
NLO QCD Corrections to the

Polarized Photo- and

Hadroproduction of Heavy Quarks

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Abteilung Physik

der Universit�at Dortmund

vorgelegt von

Ingo Bojak

April 2000





F�ur meine Eltern und meinen Bruder

From the side, a whole range; from the end, a single peak;

far, near, high, low, no two parts alike.

Why can't I tell the true shape of Lu-shan?

Because I myself am in the mountain.

Su Tung-p'o, 1084 A.D.,

transl. B. Watson
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Chapter 1

Introduction

A fundamental property of nucleons (protons or neutrons) is that they carry spin 1
2
and

obey the appropriate Fermi-Dirac statistics, i.e., they are spin-1
2
fermions. As is indicated

by their name, nucleons are the building blocks of atomic nuclei, and their spin plays a

crucial role in determining the properties of these nuclei. For example, we can compare
3H made up of one proton and two neutrons with 3He made up of two protons and

one neutron. In the dominant state of zero orbital angular momentum (S-wave) of the
nucleons, the Pauli exclusion principle requires the two neutrons and the two protons,

respectively, to be anti-aligned in spin. Thus we can expect that the nuclear spin e�ects

mirror those of the unpaired nucleon. This can be seen in spin dependent quantities, like

the magnetic moments: �3H = 2:9790 ' 2:7928 = �p and �3He = �2:1276 ' �1:9130 = �n
[1, 2]. An even closer agreement is obtained when we compare

1

2
(�3H + �3He) = 0:4257 ' 0:4399 =

1

2
(�p + �n) ; (1.1)

since then the di�erence in the interactions of protons and neutrons averages out. The re-

maining deviation can be attributed to higher orbital angular momentum states. Though

spin certainly is an important property of the nucleon, as our little example has shown,

the explanation of its origin is still fraught with uncertainties.

Since the advent of the QCD improved parton model, we know that the nucleon is

not an elementary particle itself, but rather a bound state of more elementary particles

(quarks, antiquarks and gluons) possessing rich internal structure. Hence high energy

studies of the nucleon spin have always been challenging experimentally and theoretically.

Determining the polarized gluon density �g(x; �2
f
) is currently a hot topic in this �eld.

In order to better understand how the gluon polarization became a major issue, we will

brie
y sketch the historical development, starting with quark models which do not contain

gluons at all. Several reviews of spin physics have been written, which o�er a very complete

account of the past and present status, see for example [3, 4]. In these references one can

�nd the details we are omitting here. Take a simple valence quark model in which the

entire nucleon spin is generated by two uv-quarks plus one dv-quark for the proton and

by two dv-quarks plus one uv-quark for the neutron. We assume that there is no orbital
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angular momentum of the quarks and that the sea quarks carry no net spin. Since the

quarks are spin-1
2
particles, the Pauli exclusion principle would require again that the

spins of the two quarks with same 
avor have to be anti-aligned, so that the nucleon spin

would mirror the spin of the unpaired quark, in complete analogy to the 3H and 3He case.

However, this simple picture cannot be true: the 
� baryon has spin 3
2
and consists of

three strange quarks in an S-wave. Thus it has three spin aligned quarks of the same


avor in spite of the Pauli exclusion principle! The solution is of course the new quantum

number \color" of SU(3)color. If the three s-quarks of the 
� all carry di�erent color,

then they can occupy the same spin state. But the direct relation of the nucleon spin to

the spin of the unpaired quark is now lost, since there is no reason why color should not

play a similar rôle in this case as well.

So let us just generally assume that color guarantees the absence of completely identical

fermions in the wave function. Then we have to consider contributions of both valence

quark 
avors to the nucleon spin. The total polarization of quarks with 
avor q will be
denoted by �q and similarly for the antiquarks. The total valence quark polarizations

are then given by �uv = �u���u and �dv = �d���d. Hence we expect1

1

2
jproton !

=
1

2

X
q

(�q +��q) � 1

2
�� (1.2)

!
=

1

2
(�uv +�dv) : (1.3)

In (1.2) we have assumed that the quarks carry the spin and in (1.3) that the sea quarks

have no net polarization. The same relation holds also for the neutron, but we have to

exchange u- and d-quarks due to isospin symmetry. So we can write for the magnetic

moments

�p = �u�uv + �d�dv ; �n = �d�uv + �u�dv ; (1.4)

where we always use the polarizations for a proton. In a SU(6) model compatible2 with
(1.3), which is constructed from SU(3)
avor
SU(2)spin, we �nd for the SU(6)-symmetric
wave function �uv =

4
3
and �dv = �1

3
, see for example [5]. Using the simple assumption

�u = �2�d, because of the di�erence in charge eu = �2ed, one �nally predicts with (1.4)

�n

�p
= �2

3

exp.' �0:685 ; (1.5)

in fairly good agreement with experiment.

But this na��ve model soon runs into diÆculties when being compared to other exper-

imental results. For example it predicts for the �-decay constants F = 2
3
and D = 1, in

1The model is 
awed, since it makes no distinction between constituent and current quarks.
2One obtains ��u = ��d = �s = ��s = 0 for SU(6) symmetry.
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con
ict with the experimental3 measurements [1, 6]

neutron � � decay: F +D = 1:2670� 0:0035 ;

hyperon � � decay: 3F �D = 0:579� 0:025 :
(1.6)

One can try to �x the problem by rewriting (1.2) as

1

2
jproton =

1

2
�� + Lq

z
; (1.7)

where we now introduce the orbital angular momentum of the quarks Lq
z
as a relativistic

e�ect [7, 8]. For vanishing strange sea polarization �s = ��s = 0, we have �� = 3F �D

and hence we can accommodate the experimental result by assigning Lq
z
= 0:2105, which

indicates a sizeable contribution of quark orbital angular momentum to the proton spin!

In order to understand the impact of the next experimental result, we need to take

strange quarks into account explicitly

F +D
SU(2)
=

isospin
A3 = �u+��u��d���d ;

3F �D
SU(3)
=


avor
A8 = �u+��u+�d+��d� 2(�s +��s) ;

A0 = �� �
X
q

(�q +��q) = A8 + 3(�s+��s) :

(1.8)

The �rst moment of the structure function g1 measured in lepton-nucleon scattering, for

details see for example [4], can be written in this form

�
p;n

1 =
1

2

�
�1

6
A3 +

1

18
A8 +

2

9
A0

�
=

8<: 0:186� 0:004

�0:025� 0:004

9=;+
1

3
(�s +��s) ; (1.9)

by simply inserting the values of (1.6). In the QCD improved parton model discussed

below, (1.8) and (1.9) remain valid in LO for the �rst moments of the parton densities.

We can now derive the (Gourdin-)Ellis-Ja�e sum rule [9] �
p

1;EJ ' 0:186 by assuming

�s = ��s = 0 in (1.9). However, in the Bj�rken sum rule [10] for the di�erence �
p

1��n1 =
1
6
(F +D) ' 0:2112, the dependence on the strange quarks and on A8 cancels, so that this

result relies only on isospin symmetry. The combined experimental result of the EMC

and SLAC collaborations4, see [11] and references therein, disagrees with the Ellis-Ja�e

prediction

�
p

1 = 0:126� 0:018 y �s+��s ' �0:18 y �� = 0:04 : (1.10)

3The hyperon �-decay �t of [6] was performed using F +D
!
= 1:257 and �tting F=D. With the new

experimental value F +D = 1:2670 and their old value 3F �D = 0:579, we obtain F=D = 0:573 instead
of their old �tted F=D = 0:575� 0:016. Thus a re-�t is not needed for our purposes here.

4We ignore the hQ2i = 10:7 GeV2 (EMC); 4 GeV2 (SLAC) dependence for the moment and add

statistical and systematic errors in quadrature.
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So experiment suggests that a large negative strange sea polarization drives the contribu-

tion of the quarks to the proton spin to basically zero: �� ' 0! Later experiments agree

within errors with this result, see for example [4].

This counter-intuitive result triggered the famous \spin crisis", though it should have

been more appropriately named \spin surprise" and \intuition crisis", because there is

a priori nothing wrong with the solution we have obtained in (1.10). But we certainly

have come a long way from the na��ve assumption �� = 1 we started with in (1.2). By

inspecting the equations (1.8) and (1.9), we �nd that one still can achieve a �s = ��s = 0

solution, if the SU(3)
avor symmetry assumption A8 = 3F �D is discarded. But we must

leave the quark model level of studies anyway, since we note that the Bj�rken sum rule also

seems to be in trouble. The SLAC E143 experiment [12] �nds �
p

1� �n1 = 0:163� 0:017 at

Q2 = 3 GeV2, to be compared with the value �
p

1��n1 ' 0:2112 obtained above. However,

the CERN SMC measurement at Q2 = 10 GeV2 [13] gives �
p

1 � �n1 = 0:195 � 0:029 and

thus agrees much better with our quark model prediction. Since the Bj�rken sum rule

is based only on isospin invariance, it is not as easily cast aside as the Ellis-Ja�e sum

rule. A better agreement with growing Q2 immediately suggests that perturbative QCD

corrections may help. Indeed one �nds that the perturbative QCD corrections up to

O(�3
s
) [14] are all negative

�
p

1 � �n1 =
1

6
(F +D)

"
1� �s(Q

2)

�
� 3:5833

�
�s(Q

2)

�

�2

� 20:2153

�
�s(Q

2)

�

�3
#
;

(1.11)

and reasonable agreement with the experiments can be achieved when a running coupling

�s(Q
2) is used, see [4] and references therein. But it should be clear that perturbative

QCD corrections come with a price, namely scale dependence of the partons and the

introduction of gluons. Also the situation with respect to the Ellis-Ja�e sum rule does

not signi�cantly change due to the introduction of QCD corrections, see our discussion of

a QCD �t below.

In conclusion, we see that additional experimental results forced us to adopt more

sophisticated theoretical approaches, until we �nally made use of perturbative QCD cor-

rections to the Bj�rken sum rule. So we should now consider the complete QCD improved

parton model for consistency, which in hindsight would have been a good starting point

anyway. For the spin of the proton one must then write instead of (1.7)

1

2
jproton !

