Dl(x) +

αm

x

)
(3.113)

2eζ
sinh ζ(l + 1)

sinh ζl
Dl(x) = Dl−1(x)−

(
Dl(x)−Dl(x) +

αm

x

)
. (3.114)

The term in 1/x results from the 1/x contribution of the convolution k ∗
(

ln B
(−∞)
l − ln B

(∞)
l

)
, eq.

(3.90a). Once again, we observe that the functional dependence on x of all correction functions is
determined by the last equation. Thus one recognizes that for h 6= 0, already the auxiliary functions
itself (and not only their derivatives with respect to h) acquire algebraical corrections of order 1/x.

The solution of eqs. (3.112) can be extracted from eqs. (3.61), by replacing the asymptotes and
carrying out the limit k → 0 (since the convolution was replaced by a multiplication with 1/2 in eqs.
(3.112)):

Dj(x) =
[

sinh ζj
sinh ζ(j + 1)

(j + 2)− sinh ζ(j + 2)
sinh ζ(j + 1)

j

]
dl
x
.

The factor dl still depends on ζ, l, m, and has to be determined from the boundary condition eq.
(3.113). Therefore, first observe that from eqs. (3.113), (3.114),

Dl −Dl = ζm
cosh ζ sinh ζl
sinh ζ cosh ζl

.

dl can now be calculated from equating eq. (3.111) with the actual value of Dl+Dl from eqs. (3.113),
(3.114). We find

dl = − ζm

2(l + 1)
sinh ζ(l + 1)

cosh ζl sinh2 ζ

Dl(x) =
ζm

2(l + 1)
1

sinh2 ζ cosh ζl

(
leζ(l+1) sinh ζ − sinh ζl

) 1
x

Dl =
ζm

2(l + 1)
1

sinh2 ζ cosh ζl

(
le−ζ(l+1) sinh ζ − sinh ζl

) 1
x

Dj =
ζm

2(l + 1)
sinh ζ(l + 1)

cosh ζl sinh2 ζ

(
j

sinh ζ(j + 2)
sinh ζ(j + 1)

− (j + 2)
sinh ζj

sinh ζ(j + 1)

)
1
x

A check of consistency with the results of section 3.2.1 is an expansion of Dl, Dl, Dj in ζ up to O(ζ2)
inclusively.

x lim
ζ→0

Dl(x) =
lm

2
ζ +

ml(l + 2)
6

ζ2 +O(ζ3) (3.115a)

x lim
ζ→0

Dl(x) = − lm
2
ζ +

ml(l + 2)
6

ζ2 +O(ζ3) (3.115b)

x lim
ζ→0

Dj(x) =
j(j + 2)

3
ζ2 +O(ζ4) (3.115c)
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Dj is even in ζ as it must be. The first algebraic correction to B(m)
l , B(χ)

l , Y (χ)
j is obtained by partially

deriving the coefficients of ln Bl, ln Bl, lnYj with respect to h. As can be seen from eqs. (3.115a),
(3.115b), (3.115c), the known results of the h = 0-case are reproduced. Note that with finite magnetic
field, there are also 1/x-corrections to the functions partially derived with respect to T , that is in the
entropy and specific heat.

Higher order terms, namely those in ln |x|/x2, x−2, can be calculated in the same way. However,
we do not want to dwell on the coefficients of those orders, since they are of no practical use in the
framework of this work and the calculations are cumbersome. Only the coefficient of the 1/x-decay is
needed for the numerical solution, cf. chapter 4.

3.2.3 Low temperature evaluation in the under-screened case

We are interested in the behaviour of the auxiliary functions for large values x → ∞ in the under-
screened case l > m. In this limit, the set of NLIE decouples in two separate sets with exponential
accuracy, as noted in the derivation of the asymptotes, eqs. (2.163). Consider first the field-free case
h = 0. The last l−m functions, namely Ym+1, . . . ,Bl,Bl, satisfy a set of equations formally identical
to eqs. (3.77a)-(3.77c), with j, l replaced by j − m, l − m. The whole analysis of paragraph 3.2.1
applies to this case; of special interest are now the corrections to the x = ln TK

T � 0-behaviour of the
auxiliary functions. The results are:

lim
x→∞

Bl(x) = ln(l −m+ 1)− i
m (l −m)π

4x2
+
m (l −m)(l −m+ 2)π2

12x3

lim
x→∞

lnYj>m(x) = ln(l + 1− j) +
m (l −m)(l −m+ 2)π2

6x3

lim
x→∞

B
(m)
l (x) =

l −m
2

+
m (l −m)

4x
− m2 (l −m)

8
ln |x|
x2

+
l −m
x2

(
m2Ψ(2)

8
+
ε

2

)
lim
x→∞

Y
(χ)
j (x) =

(j −m)(j −m+ 2)
6

(
1 +

m

x
− m2 ln |x|

2x2
+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
lim
x→∞

B
(χ)
l (x) =

(l −m)(l −m+ 2)
12

(
1 +

m

x
− m2 ln |x|

2x2
+
(
m2

2
Ψ(2) +

m2

4
+ 2ε

)
1
x2

)
One deduces the low-temperature behaviour in the over-screened case of the following quantities:

lim
T�TK

f(T, h = 0) = −T ln(l −m+ 1)− T

ln3 TK
T

m (l −m)(l −m+ 2)π
12

lim
T�TK

C(T, h = 0) =
T

ln4 T
TK

m(l −m)(l −m+ 2)π2

4

lim
T�TK

χ(T, h = 0) =
(l −m)(l −m+ 2)

12T

×

(
1 +

m

ln TK
T

− m2 ln lnTK/T
2 ln TK

T

+
4m3φ(m) +m2/4

ln2 TK
T

)
(3.116)

The low-temperature behaviour for exact screening is given in paragraph 3.1.1, where the expected
Fermi liquid shows up. Similarly to T = 0, a change of sign in the leading corrections to the asymptotic
values of the susceptibility is observed, cf. eqs. (3.101c), (3.116). Its physical interpretation has been
given in the sequel of eq. (3.38). It applies analogously in this case.

More care is needed for the first m functions, i.e. the under-screened case. The asymptotes of
lnYj≤m do not depend on βh (eq. (2.160)), however, it is still possible to realize an asymptotic
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linearization. The difficulty lies in the evaluation of the convolutions, since the correction functions
do not decay algebraically with integer exponents. This case is treated in paragraph 3.1.3.

Low temperature evaluation in the under-screened case, h 6= 0

The arguments of the preceding paragraph apply also for finite magnetic field, so we directly give the
results:

lim
x→∞

lnYj(x) = 2 ln
(

sinh ζ(j −m+ 1)
sinh ζ

)
+

ζm

2(l −m+ 1)
×

sinh ζ(l −m+ 1)
cosh ζ(l −m) sinh2 ζ

(
(j −m)

sinh ζ(j −m+ 2)
sinh ζ(j −m+ 1)

− (j −m+ 2) sinh ζ(j −m)
sinh ζ(j −m+ 1)

)
1
x

lim
x→∞

ln Bl(x) = ln
(

eζ(l−m) sinh ζ(l −m+ 1)
sinh ζ

)
+

ζm

2(l −m+ 1)
1

sinh2 ζ cosh ζ(l −m)

(
leζ(l−m+1) sinh ζ − sinh ζ(l −m)

) 1
x

lim
x→∞

ln Bl(x) = ln
(

e−ζ(l−m) sinh ζ(l −m+ 1)
sinh ζ

)
+

ζm

2(l −m+ 1)
1

sinh2 ζ cosh ζ(l −m)

(
le−ζ(l−m+1) sinh ζ − sinh ζ(l −m)

) 1
x

.

3.2.4 Anisotropic case, γ 6= 0

As will be explained in appendix A.4, the crossing parameter is restricted to 0 ≤ γ ≤ π
2l , where

l = max(l,m). Since the kernel k(x) decays exponentially in direct space, corrections to ln B
(∞)
l ,

lnY (∞)
j are expected to be exponentially small. Thus it is no longer permitted to replace convolutions

with s(x) by algebraic multiplications. Instead, let us write eq. (3.74a) in direct space, with the same
notations as eq. (3.75), however including a finite magnetic field from the beginning. First subtract
the asymptotes (ζ := βh/2),

lim
x�0

2e−ζ
sinh ζ(l + 1)

sinh ζl
δl(x) = lim

x�0

{
−ex +

[
s ∗ δl−1 + k ∗ δl − k− ∗ δ̄l

]
(x)
}
. (3.117)

Contrary to the isotropic case, the driving term −ex must be kept since all quantities on the rhs of
eq. (3.117) are exponentially small. We did not find a closed solution to eq. (3.117). All we can do is
to determine the exponent of the exponential decay. Therefore first observe that the equation

δ
(0)
− (x) = −ex +

∫ 0

−∞
k(x− y)δ(0)

− (y)dy

is directly solvable by Wiener-Hopf techniques. This solution relies on the fact that

1−Fk[k] =
sinh πk

2
π
γ

2 cosh πk
2 sinh πk

2

(
π
γ − l

)
is factorizable in functions analytical in the upper and lower half planes. The leading decay is

δ
(0)
− (x� 0) ∼ e

2γ
π
x .
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Since

2e−ζ
sinh ζ(l + 1)

sinh ζl
= 1 + e−2ζ coth ζl ,

we take the solution δ
(0)
− as an ansatz for δ−. It is seen that there is no further restriction on the

leading decay of δ−, such that

δ−(x� 0) ∼ e
2γ
π
x .

However, we did not succeed in determining the coefficient. Of course it depends on ζ, especially,

lim
x�0

[δ− + δ̄−](x) ∼ (ã1 + (βh)2ã2)e
2γ
π
x

lim
T�TK

f(T, h = 0) = −T ln(l + 1) + (ã1 + (βh)2ã2)
(
TK
T

) 2γ
π

(3.118)

C(T � TK , h = 0) ∼
(
TK
T

) 2γ
π

(3.119)

χ(T � TK , h = 0) =
l(l + 2)

12T

(
1− a2

(
TK
T

) 2γ
π

)
. (3.120)

Note that both C and χ show similar decays, contrary to the isotropic case. A formally identical
behaviour shows up at low temperatures for h = 0 and l > m. If h 6= 0 and l > m, the rigorous
linearization, section 3.1.2, is done. Then χ ∼ h−1 ln−2 h/TK , eq. (3.53): The T -dependent power-like
divergence is replaced by a logarithmic, h-dependent divergence.

If T � TK , one argues in close analogy to the isotropic case: The decoupling into two independent
sets still holds. However, the asymptotic values of the auxiliary functions for x → ∞ are related to
their x → −∞ counterparts by substituting l → (l −m) and scaling βh → αβh, α = (1 −mγ/π)−1,
eq. (2.163). This scaling affects the susceptibility:

lim
T�TK

f(T, h = 0) = −T ln(l −m+ 1) + (ã1 + (βhα)2ã2)
(
T

TK

) 2γ
π

(3.121)

lim
T�TK

C(T, h = 0) ∼
(
T

TK

) 2γ
π

(3.122)

lim
T�TK

χ(T, h = 0) =
(l −m)(l −m+ 2)α2

12T

(
1− a2

(
TK
T

) 2γ
π

)
(3.123)

The constants in eqs. (3.118)-(3.120) differ from those in eqs. (3.121)-(3.123). For ease of notation,
the same symbols have been used.

3.3 Summary

At high temperatures, T � TK , the impurity spin approaches asymptotically the behaviour of a free
spin of magnitude S = l/2. Corrections to the asymptotic values depend in their amplitude on the
channel number m. Especially, the Wilson ratio relating low- to high-temperature scales is determined,
with the help of a numerical solution, cf. appendix C.
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The low temperature case is characterized by Fermi liquid behaviour. In the exactly screened case
l = m, it is investigated by the dilogarithm technique and by the dressed charge formalism, in the
framework of a rigorous linearization.

The most striking feature of the not exactly screened models l 6= m for T � TK is the non-
commutativity of the limits T → 0, h → 0. Consider the under-screened case, l > m. A ”formal”
Fermi liquid behaviour occurs for h 6= 0, described by eq. (3.52), together with a rest spin, possibly
non-integer, eq. (3.33). On the other hand, if h = 0, an asymptotic approach to free (l −m)/2 spin
asymptotes is observed, formally analogous to the T � TK case, paragraph 3.2.3. These findings
lead [79, 80] to speak of a quantum critical point (QCP) at T = 0, h = 0 for under-screening. The
”formal” Fermi liquid behaviour is investigated in [20] by perturbational techniques; they come to the
same results, differing from ours by trivial constant pre-factors. The behaviour of such field-induced
Fermi liquids with divergent electron masses near a QCP is described in more detail in [21].

The over-screened models have been treated by asymptotic linearization for low temperatures.
The limits mentioned above do not commute, compare eqs. (3.57), (3.58) and (3.65a), (3.65b). Fur-
thermore, they also display a ”formal” Fermi liquid behaviour, eqs. (3.66), (3.70c). The non-integer
powers (or logarithms for m = 2) occurring in the specific heat and susceptibility are remarkable,
equally well as the fractional rest entropy, implied by eq. (2.160). They give evidence of a many
body state not fully understood yet. Especially at low temperatures the situation is not satisfactory:
Thermodynamic quantities are derived from integrals over the auxiliary functions, eq. (3.64). The be-
haviour of the auxiliary functions themselves is unknown. This is a drawback for numerical solutions,
as shown in the next chapter.

Whereas with analytical tools, the NLIE can be investigated in certain limiting regions of the
parameters, the next chapter deals with a numerical treatment of the NLIE over the whole parameter
ranges.



Chapter 4

Numerical Investigation

This chapter presents results for thermodynamic equilibrium response functions of the impurity cal-
culated from a numerical solution of the NLIE over a wide range of temperature and magnetic field.

Previous numerical studies were based on the TBA equations. Their numerical solution requires,
in the isotropic case, a cutoff scheme of the infinitely many equations. The first numerical solution
of the isotropic S-spin single channel model with h = 0 is due to Mel’nikov, [68]. This approach
has been generalized and carried out for finite fields in [75]. Further numerical work includes the
S = 1/2, m = 1, γ 6= 0 case [22], and the isotropic m-channel problem [24,76].

The cited works met two difficulties: Either the infinitely many TBA equations for γ = 0 are cut
off or γ 6= 0 is restricted to values π/(2n), the root of unity case, whence there rest a number of
finite equations. The system of NLIE eq. (2.154) allows for exact numerical solutions. Neither sets it
restrictions to γ, except eq. (2.142), which also has to be fulfilled in the TBA approach, [79,80]. Our
numerical data obtained from the system eq. (2.154) confirm and extend those in the cited references.

All cases show qualitatively equal high-temperature asymptotes T � TK , independent of the
anisotropy, namely that of a free spin of magnitude S in an external field h. The crucial differences
between the above mentioned cases show up at smaller temperatures:

• The approach to the free field behaviour. This has been analyzed analytically in the foregoing
chapter and the results will be confirmed numerically.

• The crossover region T ∼ O (TK), which is not accessible analytically.

• The limit of low temperatures, which has been studied by analytical methods in the preceding
chapter.

In the absence of a magnetic field, the results are presented in two subsections, containing the
exactly and under-screened first and then the over-screened cases, respectively. Each subsection starts
with the isotropic case, being followed by a finite anisotropy.

Calculations for finite fields are not carried out as generally as for h = 0. We only want to point
out that such calculations can principally be done, and therefore restrict ourselves to S = 1/2, 1,
m = 1, 2, including a possible anisotropy. In these cases, the entropy and magnetization curves for a
wide temperature range are given.

In the whole chapter, the integration range extends from −L to L, N is the number of sampling
points and Nit the number of iterations.

97
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4.1 Thermodynamic quantities for h = 0

4.1.1 Under-screened and exactly screened cases

The impurity spin S exceeds half the channel number, S = l/2 ≥ m/2. For exact screening, l = m,
Fermi liquid behaviour is recovered at low temperatures, whereas in the under-screened case, S > m/2,
Kondo-like behaviour occurs at high and low temperatures. Both cases are illustrated in the ongoing
for S = 5/2.1

The crossover from low to high temperatures is displayed by the entropy curves, fig. 4.1. The
Fermi liquid behaviour is shown qualitatively in the case 2S = m = 5, γ = 0, for the specific heat
(fig. 4.2) and the susceptibility (fig. 4.3). Both can be combined to the low temperature Wilson ratio,
which reaches a constant, eq. (3.9). Quantitative results are summarized in table 4.1. To get an
idea how far the numerical solution reproduces the approach to the asymptotes, the first correction to
the susceptibility in the high temperature regime (fig. 4.4) and low temperature regime (fig. 4.5) is
plotted. Note that this Kondo-like behaviour at low temperatures only occurs for m/2 < S. Whereas
these corrections are slightly overestimated at high temperatures, one remarks the underestimation at
low temperatures. These deviations stem from the finite integration range in the numerical studies.
In any case, further numerical studies, like the calculation of Wilson’s ratio, do not rely on these
numerical errors, but on integrals over the whole integration range, which can be determined much
more accurately.

As a comparison with earlier numerical studies based on the TBA equations, the location and
value of the maximum of the specific heat for some under-screened cases calculated by Mel’nikov [68]
and in our approach are given in table 4.2. The deviations grow with increasing spin, which probably
is due to the fact that in [68], the infinitely many TBA-equations had to be truncated. This procedure
inevitably leads to numerical errors, which grow with growing spin.

l = m Rn/2 Ra/2

γ = 0 0.1π
2l

0.5π
2l

0.9π
2l 0 0.1π

2l
0.5π
2l

0.9π
2l

1 0.999994 1.05263158* 1.33333333 1.81818182 1 1.05263157 1.3 1.81
2 1.3339 1.405* 1.78* 2.43* 1.3 1.40350877 1.7 2.42
3 1.668 1.758* 2.227* 3.036* 1.6 1.75438597 2.2 3.03
4 2.002 2.113* 2.68* 3.65* 2 2.10526316 2.6 3.63
5 2.336 2.1;2.468* 3.12 4.26 2.3 2.45614035 3.1 4.24

Table 4.1: Numerical results Rn compared with analytical predictions Ra of the low-temperature
Wilson ratio. The numerical calculation has been done with N = 32768 , L = 100 , Nit = 100.
Results denoted by * are obtained by integration over an interval with L = 700.

Let us now permit an anisotropy γ 6= 0. The functions decay exponentially, which facilitates
numerical calculations. However, numerical errors appear when γ tends to its limiting values, γ → 0
or γ → π/(2l). In the former case, the exponential decay becomes too weak for finite integration
ranges, we take γ = 0.1π/(2l) as smallest value. On the other hand, the kernel shows a pole for
γ = π/(2l), causing not controlled divergences. γ = 0.9π/(2l) will be the maximal value γ is allowed
to adopt.

1We solved the NLIE for m, 2S ≤ 5. The value 5/2 is arbitrary, but reflects both the confirmation of analytical results
by the numerics as well as numerical limitations.
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S lnT0/TK C(T0)

[68] this work [68] this work
1/2 -0.7985 -0.7985 0.177 0.177
1 -0.6349 -0.6162 0.063 0.0634

3/2 -0.5798 -0.5109 0.033 0.0325

Table 4.2: Location lnT0/TK of the maximal value C(T0) of the specific heat, calculated by Mel’nikov
[68] and in our approach in the presence of one channel, m = 1.

The specific heat is only slightly affected by the anisotropy: Table 4.3 gives the location and the
value of the maximum for different values of γ and m, keeping the spin fixed. In all cases, the maximum
of C(T ) grows with growing anisotropy - in agreement with the fact that we deal with an Ising-like
anisotropy. As to the entropy, this means that the crossover from lower to higher temperatures gets
steeper for increasing γ.

