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The Wheel of Time turns, and Ages

come and pass, leaving memories

that become legend. Legend fades

to myth, and even myth is long

forgotten when the Age that gave

it birth comes again. In one Age,

called the Third Age by some, an

Age yet to come, an Age long past,

a wind rose in the Mountains of

Mist. The wind was not the begin-

ning. There are neither beginnings

nor endings to the turning of the

Wheel of Time. But it was a begin-

ning.

Robert Jordan ()
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1 Introduction

Over the last several years the Poisson-sigma model has received more and more interest.

It was invented on one hand by P. Schaller and T. Strobl [43] as a generalization of

two-dimensional gravity-Yang-Mills systems and on the other hand by N. Ikeda [27] as a

non-linear extension of gauge theories.

The Poisson-sigma model is in fact a sigma model with a Poisson manifold as its tar-

get space. The great interest is traced back to the possibility of choosing different Poisson

structures on the target manifold. Actually, the Poisson-sigma model associates to vari-

ous Poisson structures on finite dimensional manifolds different two-dimensional field the-

ories [1, 25, 34, 43, 45]. This includes the following models: the topological sigma-model,

non-Abelian gauge theories, in particular the two-dimensional Yang-Mills theory, two-

dimensional gravity models and the Wess-Zumino-Witten model as well.

In the language of gauge theories the Poisson-sigma model involves an open gauge algebra.

In such cases the Faddeev-Popov method [18] of the path integral quantization fails. Even

the much more powerful quantization procedure of the BRST theory [22] is not applicable

in these cases, except for some special Poisson structures. The reason is that both proce-

dures need a well-defined cohomology to construct physical variables. This is based on the

nilpotency of the corresponding BRST operator, but for theories with an open gauge algebra

this operator is only nilpotent modulo the equations of motion. The proper method that

works in these cases and even more general situations is the Batalin-Vilkovisky formalism

[6]. Like the BRST method it is based on an extension of the phase space, the difference is

that for each field one introduces a so-called antifield obtaining a much more general struc-

ture on the phase space. The fields and antifields are in some sense canonical conjugate to

each other and give rise to an odd symplectic structure on the extended phase space, for an

overview see [21]. A detailed description of the application to the Poisson-sigma model can

be found in [24]. The structure has a beautiful geometric interpretation, first discovered by

E. Witten [51] and then described by A.Y. Alexandrov, M. Kontsevich, A. Schwarz

and O. Zaboronsky [2]. This construction enables one to obtain the extended action, which
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2 Introduction

is used in the path integral quantization, from fundamental geometric ingredients, which are a

nilpotent vectorfield and a symplectic structure on appropriate supermanifolds. This formal-

ism was extended to the case of manifolds with boundaries and applied to the Poisson-sigma

model by A. Cattaneo and G. Felder [12].

An usual gauge theory is based on a Lie algebra structure for the gauge transformations.

The extension of the Lie algebra to a polynomial algebra, like for instance a W-algebra and

also a Poisson algebra, defines the class of non-linear gauge theories. In the case of the

Poisson-sigma model the non-linearity becomes more transparent if one creates the interact-

ing term in the classical action by the procedure invented by G. Barnich and M. Henneaux

[5] . That formalism, based on the antifield formalism, consists of a deformation procedure

to generate consistent interactions. It is an important question in gauge theories, how one

can generate, starting with a free theory, interactions for the gauge fields in such a way

that the gauge invariances are taken into consideration, i.e. preserving the number of gauge

symmetries. In other words, one looks for a prescription for the deformation of the free ac-

tion and simultaneously for the gauge transformations. The procedure by G. Barnich and

M. Henneaux deforms the classical master equation which contains the whole information of

the underlying gauge structure of the theory, such that the consistency of the action and the

gauge transformations is ensured. Further, the formulation in the language of cohomology

permits one to use the powerful tools of these structures. This procedure was applied to the

Yang-Mills [3] and the Chern-Simons [5] theory. In [28] K.I. Izawa has shown that the de-

formation of the two-dimensional Abelian BF-theory leads to the topological Poisson-sigma

model. In [7] the formalism was extended to generate couplings between Abelian gauge fields

and matter fields. For a review of the the local BRST cohomology in gauge theories see the

work of G. Barnich, F. Brandt and M. Henneaux [4].

A more mathematical source of interest is the connection of the Poisson-sigma model to

the problem of quantization of spaces, especially the quantization of Poisson manifolds. It

was already shown by P. Schaller and T. Strobl [43, 44] that the Dirac quantization

of the model leads to the quantization of certain submanifolds of the Poisson manifold,

the symplectic leaves, i.e. they have shown that the leaves must be integral. There the

implications for more general situations were also mentioned. In the meantime A. Catteneo

and G. Felder [11] have shown that the perturbation expansion of the path integral in the

covariant gauge reproduces the Kontsevich formula for the deformation quantization of the

algebra of functions on a Poisson manifold [35].

The connection to gravity models was used by W. Kummer, H. Liebl and

D.V. Vassilevich to investigate the special case of 2d dilaton gravity in the temporal gauge,
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and they have calculated the generating functional using BRST methods [36]. In further work

they have studied the coupling to matter fields [37].

A.C. Hirshfeld and the author have investigated a complete and general derivation of the

partition function for the Poisson-sigma model for an arbitrary gauge on closed manifolds

[24]. In this calculation we have reproduced the quantization condition for the symplectic

leaves to be integral, now for arbitrary closed world sheets. We have shown that for a linear

Poisson structure the partition function is completely computable and it is in some sense

dual to the one of the Yang-Mills theory, i.e. the partition function for the Yang-Mills

theory may be recovered from that of the linear Poisson-sigma model. C. Klimcik [33]

has introduced a model where the target spaces are given by so-called Drinfeld doubles

[16], such that the Poisson-sigma model with a Poisson-Lie group as the target space is

included. In that paper he calculated the partition function for his model, which turned out

to be a q-deformation of the ordinary Yang-Mills theory. In a special case his expression

coincides with the Verlinde formula of conformal field theory.

The generalization to manifolds with boundary, which was already initiated by the work

of A. Catteneo and G. Felder for the case where the world sheet has the topology of a

two-dimensional disc, is still under progress. Recently, F. Falceto and K. Gawedzki have

clarified the relation of the bordered version of the gauged WZW model with a Poisson-

Lie group as the target to the topological Poisson-sigma model with the dual Poisson-Lie

group as the target space [20]. In a recent paper [26] A.C. Hirshfeld and the author have

generalized their original calculation of the partition function of the Poisson-sigma model to

the world sheet with the topology of the disc. By introducing a glueing prescription we were

able to calculate the partition function in the linear case on arbitrary oriented two-dimensional

manifolds.

The thesis is structured as follows. In chapter two some required mathematical preliminaries

are presented. First of all the geometry of Poisson manifolds is reviewed following the book

by J.E. Marsden and T.S. Ratiu [40] and the book by I. Vaisman [46]. The third chapter

is concerned with the classical theory of the Poisson-sigma model. The introduction of

the model will follow the ideas of P. Schaller and T. Strobl [43] and mention the more

mathematical description by A. Cattaneo and G. Felder [12]. Further on a review of the

Batalin-Vilkovisky approach is presented [21]. Then the application of the formalism to

the Poisson-sigma model is performed [24]. The deformation of the two-dimensional Abelian

BF theory leading to the Poisson-sigma model [28] is presented. In chapter four the path

integral quantization is performed. First the partition function is calculated for base manifolds
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without boundaries [24], then this calculation is extended to the world sheet with the topology

of the disc [26]. Finally, a glueing prescription is formulated for glueing manifolds together by

identifying certain boundary components such that the calculation of the partition function

of the linear Poisson-sigma model on arbitrary base manifolds is possible [26]. The thesis

ends with some concluding remarks and an outlook for further research.



2 Mathematical Preliminaries

In this chapter mathematical facts, relevant for the the following considerations, will be

presented. First of all the main geometric properties of Poisson manifolds are reviewed.

This is essential because the Poisson-sigma model is based on these structures. A special

kind of Poisson structure which is linear in the coordinates of the Poisson manifold, also

called Poisson-Lie structure, leads to the world of representation theory of Lie groups.

This connection manifests itself in the fact that the symplectic leaves can be identified via

the coadjoint orbits with the unitary irreducible representations of a Lie group, for the proofs

see [40, 46, 48].

2.1 Geometry of Poisson manifolds

In [39] S. Lie showed that there exists a Poisson bracket on the dual space g∗ of a Lie

algebra g defined by

{F, G}(µ) =
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
, (2.1)

with µ ∈ g∗ and F, G ∈ C∞(g∗). This bracket is not associated to a symplectic structure on

g∗; it is an example for the more general concept of Poisson manifolds. It is closely connected

to the symplectic structure on coadjoint orbits, see next section. Due to the fact that the

notion of Poisson manifolds is used in many different ways in the literature, its development

was rather complicated. The notion of Poisson manifolds was initiated by A. Lichnerowicz

[38].

Definition 2.1

A Poisson bracket, respectively a Poisson structure, on a smooth manifold N is a bilinear

map {·, ·} on the space of functions C∞(N) on the manifold N with the following properties

(i) it yields the structure of a Lie algebra on the space of functions

{F, G} = −{G,F} (skew-symmetric) , (2.2)

5



6 Mathematical Preliminaries

{F, {G,H}}+ {G, {H,F}}+ {H, {F, G}} = 0 (Jacobi identity) , (2.3)

(ii) it has a natural compatibility with the usual associative product of functions, which

is

{H,FG} = {H, F}G + F{H, G} (Leibniz rule of derivation) (2.4)

with F, G,H ∈ C∞(N). A smooth manifold N such that C∞(N) is equipped with a Poisson

structure is called a Poisson manifold.

Proposition 2.2

Let N be a Poisson manifold. Then ∀F,G ∈ C∞(N) there exists a well defined vector field

XF such that

{F, G} = XF [G] = −XG[F ] = dG(XF ) = −dF (XG) . (2.5)

XF is called a Hamiltonian vector field.

Remark: The proposition follows from the fact that the Poisson bracket is a derivation.

From equation (2.5) it follows that the bracket is determined by a skew-symmetric bilinear

form on T ∗N .

Proposition 2.3

There exists naturally a C∞-tensor field P ∈ ∧2TN such that

{F, G} = P (dF, dG) = P ij ∂F

∂xi

∂G

∂xj
, (2.6)

where the (xi) are local coordinates on N .

Definition 2.4

P is called the Poisson bivector of the Poisson manifold (N, {, }) .

The skew symmetry and the Leibniz rule are fulfilled by the definition of the Poisson tensor.

The remaining condition, which P still has to satisfy, is the Jacobi identity. In terms of the

bivector this is

∑

cyclic(ijk)

(∂lP
ij)P kl = 0 . (2.7)



Geometry of Poisson manifolds 7

In an invariant notation this condition is the vanishing of the Schouten-Nijenhuis bracket

[42] of P with itself, [P, P ]SN = 0.

The bivector P has an associated homomorphism

] : T ∗N → TM , (2.8)

where ]α ≡ α] is defined by

β(α]) = P (α, β) (2.9)

for α, β ∈ T ∗N . P is in general degenerate in which case it does not induce a symplectic

structure on N , and the map ] : T ∗N → TN induced by P , which maps a 1-form αidXi on

N to the vector field αiP
ij∂j , is not surjective. For degenerate P there are functions f on

N whose Hamiltonian vector fields Xf = f,iP
ij∂j vanish, where f,i := ∂f/∂xi denotes the

derivation with respect to the local coordinates of the Poisson manifold. These functions

are called Casimir functions.

Symplectic foliation The main geometric property of Poisson manifolds is that they are

disjoint unions of symplectic manifolds which are Poisson submanifolds.

Definition 2.5

A mapping φ : (N1, P1) → (N2, P2) between two Poisson manifolds is called a Poisson

mapping or Poisson homomorphism if ∀F, G ∈ C∞(N1) one has

{F ◦ φ,G ◦ φ}N2 = {F, G}N1 ◦ φ . (2.10)

Definition 2.6

Let S ⊂ N be a submanifold of the Poisson manifold N . If the inclusion i : S → N is a

Poisson mapping then S is called a Poisson submanifold.

Definition 2.7

A set of linear subspaces S(N) = {Sx0(N)} of the tangent spaces Tx0N is called a (general)

distribution. The distribution defined by

Sx0(N) = {v ∈ Tx0N | ∃F ∈ C∞(N), XF (x0) = v} (x0 ∈ N) (2.11)

is called the characteristic distribution.
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Definition 2.8

Let E ⊂ TM be a sub-vectorbundle of the tangentbundle of a differentiable manifold M .

Then E is called (completely) integrable, if ∀m ∈ M exists a local submanifold M ′ of M ,

such that TM ′ = TM|M′ .

The local submanifolds can be continued to connected maximal integral manifolds which are

uniquely determined and regular immersed submanifolds of M . For the case of Poisson

manifolds this yields the following theorem.

Theorem 2.9

The characteristic distribution S(N) of the Poisson manifold (N, P ) is completely integrable,

and the Poisson structure induces symplectic structures on the leaves of S(N).

Definition 2.10

The leaves of S(N) are called symplectic leaves L of the Poisson manifold N , and S(N) is

said to be the symplectic foliation.

Theorem 2.11

Let Nn be a differential manifold and S(N) a general foliation such that

(i) every leaf S of S(N) is endowed with a symplectic structure ωS ,

(ii) if F ∈ C∞(N), the vector field XF defined by XF (x)= the Hamiltonian vector field of

F|S(x)
on (S(x), ωS(x)) at x is a differentiable vector field on N .

Then N has a unique Poisson structure whose symplectic foliation is S(N).

In other words, a Poisson structure can be defined by its symplectic foliation. A Poisson

manifold is a disjoint union of symplectic manifolds, which are Poisson submanifolds, the

symplectic leaves.

Definition 2.12

If the symplectic foliation of (N, P ) is regular, i.e. the rank of P is constant, the Poisson

manifold is called regular.

Proposition 2.13

Let (N, P ) be a Poisson manifold, L ⊂ N a symplectic leaf and C a Casimir function of

the Poisson structure P . Then C is constant on L.
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On a Poisson manifold coordinates can be chosen in such a way that the Poisson bivector

is canonical, this is a generalization of the theorem of G. Darboux for symplectic manifolds.