=
1

2
��n=1(�

2
f
) + �gn=1(�

2
f
) + Lq

z
(�2

f
) + Lg

z
(�2

f
) ; (1.12)

��(x; �2
f
) �

X
q

[�q(x; �2
f
) + ��q(x; �2

f
)] ; (1.13)

an �
Z 1

0

dx xn�1a(x) ; (1.14)

which introduces polarized parton densities, �q(x; �2
f
), ��q(x; �2

f
) and �g(x; �2

f
), depend-

ing on Bj�rken x and the factorization scale �2
f
. Their de�nition will be examined more
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�2
f
[GeV2] ��n=1 2�sn=1 �gn=1 Lz

0.34 0:183 �0:132 0:507 �0:099

1 0:173 �0:136 0:961 �0:548

4 0:168 �0:136 1:443 �1:027

10 0:166 �0:138 1:737 �1:320

Table 1.1: First moments of GRSV standard densities taken from Tab. 1 in [15]. For these

densities �sn=1 +��sn=1 = 2�sn=1. The total partonic angular momentum Lz � Lg
z
+ Lq

z
is

calculated using (1.12).

closely in the next chapter. The �rst moment, n = 1 in (1.14), of these densities has

the interpretation we have been using in our quark models, i.e., corresponds to the total

polarization carried by the partons of this type. Note that the �rst moment of the po-

larized gluon density �g(x; �2
f
) was introduced explicitly in the spin sum rule, as was a

possible angular momentum contribution of the gluons Lg
z
. Extracting the values to be

inserted in (1.12) from experiment is a challenging task. Currently no direct experimental

information on the total partonic angular momentum Lz � Lg
z
+ Lq

z
is available, it can

only be derived indirectly from the �tted values for ��n=1 and �gn=1 via (1.12).

For illustration we show in Tab. 1.1 for a particular next-to-leading order (NLO) MS

set of parton distributions, the GRSV standard5 densities [15], the scale dependence of the

�rst moments of the parton distributions and of the inferred parton angular momentum.

The polarization of the strange sea �sn=1 + ��sn=1, which here is equal to 2�sn=1, is

shown separately. Since this particular �t assumes SU(3)
avor symmetry, as expected a

large negative strange sea polarization is needed to keep ��n=1 fairly small. We see that

the quark sector has only a weak scale dependence. In contrast, the gluon polarization

evolves rapidly and in response the angular momentum changes quickly as well. We

would like to point out a particularly satisfying feature of this �t: at the low starting

scale 0:34 GeV2 one �nds almost zero angular momentum. This suggests an intuitive

picture, in which the gluon polarization and partonic angular momentum are built up at

the same time by increasing gluon radiation for rising �2
f
. Note however that the results

are scheme dependent, i.e., are only directly valid for NLO MS.

The good news is that the QCD improved parton model describes the data well, see for

example [15]. The bad news are hidden in the uncertainties of the �t. Though the quark

sector is fairly well determined, the gluon density can be varied freely without in
uencing

the quality of the �t signi�cantly. We will not try to describe the plethora of NLO QCD

�ts that have been published recently. There are several �ts which are a bit more up-to-

5This �t uses the old value F +D = 1:2573. The authors also present a \valence" �t which does not

assume SU(3)
avor symmetry and starts with zero strange sea polarization, see [15] for details.
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date concerning the used data than the densities we will employ, see for example [16] for

two recent ones. From a practical point of view, we note that only the older �ts [15, 17, 18]

used by us provide (x; �2
f
)-grids of their evolved parton distributions. The interpolation

routine that constructs the parton distributions at arbitrary (x; �2
f
)-points from the grids

is very fast. The newer �ts by other groups just state the x-shape of the parton densities

at a starting scale �2
f0, i.e., one has to evolve them to other �2

f
values. Since the Monte

Carlo integrations for the hadronic cross sections require million-fold access to the parton

distributions at varying x and �2
f
, employing parton evolution every time would be far too

time-consuming. Furthermore, the crucial problem of the basically undetermined gluon

density is not resolved in the newer �ts and so the uncertainties would remain basically

unchanged if we used the newer densities.
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Figure 1.1: �� and �g uncertainties as obtained in the SMC �t [19]. Shown are the best

�ts (solid line) and the statistical (crossed hatch band), experimental systematic (vertically

hatched), and theoretical (horizontally hatched) uncertainties as a function of x at the evolu-

tion starting scale �2
f0 = 1GeV2. Note that the densities are obtained in the AB scheme [20],

but �g(x; �2
f
) remains unchanged by a scheme transformation to MS. The �gure shown here

is part of Fig. 5 in [19].

The extensive experimental and theoretical error analysis of the SMC �t [19] of po-

larized parton densities allows a particularly good estimate of these uncertainties. Part

of the results are shown in Fig. 1.1, which has been extracted from their paper. Note

that the densities shown there are in the AB scheme [20], not in MS. But the situation

is basically the same for MS and actually a scheme transformation from AB to MS will
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leave the gluon untouched6. We see that the polarized quark singlet distribution �� is

already constrained appreciably by the data. However, the gluon distribution is only very

badly constrained, in particular if we take the systematic and theoretical uncertainties

into account. We can compare this to the unpolarized gluon density in the left part of

Fig. 1.2. This �gure has been extracted from [21] and shows a not yet published �t to F2
scaling violations of the H1 Collaboration, for details see [21]. Note that the uncertainties

shown are probably an overestimate, since only a subset of the available unpolarized data

has been used. Even taking into account that the uncertainties would be somewhat larger

if the unpolarized gluon density was shown at the same low scale used in Fig. 1.1, in

particular at small x, we can clearly see the big lead in precision of the unpolarized �t.
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Figure 1.2: Uncertainty of the unpolarized gluon density g(x; �2
f
= Q2) from the H1 �t to

scaling violations [21] (left) and comparison of this �t to the gluon unfolded from charm

structure function DIS and photoproduction data for D� [22] (right). The inner dark band

of the gluon density shows experimental, the outer light band theoretical uncertainties. The

�gure shown here is Fig. 14 of [21].

The quality of the determination of g(x; �2
f
) from measurements of the structure func-

tion F2 in deep inelastic scattering (DIS) may be surprising, since it is hampered by the

absence of direct couplings of the gluons to the electroweak probes (
�; Z; W�). How-

ever, Fig. 1.2 demonstrates, that the increasingly precise F2 data from HERA still serve

6However, their separately �tted MS gluon density does not exactly match their AB gluon density

transformed to MS. No picture of the MS uncertainties is presented in [19].
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to constrain the small-x behavior of g(x; �2) indirectly in the region 10�4 . x . 10�2 with

satisfying accuracy from the observed scaling violations @F2(x; �
2
f
)=@�2

f
. To determine

g(x; �2
f
) over the entire x region, i.e., also at larger values of x, studies of exclusive re-

actions like direct photon or di-jet production, where the gluon already enters in leading

order (LO), are often used in global �ts. Such measurements are often experimentally

much more involved and less precise than inclusive DIS. Nevertheless, our knowledge of

the unpolarized gluon density has greatly improved in the past few years, except in the

region x & 0:1, where the situation is still far from being satisfactory. Here the relative

uncertainty in g(x; �2
f
) grows to about 100% [23, 24], which is not easily seen in Fig. 1.2,

due to the small size of the gluon density.

The long list of spin-dependent DIS experiments [25] and the recently completed NLO

framework for the evolution of the polarized parton densities [26, 27] may lead to the

expectation that the polarized gluon distribution �g(x; �2) should be known with almost

similar accuracy as g(x; �2) by now. This is not the case, as we see clearly comparing

Fig. 1.1 and Fig. 1.2. Consequently �gn=1(�
2) can be estimated at best with an error of

100% for the time being. There are three main reasons why at present it is diÆcult to

pin down �g(x; �2
f
):

� The measurements of the nucleon spin structure function g1, the polarized observable

analogous to the unpolarized structure function F1, are still in a \pre-HERA" phase.

The lever arm in �2
f
= Q2 of the �xed target experiments [25] is by far not suÆcient

to constrain �g(x; �2
f
) from scaling violations @g1(x; �

2
f
)=@�2

f
.

� As already mentioned, the unpolarized gluon density is also constrained by several

exclusive reactions, but corresponding measurements in the polarized case are still

missing.

� There is no energy-momentum sum rule for spin-dependent parton densities! In the

unpolarized case this constraint on the second moments �n=2(�
2
f
) + gn=2(�

2
f
)

!
= 1 is

very important for the determination of the gluon density, since it relates the gluon

densities to the directly probed, and hence more precisely known, quark densities.

In addition, the spin-dependent parton densities are not required to be positive

de�nite.

We cannot hope to use (1.12) similarly to the energy-momentum sum rule in the unpolar-

ized case, until independent experimental information on the parton angular momentum

is available. The small-x region of g1 could be explored at HERA, if the option to longi-

tudinally polarize also the proton beam [28] will be realized in the future. However, �rst

measurements of �g in exclusive reactions7 will be provided by the COMPASS �xed target

experiment at CERN [31] and the BNL RHIC polarized pp-collider [32], which both soon

will start taking data. Thus corresponding theoretical calculations are urgently needed.

7The HERMES experiment has published such a measurement already [29]. But there are strong

doubts concerning the applicability of perturbative QCD in this case [30].
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We will now brie
y describe the reactions investigated in our work, which are relevant

for these experiments. For the determination of the gluon distribution, heavy quark

(Q = c; b) photoproduction

~
~g ! QQ (1.15)

is an obvious choice (an arrow denotes a longitudinally polarized particle from now on).

The reconstruction of an open heavy quark state is experimentally feasible, and in LO only

the photon-gluon fusion (PGF) process contributes8, as will be shown in the next chapter.

This leads to the hope that an unambiguous determination of �g can be performed. Thus

polarized open charm photoproduction will be used by the upcoming COMPASS exper-

iment [31] to measure �g. In the publications [34, 35], we have provided the �rst NLO

QCD predictions for this process. The partonic results and phenomenological predictions

of [34] and the presentation of the calculational methods and the stability investigations

of [35] already provide the information needed for the experiments in a compact form.

In this thesis we will provide much more technical detail and also extend all the phe-

nomenological investigations. We hope that the methods collected here will provide a

convenient reference for future NLO calculations. Also the problems related to choosing

inconsistent schemes in [34, 35] for the phenomenological predictions have been corrected

here9 according to [37]. Note that the right part of Fig. 1.2 suggests that photoproduc-

tion of charm is indeed a good process for determining the gluon distribution (here the

unpolarized one). The agreement of the gluon density unfolded from the photoproduction

measurement with the one obtained from the scaling violations is, within errors, perfect!

Similarly, gluon-gluon fusion producing heavy (anti)quarks

~g~g ! QQ (1.16)

is a promising candidate for extracting the gluon density in ~p~p-collisions. Of course here
we also have the competing process of quark-antiquark annihilation ~q~�q ! Q �Q already at

LO, which plays a rôle at high pT . But the gluon induced reaction will dominate at small

to medium pT , except if �g is very small, and the high statistics and smaller x that can

be reached due to the higher center of mass energy of a ~p~p-collider make this reaction a

promising candidate for the extraction of �g. A progress report on the corresponding

NLO calculation has been given in [38] and we extend our discussion of it considerably

here. Note that all theoretical studies of the polarized reactions (1.15) and (1.16) have

been performed in LO only so far [39, 40, 41, 33, 31]. However, LO estimates usually

su�er from a strong dependence on the a priori unknown factorization and renormalization

scales. Also there are new NLO subprocesses induced by a light quark replacing a gluon

8The on-shell photons in (1.15) cannot only interact directly, but also via their partonic structure.