The low temperature behaviour of the magnetic susceptibility is neatly affected by γ 6= 0, as
predicted by eq. (3.123). In table 4.4, the low-temperature values of the susceptibility are given,
both from numerical and analytical studies. Furthermore, we are able to distinguish between the
logarithmic corrections to the Curie-like behaviour for γ = 0 and algebraic corrections for γ 6= 0: In
table 4.5, the exponent extracted from numerical data is compared with analytical predictions.2

To get an impression how the anisotropy generally influences the susceptibility, the γ = 0 case is
compared with γ = 0.5π/(4S), S = 5/2 and channels m = 1, . . . , 5 in fig. (4.6). In the anisotropic
case, the crossover from low to high temperatures is more pronounced.

Numerical results for the low-temperature Wilson ratio are presented, table 4.1, and compared
with analytical findings.

4.1.2 Over-screened cases

The channel number exceeds twice the impurity spin, m > 2S. Whereas at high temperature, the
common spin-S Kondo-like behaviour occurs, the low temperature state is difficult to grasp: It shows
fractional entropy, and non-integer powers of temperature and field for the specific heat and suscep-
tibility.

Crossover from the low to the high temperature state in the entropy is shown in fig. 4.7. According
to this crossover, the specific heat shows a maximum for T ≈ TK , which grows with increasing spin,
fig. 4.8. As expected, the free spin behaviour is recovered at high temperatures, independently of the
channel number, fig. 4.9. The amplitude of the first logarithmic correction to this high-temperature
value is that of the channel number, fig. 4.10. The deviation of the numerical result from the analytical
value is traced back to finite size errors.

The leading low temperature behaviour of both the specific heat and the susceptibility is given by

2The exponents were calculated numerically by differentiating ln(Tχ − χ(0)) with respect to lnT ; χ(0) = limT→±∞,
depending on wether high or low temperatures are considered. In the low-temperature regime, the resulting function
approaches its asymptotes unambiguously. In the high-temperature regime, this function shows a minimum at lnT/TK ≈
50. For γπ/(4S) = 0.2, 0.5, a turning point at higher temperature follows, above which the function approaches its
asymptotic value. The minimal value for γπ/(4S) = 0.2 is about 0.08, and for γπ/(4S) = 0.5 about 0.11: The difference
between the minimum and the asymptotic value as given in the table decreases with increasing γ. If γ gets too large, as
in the case γπ/(4S) = 0.9, such a turning point does not occur, so that the function increases up to the boundary from
the minimum. This effect is due to the finite system size and numerical errors (note that a pole in the kernel occurs for
γπ/(4S) = 1). That’s why for γπ/(4S) = 0.9, we take the minimum as asymptotic value for the exponent.
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m γ ·
(
π
4S

)−1 ln T0
TK

C(T0)

1 0 -0.3011 0.01327
0.2 -0.3011 0.01327
0.5 -0.3011 0.01328
0.9 -0.3011 0.01341

2 0 -0.1393 0.03353
0.2 -0.1393 0.03353
0.5 -0.1393 0.03355
0.9 -0.1278 0.03380

3 0 -0.21072 0.06816
0.2 -0.21072 0.06816
0.5 -0.21072 0.06818
0.9 -0.21072 0.06852

4 0 -0.4620 0.1397
0.2 -0.4620 0.1397
0.5 -0.4620 0.1398
0.9 -0.4620 0.1401

5 0 -0.8440 0.360
0.2 -0.8440 0.360
0.5 -0.8440 0.360
0.9 -0.8440 0.3603

Table 4.3: Location lnT0/TK of the maximal value C(T0) of the specific heat for various anisotropies
in the exactly and under-screened S = 5/2 cases.

non-integer exponents, eq. (3.72), (3.73). In order to gain insight into the deviation of our numerical
findings for the low-temperature Wilson ration from the analytical prediction by Affleck, table 3.1,
the exponential law of C(T ) and T ·χ(T ), extracted by numerical studies, is compared with the exact
result in table 4.6. Whereas numerical data for specific heat agree well with the exact result, the
susceptibility shows significant deviations.3 These deviations cause the error made in calculating the
low-temperature Wilson ratio in the over-screened case. They presumably originate from contributions
to the auxiliary functions in the low-temperature regime which are difficult to control numerically. This
region of low temperatures is not completely understood in the over-screened case: As pointed out
in the preceding chapter, the behaviour of the auxiliary functions is unknown and thus cannot be
accounted for in the numerics.

We now include a finite anisotropy into our considerations. As in the under-screened case, the
maximum value of the specific heat increases slightly with γ, table 4.7. At high temperatures, the
Curie-law of the susceptibility is approached in a power-like manner (eq. (3.120)), table 4.8 compares
the numerical result with the exact value. Deviations between both are traced back to finite size
effects. Fig. 4.11 compares qualitatively the crossover in the susceptibility between the isotropic and
anisotropic cases. As expected, the crossover is more pronounced for γ 6= 0. As to the low temperature
Wilson ratio, the behaviour of C(T ) and χ(T ) is very similar to the isotropic case, table 4.6, with the

3The same behaviour as already observed in the high-temperature regime of finite anisotropy, footnote 2 in this
chapter, occurs: The function dχ(T )/d lnT does not approach its asymptotic value for T � TK , but shows a maximum
at lnT/TK ≈ −10. This maximal value is taken as the numerically calculated exponent. On the other hand, the
asymptotic value of the specific heat exponent can be read of without ambiguity.
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m γ ·
(
π
4S

)−1
χ

(0)
n χ

(0)
a

1 0 2.08 2.0
0.2 2.130 2.08247
0.5 2.233 2.21607
0.9 2.418 2.41517

2 0 1.347 1.25
0.2 1.4142 1.35634
0.5 1.5633 1.54321
0.9 1.862 1.85901

3 0 0.742 0.66667
0.2 0.80 0.75449
0.5 0.938 0.92272
0.9 1.253 1.25102

4 0 0.287 0.25
0.2 0.318 0.29537
0.5 0.398 0.39063
0.9 0.6109 0.61035

Table 4.4: limT�TK T · χ(T ) =: χ(0), calculated numerically (index n) and analytically (index a),
χ

(0)
a = (2S−m)(2S−m+1)

12
1

(1−mγ/π)2 for 2S = 5.

same difficulties concerning the susceptibility.

4.2 Thermodynamic quantities for h 6= 0

Numerical data for h 6= 0 are less accurate than those for h = 0. Problems occur if βh � 1, in the
βh � 1 regime. Then lnYj(x), ln Bl(x), ln Bl(x) show a crossover of order βh over a range of order
(βh)−1 around the origin. This sharp crossover is hard to resolve numerically with acceptable effort,
lowest temperatures are T/TK = O

(
10−10

)
. Although smoothed functions are dealt with, appendix

C.2.3, some trembling of the data at βh � 1, of the order O
(
10−3

)
is inevitable. It is a numerical

artefact, with no physical meaning. Unintentionally, it is exaggerated in the corresponding plots. In
the following, the exactly screened cases S = 1 = m/2, the under-screened case S = 1 = m and the
over-screened case S = 1/2 = m/2 are considered.

4.2.1 Under-screened and exactly screened cases

Fig. 4.12 shows the entropy in the exactly screened case S = 1, m = 1. The magnetic field shifts the
onset of the crossover to higher temperatures. This confirms the intuitive idea of the magnetic field
to induce ”order” which competes with ”disorder” caused by temperature. Consequently the peak in
the specific heat shifts to higher temperatures, which is shown in fig. 4.13. There one also realizes
that the anisotropy plays an increasingly important role with increasing magnetic field. This is in
accordance with the intuitive expectation, since we are dealing with an Ising-like anisotropy. Note
that the crossover in the susceptibility also is shifted to higher temperatures, the higher the magnetic
field, fig. 4.14. The entropy of the under-screened case with and without magnetic field is shown in fig.
4.15. The non-commutativity of the limits T → 0, h → 0, known from analytical studies, is evident.
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m γ ·
(
π
4S

)−1
ν

(l)
n ν

(h)
n νa

1 0.2 0.068 0.040 0.04
0.5 0.13 0.087 0.1
0.9 0.20 0.179 0.18

2 0.2 0.069 0.040 0.04
0.5 0.12 0.088 0.1
0.9 0.22 0.179 0.18

3 0.2 0.068 0.041 0.04
0.5 0.13 0.090 0.1
0.9 0.25 0.179 0.18

4 0.2 0.069 0.040 0.04
0.5 0.13 0.091 0.1
0.9 0.28 0.178 0.18

5 0.2 n.d. 0.040 0.04
0.5 n.d. 0.094 0.1
0.9 n.d. 0.018 0.18

Table 4.5: The coefficient ν(l) (ν(h)) of the low (high) temperature expansion of the susceptibility,
T · χ(T � TK) = χ(0) + a(T/TK)ν

(l)
(T · χ(T � TK) = χ(0) + a(TK/T )ν

(h)
) in the under-/exactly

screened m/2 ≤ S = 5/2 case. νn gives the numerical value, νa = 2γ/π the analytical result (n.d.:
not defined)

Furthermore, the magnetic field has qualitatively a higher influence than in the exactly screened case.
This is confirmed by the specific heat, fig. 4.16, and susceptibility curves, fig. 4.17.

The magnetization for S = 1 = m/2 is depicted in fig. 4.18. The magnetization of a free S = 1
spin is approached for high fields, where the coupling with the host becomes small in comparison with
the field. An anisotropy is seen to enhance this effect. The magnetization for the under-screened case
is depicted in fig. 4.19 and shows qualitatively the same behaviour.

4.2.2 Over-screened case

Let us now turn our attention to the over-screened case, S = 1/2, m = 2. The most striking feature
is that a weak magnetic field induces a second crossover temperature T (2)

K , fig. 4.20. The second scale
coincides with TK at higher fields. This is also reflected in the specific heat, fig. 4.21. This double
peak structure has first been observed in [76] for the isotropic case. There it was argued that two
energy scales are involved at low fields, TK(h/TK)1+2/m (in view of eq. (3.57)) and TK . The physical
picture behind is that Kondo screening gets less important for increasing m (l fixed) - in fact, the h
dependent scale becomes h itself for m → ∞. Numerical studies for m > 2 in [76] show that with
increasing m at h < TK , the impurity spin behaves more and more like a free spin in a magnetic field,
the second peak at TK vanishes. With increasing fields, the two peaks merge into one at T ≈ TK .
This is the common Schottky anomaly.

The susceptibility behaves very similarly to the exactly screened case, so that we do not show it
again here. The magnetization curve is depicted in fig. 4.22. As in the exactly screened case, the
free spin function is approached for high fields, dominating the coupling with the host. This tendency
is enforced by a finite anisotropy.

Summarizing, one observes that the numerical data shown in this chapter confirm analytical results
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m 2S κn(C) κn(χ) κa = 4
m+2

3 1 0.794 0.667 0.8
2 0.883 0.75
3∗ 1.0 1.0 1.0

4 1 0.664 0.552 0.6667
2 0.6662 0.591
3 0.67 0.693
4∗ 1.0 1.0 1.0

5 1 0.568 0.47 0.5714
2 0.570 0.49
3 0.573 0.537
4 0.576 0.656
5∗ 1.0 1.0 1.0

Table 4.6: The exponents κ, defined by C(T � TK) ∼ T κ(C), T · χ(T � TK) ∼ T κ(χ). Subscripts n
denote numerical, a analytical results. In the exactly screened case, denoted by ∗, κ = 1.

for h = 0. Corrections to the asymptotic behaviour can be extracted; this extends numerical work
based on the TBA approach, where such asymptotic investigations of numerical data have not been
performed yet. At the same time, the analysis of these corrections reveals the limits of the numerical
procedure. Only the Fermi liquid behaviour of the exactly screened cases is reproduced with arbitrary
accuracy, in the not exactly screened cases, numerical errors seem to be unavoidable.

In the presence of a magnetic field, the NLIE are more difficult to be solved numerically with high
accuracy, and asymptotic corrections cannot be extracted. The data give qualitative agreement with
analytical predictions. On the other hand, the double peak structure in quantities of the overcom-
pensated case for h 6= 0 has not been foreseen analytically, since it is located at T = O (TK); this
crossover region is not accessible by analytical tools yet.
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2S γ ·
(
π
4S

)−1 ln T0
TK

C(T0)

1 0 0.53063 0.00874
0.2 0.53063 0.00874
0.5 0.53063 0.00874
0.9 0.53063 0.00878

2 0 0.2624 0.0263
0.2 0.2624 0.0263
0.5 0.2624 0.0263
0.9 0.2624 0.0263

3 0 -0.0305 0.0601
0.2 -0.0305 0.0601
0.5 -0.0305 0.0601
0.9 -0.0202 0.0602

4 0 -0.4155 0.1333
0.2 -0.4155 0.1333
0.5 -0.4155 0.1333
0.9 -0.4005 0.1335

Table 4.7: Location lnT0/TK of the maximal value C(T0) of the specific heat for various anisotropies
in the over-screened S < m/2 = 5/2 case.

2S γ ·
(
π
4S

)−1
ν

(h)
n νa

1 0.2 0.038 0.04
0.5 0.083 0.1
0.9 0.179 0.18

2 0.2 0.038 0.04
0.5 0.084 0.1
0.9 0.177 0.18

3 0.2 0.038 0.04
0.5 0.085 0.1
0.9 0.179 0.18

4 0.2 0.038 0.04
0.5 0.087 0.1
0.9 0.179 0.18

Table 4.8: The coefficient ν(h) of the high temperature expansion of the susceptibility, T · χ(T �
TK) = χ(0) + a(TK/T )ν

(h)
in the over-screened S < m/2 = 5/2 case. ν(h)

n gives the numerical value,
νa = 2γ/π the analytical result. (cf. footnote 2 in section 4.2.1.)
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Figure 4.1: Entropy for impurity spin S = 5/2 and different channel numbers. Also shown are the
asymptotes ln(2S + 1) at high temperatures and ln(2S −m) at low temperature.
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Figure 4.2: Specific heat for impurity spin S = 5/2 and different channel numbers. As an example for
the exactly screened cases, the inset shows the Fermi liquid behaviour limT→0C(T )/T = const. for
2S = m = 5. Curves for other values 2S = m look qualitatively the same.
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Figure 4.3: Susceptibility multiplied by temperature for impurity spin S = 5/2 and different channel
numbers. For the sake of better comparison with known results, a scaling by 12/(2S(2S + 2)) has
been performed. The inset shows the Fermi liquid behaviour limT→0 χ(T ) =const. for 2S = m = 5.
Curves for other values 2S = m look qualitatively the same.
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Figure 4.4: Convergence to the coefficient of the (lnT/TK)−1 contribution to the susceptibility at high
temperatures for S = 5/2. With increasing channel number m, the deviations from the analytical
result, −m, become more pronounced.
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for S = 5/2. Seff = S −m/2. With increasing channel number m, the deviations from the analytical
result, −m, become more pronounced.
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compared for γ = 0.5π/(4S).
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Figure 4.7: Entropy for m = 5 channels and spins S = 1/2, . . . 5/2.
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Figure 4.8: Specific heat for m = 5 channels and spins S = 1/2, . . . 5/2.
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Figure 4.10: First correction to the high temperature susceptibility for m = 5 channels and spins
S = 1/2, . . . 5/2. Analytically, (12/35T · χ− 1) lnT/TK = −5. Finite size effects are obvious.
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Figure 4.11: Susceptibility for m = 5 channels, spins S = 1/2, . . . 2 and γ = 0, 0.5π/(2m).
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Figure 4.12: The entropy for exactly screened case S = 1, m = 2, with fields h = 0, 0.1, 0.5, 1, 10. For
h = 10, the curve for finite anisotropy is shown. The field-free curve cannot be distinguished from the
h = 0.1 curve in this resolution. Equally, the difference between the isotropic and anisotropic cases is
weakly pronounced.
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Figure 4.13: The specific heat for the exactly screened case S = 1, m = 2 with fields h = 0, 0.5, 1, 10
and anisotropies γ = 0, γ = 0.9π/2.
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Figure 4.14: The susceptibility for the exactly screened case S = 1, m = 2 with fields h = 0, 0.5, 1, 10
for anisotropies γ = 0, 0.9π/4. The asymptotic values are given as horizontal bars.
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Figure 4.15: The entropy for the under-screened case S = 1, m = 1 with fields h = 0, 0.1, 1, 10 and
anisotropies γ = 0, γ = 0.9π/2. The asymptotic values are given as horizontal bars.
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Figure 4.16: The specific heat for the under-screened case S = 1, m = 1 with fields h = 0, 0.1, 1, 10
for anisotropies γ = 0, 0.9π/4.
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Figure 4.17: The susceptibility for the under-screened case S = 1, m = 1 with fields h = 0, 0.1, 1, 10
and anisotropies γ = 0, γ = 0.9π/2. The asymptotic values are given as horizontal bars on the right.
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Figure 4.18: The magnetization in the exactly screened case S = 1, m = 2 with fields h = 0.1, 1, 10
and anisotropies γ = 0, γ = 0.9π/4.
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Figure 4.19: The magnetization in the under-screened case S = 1, m = 1 with fields h = 0.1, 1, 10
and anisotropies γ = 0, γ = 0.9π/4.
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Figure 4.20: The entropy in the over-screened case S = 1/2, m = 2 with fields h = 0, 0.1, 0.5, 1, 10
and anisotropies γ = 0, γ = 0.9π/4.
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Figure 4.21: The specific heat in the overcreened case S = 1/2, m = 2 with fields h = 0, 0.1, 0.5, 1, 10
and anisotropies γ = 0, γ = 0.9π/4.
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Figure 4.22: The magnetization in the overcreened case S = 1/2, m = 2 with fields h = 0.1, 1, 10 and
anisotropies γ = 0, γ = 0.9π/4.





Chapter 5

Conclusion and Outlook

A lattice regularization of the continuous Kondo model has been presented. The Hamiltonian, host
and impurity, is obtained as the logarithmic derivative of a gl(2|1) symmetric transfer matrix, allowing
for the calculation of the free energy of the host and impurity in the same approach. The procedure
is purely algebraic, and does not need the explicit construction of wave functions as in the coordinate
BA in previous works. The QTM-formalism has been applied to the model, resulting in NLIE which
simultaneously determine the free energy of the host and of the impurity.

The impurity contribution has been studied in the limit of single occupation, described by the
common Kondo model. This limit reduces the underlying Lie super-algebra gl(2|1) to one of its even
Lie sub-algebras, su(2). The resulting transfer matrix is generalized to symmetry with respect to
higher dimensional irreps of Uq(su(2)). These effective matrices contain all information about the
impurity contribution to thermodynamic equilibrium response functions of the anisotropic m-channel
S-spin Kondo model. The thermodynamic functions are given by a system of [max(2S,m) + 1] NLIE.

In certain limiting ranges of temperature and magnetic field, the NLIE are solved analytically,
numerical studies are carried out over the whole range of parameters. Most importantly, both Wilson
ratios are calculated in the framework of one approach. Furthermore, results known from other
exact solutions are confirmed. However, while agreeing qualitatively with Schlottmann [79,80] in the
anisotropic under-screened case, quantitative disagreement is found.

This work exclusively concentrates on the Kondo limit of the impurity model, realized by µ,D, α�
1. The model presented in section 2.1.2 with these parameters left finite is of interest itself: It describes
a correlated host interacting with an impurity on which double occupation is forbidden. The study
of such a model is expected to be in reach: The NLIE leading to the impurity contribution of the
free energy are the same as those for the host, which have been investigated extensively in [47, 77].
One still has to take account of the different functional dependence of the free energy on the auxiliary
functions. Such investigations are motivated by CFT-results by [29, 30], where the low-temperature
properties of an impurity embedded in an interacting one-dimensional host are calculated.