The local structure of a Poisson manifold N at a point x0 is described by the splitting

theorem due to A.Weinstein [48].

Theorem 2.14

Let x0 be a point of the Poisson manifold (Nn, P ) and rank(x0) = 2h. Then there exists a

neighborhood U(x0) in N and an isomorphism φ = φS × φM : U → S ×M with S being a

2h-dimensional symplectic and N a Poisson manifold. The rank of N in φM (x0) vanishes.

S and N are unique modulo local isomorphisms. Further, there exist coordinates (pa, q
a, yσ)

on (Nn, P ) such that the following commutation relations are satisfied

{qa, qb} = {pa, pb} = {qa, yσ} = {pa, y
σ} = 0 , (2.12)

{qa, pb} = δa
b . (2.13)

These coordinates are called canonical coordinates for the Poisson manifold N at x0.

The theorem states that for a regular Poisson manifold there exists canonical coordinates,

also called Casimir-Darboux coordinates, on the Poisson manifold N . Let {CI} be a

maximal set of independent Casimir functions. Then CI(X) = const. = CI(X0) defines a

level surface through X0 whose connected components may be identified with the symplectic

leaves. According to Darboux’s theorem there are local coordinates Xα on S such that the

symplectic form ΩS is given by

ΩS = dX1 ∧ dX2 + dX3 ∧ dX4 + . . . . (2.14)

Together with the Casimir functions one then has a coordinate system {XI , Xα} on N with

P IJ = P Iα = 0 and Pαβ = const.

Structures on Rn The most general Poisson bivector on Rn = {(xi)} is of the form

P =
1
2
P ij(x)

∂

∂xi
∧ ∂

∂xj
, [P, P ]SN = 0 . (2.15)

In particular, any constant coefficient Pij defines a Poisson structure on Rn and they are

called constant Poisson structures.
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The linear Poisson structure These structures are of great interest because of their connec-

tion to the representation theory of Lie groups. More precisely, the symplectic leaves of a

linear Poisson structure can be identified with the coadjoint orbits of a connected Lie group

G, see next section.

Definition 2.15

A linear Poisson structure on a manifold N is defined by

P ij = cij
k xk (cij

k = −cji
k ) . (2.16)

These structures are also called Lie-Poisson structures.

The Jacobi identity for the bivector then becomes

cij
h chk

l + cki
h chj

l + cjk
h chi

l = 0 . (2.17)

It follows that the coefficients cij
k define the structure of an n-dimensional Lie algebra g on

the dual space of the linear Poisson manifold. This structure coincides with the structure

found by S. Lie (2.1).

2.2 The orbit method for compact groups

The orbit method was introduced by A. Kirillov in order to solve some open problems in rep-

resentation theory of Lie groups [30, 31, 32]. First one seeks a description of the unitary dual of

the Lie group, which is defined by G∧ := {unitary irreducible representations/equivalence}.
It is the set of isomorphism classes of unitary irreducible representations which is a topolog-

ical space with rich structure. The answer provided by the orbit method is then as follows.

Denote by g∗ the dual space to the Lie algebra g of the Lie group G. Let g∗/G denote

the quotient of g∗ by the action of G, the so-called coadjoint action. Thus it is the space of

orbits of the action of G on g∗, G∧ = g∗/G. The second question is then how to decompose

a given representation T of G into irreducible representations. The third problem considered

by A. Kirillov is the computation of the character of a given unitary irreducible represen-

tation T . In fact there are two kinds of characters for a Lie group. One is a distribution

(generalized function) on G and the other is the so-called infinitesimal character. The orbit

method gives a prescription for the calculation of the characters for different types of Lie

groups, in particular for compact groups. The character is a modified Fourier transform of

the symplectic form on a certain orbit corresponding to an unitary irreducible representation.

The concern of this section is to present some results of the orbit method which will be needed

in the following chapters.
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2.2.1 Geometry of coadjoint orbits

The coadjoint representation Let G be a compact connected Lie group and g = Lie(G)

be the tangent space Te(G) to G at the unit point e. The group G acts on itself by inner

automorphism g 7→ hgh−1. The point e is a fixed point, and the derived map is Ad(g) : g → g.

The mapping Ad : G× g → g is called the adjoint action and the homomorphism g 7→ Ad(g)

is the adjoint representation of G.

Consider the dual space of g denoted by g∗. In the matrix case there always exists a

non-degenerate bilinear form 〈·, ·〉 which is invariant under the inner automorphisms.

Definition 2.16

The coadjoint representation of a Lie group is the homomorphism

K : g 7→ (Adg−1)∗ . (2.18)

The infinitesimal version of the coadjoint action is

〈K∗(X)[F ], Y 〉 = 〈F,−ad(X)[Y ]〉 = 〈F, [X, Y ]〉 , (2.19)

where K∗ denotes the differential of the coadjoint action K and ad(Y )[X] = Ad∗(Y )[X] =

[Y,X].

Definition 2.17

The stabilisator (isotropy group) for an arbitrary action Φg for a point x ∈ M is

Stab(x) := {g ∈ G | Φg(x) = x} ⊂ G . (2.20)

The corresponding algebra, the stabilisator algebra, is

stab(x) := {X ∈ g | XM (x) = 0} , (2.21)

where XM is a vector field on M.

Note that Stab(x) is a Lie subgroup of G.

Definition 2.18

An orbit O of an action Φg on the manifold M is given by

O(x) := {Φg(x) | g ∈ G} ⊂ M . (2.22)
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Definition 2.19

The orbit associated to the coadjoint action is called coadjoint orbit Ω.

An action Φg defines an equivalence relation for the orbits given by x ∼ y; if ∃g ∈ G such

that g · x = y, then x ∈ O(y) and y ∈ O(x). Then M/G is the set of equivalence classes,

also called the set of orbits or the orbit space. For compact Lie groups all orbits are closed,

embedded submanifolds.

The symplectic form on the coadjoint orbits All coadjoint orbits Ω possess a G-invariant

symplectic structure, i.e. on each orbit Ω ⊂ g∗ there exists canonically a closed non-degenerate

G-invariant differential 2-form ω. An invariant differential form on a homogenous manifold

is uniquely determined by its value at a single point. This value should be invariant with

respect to the action of the stabilizer group. So it is sufficient to calculate the value of ω at

an arbitrary point F ∈ Ω.

It exists naturally a skew symmetric bilinear form on g with the property that its kernel is

exactly the stabilizer algebra, more precisely the kernel of the corresponding mapping of the

differential K∗ corresponds to the stabilizer algebra of the coadjoint action:

BF (X, Y ) = 〈F, [X,Y ]〉 , (2.23)

Ker[BF ] = {X ∈ g | BF (X, Y ) = 0 ∀ Y ∈ g}
= {X ∈ g | 〈K∗(X)[F ], Y 〉 = 0 ∀ Y ∈ g} = stab(F ) .

(2.24)

Definition 2.20

The value of the form ωF at the point F is given by

ωF (K∗(X)[F ],K∗(Y )[F ]) := BF (X,Y ) . (2.25)

Proposition 2.21

The 2-form ω defined by equation (2.25) defines a symplectic structure on the coadjoint orbit,

i.e. ω is a symplectic form, that is a G-invariant, non-degenerate closed 2-form.

Remark: The non-degenerency and the G-invariance of ω follow directly from the definition.

The fact that ω is a closed form follows from the ensuing calculation.
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For F ∈ Ω let pF be the submersion G → Ω : g 7→ K(g)[F ]. Then p∗F (ω) is a left invariant

2-form on G. Define a left invariant 1-form to be θF := 〈F, g−1dg〉. Then p∗F (ω) is the exterior

derivative of θF . Since pF is a submersion p∗F is injective.

p∗F (dω) = d(p∗F (ω)) = d2θF = 0 (2.26)

Hence, ω is closed and defines a symplectic structure on the orbit Ω.

Definition 2.22

A coadjoint orbit is called integral, iff for any 2-cycle C in Ω and the symplectic structure ω

∫

C

ω ∈ Z . (2.27)

Another approach to see that the coadjoint orbits are symplectic manifolds is based on the

theory of Poisson manifolds. The symplectic structure of the coadjoint orbits coincides with

that on the symplectic leaves of the Lie-Poisson structure.

Proposition 2.23

The Lie-Poisson structure and the symplectic structure on a coadjoint orbit are compatible

in the following way. For F, G : g∗ → R and an orbit Ω ⊂ g∗ one has

{F,G}|Ω = {F|Ω , G|Ω} , (2.28)

where {·, ·} is the Lie-Poisson bracket and {·, ·}|Ω is the bracket associated to the symplectic

structure on the orbit Ω.

In other words, the symplectic leaves of the Lie-Poisson structure of g∗ are the orbits of the

coadjoint action of any connected Lie group G whose Lie algebra is g. Since the coadjoint

orbits are symplectic manifolds it follows that

Corollary 2.24

The coadjoint orbits of a finite dimensional Lie group are manifolds of even dimension.

Corollary 2.25

(i) A function C ∈ C∞(g∗) is a Casimir function iff δC
δµ ∈ g∗ for all µ ∈ g∗.

(ii) If C ∈ C∞(g∗) is K-invariant, i.e. is constant on the orbits, then C is a Casimir function.

Additionally, if all coadjoint orbits are connected then the inverse is also true.
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Compact groups If the Lie group is restricted to be compact, the corresponding Lie algebra

g admits a non-degenerate G-invariant bilinear form. It is possible to identify g∗ and g and

hence the coadjoint and the adjoint representation as well. There exist only a finite number

of different types of coadjoint orbits as homogeneous manifolds for a given G, i.e. there are

finitely many subgroups Gi such that any orbit is isomorphic to Xi = G/Gi.

Definition 2.26

Let T denote the maximal Abelian subgroup, the torus of the group. Then

X := G/T is called a full flag manifold and

Xi := G/Gi is called a degenerate flag manifold.

The flag manifolds Xi have a rich geometric structure. As homogenous spaces of a compact

Lie group, they admit a G-invariant Riemannian metric. Being coadjoint orbits they have

a canonical G-invariant symplectic structure. And they can be endowed with a complex

structure.

Let Ω ⊂ g∗ be a coadjoint orbit. The canonical symplectic form defines a cohomology class

[ω] ∈ H2(X;R). An orbit is called integral if [ω] ∈ H2(X;Z) ⊂ H2(X;R), which is the same

definition as 2.22. It follows that the number of integrality conditions is equal to the second

Betti number of the orbit. For compact groups the integral orbits form a discrete set.

Identify g∗ and g and also the complexified algebras, such that h∗ ∼= h, h being the Cartan

subalgebra. The weight lattice W ⊂ h∗ corresponds to a lattice in it∗ ⊂ ig∗ ∼= ig where t is

the complement in the Cartan decomposition. The intersection of Ω with t∗ is a finite set.

Denote the orbit passing through the point iλ ∈ t∗ by Ωλ.

Proposition 2.27

i) The orbit Ωλ is integral iff λ ∈ W and

ii) The dimension of Ωλ is equal to the number of roots non-orthogonal to λ.

In particular, all orbits of maximal dimension are isomorphic to the full flag manifold.

The important theorem which connects the theory of the coadjoint orbits with the theory

of representations of a Lie group is

Theorem 2.28

All irreducible representations of a compact, connected and simply connected Lie group G

correspond to integral coadjoint orbits of maximal dimension.
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The other way round, i.e. starting with a coadjoint orbit and determining the corresponding

representations, is a bit more complicated. For a given coadjoint orbit Ω there might be

several irreducible unitary representations or also possible there might be no representation

corresponding to it at all. The topology of the orbit, more precisely the first and second

Betti numbers determine which is the case. As already mentioned above there are b2(Ω) =

dimH2(Ω,Z) integrality conditions. The first Betti number b1(Ω) = dimH1(Ω,Z) gives rise

to additional cyclic parameters describing the irreducible representations.

2.2.2 The universal formula for characters

One of the main problems of the theory of group representations is to obtain explicit formulas

for generalized characters of irreducible representations. The method of orbits indicates an

approach to solving this problem for all Lie groups. It was extremely successful for the case

of nilpotent Lie groups. With a little modification it also provides the answer for compact

groups. The idea consists of considering generalized functions on a Lie group which are

defined on a coadjoint orbit in g∗.

Theorem 2.29

The character of a representation T associated to the integral coadjoint orbit Ω of maximal

dimension is given by

χΩ(expX) =
1

j(X)

∫

Ω

exp[2πi〈F,X〉]ω
r

r!
(2.29)

with r = dim(G)−rank(G)
2 = dim(Ω)

2 and j(X) = [det sinh(adX/2)
adX/2 ]1/2 the Jacobi determinant

of the exponential map. In particular, the dimension of the representation is equal to the

symplectic volume of the corresponding coadjoint orbit

dim(λ) = χΩ(1) =
∫

Ω

ωr

r!
= Vol(Ω) . (2.30)

Remark: The generalized character of a representation T of G is the distribution χT on G.

Let C∞(G) denote the space of smooth compactly supported functions on G. For φ ∈ C∞(G)

one defines Tφ :=
∫
G φ(g)T (g)dg. Then Tφ has a trace and the character is the distribution

χ : φ → Tr [Tφ] . (2.31)

For nilpotent groups the spaces of functions in G, g and g∗ are in natural correspondence.

While the group G and the algebra g are connected by the exponential map, g and g∗ are
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related by the Fourier transform. The orbit Ω ⊂ g∗ canonically determines a volume form.

If one transfers the measure to G by the Fourier transform and the exponential map, one

obtains precisely the distribution χ = χΩ

χΩ(expX) =
∫

Ω

exp[2πi〈F, X〉]ω
r

r!
. (2.32)

For more general groups one has to modify the formula due to the fact that the exponential

map has now a non-trivial Jacobi determinant what leads to (2.29). For a rigorous proof see

[30].

The symmetrization map Let P (g∗) be the naturally graded algebra of polynomial func-

tions on g∗ which can be identified with the symmetric algebra S(g) via the map g 3 X 7→
2πi〈·, X〉 ∈ P (g∗).

Definition 2.30

The map sym : S(g) → U(g), with U(g) being the universal enveloping algebra of g, defined

by

sym(X1X2 · · ·Xk) :=
1
k!

∑

σ∈Sk

sgn(σ)Xσ(1)Xσ(2) · · ·Xσ(k) (2.33)

for Xi (0 < i < k) is called the symmetrization map.