However, LO estimates of this unknown \resolved" contribution are small for COMPASS energies [33].
9The partonic cross sections of [34, 35] were not calculated in the MS scheme, as it was wrongly

assumed there, but rather in the MSp scheme, see for example [36], and then convoluted with MS parton

densities. The numerical consequences of this inconsistency are small. The partonic results shown and

used here are in the MS scheme.
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in the initial state. Here the question arises if there are kinematical regions in which

this new subprocess can yield signi�cant contributions and thus complicate a precise

determination of �g. NLO corrections are often more important for polarized di�erential

cross sections, since they can oscillate. Small changes to the position of a zero crossing

may then have large e�ects. Finally, the NLO corrections have been shown to be sizable

near threshold and for high energies in the unpolarized case [42, 43, 44, 45, 46]. Clearly,

a NLO calculation also for the spin-dependent case is warranted in order to provide a

meaningful interpretation of the forthcoming experimental results.

In the next chapter we will introduce the notation and some basic methods used in our

calculation of polarized processes. We will also derive the LO cross sections and the 2! 2

phase space in n = 4+" dimensions, which is needed for treating the spurious singularities

in the NLO corrections by dimensional regularization. In Chap. 3 the methods used for

the calculation of virtual loops are explained. Formulae for the integration of basic scalar

loop integrals are provided and for demonstration we show the calculation of a box graph

step by step. Next we explain how tensor loop integrals can be reduced to a small

set of these basic scalar loop integrals by using the Passarino-Veltman decomposition

technique [47]. The ultraviolet divergencies that occur in these loop integrals are cured

by renormalization, so this is the topic of Chap. 4. We show how to derive renormalization

counterterms from the QCD Lagrangian, calculate them explicitly, and �nally discuss their

application. In doing so we explain our scheme choice, a somewhat modi�ed MS scheme,

and brie
y touch the subject of the running strong coupling �s.

The following chapter is concerned with the methods used for calculating the other

type of NLO corrections, the real 2 ! 3 contributions. We show how collinear and

soft singularities arise in these contributions. Partial fractioning of angular phase space

integrations is a major technical issue here, which we consider in detail. Finally we

calculate the minimal number of basic angular integrals needed and introduce the method

of phase space slicing to analytically cancel the infrared virtual against the soft real

singularities. The only divergencies left after the cancellation are collinear ones and in

Chap. 6 their removal by mass factorization is discussed. To this end we analyze the

process ~
~q ! QQq, in which the only occurring singularities are collinear. It is shown

how one can absorb these divergencies in a re-de�nition of the parton densities and the

subtraction terms for all relevant subprocesses are derived. The \evolution" of parton

densities also emerges naturally from our discussion. In Chap. 7 we present our partonic

results for photoproduction and hadroproduction in full detail. Formulae for the soft real,

for the pole part of the hard real, and for the virtual plus soft contributions are provided.

So-called \scaling functions" related to the total partonic cross section are used to present

the results graphically10. All the NLO results for photoproduction are presented. The

same is true for hadroproduction, except for the virtual gluon contribution, which is

almost �nished and will be presented in a later publication. For the missing piece all

necessary ingredients have been obtained already by the methods described in this thesis,

10Due to the scheme problems of [34, 35], which are discussed in [37], these curves show the correct

MSm scheme results for the �rst time.
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i.e., the matrix elements and tensor loop integrals have been calculated. Obtaining the

�nal result is just a matter of putting all the parts together, but this is in practice a very

time consuming job.

Thus in Chap. 8 we can present phenomenological studies only for NLO photoproduc-

tion. The dependence on the factorization and renormalization scales and on the heavy

quark mass is investigated and the improved stability of the NLO calculation against

variations of these scales becomes obvious. Next the possibility to enhance measured

asymmetries by applying pT -cuts is demonstrated, and this is used to provide improved

predictions for the charm asymmetry at COMPASS [31] and for the bottom asymmetry at

a possible future polarized HERA [28]. y- and xF -di�erential distributions are also shown.

Finally we brie
y discuss indications from unpolarized experiments, that the heavy quark

sector is not as well understood theoretically as we would like it to be for an extraction

of �g using heavy quark processes. However, we conclude that if the experiments can

determine the polarized and unpolarized cross sections separately, instead of only their

ratio (the spin asymmetry), then it should be possible to keep the uncertainties under

control. We �nish the main part with a short summary in Chap. 9. The �rst appendix

collects the remaining results for the virtual loops. Several important technical issues are

discussed in App. B: series expansion of hypergeometric functions, (di)logarithmic branch

cuts, SU(N) color-factors, and two Slavnov-Taylor identities. The last appendix contains

the lengthy virtual plus soft formulae.



Chapter 2

Preliminaries

2.1 Techniques for Polarized Calculations

As has been explained in the introduction, our main goal is the determination of the

polarized gluon density �g. To elucidate the de�nition of this object, let us examine the

general expression for the polarized di�erential cross section of a process with a longitu-

dinally polarized (point-like) photon and a longitudinally polarized nucleon in the initial

state:

d��
N �
1

4

�
d�++


N
+ d���


N
� d�+�


N
� d��+


N

�
: (2.1)

Here a \+" or \-" as �rst index means that the spin of the photon is aligned or anti-aligned

to its momentum (the photon has positive or negative helicity), respectively. Similarly the

second index denotes the helicity of the nucleon. Note that the factor 1=4 is a convention.

If we had added all the cross sections in (2.1) indiscriminately, instead of subtracting those

with mixed helicities, we would have obtained the unpolarized cross section d�
N . The

factor 1=4 is required in the unpolarized case for the averaging over the helicities of the

initial states. Experimentalists prefer measuring asymmetries de�ned by counting rates

N ij as follows

A � N++ +N�� �N+� �N�+

N++ +N�� +N+� +N�+ � 1

!
=
d��
N

d�
N
;

(2.2)

where we assume a common luminosity N ij = Ld�ij. In the ratio some experimental

uncertainties are expected to cancel, in particular it is not necessary to know the absolute

normalization. However, for example acceptance corrections do usually not cancel and

are often quite important. If we now wish to match the experimental de�nition with

the simple theoretical form displayed in the second line of (2.2), we obviously have to

introduce the factor 1=4 in the polarized cross section as well.
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Each of the d�ij can be written in the following factorized form in QCD

d�ij

N

=
X

f=g;q;q

Z 1

0

dx
�
d�̂i+


f
(xK)f j+(x) + d�̂i�


f
(xK)f j�(x)

� b= d�̂i+

f
Æ f j+ + d�̂i�


f
Æ f j� ;

(2.3)

with i; j = +;� and the functional dependence on other quantities than x (in particular

on the factorization scale �f) is not shown for brevity. d�̂ is the partonic cross section

calculable in perturbative QCD. It depends on x through k = xK, where k is the momen-

tum of the parton and K is the momentum of the nucleon. Its second polarization index

now corresponds to the parton f involved. The upper polarization index of the parton f

corresponds to the nucleon and the lower one to the parton itself, e.g., q+� would be the

density of quarks with negative helicity in a nucleon with positive helicity. So we get

d��
N b=1

4

�
d�̂++


f
Æ f++ + d�̂+�


f
Æ f+� + d�̂�+


f
Æ f�+ + d�̂��


f
Æ f��

� d�̂++

f

Æ f�+ � d�̂+�

f

Æ f�� � d�̂�+

f

Æ f++ � d�̂��

f

Æ f+�
�

P
= d��̂
f Æ�f ; (2.4)

�f � f++ � f+� � f+ � f� ; (2.5)

d��̂
f �
1

2

�
d�̂++


f
� d�̂+�


f

�
: (2.6)

The important result used here is that parity P conservation of QCD guarantees for the

partons and cross sections that

f++ = f�� � f+ and f+� = f�+ � f� ;

d�̂��

f

= d�̂++

f

and d�̂�+

f

= d�̂+�

f

:
(2.7)

Of course these simpli�cations would not occur when treating parity breaking processes

for example of the electroweak sector. Note that due to parity we can introduce a single

polarization index for the partons f in (2.5) and (2.7), where now \+" or \-" mean the

spin of the parton is aligned or anti-aligned with the spin of the nucleon, respectively.

We could of course repeat the same derivation for the unpolarized case by replacing

all minus signs by plus signs. Furthermore it is obvious that the same conventions can be

applied to the matrix elements, since the phase-space integration leading to the partonic

cross sections can be factored out. Thus to collect our de�nitions that will be employed

at the parton level, we have for a parton f with f = g; q; q

unpolarized: f(x; �2
f
) = f+(x; �

2
f
) + f�(x; �

2
f
) ; (2.8)

polarized: �f(x; �2
f
) = f+(x; �

2
f
)� f�(x; �

2
f
) : (2.9)

where f+ and f� are the densities with the parton spin aligned and anti-aligned to the

spin of the nucleon, respectively. And for the matrix elements we get from (2.6)

unpolarized: jM j 2 = 1

2

�
jM j2 (++) + jM j2 (+�)

�
; (2.10)
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polarized: � jM j2 = 1

2

�
jM j2 (++)� jM j2 (+�)

�
; (2.11)

where the polarization indices here denote the helicities of the incoming particles. The

corresponding partonic di�erential cross sections d�̂ and d��̂ are obtained by phase-space

integration over jM j 2 and � jM j2, respectively. There is one more somewhat sophisticated
complication. As we have noted above, the unpolarized cross section is averaged over the

helicities, i.e., for both the incoming photon and nucleon we have divided by a factor 2

for both possible helicities. But we will regularize the spurious singularities occurring in

the higher order corrections by calculating in n = 4 + " dimensions and only take the

limit " ! 0 when all singularities have canceled. A massless boson in n dimensions has

n � 2 = 2(1 + "=2), and not 2, spin degrees of freedom1. So we should divide by n � 2

and not by 2 when calculating in n = 4 + " dimensions. We treat this issue by de�ning

E" �

8<: 1=(1 + "

2
) unpolarized

1 polarized
; (2.12)

and adding the rule that the matrix elements have to be multiplied by a factor E" for each

incoming boson. Note that E" = 1 for the polarized case, since the factor 1=4 occurring in
(2.1) just conveniently keeps experimental and theoretical de�nitions on par in the \real

world" of four dimensions.

As is obvious from (2.10) and (2.11), it would be of great practical advantage if

one could obtain matrix elements for speci�ed helicities. By calculating jM j2 (++) and
jM j2 (+�) separately, we would gain both the polarized and unpolarized matrix elements

simultaneously. Since the unpolarized processes under consideration in this work have

already been calculated, we could then use the re-calculation of the unpolarized results

as a check of our new polarized results! The needed helicity projection operators are well

known, see e.g. [48], so for the incoming (anti)quarks with momentum p, mass m and

de�nite helicity h = +1;�1 we use

u(p; h)�u(p; h) =
1

2
(p=+m)(1� h
5) ;

v(p; h)�v(p; h) =
1

2
(p=�m)(1 + h
5) :

(2.13)

Note that we recover the usual unpolarized completeness relations when summing over h.
For outgoing (anti)quarks, where we have to sum over the unspeci�ed helicities, we use

the usual
P

h
u�u = p= +m and

P
h
v�v = p=�m.