At the end of section 2.1.3 it has been stated that in the gl(2|1)-symmetric model, the host-host
interaction is determined by the same parameter which yields the host-impurity coupling, namely α.
On the other hand, the final equations for host and impurity are independent of α, and the limits
D,α → ∞ can be taken rigorously, only TK must remain constant. One may speculate whether an
additional degree of freedom exists which allows for a further parameter, say αh, which tunes the
correlations in the host, so that αh →∞ results in free fermions, but a finite spin-exchange coupling
between host and impurity remains.

Actually, R(4,4)-matrices exist which intertwine two four-dimensional representations of gl(2|1),
but these representations may differ in the parameters α, α′ [40,71]. An impurity model may thus be
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constructed by a transfermatrix T (4,4), where in the language of fig. 2.2, α lives on the ”horizontal”
bonds, and α′ on the ”vertical” bonds. It remains to be explored in how far such a model leads to a
decoupling of host-host and host-impurity interaction amplitudes.

Another approach to this challenge is a closer study of gl(2|1). One is tempted to perform the
limit which reduces gl(2|1) to su(2) on the impurity site already on an algebraic level, rather than on
the Hamiltonian level by the canonical transformation or in the NLIE framework by eliminating one
auxiliary function. This addresses the question whether it is possible to embed a u(1)⊗su(2)-symmetric
R-matrix for the impurity from the beginning in a gl(2|1) dimensional host.

Whereas in section 2.1.2 the host (impurity) is realized by a four- (three-) dimensional representa-
tion of gl(2|1), in [14] the ”inverse” model is developed: The host (impurity) relies on the three- (four-)
dimensional representation of gl(2|1). This corresponds to an impurity permitting charge fluctuation,
which is embedded in a t − J-like host. Thermodynamic quantities are studied for T = 0 and low
temperatures, as well as for high temperatures by TBA-techniques and compared with findings by
CFT, [29, 30]. The formalism presented in this work is suited to contribute further insight into the
exact solution of that model.

The following questions could not be clarified in this work:

i) Our ”hybrid” method, which combines analytical with numerical results to calculate the high-
temperature Wilson ratio, motivates further analytical studies of the NLIE. It is an intriguing
question how to obtain this number analytically (and to solve the contradiction between our
results for S > 1/2 = m/2 and those of [31]). This question may be intimately related to the
calculation of the integral over the imaginary part of ln Bl, eq. (3.84).

ii) The multichannel models still remain somehow mysterious: Neither the fusion of electronic
degrees of freedom in the Hamiltonian, nor the low-temperature behaviour of the over-screened
models is fully understood.

Regularizations of the anisotropic and the isotropic m, 2S > 1 models, similar to that proposed in
this work for γ = 0, 2S = m = 1, are left as a future challenge. Such a regularization is particularly
desired for the multichannel m > 1 case, see item ii). The strategy to find the m = 1 = 2S Kondo
model with anisotropic exchange is to employ the q-deformed algebra Uq(gl(2|1)), [40, 67, 37]. As to
the realization of higher impurity spins, remember that su(2) is an even sub-algebra of gl(2|1). Thus
one is tempted to find representations of gl(2|1) which embed higher dimensional representations of
su(2). A starting point might be [78].

Once a lattice path integral approach to the simplest case, γ = 0, S = 1/2 = m/2, is found, the
next question addresses dynamical response functions. Since the spectrum with the corresponding
eigenstates of the model are known, those quantities can be calculated in principle. The difficulties
are twofold: Matrix elements between local operators and next-leading eigenvalues must be calculated.

For example, consider the spin-spin correlation function between the S = 1/2 impurity and the
m = 1 host without external fields. Let σνI (σνr ) be the ν-th component of the spin operator at the
impurity (at the r-th lattice site in the host). |Φ(Q)〉 ≡ |k〉, eq. (A.29), is a common eigenstate of
τ

(Q)
I , τ (Q)

h , with parity p[k]. |Φ(Q)
max〉 is the eigenstate leading to the largest eigenvalues of τ (Q)

I , τ (Q)
h .

Z = tr e−βH = lim
N→∞

str
{
τ

(Q)
I

[
τ

(Q)
h

]L}
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c(r, T ) := 〈σνI σµr 〉 =
1
Z

tr
[
e−βHσνI σ

µ
r

]
= lim

N→∞

1
Z
∑
k

(−1)p[k]〈k|τ (Q)
I σνI

[
τ

(Q)
h

]r
σµr

[
τ

(Q)
h

]L−r
|k〉
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N→∞

∑
k,q(−1)p[k]〈k|σνI |q〉〈q|σ

µ
r |k〉Λ(k)
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[
Λ(q)
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]r [
Λ(k)
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]L−r
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p(−1)p[p]Λ(p)
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[
Λ(p)
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]L (5.1)

= 〈Φ(Q)
max|σνI |Φ(Q)

max〉 〈Φ(Q)
max|σµr |Φ(Q)

max〉

+ lim
N→∞

∑
q 6=max

(−1)p[q]〈Φ(Q)
max|σνI |q〉 〈q|σµr |Φ(Q)

max〉

(
Λ(q)
h

Λmax
h

)r
=: const. +

∑
q 6=max

(−1)p[q]aqe−r/ξq , (5.2)

with

aq := 〈Φ(Q)
max|σνI |q〉 〈q|σ

µ
j |Φ

(Q)
max〉

ξ−1
q = − lim

N→∞
ln

Λ(q)
h

Λmaxh
.

A finite gap between the largest and next-leading eigenvalues persists in the limit N →∞, such that
(eq. (5.1) in the denominator only the leading term rests and k in the nominator is restricted to
k = max. The first term in eq. (5.2) is constant. The second summand contains an r-dependence
through the ratios of next-leading to leading eigenvalues of the host matrix. The ξq are correlation
lengths of the host. In the limit of large distances,

lim
r�1
〈σνI σ

µ
j 〉 = const. + (−1)p[2]a2e−r/ξ2 . (5.3)

|2〉 is the eigenstate pertaining to the next-leading eigenvalue of the host QTM. Eq. (5.3) states that
for large distances, the impurity enters the correlation function only through a constant pre-factor,
the exponential decay is determined by the host. Such a behaviour is expected.

For smaller distances, near the impurity site, the restriction to the next-leading eigenvalue of eq.
(5.3) does not suffice. Rather, sufficiently many terms of the series in eq. (5.2) must be added. In that
case, the impurity-dependent pre-factors aq are important. The result is expected to deviate from the
corresponding correlation function with host operators only.

So two tasks are to accomplish: The evaluation of next-leading eigenvalues of the host and the
calculation of the matrix elements aq.

Next-leading eigenvalues are defined by the deviation of their BAN-distribution in the complex
plane from the BAN-distribution of the leading eigenvalue. This leads to additional terms in the
NLIE, as has been demonstrated for the host QTM in [77].

Improvements in evaluating matrix elements for T = 0 have recently been made by Müller, [16,17],
relying on methods by Kitanine, [53,43]. These techniques require the numerical determination of BAN
in the complex plane.

Whether the two techniques for calculating Λ(h)
q and aq help to evaluate eq. (5.2) remains a

challenge for future research.
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In view of debates about the characteristics of a possible screening cloud around the impurity, such
progress is highly desirable. The question whether such a screening cloud exists in the low-temperature
limit is not answered unambiguously. c(r, T � TK) has been calculated perturbationally by Keiter
[49]. Besides a diverging contribution ∼ lnT/D, he found non-oscillating J2/r3 and J3(ln kfr)/r3-
contributions. These terms predict an extremely long-range behaviour at zero temperature, which
would require, in eq. (5.2), the summation of infinitely many terms. Affleck et al. [11,12,83] interpolate
between high and low temperatures by scaling arguments. They also describe the Kondo screening as
a long-range many-particle phenomenon. This statement contradicts results by Gan [32], who, after
performing a 1/m development, concludes the non-existence of a long-range screening cloud.

Finally, progress in the evaluation of correlation functions in the framework of the BA is of theoret-
ical significance itself: The models are exactly solvable since they display infinitely many conservation
laws. The question is, how to exploit them with least effort.
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Appendix to Chapter 2

Some details in the diagonalization of τ (Q)
I , τ (Q)

h , τ (l,m)
eff are provided.

A.1 Eigenvalue of τ
(Q)
I

In the following, details in the calculation of the eigenvalue of the impurity quantum transfer matrix
are given.

Let

T (d,d′)(v) := R
(d,d′)
a,N (v + vN )R(d,d′)

a,N−1(v + vN−1) · · · R(d,d′)
a,1 (v + v1) (A.1)

be a monodromy matrix, with d-dimensional auxiliary space, andN quantum spaces, each of dimension
d′. At each site j, the spectral parameter may be shifted by a site dependent constant vj . The definition
eq. (A.1) thus includes both T

(Q)
h and T

(Q)
I , eqs. (2.63), (2.64).

T (d,d′) is regarded as a d× d matrix in auxiliary space, with operator valued entries acting in the
quantum spaces. From the YBE (2.2), the direct product of two monodromy matrices is intertwined
by a R-matrix,

(−1)p[β
′](p[α]+p[α′])

[
T

(d,d′) ⊗ T (d′′,d′)
]β,α
β′,α′

[
R(d′′,d)(v − u)

]α′,β′
α′′,β′′

=
[
R(d′′,d)(v − u)

]α,β
α′,β′

[
T (d′′,d′) ⊗ T (d,d′)

]α′,β′
α′′,β′′

(−1)p[β
′](p[α′]+p[α′′]) (A.2)

[
R(d′′,d)(v − u)

]α,β
α′,β′

[
T (d′′,d′) ⊗s T

(d,d′)
]α′,β′
α′′,β′′

=
[
T

(d,d′)⊗̃sT (d′′,d′)
]α,β
α′,β′

[
R(d′′,d)(v − u)

]α′,β′
α′′,β′′

(A.3)

T =: T (v) , T = T (u) .

The symbol ⊗̃s is defined as[
A⊗̃sB

]α,β
γ,δ

= [A⊗B]β,αδ,γ (−1)p[δ](p[α]+p[γ]) .

It is introduced in eq. (A.3) in order to arrange the matrices such that both sides can be written as a
conventional matrix multiplication. Note that usually in literature, the entries of the R-matrix in eq.
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(A.2) are permuted to achieve a matrix multiplication like structure. This works well for d′′ = d. In
this work, however, the cases

d′′ = d = 3 ; d′ = 4 (A.4)
d′′ = 3 ; d = d′ = 4 (A.5)

are treated, so that we work with the slightly modified formalism.
R(d′′,d) is a regular matrix (indeed, it is unitary: R(u)R(−u) = 1), so that eq. (A.2) can be

multiplied by
[
R(d′′,d)

]−1
. Then take the trace and employ invariance of cyclic permutations under

the trace operation to end up with[
τ (d,d′)(u), τ (d′′,d′)(v)

]
= 0 (A.6)

τ (d,d′)(u) := trT (d′′,d′) .

So in spite of differing in the dimensions of their auxiliary spaces and in the spectral parameters, both
τ (d,d′)(u) and τ (d′′,d′)(v) share a common system of eigenstates. It is essential that the quantum spaces
of both have the same dimension.

One may include twisted boundary conditions of the transfer matrices. Define matrices

E(3,3) = ε̂(3) ⊗s ε̂(3)

E(3,4) = ε̂(3) ⊗s ε̂(4)

ε̂(3) =

 ε1ε2

ε1ε
−1
2

1



ε̂(4) =


ε2

1

ε1ε2

ε1ε
−1
2

1


ε̂(3) acts in three-dimensional, ε̂(4) in four-dimensional auxiliary space; the entries are numbers, i.e.
the unity operator with respect to the quantum spaces. One verifies that[

R(d,d′), E(d,d′)
]

= 0 . (A.7)

Furthermore,

ε̂(d) ⊗s ε̂(d′) = ε̂(d′)⊗̃sε̂(d) . (A.8)

Multiply eq. (A.3) from left with E(d′′,d):

E(d′′,d)R(d′′,d)(v − u)
[
T (d′′,d′) ⊗s T

(d,d′)
]

= E(d′′,d)
[
T

(d,d′)⊗̃sT (d′′,d′)
]
R(d′′,d)(v − u)

⇔ R(d′′,d)(v − u)E(d′′,d)
[
T (d′′,d′) ⊗s T

(d,d′)
]

= E(d′′,d)
[
T

(d,d′)⊗̃sT (d′′,d′)
]
R(d′′,d)(v − u)

⇔ R(d′′,d)(v − u)
[(
ε̂(d′′)T (d′′,d′)

)
⊗s
(
ε̂(d)T

(d,d′)
)]

=
[(
ε̂(d)T

(d,d′)
)
⊗̃s
(
ε̂(d′′)T (d′′,d′)

)]
×R(d′′,d)(v − u)
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Use has been made of eqs. (A.7), (A.8).In other words, once the eigenvalues of trT (d,d′) are known,
those of tr

[
ε̂(d)T (d,d′)

]
are directly obtained. The εi include external fields,

ε1 = = eβµ , ε2 = e−βh/2

ε̂(3) = exp

[
−β((n↑ − n↓)h/2− µ

∑
τ

nd,τ (1− nd,τ̄ ))

]
ε̂(4) = exp [−β((n↑ − n↓)h/2− µn)] .

In the following, we will diagonalize the transfer matrices first with periodic boundary conditions and
no twist angle. Once the eigenvalues are derived, twisted boundary conditions are easily included.

Let us tackle the problem of diagonalizing τ
(Q)
I , defined by eq. (2.64), i.e. case eq. (A.4). For

simplicity, first consider the case of a homogeneous monodromy matrix, vk = 0∀k in eq. (A.1). It is
build up by R(d′′,d)-matrices defined in eq. (2.4),

R(3,4)(v) = v +
α

2
+ 1 +

 E1
1 E1

2 E1
3

E2
1 E2

2 E2
3

E3
1 E3

2 −E3
3

 (A.9)

= v +
α

2
+1+



0
0

−1 1 −
√
α

−1
√
α+ 1

0
1 −1

√
α

0
−1

√
α+ 1

−
√
α

√
α −α√

α+ 1 −(α+ 1)√
α+ 1 −(α+ 1)

−(α+ 2)


Results in this section are independent of the normalizing pre-factor, so it is omitted. The corre-

sponding monodromy matrix is denoted by T (we omit the index (3,4) for ease of notation), and its
entries are defined as

T =:
(
A B
C D

)
(A.10)

A :=
(
A1

1 A2
1

A1
2 A2

2

)
, B =: (B1, B2)T , C =: (C1, C2) .

Our aim here is to find the eigenvalue of

τ := trT = A+D ,

and afterwards that of τ (Q). Eigenstates of A and D are the reference states |4〉⊗N and |1〉⊗N :

A|4〉⊗N = ω1|4〉⊗N , D|4〉⊗N = ω2|4〉⊗N

A|1〉⊗N = ω̃1|1〉⊗N , D|1〉⊗N = ω̃2|1〉⊗N

T |4〉⊗N =
(
ω112 0
C ω2

)
|4〉⊗N .

Let us choose the reference state |4〉⊗N (the choice of |1〉⊗N leads to the same results). Then C acts
as a creation operator; and in fact all eigenstates |Φ〉 of τ can be constructed by acting with C on



124 APPENDIX A. APPENDIX TO CHAPTER 2

|4〉⊗N - this is the essential, but not the whole story, so we postpone the explicit construction of |Φ〉
to some later moment. As a verification, one has to commute A, D through C.

The intertwining R(3,3) is defined by eq. (2.3),

R(3,3)(u) = u+

 e1
1 e1

2 e1
3

e2
1 e2

2 e2
3

e3
1 e3

2 −e3
3

 .

Before comparing matrix entries on both sides of eq. (A.3), it proves ingenious to apply a similarity
transformation to eq. (A.3) (this idea is borrowed from [33], where it helped to diagonalize τ (3,3)).
Define

Z :=


12

1
1

1
14

 .

Z induces a similarity transformation:

ZR(3,3)ZT Z
[
T ⊗s T

]
ZT = Z

[
T ⊗̃sT

]
ZT ZR(3,3)ZT

R ≡ R(v − u) .

This transformation arranges the elements in the fermionic sector in eq. (A.3) in a ”natural” order.
It is written explicitly

r4

g12 12

12 g12

z




A⊗s A A⊗s B B ⊗s A B ⊗s B
A⊗s C A⊗s D B ⊗s C B ⊗s D
C ⊗s A C ⊗s B D ⊗s A D ⊗s B
C ⊗s C C ⊗s D D ⊗s C D ⊗s D



=


A⊗̃sA B⊗̃sA A⊗̃sB B⊗̃sB
C⊗̃sA D⊗̃sA C⊗̃sB D⊗̃sB
A⊗̃sC B⊗̃sC A⊗̃sD B⊗̃sD
C⊗̃sC D⊗̃sC C⊗̃sD D⊗̃sD




r4

g12 12

12 g12

z

 . (A.11)

The entries of the R-matrix are

g(v − u) = v − u , z(v − u) = v − u− 1

r4(v − u) =


h(v − u)

g(v − u) 1
1 g(v − u)

h(v − u)

 (A.12)

h(v − u) = v − u+ 1 .

Horizontal and vertical lined in eq. (A.11) separate fermionic from bosonic sectors. The searched
commutators of A and D with C are now read off:

A⊗s C = C⊗̃sA
r4

g
− 1
g
C ⊗s A (A.13)

D⊗̃sC =
z

g
C ⊗s D −

1
g
C⊗̃sD . (A.14)
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The graded tensor products can be written without grading,

D⊗̃sC = −D ⊗ C , A⊗s C = A⊗ C (A.15)
C⊗̃sD = −C ⊗D , C⊗̃sA = C⊗̃A (A.16)

A⊗ C = C⊗̃Ar4

g
− 1
g
C ⊗A (A.17)

D ⊗ C =
z

g
C ⊗D +

1
g
C ⊗D . (A.18)

Eqs. (A.18) results from eq. (A.14) by inserting eqs. (A.15), (A.16). For later use, note that

C ⊗ C = C⊗̃C r4

z
(A.19)

gB ⊗s C +D ⊗s A = D⊗̃sA+ gC⊗̃sB
A⊗s D + gC ⊗s B = gB⊗̃sC +A⊗̃sD .