In particular, for any X ∈ g one has sym(Xn) = Xn ∈ U(g). This map is G-covariant and

bijective. By the identification of S(g) and P (g∗) one gets a G-covariant linear homomorphism

U(g) → P (g∗) : A 7→ pA which maps the center Z(g) of the universal enveloping algebra

onto Y (g) = P (g∗)G, the algebra of G-invariant polynomials on g∗. This is an algebra

homomorphism for nilpotent Lie algebras. Including the case of compact groups it requires

a modification which leads to the following definition.

Definition 2.31

For A ∈ U(g) define pA ∈ P (g∗) by

A = sym(j(X)pA) , (2.34)

where j(X) = [det sinh(adX/2)
adX/2 ]1/2.
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The symmetrization map for SU(2) As an example for the symmetrization map the case

in which the Lie group is SU(2) is presented. Let G = SU(2) and let g = su(2) have the

standard basis X1, X2, X3 with the commutation relations

[X1, X2] = X3 , [X2, X3] = X1 , [X3, X1] = X2 . (2.35)

The same elements considered on g∗ are denoted by (x1, x2, x3), and may further be considered

to be the dual coordinates (α, β, γ) on g. Then define

r :=
√

x2
1 + x2

2 + x2
3 , ρ :=

√
α2 + β2 + γ2 . (2.36)

The symmetrization map for r2 is then

C := X2
1 + X2

2 + X2
3 = sym(r2) . (2.37)

The general expression for the symmetrization is more complicated.

Proposition 2.32

The symmetrization map is explicitly given by

sym(r2n) =
(−1)n−1

4n

n∑

k=0

(
2n + 1

2k

)
B2k(4k − 2)(1− 4C)n−k , (2.38)

where B2k are the Bernoulli numbers.

Convolution on coadjoint orbits An interesting aspect of the theory of coadjoint orbits is

the convolution, which is based on the following theorem [49, 15].

Theorem 2.33

For Ad-G-invariant distributions the convolution operations on G and g are related by the

map Φ : C∞(g) → C∞(G) defined by

〈Φ(ν), f〉 := 〈ν, j · (f ◦ exp)〉 , (2.39)

Φ(µ) ∗G Φ(ν) = Φ(µ ∗g ν) . (2.40)

Definition 2.34

The map Φ : C∞(g) → C∞(G) is called the wrapping map.

Remark: The essential tool for the proof of theorem 2.33 is Kirollov’s character formula.

The usual classification of G∧ in terms of integral coadjoint orbits can be recovered from
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theorem 2.33, along the way Kirillov’s character formula also falls out [50]. The wrapping

map straightens the group convolution, i.e. the convolution in g is now Abelian. Another

consequence of theorem 2.33 is the following.

Theorem 2.35

Let G be a compact Lie group , X1, X2 ∈ g; Oi = G ·Xi the adjoint orbit through Xi and

Ci = G · expXi the conjugacy class through expXi, i = 1, 2. Then

C1 · C2 ⊂ exp(Ω1 + Ω2) . (2.41)



3 The Classical Theory

This chapter is concerned with the classical aspects of the Poisson-sigma model. In the

first section the model is introduced following the work of P. Schaller and T. Strobl [43].

A remarkable feature of the model is the inclusion of certain two-dimensional field theories,

the two cases of the topological sigma model and the Yang-Mills theory are considered.

The second section deals with the gauge structure of the model in view of quantization.

The antifield formalism by I.A. Batalin and G.A. Vilkoviski [6] is used to obtain the

so-called extended and gauge-fixed action for the Poisson-sigma model [24]. As already

mentioned in the introduction the Poisson-sigma model can be interpreted as a non-linear

gauge theory [27]. The non-linearity becomes clear if one performs the deformation theory

for generating consistent interactions by G. Barnich and M. Henneaux [5], which is based

on the antifield formalism. In section three it will be shown that the deformation of the

the two-dimensional Abelian BF theory yields the Poisson-sigma model [28]. For further

aspects of the Hamiltonian formalism see [43]. A. Cattaneo and G. Felder have shown

in [13] that the classical phase space is the space of Hamiltonian foliation and has a natural

groupoid structure.

3.1 The Poisson-sigma model

The Poisson-sigma model is a semi-topological field theory on a two-dimensional world sheet

Σ with local coordinates uµ (µ = 1, 2). The theory involves a set Xi of bosonic scalar fields

which can be interpreted as a set of maps Xi : Σ → N such that for uµ ∈ Σ the Xi(uµ) can

be seen as coordinates of a Poisson manifold which is the target space of the theory. This

space is equipped with a Poisson bivector P ij instead of a metric. Hence, the fields Xi(u)

are not sufficient to define a sigma model due the fact that the Poisson bivector has only

contravariant indices which cannot be contracted with dXi. In addition one has a 1-form Ai

on the world sheet taking values in T ∗N , so Ai = Aiµduµ is a 1-form on the world sheet Σ

19
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and i is a covariant index in the target space N . The Poisson-sigma model is characterized

by the action [43]

S0[X,A] =
∫

Σ

[
Ai ∧ dXi +

1
2

P ij(X)Ai ∧Aj + C(X)
]
, (3.1)

with C(X) = µC(X), where µ is the volume form on Σ and C(X) is a Casimir function of

the Poisson structure given by the bivector P = P ij(X)∂i ∧ ∂j .

The model possesses a gauge invariance given by

δXi = P ij(X)εj , δAi = Dj
i εj , (3.2)

where Dj
i = δj

i d + P kj
,iAk. The important ingredient for the invariance of the model with

respect to these transformations is of course the Jacobi identity for the Poisson bivector.

For C ≡ 0 the model can be seen as a topological field theory, i.e. it is covariant with respect

to diffeomorphisms of the target manifold, the Poisson manifold.

In [12] the topological model was considered from a more mathematical point of view,

namely as an action functional on the space of vector bundle morphisms X̂ : TΣ → T ∗N

from the tangent bundle of the two-dimensional world sheet Σ to the cotangent bundle of

the Poisson manifold. Such a map is given by a base map X : Σ → N and a section A of

Hom(TΣ, X∗(TΣ)), for U ∈ Σ, v ∈ TuΣ, X̂ = (X(u), A(u)v). Denote the pairing between

the cotangent and tangent space at a point of Σ by 〈·, ·〉. If X is a map from Σ to N then

this pairing induces a pairing between the differential forms on Σ with values in X∗TΣ. It is

defined as the pairing of the values and the exterior product of differential forms, and takes

values in the differential forms on Σ. The action functional is

S[X,A] =
∫

Σ

〈A, dX〉+
1
2
〈A, (P ◦X)A〉 , (3.3)

where A and dX are viewed as 1-forms on Σ with values in the pull-back of the (co)tangent

bundle and P (X) is viewed as a linear map T ∗uΣ → TuΣ. In this work the more physical

notation (3.1) is preferred, because it is sufficient for the treatment of the path integral

quantization.

Varying the action with respect to the fields yields the equations of motion

Dj
i Aj +

∂C(X)
∂Xi

= 0 , dXi + P ijAj = DXi = 0. (3.4)

The gauge algebra is given by

[δ(ε1), δ(ε2)]Xi = P ji(Pmn
,j ε1nε2m) , (3.5)
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[δ(ε1), δ(ε2)]Ai = Dj
i (P

mn
,jε1nε2m)−DXjPmn

,ji ε1nε2m . (3.6)

Note that in contrast to usual gauge theories the gauge algebra is just closed modulo the

equations of motion. This shows the non-linearity of the model.

3.1.1 Including models

An interesting aspect of this model is that it associates to certain Poisson structures on a

finite-dimensional manifold two-dimensional field theories. First consider the case in which

the Poisson structure P gives rise to a symplectic 2-form on N , i.e. it has an inverse Ω.

Then it is possible to eliminate the gauge fields Ai by means of the equations of motion and

the resulting action is

Stop =
∫

Σ

ΩijdXi ∧ dXj , (3.7)

which evidently is the action of E. Witten’s topological sigma model in the approach of

L. Baulieu and I.M. Singer [52].

Secondly, choose a linear Poisson structure P ij = cij
k Xk on N = R3. The coefficients cij

k

then define a Lie algebra on the dual space which in turn can be identified with N . Now there

are two different Casimir functions. The trivial one, C = 0, leads to the two-dimensional BF

theory. On the other hand if one chooses the quadratic Casimir function C = XiXi one has

SY M =
∫

Σ

F i ∧ ∗Fi , (3.8)

the two-dimensional Yang-Mills theory. The Poisson-sigma model also covers the gauged

Wess-Zumino-Witten model [1]. The main motivation for introducing this model was

the interest in including the theory of gravity into a Yang-Mills theory at least in two

dimensions. Actually, if one chooses a non-linear Poisson structure the resulting model is

a gravity theory with a dilaton field. This line of the model was investigated in detail by

T. Klösch and T. Strobl [34].

3.2 The extended action for the Poisson-sigma model

The main idea of gauge theories is the appearance of gauge invariances in the sense that a

solution of the equations of motion, which can be achieved by a gauge transformation from
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another solution, are physically the same. This concept has to be taken into account in the

quantization process of the gauge theory. The first approach, invented by L.D. Faddeev

and V.N. Popov, was the introduction of so-called ghosts and antighosts to take care of the

gauge freedom due to the transformations [18]. Further investigations, especially the theory

of graded differential algebras, lead to a systematic explanation of the gauge structure, the

BRST theory [22]. The main point was the possibility of defining a nilpotent BRST operator

leading to a well-defined cohomology of the physical variables. It turned out that the zeroth

cohomology is isomorphic to the space of observables of the original theory. If the gauge

algebra is not closed this operator is not nilpotent anymore and the BRST theory is not

applicable. The next extension was the approach of I.A. Batalin and G.A. Vilkovisky [6],

allowing also the treatment of gauge theories with an open gauge algebra. The idea is that

one extends the action of the theory in such a way that the gauge freedom is under control

and this extended action can be used in the path integral quantization.

In this section a review of the Batalin-Vilkovisky theory and the application of the

formalism to the Poisson-sigma model [24] are presented. In the last part of the section a

short review of the deformation approach is given and the application to the two-dimensional

BF theory is shown, leading to the Poisson-sigma model [28].

3.2.1 The Batalin-Vilkovisky theory

The structure equations of gauge theories The Batalin-Vilkovisky formalism has a

beautiful geometric interpretation, first discovered by E. Witten [51], and recently described

in the paper of M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky [2].

The review below follows the article by J. Gomis, J. Paris and S. Stuart [21].

Consider a system whose dynamics are governed by a classical action S0[φi] which depends

on the fields φi(x), i = 1, . . . , n. In the following the compact notation is used in which the

multi-index i may denote the various fields involved, the discrete indices on which they may

depend, and the dependence on the spacetime variables as well. The generalized summation

convention then means that a repeated index may denote not only a sum over discrete vari-

ables, but also integration over the spacetime variables. εi = ε(φi) will denote the Grassman

parity of the fields φi. Fields with εi = 0 are called bosonic, fields with εi = 1 fermionic. The

graded commutation rule is

φi(x)φj(y) = (−1)εiεjφj(y)φi(x). (3.9)



The extended action for the Poisson-sigma model 23

For a gauge theory the action is invariant under a set of m gauge transformations with

infinitesimal form

δφi = Ri
α εα, α = 1 or 2 or . . . m. (3.10)

This is a compact notation for

δφi(x) = (Ri
α(φ)εα)(x)

=
∑
α

∫
dy Ri

α(x, y) εα(y).

The εα(x) are the infinitesimal gauge parameters and the Ri
α(φ) the generators of the gauge

transformations. When εα = ε(εα) = 0 one has an ordinary symmetry, when εα = 1 a

supersymmetry. The Grassman parity of Ri
α is ε(Ri

α) = εi + εα (mod 2). When the gauge

generators are independent the theory is said to be irreducible, otherwise it is reducible. As

will be shown the Poisson-sigma model is an irreducible theory, so it will be sufficient to

consider the irreducible case only.

A subscript index after a comma denotes the right derivative with respect to the corre-

sponding field, and in general when a derivative is indicated it is to be understood as a right

derivative unless specifically noted to be otherwise. The field equations may then be written

as

S0,i = 0. (3.11)

The classical solutions φ0 are determined by S0,i|φ0 = 0. The Noether identities are

S0,i R
i
α = 0. (3.12)

The general solution to the Noether identity S0,i λ
i = 0 is

λi = Ri
α Tα + S0,j Eji. (3.13)

The commutator of two gauge transformations is

[δ1, δ2]φi = (Ri
α,jR

j
β − (−1)εαεβRi

β,jR
j
α)εβ

1εα
2 . (3.14)

Since this commutator is a symmetry of the action it satisfies the Noether identity

S0,i(Ri
α,jR

j
β − (−1)εαεβRi

β,jR
j
α) = 0, (3.15)
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which by equation (3.13) implies that

Ri
α,jR

j
β − (−1)εαεβRi

β,jR
j
α = Ri

γT γ
αβ − S0,jE

ji
αβ . (3.16)

Equations (3.14) and (3.16) lead to the following conditions

[δ1, δ2]φi = (Ri
γT γ

αβ − S0,jE
ji
αβ)εβ

1εα
2 . (3.17)

The tensor coefficients T γ
αβ are called the structure constants of the gauge algebra, although

they depend in general on the fields of the theory. When Eij
αβ = 0 the gauge algebra is said to

be closed, otherwise it is open. Equation (3.17) defines a Lie algebra if the algebra is closed

and the T γ
αβ are independent of the fields.

The gauge tensors have the following graded symmetry properties:

Eij
αβ = −(−1)εiεjEji

αβ = −(−1)εαεβEij
βα,

T γ
αβ = −(−1)εαεβT γ

βα.
(3.18)

The Grassman parities are

ε(T γ
αβ) = εα + εβ + εγ (mod 2) (3.19)

and

ε(Eij
αβ) = εi + εj + εα + εβ (mod 2). (3.20)

Various restrictions are imposed by the Jacobi identity
∑

cyclic(123)

[δ1, [δ2, δ3]] = 0. (3.21)

These restrictions are
∑

cyclic(123)

(Ri
δA

δ
αβγ − S0,jB

ji
αβγ)εγ

1εβ
2εα

3 = 0, (3.22)

where

3Aδ
αβγ ≡ (T δ

αβ,kR
k
γ − T δ

αηT
η
βγ)

+(−1)εα(εβ+εγ)(T δ
βγ,kR

k
α − T δ

βηT
η
γα) + (−1)εγ(εα+εβ)(T δ

γα,kR
k
β − T δ

γηT
η
αβ) (3.23)

and

3Bji
αβγ ≡(Eji

αβ,kR
k
γ −Eji

αδT
δ
βγ − (−1)εiεαRj

α,kE
ki
βγ + (−1)εj(εi+εα)Ri

α,kE
kj
βγ)

+ (−1)εα(εβ+εγ)(α → β, β → γ, γ → α)

+ (−1)εγ(εα+εβ)(α → γ, β → α, γ → β).