For a (real) incoming photon or gluon with momentum k and de�nite helicity �, we

have

��(k; �) �
�
�
(k; �) =

1

2

�
�g�� +

k��� + k���

k � � + i������
k���

k � �

�
; (2.14)

1A polarization vector has n components and satis�es two conditions: Lorentz k � � = 0 and gauge

freedom �� ! �0
�
= �� + ak�.
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where � is an arbitrary light-like (�2 = 0) four-vector with k � � 6= 0. Upon summing

over the helicities � we obtain the well-known physical polarization tensor P��. Thus

when we sum over the unspeci�ed helicities of outgoing photons or gluons, we employP
�
���

�
�
= P�� = �g�� + k���+k���

k�� as the �-tensor term drops out. However, (2.14)

introduces a lot of terms depending on the arbitrary vector � into the calculation. It is

of course a nice internal check of the calculation to see this dependence cancel out in the

end, but since the intermediate terms are very lengthy, we have chosen to minimize the

number of occurring terms.

= � �

= + +P�� 7! Æ �g�� 7! � ��k�

��k
k���

��k

Æ Æ � �

Figure 2.1: Graphical \rule" illustrating the replacement of the physical polarization sum P��
(Æ) by �g�� (�) and appropriate ghost contributions (dashed lines). The minus signs in the

lower half of the �gure are due to the cut ghost loop.

We will simply ignore the (k��� + k���)=(k � �) term, which will of course introduce

unphysical polarizations. But they only contribute in graphs containing a triple-gluon

vertex with two external gluons and we can eliminate these contributions by subtracting

similar diagrams with two external ghosts, see Fig. 2.1 for illustration. Of course there

is a trade-o�: we got rid of all the \unpolarized" �-terms, but we need to calculate more

diagrams. However, the number of triple-gluon graphs with two external gluons is small

(one in the case of photoproduction), the ghost diagrams are easy to calculate and the

cancellation of all the �-terms is implicit in the procedure. The graphical derivation shown

in Fig. 2.1 is explained in more detail in [49, 50, 51]. Basically it exploits a Slavnov-Taylor

identity derived in [52, 53], see also Sec. B.4. A further reduction of terms is achieved

by setting the remaining � in the �-tensor part of the polarization vector of an incoming

particle to the momentum of the other incoming particle. Since we calculate with incoming

partons, which are assumed to be on-shell and massless, the parton momenta k1 and k2
are light-like k21 = k22 = 0 and the scalar product k1 � k2 = s=2 6= 0, with s being the

non-zero center-of-mass energy squared. So the momenta can be used as choices for �.

Since then all scalar products in matrix elements are written in terms of the process

momenta only, cancellations occur in each of the matrix elements instead of just in the

sum. So e�ectively we will use for a (real) incoming photon or gluon with momentum k1
and de�nite helicity �1

��(k1; �1) �
�
�
(k1; �1) =

1

2

�
�g�� + i�1�����

k�1k
�

2

k1 � k2

�
; (2.15)
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where the other incoming particle has momentum k2. For the outgoing photons or gluons

we just use the metric
P

�
���

�
�
= �g��.

Note that parity conservation implies that the terms with and without dependence on

the helicity do not mix. That is for helicities �1 and �2: jM j2 (�1; �2) = A+�1B+�2C +

�1�2D, with jM j2 (++) = jM j2 (��) and jM j2 (+�) = jM j2 (�+) implies B = C = 0.

Thus (2.10) and (2.11) directly yield

jM j2 (�1; �2) = jM j 2 + �1�2� jM j2 : (2.16)

So if we do not specify the two helicities of the incoming particles, be it boson or fermion,

we can directly read o� the polarized matrix element as the coeÆcient of the product of

the helicities and the unpolarized matrix element as the rest. In practice we have used

this to obtain both matrix elements directly.

Only one problem remains: The quantities ����� and 
5 introduced by (2.15) and

(2.13), respectively, are of purely four-dimensional nature and there exists no straightfor-

ward continuation to n 6= 4 dimensions. We treat them by applying the HVBM prescrip-

tion [54], which provides an internally consistent extension of ����� and 
5 to arbitrary

dimensions. In this scheme the �-tensor continues to be a genuinely four-dimensional ob-

ject and 
5 is de�ned as in four dimensions, implying f
�; 
5g = 0 for � = 0; 1; 2; 3, but

[
�; 
5] = 0 otherwise. This e�ectively splits the n-dimensional space into two subspaces,
each one equipped with its own metric: one containing the four space-time dimensions

and one containing the remaining n� 4 dimensions, denoted \hat-space" henceforth. In

the matrix elements we then encounter not only conventional n-dimensional scalar prod-
ucts of two momenta, like k � p = g��k

�p� , which can be expressed in terms of the usual

Mandelstam variables, but also similar scalar products in hat-space dk � p = ĝ�� k̂
�p̂�.

It would seem that this complicates the polarized calculation considerably, as we have

additional hat space terms which require separate treatment in the phase-space inte-

gration. However, we are going to calculate one-particle-inclusive (1PI) cross sections.

That is, we observe one of the outgoing particles, a heavy (anti)quark, while integrating

over the rest of the outgoing particles. Any external observed momentum is inherently

four-dimensional and thus has no hat space components. We of course also observe the

incoming particles, so three momenta are directly set four-dimensional. Furthermore

energy-momentum conservation implies that the sum of the other momenta is also four-

dimensional. Incoming partons will carry a fraction of the momentum of their parents,

thus the same applies for the partonic sub-processes. So in 1PI 2 ! 2 processes all mo-

menta will be four-dimensional! Thus no hat contributions exist there. On the other hand

in 1PI 2! 3 processes, where we cannot eliminate all hat components, we can obviously

chose to work in the center-of-mass system of the two momenta that can have non-zero

hat components. Then their hat components are opposite and equal p̂ = �k̂, and only

one scalar hat product k̂2 occurs in the matrix elements and has to be taken care of in

the phase-space integration. For this reason we just forget about hat space completely in

this and the next chapter, which only treat 2! 2 processes. In Chap. 5 we will introduce

the Gottfried-Jackson frame [55, 56], which introduces center-of-mass hat components, to
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treat the 2! 3 processes. There it is also shown, that almost all hat contributions are of

O(") and hence drop out when the limit "! 0 is taken in the end. A �nal complication of

the HVBM scheme [54] is the violation of the helicity conservation at the qqg-vertex, see

[27] for a thorough discussion. However, this problem is easily treated by a �nite scheme

transformation during mass factorization, as is accordingly discussed in Chap. 6.

2.2 Born Cross Sections in n = 4 + " Dimensions

k1

k2
a

p1
i

p2
j

(a)

k1

k2
a

p1
i

p2
j

(b)

Figure 2.2: Feynman diagrams for the LO photon-gluon fusion process 
g ! QQ.

In this section we will re-calculate the well-known LO results for the unpolarized

and polarized photo- and hadroproduction of heavy 
avors. In our NLO calculations

we will later encounter 1="2 and 1=" poles, see Chap. 3 and Chap. 5, which will always

multiply the corresponding Born results in some form. Naturally then the calculation

of all �nite parts, also in the removal of the in�nities by renormalization (Chap. 4) and

mass factorization (Chap. 6), requires the extension of the LO calculations up to O("2)
in n = 4 + " dimensions. In the following we derive the 2 ! 2 phase-space integration

and the squared matrix elements in n dimensions, in order to obtain the n-dimensional

Born cross section. Of course we can also take the n ! 4 limit of the results to extract

the LO predictions themselves.

We start by calculating LO photoproduction, which just has the photon-gluon-fusion

(PGF) diagrams depicted in Fig. 2.2. We use the following external momentum and color

assignment (color is discussed in App. B.3)

~
(k1) + ~g a(k2)! Qi(p1) +Q
j
(p2) ; (2.17)

and the corresponding Mandelstam variables are given by

s � (k1 + k2)
2 = 2k1 � k2 ;

t1 � t�m2 = (k2 � p2)
2 �m2 = �2k2 � p2 ; (2.18)

u1 � u�m2 = (k1 � p2)
2 �m2 = �2k1 � p2 ;

k1 + k2 = p1 + p2 y s+ t1 + u1 = 0 : (2.19)
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All the external lines are on-shell: k21 = k22 = 0 (real photon) and p21 = p22 = m2, with

m denoting the heavy quark mass. All trace calculations in n = 4 + " dimensions are

performed using the Mathematica [57] package Tracer [58].

In order to present the unpolarized and polarized results simultaneously in the most

compact form, we will use henceforth j ~M j2 to denote both the unpolarized jM j 2 and

polarized � jM j2 color-averaged squared matrix elements calculated according to (2.10)

and (2.11), respectively. Similarly, in (2.20) below, ~BQED denotes either the unpolarized

BQED or the polarized �BQED and we will use this kind of tilde notation for all occurring

unpolarized and polarized pairs. The LO result for PGF can then be expressed as

j ~M j2LO
g = E2
"
g2e2e2

Q
~BQED ; (2.20)

�BQED =

�
t1

u1
+
u1

t1

��
2m2s

t1u1
� 1

�
;

BQED =
t1

u1
+
u1

t1
+
4m2s

t1u1

�
1� m2s

t1u1

�
+ "

�
s2

t1u1
� 1

�
+ "2

s2

4t1u1
;

(2.21)

where g and e are the strong and electromagnetic coupling constants, respectively, and eQ
is the electromagnetic charge of the heavy quark in units of e, e.g., eQ = ec = 2=3 for charm
quarks. Notice that the polarized �BQED retains its four-dimensional form and receives no

O(") contributions, in contrast to the unpolarized BQED. Furthermore the color-averaged

color-factor2 for the squared matrix elements simply gives Tr hT aT ai =(N2
C
� 1) = 1=2,

with the number of colors NC = 3, so compared to the Æii = NC of the 

 ! QQ process

we �nd a characteristic factor 1=(2NC). The name ~BQED is hence motivated by the fact

that we �nd the same function even in the pure QED process. We will see that it still

appears when the remaining photon is also replaced by a gluon.