In the last two preceding equations, graded tensor products are again replaced by the non-graded
versions. Exchanging arguments in the latter (g̃(v − u) = g(u− v)), one adds both and finds:

− (g + g̃)C ⊗B = (g + g̃)B ⊗ C +A⊗D +D ⊗A−A⊗D −D ⊗A . (A.20)

In the common language of BA, the first terms on the rhs in eqs. (A.17) are ”wanted”, the second terms
”unwanted”. The latter must cancel when acting with τ on |Φ〉. Furthermore, |Φ〉 must diagonalize
Ar4. Since A is already diagonal with respect to |4〉⊗N , this is achieved by finding a ”subeigenstate”,
on which

T̃ := T (2,2) := [r4]a,m · · · [r4]a,1

=:

(
Ã B̃

C̃ D̃

)
(A.21)

acts. T̃ is intertwined by r4:
h

g 1
1 g

h




A⊗ Ã A⊗ B̃ B ⊗ Ã B ⊗ B̃
A⊗ C̃ A⊗ D̃ B ⊗ C̃ B ⊗ D̃
C ⊗ Ã C ⊗ B̃ D ⊗ Ã D ⊗ B̃
C ⊗ C̃ C ⊗ D̃ D ⊗ C̃ D ⊗ D̃



=


Ã⊗A B̃ ⊗A Ã⊗B B̃ ⊗B
C̃ ⊗A D̃ ⊗A C̃ ⊗B D̃ ⊗B
Ã⊗ C B̃ ⊗ C Ã⊗D B̃ ⊗D
C̃ ⊗ C D̃ ⊗ C C̃ ⊗D D̃ ⊗D




h
g 1
1 g

h

 (A.22)

The operator valued entries of T̃ act on m two-dimensional quantum spaces. Call the basis system of
each quantum state

{
|1̃〉, |2̃〉

}
. T̃ acquires a lower triangular structure by acting on |2̃〉⊗m. So one

needs commutators of Ã, D̃ with C̃,

ÃC̃ =
h

g
C̃Ã− 1

g
C̃Ã (A.23)

D̃C̃ =
h

g
C̃D̃ − 1

g
C̃D̃ . (A.24)
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The second terms on the rhs, ”unwanted”, again have to vanish if the eigenstate property is to be
fulfilled.

|Φ〉 =
[
C
(
v

(1)
1

)
⊗ · · · ⊗ C

(
v(1)
m

)]
C̃
(
v

(2)
1

)
· · · C̃

(
v

(2)
m̃

)(
|2̃〉⊗m ⊗ |4〉⊗N

)
(A.25)

is an eigenvector of τ(v). The proof uses the same strategy as [33], where the gl(2|1) symmetric
transfer matrix with threedimensional auxiliary and quantum spaces is diagonalized. This proof is
rigorous for arbitrary N . We have verified that all arguments needed are given in [33] and are directly
transferable to and valid for our problem. We thus only give the result here:

τ(v)|Φ〉 = Λ(v)|Φ〉

Λ(v) = ω1(u)
[
q2(v + 1)
q2(v)

+
q2(v − 1)
q2(v)

q1(v + 1)
q1(v)

]
+ ω2(u)

q1(v + 1)
q1(v)

(A.26)

q1(v) =
m∏
k=1

(
v − v(1)

k

)
, q2(v) =

m̃∏
l=1

(
v − v(2)

l

)

−1 =
q2

(
v

(2)
k − 1

)
q1

(
v

(2)
k + 1

)
q2

(
v

(2)
k + 1

)
q1

(
v

(2)
k

) (A.27)

−
q2

(
v

(1)
l

)
q2

(
v

(1)
l − 1

) =
ω1

(
v

(1)
l

)
ω2

(
v

(1)
l

) . (A.28)

In eq. (A.25), the 2m row vector
[
C
(
v

(1)
1

)
⊗s · · · ⊗s C

(
v

(1)
m

)]
is multiplied with the 2m column vector

C̃
(
v

(2)
1

)
· · · C̃

(
v

(2)
m̃

)(
|2̃〉⊗m ⊗ |4〉⊗N

)
.

The eigenstate depends on m+ m̃ many quantum numbers, which are arranged in two sets, each
one being the zeroes of q1, q2. They are determined by the vanishing of the ”unwanted” terms: q2

stems from the ”inner” BA, which diagonalizes r4, and eq. (A.27) reflects the cancellation of unwanted
terms produced by eqs. (A.23), (A.24). q1 originates in the ”outer” BA, and eq. (A.28) ensures the
cancellation of unwanted terms stemming from eqs. (A.17), (A.18). Both sets of eqs. (A.27), (A.28)
are seen to equivalent to the analyticity of Λ.

The eigenvalue Λ(Q)
I differs from Λ only by the vacuum expectation values, eq. (2.64) and the

external fields h, µ. As mentioned in the main part, v → −iv and v
(1,2)
k → −iv(1,2)

k . Furthermore,
shift v(1)

k → v
(1)
k + i/2∀k (this shift has only ”cosmetic” reasons). For the moment, let Λ++− be the

eigenvalue of τ (Q)
I (v), where the indices + + − denote the grading in auxiliary space. The fields are
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included as described at the beginning of this appendix.

τ
(Q)
I (v)|Φ(Q)〉 = Λ++−|Φ(Q)〉

|Φ(Q)〉 =
[
C
(
v

(1)
1

)
⊗s C

(
v

(1)
2

)
⊗s · · · ⊗s C

(
v(1)
m

)]
(A.29)

C̃
(
v

(2)
1

)
· · · C̃

(
v

(2)
m̃

)(
|2̃〉(⊗m) ⊗ (|1〉 ⊗ |4〉)⊗N/2

)
Λ++−(v) = λ1(v) + λ2(v) + λ3(v)

:= φ+

(
v + i

α

2

)
φ−

(
v − i

α

2
− i
) q2(v + i)

q2(v)
eβ(µ+h/2)

+φ−
(
v − i

α

2
− i
)
φ+

(
v + i

α

2

) q2(v − i)
q2(v)

q1(v + i/2)
q1(v − i/2)

eβ(µ−h/2)

+φ+

(
v − i

α

2
− i
)
φ−

(
v + i

α

2
− i
) q1(v + i/2)
q1(v − i/2)

(A.30)

q1(v) =
m∏
k=1

(
v − v(1)

k

)
, q2(v) =

m̃∏
l=1

(
v − v(2)

l

)

−1 =
q2

(
v

(2)
k − i

)
q1

(
v

(2)
k + i/2

)
q2

(
v

(2)
k + i

)
q1

(
v

(2)
k − i/2

) e−βh (A.31)

−
q2(v(1)

l + i/2)

q2(v(1)
l − i/2)

e−β(µ−h/2) =
φ−

(
v

(1)
l − iα/2− i/2

)
φ+

(
v

(1)
l + iα/2 + i/2

)
φ−

(
v

(1)
l + iα/2− i/2

)
φ+

(
v

(1)
l − iα/2− i/2

) . (A.32)

In the main part, the parity of |φ(Q)〉〈φ(Q)| is of importance, especially for the largest eigenvalue, eq.
(2.66a). This parity is given by

p
[
|φ(Q)〉〈φ(Q)|

]
= mp [C] = m . (A.33)

The largest eigenvalue is determined by m = N/2 many BAN.
The next step is to set up auxiliary functions in order to eliminate q1, q2 through NLIE. This

task is difficult to accomplish for Λ++−, but rather easy for Λ+−+, the eigenvalue derived from the
monodromy matrix constructed from

R(3,4)(v) = v +
α

2
+ 1 +

 E1
1 E1

3 E1
2

E3
1 −E3

3 E3
2

E2
1 E2

3 E2
2



= v +
α

2
+1+



0
0

−1 −
√
α 1

−1
√
α+ 1

−
√
α −α

√
α√

α+ 1 −(α+ 1)
−(α+ 1)

√
α+ 1

−(α+ 2)

0
1

√
α −1

0√
α+ 1 −1



.(A.34)
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Note that the spaces 2, 3 in auxiliary space have been permuted in comparison to eq. (A.9). Now the
fermionic reference state |2〉⊗N ((|3〉 ⊗ |2〉)⊗N/2) serves as a starting point to construct the eigenstate
of τ (τ (Q)), and T (T (Q)) (which is not the same as above!) becomes upper diagonal. With this
modification one finds along exactly the same lines as above:

Λ+−+(v) = λ−(v) + λ+(v) + λ0(v)

:= φ+

(
v + i

α

2

)
φ−

(
v − i

α

2
− i
) q−(v + i)

q−(v)
eβ(µ+h/2)

+φ−
(
v − i

α

2

)
φ+

(
v + i

α

2
+ i
) q+(v − i/2)
q+(v + i/2)

eβ(µ−h/2)

+φ+

(
v − i

α

2

)
φ−

(
v + i

α

2

) q−(v + i)
q−(v)

q+(v − i/2)
q+(v + i/2)

(A.35)

q−(v) =
M̃∏
j=1

(v − vj) , q+(v) =
M∏
k=1

(v − vk)

− q−(vk + i/2)
q−(vk − i/2)

e−β(µ−h/2) =
φ−(vk − iα/2− i/2)φ+(vk + iα/2 + i/2)
φ+(vk − iα/2− i/2)φ−(vk + iα/2− i/2)

(A.36)

−q+(ṽj − i/2)
q+(ṽj + i/2)

e−β(µ+h/2) =
φ+(ṽj + iα/2)φ−(ṽj − iα/2− i)
φ+(ṽj − iα/2)φ−(ṽj + iα/2)

. (A.37)

Using a technique proposed in [82], we want to show that

Λ++−(v) = Λ+−+(v)

q2(v) = q−(v) , m̃ = M̃ (A.38a)

q
(h)
1 (v) = q

(h)
+ (v) , N + m̃−m = N +M − M̃ (A.38b)

q1(v) = q
(h)
− (v) , m = N + M̃ −M (A.38c)

q
(h)
2 (v) = q+(v) , 2N −m = M . (A.38d)

To start with, one observes that eq. (A.32) is equivalent to eq. (A.36), immediately allowing for eq.
(A.38a).

As already mentioned in the main part, eq. (A.37) also permits N +M − M̃ many hole solutions
ṽ

(h)
k , the zeroes of q(h)

+ . In analogy to eq. (A.38a), one is lead to eq. (A.38b).
Motivated by eq. (A.36), define a polynomial P ,

P (v) = q−

(
v +

i
2

)
φ+

(
v − i

α

2
− i

2

)
φ−

(
v + i

α

2
− i

2

)
e−β(µ−h/2)

+q−

(
v − i

2

)
φ−

(
v − i

α

2
− i

2

)
φ+

(
v + i

α

2
+

i
2

)
(A.39)

≡ q+(v) q(h)
− (v) (A.40)

P is of degree M̃+N , and by construction (eq. (A.36)) has M zeroes {vk}. The remaining N+M̃−M
zeroes are contained in q

(h)
− , which has already been defined in eq. (2.71).

Consider the quotient

P (ṽk + i/2)
P (ṽk − i/2)

,
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which gives an expression for q+(ṽk − i/2)/q+(ṽk + i/2). It is inserted into eq. (A.37), resulting in

q−(ṽk − i) q(h)
− (ṽk + i/2)

q−(ṽk + i)q(h)
− (ṽk − i/2)

e−βh = −1 .

The equivalence with eq. (A.31) is evident and gives eq. (A.38c).
Eq. (A.38d) completes eqs. (A.38a), (A.38b), (A.38c).
The equivalence of the BAE has been shown. The eigenvalues are equal and can be mapped onto

each other. One directly sees

λ− ≡ λ1 .

As to the remaining terms, consider

P (v + i/2)
P (v − i/2)

.

This quotient can be expressed in two ways, using eqs. (A.39), (A.40). One is lead to

q−(v + i)
q−(v)

q+(v − i/2)
q+(v + i/2)

φ+

(
v − i

α

2

)
φ−

(
v + i

α

2

)
e−β(µ−h/2) +

q+(v − i/2)
q+(v + i/2)

φ−

(
v − i

α

2

)
φ+

(
v + i

α

2
+ i
)

=
q−(v − i)
q−(v)

q
(h)
− (v + i/2)

q
(h)
− (v − i/2)

φ+

(
v + i

α

2

)
φ−

(
v − i

α

2
− i
)

+
q

(h)
− (v + i/2)

q
(h)
− (v − i/2)

φ−

(
v − i

α

2
− i
)
φ−

(
v + i

α

2
− i
)

e−β(µ−h/2)

⇔ λ+ + λ0 = λ2 + λ3

This completes the proof of equivalence between the +−+ and + +− sets.
NB: One may find a third equivalent set, −+ +. Since it is of no importance in this work, we omit

to give it explicitly.
Shifting the roots vk → vk− i/2 in eq. (A.35), one gets eq. (2.69). Note that the largest eigenvalue

is given by M = M̃ = N/2 particle solutions and, following eqs. (A.38b), (A.38c), by N hole solutions.
This means that in fig. (2.4), only half the number of possible hole solutions are depicted. They are,
however, expected not to deviate substantially from those shown.

A.2 Host Hamiltonian

Let us list some properties of R(4,4)(u), useful in calculating the corresponding Hamiltonian afterwards.
From the definition eq. (2.5) and by using the projection property eq. (2.13),

R(4,4)(0) = −(1− 2P̌1 − 2P̌3) 6= 1 (A.41)[
R(4,4)(0)

]2
= 1

So R(4,4)(0) is a permutation operator. Indeed, inserting explicit expressions from eqs. (2.7), (2.8),[
R(4,4)(0)

]a,b
c,d

= (−1)p[a]p[b] δad δ
b
c

=: [P]a,bc,d .
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P is the graded permutation operator in four-dimensional space. Now P = P↓P↑, where P↓,↑ are
permutation operators in two distinct two-dimensional spaces with grading p[1] = 0, p[2] = 1. So from
eq. (A.41)

P̌1 + P̌3 =
1
2
1+

1
2
P↓P↑ =

1
4

(P↓ + P↑)2

Since on the other hand (−P̌1 + P̌3)2 = P̌1 + P̌3, it follows that

− P̌1 + P̌3 =
1
2

(P↓ + P↑) =
1
2
h(ff) (A.42)

Eq. (A.42) directly permits the identification with the free fermion Hamiltonian between two lattice
sites, defined in eq. (2.25).

Consider [
d

du
R(4,4)(u)

]
u=0

=
2
α
P̌1 −

2
α+ 1

P̌3 .

Using eq. (A.41), [
d

du
lnR(4,4)(u)

]
u=0

=
2
α
P̌1 −

2
α+ 1

P̌3 . (A.43)

With

lim
α→∞

[
(α+ 1)

(
2
α
P̌1 −

2
α+ 1

P̌3

)]
= 2P̌1 − 2P̌3

eq. (2.25) follows.
Let us now calculate the host contribution to the Hamiltonian. In the main part, it has been shown

that it is the sum of local contributions, (2.23). These are identified with the logarithmic derivative
of R(4,4)(u), eq. (A.43). All one has to do is inserting the explicit expressions eqs. (2.7), (2.8), and
making the identification eq. (2.17). For the ease of notation, operators acting in j-th space are not
labeled, those acting in j + 1-th space are over-lined.

−(α+ 1)
[

2
α

[
P̌1

]
j,j+1

− 2
α+ 1

[
P̌3

]
j,j+1

]
=

[
−e1

1

(
e1

1 + e2
2 + e3

3

)
−
(
e1

1 + e2
2 + e3

3

)
e1

1 + e4
4

(
e2

2 + e3
3 + e4

4

)
+
(
e2

2 + e3
3 + e4

4

)
ē4

4

]
− 1
α

[
e1

1

(
e1

1 + e2
2 + e3

3

)
+
(
e1

1 + e2
2 + e3

3

)
ē1

1

]
(e2

1 + e4
3)(e1

2 + e3
4) + (e3

1 − e4
2)(e1

3 − e2
4)− (e1

2 + e3
4)(e2

1 + e4
3)− (e1

3 − e2
4)(e3

1 − e4
2)

+
1
α

(
e2

1e
1
2 − e1

2e
2
1 + e3

1e
1
3 − e1

3e
3
1 − e4

4e
1
1 − e1

1e
4
4 − e1

4e
4
1 − e4

1e
1
4

)
+

(√
α+ 1
α
− 1

)(
e4

3e
1
2 + e2

1e
3
4 − e3

4e
2
1 − e1

2e
4
3 − e4

2e
1
3 − e3

1e
2
4 + e2

4e
3
1 + e1

3e
4
2

)
.

The Hamiltonian is obtained by identifications implied by eq. (2.17).
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A.2.1 gl(2|1) invariance

The invariance of τ(u) with respect to gl(2|1) is shown by expanding eq. (A.2) in the limit v → ∞,
including only terms O(1), O(1/v).

R(3,4)(v) ∼ 1 +
1
v

(α
2

+ 1 + (−1)bebaE
a
b

)
+O

(
1
v2

)
(A.44)

T (3,4)(v) =: R
(3,4)
a,L (v)R(3,4)

a,L−1(v) . . . R(3,3)
a,0 (v + iu0)

∼ 1 +
1
v


L∑
j=1

[α
2

+ 1 + (−1)b [ea]
b
a [Ej ]

a
b

]
+ (−1)b [ea]

b
a [e0]ab

+O
(

1
v2

)

=: 1 +
W

v
+O

(
1
v2

)
. (A.45)

T (4,4) ≡ T is defined in eq. (2.19).
Eqs. (A.44), (A.45) are inserted into eq. (A.2) with d′′ = 3; d = d′ = 4, while keeping the full

T (4,4)(u). The constant terms on both sides are identically equal. In order O(1/v), one gets

(−1)p[β
′′](p[α]+p[α′′])T ββ′′W

α
α′′ + T ββ′′

[
(−1)p[a]p[b]ebaE

a
b

]α,β′
α′′,β′′

= (−1)p[β](p[α]+p[α′′])Wα
α′′T

β
β′′ +

[
(−1)p[a]p[b]ebaE

a
b

]α,β
α′′,β′

T β
′

β′′ .

Set β = β′′, multiply with (−1)β and sum over β. The second terms on each side are identically equal.
The first terms give the commutator of the transfer matrix τ with W :

τ :=
∑
β

(−1)βT ββ

[τ ,Wα
α′′ ] = 0 . (A.46)

Dropping constants in W , eq. (A.46) states that:τ(u),
L∑
j=1

[Ej ]
a
b + [e0]ab

 = 0 .

Thus τ commutes with all global gl(2|1) symmetry operators. In a very similar way, one starts with
eq. (2.11) to show τ̄(u),

L∑
j=1

[Ej ]
a
b + [e0]ab

 = 0 ,

where τ̄(u) is defined in eq. (2.20). Consequently, the Hamiltonian, defined by eq. (2.21), is gl(2|1)-
symmetric.

A.3 Eigenvalue of τ
(Q)
h

The eigenvalue Λh of τ (Q)
h is calculated in two steps: The first part is dedicated to the formal diago-

nalization. The result for the largest eigenvalue is used in the second part to set up NLIE.
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A.3.1 Diagonalization

In this section, we shall be concerned with the case eq. (A.5). R(4,4)(v), defined in eq. (2.5), reads
explicitly:

R(4,4)(v) =



ρ1

ρ2 ρ8

ρ2 ρ8

ρ3 ρ9 −ρ9 ρ10

ρ8 ρ2

ρ4

ρ9 ρ5 ρ11 ρ9

ρ6 ρ12

ρ8 ρ2

−ρ9 ρ11 ρ5 −ρ9

ρ4

ρ6 ρ12

ρ10 ρ9 −ρ9 ρ3

ρ12 ρ6

ρ12 ρ6

ρ7



ρ1 = v+α
v−α ρ2 = v

v−α ρ3 = v(1+v)
(v−α)(1+v+α)

ρ4 = 1 ρ5 = v2

(v−α)(1+v+α) ρ6 = v
1+v+α

ρ7 = −v+1+α
1+v+α ρ8 = α

v−α ρ9 = v
√
α(α+1)

(v−α)(1+v+α)

ρ10 = α(1+α)
(v−α)(1+v+α) ρ11 = v−α−α2

(v−α)(1+v+α) ρ12 = − 1+α
1+v+α

Let

T = T (4,4)

be the homogeneous (i.e. vk = 0 ∀k) monodromy matrix defined by eq. (A.1). The eigenvalues Λ of
the associated homogeneous transfer matrix

τ(u) = trT (u)

are calculated first. The generalization to those of the staggered QTM τ
(Q)
h is only a formal act

afterwards.
Λ has been conjectured by [67] and explicitly calculated by [71] using a generalized fusion procedure.

[74] directly starts from the inter-twiner R(4,4), and constructs the eigenvalue recursively. Gruneberg
[40] exploits the fact that τ (3,4) ≡ τ and τ (4,4) ≡ τ share a common set of eigenstates, eq. (A.6),
and uses the simpler expressions of the eigenstates of τ (3,4) ≡ τ to obtain the eigenvalues Λ. We
shall pursue this latter strategy here, presenting the calculation of [40] in a more compact way. The
expression of Λ agrees with the cited references.