(3.24)
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As in the familiar Faddeev-Popov procedure it is useful to introduce ghost fields Cα with

opposite Grassman parities to the gauge parameters εα;

ε(Cα) = εα + 1, (3.25)

and to replace the gauge parameters by ghost fields. One must then modify the graded

symmetry properties of the gauge structure tensors according to

Tα1α2α3α4... → (−1)εα2+εα4+... Tα1α2α3α4... . (3.26)

The Noether identities then take the form

S0,iR
i
αCα = 0, (3.27)

and the structure relations (3.16) simplifies

(2Ri
α,jR

j
β −Ri

γT γ
αβ + S0,jE

ji
αβ)CβCα = 0. (3.28)

Introducing the antifields One incorporates the ghost fields into the field set ΦA = {φi, Cα},
where i = 1, . . . , n and α = 1, . . . , m. Clearly A = 1, . . . , N , where N = n + m. One then

further increases the set by introducing an antifield Φ∗A for each field ΦA. The Grassman

parity of the antifields is

ε(Φ∗A) = ε(ΦA) + 1 (mod 2). (3.29)

We also assign to each field a ghost number, with

gh[φi] = 0, (3.30)

gh[Cα] = 1, (3.31)

gh[Φ∗A] = −gh[ΦA]− 1 . (3.32)

In the space of fields and antifields the antibracket is defined by

(X, Y ) =
∂rX

∂ΦA

∂lY

∂Φ∗A
− ∂rX

∂Φ∗A

∂lY

∂ΦA
, (3.33)

where ∂r denotes the right, ∂l the left derivative. The antibracket is graded antisymmetric;

(X, Y ) = −(−1)(εX+1)(εY +1)(Y, X). (3.34)

It satisfies a graded Jacobi identity

((X,Y ), Z) + (−1)(εX+1)(εY +εZ)((Y, Z), X) + (−1)(εZ+1)(εX+εY )((Z, X), Y )=0. (3.35)
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It is a graded derivation

(X,Y Z) = (X, Y )Z + (−1)εY εX (X, Z)Y,

(XY, Z) = X(Y, Z) + (−1)εXεY Y (X,Z).
(3.36)

It has ghost number

gh[(X, Y )] = gh[X] + gh[Y ] + 1 (3.37)

and Grassman parity

ε((X,Y )) = ε(X) + ε(Y ) + 1 (mod 2). (3.38)

For bosonic fields the antibracket simplifies to

(B, B) = 2
∂B

∂ΦA

∂B

∂Φ∗A
, (3.39)

while for fermionic fields it is

(F, F ) = 0, (3.40)

and for any X

((X,X), X) = 0. (3.41)

If one groups the fields and antifields together into the set

za = {ΦA, Φ∗A}, a = 1, ..., 2N, (3.42)

then the antibracket is seen to define a symplectic structure on the space of fields and antifields

(X, Y ) =
∂X

∂za
ζab ∂Y

∂zb
(3.43)

with

ζab =

(
0 δA

B

−δA
B 0

)
. (3.44)

The antifields can be thought of as conjugate variables to the fields, since

(ΦA,Φ∗B) = δA
B. (3.45)
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The classical master equation Let S[ΦA, Φ∗A] be a functional of the fields and antifields

with the dimensions of an action, vanishing ghost number and even Grassman parity. The

equation

(S,S) = 2
∂S

∂ΦA

∂S
∂Φ∗A

= 0 (3.46)

is the classical master equation. Solutions of the classical master equation with suitable

boundary conditions turn out to be generating functionals for the gauge structures of the

gauge theory. S is also the starting point for the quantization of the theory.

One denotes by Σ the subspace of stationary points of the action in the space of fields and

antifields

Σ =
{

za

∣∣∣∣
∂S
∂za

= 0
}

. (3.47)

Given a classical solution φ0 of S0 one possible stationary point is

φi = φi
0, Cα = 0, Φ∗A = 0. (3.48)

An action S which satisfies the classical master equation has its own set of invariances

∂S
∂za

Ra
b = 0, (3.49)

with

Ra
b = ζac ∂l∂rS

∂zc∂zb
. (3.50)

This equation implies

Rc
a Ra

b |Σ = 0. (3.51)

We see that Ra
b is nilpotent on-shell. The rank of a nilpotent 2N × 2N matrix is less than or

equal to N . Let r be the rank of the Hessian of S at the stationary point

r = rank
∂l∂rS
∂za∂zb

∣∣∣∣
Σ

. (3.52)

Then one has r ≤ N . The relevant solutions of the classical master equation are those for

which r = N holds. In this case the number of independent gauge invariances of the type in

equation (3.49) equals the number of antifields. When at a later stage the gauge is fixed the

non-physical antifields are eliminated.
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To ensure the correct classical limit the proper solution must contain the classical action

S0 in the sense that

S [ΦA,Φ∗A]
∣∣
Φ∗A=0

= S0[φi]. (3.53)

The action S[ΦA, Φ∗A] can be expanded in a series in the antifields, while maintaining vanishing

ghost number and even Grassman parity

S[Φ,Φ∗] = S0 + φ∗i R
i
αCα + C∗

α

1
2
Tα

βγ(−1)εβCγCβ + φ∗i φ
∗
j (−1)εi

1
4
Eji

αβ(−1)εαCβCα + . . . .

(3.54)

When this is inserted into the classical master equation one finds that this equation implies

the gauge structure of the classical theory (see e.g. equation (3.80) below).

Gauge-fixing and quantization Equation (3.49) shows that the action S still possesses gauge

invariances, and hence is not yet suitable for quantization via the path integral approach, a

gauge-fixing procedure is necessary. In the Batalin-Vilkovisky approach the gauge is fixed,

and the antifields eliminated, by use of a gauge-fixing fermion Ψ which has Grassman parity

ε(Ψ) = 1 and gh[Ψ] = −1. It is a functional of the fields ΦA only; its relation to the antifields

is

Φ∗A =
∂Ψ
∂ΦA

. (3.55)

Then one defines a surface in functional space

ΣΨ =
{(

ΦA,Φ∗A
) ∣∣∣∣Φ∗A =

∂Ψ
∂ΦA

}
, (3.56)

so that for any functional X[Φ,Φ∗] holds

X|ΣΨ
= X

[
Φ,

∂Ψ
∂Φ

]
. (3.57)

This kind of surface is also called a Lagrangian submanifold due to the fact that the symplectic

structure vanishes on this subspace.

To construct a gauge-fixing fermion Ψ of ghost number −1 one must again introduce addi-

tional fields. The simplest choice utilizes a trivial pair C̄α, π̄α with

ε(C̄α) = εα + 1, ε(π̄α) = εα, (3.58)

gh[C̄α] = −1, gh[π̄α] = 0. (3.59)
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The fields C̄α are the Faddeev-Popov antighost. Along with these fields we include the

corresponding antifields C̄∗α, π̄∗α. Adding the term π̄αC̄∗α to the action S does not spoil its

properties as a proper solution to the classical master equation, and one gets the non-minimal

action

Snon = S + π̄αC̄∗α. (3.60)

The simplest possibility for Ψ is

Ψ = C̄αχα(φ), (3.61)

where χα are the gauge-fixing conditions for the fields φ. The gauge-fixed action is denoted

by

SΨ = Snon |ΣΨ
. (3.62)

Quantization is performed using the path integral to calculate a correlation function X,

with the constraint (3.55) implemented by a δ-function:

IΨ(X) =
∫

[DΦ][DΦ∗]δ
(

Φ∗A −
∂Ψ
∂ΦA

)
exp

(
i

~
W [Φ, Φ∗]

)
X[Φ, Φ∗]. (3.63)

Here W is the quantum action, which reduces to S in the limit ~ → 0. An admissible Ψ

leads to well-defined propagators when the path integral is expressed as a perturbation series

expansion.

The results of a calculation should be independent of the gauge-fixing. Consider the inte-

grand in equation (3.63),

I[Φ, Φ∗] = exp
(

i

~
W [Φ,Φ∗]

)
X[Φ, Φ∗] . (3.64)

Under an infinitesimal change in Ψ one has

IΨ+δΨ(X)− IΨ(X) ≈
∫

[DΦ]4I δΨ , (3.65)

where the Laplacian 4 is

4 = (−1)εA+1 ∂

∂ΦA

∂

∂Φ∗A
. (3.66)

Obviously the integral IΨ(X) is independent of Ψ if 4I = 0. For X = 1 one gets the

requirement

4 exp
(

i

~
W

)
= exp

(
i

~
W

)(
i

~
4W − 1

2~2
(W,W )

)
= 0. (3.67)
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The formula

1
2
(W,W ) = i~4W (3.68)

is the quantum master equation. A gauge-invariant correlation function satisfies

(X, W ) = i~4X. (3.69)

The terms of higher order in ~ by which the quantum action W may differ from the solution

of the classical master equation S correspond to the counter terms of the renormalizable gauge

theory if

4S = 0. (3.70)

One must of course use a regularization scheme which respects the symmetries of the theory.

For W = S + O(~) the quantum master equation (3.68) reduces in this case to the classical

master equation (S,S) = 0. Hence, up to possible counter terms, one may simply choose

W = S.

To implement the gauge-fixing we use for the action W = Snon. For the path integral

Z = IΨ(X = 1) we perform the integration over the antifields in equation (3.63) by using the

δ-function. The result is

Z =
∫

[DΦ] exp
(

i

~
SΨ

)
. (3.71)

3.2.2 The antifield formalism of the Poisson-sigma model

In this section the antifield formalism is applied to the Poisson-sigma model. Due to the

fact that the gauge algebra is just closed modulo the equations of motion it is a non-trivial

application of the formalism.

In the notation of Section 3.2.1 the generators R of the gauge transformations (3.2) for the

Poisson-sigma model are P ij and Dj
i . The gauge tensors T and E are P ij

,k and Pmn
,ji. The

higher order gauge tensors A and B vanish. Then the Noether identities are
∫

Σ

(
(Dj

i Aj +
∂C(X)

Xi
)P ki + (DXi)Dk

i

)
Ck = 0. (3.72)

Considering the commutator of two gauge transformations leads to (see equations (3.14-3.16))
∫

Σ

µ(2Pmi
,jP

nj − P jiPmn
,j)CmCn = 0 , (3.73)
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∫

Σ

µ (2(P jk
,iD

l
j + Pmk

,ijAmP jl)−Dm
i P kl

,m + (DXi)P kl
,ji)ClCk = 0. (3.74)

The Jacobi identity is

P ij
,mPmkCiCjCk = 0. (3.75)

Later on the first and second derivatives of the Jacobi identity will be needed

(P ij
,mnPmk + P ij

,mPmk
,n)CiCjCk = 0, (3.76)

(P ij
,mnpP

mk + P ij
,mnPmk

,p + P ij
,mpP

mk
,n + P ij

,mPmk
,np)CiCjCk = 0 . (3.77)

The fields and antifields of the model are

ΦA = {Ai, X
i, Ci} and Φ∗A = {Ai∗, X∗

i , Ci∗} . (3.78)

The extended action is

S =
∫

Σ

[
Ai ∧ dXi + P ij(X)Ai ∧Aj + C(X) + Ai∗Dj

i Cj + X∗
i P ji(X)Cj

+
1
2
Ci∗P jk

,i(X)CjCk +
1
4
Ai∗ ∧Aj∗P kl

,ij(X)CkCl

]
. (3.79)

The classical master equation is

(S,S) =
∫

Σ

[(
(DXm) ∧Dj

m + (Di
mAi +

∂C(X)
Xi

)P jm

)
Cj

− (X∗
i P ij

,mP km −X∗
i P im 1

2
P jk

,m)CjCk

+ (DXm) ∧Aj∗ 1
2
P kl

,mjCkCl −Ai∗ ∧ Pmk
,iCkD

j
mCj

−Ai∗ ∧ P jk
,imAjCkP

mnCn − (Dm
i Ai∗)

1
2
P jk

,mCjCk

+
1
2
Ci∗P jk

,imCjCkP
lmCl + Ci∗Pmk

,iCk
1
2
P jl

,mCjCl

+Ai∗∧Aj∗
(

1
4
P kl

,ijmCkClP
mnCn +

1
4
Pml

,ijClP
kl

,mCkCl − 1
2
Pmn

,iCnP kl
,mjCkCl

)]
= 0 .

(3.80)

Equations (3.72)-(3.77) ensure that the extended action (3.79) is a solution of the classical

master equation (3.80).
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Gauge-fixing We shall use gauge-fixing conditions of the form χi(A,X), so that the gauge

fermion (3.61) becomes Ψ = C̄iχi(A,X). The antifields are then fixed to be

Ai∗ = C̄j
∂χj(A,X)

∂Ai
,

X∗
i = C̄j

∂χj(A,X)
∂Xi

,

C∗
i = 0,

C̄∗
i = χi(A,X).

(3.81)

The gauge-fixed action is

SΨ =
∫

Σ

[
(Ai ∧ dXi +

1
2
P ij(X)Ai ∧Aj) + C(X) + C̄k ∂χk(A,X)

∂Ai
∧Dj

i Cj

+ C̄k ∂χk(A,X)
∂Xi

P ijCj +
1
4
C̄m ∂χm(A,X)

∂Ai
C̄n ∂χn(A,X)

∂Aj
P kl

,ij(X)CkCl}+ π̄iχi(A,X)
]
.

(3.82)

Consider now different gauge conditions:

(i) First, the Landau gauge for the gauge potential χi = dAi, so that the gauge fermion

becomes Ψ = C̄i ∗H dAi where ∗H is the Hodge operator depending on an arbitrary metric.