To obtain the n-dimensional cross section, we also need to perform the 2! 2 phase-

space integration in n dimensions. Choosing the center-of-mass system (CMS) with k1 =p
s=4(1; 0; 0; 1; 0̂) and p2 = (E2; 0; j~p2j sin �; j~p2j cos �; 0̂), with all hat components zero as

discussed in the previous section, we �nd

dPS2 =

Z
dnp1

(2�)n�1
dnp2

(2�)n�1
Æ(p21 �m2)�(E1)Æ(p

2
2 �m2)�(E2)(2�)

nÆ(n)(k1 + k2 � p1 � p2)

=
1

(2�)n�2
Æ(s+ t1 + u1)

Z
dnp2Æ(p

2
2 �m2)�(E2)

=
�
n

2
�1

(2�)n�2
Æ(s+ t1 + u1)

�(n
2
� 1)

Z
dE2(E

2
2 �m2)

n�3
2 �(E2)

Z
�

0

d� sinn�3 � : (2.22)

By transforming to invariant variables (E2; �)! (t1; u1), we immediately get the standard

2! 2 phase-space in n = 4 + " dimensions

dPS2 =
2�

s
Æ(s+ t1 + u1)

h
(4�)2+

"

2�(1 +
"

2
)
i�1�t1u1 �m2s

s

� "

2

dt1du1 : (2.23)

2See App. B.3 for details on the calculation of SU(n) color-factors. In (2.20) the color-factor 1=2 is

already included, i.e., the colorless matrix elements give 2E2
"
g2e2e2

Q
~BQED.



2.2. Born Cross Sections in n = 4 + " Dimensions 19

k1
a

k2
b

p1
i

p2
j

k1
a

k2
b

p1
i

p2
j

k1
a

k2
b

p1
i

p2
j

(a) (b)

Figure 2.3: Feynman diagrams for (a) the LO triple-gluon vertex contribution and (b) the

corresponding ghost graphs according to Fig. 2.1 for the gluon-gluon fusion process gg ! QQ.

Now one can write the n-dimensional 2! 2 cross section as

d2~�2!2

dt1du1
= F"Æ(s+ t1 + u1)j ~M j2 ; (2.24)

F" �
�

s2

h
(4�)2+

"

2�(1 +
"

2
)
i�1�t1u1 �m2s

�2s

� "

2

; (2.25)

where F" collects all phase-space factors given in (2.23), the 
ux factor 1=2s, and the

mass parameter � is introduced to keep the gauge couplings g and e dimensionless in n

dimensions. ~� denotes the unpolarized and polarized cross section � and ��, respectively.
d~�

(0)
g
 can now be obtained from (2.24) by inserting the squared matrix elements of (2.20).

If one is only interested in the Born result itself, one can of course perform the "! 0 limit

in (2.20) and simply use F"=0 = 1=(16�s2). Our four-dimensional LO photoproduction

results for �
(0)
g
 and ��

(0)
g
 agree with those in [59, 46] and those derivable from [41, 60],

respectively.

Next we will calculate the gluon-gluon cross section for LO hadroproduction. We

replace in Fig. 2.2 the photon by a gluon and use the external momentum and color

assignment

~g a(k1) + ~g b(k2)! Qi(p1) +Qj(p2) : (2.26)

Of course we now have to add the triple-gluon contribution of Fig. 2.3, which has the

same external momenta and color and an internal gluon with the color index c. To ob-

tain incoming physical gluons, we subtract the incoming ghost contributions, shown in

Fig. 2.3 (b), according to Fig. 2.1. Concerning the color-factors we now get two distinct

contributions. After replacing the photon by a gluon in Fig. 2.2, the squared matrix ele-

ment of graph (a) with (a) and (b) with (b) both have a (color-averaged) color-factorX =

Tr


T aT bT bT a

�
=(N2

C
� 1)2 = 2CF=[4(N

2
C
� 1)] = 1=(4NC), with CF = (N2

C
� 1)=(2NC).

However, the interference of these two graphs gives similarly Tr


T aT bT aT b

�
=(N2

C
�1)2 =

X � Y , with Y = CA=[4(N
2
C
� 1)] and CA = NC . The same color-factor Y multiplied

with a (complex) number also appears on its own for the square of, and interference
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with, the triple-gluon vertex diagram of Fig. 2.3 (and of course also for the ghost con-

tributions), e.g., for the interference of Fig. 2.2 (a), 
 ! g, with Fig. 2.3 (a) we obtain

Tr


T aT bT c

�
fabc=(N2

C
� 1)2 = iY . We see that for the color-factor X we add the same

\colorless" squared matrix elements with the same weight as in the photoproduction

case, whereas for the color-factor Y we collect the new non-abelian matrix elements and

an abelian interference contribution. The result

j ~M j2LOgg = E2
"
g4

1

2(N2
C
� 1)

�
2CF � CA

2t1u1

s2

�
~BQED ; (2.27)

to be used with (2.21) and (2.24), then displays in the color-factor X part the photo-

production result of (2.20) with strong couplings only and with the characteristic factor

1=(2NC) for changing a photon to a gluon. On the other hand, the color-factor Y part has

di�erent dynamics, as is evident by the additional factor 2t1u1=s
2. This pattern of recov-

ering \abelian" parts as coeÆcients for certain color-factors will repeat itself throughout

the calculations. Our result (2.27) can be compared to [41, 44], see also [61, 49] for earlier

work on the unpolarized hadroproduction of heavy quarks in LO.

k1
j

k2
i

p1
k

p2
l

Figure 2.4: The LO quark-antiquark annihilation process qq ! QQ.

Finally, we will calculate the LO quark-antiquark annihilation process depicted in

Fig. 2.4. The external momentum and color assignment is

~qj(k1) +~�qi(k2)! Qk(p1) +Q
l
(p2) : (2.28)

Here the color-factor is simply Tr


T aT b

�
Tr


T aT b

�
=N2

C
= CF=(2NC), where a and b are

the color indices of the internal gluon in amplitude and complex conjugate amplitude,

respectively. Then we get

j ~M j2LOqq =
CF

NC

g4 ~AQED ; (2.29)

�AQED = �t
2
1 + u21
s2

� 2m2

s
+
"

2
;

AQED =
t21 + u21
s2

+
2m2

s
+
"

2
:

(2.30)

There is no O("2) contribution. If we had calculated the same process with an internal

photon, we would have obtained the same result except for the changed color-factor
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Figure 2.5: Total LO charm spin asymmetry at RHIC [32] for
p
S = 200; 500 GeV (thick, thin

lines) for di�erent polarized parton sets [15, 18] and the unpolarized GRV'94 densities [62],

plotted as function of xmin

T
. This means varying the pT -cut pT � pmin

T
, where xmin

T
= pmin

T
=pmax

T
.

For illustration the two pmin

T
values corresponding to xmin

T
= 0:02 and

p
S = 200 and 500 GeV,

respectively, are inserted. An estimate of �ÆAc

pp
according to (2.31) is also shown.

ÆiiÆkk=N
2
C
= 1 and the electromagnetic instead of the strong coupling, hence the name

~AQED. The unpolarized n-dimensional result agrees with the one in [46].

Note that helicity conservation at a (massless) quark-antiquark vertex requires that

jM j2 (++) = 0. Thus according to (2.10) and (2.11) we must have � jM j2 = �jM j 2. But
we �nd from (2.30) that � jM j2 + jM j 2 � " 6= 0! This is due to the commuting 
5 in
the "-dimensional hat-space of the HVBM scheme [54]. However, this violation of helicity

conservation only becomes relevant when ~AQED appears in front of NLO poles 1=". For
the pure LO process the limit " ! 0 can be taken and helicity conservation is restored.

In NLO, we have to subtract �AQED of (2.30) in the mass factorization procedure of

Chap. 6, if the NLO subprocesses are calculated in the HVBM scheme as well, as they are

here. This corresponds to a �nite scheme transformation and will help restoring helicity

conservation. Only similar helicity violations due to �Pqq remain to be removed then, see

Chap. 6 for details. It is for this reason that we quote the \unphysical" HVBM result for
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the O(") of �AQED, instead of using �AQED = �AQED. This completes our derivation

of the LO matrix elements and cross sections for photoproduction and hadroproduction.

The corresponding QED process with two gammas in the initial state can also be derived

from the results shown here.

In the next chapters we will show how NLO corrections to these processes can be

obtained. The theoretical motivation for doing so already has been given in the introduc-

tion. So we will here simply include a plot, Fig. 2.5, showing a LO prediction for the total

charm hadroproduction asymmetry Ac

pp
= ��c

pp
=�c

pp
at RHIC [32] for two di�erent center-

of-mass energies (
p
S = 200 GeV with L = 240 pb�1 as thick and

p
S = 500 GeV with

L = 800 pb�1 as thin lines). A cut on minimal transverse momentum pmin
T

has been in-

troduced, so the dependence on xT = pmin
T
=pmax

T
, with the maximal kinematically allowed

transverse momentum pmax
T

=
p
S=4�m2

c
is shown. For details on deriving hadronic

cross sections see Chap. 8. A rough statistical error estimate using the formula

ÆAc

pp
' 1

P 2
p

1p
"cL�cpp

(2.31)

with a detection eÆciency of "c = 0:001 is also displayed. The distance between the lines

for �ÆAc

pp
is a crude estimate of the expected statistical error bars. By inspecting this

plot, it is obvious that in LO this process, which will be measured soon at an experimental

facility, allows a very good separation of di�erent �g on the market [15, 18]. Hence the

calculation of NLO corrections is needed also from a phenomenological point of view.

Similar conclusions concerning (LO) photoproduction have already been drawn earlier,

see for example [63].
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Virtual Contributions

3.1 Dimensional Regularization

Virtual contributions are characterized by the additional internal exchange of particles,

so in NLO there is the same number of incoming and outgoing particles as in the Born

diagrams. For the reactions considered here the virtual parts are 2! 2 processes with the

same simple kinematics (2.18) and phase-space (2.23) as the tree level diagrams. Since

an internal line has to couple at its two endpoints, each of them yielding an additional

factor g, only one additional internal line is allowed in NLO QCD, where we compute

corrections of the order �s � g2. Thus only three di�erent topologies can arise as part of

the amplitude, which are shown in Fig. 3.1.

(a) (b) (c)

Figure 3.1: The topologies that can occur in the NLO virtual contributions: (a) self-energy,

(b) vertex correction, and (c) box diagram. Note that the straight lines here can symbolize

photons, gluons, ghosts, or quarks, as is appropriate.

The �rst type of diagram, Fig. 3.1 (a), is called self-energy, because the \same" particle

appears at both (truncated) legs. It will also be denoted as bubble graph because of its

shape and as 2-point function (2PF) graph, because it has two vertices. The second

topology, Fig. 3.1 (b), is called vertex correction, because it results from an interaction

between the legs of a vertex. It will also be named triangle or 3-point function (3PF)

graph. Finally, Fig. 3.1 (c), is identi�ed by its shape as box diagram or 4-point function

(4PF) graph. Since the virtual diagrams contain the same number of external (observed)

particles as the Born diagrams, the new matrix elements have to be added coherently. But

since a single virtual amplitude already supplies the additional �s of NLO, one only has to



24 Chapter 3. Virtual Contributions

consider the interference of the virtual with the tree level amplitudes when squaring the

matrix elements. The products of the virtual diagrams with themselves can be discarded

as being beyond NLO. Thus virtual contributions in general have simpler kinematics,

phase-space and combinatorics than the real contributions, which will be considered in

Chap. 5. However, in practice the virtual contributions can become quite numerous

and are at least as diÆcult to compute as the real ones, because the additional particle

exchange itself complicates the calculation considerably. In the following we will show

step by step how to deal with the problems one encounters.