From the diagonalization of τ in section A.1, the eigenstates are known. As shown there, one may
choose as reference states either (|2〉)⊗N (”fermionic”) as to the grading +−+ or (|4〉)⊗N (”bosonic”) as
to ++−. NLIE for ln Λmax

I are best derived from the eigenvalue following from the fermionic reference
state, whereas NLIE for ln Λmax

h are most conveniently calculated from the eigenvalue expression based
on the bosonic reference state. Calculating this latter eigenvalue expression will be our strategy in
this section.
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Given the settings of eq. (A.5), one can directly compare matrix entries on both sides of eq. (A.3).
Before, apply a similarity transformation to eq. (A.3), very similar to the procedure in section A.1.
Let

X1 =


1

s
sT

1
14


s =

 0 1 0
0 0 1
1 0 0

 .

X1 arranges the elements in the fermionic sector on both sides of eq. (A.3) in their ”natural” order.
The structure gets even nicer by acting with

X2 =



1
1

14

1
1

14

 .

Using X := X2 ·X1, eq. (A.3) is transformed as

X
[
T ⊗̃sT

]
XT XR(3,4)XT = XR(3,4)XT X

[
T ⊗s T

]
XT . (A.47)

The shorthand notations are

T := T (u) , R ≡ R(v − u) . (A.48)

We assign different symbols to the entries of T :

T =:

 D1
1 C1 D2

1

B1 A B1
2

D1
2 C2 D2

2


B1 =: (T 1

2 , T
1
3 )T , B2 =: (T 4

2 , T
4
3 )T , C1 =: (T 2

1 , T
3
1 ) , C2 =: (T 2

4 , T
3
4 )

A =:

(
A1

1 A2
1

A1
2 A2

2

)
:=

(
T 1

2 T 3
2

T 2
3 T 3

3

)

Elements Akj belong the fermionic sector, Dk
j to the bosonic sector. Cj , Bj are the transition elements.
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This notation is formally equal to eq. (A.10). Now eq. (A.47) reads



d12

r4 ξ
f12 φ12

ξT a
φ12 b12

c





A⊗s D1
1 A⊗s C1 A⊗s D2

1 B ⊗s D1
1 B ⊗s C1 B ⊗s D2

1

A⊗s B1 A⊗s A A⊗s B2 B ⊗s B1 B ⊗s A B ⊗s B2

A⊗s D1
2 A⊗s C2 A⊗s D2

2 B ⊗s D1
2 B ⊗s C2 B ⊗s D2

2

C ⊗s D1
1 C ⊗s C1 C ⊗s D2

1 D ⊗s D1
1 D ⊗s C1 D ⊗s D2

1

C ⊗s B1 C ⊗s A C ⊗s B2 D ⊗s B1 D ⊗s A D ⊗s B2

C ⊗s D1
2 C ⊗s C2 C ⊗s D2

2 D ⊗s D1
2 D ⊗s C2 D ⊗s D2

2



=



D1
1⊗̃sA C1⊗̃sA D2

1⊗̃sA D1
1⊗̃sB C1⊗̃sB D2

1⊗̃sB
B1⊗̃sA A⊗̃sA B2⊗̃sA B1⊗̃sB A⊗̃sB B2⊗̃sB
D1

2⊗̃sA C2⊗̃sA D2
2⊗̃sA D1

2⊗̃sB C2⊗̃sB D2
2⊗̃sB

D1
1⊗̃sC C1⊗̃sC D2

1⊗̃sC D1
1⊗̃sD C1⊗̃sD D2

1⊗̃sD
B1⊗̃sC A⊗̃sC B2⊗̃sC B1⊗̃sD A⊗̃sD B2⊗̃sD
D1

2⊗̃sC C2⊗̃sC D2
2⊗̃sC D1

2⊗̃sD C2⊗̃sD D2
2⊗̃sD





d12

r4 ξ
f12 φ12

ξT a
φ12 b12

c


(A.49)

The entries of the R-matrix are

a(v − u) = v − u+ 1− α

2
; b(v − u) = v − u− α

2
; c(v − u) = v − u− α

2
− 1

d(v − u) = v − u+ 1 +
α

2
; f(v − u) = v − u+

α

2
; φ =

√
α+ 1

ξT = (0,
√
α,−
√
α, 0)

r4(v − u) =


d(v − u)

f(v − u) 1
1 f(v − u)

d(v − u)



Horizontal and vertical lines in eq. (A.49) separate fermionic from bosonic sectors in the auxiliary
space of T .

In eq. (A.49), fermionic (bosonic) operators have been summarized in the matrix A (D). This
structure is made explicit by transforming eq. (A.49) again with the matrix X̃:

X̃ =



0 1 0
1 0 0
0 0 1

0 1 0
1 0 0
0 0 1

 .

The notation is symbolical, the dimensions of the unity operators are chosen such that the matrix
multiplication is properly defined. X̃ permutes the first and second rows/columns and the fourth and
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fifth rows/columns. By transforming eq. (A.49), one gets
r4 ζ

p4 φ12

φT12 b12

ζT p2




A⊗s A A⊗s B B ⊗s A B ⊗s B
A⊗s C A⊗s D B ⊗s C B ⊗s D
C ⊗s A C ⊗s B D ⊗s A D ⊗s B
C ⊗s C C ⊗s D D ⊗s C D ⊗s D



=


A⊗̃sA B⊗̃sA A⊗̃sB B⊗̃sB
C⊗̃sA D⊗̃sA C⊗̃sB D⊗̃sB
A⊗̃sC B⊗̃sC A⊗̃sD B⊗̃sD
C⊗̃sC D⊗̃sC C⊗̃sD D⊗̃sD




r4 ζ
p4 φ12

φT12 b12

ζT p2

 . (A.50)

The entries of the R-matrix are

φT = (02×2, φ12) , ζ = (ξ, 04×1)

p4 =
(
d12 0
0 f12

)
, p2 =

(
a 0
0 c

)
.

0j×k is a j × k matrix with 0 entries. Eq. (A.50) is of 8 vertex model structure. This is very similar
to corresponding equations of the Hubbard model, [34]. The main difference to analogous equations
with R(3,3) as inter-twiner is the existence of four off-diagonal entries instead of two. This makes the
calculation of the eigenvalue little more involved. The price to pay for the compactness of eq. (A.50)
is that it has to be deciphered, once the proper commutation relations are found.

The eigenstates of T (and thereby of T ) are constructed by acting with C on (|4〉)⊗N . So let us
dive into the commutation relations between the diagonal elements of T with C, given by eq. (A.49):

ξT A⊗s B1 + aC ⊗s D1
1 = D1

1⊗̃sC d (A.51a)

φA⊗s C2 + bC ⊗s A = A⊗̃sC r4 + C⊗̃sD ξT (A.51b)

cC ⊗s D2
2 = D2

2⊗̃sC f + C2⊗̃sDφ . (A.51c)

On the rhs, terms wished to be calculated and ”unwanted” terms (in eqs. (A.51b), (A.51c)) occur.
On the lhs, there appear wanted terms and, in eqs. (A.51a), (A.51b), terms which are ”annoying”:
They are of the same structure as the ”wanted” terms, but are neither ”wanted” nor ”unwanted”. To
get rid of them, the only possibility is to make use of

r4A⊗s B1 + ξ C ⊗s D1
1 = B1⊗̃sAd (A.52)

f A⊗s C2 + φC ⊗s A = C2⊗̃sAr4 +D1
2⊗̃sB ξ

T . (A.53)

Eliminating A⊗sB1 from eq. (A.51a) by eq. (A.52) and A⊗sC2 from eq. (A.51b) by eq. (A.53) gives

D1
1⊗̃sC =

a− ξT r−1
4 ξ

d
C ⊗s D1

1 + ξT r−1
4 B1⊗̃sA (A.54)

A⊗̃sC = C ⊗s A
(
b− φ2

f

)
r−1

4 + C2⊗̃sA
φ

f
−B1⊗̃sD ξT r−1

4 +D1
2⊗̃sB

ξTφr−1
4

f
(A.55)

(
b− φ2

f

)
r−1

4 =
d(u− v)
b(u− v)

1
a(u− v)


a(u− v)

b(u− v) 1
1 b(u− v)

a(u− v)

 (A.56)

D2
2⊗̃sC =

c

f
C ⊗s D2

2 −
φ

f
C2⊗̃sD . (A.57)
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In the last line, eq. (A.51c) has been rewritten. Note that r4 defined in eq. (A.56) differs from eq.
(A.12) only by a normalizing pre-factor and a constant shift by −α/2. The first terms on the rhs of
eqs. (A.54), (A.55), (A.57) are ”wanted”, the others ”unwanted”. Let us write eqs. (A.54), (A.55),
(A.57) with non-graded tensor products:

D1
1⊗̃C =

a− ξT r−1
4 ξ

d
C ⊗D1

1 + ξT r−1
4 B1⊗̃A (A.58a)

A⊗̃C = C ⊗A
(
b− φ2

f

)
r−1

4 − C2⊗̃A
φ

f
+B1⊗̃D ξT r−1

4 −D1
2⊗̃B

ξTφr−1
4

f
(A.58b)

D2
2⊗̃C =

c

f
C ⊗D2

2 −
φ

f
C2⊗̃D . (A.58c)

Eqs. (A.58a), (A.58b), (A.58c) are contained in analogous relations, derived from eq. (A.50) by a
similar procedure:

A⊗̃sC = (b− φT p−1
4 φ)C ⊗s Ar−1

4 + φT p−1
4 C⊗̃sA+ φT p−1

4 D⊗̃sBζT r−1
4 −B⊗̃sDζ

T r−1
4 (A.59a)

D⊗̃sC =
p2 − ζT r−1

4 ζ

p4
C ⊗s D + ζT r−1

4 B⊗̃sA+ ζT r−1
4 A⊗̃sBφT p−1

4 − C⊗̃sDφ
T p−1

4 .(A.59b)

The basic difference between the ”wanted” terms is that in the fermionic case, eq. (A.59a), the matrix
r−1

4 appears. It requires the nested BA with a ”sub-vacuum”, corresponding to the model discussed
in section A.1. On the other hand, the pre-factor of the ”wanted” term in eq. (A.59b) is already
diagonal. Since eqs. (A.59a), (A.59b) do not contain further information for the problem we wish to
solve, we continue with eqs. (A.58a), (A.58b), (A.58c).

An eigenvalue can only be obtained by acting with the ”wanted” terms on the eigenstate, the
”unwanted” terms must vanish. Let us sketch the main ideas:

• Consider the unwanted terms which substitute C-particles by C2-particles (eqs. (A.58b), (A.58c)).
The pre-factors of both terms are the same, so D(v(1)

l ) + trA(v(1)
l ) must be carried through the

remaining C-operators of |Φ〉, eq. (A.25). Eqs. (A.17), (A.18) tell how to do this, the procedure
is equal to the derivation of τ in section A.1. Again there are ”wanted” and ”unwanted” terms.
The ”wanted” terms are essentially given by (cf. eq. (A.26)):

q
(
v

(1)
l

)
Λ
(
v

(1)
l

)
.

They cancel if eq. (A.28) is obeyed. Together with eq. (A.27) this is also the condition that the
”unwanted” terms in the diagonalization of D(v(1)

l ) + trA(v(1)
l ) vanish.

• In eqs. (A.58a), (A.58b), two ”unwanted” terms which create a B1-excitation appear. Up to a
common constant factor, these are

ξT ∝ (01)⊗̃(10)− (10)⊗̃(01)

ξTB1⊗̃A ∝ T 1
3 ⊗̃
(
A1

1, A
2
1

)
− T 1

2 ⊗̃
(
A1

2, A
2
2

)
(A.60)

trB1⊗̃DξT = T 1
3 ⊗̃D − T 1

2 ⊗̃D (A.61)

A1
2|4〉⊗N = 0 = A2

1|4〉⊗N . (A.62)

If there is still a sequence of C-operators to the right on the lhs of eqs. (A.60), (A.61), the
A,D-operators are first carried through them, before multiplying with ξT . Then in eq. (A.60),
only the diagonal elements of A remain (cf. eq. (A.62)), together with those in eq. (A.61). Eq.
(A.28) again leads to the cancellation of these terms.
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• In eq. (A.58b), a term with D1
2⊗̃BξT is left. If it directly meets the vacuum, it is annihilated by

B|4〉⊗N = 0. Other ways, B(v) must be commuted through remaining C(v(1)
l ) by eq. (A.20). The

”wanted” terms in this procedure are C(v(1)
l )B(v), which ultimately annihilate. The ”unwanted”

terms are

∝ A⊗D −D ⊗A+D ⊗A−A⊗D .

The direct product with D
1
2 and the multiplication with ξT of this expression still have to be

done. Then diagonal terms (because of the tr operation in eq. (A.58b)) of this term meet the
vacuum. They vanish, since |4〉⊗N is simultaneous eigenstate of A1

1, A2
2, D.

Finally, r4 has to be diagonal, which is achieved by vanishing of unwanted terms in the frame of
the ”subeigenstate”:

− 1 =
q2

(
v

(2)
k − i

)
q1

(
v

(2)
k + i/2

)
q2

(
v

(2)
k + i

)
q1

(
v

(2)
k − i/2

) e−βh . (A.63)

It is very nice (and consistent) to observe that ”unwanted” terms vanish if eqs. (A.32), (A.31) are
obeyed.

The arguments presented for the vanishing of the ”unwanted” terms do constitute a mathematical
rigourous proof only for m = 1. For arbitrary m, we expect that the rigourous proof can be realized
with the arguments given above together with the diagonalization procedure of the impurity matrix.

The eigenvalue is analytic. Analyticity of this eigenvalue is equivalent to its very property of being
an eigenvalue, i.e. to the cancellation of the unwanted terms. Then the eigenstates that diagonalize
T are those that diagonalize T , which is conceptually clear from eq. (A.6). This statement is now
verified explicitly, since these eigenstates are known from eq. (A.25). Compare the wanted terms of
eqs. (A.58a), (A.58b), (A.58c) with those of eqs. (A.17), (A.18). They do not only set in evidence
that eq. (A.25) is the eigenstate we need also here, but also permit to read off the eigenvalue (good
accounts on the nested ABA procedure are [33,82]):

Λ = ω1(u)
q1(u+ 1 + α/2)
q1(u+ 1− α/2)

+ω2(u)
[
q1(u+ 1 + α/2)
q1(u− α/2)

q2(u− 1)
q2(u)

+
q1(u+ α/2 + 1)
q1(u− α/2 + 1)

q2(u+ 1)
q2(u)

]
+ω3(u)

q1(u+ α/2 + 1)
q1(u− α/2)

q1(v) =
m∏
k=1

(
v − v(1)

k

)
, q2 =

m̃∏
l=1

(
v − v(2)

l

)
.

ω1, ω2, ω3 are the eigenvalues of A, D, F with respect to (|4〉)⊗N . Constant shifts of v(2)
l by α/2 are

absorbed in a redefinition.
Ultimately, we are interested in the eigenvalues of τ (Q)

h (v), the staggered quantum transfer matrix
of a lattice site in the host. It differs from Λ merely by modified vacuum expectation values, eq. (2.63)
and external fields µ and h, realized by twisted boundary conditions (they are included as described
at the beginning of this appendix). As mentioned in the main part, v → −iv and v

(1,2)
k → −iv(1,2)

k .
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Shifting v(1)
k → v

(1)
k − i/2 + iα/2 ∀k leads us to the final result

Λh(v) = λ1(v) + λ2(v) + λ3(v) + λ4(v)

=: φ1(v)
q1(v + i/2 + iα)
q1(v + i/2)

e2βµ

+φ2(v)eβµ
[
eβh/2

q1(v + iα+ i/2)
q1(v + i/2)

q2(v + i)
q2(v)

+ e−βh/2
q1(v + iα+ i/2)
q1(v − i/2)

q2(v − i)
q2(v)

]
+φ3(v)

q1(v + iα+ i/2)
q1(v − i/2)

φ1(v) =
φ+(v)φ+(v + i)φ−(v − iα)

φ+(v − iα)φ+(v + iα+ i)φ−(v + iα)

φ2(v) =
φ+(v)φ−(v)

φ+(v + i(α+ 1))φ−(v + iα)
φ3(v) = φ1(−v)|α→−α−1 .

Requiring analyticity determines the sets
{
v

(1)
k

}
,
{
v

(2)
l

}
:

− 1 =
q2

(
v

(2)
k − i

)
q1

(
v

(2)
k + i/2

)
q2

(
v

(2)
k + i

)
q1

(
v

(2)
k − i/2

) e−βh (A.64)

−
q2

(
v

(1)
l + i/2

)
q2

(
v(1) − i/2

) e−β(µ−h/2) =
φ1

(
v

(1)
l − i/2

)
φ2

(
v

(1)
l − i/2

) . (A.65)

Eqs. (A.64), (A.65) are identical to eqs. (A.31), (A.32) upon shifting v
(1,2)
l → v

(1,2)
l − iα/2 in eqs.

(A.64), (A.65). This means that both the host and the impurity share the same pattern of BAN, only
the functional dependence of the eigenvalue on these BAN is different. It reflects the fact that both
possess the same symmetry, namely gl(2|1).

A.3.2 Solution (NLIE)

When one thinks of setting up NLIE for Λ(max)
h , the largest eigenvalue of τ (Q)

h , one may infer without
any further calculation that auxiliary functions which determine Λ(max)

h are the same as those of the
impurity - only the functional dependence of the eigenvalue on these functions is different, in complete
analogy to the pattern of BA roots (this is true for all eigenvalues; however, we derive NLIE only for
the largest one). This statement is proved in the following.

The host is derived from a four-dimensional representation of gl(2|1). The corresponding q-
deformed model has been treated in the QTM-approach in [47,77]. We adopt the ansatz from [77] for
auxiliary functions (and, by using the same symbols, anticipate the result that the auxiliary functions
are identical to those defined in section 2.1.3):

b =
λ2

λ3 + λ4
, B =

λ2 + λ3 + λ4

λ3 + λ4

b =
λ1(λ3 + λ4)

λ2Λ
, B =

(
λ1 + λ2

) (
λ2 + λ3 + λ4

)
λ2 Λ

c =
λ1

λ2 + λ3 + λ4
, C =

Λ
λ2 + λ3 + λ4

.
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With arguments of analyticity very similar to eqs. (2.71), (A.40), a hole-distribution is introduced:

λ1(v) + λ2(v) =
q1(v + i/2 + iα)

q2(v)
q

(h)
1 (v)φ2(v)

e2βµ

φ+(v − iα)φ−(v − iα− i)

λ3(v) + λ4(v) =
q1(v + i/2 + iα)

q2(v)
q

(h)
1 (v − i)φ2(v)

e2βµ

φ+(v)φ−(v − iα− i)

q
(h)
1 (v) =

N+m̃−m∏
k=1

(
v − v(1,h)

k

)
In order to determine the functional dependence of the eigenvalue on the auxiliary functions, write
it in a factorized form: Without the q-functions, the φ-terms in the denominator would cause poles.
The product of these gives a polynomial of degree 2N . In the nominator, a factor q1(v+ i/2 + iα) can
be isolated, of degree m. The nominator is balanced by q(h)

2 , of degree 2N −m:

Λ(v) ∝ q1(v + i/2 + iα) q(h)
2 (v)

φ+(v − iα)φ+(v + i(α+ 1))φ−(v + iα)φ−(v − i(α+ 1))
(A.66)

q
(h)
2 (v) =

2N−m∏
j=1

(
v − v(2,h)

j

)
.