The antifields are fixed to be

Ai∗ = ∗HdC̄i, (3.83)

X∗
i = C∗i = 0, (3.84)

C̄∗
i = d ∗H Ai. (3.85)

For this gauge choice the gauge-fixed action is

SΨ =
∫

Σ

[
(Ai ∧ dXi +

1
2
P ij(X)AiAj) + C(X) + ∗HdC̄i ∧Dj

i Cj

+
1
4
(∗HdC̄i) ∧ (∗HdC̄j)P kl

,ij(X)CkCl − π̄i(d ∗H Ai)
]
. (3.86)

(ii) Now consider the temporal gauge χi = A0i. In this case the gauge fermion is given by

Ψ = C̄iA0i. The antifields are fixed to

A∗0i = C̄i, (3.87)

A∗1i = 0, (3.88)

X∗
i = C∗i = 0, (3.89)

C̄∗
i = A0i. (3.90)
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The gauged-fixed action is

SΨ =
∫

Σ

µ

[
εµν(Aµi∂νX

i +
1
2
P ij(X)AµiAνj) + C(X) + C̄iDj

0iCj − π̄i(A0i)
]
. (3.91)

(iii) Finally, the Schwinger-Fock gauge χi = uµAµi is considered. Then the antifields

are fixed to be

A∗µi = uµC̄i, (3.92)

X∗
i = C∗i = 0, (3.93)

C̄∗
i = uµAµi. (3.94)

For this gauge choice the gauge-fixed action is

SΨ =
∫

Σ

µ

[
εµν(Aµi∂νX

i +
1
2
P ij(X)AµiAνj) + C(X) + C̄iuµDj

µiCj − π̄i(uµAµi)
]
. (3.95)

Notice that in the non-covariant gauges (ii) and (iii) the action simplifies, in the sense that

the term which arose because of the non-closed gauge algebra vanishes.

Gauge fixing in Casimir-Darboux coordinates Important simplifications occur when we

write the action in Casimir-Darboux coordinates Xi → {XI , Xα}, so we go through the

gauge-fixing procedure again for these coordinates. The extended action is

S =
∫

Σ

[
AI ∧ dXI + Aα ∧ dXα +

1
2
Pαβ(XI)Aα ∧Aβ + C(XI)

+ AI∗ ∧ dCI + Aα∗ ∧ dCα + X∗
αP βα(XI)Cβ

]
. (3.96)

This extended action still possesses gauge invariances, so one has to introduce a non-minimal

sector. The non-minimal action is

Snon =
∫

Σ

[
AI ∧ dXI + Aα ∧ dXα +

1
2
Pαβ(XI)Aα ∧Aβ + C(X)

+ AI∗ ∧ dCI + Aα∗ ∧ dCα + X∗
αP βα(XI)Cβ − π̄IC̄∗

I − π̄αC̄∗
α

]
. (3.97)

In these coordinates the gauge freedom of the maps Xi : Σ → N is reduced to the freedom of

the maps Xα : Σ → S, where S is a symplectic leaf of the Poisson manifold N . The gauge

transformations δεX
i = P ijεj reduce to

δεX
α = Pαβεβ, δεX

I = 0. (3.98)
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After gauge fixing we need to consider only the homotopy classes [Xα].

It is now possible to decompose the gauge condition into two parts depending only on AI

and on Xα respectively, so that the gauge-fixing of the gauge fields is implemented by gauge

conditions of the form χI(AI) and χα(Xα). The gauge fermion may be written as

Ψ =
∫

Σ

[
C̄IχI(AI) + C̄αχα(Xα)

]
. (3.99)

The gauge conditions as expressed using the gauge fermion are

AI∗ = C̄J ∂χJ(AI)
∂AI

,

Aα∗ = 0,

X∗
α = C̄β ∂χβ(Xα)

∂Xα
,

C∗
i = 0,

C̄∗
I = χI(AI),

C̄∗
α = χα(Xα) .

(3.100)

The gauge-fixed action in Casimir-Darboux coordinates takes the form

Sψ =
∫

Σ

[
AI ∧ dXI + Aα ∧ dXα +

1
2
PαβAα ∧Aβ + C(XI)

+ C̄J ∂χJ(AJ)
∂AI

∧ dCI + C̄α ∂χα(Xα)
∂Xβ

P βγCγ − π̄IχI(AI)− π̄αχα(Xα)

]
. (3.101)

3.3 Cohomological derivation of the couplings

A non-linear gauge theory is based on a non-linear extension of the underlying Lie algebra

as a generalization of the usual non-Abelian gauge theory with internal gauge symmetry

[27]. The considered extension in the present case is a Poisson algebra which lead to the

Poisson-sigma model.

The Poisson-sigma model can be seen as a two-dimensional BF theory with a quadratic

interaction in the gauge fields. There exists a cohomological approach to the problem of

generating consistent interactions [5]. It essentially is based on the antifield formalism in the
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sense that a deformation of the solution of the master equation leads to an action functional

containing a consistent interaction term.

The algebra of the fields and antifields together with the BRST-differential generated by S

through the antibracket

s(·) = (·, S) (3.102)

yields a complex. The corresponding BRST cohomology is denoted by H∗ =
∑

Hp(s). One

can define a map in the cohomology induced by the antibracket, the antibracket map

(·, ·) : Hp(s)×Hq(s) −→ H(p+q+1)(s) , (3.103)

([A], [B]) 7→ [(A,B)] . (3.104)

The important result found by G.Barnich and M.Henneaux is the fact that the antibracket

map is trivial in the sense that the antibracket of 2 BRST-closed functionals is BRST-exact,

for a proof consult [5]. Due to the triviality of the antibracket map one can define higher

order maps in the cohomology, however it turns out they are trivial in a similar way.

Now consider a free gauge theory with a free symmetry given by

Free Theory =





Free action :
(0)

S 0 [φi]

Gauge Symmetry: δεφ
i =

(0)

Ri
α εα

Noether Theorem: δ
(0)

S 0[φi]
δφi

(0)

Ri
α= 0 .

The aim is now to introduce couplings between the fields φi fulfilling the crucial physical

requirement of preserving the number of gauge symmetries, those couplings will be called

consistent. This means one has to perturb the action and the symmetries

(0)

S 0−→ S0 =
(0)

S 0 +g
(1)

S 0 +g2
(2)

S 0 +... , (3.105)

(0)

Ri
α−→ Ri

α =
(0)

Ri
α +g

(1)

Ri
α +g2

(2)

Ri
α +... , (3.106)

such that δεφ
i = Ri

αεα is a symmetry of S0

δ(
(0)

S 0 +g
(1)

S 0 +g2
(2)

S 0 +...)
δφi

(
(0)

Ri
α +g

(1)

Ri
α +g2

(2)

Ri
α +...) = 0 , (3.107)

which expresses the consistency. It is not an easy task to deform simultaneously the action

and the symmetry to get a consistent interaction.
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This problem can be reformulated as a deformation problem of the solution of the master

equation. Basically this procedure is based on the fact that the master equation contains all

the information about the gauge structure

(
(0)

S BV ,
(0)

S BV ) = 0 −→ (SBV , SBV ) = 0 , (3.108)

(0)

S BV−→ SBV =
(0)

S BV +g
(1)

S BV +g2
(2)

S BV + ... . (3.109)

The master equation guarantees now the consistency of S0 and Ri
α and further, that the

original and the deformed gauge theory have the same spectrum of ghosts and antifields.

The advantage of this formulation is that one now can use the cohomological techniques

of deformation theory. The deformed master equation can be analyzed order by order in the

deformation parameter, the coupling constant. This expansion yields the following relations

(
(0)

S BV ,
(0)

S BV ) = 0 , (3.110)

2(
(0)

S BV ,
(1)

S BV ) = 0 , (3.111)

2(
(0)

S BV ,
(2)

S BV ) + (
(1)

S BV ,
(1)

S BV ) = 0 , (3.112)

(+higher orders) .

The first equation (3.110) is fulfilled by assumption, it is exactly the master equation for

the free gauge theory. Equation (3.111) shows that
(1)

S BV is forced to be a cocycle of the

free BRST differential
(0)
s . Assume now that

(1)

S BV is a coboundary, then the corresponding

interaction induces a field redefinition, which need not be considered, and the deformation

will be called trivial. Therefore
(1)

S BV is an element of the zeroth cohomological space H0(
(0)
s )

which is isomorphic to the space of physical observables of the free theory. Because of the

triviality of the antibracket map (
(1)

S BV ,
(1)

S BV ) is BRST exact and one gets no obstructions

from (3.112) for constructing the interaction, and
(2)

S BV exists. This is also true for higher

orders, so there are no obstructions for the interacting action at all.

Usually the original action is a local functional of a corresponding Lagrange function,

so also the deformations must be local functionals. Taking locality into account the analysis

gets more involved because the antibracket map is not trivial anymore, e.g. the antibracket

of two local BRST cocycles need not necessarily to be the BRST variation of a local func-

tional. Consider
(k)

S =
∫ (k)

L , where L is the Lagrangian, an n-form. The corresponding (local)
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antibracket is defined modulo an d-exact term, d being the exterior derivative. This yields

for the deformation expansion for the Lagrangian

2
(0)
s

(1)

L= d
(1)

j , (3.113)

(0)
s

(2)

L +{(1)

L ,
(1)

L} = d
(2)

j , (3.114)

(+higher orders) ,

where
(k)

j is the symbol for the d-exact term.
(1)

L is BRST closed modulo d, this means

that the non-trivial deformations of the master equation belong to H0(
(0)
s | d). Because the

corresponding local antibracket is no longer trivial, it possesses a lot of structure, one gets

obstructions for the construction of the interaction term, the so-called consistency conditions.

The construction of local, consistent interaction is strongly constrained.

Deformation of the Abelian BF theory The Poisson-sigma model can be seen as a BF

theory with an interaction quadratic in the gauge fields. This interaction can be obtained

by the deformation procedure. In [28] it was shown that the deformation of the Abelian

BF theory in two-dimensions corresponds with the topological Poisson-sigma model. In this

approach to the interacting action the origin of the non-linearity becomes more transparent.

The action of the Abelian BF theory is given by
(0)

S 0=
∫

Σg

Ai ∧ dφi , (3.115)

where the Ai is an Abelian gauge field and φi is bosonic scalar field. The gauge symmetries

are

δφi = 0, δAi = dεi . (3.116)

Due to the fact that the theory is so simple the minimal solution of the classical master

equation is quite plain. It just consists of the first term involving the gauge generators, all

higher gauge structure functions are equal to zero, so that
(0)

S=
∫

Σg

[
Ai ∧ dφi + A∗idCi

]
. (3.117)

The first deformation
(1)

L of the Lagrangian associated to the minimal solution
(0)

S should obey

the following condition

(0)
s

(1)

L +da[1] = 0 . (3.118)
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It defines an element of H0(
(0)
s | d), so that one gets a set of descent equations

(0)
s a[1] + da[0] , = 0

(0)
s a[0] = 0 . (3.119)

It is a simple calculation to get the solution for
(1)

L
(1)

L= −1
4

δ2f ij [φ]
δφkδφl

A∗k ∧A∗lCiCj +
δf ij [φ]

δφk
C∗kCiCj

− δf ij [φ]
δφk

A∗k ∧AiCj − f ij [φ]φ∗i Cj +
1
2
f ij [φ]Ai ∧Aj . (3.120)

The f ij [φ] are antisymmetric and to yield a consistent interaction they have to satisfy
∑

cycl(ijk)

δf ij [φ]
δφl

fkl[φ] = 0 , (3.121)

which is a generalized Jacobi identity. Since this condition is fulfilled there are no obstruc-

tions in the construction and the second order deformation can be chosen to be zero. This

yields for the deformed solution of the master equation

SBV =
(0)

S +
(1)

S=
∫

Σg

[
Ai ∧ dφi − δf ij [φ]

δφk
A∗k ∧AiCj + A∗i ∧ dCi − f ij [φ]φ∗i Cj +

1
2
f ij [φ]Ai ∧Aj

−δf ij [φ]
δφk

A∗k ∧AiCj +
δf ij [φ]

δφk
C∗kCiCj − 1

4
δ2f ij [φ]
δφkδφl

A∗k ∧A∗lCiCj

]
.

(3.122)

By setting the antifields to zero one can read off the classical action including an interaction

term quadratic in the gauge fields Ai

S0 =
(0)

S0 +
(1)

S0=
∫

Σg

[
Ai ∧ dφi +

1
2
f ij [φ]Ai ∧Aj

]
(3.123)

and the deformed gauge symmetries are

δεφ
i = f ji[φ]εj , (3.124)

δεAi = dεi − fkl
,i[φ]Ak ∧Al . (3.125)

Note that the gauge algebra is only closed on-shell, which reflects the non-linearity of the

gauge algebra. One can see that if one chooses for the structure functions f ij(φ) the Poisson

structure P ij the consistency condition is just the vanishing of the Schouten-Nijenhuis

bracket. Hence, the deformed BF theory is equal to the topological part of the Poisson-

sigma model. The origin of the non-linearity stems from the quadratic interaction in the

gauge fields. To ensure the gauge invariances of the deformed, interacting gauge theory,

the structure constants must be field-dependent, such that the gauge algebra is just closed

on-shell.
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In this chapter the quantum theory of the Poisson-sigma model is considered. There exist

several ways to obtain a (full) quantum theory of a field theory. First, there is the Dirac

quantization scheme, i.e. one goes from the Lagrange to the Hamilton formalism, deter-

mines the constraints and translates them into operator language. Then one needs to solve

these equations to obtain the wave functions. This was performed for the Poisson-sigma

model by P. Schaller and T. Strobl in [43]. Secondly one can use the perturbation ex-

pansion of Feynman to calculate correlation functions. In [11] A. Cattaneo and G. Felder

have calculated the correlation function of two functions with support on the boundary of the

two-dimensional disc which represents the world sheet. After renormalization it coincides with

the Kontsevich formula for deformation quantization of the algebra of Poisson manifolds.

This chapter is concerned with the calculation of the partition function for the Poisson-

sigma model. In the first section it will be calculated for world sheets without boundary [24].

In the second section this calculation will be generalized to the two-dimensional disc. The

restriction to a linear Poisson structure on the target space enables one to complete the

calculation in both cases, as will be shown in the third section. In the last section a glueing

prescription will be presented to obtain the partition function for the linear case on arbitrary

(oriented) two-dimensional manifolds [26].