Since this additional particle is virtual and since energy-momentum conservation does

not provide any constraint on it, its four-momentum can take on any value whatsoever and

one has to integrate over all the possibilities. To illustrate the ensuing diÆculties, we will

consider a simpli�ed integral �rst [64]. A massless virtual particle with four-momentum

q will introduce a q2 in the denominator, so let us consider the integralZ
d4q

(�q2)! with ! = 1; 2; : : : (3.1)

By inspecting the dimensions, we see that the integral is infrared (IR) divergent for 4 � 2!
and ultraviolet (UV) divergent for 4 � 2!. Thus it is divergent for all !. We regularize

the integral by shifting the dimension of q to n = 4+". Obviously then "IR > 2(!�2) and
"UV < 2(! � 2) to obtain �nite results. By performing a Wick rotation to the Euclidean

momentum Q2 = q20+q
2
1+q

2
2+q

2
3, integrating out the angles in a polar coordinate system

1

and splitting the integral we obtain

�i�(n=2)
�n=2

Z
dnq

(�q2)! =

Z �2

0

dQ2(Q2)n=2�!�1 +

Z 1

�2
dQ2(Q2)n=2�!�1

=
2�"IR�2(!�2)

"IR � 2(! � 2)
� 2�"UV�2(!�2)

"UV � 2(! � 2)
:

(3.2)

For ! = 2 one explicitly sees both the UV and IR pole. For other ! values we �nd as

expected, that the �rst (IR regulated) term diverges in the UV limit � ! 1 and the

second (UV regulated) term diverges in the IR limit �! 0.

Now we can on one hand chose to treat the UV and IR singularities separately, see

for example [65]. Typically one would then �rst calculate the UV divergencies with

"UV while keeping the external legs o�-shell. The latter provides the cuto� for the IR

singularities which we introduced by hand in (3.2). Then one would remove the UV poles

by renormalization, continue analytically "UV ! "IR and put the external legs back on

shell, exposing the IR poles which are later canceled against real contributions. This

method has the advantage of clearly exhibiting the source of the poles, but leads to a

rather tedious procedure. We can on the other hand decide to do without this distinction

and immediately use analytical continuation to unify "UV = "IR = " with " > 0. Then

1For more details on the used calculation techniques see App. A.1.



3.2. Basic Scalar n-Point Functions 25

(3.2) appears in the simplest possible formZ
dnq

(�q2)! = 0 ; (3.3)

and one can take here the n ! 4 limit immediately, since the integral now vanishes and

thus no dependence on " remains on the r.h.s. Note that our choice of setting "UV = "IR
is well motivated by the fact, that in (3.2) the l.h.s. of the equation does not depend

on a mass scale, whereas the r.h.s has two parts which do. Hence we should chose the

continuation procedure in such a way, that the dependence on � cancels. All this does

not mean that the divergencies have somehow magically disappeared in four dimensions.

Rather we have made a special choice of evaluating the per se undetermined integral

(3.1). This only makes sense if the end result of the complete calculation is �nite and

thus independent of the treatment of spurious divergencies in the intermediate steps, as it

has to be for a physical process. We have chosen to use the uni�ed " approach throughout
the calculations for simplicity.

3.2 Basic Scalar n-Point Functions

After having chosen our general method for dealing with the virtual corrections in the

last section, we can now proceed to deal with the loop integrals that will actually appear

in the calculation. The QCD propagators that can appear in the loops of Fig. 3.1 are

shown in Fig. 3.2.
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�

a

k

b

�
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��

k2
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k
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1
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(a) (b) (c)

Figure 3.2: Feynman Rules for the QCD propagators of (a) quark, (b) gluon and (c) ghost in

the Feynman gauge. The i� shift in the denominators is omitted for brevity.

Obviously in the denominator of the loop integrals, terms of the general form Li �
l2
i
� m2

i
+ i� will be appearing, where li is the four-momentum of the i-th propagating

particle, mi is its mass and the i�-prescription is used to ensure causality2. With respect

to the loops in Fig. 3.1 one arbitrary propagator can be set to carry the loop momentum q

only: l1 = q. Counting all external particles as incoming, at the next vertex the incoming

four-momentum q1 will be added into the loop and the next propagator has l2 = q + q1

2This causal � has nothing to do with the " of dimensional regularization.
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and so forth. Thus we can de�ne the following basic scalar integrals:

1PF: A0(m1) � ��"
Z

dnq

(2�)n
1

L1

;

2PF: B0(q1; m1; m2) � ��"
Z

dnq

(2�)n
1

L1L2

;

3PF: C0(q1; q2; m1; m2; m3) � ��"
Z

dnq

(2�)n
1

L1L2L3

;

4PF: D0(q1; q2; q3; m1; m2; m3; m4) � ��"
Z

dnq

(2�)n
1

L1L2L3L4

:

(3.4)

We have added a 1-point function (1PF) A0 for completeness. Furthermore the �
�" with

an arbitrary mass scale � in front guarantees for n = 4 + " that the integral has an

integer mass dimension3, i.e., [��"][dnq] = mass4�nmassn = mass4. Note that the virtual

processes considered here are 2! 2, i.e., there are only four external momenta. Thus the

4PF diagrams must couple directly to those external momenta at NLO. We have de�ned

the qi to be incoming, so the momenta of the outgoing particles will enter with a negative

sign. Thus energy-momentum conservation implies that l4 = q + q1 + q2 + q3 = q � q4
here.

In App. A.1 it is shown that the integrals (3.4) can be brought into the general form

A0jj=1; B0jj=2; C0jj=3; D0jj=4 = iC" P"(j) (m
2)2�jJjK2�j+ "

2 ; (3.5)

with j being the number of propagators, e.g., j = 3 for the 3PF C0. In our processes

the masses mi in (3.4) are either zero (for light quarks, gluons or ghosts) or equal to the

heavy quark mass m, so this single mass scale has been factored out. We have introduced

C" �
1

16�2
e
"

2
(
E�ln 4�)

�
m2

�2

� "

2

; Sl(n) �
nX

k=1

1

kl
;

P"(j) � (�1)j
1� "

2
S1(j � 1) + "2

8
[�(2) + S2

1(j � 1)� S2(j � 1)] +O("3)
(j � 2� "

2
)(j � 1� "

2
)

;

(3.6)

and furthermore used Riemann �(2) = �2=6, Euler 
E = 0:5772 : : : and Sl(0) = 0. Jj is a
suitable Feynman parameter integration which is used to bring the denominator into the

form (q2 �K)j, e.g.,

J1 = 1 ; J2 =

Z 1

0

dx ; J3 = 2

Z 1

0

dx dy x ; J4 = 6

Z 1

0

dx dy dz x2y : (3.7)

For j = 1; 2 the power of K is 2� j + "

2
> 0, so the integration is �nite and P" is only

needed to O(1). For j > 2 the power of K becomes negative and thus the integration can

3This scale can also be viewed as keeping the regularized coupling dimensionless, see Chap. 4.
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yield poles in ". Examining Tab. 3.1, which collects the parametrization formulae, we see

that poles can appear when there are terms of the type x�1+"=2 or (1�x)�1+"=2. This can
happen for none, one or two parameters, so that we get �nite, 1=" or 1="2 contributions,

respectively. Note that the integration over z is always �nite for the 4PF: if K has a

zero in z, it will be of the form z�2+"=2 or (1� z)�2+"=2 which can be integrated without

leading to a pole. Thus even for the box integrals we get at most 1="2, which is of course

expected, since the real contributions canceling the poles can not provide higher powers

of 1=" in NLO: simultaneous collinear and infrared limits in the emission of one gluon

yields only 1="2.

Note also that the causal ��prescription is important for determining the correct

analytical continuation of the (di-)logarithms appearing in the calculation. Fortunately

here we can drop all imaginary parts of the Jj integrals, which simpli�es the continuation

procedure. The reason is that they will be included in the virtual corrections, for which

only the interference term with the Born amplitudes contributes at NLO, see the discussion

in Sec. 3.1. That interference term can be written as 2Re [Mvirt.M
�
Born], so the imaginary

parts of the virtual matrix element do not contribute, since the Born matrix element is

real. For virtual NLO graphs one always has �ve extra i from the Feynman rules as

compared to the tree graphs. This together with the multiplication of i : : : in (3.5) gives

a real prefactor multiplying the Jj Feynman parameter integrations. So we will need only

the real parts of the Feynman parameter integrals, like for (3.11) and (3.14) below, which

leads to a purely imaginary integral (3.15) below by multiplication with i and then to a

real contribution with the �ve i's coming from the Feynman rules. For a discussion of

some possible simpli�cations under these circumstances see App. B.2. Basically we can

drop the causal � by treating logarithms with arguments on the branch cut appropriately,

if we are only interested in the real parts.

k2

k1

p2

p1

q

Figure 3.3: The hadroproduction box graph leading to the basic scalar integral (3.15).

The needed set of basic scalar integrals has been collected in [44] and will be re-

calculated in App. A.2. Here we will show how to perform the integration of the box

integral D0(�k1; p1; p2; 0; 0; m; 0) in some detail, to demonstrate the practical diÆculties.

It arises in the hadroproduction graph displayed in Fig. 3.3. By inserting the momenta

in the expression of Tab. 3.1, we can write K = ac~t � bd~s + c2 with ~t � �t1=m2 and

~s � s=m2, where we have used the fact that a + b + c + d = 1. Next we pick the pa-

rameters so that K is linear in z, in order to facilitate the �rst integration. The choice

fa; b; c; dg = fxy(1� z); xyz; x(1 � y); 1� xg satis�es this and upon integrating K�2+"=2

over z and multiplying with x2y { see (3.7), the factor 6 cancels against the 1/6 of P"(4)
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j P"(j) m2(K + i�) fa; b; c; : : : g

1 �2
"
+ 1 +O(") am2

1 f1g

2 �2
"
+O(") �abq21 + am2

1 + bm2
2 fx; 1� xg

3 �1
2

�
1 + "2

8
�(2)

�
�abq21 � ac (q1 + q2)

2 � bcq22 fxy; x(1� y);

+O("3) + am2
1 + bm2

2 + cm2
3 1� xg

4 1
6

�
1� "

2
+ "2

8
�(2)

�
�abq21 � ac (q1 + q2)

2 � ad (q1 + q2 + q3)
2 fxyz; xy(1� z);

+O("3) � bcq22 � bd(q2 + q3)
2 � cdq23 x(1� y); 1� xg

+ am2
1 + bm2

2 + cm2
3 + dm2

4

Table 3.1: The factor P" and the Feynman parametrized kernels of the basic j-point functions

(3.4) used with (3.5) and (3.7). P" is given up to the relevant order in ". Note that a+ b +
c + : : : = 1 and that the assignment of the shown sets can be in any order, i.e., there are j!
possibilities.