Shift v → v + iα/2 to render the vacuum eigenvalues symmetric in α/2-shifts. Then

b(v) ∝ φ+(v + iα/2)φ−(v − iα/2− i)
q2(v + i + iα/2)

q1(v + i/2 + iα/2) q(h)
1 (v + iα/2− i)

b(v) ∝ φ+(v + iα/2 + i)φ−(v − iα/2)
q

(h)
1 (v + iα/2− i)

q2(v + iα/2 + i) q(h)
2 (v + iα/2)

C(v)
c(v)

∝ q1(v + iα/2 + i/2) q(h)
2 (v + iα/2)

φ+(v + iα/2)φ−(v − iα/2)φ+(v + i + iα/2)φ−(v − iα/2− i)

B(v) C(v) ∝ 1
φ+(v − iα/2)φ−(v + iα/2)

q
(h)
1 (v + iα/2) q1(v + iα/2 + i/2)

q2(v + i+ iα/2)

B(v) C(v) ∝ 1
φ−(v + iα/2)φ+(v − iα/2)

q2(v + iα/2) q(h)
2 (v + iα/2)

q
(h)
1 (v + iα/2− i)

Constant exponentials as pre-factors, stemming von external fields, were not mentioned explicitly.
They merely determine the asymptotic behaviour of the auxiliary functions, eqs. (2.80), (2.81). The
further procedure is principally clear: Carry out the Fourier transform eq. (2.73). The logarithmic
derivative makes disappear the constant exponential pre-factors. It is essential to know the domains
of analyticity of the unknown q-functions. However, this task has already been solved: Eqs. (A.38a),
(A.38b), (A.38c), (A.38d) identify the four q-functions with those from another set, whose analyticity
properties have been investigated numerically (figs. 2.3, 2.4) and analytically (eq. (2.84)) in an
approximate manner for the largest eigenvalue case. So one states

q1,2(v + i(α+ 1)/2) : anz in C+

q
(h)
1 (v + iα/2− i), q(h)

2 (v + iα/2) : anz in C− .
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As in section 2.1.3, the Fourier transforms are carried out for k < 0, k > 0 separately. For
simplicity, the k-dependence of the functions is not mentioned explicitly.

b̂ =


e−α/2k φ̂+ + e−(α/2+1)k q̂2 − e−(α/2+1/2)k q̂1 , k > 0
q̂2 − q̂1 , k = 0
e(α/2+1)k φ̂− − e(−α/2+1)kq̂

(h)
1 , k < 0

(A.67a)

b̂ =


e−(α/2+1)k φ̂+ − e−(α/2+1)k q̂2 , k > 0
−q̂2 , k = 0
eα/2kφ̂− + e(−α/2+1)k q̂

(h)
1 − e−α/2kq̂(h)

2 , k < 0
(A.67b)

Ĉ− ĉ =


e−(α/2+1/2)k q̂1 − e−α/2kφ̂+ − e−(α/2+1)kφ̂+ , k > 0
q̂1 , k = 0
e−α/2kq̂(h)

2 − eα/2k φ̂− − e(α/2+1)k φ− , k < 0
(A.67c)

Ĉ + B̂ =


−e−α/2k φ̂− + e−(α/2+1/2)kq̂1 − e−(α/2+1)k q̂2 , k > 0
q̂1 − q̂2 , k = 0
−eα/2kφ̂+ + e−α/2kq̂(h)

1 , k < 0
(A.67d)

Ĉ + B̂ =


−e−α/2k φ̂− + e−α/2kq̂2 , k > 0
q̂2 , k = 0
−eα/2kφ̂+ + e−α/2k q̂(h)

2 − e(−α/2+1)k q̂
(h)
1 , k < 0

. (A.67e)

From eqs. (A.67d), (A.67e), the four unknowns are expressed in terms of auxiliary functions and
inserted into eqs. (A.67a), (A.67b), (A.67c). One then obtains eqs. (2.77a), (2.77b), (2.77c).

In a very similar fashion, eq. (A.66) is converted to

Λ̂ =

 e−(α+1)k
(
φ̂− − φ̂+

)
+ e−α/2k B̂ + e(−α/2+1)k B̂ +

(
e−α/2k + e−(α/2+1)k

)
Ĉ , k > 0

e(α+1)k
(
φ̂+ − φ̂−

)
+ e(α/2+1)kB̂ + eα/2kB̂ +

(
eα/2k + e(α/2+1)k

)
Ĉ , k < 0

The inverse Fourier transform yields eq. (2.115).
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Let T (l,m)(x) be the monodromy matrix acting in the direct product of the l + 1-dimensional aux-
iliary space and the [m+ 1]⊗N dimensional quantum space, eq. (2.137); the index eff is omitted.
Graphically, it is translated as

- q q q -

? ? ? ? ? ?

x×

The orientation of arrows is analogous to section 2.1.2. The N dashed vertical lines depict the
quantum space, the horizontal double line represents the auxiliary space. The cross stands for twisted
boundary conditions, with an imaginary twist angle depending on the spin in auxiliary space (it is
included in the same manner as described at the beginning of this appendix for the gl(2|1) symmetric
matrices).

[
T (l,m)

]
is composed of N local R-matrices R̂(l,m)(x), each one acting in the direct product

of a l + 1-dimensional auxiliary space and a m+ 1-dimensional quantum space. According to tensor-

notation, the elements of R̂ are denoted by
[
R̂(l,m)(x)

]i,p
j,k

, where i, j (p, k) refer to in- and out-coming

auxiliary (quantum) states:

[
R̂(l,m)(x)

]i,p
j,k

= -

?

i j

k

p

x

This notation is the same as in section 2.1.1. The R̂(l,m) obey a non-graded YBE:[
R̂

(l,m)
2,3 (u)

]i,p
i′,p′

[
R̂

(l′,m)
1,2 (v)

]k,p′
k′,p′′

[
R̂

(l′,l)
1,3 (v − u)

]k′,i′
k′′,i′′

=
[
R̂

(l′,l)
1,3 (v − u)

]k,i
k′,i′

[
R̂

(l′,m)
1,2 (v)

]k′,p
k′′,p′

[
R̂

(l,m)
2,3 (u)

]i′,p′
i′′,p′′

(A.68)

T (l,m)(x) is constructed such that the commutator[
traT (l,m)(x), traT (l′,m)(y)

]
= 0 , ∀l, l′ (A.69)

vanishes because of eq. (A.68), see eq. (A.6). So the eigensystem of traT (l,m)(x) does not depend
on the dimension of the auxiliary space l. The explicit form of R̂(1,m)(x) is easily found and will be
given below. Then our strategy to find the eigenvalues of traT (l,m)(x) is to calculate its action on the
eigenvector |Φ〉 of traT (1,m)(x): It is simultaneously an eigenvector of traT (l,m)(x). This procedure is
analogous to that employed to diagonalize the host QTM in appendix A.3.

T (1,m) is a 2× 2 matrix in quantum space, eq. (2.133); set

T (1,m) =
(
Â B̂

Ĉ D̂

)
.
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Then T (1,m)(x), T (1,m′)(y) are intertwined by the R-matrix eq. (A.12), with entries

R̂(1,1)(x) =


sinh(x+ iγ)

sinhx sinh iγ
sinh iγ sinhx

sinh(x+ iγ)



=: sinh iγ


hγ(x)

gγ(x) 1
1 gγ(x)

hγ(x)

 (A.70)

This matrix is formally identical to the isotropic version, eq. (A.12), up to normalization. From eq.
(A.22), the following commutators are identified:

Â(x)B̂(y) =
hγ(y − x)
gγ(y − x)

B̂(y)Â(x)− 1
gγ(y − x)

B̂(x)Â(y) (A.71a)

D̂(x)B̂(y) =
hγ(x− y)
gγ(x− y)

B̂(y)D̂(x)− 1
gγ(x− y)

B̂(x)D̂(y) (A.71b)

B̂(x)B̂(y) = B̂(y)B̂(x) (A.71c)
Â(x)D̂(y) + gγ(x− y)Ĉ(x)B̂(y) = gγ(x− y)B̂(y)Ĉ(x) + Â(y)D̂(x)
D̂(x)Â(y) + gγ(x− y)B̂(x)Ĉ(y) = gγ(x− y)Ĉ(y)B̂(x) + D̂(y)Â(x) .

The last two equations are combined to

(gγ(x− y) + gγ(y − x))B̂(y)Ĉ(x) + D̂(y)A(x) + Â(y)D̂(x) =
(gγ(x− y) + gγ(y − x))Ĉ(x)B̂(y) + D̂(x)A(y) + Â(x)D̂(y) . (A.72)

Let us choose the maximal weight state |1〉 as reference state. It is defined by

N∑
k=1

σzk|1〉 = N m|1〉 . (A.73)

The choice |m+ 1〉 with

N∑
k=1

σzk|m+ 1〉 = −N m|1〉 .

leads to the same results. Then T (1,m) is upper diagonal with respect to |1〉, and eigenvectors are
created by acting with B̂ on |1〉:

|Φ〉 :=
N∏
ν=1

B̂(xν) |1〉

Â(x) |1〉 =: ΛA(x)|1〉 = sinhN
(
x+

iγ
2

(1 +m)
)
|1〉

D̂(x) |1〉 =: ΛD(x)|1〉 = sinhN
(
x+

iγ
2

(1−m)
)
|1〉

traT (l,m)(x)|Φ〉 = Λ(l)(x)|Φ〉 . (A.74)
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Eq. (A.73) defines the reference state |1〉 as one of two maximally polarized spin states in quantum
space. The N Bethe-Ansatz numbers {xν} are the quantum numbers of the eigenstate. To keep
notation simple, the eigenvalue does not carry the index m.

For the diagonalization of traT (l,m), there are two tasks to accomplish. First the calculation of
the commutators between traT (l,m)(x) and B̂(xν) without making use of the explicit expression of
T (l,m)(x). Secondly, to determine the eigenvalue of

[
T (l,m)

]j
j

with respect to |1〉. The strategy which
is pursued in the following to solve these problems has been initialized by [9] for the isotropic S-spin
Heisenberg model. For a better comprehension, the corresponding terms are depicted graphically,
figure A.1.

In order to commute
[
T (l,m)

]j
j

with B̂, care has not to be taken on quantum spaces, they are
the same for both matrices. For the ease of notation, arrows on the bonds are omitted. A general

k jx =
[
T (l,m)(x)

]k
j 2 1x =

[
T (1,m)(x)

]2
1

Figure A.1: Graphical representation of transfer matrices, l > 1 on the left, l = 1 on the right.

commutator between these two matrices is calculated such that the boundary spin values are fixed,
and the sum of ”outgoing” and ”incoming” spins at the R matrices is the same. There are four terms:

j j+1 2

j11

j 1

j1 j

2 j 2

j−11 j

2j 2

j2

+ = +

j

1

x x

y

y

x xy

y

x−y x−y x−y x−y

(A.75)

The first term on the rhs is to be calculated, the second one “unwanted“. The first term on the lhs
is identified to be “wanted“ (with the order of the matrices in the first term commuted), the second
one is of the same structure as the ”wanted” term, but it is neither wanted nor unwanted, rather
“annoying“. The situation is quite similar to eq. (A.58b), where another equation had to be found
to eliminate the ”annoying” term. Set up an equation similar to (A.75), with the boundaries on the
right modified:

j 2

2j

j−1 j+1 2

j12

j−1 1

j2 j

2 j−1 2

j−12 j

2

+ = +

2

x x

y

y

x xy

y

x−y x−y x−y x−y

j−1
(A.76)

The “annoying“ term is seen to occur in eq. (A.76) (last term on the lhs), equally well as the “wanted
term“ (first term on rhs). The terms on the rhs are both ”unwanted”.

The figures are translated back into formulae by making use of eq. (2.133) with eqs. (2.134a)-
(2.134b). Note that the action of the matrices is from top to down.
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Substitution of eq. (A.76) into eq. (A.75) results in[
T (l,m)(x)

]j
j
B̂(y) =[

R̂(1,l)
]1,j

1,j

[
R̂(1,l)

]2,j−1

2,j−1
−
[
R̂(1,l)

]1,j

2,j−1

[
R̂(1,l)

]2,j−1

1,j[
R̂(1,l)

]2,j

2,j

[
R̂(1,l)

]2,j−1

2,j−1

∣∣∣∣∣∣∣
y−x

B̂(y)
[
T (l,m)(x)

]j
j

−

[
R̂(1,l)

]2,j

1,j+1[
R̂(1,l)

]2,j

2,j

∣∣∣∣∣∣∣
y−x

[
T (l,m)(x)

]j+1

j
Â(y) +

[
R̂(1,l)

]2,j−1

1,j[
R̂(1,l)

]2,j−1

2,j−1

∣∣∣∣∣∣∣
y−x

[
T (l,m)(x)

]j
j−1

D̂(y)

+

[
R̂(1,l)

]2,j

1,j+1

[
R̂(1,l)

]2,j−1

1,j[
R̂(1,l)

]2,j

2,j

[
R̂(1,l)

]2,j−1

1,j

∣∣∣∣∣∣∣
y−x

[
T (l,m)(x)

]j+1

j−1
Ĉ(y) (A.77)

Finally, the sum over j = 1, . . . , l+1 has to be taken. Let us first discuss the ”unwanted” terms, these
are the last three summands in eq. (A.77).

• The pre-factors of Â (D̂) in the second (third) term result from each other by shifting j → j−1.
Thus in the sum, two consecutive pre-factors are oppositely equal. Â and D̂ still have to be
commuted through the remaining B̂(xν) of |Φ〉. This is done with eqs. (A.71a)-(A.71c), again
producing ”wanted” and ”unwanted” terms. Eventually, in both terms Â and D̂ act on the bare
vacuum |1〉. Both vanish if the {xν} fulfill the BAE

ΛA(xν)
ΛD(xν)

=
N∏
µ 6=ν

sinh (xν − xµ + iγ)
sinh (xν − xµ − iγ)

.

In [84], the distribution of the {xν} in the complex x-plane was examined for the isotropic case
γ = 0, l = m. In the thermodynamic limit N →∞, the BAN were found to be aligned parallel
to the real axis, with imaginary parts

(l + 1− 2j)/2 , j = 1, . . . , l . (A.78)

We infer that this statement holds principally true for eqs. (2.140) with γ 6= 0. So we expect the
BAN in our case to have imaginary parts γ(l + 1 − 2j)/2; j = 1, . . . , l. This means that there
are effectively l sets of BAE, each one characterized by the imaginary part of its elements.

• In the fourth term, Ĉ acts on the remaining B̂(xν). If there are no B̂(xν), Ĉ annihilates
|1〉. Otherwise, it is commuted through them by eq. (A.72). This produces a ”wanted” term
∝ B̂(xν)Ĉ(y), which ultimately meets |1〉 and vanishes. The ”unwanted” terms are essentially
given by

∝ D̂(xν)Â(x) + Â(xν)D̂(x)− D̂(x)Â(xν)− Â(x)D̂(xν) .

These are again carried through the B̂(xν), until they act upon |1〉. Since |1〉 is a simultaneous
eigenstate of Â, D̂, these terms also cancel.
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The cancellation of unwanted terms has been shown. The ”wanted” term contributes to the eigenvalue
by collecting the BAN of the B̂(xν):

Λ(l)(x) =
l+1∑
j=1

[
T̂ (l,m)(x)

]j,1
j,1

q
(
x+ iγ

2 (l + 1)
)
q
(
x− iγ

2 (l + 1)
)

q
(
x+ iγ

2 (l − 2j + 1)
)
q
(
x+ iγ

2 (3 + l − 2j)
) (A.79)

q(x) =
N∏
ν=1

sinh(x− xν) .

To tackle the calculation of
[
R̂(l,m)(x)

]j,1
j,1

, one specializes eq. (A.75) to R̂-operators:

k k k k

k−1k−1k−1 k−1

k

k−1 k−1

k−1
k−1

k−1

k−1

k+ = +y−x

j

1

j

2j

1

y−x

1

j

j

y−x

2

j

y−x

2

jj−1

22 j j

2 1

j j+1

11x

y

x

y

y

x

y

x

(A.80)

We are interested in the terms containing diagonal elements of
[
R̂(l,m)

]j
j
. The second term on the rhs

certainly does not belong to those, it vanishes by choosing

y = y1 := −i
γ

2
(5 +m− 2k) .

The second term on the lhs still disturbs, but let us consider eq. (A.80), with j shifted to j − 1:

j−2 1

j−12

k−1

k

k

x−y

2

j−1 x

y

j−1 j−1 1

j−112

k−1

k−1

k

x−y

x

y

j−1 1

j2 j−1

1
k−1

k−1

k

x−y

y

x

k−1

k

k

j−1 2

j−12 j−1

2

+ = +x−y

y

x

Now the second term on the lhs disappears while choosing

y = y2 := i
γ

2
(1 +m− 2k) .

On the rhs, the second term contains the disturbing factor of the second term on the lhs of eq. (A.80).
Correspondingly, one equates:

[
R̂(l,m)(x)

]j,k−1

j−1,k

[
R̂(1,l)

]2,j−1

1,j[
R̂(1,m)

]2,k−1

1,k

=
[
R̂(l,m)(x)

]j,k
j,k

[
R̂(1,l)(y1 − x)

]2,j

2,j
−
[
R̂(l,m)(x)

]j,k−1

j,k−1

[
R̂(1,l)(y1 − x)

]1,j

1,j

=
[
R̂(l,m)(x)

]j−1,k−1

j−1,k−1

[
R̂(1,l)(y2 − x)

]1,j−1

1,j−1
−
[
R̂(l,m)(x)

]j−1,k

j−1,k

[
R̂(1,l)(y2 − x)

]2,j−1

2,j−1
. (A.81)

Arguments on the lhs of the first line have been partially omitted, since the concerned elements do
not depend on the spectral parameter. Eq. (A.81) is a recursion relation, in which the recursion is
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defined by a shift of both indices, j and k. However, one only needs the eigenvalue of R̂jj with respect
to the highest weight state, that is the matrix element R̂j,1j,1. According to eq. (A.81),[

R̂(l,m)(x)
]j,1
j,1[

R̂(l,m)(x)
]j−1,1

j−1,1

∝ −
sinh

(
x+ iγ

2 (4 + l − 2j −m)
)

sinh
(
x+ iγ

2 (4 + l − 2j +m)
) (A.82)

Eq. (A.82) defines R̂j,1j,1 except a multiplicative constant. It is chosen to be

−
∏l+1
p=1 sinh

(
x+ iγ2 (4 + l − 2p+m)

)
sinh

(
x+ iγ2 (2 + l −m)

) .

Then the special cases
[
R̂(1,m)

]1,1

1,1
= sinh(x + iγ/2(1 + m)) and

[
R̂(1,m)

]2,1

2,1
= sinh(x + iγ/2 (1 −m))

are reproduced:

[
R̂(l,m)(x)

]j,1
j,1

=
j−1∏
p=1

sinh
(
x+

iγ
2

(2− 2p+ l −m)
) l−j+1∏

p=1

sinh
(
x+

iγ
2

(4− 2p− 2j + l +m)
)
.