4.1 The partition function on closed manifolds

In contrast to the Dirac quantization which is restricted to the world sheet with the topology

of a cylinder, the path integral offers the opportunity to perform the quantization for arbitrary

world sheet topologies. In this section the world sheet Σ is a closed manifold, i.e. without a

boundary, with genus g. The partition function is then

Z =
∫

ΣΨ

[DXI ][DXα][DAI ][DAα][DCI ][DC̄I ][DCα][DC̄α][Dπ̄I ][Dπ̄α] exp
(
− i

~
SΨ

)
(4.1)

39
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with SΨ given by equation (3.101). Integrating over the ghost and antighost fields yields the

Faddeev-Popov determinants

det
[
∂χI(AI)

∂AI
∧ d

]

Ω0(Σ)

and det
[
∂χα(Xα)

∂Xγ
P γβ(XI)

]

Ω0(Σ)

, (4.2)

where the subscripts Ωk(Σ) indicate that the determinant results from an integration over

k-forms on Σ. The resulting expression of the path integral is then

Z =
∫

ΣΨ

[DXI ][DXα][DAI ][DAα][Dπ̄I ][Dπ̄α]

× det
[
∂χI(AI)

∂AI
∧ d

]

Ω0(Σ)

det
[
∂χα(Xα)

∂Xγ
P γβ(XI)

]

Ω0(Σ)

× exp
(
− i

~

∫

Σ

[
AI ∧ dXI + Aα ∧ dXα +

1
2
PαβAα ∧Aβ + C(XI)

− π̄IχI(AI)− π̄αχα(Xα)
])

,

(4.3)

The integrations over π̄I and π̄α yield δ-functions which implement the gauge conditions.

Z =
∫

ΣΨ

[DXI ][DXα][DAI ][DAα]det
[
∂χI(AI)

∂AI
∧ d

]

Ω0(Σ)

det
[
∂χα(Xα)

∂Xγ
P γβ(XI)

]

Ω0(Σ)

× exp


− i

~

∫

Σ

[
AI ∧ dXI + Aα ∧ dXα +

1
2
PαβAα ∧Aβ + C(XI)

]
 , (4.4)

where from now on the integrations extend only over the degrees of freedom which respect

the gauge-fixing conditions, e.g. the δ-functions which ensure the gauge condition are imple-

mented. The integration over Aα is Gaussian, it yields

Z =
∫

ΣΨ

[DXI ][DXα][DAI ]det
[
∂χI(AI)

∂AI
∧ d

]

Ω0(Σ)

det
[
∂χα(Xα)

∂Xγ
P γβ(XI)

]

Ω0(Σ)

× det−1/2
[
Pαβ(XI)

]
Ω1(Σ)

× exp


− i

~

∫

Σ

AI ∧ dXI − i~
2

∫

Σ

Ωαβ(XI)dXα ∧ dXβ − i

~

∫

Σ

C(XI)


 .

(4.5)

Besides the term in the exponent the only dependence on the fields AI is in the relevant

Faddeev-Popov determinant. If one chooses a gauge condition linear in AI this determinant

becomes independent of the fields, and can be absorbed into a normalization factor. The

integration over AI then yields a δ-function for dXI . When this δ-function is implemented the

fields XI become independent of the coordinates {uµ} on Σ. Hence the Casimir functions are
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constants. The constant modes of the Casimir coordinates XI
0 count the symplectic leaves.

The path integral is now

Z =
∫

ΣΨ

dXI
0 [DXα] det

[
∂χα(Xα)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

exp


− i~

2

∫

Σ

ΩαβdXα ∧ dXβ


 exp


− i

~

∫

Σ

C(XI
0 )


 . (4.6)

The gauge-fixing of the fields Xα reduces the integral [DXα] to a sum over the homotopy

classes

Z =
∫

ΣΨ

dXI
0

∑

[Σ→S(XI
0 )]

det
[
∂χα(X)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

exp


− i~

2

∫

Σ

ΩαβdXα ∧ dXβ


 exp


− i

~

∫

Σ

C(XI
0 )


 . (4.7)

Since the Casimir functions (XI
0 ) are independent of the coordinates on Σ the last exponent

simplifies to

exp


− i

~

∫

Σ

C(XI
0 )


 = exp


− i

~

∫

Σ

µC(XI
0 )


 = exp

(
− i

~
AΣC(XI

0 )
)

, (4.8)

where AΣ is the surface area of Σ. The final form of the path integral then becomes

Z =
∫

ΣΨ

dXI
0

∑

[Σ→S(XI
0 )]

det
[
∂χα(X)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

× exp


− i~

2

∫

Σ

ΩαβdXα ∧ dXβ


 exp

(
− i

~
AΣC(XI

0 )
)

. (4.9)

Note that equation (4.9) is an almost closed expression for the partition function for the

Poisson-sigma model, i.e. all the functional integrations have been performed.

4.2 The partition function on the disc

In order to find the partition function on two-dimensional world sheets with arbitrary topology

the calculation will be extended in this section to the disc D2. The main difference to the

previous calculation is that now one has to specify the boundary conditions for the fields Ai
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and Xi. Denoting by u the coordinates of the disc, for u ∈ ∂D2 the fields Ai are restricted to

obey Ai(u) ·v = 0 where v is a vector tangent to the boundary. In [11] it was pointed out that

the Hodge dual antifields have the same boundary condition as the fields. Then it follows

for u ∈ ∂D2 that Ci(u) = 0, C∗(u) = 0 and A∗(u) ·w = 0 for w normal to the boundary. The

boundary condition for the maps Xi is as follows: one is to include in the path integral only

such maps which map the boundary to a single point in the target manifold.

The partition function for the Poisson-sigma model is then

Z(D2, φ(x)) =
∫

ΣΨ

[DX][DA][D . . .] exp(− i

~
SΨ)〈δx, φ(X(u∂))〉 , (4.10)

where ΣΨ denotes the chosen Lagrangian submanifold associated to the gauge fermion Ψ.

〈δx, φ(X)〉 is the Dirac measure, a distribution of order zero. φ(X(u∂)) is an arbitrary

function with support only on the boundary of the disc, u∂ denotes an arbitrary point on

the boundary. In general functions of the form X(u∂) are observables for the Poisson-sigma

model [11], because of the boundary condition Ci(u∂) = 0, (S, X)|∂D
= P ijCi|∂D

= 0. This

distribution ensures the boundary condition for the fields X, it reflects the freedom of the

fields on the boundary of the disc.

If one is interested in submanifolds S of Rn one has to reduce the Dirac measure to these

submanifolds

〈δx, φ(x)〉
∣∣∣∣
S

=
∫

S

ωφ =: 〈δS , φ(x)|S 〉 , (4.11)

where ω is the Leray form which can be chosen to be proportional to the volume form

induced on the submanifold by the Euclidian measure on Rn [14]. Note that the function is

restricted to the submanifold S and the dependence of the point x passes over to the choice

of the specific submanifold. If one applies this restriction to the symplectic foliation of the

Poisson manifold such that the symplectic leaves L are the considered submanifolds, the

Dirac measure then picks a symplectic leaf L given by C(XI) =constant. The form of the

partition function in Casimir-Darboux coordinates is then

Z(D2, φL(Xα)) =
∫

ΣΨ

[D . . .]〈δL, φL(Xα)〉 exp
(
− i

~

∫

D2

[
AI ∧dXI +Aα∧dXα +

1
2
PαβAα∧Aβ

+ C(XI) + C̄J ∂χJ(AJ)
∂AI

∧ dCI + C̄α ∂χα(Xα)
∂Xβ

P γβCγ − π̄IχI(AI)− π̄αχα(Xα)
])

. (4.12)

It is possible to perform all the integrations of the fields. It is the same calculation as in the

case of closed manifolds, see the previous section. Integrating over the ghost and antighost
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fields yields the Faddeev-Popov determinants. The integrations over the multipliers yields

δ-functions which implement the gauge conditions, from now on the integration extends only

over the degrees of freedom which respect the gauge-fixing conditions. The integration over

Aα is Gaussian. Now choose a gauge condition linear in AI , then the Faddeev-Popov

determinant does not depend on AI anymore and one can integrate over these fields, yielding

a δ-function for dXI . When this δ-function is implemented the fields XI become independent

of the coordinates of D2. Hence the Casimir functions are constant and these constant modes

XI
0 count the symplectic leaves. The gauge fixing of the fields Xα reduces the integral over

Xα to a sum over the homotopy classes of the maps. This leads to the consequence that the

function φL(Xα) does not depend on a specific point of the target anymore but just on the

homotopy class of the associated map. The partition function is then

Z[D2, φΩ(Xα)] =
∫

ΣΨ

dXI
0

∑

[Xα]

det
[
∂χα(Xα)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

× 〈δL, φ(Xα(u∂))〉 exp


− i~

2

∫

D2

ΩαβdXα ∧ dXβ


 exp

(
− i

~
AD2C(XI

0 )
)

, (4.13)

where the subscript Ωk(Σ) indicates that the determinant results from an integration over

k-forms and AD2 denotes the surface area of the disc.

All the functional integrations have been performed and one has arrived at an almost closed

expression for the partition function. The boundary condition is now restricted to a function

on the symplectic leaves which reflects the freedom of the fields X on the boundary. This

means that the boundary condition for the fields X is now reduced to each single symplectic

leaf characterized by the corresponding constant mode XI
0 . The boundary condition can

be interpreted as follows. One maps the boundary of the disc to a point in the target and

associates to this point the Leray form of the leaf, which is of course the same for every

point of the leaf, with respect to the chosen function φ.

4.3 The linear Poisson structure on the target space R3

4.3.1 Closed manifolds

In this section the special case where the Poisson manifold N = R3, and the Poisson

structure is linear P ij = cij
k Xk for closed manifolds is considered. As mentioned in section
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2.1 this structure gives rise to a Lie algebra structure on the dual space and there exists a

symmetric, non-degenerate bilinear form such that both spaces can be identified. In section

3.1.1 this identification and the choice of the quadratic Casimir function C(X) =
∑

i X
iXi

has lead in the classical theory to the action for the two-dimensional Yang-Mills theory

(3.8). The same can be done for the partition function [24]. First the restriction to the

linear Poisson structure is used to make further progress in the calculation of the partition

function, resulting in a closed expression for the linear Poisson-sigma model. Then applying

some of the results of the orbit method by Kirillov, see section 2.2, one can recalculate the

partition function for the Yang-Mills theory on closed manifolds.

In the case of a three-dimensional target space, i.e. N = R3, the linear Poisson structure

foliates into two-dimensional spheres S2 characterized by their radius, the zero modes XI
0 ,

and the point zero, the origin.

For a map f : X −→ Y , where X and Y are k-dimensional oriented manifolds and ω a

k-form on Y , the degree of the mapping is given by
∫

X

f∗ω = deg[f ]
∫

Y

ω . (4.14)

This formula yields for the remaining part of the action in the partition function (4.9)

1
2

∫

Σ

ΩαβdXα ∧ dXβ =
n

2

∫

S2
Ω(XI

0 ) , (4.15)

where Ω(XI
0 ) is the symplectic form on the corresponding leaf L(XI

0 ) induced by the linear

Poisson structure P ij = cij
k Xk. Consider the homotopy classes of the maps Xα : Σ −→

L(XI
0 )(≡ S2). The Hopf theorem tells us that the mappings f, g : Σ −→ S2(XI

0 ) are homo-

topic if and only if the degree of the mapping f is the same as the degree of g. This means

that the sum over the homotopy classes of the maps [Xα] can be expressed as a sum over the

degrees n = deg[Xα], therefore
∑

[Xα]

−→
∑

n∈Z
. (4.16)

This gives for the partition function

Z =
∫

ΣΨ

dXI
0

∑

n∈Z
det

[
∂χα(X)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

× exp


− in~

2

∫

S2
Ω(XI

0 )


 exp

(
−1
~
AΣC(XI

0 )
)

. (4.17)
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The sum over n yields a periodic δ-function

∑

n∈Z
exp


− in~

2

∫

S2
Ω(XI

0 )


 =

∑

n∈Z
δ




∫

S2
Ω(XI

0 )− n~
2


 . (4.18)

The δ-function says that the symplectic leaves must be half-integer valued. This fact reduces

the number of the symplectic leaves to a countable set, which is labeled by O(L). In [43]

P. Schaller and T. Strobl have found the same result in the Dirac quantization scheme.

The form of the partition is now

Z =
∫

ΣΨ

dXI
0

∑

n∈Z
det

[
∂χα(Xα)

∂Xγ
P γβ(XI

0 )
]

Ω0(Σ)

det−1/2
[
Pαβ(XI

0 )
]
Ω1(Σ)

×δ




∫

S2
Ω(XI

0 )− n~
2


 exp

(
− i

~
AΣC(XI

0 )
)

. (4.19)

The next step is the calculation of the two determinants in the path integral. Choosing the

“unitary gauge” χα(Xα) = Xα, such that ∂χα(X)/∂Xγ = δα
γ , the two determinants have the

same form. Due to the Hodge decomposition theorem they are characterized by harmonic

forms with form degree zero or one. Now one has to count the linear independent forms,

which are characterized by the dimension of the corresponding homology groups, the Betti

numbers. These numbers yield for the power of the combined determinant the Euler charac-

teristic χ(Σ). Indeed, this is a similar argument to that used by M. Blau and G. Thompson

in [8]. The restriction of the scalar fields to the Casimir-Darboux coordinates XI corre-

sponds to the restriction of the scalar fields to the invariant Cartan subalgebra considered

by M. Blau and G. Thompson. The result is a factor

det
[
Pαβ(XI

0 )
]χ(Σ)

. (4.20)

The determinant of a mapping equals the volume of the image of that mapping, hence the

determinant det(Pαβ(XI
0 )) corresponds to the symplectic volume of Vol(L(XI

0 )) of the leaf

L(XI
0 ) specified by the constant mode XI

0 . The path integral then takes the form

Z =
∫

Σ

dXI
0

∑

n∈Z
Vol(L(XI

0 ))χ(Σ) δ




∫

S2
Ω(XI

0 )− n~
2


 exp

(
− i

~
AΣC(XI

0 )
)

. (4.21)

Implementing the δ-function by integrating over XI
0 the sum over the mapping degrees be-

comes a sum over the set O(L) of the integral symplectic leaves,

Z =
∑

Ω∈O(L)

Vol(L)χ(Σ) exp
(
−1
~
AΣC(L)

)
. (4.22)
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As one can see the restriction to a linear Poisson structure allows one to perform the complete

calculation of the partition function.