{ we get the sum of two parts Ixy + IIxy:

2x�1+"(1� y)�1+
"

2 (1 + (~t� 1)y)�1+
"

2

(�2 + ")(~s(1� x) + ~tx(1� y))| {z }
Ixy

�2x
"

2 f�~sy + x [(1� y)2 + ~sy]g�1+
"

2

(�2 + ")(~s(1� x) + ~tx(1� y))| {z }
IIxy

: (3.8)

Beginning with part Ixy, we can perform the x-Integration, which leads to the hyper-

geometric function 2F1(1; "; 1+ "; [~s� ~t(1� y)]=~s), of which we take the series expansion,

see (B.5) in App. B.1, to get:

Iy =
2(1� y)�1+

"

2 (1 + (~t� 1)y)�1+
"

2

h
1� " ln

�
~t
~s
(1� y)

�
� "2 Li2

�
~s�~t(1�y)

~s

�i
(�2 + ")"~s

; (3.9)

with the dilogarithmic function Li2(z). The remaining y integration diverges for y ! 1

and is too complicated to be tackled directly. We de�ne a counterterm which corresponds

to the y ! 1 limit:

Ic
y
�

2(1� y)�1+
"

2 ~t�1+
"

2

h
1� " ln

�
~t
~s
(1� y)

�
� "2 �

2

6

i
(�2 + ")"~s

: (3.10)

So Iy � Ic
y
is �nite with respect to the y integration, which means that we can expand it

in " to O(1) before integrating! The resulting integral can be done. Furthermore Ic
y
is

simple enough to be integrated, keeping the " dependence, and expanding in " only after
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the integration. It is important that (3.10) mirrors the complete y ! 1 structure, e.g.,

the "2 part cannot be dropped since it will contribute at O(1), but will not occur in the

integration of the O(1) expansion of Iy � Ic
y
. The sum of both gives the result:

I = � 1

~s~t

�
6

"2
+
3 + 2 ln ~s+ 2 ln ~t

"
+
3

2
� �2

3
+ ln ~t

�
1� ln ~t

�
+ ln ~s

�
1 + 2 ln ~t

��
: (3.11)

Turning to IIxy, we note that the integral only diverges when x ! 1. But x"=2 =

1 + "

2
lnx + "2

8
ln2 x + : : : , i.e., that term gives contributions other than unity only when

multiplied by a pole in ". However, since the poles occur only for x = 1 where ln(x =

1) = 0, we can simply set x"=2 ! 1 prior to integration. Then we can perform the x

integration. The resulting hypergeometric functions are best transformed linearly, see for

example [66], in order to exhibit the y-structure clearly. One gets:

IIy = �
4i�~s�1+

"

2

�
~s� ~t(1� y)

�� "

2 (1� y)�1+
"

2

�
1 + (~t� 1)y

��1+ "

2

�2 + "

�
4(1� y)�1+" 2F1

�
1; "

2
; 1 + "

2
;
(~s�~t(1�y))(1�y)
~s(1+(~t�1)y)

�
(�2 + ")"~s

�
1 + (~t� 1)y

� + 4(1� y)�1+
"

2 (�1) "2 ~s�1+ "

2y
"

2

�
((1� y)2 + ~sy)

� "

2
�
1 + (~t� 1)y

��1+ "

2
2F1

�
"

2
; "
2
; 1 + "

2
;
(~s�~t(1�y))y
(1�y)2+~sy

�
(�2 + ")"

: (3.12)

The series expansion of the new hypergeometric function can also be found in App. B.1.

Again we �nd a divergence in y and de�ne an appropriate counterterm for the y ! 1

limit:

IIc
y
�
�24(1� y)�1+" + (1� y)�1+

"

2

�
�24i"� + (�1) "2 (24 + "2�2)

�
~t
"

2

6(�2 + ")"~s~t
: (3.13)

Proceeding like for Iy, we can complete the integration

II = � 1

~s~t

�
2

"2
+
1 + 2 ln ~t

"
+
1� �2 + 2(1 + ln ~t) ln ~t

2

�
: (3.14)

We have dropped any imaginary parts that occur in our �nal integrated results as

mentioned above. Summing I + II and multiplying by iC"
1
m4

�
1� "

2
+ "2

8
�(2)

�
, we then

get the �nal answer

D0(�k1; p1; p2; 0; 0; m; 0) =
iC"

st1

�
8

"2
+
2

"

�
2 ln ~t + ln ~s

�
+ 2 ln ~s ln ~t� 4�(2)

�
; (3.15)

in accordance with Eqn. (A4) of [44].
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3.3 Passarino-Veltman Decomposition

The fermion propagators of the virtual contributions Fig. 3.1 have the form iÆij(p= +

m)=(p2 � m2) and thus they introduce the loop momentum also in the numerator. We

can generalize the basic de�nitions of (3.4) to take the more complicated numerator into

account, e.g.,

Df0;�;��;���g(q1; q2; q3; m1; m2; m3; m4) � ��"
Z

dnq

(2�)n
f1; q�; q�q� ; q�q�q�g

L1L2L3L4

: (3.16)

It is generally more diÆcult to calculate this type of tensor integral than the scalar

integrals we have encountered up to this point. Note that for the processes we will be

calculating tensors integrals of rank three or less have to be considered. A box diagram

with four fermion propagators is of course possible, but it would require two outgoing

photons or gluons, respectively, whereas we need here two outgoing heavy quarks. For

this reason we do not have to examine integrals of the type D����.

We know that the Lorentz covariant structure of the tensor loop integrals can only

depend on the momenta of the attached legs and on the metric g�� . This immediately

suggests decomposing the integrals accordingly, a technique called Passarino-Veltman

decomposition [47], which is also conveniently summarized in Ref. [67]. One can easily

write down the possible Lorentz covariant combinations:

B� = q�1B1 ;

B�� = q�1 q
�

1B21 + g��B22 ;

C� = q�1C11 + q�2C12 ;

C�� = q�1 q
�

1C21 + q�2 q
�

2C22 + fq1q2g��C23 + g��C24 ;

C��� = q�1 q
�

1q
�

1C31 + q�2 q
�

2q
�

2C32 + fq1q1q2g���C33 + fq1q2q2g���C34

+ fq1gg���C35 + fq2gg���C36 ;

D� = q�1D11 + q�2D12 + q�3D13 ;

D�� = q�1 q
�

1D21 + q�2 q
�

2D22 + q�3 q
�

3D23 + fq1q2g��D24 + fq1q3g��D25

+ fq2q3g��D26 + g��D27 ;

D��� = q�1 q
�

1q
�

1D31 + q�2 q
�

2q
�

2D32 + q�3 q
�

3q
�

3D33 + fq1q1q2g���D34 + fq1q1q3g���D35

+ fq1q2q2g���D36 + fq1q3q3g���D37 + fq2q2q3g���D38 + fq2q3q3g���D39

+ fq1q2q3g���D310 + fq1gg���D311 + fq2gg���D312 + fq3gg���D313 :

(3.17)

The scalar coeÆcient integrals on the r.h.s. can depend on all the possible scalar invariants

of the leg momenta and on the massesmi. The arguments of the tensor and scalar integrals

have been omitted for brevity. The brackets f: : : g��::: are a shorthand denoting the sum

of all possible di�erent Lorentz index permutations, for example fq1q1q2g��� = q�1 q
�

1q
�

2 +
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q�1q
�

1q
�

2 + q�1q
�

1 q
�

2 and fq1gg��� = q�1 g
�� + q�1g

�� + q�1g
��. All Lorentz index permutations

must have the same scalar integral as coeÆcient, since the tensor integrals like (3.16)

stay invariant under these permutations. This property will later be shown to result

in stringent consistency checks on the decomposition, since the same coeÆcient will be

obtained no matter how the projection is ordered.

The decomposition, a 13 � 13 matrix problem in case of D���, looks forbidding, but

it is possible to reduce it to at most a 3 � 3 matrix problem by taking into account the

fact that leg momenta are added one by one into the loop. As already mentioned above,

in the propagators Li � l2
i
�m2

i
+ i� the momentum li has then the simple progression

l1 = q; l2 = q + q1; l3 = q + q1 + q2 and l4 = q + q1 + q2 + q3. Thus we can rewrite the

scalar product of the leg momenta and the loop momentum in the following way

q1 � q = (L2 � L1 + f1)=2 with f1 � m2
2 �m2

1 � q21 ;

q2 � q = (L3 � L2 + f2)=2 with f2 � m2
3 �m2

2 � (q1 + q2)
2 + q21 ; (3.18)

q3 � q = (L4 � L3 + f3)=2 with f3 � m2
4 �m2

3 � (q1 + q2 + q3)
2 + (q1 + q2)

2 :

Since the Li terms introduced by rewriting the scalar product will cancel against the

propagators in the denominator and since the fi do not contain the loop momentum,

we can e�ectively remove q from the numerator this way! The price to be paid is the

introduction of new scalar integrals of the form occurring for loops with one propagator

less. To make this clear, consider as an example

q�2D� = ��"
Z

dnq

(2�)n
q2 � q

L1L2L3L4

=

Z
(L3 � L2 + f2)=2

L1L2L3L4

=
1

2

" Z
1

L1L2L4| {z }
C0(1; 2; 4)

�
Z

1

L1L3L4| {z }
C0(1; 3; 4)

+f2D0

#
(3.19)

where the integration sign is a shorthand for ��"
R
dnq=(2�)n here and below.

Apart from the expected scalar integralD0 corresponding to the tensor integralD�, one

has two new scalar integrals C0(1; 2; 4) and C0(1; 3; 4) having three propagator terms in the

denominator, which however di�er from those of the generic C0 = C0(1; 2; 3) introduced

directly by the vertex corrections. But now all we have to do is to project onto these

scalar products of loop and leg momenta, which at worst for the boxes is a 3� 3 matrix

problem, and calculate the (new) scalar integrals. To this end one de�nes a projective

momentum

P �

l
qi� = Æil ; (3.20)

where the indices i; l = 1; 2; : : : ; d run over the number of independent leg momenta d,

that is the number of propagators in the loop minus one. For self-energies B we have only

one independent leg momentum and thus

P �

1 = X�1
B
q�1 with XB = q21 : (3.21)
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For vertex corrections C there are two independent leg momenta and so0@P �

1

P �

2

1A = X�1
C

0@q�1
q�2

1A with XC =

0@ q21 q1 � q2
q1 � q2 q22

1A : (3.22)

Finally for box integrals there are three0BBB@
P
�

1

P �

2

P �

3

1CCCA = X�1
D

0BBB@
q
�

1

q�2

q�3

1CCCA with XD =

0BBB@
q21 q1 � q2 q1 � q3

q1 � q2 q22 q2 � q3
q1 � q3 q2 � q3 q23

1CCCA : (3.23)

Only when the inverse of the matrices X exists can this simpli�cation be used.