Taking account of the twist angle,[
T (l,m)

]j,1
j,1

(x) = e−
βh
2

(l−2j+2)

×
j−1∏
p=1

sinhN
(
x+

iγ
2

(2− 2p+ l −m)
) l−j+1∏

p=1

sinhN
(
x+

iγ
2

(4− 2p+ l +m− 2j)
)

We are now ready to combine our two results, that is the commutator of traT (l,m)(x) with[
T (1,m)(x)

]1,2
and the eigenvalue of

[
T (l,m)

]j
j

with respect to |1〉. Then we find the eigenvalue of

traT (l,m)(x) with respect to |Φ〉, eq. (2.139). It agrees with the analogous expression given in [84] for
the staggered l = m QTM with γ = 0.
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Appendix to Chapter 3

B.1 Calculation of Â(k)

The calculation of Â, eq. (3.23), is done by using the Z transform.
The l× l matrix Â−1 is known, eq. (3.13). It permits to set up a recursion relation for dn, the de-

terminant of the n×n sub-matrix with corner elements
[
Â−1

]
l−n+1,l−n+1

,
[
Â−1

]
l−n+1,l

,
[
Â−1

]
l,l−n+1

,[
Â−1

]
l,l

. Set k := Fk[k] , s := Fk[s], the Fourier transform of the integration kernels.

d1 = 1− k
d2 = (1− k)− s2

dl = dl−1 − s2dl−2 (B.1)

The shift operator T is defined as

dl+1 =: Tdl .

The Z-transform converts the action of T into multiplication with a complex number z:

Tdl = zdl − d1z

T2dl = z2dl − d2z − d1z
2

Then, from eq. (B.1),

dl
(
z2 − z + s2

)
= (1− k)z2 − zs2 .

Factorize

z2 − z + s2 =: (z − z1)(z − z2)

⇒ dl =
(

zz1

z − z1
− zz2

z − z2

)
1− k
z1 − z2

−
(

z1

z − z1
− z2

z − z2

)
s2

z1 − z2

=
(
zl1 − zl2

) 1− k̂
z1 − z2

−
(
zl−1

1 − zl−1
2

) s2

z1 − z2
.

The last equation was obtained upon applying the inverse transform. The rest is pure algebra. Insert
z1,2 = exp(±πk/2)/(2 coshπk/2) to get dl, eq. (3.24).
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Consider Â−1 with the kernel k ≡ 0. Let the determinants of the corresponding sub-matrices be
Dj . Analogously as above, one finds

Dj =
sinh(j + 1)πk2(

2 cosh πk
2

)j
sinh πk

2

.

From the definition eq. (3.23), one derives the following matrix elements:

Âl,l =
Dl−1

dl

Âj,l =
sj−lDj−1

dl

Âj,j =
Dj−1 dl−j

dl
.

These are employed in the main part, following eq. (3.23).
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B.2 Convolutions

Techniques for asymptotically evaluating convolutions of auxiliary functions with integration kernels
are provided. Two classes are distinguished: Kernels with algebraic and with exponential decay in
direct space. To the first class belong those occurring in the NLIE for γ = 0 in convolutions with
ln Bl, ln Bl and its derivatives. The second class includes the integral of the free energy, convolutions
with lnYj and, for γ > 0, with ln Bl, ln Bl.

The convolutions are conveniently done in Fourier space. An algebraic decay O(x−n) is traced back
to discontinuities in the (n−1)st derivative of the Fourier transformed kernel. Exponential decay with
an exponent ν corresponds to a pole with imaginary part |ν| in the Fourier transformed kernel.

B.2.1 Convolutions with algebraically decaying kernels

In [66], methods how to Fourier transform distributions are given. The relations needed for our
purposes are:

θ(−x) =
∫ ∞
−∞

1
2π

(
πδ(k)− i

k

)
e−ikxdk

θ(−x)
1
x

=
∫ ∞
−∞

1
4π

(iπsgnk + 2 ln |k|+ a1)e−ikxdk

θ(−x)
1
x2

=
∫ ∞
−∞

−k
4π

(πsgnk − 2i(ln |k|+ a2))e−ikxdk

θ(−x)
ln |x|
x2

=
∫ ∞
−∞

1
4π
(
π|k|(ln |k| −Ψ(2))− ik

(
(ln |k| −Ψ(2))2 + al

))
e−ikxdk∫ ∞

−∞

1
|x|

eikxdx = −2 ln |k|∫ ∞
−∞

sgnx
x2

eikxdx = −2ik ln |k|

Ψ(x) is the digamma function; Ψ(2) = −C + 1, C = 0.577 . . . is Euler’s constant. Note that θ(−x) =
(1−sgnx)/2, so that each transform θ(−x)f(x) (f even or odd) is the sum of an even and an odd term,
depending on the parity of f . The constants a1,2,l are not determined. Only upon regularizing the
above relations, that is finding functions which are asymptotically equal to the asymptotic behaviour
of the distributions, the constants acquire precise values. These then depend on the regularizing
functions.

In order to derive eqs. (3.90a), (3.90b), note that

k(x) =
1

2π

∫ ∞
−∞

e−
π
2
|k|

2 cosh πk
2

dk ∼ 1
4x2

, |x| � 0

Fk[k(s)(x)] = e−
π
2
|k| |k|�1

= 1− π

2
|k|+O(k2) . (B.2)

By inserting the asymptotic behaviour of the kernel, eq. (B.2), and of the auxiliary functions into the
convolution of both, eqs. (3.90a), (3.90b) follow.

Let f be an auxiliary function. The crucial point in the application of the above technique is that
the kernel decays faster (namely as x−2) than the first three orders of f (θ(−x), θ(−x)/x, θ(−x) ln |x|/x2).
However, the x−2 decay of f is of the same order as the decay of the kernel, so that one is no longer
justified to replace f by its asymptotic behaviour in terms of a distribution: The knowledge of f over
the whole real axis is necessary to evaluate the x−2 order of k ∗ f .
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For simplicity, assume f(x) ∼ (∆+ −∆−sgnx)/x2, and k(s)(x) ∼ 1/(2x2). Then

[f ∗ k(s)](x) ∼ ∆+ −∆−sgnx
x2

∫ ∞
−∞

k(s)(x) dx+
1

2x2

∫ ∞
−∞

f(x) dx . (B.3)

The appearance of the second term in eq. (B.3) prohibits - up to now - an analytical determination
of the x−2 decay of B(m), as it was initialized in section 3.2.1. Fortunately, the result depends on the
integral

∫∞
−∞ f , which can be done numerically with high accuracy. Details are given in appendix C.

B.2.2 Convolutions with exponentially decaying kernels

Let f(x) be an algebraically decaying function, and s(x) be an exponentially decaying kernel. Then

[f ∗ s](x) =
∫ ∞
−∞

f(x− y)s(y) dy

= f(x)
∫ ∞
−∞

s(y) dy + f ′(x)
∫ ∞
−∞

(−y)s(y) dy + f ′′(x)
∫ ∞
−∞

y2s(y)/2 dy +O
(
f (3)(x)

)
.

Especially, for s(x) = 1/ coshx:

[f ∗ s](x) = πf(x) +
π3

8
f ′′(x) +O

(
f (4)(x)

)
For all cases of interest in this work, it suffices to include only the leading order.

Now let an exponentially decaying function f(x) ∼ eνfx meet an exponentially decaying kernel
s(x) ∼ eνsx. Their convolution

[f ∗ s](x) ∼ eσmin{|νf |,|νs|}x .

σ is the sign of the exponent whose minimal absolute value is taken. The leading order is given by
the pole next to the real axis in Fourier space.



Appendix C

Appendix to Chapter 4

Details of the numerical investigation are presented in three sections. First, schemes of numerically
performing the convolutions are described. Special attention has to be paid to the fact that some
of the auxiliary functions are not Fourier-transformable. These contributions must be subtracted
before applying a Fast Fourier Transform (FFT) routine to the convolutions. The second section
presents variations of the general iterative approach to solve the NLIE. Finally, results of applying
these methods to calculate the integral over the imaginary part of ln Bl, the x−2 decay of B(m)

l and
the Wilson ratio are presented.

C.1 Regularization schemes

In this section, the h = 0 case is treated. h 6= 0 is set in paragraph C.2.3. For reasons of computational
efficiency, we wish to treat the convolutions by FFT. From the analytical analysis of the NLIE, non-
Fourier-transformable terms were found, namely those O(1), O(x−1) in the limit |x| → ∞.1 In
Fourier space, these appear as simple poles and discontinuities in the origin, see appendix B.1. They
are therefore subtracted from the auxiliary functions before performing the FFT, the corresponding
singularities in Fourier space can be treated ”by hand”. After having applied the inverse FFT, the
analytically convoluted terms are re-added. Two forms of this regularization have been implemented:

k ∗ lnY = k ∗ (lnY − f) + (k ∗ f − fkomp)︸ ︷︷ ︸
N

+ fkomp︸ ︷︷ ︸
A

(C.1)

k ∗ lnY = k ∗ (lnY − f)︸ ︷︷ ︸
N

+ k ∗ f︸ ︷︷ ︸
A

(C.2)

lim
|x|→∞

lnY (x) ∼ f(x) , lim
|k|→0

Fk[k ∗ f ] ∼ Fk[fkomp] . (C.3)

k is a kernel, lnY an auxiliary function. f is asymptotically equal to lnY , eq. (C.3) and contains the
non-transformable contributions. The difference lnY − f is therefore numerically transformable. The
terms denoted by N are treated numerically, those labeled by A analytically. The Fourier-transforms
of f , fkomp and k are known.

In the first case, the divergences in Fourier space due to k ∗ f are subtracted by fkomp, which is
chosen to be asymptotically equal to Fk[k ∗ f ] around k = 0, eq. (C.3). Afterwards, fkomp is added
analytically. This method is applied to the anisotropic case. We call this procedure ”scheme I”.

1Algebraic corrections to the asymptotes do only occur in the isotropic case.
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In the second case, the convolution k ∗ f is solved completely by hand, such that no further
manipulations in Fourier space are necessary. This is only possible for γ = 0. The advantage of this
”scheme II” is its compactness and the restriction of ”manual” manipulations to the direct space, the
price to pay are computational costs higher compared to scheme I, since k ∗ f involves transcendental
functions, see below.

Parameters are built in f , such that the first of eqs. (C.3) is still valid, but f(x ≈ 0) depends on
the parameters. The final results should be independent of these parameters. This is indeed the case
as will be illustrated below.

C.1.1 Scheme I

Only the case γ 6= 0 is treated within this scheme. Because of the exponential approach to the
asymptotic values, only the constant asymptotic behaviour must be regularized. Suppose

lim
|x|→∞

Y (x) ∼ (y+θ(−x)− y−θ(x))

f(x) = y− + (y+ − y−)f0(x)
lim
|x|→∞

f0(x) ∼ θ(−x) .

We choose

f0(x) =
1

1 + eπx
.

The Fourier-transform is found to be

Fk[f0(x)] =
−i

2π sinh k
.

fkomp is required to compensate the divergences of k ∗ f :

fkomp := (y+ − y−)fkomp,0

Fk[fkomp,0] =
i
k

sinh bk
2

sinh ck
, b = π

(
π

γ
− (l + 1)

)
, c = π

(
π

γ
− l
)

(C.4)

fkomp,0(x) =
1
π

Im ln
(

1 + e−
π
c

(x−ib/2)
) |x|→∞∼ b

2c
θ(−x) .

The compensating function fkomp has been determined such that

lim
|k|→∞

Fk[f (komp)] ∼ O
(

e−(π+α)|k|
)
, α ∈ R>0 . (C.5)

Since the regularization is applied to convolutions with arguments shifted by ±iπ in direct space, it is
essential to choose α > 0 in eq. (C.5). With eq. (C.4),

lim
|k|→∞

Fk[f (komp)] ∼ O
(

exp
[
−π

2

(
π

γ
− l + 1

)])
and eq. (C.5) is fulfilled because of π/γ > 2l.

The convolution with s is manipulated along the same lines:

f0(x) =
1

1 + eπx

Fk[fkomp,0] =
i

4π k cosh πk
2

fkomp,0(x) =
1

2πi
[ln (ex + i)− ln (ex − i)] .
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C.1.2 Scheme II

Only the isotropic case can be treated in the following manner. Extend the asymptotic expansion of
paragraph C.1.1,

lim
|x|→∞

Y (x) ∼ (y+ − y−sgnx) +
1
x

(
y

(1)
+ − y

(1)
− sgnx

)
+

ln |x|
x2

(
y

(l)
+ − y

(l)
− sgnx

)
f(x) = y− + (y+ − y−) f0(x) +

(
y

(1)
+ + y

(1)
−

)
f+

1 (x) +
(
y

(1)
+ − y

(1)
−

)
f−1 (x)

+
(
y

(l)
+ + y

(l)
−

)
f+
l (x) +

(
y

(l)
+ − y

(l)
−

)
f−l (x)

lim
|x|→∞

f0(x) ∼ θ(−x)

f−1 (x) = −f+
1 (−x)

|x|→∞∼ θ(x)/x

f−1 (x) = f+
1 (−x)

|x|→∞∼ θ(x) ln |x|/x2 .

In the ongoing, Fourier transforms are calculated, we just give the results. They can be derived by
standard techniques. One integral is calculated explicitly in paragraph C.1.3, since its expression given
in several integral tables is wrong.

We choose the following functions:

f0(x) =
1

1 + eπx/a0
, 0 < a0

|x|→∞∼ 1
2

(1− sgnx)

Fk [f0] = − 1
2πi

a0

sinh (a0k − iε)
= −P

a0

2πi sinh a0k
+

1
2π

πδ(k)

f+
1 (x) = Re

[
1

(x+ iδ)
(
1 + eπ(x+iδ)/a1

)]
|x|→∞∼ 1

2x
(1− sgnx)

Fk
[
f+

1

]
=

1
2π

1
2

[(
eδk + e−δk

)
ln tanh

a1|k|
2
− iπsgnk e−δ|k|

]
, 0 < δ < a1

f+
l (x) =

1
2

−Re

 ln
(
a

(1)
l + ix

)
(al + ix)2

+ Im
[

ln2 (al + ix)
π (al + ix)2

] , 0 < al

|x|→∞∼ ln |x|
2x2

(1− sgnx)

Fk
[
f+
l

]
= e−al|k|

|k|
2

(ln |k| −Ψ(2))− ik
2π

e−al|k|
[
(Ψ(2)− ln |k|)2 + 1− π2

6

]
.

First, consider the numerical procedure to determine ln Bl, ln Bl. The asymptotes have to be
subtracted. That’s all, since the next leading term is O

(
x−3

)
. The convolutions are rewritten in the
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form

[k ∗ ln Bl](x)− [k ∗ ln Bl](x− iπ) = [k ∗ (ln Bl −
(

ln B
(−∞)
l − ln B

(∞)
l

)
f0 − ln B

(∞)
l )](x)

−[k ∗ (ln Bl −
(

ln B
(−∞)
l − ln B

(∞)
l

)
f0 − ln B

(∞)
l )](x− iπ)

+
(

ln B
(−∞)
l − ln B

(∞)
l

)
([k ∗ f0](x)− [k ∗ f0](x− iπ)) .

We exploited B
(±∞)
l = B

(±∞)
l and k ∗ ln B

(±∞)
l = B

(±∞)
l /2. The asymptotic behaviour is included in

the last term, where it cancels because of the difference. Therefore, it is evaluated in Fourier-space,
which constitutes numerically a more precise procedure than Fourier-transforming the asymptotic
terms back separately and subtracting them in direct space.

Next, tackle the calculation of B(m)
l , B̄

(m)
l . This situation is slightly more involved: The real

parts differing in their sign, the asymptotic parts of the convolutions do not cancel each other, but
are added. In this case, numerical results are expected to be more precise by evaluating the relevant
convolutions analytically. These are

[k ∗ f±ν ](x) + [k ∗ f±ν ](x− iπ) , ν = 1, l .

A glance into the Fourier space reveals that the two summands can be pulled together:

[k ∗ f+
ν ](x) + [k ∗ f+

ν ](x− iπ) = [k(s) ∗ f+
ν ]
(
x− i

π

2

)
(C.6)

Fk
[
k(s)
]

=
1

2π
e−

π
2
|k|[

k ∗ f−ν
]

(x) + [k ∗ f−ν ](x− iπ) ν=1= −[k(s) ∗ f+
1 ]
(
−x+ i

π

2

)
ν=l= [k(s) ∗ f+

1 ]
(
−x+ i

π

2

)
.

In the following, the relevant integrals for the analytic transformations are listed.[
k(s) ∗ f0

]
(x) = − 1

2πi

[
Ψ
(
π

4a0
+

1
2

+
ix

2a0

)
−Ψ

(
π

4a0
+

1
2
− ix

2a0

)]
+

1
2

∼
|x| → ∞ 1

2
(1− sgnx) +

1
2x

+O(x−3)[
k(s) ∗ f+

1

]
(x) =

1
4π

[
1

π/2− δ − ix

(
C− 2 ln 2−Ψ

(
π/2− δ + a1 − ix

2a1

))
+

1
π/2 + δ − ix

(
C− 2 ln 2−Ψ

(
π/2 + δ + a1 − ix

2a1

))]
+ cc

∼
|x| → ∞ 1

2x
(1− sgnx)− ln |x|

2x2
+

Ψ(2) + ln a1/2
2x2[

k(s) ∗ f+
l

]
(x) =

1
4

[
−

ln
(
al + π

2 + ix
)(

al + π
2 + ix

)2 − i
ln
(
al + π

2 + ix
)

π
(
al + π

2 + ix
)2 + cc

]
∼

|x| → ∞ 1
2

(1− sgnx)
ln |x|
x2

+O
(
x−3

)
The asymptotic expansions have been done with the help of

Ψ(z) z→∞∼ ln z − 1
2z
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On the same footing, one calculates

[s ∗ f0](x) =
1

2 (1 + ex)
, a0 =

π

2[
s ∗ f+

1

]
(x) = − 1

4x

(
tanh

πx

2a1
+
(

1− x

sinhx

))
, δ =

π

2
.

As was emphasized in section 3.2, the calculation of the x−2-decay requires the integral over the regular
function Breg, where Breg := B

(m)
l −Bas.

Bas =
l −m

2
+
m

2
f0 +

ml

4
f+

1 +
m(l −m)

4
f−1 −

m2l

8
f+
l −

m2(l −m)
8

f−l

contains the asymptotic behaviour of B(m)
l up to O

(
x−2

)
exclusively. Thus the leading decay of Breg

is Breg ∼ b+2 θ(−x) + b−2 θ(x), with

b+2 = ∆(2)
+ + ∆(2)

− = Ψ(2)
m2 · l

8
+
l ε

2

b−2 = ∆(2)
+ −∆(2)

− = Ψ(2)
m2 · (l −m)

8
+

(l −m) ε
2

.

These identifications are made in section 3.2, eqs. (3.94), (3.95). Whereas ε is unknown analytically,
it is calculated numerically. The convolution ks ∗B(m)

l is split into two parts:[
ks ∗B(m)

l

]
(x− iπ) = [ks ∗Breg]

(
x± iπ

2

)
︸ ︷︷ ︸

I)

+ [ks ∗Bas]
(
x± iπ

2

)
︸ ︷︷ ︸

II)

I) The first non-vanishing order of the product in the integrand is for both factors ∼ x−2:

I) ∼ 1
2x2

∫ ∞
−∞

Breg(x) dx+
1
x2

(
b+2 θ(−x) + b−2 θ(x)

) ∫ ∞
−∞

ks(x) dx︸ ︷︷ ︸
1

II) Known exactly up to O(x−2) inclusively,

[ks ∗Bas]
(
x− iπ

2

) ∼
|x| → ∞ l

2
θ(−x) +

l −m
2

θ(x) +
1
x

(
m

4
+
lm

4
θ(−x) +

(l −m)m
4

θ(x)
)

+
ln |x|
x2

(
−m

8
+
m2l

8
θ(−x) +

m2(l −m)
8

θ(−x)
)

+
1
x2

(
m2

8
Ψ(2) + ln a1

2

2
+ b+2 θ(−x) + b−2 θ(x)

)
+i

π

2x2

(
m

4
+
lm

4
θ(−x) +

(l −m)m
4

θ(x)
)

(C.7)

Note the agreement with eq. (3.93), where now an explicit value has been assigned to the unknown
quantity ε . Instead of solving numerically for B(m)

l , B̄
(m)
l , we treat the regularized function Breg =
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Figure C.1: The functions Breg(x) and Im B
(m)
2 (x) around the origin for a1 = π, δ = π/2, l = 1 = m.