Now one is in the position to pass over to the partition function of the Yang-Mills theory.

Identifying the symplectic leaves with the orbits of the coadjoint action the orbits are 2-

spheres. The integrality of the leaves passes over to the orbits such that the orbits are integral

and of maximum dimension so the orbits correspond to unitary irreducible representations

of the Lie group G which belongs the Lie algebra g dual to the linear Poisson manifold,

see section 2. Then the coadjoint orbits are 2-spheres. The Betti numbers are b1(S2) = 0

and b2(S2) = 1. So there is just one integrality condition given by equation (4.19) and

one parameter, the size of the sphere, for irreducible representations. This corresponds to

the fact that any irreducible unitary representation of SU(2) is uniquely determined by its

dimension. This can be seen by the special form of the character formula of Kirillov, see

equation (2.30), which says that the symplectic volume of the coadjoint orbit equals the

dimension of the corresponding irreducible unitary representation. Note that for the 2-sphere

the symplectic volume and the surface area are the same.

The identification of the integral orbits with the irreducible unitary representations leads

then to a sum over the representations λ. Further on one has to take into account the sym-

metrization map (2.37) which maps the quadratic Casimir C(Ω) into the Casimir function

of the corresponding representation C(λ). So the final form of the partition function is

Z =
∑

λ

dim(λ)χ(Σ) exp
(
−1
~
AΣC(λ)

)
, (4.23)

where dim(λ) is the dimension of the representation λ. This is exactly the partition function

for the two-dimensional Yang-Mills theory, calculated by M. Blau and G. Thompson in

[8]. Note that by omitting the Casimir term in the action we get just a sum over the

dimensions of the representations, which is the correct result for the BF theory.

4.3.2 The disc

In the previous section it was shown for closed world sheet manifolds that a linear Poisson

structure on R3 leads to a closed expression for the partition function and it is in some sense

dual to the one of the two-dimensional Yang-Mills theory. In this section it will be shown

that this duality can also be shown in the case of the disc as the world sheet.

One proceeds as in the case for the closed manifolds. Starting with the calculation of the

partition function for the linear Poisson structure given by P ij = cij
k Xk on R3 one obtains
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an expression for the partition function and using the results of the orbit method one can

recalculate that for the Yang-Mills theory.

The mappings Xα : D2 → S2 are again characterized by the their degree,
∫

D2

i~
2

ΩαβdXα ∧ dXβ =
in~
2

∫

S2
Ω(XI

0 ) , (4.24)

where Ω(XI
0 ) denotes the symplectic form of the leaf associated to the Casimir XI

0 .

As in the case of closed manifolds the sum over the degree defines a periodic δ-function,

such that

∑
n

exp


− in~

2

∫

S2
Ω(XI

0 )


 =

∑
n

δ




∫

S2
Ω(XI

0 )− n~
2


 . (4.25)

As in the case of closed manifolds this shows that the symplectic leaves, and after the identi-

fication the coadjoint orbits, have to be integral, more precisely they are half integer valued.

This integrality condition of the leafs reduced them to a countable set O(L(XI
0 )).

Choosing the unitary gauge for the fields Xα both determinants in the partition function

have the same form and it is possible to combine them. The number of the linear independent

forms on a manifold with boundary with vanishing tangent components like the gauge fields,

respectively the ghosts, is equal to the relative Betti number. Then it follows that the

combined determinant has as exponent the sum of the Betti numbers which is nothing else

than the Euler characteristic, now with the boundary components included. For more details

see [19]. It follows that the exponent for the disc is just 1. The determinant is the symplectic

volume of the symplectic leaf [24].

These considerations lead to the following final form for the partition function of the linear

Poisson-sigma model on the disc

Z(D2, φL(XI
0 )) =

∑

L∈O(L)

Vol(L)χL(φL) exp(−1
~
AD2C(L)) , (4.26)

with the notation χL(φL) = 〈δL, φL(Xα)〉 =
∫
L ΩLφL(Xα). Further the dependence of the

function φ of the target space is now still on the coordinates of the leaf, but due to the fact

that one integrates over the symplectic leaf with respect to the symplectic form Ω(XI
0 ) the

essential differences in choosing this function depends on the leaf.

As in the case of closed manifolds it is possible to identify the partition function of the

linear Poisson-sigma model with that of the Yang-Mills theory. This is essentially based
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on the duality of a linear Poisson manifold and a Lie algebra. The difference now is of course

the appearance of the distribution χL(φL), the remaining part of the boundary condition of

the maps Xα. To see the duality of the two models one must identify the symplectic leaves

with the coadjoint orbits and one has to choose a particular function φ on the orbit Ω(XI
0 )

φΩ(XI
0 )(X

α) = exp(2πi〈Xα, X̄〉) , (4.27)

where X̄ is a point on the dual space, the Lie algebra and 〈·, ·〉 denotes the duality product

which is of course non-degenerate. Now the distribution is nothing else than the Fourier

transformation of the measure on the orbits, which is the symplectic structure of the orbit.

This is turn the starting point of the character formula of Kirillov, equation (2.29)

χΩ(exp X̄) =
1

j(X̄)

∫

Ω

exp(2πi〈Xα, X̄〉)ω
r

r!
. (4.28)

To make the calculation a bit more transparent one can think of the formula in the following

two steps

1. The map from functions on G to functions on G : f 7→ φ : φ(X̄) = j(X̄)f(exp X̄), where

j(X̄) =
√

d(exp X̄)
dX̄

.

2. The usual Fourier transform which sends functions on G to function on G∗.

Performing first the Fourier transformation explicitly in the present case one gets

Z(D2, X̄) =
∑

Ω

Vol(Ω)(
sin(4πXI

0 X̄)
X̄

) exp(AD2C(Ω)) . (4.29)

The Fourier transform of the Dirac measure restricted to the 2-spheres is proportional to
sin(4πXI

0 X̄)

X̄
[14], where XI

0 stands now for the quadratic radius such that the argument in the

sine is scaled by the volume of the 2-spheres, which is by equation (2.30) the dimension of the

corresponding representation. To obtain the partition function for the Yang-Mills theory

one has to calculate the determinant j(X̄) of the exponential map. For the case of SU(2) it

is

J(X̄) =
sin(X̄)

X̄
. (4.30)

This leads to

sin(4πXI
0 X̄)

X̄
∗ J−1 =

sin(4πXI
0 X̄)

sin(X̄)
, (4.31)

which is exactly the expression for the character for the Lie group SU(2). The representations

are characterized by their dimensions dim(λ) = Vol(Ω) = 4πXI
0 . Taking into account the
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symmetrization map which maps the quadratic Casimir C(Ω), which are characterizing the

coadjoint orbit, into the Casimir C(λ) of the corresponding representation one gets for the

partition function

Z(D2, exp X̄) =
∑

λ

dim(λ)χλ(exp X̄) exp(−1
~
AD2C(λ) , (4.32)

where χλ(exp X̄) denotes the character of the representation λ of the SU(2) group. The

equation (4.32) is the partition of the two-dimensional Yang-Mills theory on a disc [9]. It

can be interpreted as a special case of the linear Poisson-sigma model, with exp(2πi〈Xα, X̄〉)
as the specific function on the boundary, which corresponds to exp X̄ by the identification of

the Poisson manifold with its dual, the Lie algebra.

4.4 The partition function of the linear Poisson-sigma model on

arbitrary surfaces

The two-dimensional oriented manifolds are fully classified. Starting with a few standard

manifolds it is possible to obtain an arbitrary manifold with the help of a glueing prescription

[41]. This fact was used by M. Blau and G. Thompson to perform the complete quantization

for the two-dimensional Maxwell and Yang-Mills theories in [9]. The goal of this section

is to show that such a glueing prescription for the linear Poisson-sigma model exists, which

allows the partition function for the glued manifold to be deduced from the partition functions

for the components. The various cases are considered in turn.

4.4.1 g = 0 , n ≥ 1

First manifolds with more than one boundary component should be obtained. Geometrically

this means that one starts with a boundary component, a circle, and deforms it into a rect-

angle. After that one identifies two edges of the four which are opposite to each other such

that one creates an additional boundary component. There already exists a formula which

allows one to perform this calculation, see [49].

For functions φ1, φ2 ∈ C(G) define the convolution to be

φ1 ∗ φ2(g) =
∫

G
φ1(g′)φ2(g′−1g)dg . (4.33)
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Then there exists a well-known equation [47] for the generalized character

χλ ∗ χλ′ =
δλλ′

dim(λ)
χλ , (4.34)

where λ denotes an irreducible representation of the group G. From this equation, together

with the fact that the characters form an orthogonal basis for the central functions, one gets

χλ(φ1 ∗ φ2) =
1

dim(λ)
χλ(φ1)χλ(φ2) . (4.35)

One can shift the group convolution to the Lie algebra with the so-called wrapping map, see

section 2. Let ψ1, ψ2 be G-invariant, smooth functions on g. By ψ∧ denote the Fourier

transform to the dual space of G. Then since
∫
Lλ

dµ =
∫
Ωλ

dµ = dim(λ)

∫

L

ψ∧1 dµ

∫

L

ψ∧2 dµ = Vol(L)
∫

L

ψ∧1 ψ∧2 dµ , (4.36)

where dµ stands for the measure corresponding to the symplectic form of the coadjoint orbit

L. Translating this into the notation of the previous section, one gets

χL(φ1)χL(φ2) = Vol(L)χL(φ1φ2) . (4.37)

Using formula (4.37) in the partition function on the disc (4.26) yields

Z(C, φ1φ2) =
∑

O(L)

Vol(L)χL(φ1φ2) exp(ACC(L)) (4.38)

=
∑

O(L)

Vol(L)χL(φ1)χL(φ2)
1

Vol(L)
exp(ACC(L)) (4.39)

=
∑

O(L)

χL(φ1)χL(φ2) exp(ACC(L)) . (4.40)

The result is a partition function containing two functions, one with support on each bound-

½ ½

Figure 4.1: ¤ ½ C
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ary. Geometrically this process can be interpreted as follows. First one deforms the boundary,

the circle, into a rectangle such that each edge of the rectangle has its own degree of free-

dom, respectively its own function, on the edge. The freedom on the boundary turn into

χL(φ) = χL(φ1, φ2, φ3, φ4), where the φi denote the corresponding parts of the function φ

with support on the edge i of the rectangle. Then one identifies two opposite edges

χL(φ) → χL(φ1φaφ2φ
−1
a ) = χL(φ1φ2) . (4.41)

The resulting surface is of course a cylinder, see figure (4.1). This result can be compared

with the results achieved in the Dirac quantization scheme by P. Schaller and T. Strobl

in [43]. In that paper they performed the canonical quantization and solved the operator

constraint equations for the linear Poisson-sigma model in Casimir-Darboux coordinates.

Their result was that the wave functions are restricted to the symplectic leaves, as are the

functions φ in the present calculation, and hence the distribution χL(φ). Further, they showed

that in the general case each integral orbit corresponds to one quantum state. This fact is

given by the integrality condition of the symplectic leaves.

Note that by choosing both functions to be exp(2πi〈Xα, X̄〉) one gets the right result for

the partition function of the two-dimensional Yang-Mills theory on the cylinder [9].

The manifold with three boundary components, the next step in the construction, is called

the pants manifold and the partition function is

Z(P, φ1, φ2, φ3) =
∑

O(L)

χL(φ1)χL(φaφ2φ
−1
a φ3) exp(APC(L))) (4.42)

=
∑

O(L)

χL(φ1)χL(φ2φ3) exp(APC(L))) (4.43)

=
∑

O(L)

1
Vol(L)

χL(φ1)χL(φ2)χL(φ3) exp(APC(L)) . (4.44)

In this way one can get any manifold with an arbitrary number n ≥ 1 of boundaries, for each

boundary component there is first an additional factor with a new boundary function and an

additional factor of Vol(L)−1.

4.4.2 g = 0 , n = 0

Now the partition function for the surface with genus g = 0 and no boundary component,

which is the 2-sphere, should be calculated. The difference is that now one does not just
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deform the manifold as in the previous section, here one has to glue the manifolds together

to get the sphere. For this glueing one defines the following product

χL(φ) ~ χL′(φ−1) :=
χL(φ)
Vol(L)

χL′(φ−1)
Vol(L′)

= δLL′ , (4.45)

By choosing φ1 = φ and φ2 = φ−1 = 1/φ in equation (4.37) one gets

χL(φ)χL(φ−1) = Vol(L)χL(φφ−1) = Vol(L)2. (4.46)

The definition of the glueing product (4.45) is now quite natural.

With this product at hand one is in the position to calculate the partition function for the

sphere by glueing two discs together, see figure (4.2)

~

=

Figure 4.2: D2 ~ D′2 = S2
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Z(S2) = Z(D2, φ) ~ Z(D′2, φ−1)

=
∑

O(L)

∑

O(L′)

Vol(L)Vol(L′)
[
χL(φ) ~ χL′(φ−1)

]
︸ ︷︷ ︸

δLL′

exp(AD2C(L)) exp(AD′2C(L′))

=
∑

O(L)

Vol(L)2 exp (AS2C(L)) . (4.47)

This result is exactly the partition function for the linear Poisson-sigma model on the sphere.

By specifying equation (4.22) for the sphere, i.e. plugging in the Euler character for the

sphere, which is 2, and the surface area of the sphere in the exponent, the above solution is

obtained.

Another check for the new product is performed by deforming two discs to rectangles, and

then glueing two edges together. The result should again be a rectangle. Hence, the resulting

partition function should be the one of the disc. The partition function takes the form

Z(¤, φ1φ2φ3φ4) =
∑

O(L)

Vol(L)χL(φ1φ2φ3φ4) exp(A�C(L))

=
∑

O(L)

χL(φ1φ2φ3)χL(φ4) exp(A�C(L))

↪→ Z(¤, φ1φ2φ3φa) ~ Z(¤′, φ−1
a φ4φ5φ6)

=
∑

O(L)

∑

O(L′)

χL(φ1φ2φ3)
[
χL(φa) ~ χL′(φ−1

a )
]
χL′(φ4φ5φ6) exp (A�C(L)) exp

(
A�′ C(L′)

)

=
∑

O(L)

∑

(L′)

χL′(φ1φ2φ3)χL(φ4φ5φ6)δLL′ exp (A�C(L)) exp
(
A�′ C(L′)

)

=
∑

O(L)

χL(φ1φ2φ3)χL(φ4φ5φ6) exp (A�C(L))

=
∑

O(L)

Vol(L)χL(φ1φ2φ3φ4φ5φ6) exp (A�C(L))

=
∑

O(L)

Vol(L)χL(φ) exp (A�C(L)) = Z(D2, φ) (4.48)

with φ = φ1φ2φ3φ4φ5φ6. This calculation shows that the glueing product (4.45) is self-

consistent.

4.4.3 g = 1 , n ≥ 0

The next generalization is the possibility of a non-vanishing genus g. If one changes the genus

of the surface one has to use the glueing product (4.45). The manifold with genus g = 1 and
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no boundary is the torus. One can get it by glueing together two cylinders, see figure (4.3)

Z(T) = Z(C, φaφb) ~ Z(C′, φ−1
a φ−1

b )

=
∑

O(L)

∑

O(L′)

[
χL(φa) ~ χL′(φ−1

a )
][

χL(φb) ~ χL′(φ−1
b )

]
exp (ACC(L)) exp

(
AC′C(L′)

)

=
∑

O(L)

∑

O(L′)

δLL′ exp
(
ACC(L) + AC′C(L′)

)

=
∑

O(L)

exp ((AC + AC′) C(L)))

=
∑

O(L)

exp (ATC(L)) . (4.49)

~

=

Figure 4.3: C~ C′ = T

The torus is again a manifold without boundary and one can compare it with equation

(4.22) of section 4.3. The Euler character for the torus is zero, so in the partition function

the symplectic volume of the coadjoint orbit does not appear.

The next manifold under consideration is the handle H = Σ1,1, with genus g = 1 and one

boundary component n = 1. To get this surface one has to take the pants manifold and glue
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two of the boundary components together, see figure (4.4). Due to the fact that one changes

the genus by one one has to use the glueing product (4.45)

Z(Σ1,1, φ) = Z(P, φ, φa, φ
−1
a )

=
∑

O(L)

1
Vol(L)

χL(φ)
[
χL(φa) ~ χL(φ−1

a )
]
exp

(
AΣ1,1 C(L)

)

=
∑

O(L)

1
Vol(L)

χL(φ) exp
(
AΣ1,1 C(L)

)
. (4.50)

½

½

Figure 4.4: P ½ H
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This result enables one to calculate the partition function for the torus in yet a third way.

Starting from the handle, one glues a disc onto its boundary, see figure (4.5)

Z(T) = Z(Σ1,1, φa) ~ Z(D2, φ−1
a )

=
∑

O(L)

∑

O(L′)

1
Vol(L)

[
χL(φa) ~ χL′(φ−1

a )
]
Vol(L′) exp

(
AΣ1,1 C(L)

)
exp

(
AD2 C(L′)

)

=
∑

O(L)

Vol(L′)
Vol(L)

δLL′ exp
(
AΣ1,1 C(L) + AD2C(L′)

)

=
∑

O(L)

exp (ATC(L)) , (4.51)

which is the same result as (4.49).

~

=

Figure 4.5: D2 ~ Σ1,1 = T
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By glueing two pants together at two boundaries one obtains the manifold Σ1,2, see figure

(4.6). The resulting partition function is

Z(Σ1,2, φ1, φ2) = Z(P, φ1, φa, φb) ~ Z(P′, φ2, φ
−1
a φ−1

b )

=
∑

O(L)

∑

O(L′)

1
Vol(L)

1
Vol(L′)

χL(φ1)χL′(φ2)
[
χL(φa) ~ χL′(φ−1

a )
]

× [
χL(φb) ~ χL′(φ−1

b )
]
exp (APC(L)) exp

(
AP′ C(L′)

)

=
∑

O(L)

1
Vol(L)2

χL(φ1)χL(φ2) exp
(
AΣ1,2 C(L)

)
. (4.52)

~

=

Figure 4.6: P~ P′ = Σ1,2
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Due to the fact that one does not change the genus one can proceed as in the previous section.

Starting with the partition function (4.50)

Z =
∑

O(L)

1
Vol(L)

χL(φ) exp
(
AΣ1,1 C(L)

)

and applying (4.37)

=
∑

O(L)

1
Vol(L)

χL(φ1φ2) exp
(
AΣ1,1 C(L)

)

=
∑

O(L)

1
Vol(L)2

χL(φ1)χL(φ2) exp
(
AΣ1,2C(L)

)
, (4.53)

which is the same result as in equation (4.52). In this way one finds the partition function of

any surface with genus g = 1 and an arbitrary number of boundary components n, Σ1,n.

4.4.4 Arbitrary g and n

With the considerations of the previous sections one is in the position to calculate the parti-

tion function for the linear Poisson-sigma model on an arbitrary two-dimensional (oriented)

manifold. The fundamental manifold one starts with is the pants manifold Σ0,3 = P. The

question is how one can calculate the partition function on a manifold Σg,n with arbitrary

g and n. Starting with the pants manifolds, it should be possible to increase g and n in

an arbitrary way. On the other hand, one must have the chance to decrease the number of

boundary components to zero. Hence, one has three requirements:

• The adding of a disc, i.e. decreasing the number of boundary components n by one,

results in multiplying the partition function by a factor Vol(L).

• The glueing of the pants manifold, i.e increasing the number of boundary components

by one, results in a factor Vol(L)−1. This is similar to the application of (4.37).

• The glueing of Σ1,2 increases the number of the genus by one, while in the partition

function an additional factor of Vol(L)−2 appears.

These considerations lead to the following expression for the partition function of the linear

Poisson-sigma model on an arbitrary surface Σg,n

Z(Σg,n, φ1, . . . , φn) =
∑

L

Vol(L)2−2g−n
n∏

i=1

χL(φi) exp[AΣg,nC(L)] . (4.54)
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One sees that the exponent of the volume of the symplectic leaf is exactly the Euler char-

acteristic for a two-dimensional manifold with genus g and n boundary components. This

is the result which would be expected by considering the powers of the determinants in the

partition function. If one now chooses for each function the specific one, which leads to the

Fourier transformation for the symplectic measure of the orbit, one reproduces the result

for the two-dimensional Yang-Mills theory on arbitrary oriented manifolds [9].
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5 Summary and Concluding Remarks

In this thesis various properties of the classical and quantum theory of the semi-topological

Poisson-sigma model were presented. By choosing different Poisson structures on the target

space several field theories can be recovered. Due to the non-closedness of the gauge algebra,

i.e. the algebra of the model is just closed modulo the equations of motion, the analysis of the

gauge structure must follow the Batalin-Vilkovisky theory. After setting up the antifields

for the model, the gauge-fixing was implemented for three different types of gauge conditions.

An interesting fact, which has appeared for the resulting gauge-fixed action, was that in the

non-covariant gauges the action simplified, in the sense that the term which is responsible

for the non-closedness of the gauge algebra, vanishes. The appearance of the non-closure of

the algebra is based on the non-linearity of the model due to the quadratic interaction in the

gauge fields and the associated gauge transformations. This interaction can be generated with

the help of the deformation procedure of G. Barnich and M. Henneaux from the Abelian

BF theory, such that the non-linearity is established by the deformation procedure.

The partition function was calculated for the case of closed manifolds and then extended

to a world sheet with the topology of a two-dimensional disc. In both cases a quantization

condition for the symplectic leaves were found. As in the Dirac quantization procedure

considered by P. Schaller and T. Strobl [43, 44], the leaves must be integral. Further,

in both cases it was possible to show that the partition function of the two-dimensional

Yang-Mills theory can be recalculated by choosing a linear Poisson structure on the target

manifold. The orbit method invented by A. Kirillov [30, 31, 32] provides the background

to show the duality of these two models. On the one hand one has the Yang-Mills theory

with its associated gauge group. The partition function of this model involves a sum over

the unitary irreducible representations of this group. On the other hand, one may start from

the linear Poisson-sigma model, with a Lie algebra which arises as the dual of the linear

Poisson structure. The Poisson manifold is however foliated into symplectic leaves, and

the periodic delta-function which arises from the evaluation of the partition function limits

one to the integral leaves. Each leaf corresponds to a coadjoint orbit of the Lie group, and

61
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the integral leaves correspond in turn to the irreducible representations of the group. Hence

the sum over the integral leaves in the partition function of the linear Poisson-sigma model

becomes after the identification the sum over the irreducible gauge group representations in

the Yang-Mills theory. The reproduction of the boundary condition for the Yang-Mills

theory on the disc, which appeared in the resulting partition function as the character of the

corresponding unitary irreducible presentation, is given by the universal character formula

by A. Kirillov. The corresponding term in the partition function of the linear Poisson-

sigma model is a distribution with support on the integral symplectic leaves respectively

the coadjoint orbits. Choosing a specific function for the distribution leads to the required

Fourier transform and the identification with the Yang-Mills partition function. In the

last chapter a glueing product was defined, which enables one to glue manifolds together by

identifying certain boundary components. The partition function of the glued manifold was

inferred by that of the components. This provides an expression for the partition function of

the linear Poisson-sigma model on an oriented two-dimensional manifold with an arbitrary

number of genus and boundary components. This can be seen as a full quantization for the

linear Poisson-sigma model.

An interesting further step towards the general quantization of the Poisson-sigma model

would be the calculation of the partition function for more general Poisson structures.

The connection between the Poisson-sigma model and Kontsevich ’s star product dis-

covered by A. Cattaneo and G. Felder [11] remains a topic worthy of further research. The

use of the star product in the deformation quantization approach to quantum theory provides

new insights in quantum mechanics, see [23] and references therein, and quantum field theory

[17]. Up to now one has used in these works essentially the Moyal star product, which is

limited to functions defined on symplectic manifolds. To treat gauge theories in this approach

it will be necessary to work in the more general context of Poisson manifolds, in which case

the Kontsevich construction, which yields the star product as a formal series in ~, is rele-

vant. Here one may hope to gain information on the perturbative expansion from knowledge

of the complete partition function. The case, where one deals with a linear Poisson struc-

ture like in this thesis, is particularly interesting because of the close connection which here

prevails between the Kontsevich product and the Campbell-Baker-Hausdorff formula

of group theory [29]. Another approach to the quantization of Poisson manifolds is to em-

bed it as a Lagrangian submanifold into a symplectic manifold, which has the structure of a

groupoid [10]. The quantization of the latter gives rise to the quantization of the former. The

Poisson-sigma model provides in principle a connection between the Kontsevich quantiza-

tion formula and the world of groupoids. A. Cattaneo and G. Felder [13] have shown that
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the phase space of the topological Poisson-sigma model in the Hamilton formalism is given

by the space of leaves of the corresponding Hamiltonian foliation. This space comes with a

natural structure of a (symplectic) groupoid. The relation is now indicated by the fact that

the perturbation expansion of the same model yields, after an appropriate renormalization,

the Kontsevich deformation formula.

This thesis has demonstrated that the Poisson-sigma model has and will provide interest-

ing insight for the mathematical and physical aspects of the quantization of gauge theories.

Acknowledgment First of all I would like to express my gratitude to my adviser Allen

C. Hirshfeld, he has been always a great source of knowledge and inspiration. Let me

thank Thomas Strobl for introducing me to the Poisson-sigma model. My thank goes

also to the members of my group Beatrice Bucker, Peter Henselder and Stefan

Jansen for a lot of stimulating discussions, even about physics. For the good time at the

physics institute at the university of Dortmund I thank all members of the groups TIII and

TIV. Thanks goes also to Uwe Sassenberg for helping to create the figures of the surfaces.

Finally I thank Gudrun Bley for her long standing friendship.

Tell me, I’ve still a lot to learn

Understand, these fires never stop

Believe me, when this joke is tired of laughing

I will hear the promise of my Orpheus sing

David Sylvian, Orpheus taken from Secrets Of The Beehive



64 Summary and Concluding Remarks



Bibliography

[1] A. Y. Alekseev, P. Schaller, T. Strobl: The topological G/G WZW model in the

generalized momentum representation, Phys.Rev. D52 (1995), 7146

[2] M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky; The geometry of

the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12

(1997), 1405

[3] G. Barnich, M. Henneaux, R. Tatar: Consistent interactions between gauge fields

and local BRST cohomology: the example of Yang-Mills theories, Int.J.Mod.Phys. D3

(1994), 139

[4] G. Barnich, F. Brandt, M. Henneaux: Local BRST cohomology in gauge theories,

Phys.Rept. 338 (2000), 439

[5] G. Barnich, M. Henneaux: Consistent couplings between fields with gauge freedom

and deformation of the master equation Phys. Lett. B311 (1993), 123

[6] I.A. Batalin, G.A. Vilkovisky: Gauge algebra and quantization, Princeton Univer-

sity Press, Princeton, New Jersey, 1992

[7] C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu: Cohomological derivation of

the couplings between an abelian gauge field and matter fields. Annalen Phys.10 (2001),

415

[8] M. Blau, G. Thompson: Lectures on 2d gauge theories e-print archive: hep-

th/9310144

[9] M. Blau, G. Thompson: Quantum Yang-Mills theory on arbitrary surfaces,

Int.J.Mod.Phys. A7 (1992), 3781

[10] A. Cannas da Silva, A. Weinstein: Geometric models for noncommutative algebras,

Berkeley Mathematics Lecture Notes. 10. Providence, RI: American Mathematical So-

ciety (AMS). Berkekey, CA: Berkeley Center for Pure and Applied Mathematics (1999)

65



66 Bibliography

[11] A. Cattaneo, G. Felder: A path integral approach to the Kontsevich quantization

formula, Commun. Math. Phys 212 (2000), 591

[12] A. Cattaneo, G. Felder: On the AKSZ formalism of the Poisson-sigma model, Lett.

Math. Phys. 56 (2001), 163

[13] A. Cattaneo, G. Felder: The Poisson-sigma model and symplectic groupoids, e-print

archive math.sg/0003023

[14] Y. Choquet-Bruhat, C. DeWitt-Morette with M. Dillard-Bleick: Analysis,

manifolds and physics, North Holland Publishing company 1977, revised edition 1982

[15] A.H. Dooley, N.J. Wildberger: Harmonic analysis and the global exponential map

for compact Lie groups, Functional Anal. Appl. 27, No.1 (1993), 21

[16] V.G. Drinfeld: Quantum groups, Proceedings ICM, Berkeley (1986)
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