B
(m)
l −Bas. As an illustration, Breg(x) is plotted for m = 1 = 2S in fig. C.1. The task then consists

in numerically treating the following equation:

Breg(x) =
(

1− e− ln Bl(x)
)(1

2
+ [ks ∗Breg]

(
x− i

π

2

)
+ [ks ∗Bas]

(
x− i

π

2

))
−Bas . (C.8)

Bearing in mind eqs. (2.161c), (C.7), one confirms explicitly that B2 vanishes up to order O
(
x−2

)
inclusively. The coefficients b±2 are found to be

b+2 = l(b(a)
2 + b

(n)
2 ) = lm3φ(m) (C.9)

b−2 = (l −m)(b(a)
2 + b

(n)
2 ) = (l −m)m3φ(m)

b
(a)
2 =

m2

8

(
Ψ(2) + ln

a1

2

)
(C.10)

b
(n)
2 =

1
2x2

∫ ∞
−∞

Breg(x) dx . (C.11)

In eq. (C.9), b+2 is identified with the scaled quantity φ, introduced in eq. (3.99). Variation of the
parameters δ, a0, al does not influence the numerical values for b(n)

2 . There is a slight dependence of
a1, where a1 ∈ [π, 10π].2 This dependence can be fitted well by linear regression, results are given in
table C.2. This variation of b(n)

2 is found to be smaller than the error induced by the finite integration
range. We thus state that b(n)

2 is independent of all variation parameters. Results for φ(m), are given
in table C.2 below.

Finally, concentrate on an appropriate treatment of B(χ)
l (x). The constant asymptotes are treated

as for ln Bl, ln Bl. The next leading order is O(1/x), not Fourier transformable. Instead of summing

2a1 is, roughly speaking, the width of the crossover region of f1. a1 must be chosen ”reasonably”, that is neither
extremely small (then the crossover could not be resolved numerically) neither too large (such that the crossover would
hinder the functions from attaining their asymptotic behaviour). So the slight a1-dependence is a finite size effect.
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the kernels as in eq. (C.6), now the difference of both enters the game:

[k ∗ f+
1 ](x)− [k ∗ f+

1 ](x− iπ) = [k(d) ∗ f+
1 ]
(
x− i

π

2

)
(C.12)

Fk
[
k(d)

]
=

1
2π

e−
π
2
|k| sinh π

2k

cosh π
2k[

k(d) ∗ f+
1

]
δ=π/2

=
1

4π

[
i
x

(
2C− 4 ln 2−Ψ

(
1
2
− ix

2a1

)
−Ψ

(
1
2

+
ix

2a1

))
− 1
π − ix

(
C− 2 ln 2−Ψ

(
1
2

+
π

2a1
− ix

2a1

))
1

π + ix

(
C− 2 ln 2−Ψ

(
1
2

+
π

2a1
+

ix
2a1

))
−2i

(
π

2ix− 2π
+

1
2

[
Ψ
(

1− ix
2π

)
−Ψ

(
1
2
− ix

2π

)]
− π

2π + 2ix
+

1
2

[
Ψ
(

1 +
ix
2π

)
−Ψ

(
1
2

+
ix
2π

)])

C.1.3 Integrals

In common integral tables [39, 72], there is a mistake in the expression for the integral eq. (C.13)
and therefore in eq. (C.14). The purpose of this paragraph is to give expressions for the integrals
eqs. (C.14) and (C.15), these are needed in the context of exact regularization. The integrations were
carried out with the help of [50].

One employs the integral representation of the digamma function,

Ψ(z) + C =
∫ ∞

0

e−x − e−zx

1− e−x
dx .

Then

∫ ∞
0

e−µx ln coshxdx =
∫ ∞

0
e−µx

[
ln
(
ex + e−x

)
− ln 2

]
dx

= − 1
µ

e−µx
[
ln
(
ex + e−x

)
− ln 2

]∣∣∣∣∞
0

+
1
µ

∫ ∞
0

e−µx
ex − e−x

ex + e−x
dx

=
1
µ

∫ ∞
0

e−(µ−1)x

2 coshx
− e−(µ+1)x

2 coshx
dx , Reµ > 0

=
1

4µ

[
Ψ
(
µ− 1

4
+

3
4

)
−Ψ

(
µ− 1

4
+

1
4

)
−Ψ

(
µ− 1

4
+

3
4

)
+ Ψ

(
µ+ 1

4
+

1
4

)]
=

1
µ

[
1
2

Ψ
(
µ

4
+

1
2

)
− 1

2
Ψ
(µ

4

)
− 1
µ

]
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0

e−µx (ln sinhx− lnx) dx =
∫ ∞

0
e−µx

[
ln
(
ex − e−x

)
− ln 2x

]
dx

= − 1
µ

e−µx
[
ln
(
ex − e−x

)
− ln 2x

]∣∣∣∣∞
0

+
1
µ

∫ ∞
0

e−µx
(

ex + e−x

ex − e−x
− 1
x

)
dx

=
1
µ

∫ ∞
0

[
−e−µx

x
+

e−µx

1− e−2x
+

e−(µ+2)x

1− e−2x

]
dx , Reµ > 0

=
1

2µ

∫ ∞
0

[
−e−x

x
+

e−
µ
2
x

1− e−x
− e−x

x
+

e−(µ2 +1)x

1− e−x
− 2

e−
µ
2
x − e−x

x

]
dx

=
1

2µ

[
−Ψ

(µ
2

)
−Ψ

(µ
2

+ 1
)
− ln

2
µ

]
=

1
µ

[
−Ψ

(µ
2

)
− 1
µ

+ ln
µ

2

]
(C.13)

∫ ∞
0

e−µx − e−νx

x
dx = ln

ν

µ
, Reµ > 0, Reν > 0∫ ∞

0
e−µx lnxdx = − 1

µ
[C + lnµ] , Reµ > 0

∫ ∞
0

e−µx ln sinhxdx = − 1
µ

[
C + ln 2 +

1
µ

+ Ψ
(µ

2

)]
, Reµ > 0

= − 1
µ

[
C + ln 2 +

1
µ

+
1
2

Ψ
(µ

4

)
+

1
2

Ψ
(
µ

4
+

1
2

)
+ ln 2

]
Use has been made of

Ψ(2z) =
1
2

Ψ(z) +
1
2

Ψ
(
z +

1
2

)
+ ln 2 .

∫ ∞
0

e−µx ln tanhxdx =
1
µ

[
−C− 2 ln 2−Ψ

(
µ

4
+

1
2

)]
, Reµ > −2 (C.14)

1
µ

[
−C− 2 ln 2−Ψ

(
µ

4
+

1
2

)] ∼
|µ| → ∞ 1

µ

[
−C− 2 ln 2− ln

(
µ

4
+

1
2

)
+

2
µ+ 2

]
∼ 1

µ
(−C− lnµ)∫ ∞

0

e−µx

cosh νx
dx =

1
2ν

[
Ψ
(
µ

4ν
+

3
4

)
−Ψ

(
µ

4ν
+

1
4

)]
∫ ∞

0
e−µx tanhxdx =

1
2

[
Ψ
(

1
2

+
µ

4

)
−Ψ

(µ
4

)]
− 1
µ
. (C.15)
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C.2 Algorithms

The most simple and straightforward algorithm consists in iterating the l + 1 many equations simul-
taneously,

ln y(i+1)
j = F

[{
lnY (i)

j

}]
lnY (i+1)

j = ln
(

1 + eln y
(i+1)
j

)
, i = 1, . . . Nit ,

where the functional F on the rhs denotes the rhs of the NLIE (2.154). Equivalently, one proceeds
with eqs, (2.165), (2.166). In some cases however the numerical accuracy can be improved by slightly
modifying the iteration procedure. Especially, this is the case concerning the integral over the imagi-
nary part

∫∞
−∞ Im ln Bl(x) dx and the integral over the regular part of B(m)

l . These quantities play a
crucial role in the evaluation of the asymptotic behaviour of the specific heat and the magnetic suscep-
tibility, cf. section 3.2. In order to demonstrate the principal possibility to determine these quantities
with high precision for arbitrary l,m, algorithms numerically more involved than the straightforward
iteration have been implemented for special cases.

C.2.1 Recursive calculation of ln Bl

As stated in eq. (2.148),

lnYn = ln BnBn , n ≥ m .

m is the channel number. This means that one can build up the Y -hierarchy recursively in the over-
screened case 2S > m: In a first step, ln Bm, ln Bm are calculated together with the lnYj<m. These
are m + 1 unknown functions. Then the system of m + 2 NLIE, including lnY1,...,m, ln Bn=m+1,
ln Bn=m+1 is solved by setting lnYm = ln BmBm. Thus only two new functions have to be calculated,
namely ln Bn=m+1 , ln Bn=m+1. This procedure is continued until n = 2S. The advantage of this
strategy is that once the first m+ 1 unknown functions have been determined, at each step only two
new unknown functions have to be included. The alternative would be to calculate simultaneously
the system of 2S + 1 unknowns. In table C.1, results for the integral over the imaginary part are
compared, calculated by recursively building up the Y -hierarchy and by conventional solution of the
NLIE.

C.2.2 Extended integration range

The most important error in all calculations is caused by the finite integration range of length 2L. So
one is tempted to enlarge the considered interval. It is interesting to note that the results get not better
upon enlarging the interval asymmetrically. However, improvements are possible by a symmetrical
enlargement (with higher computational costs). Probably this is due to the fact that FFT is optimized
to symmetric integration ranges. Concerning the integral over the imaginary part of the NLIE, we
show that such an enlargement leads to results with arbitrary high accuracy, table C.1.

C.2.3 Smoothed functions for h 6= 0

The numerical iteration procedure gets more complex for h 6= 0: Then the auxiliary functions are
T -dependent because of the βh-dependent driving terms. Thus the NLIE have to be solved for each
temperature. Since the auxiliary functions themselves show sharp crossovers for βh � 1, we shall
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deal with ”smoothed” functions. This technique has been proposed by [22], who carried out similar
calculations in the TBA approach. Write the NLIE in the following form:

lnY0 = 0
s ∗ lnYj = s ∗ ln [1 + exp (−δm,jex + s ∗ lnYj−1 + s ∗ lnYj+1)]

s ∗ lnYl−1 = s ∗ ln
[
1 + exp

(
−δm,l−1ex + s ∗ lnYl−2 + k ∗ ln ln BlBl

)]
k(+) ∗ ln Bl = k(+) ∗ ln

[
1 + exp

(
−δm,lex + cβh+ s ∗ lnYl−1 + k ∗ ln Bl − k− ∗ ln Bl

)]
k(−) ∗ ln Bl = k(−) ∗ ln

[
1 + exp

(
−δm,lex − cβh+ s ∗ lnYl−1 + k ∗ ln Bl − k+ ∗ ln Bl

)]
.

k±(x) = k(x± iπ). Consider the convoluted functions on the lhs as unknowns; because of the convolu-
tions, they are smoothed in comparison with the auxiliary functions themselves. These are equations
for l+3 unknowns, which are solved iteratively for h 6= 0. The asymptotes are subtracted in a manner
similar as for h = 0. In spite of these efforts, the data for h 6= 0 in the low-temperature regime are less
accurate than for h = 0. For example, we are not able to confirm numerically the low-temperature
Wilson ratios for h 6= 0, especially in the over-screened case eq. (3.52). However, without this modified
iteration scheme, numerical low T errors would be even worse. The high-temperature regime causes
no problems, the free spin behaviour is recovered. Illustrating curves are shown in chapter 4.

C.3 Results

Numerical results for the integral over the imaginary part
∫∞
−∞B

(l)
2 and the high-temperature Wilson

ratio are presented. Since B(l)
2 (x) ∼ x−2 for large x, the error in

∫∞
−∞B

(l)
2 (x)dx is of order 1/L, that is

1.4 · 10−3 for L = 700. The accuracy gets slightly worse with increasing l, but is improved by building
up the Y -hierarchy recursively by two orders of magnitude. This is only possible for l > m and has
been demonstrated for m = 1. The extension of the integration range with simultaneous increase of
N in the case l = m = 1 leads to

2
π

∫ ∞
−∞

B
(1)
2 (x)dx− ln 2 = −1± 10−9 .

The data in table C.1 suggest that the value

1
m

(
2
π

∫ ∞
−∞

B
(l)
2 (x)dx− ln

l + 1
l −m+ 1

)
= −1

may be confirmed numerically with arbitrary precision. It is interesting to observe that an asymmetric
integration range does not improve the accuracy.

To calculate the x−2-decay of B(m)
l , the regularization procedure described in section C.1.2 is

employed. During all calculations, δ = π
4 , al = a1 has been set. It has been checked that the results

do not depend on δ, neither on al. However, a slight dependence on a1 is observed, which is well
described by a linear fit. The errors given in table C.2 follow from the linear regression of b2(a1).
However, the numerical contribution to b2 is an integral over a function decaying as 1/x2 (for m = l
as θ(−x)/x2) for large x. Thus the leading error is of order 1/L, that is 1.4 · 10−3 for L = 700 and
2 · 10−5 for L = 50000. For l = m = 1, these exceed the error induced by the a1-dependence. For
l = m = 2, the result could not be improved by extending the integration range; it is chosen to be
L = 700 in all other cases. Then the a1 dependence is dominated by the finite-size error. One may
thus consider b2 independent of a1. Up to an accuracy of 10−3, the results in table C.2 are seen to
coincide for equal m, independently of l such that we infer that b2 is independent of l. The data do
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l m 1
m

(
2
π

∫∞
−∞B

(l)
2 (x)dx− ln l+1

l−m+1

)
1 1 −0.999985

**1 1 −0.999999995
***1 1 −1.0007

2 1 −0.999119
2 2 −0.999173

**2 2 −0.99999
*2 1 −0.999985
3 1 −0.99896
3 2 −0.998963
3 3 −0.998913

*3 1 −0.999985
4 1 −0.99887
4 2 −0.998857
4 3 −0.998806
4 4 −0.998677

*4 1 −0.999985
5 1 −0.998766
5 2 −0.998756
5 3 −0.998707
5 4 −0.99861
5 5 −0.99842

*5 1 −0.999984

Table C.1: Numerical results for the integral over the imaginary part of ln Bl, calculated in scheme
II with L = 700, N = 215, Nit = 70. The results denoted by a star * are done by building up the
Y -hierarchy recursively. The ** result has been obtained with the following choice of parameters:
L = 50000, N = 219, Nit = 100. The *** calculation has been done with identical parameters as **,
but over an asymmetric integration range [−(2L− 700), 700].

not suffice to extract the m-dependence (if there is one at all). We expect those values derived from
least equations as possible to be the most accurate. These are given, together with the corresponding
Wilson ratios, in table C.3.
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l m b2(a1)/m3

1 1 0.04678± 4 · 10−5 −
(
10−6 ± 2 · 10−6

)
· a1

**1 1 0.04707± 2 · 10−7 −
(
2 · 10−8 ± 10−9

)
· a1

2 1 0.04721± 1.5 · 10−5 −
(
1.03 · 10−5 ± 8 · 10−7

)
· a1

2 2 0.0501± 4 · 10−4 +
(
1.1 · 10−5 ± 5 · 10−6

)
· a1

**2 2 0.0502± 1 · 10−4 +
(
2 · 10−5 ± 6 · 10−6

)
· a1

*2 1 0.04652± 5 · 10−5 +
(
10−3 ± 2 · 10−4

)
· a1

3 1 0.04733± 1 · 10−5 −
(
2.10 · 10−5 ± 7 · 10−7

)
· a1

3 2 0.05033± 5 · 10−5 +
(
2 · 10−6 ± 2 · 10−6

)
· a1

3 3 0.0436± 1.4 · 10−4 +
(
2.1 · 10−5 ± 7.3 · 10−6

)
· a1

*3 1 0.04139± 9.6 · 10−5 +(4 · 10−3 ± 10−4) · a1

4 1 0.04716± 5 · 10−5 −
(
3.4 · 10−5 ± 3 · 10−6

)
· a1

4 2 0.050369± 10−6 −
(
5 · 10−6 ± 10−6

)
· a1

4 3 0.04380± 7 · 10−5 +
(
9 · 10−6 ± 3 · 10−6

)
· a1

4 4 0.0382± 2 · 10−4 +
(
2.8 · 10−5 ± 9 · 10−6

)
· a1

*4 1 0.0408± 2 · 10−4 +
(
3.8 · 10−3 ± 2 · 10−4

)
· a1

5 1 0.01638± 8 · 10−5 −
(
4.7 · 10−5 ± 4 · 10−6

)
· a1

5 2 0.046661± 6 · 10−6 −
(
1.3 · 10−5 ± 3 · 10−7

)
· a1

5 3 0.04280± 3 · 10−5 +
(
2 · 10−6 ± 2 · 10−6

)
· a1

5 4 0.03803± 8 · 10−5 +
(
1.3 · 10−5 ± 4 · 10−6

)
· a1

5 5 0.0338± 2 · 10−4 +
(
3 · 10−5 ± 10−5

)
· a1

* 5 1 0.04353± 6.3 · 10−5 −
(
3.8 · 10−5 ± 3 · 10−6

)
· a1

Table C.2: Numerical results for the coefficient of the x−2-decay of B(m)
l in the under-compensated

and exact compensated case, m ≤ l, done with scheme II (N = 215, L = 700, Nit = 100). The
values are obtained by linear regression of the dependence b2(a1), the errors given are those due to
the regression. The results denoted by * are done by building up the Y -hierarchy recursively. Note
the improvement of the l = 5, m = 1 result due to this procedure. The ** result is obtained from an
integration with the following choice of parameters: L = 50000, N = 524288, Nit = 100.

m φ(m) ξ

1 0.04707± 2 · 10−5 0.102678± 2 · 10−6

2 0.0502± 1 · 10−4 6.4604 · 10−2 ± 6 · 10−6

3 0.0436± 1.4 · 10−3 4.455 · 10−2 ± 8 · 10−5

4 0.0382± 1.4 · 10−3 3.178 · 10−2 ± 7 · 10−5

5 0.0338± 1.4 · 10−3 2.124 · 10−2 ± 6 · 10−5

Table C.3: Combined analytical and numerical results for φ(m), defined in eqs. (3.99), (C.9). They
are taken from table C.2, assuming no l dependence for equal m. Since the value calculated with least
equations is expected to be the most accurate, the l = m data from table C.2 are considered. Except
for m = 2, the errors are those given by the finite integration ranges.
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I am much obliged to Priv. Doz. Frank Göhmann. His ability to untighten most delicate knots
clarified important technical points. Without him, the realization of lots of ideas would have been
hindered by impenetrable fog.

Dr. Jesko Sirker did an invaluable work by reading the manuscript. He localized the most obvi-
ous stupid errors; the less obvious are left to be discovered by the reader.

Physicists in close thematical and local vicinity were most helpful by hinting me to new ideas, some-
times unknowingly. Among these are Prof. Hellmut Keiter, Dipl.-Phys. Alexander Seel, Dr. Jesko
Sirker and Prof. Joachim Stolze. All solid state theorists, both at Universität Dortmund and Univer-
sität Wuppertal, created most enjoyable atmospheres to work and to live.

This work documents only one part of the time I spent at the chair for theoretical solid state physics
at Universität Dortmund. Thanks to the confidence Prof. Hellmut Keiter, Prof. Andreas Klümper
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