Using these de�nitions we can already treat all the vector integrals occurring in the

nPF graphs. As an example C� = q�1C11 + q�2C12 will be worked out explicitly here:0@C11

C12

1A =

0@P �

1

P �

2

1AC� = X�1
C

0@q�1C�

q�2C�

1A � X�1
C

0@R1

R2

1A ; (3.24)

with

R1 =
1

2
[B0(1; 3)� B0(2; 3) + f1C0] ; R2 =

1

2
[B0(1; 2)� B0(1; 3) + f2C0] ; (3.25)

and the inverse of XC is easily calculated to be

X�1
C

=
1

q21q
2
2 � (q1 � q2)2

0@ q22 �q1 � q2
�q1 � q2 q21

1A : (3.26)

Note that for the calculation of B0(2; 3), we can shift the integration q + q1 ! q

B0(2; 3) =

Z
1�

(q + q1)
2 �m2

2

� �
(q + q1 + q2)

2 �m2
3

� = Z 1

(q2 �m2
2)
�
(q + q2)

2 �m2
3

� ;
(3.27)

bringing it into the standard form for B0. Similarly one proceeds for C0(2; 3; 4).

Next we need to construct a projective tensor which singles out the metric g��, using

the projective momentum P �

l
,

P �� � 1

n� d

"
g�� �

dX
l=1

P �

l
q�
l

#
; (3.28)



3.3. Passarino-Veltman Decomposition 33

where d again is the number of independent leg momenta and n = 4+ " is the spacetime

dimension. This leads to the desired properties

P ��qi� = P ��qi� = 0 ; P ��g�� = 1 : (3.29)

As an example, the 3PF coeÆcient of the metric is obtained using this projective tensor:

C24 = P ��C�� =
1

n� 2
[g�� � P

�

1 q
�

1 � P
�

2 q
�

2 ]

Z
q�q�

L1L2L3

=
1

n� 2

�Z
1

L2L3

+m2
1

Z
1

L1L2L3

� R3 � R6

�
=

1

n� 2

�
m2

1C0 �
1

2
(f1C11 + f2C12 � B0(2; 3))

�
; (3.30)

R3 �
1

2
P �

1

Z �
q�

L1L3

� q�

L2L3

+ f1
q�

L1L2L3

�
=

1

2
P �

1 fB�(1; 3)� [B�(2; 3)� q1�B0(2; 3)] + f1C�g

=
1

2
[B1(1; 3) +B0(2; 3) + f1C11] ; (3.31)

R6 �
1

2
P �

2

Z �
q�

L1L2

� q�

L1L3

+ f2
q�

L1L2L3

�
=

1

2
[�B1(1; 3) + f2C12] : (3.32)

In the �rst step q2 = L1 + m2
1 and (3.18) were used. Note the shift q ! q + q1 in the

second integration in the �rst step of calculating R3, so that B�(2; 3) = q2�B1(2; 3), which
gives no contribution when contracted with P �

1 . It is of great advantage that this type of

projection properties can be used on the tensors with reduced rank4 in the intermediate

steps.

Turning to the C�� coeÆcients depending on the leg momenta, we can use the projec-

tive momentum twice0@C21

C23

1A = P �

1

0@P �

1

P �

2

1A ~C�� = X�1
C

0@R3 � C24

R4

1A ;

0@C23

C22

1A = P �

2

0@P �

1

P �

2

1A ~C�� = X�1
C

0@ R5

R6 � C24

1A ;

(3.33)

R4 � P �

1 q
�

2C�� =
1

2
[B1(1; 2)� B1(1; 3) + f2C11] ;

R5 � P �

2 q
�

1C�� =
1

2
[B1(1; 3)� B1(2; 3) + f1C12] ;

(3.34)

4For P��B�� one needs P
�

1

R
q�=L1 = 0, easily proven in the rest frame of q1, because then q1 �q = q01q0

yields an integral odd in the energy component q0.
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where ~C�� � C�� � g��C24 has the metric contribution subtracted. Since there are two

ways of projecting out C23, depending on whether P1 or P2 is used �rst, this coeÆcient

is obtained twice. This kind of redundancy occurs for all possible permutations of the

projection order and allows one to perform internal consistency checks for all the multiply

obtained coeÆcients!

For C���, we already know how to project out the terms with the metric, e.g.,0@C35

C36

1A = P ��

0@P �

1

P �

2

1AC��� = X�1
C

0@R10

R11

1A ; (3.35)

R10 � P ��q�1C��� =
1

2
[B22(1; 3)� B22(2; 3) + f1C24] ;

R11 � P ��q�2C��� =
1

2
[B22(1; 2)� B22(1; 3) + f2C24] :

(3.36)

It is convenient to construct a complementary tensor to P ��, which projects onto speci�c

combinations of two leg momenta:

P ��

kl
� P �

k
P �

l
� (Pk � Pl)P �� ; (3.37)

with the properties

P ��

kl
qi�qj� = ÆikÆjl ; P ��

kl
g�� = 0 : (3.38)

Then we can for example write0@C31

C33

1A = P ��

11

0@P �

1

P �

2

1A ~C��� = X�1
C

0@R12 � 2C35

R13

1A ; (3.39)

R12 � P ��

11 q
�

1C��� =
1

2
[B21(1; 3)� B0(2; 3) + f1C21] ;

R13 � P ��

11 q
�

2C��� =
1

2
[B21(1; 2)� B21(1; 3) + f2C21] ;

(3.40)

where ~C��� � C��� � fq1gg���C35 has the metric part contributing here subtracted.

This completes the necessary collection of projection operators. We have already

performed part of the necessary decompositions for the vertex corrections in the examples

given above, and the self-energy and box integrations can be treated likewise. A collection

of further results can be found in App. A.3. Though this procedure is straightforward, its

actual implementation requires a computer algebra system like Mathematica [57]. The

general decomposition for arbitrary momenta and masses of the 4PF alone results in

Mathematica output of more than three MByte length before simpli�cation. Managing

this lengthy result was facilitated by de�ning a space in the possible basic functions B0; C0

andD0, so that the coeÆcient relations become vector equations in that space. Simplifying

the formulae for speci�c momenta and inserting the basic functions will usually reduce

the length of the 4PF formulae by two orders of magnitude.
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3.4 Some Final Remarks

Upon calculating the actual virtual processes using the formalism of Sec. 3.3 and App. A.3,

one will need numerous scalar integrals which do not seem to be included in the basic set

of App. A.2. But those integrals can always be brought into a form where they are either

seen to be directly equal to one of the basic integrals or derivable by simple manipulations.

There are several \physical" ways to arrive at such transformations. Many of them can

be obtained by simple crossing. For example the integral B0(p1 � k2; 0; m) obviously is

obtained from the known integralB0(p1�k1; 0; m) by crossing k1 $ k2. To this end we can

simply replace t; t1 ! u; u1 in the known result (A.20). Also one often obtains integrals

which just correspond to assigning the loop momentum in a di�erent way, see Fig. 3.4 for

the simple case of 2PFs. Similarly we can derive for 3PFs that C0(p1; p2; m1; m2; m3) =

C0(�p1;�p2; m1; m2; m3) = C0(p1+p2;�p2; m1; m3; m2) = C0(�p1; p1+p2; m2; m1; m3) =

C0(p2; p1; m3; m2; m1) by reassigning the loop momentum and of course we can also treat

the 4PF D0's this way.

p1 p1

q

m1

q + p1

m2

p1 p1

q

m1

q � p1

m2

p1 p1

q + p1
m1

q

m2

Figure 3.4: By assigning the loop momentum di�erently in one graph, it is shown that

B0(p1; m1; m2) = B0(�p1; m1; m2) = B0(p1; m2; m1).

One can also simply shift the loop momentum, which does not change the value of the

integral. For example setting q ! q + p2 in C0(p1;�k1 � k2; 0; m;m) yields the integral

C0(p2; p1; m; 0; m), proving their equality. But in practice it is much simpler to just insert

the momenta in the kernels K of Tab. 3.1 and compare to those of the standard set. For

instance in the example above, C0(p1;�k1�k2; 0; m;m) givesK = �bc s

m2+(1�a)2. But we
know that the basic integral C0(p2; p1; m; 0; m), see (A.24), leads to K = �ac s

m2 +(1�b)2,
so since the assignment of the parameters a; b; c is arbitrary, both integrals are equal.

Also equalities due to the reassignment of the loop momentum are immediately obvious.

Taking the case covered in Fig. 3.4, one always obtains K = �ab+ am2
1 + bm2

2, switching

a$ b if needed. Furthermore changes of the kinematic variables due to crossing are trivial,

e.g., B0(p1�k2; 0; m) leads to K = �ab u

m2 + b and B0(p1�k1; 0; m) gives K = �ab t

m2 + b.

Also equalities like C0(p1�k1;�k2; 0; m;m) = C0(p1;�k1; 0; m;m), which need some work

to be proven otherwise, are obtained by just writing down the kernels. With this method

it is an easy exercise to obtain the needed relations between integrals, about 40 were

needed in our calculation.

A special simpli�cation can be used when working on the QED-like box integrals.

Since we calculate 2! 2 processes, there are only three independent momenta, the fourth

can be calculated using energy-momentum conservation �q4 = q1 + q2 + q3, counting all
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momenta as incoming. Taking a look at the propagators in D0 in (3.4), we can write

q2 �m2
1 + i�

(q + q1)
2 �m2

2 + i�

(q + q1 + q2)
2 �m2

3 + i�

(q + q1 + q2 + q3)
2 �m2

4 + i�

9>>>>>>=>>>>>>;
)

8>>>>>><>>>>>>:

q2 �m2
1 + i�

(q � q4 � q3 � q2)
2 �m2

2 + i�

(q � q4 � q3)
2 �m2

3 + i�

(q � q4)
2 �m2

4 + i�

: (3.41)

Simply by replacing q ! �q in the integration5 we then obtain the relation

D0(q1; q2; q3; m1; m2; m3; m4) = D0(q4; q3; q2; m1; m4; m3; m2)
abbr.�! D0 = D0 : (3.42)

We can also show this by inserting the momenta into the kernel K given in Tab. 3.1.

D0 leads to the same kernel as D0 upon switching the assignment b $ d. In the tensor

integrals the q ! �q shift adds a minus for every loop momentum, so using the same

abbreviation as in (3.42), we can write

D� = �D�

; D�� = D
��

; D��� = �D���

: (3.43)

Now we can insert this in the tensor decomposition (3.17), for example

D� = q�1D11 + q�2D12 + q�3D13

= �D�

= �
�
q�4D11 + q�3D12 + q�2D13

�
= q�1D11 + q�2 (D11 �D13) + q�3 (D11 �D12)

) D11 = D11 ; D12 = D11 �D13 ; D13 = D11 �D12 : (3.44)

Similar relations can be derived for the other tensor coeÆcients.

k2

k1

p2

p1

q

Figure 3.5: For this QED-like box graph a simpli�ed tensor decomposition (3.47) is possible.

By itself this is not very helpful, except as a further method for checking the decom-

position. But in the QED-like box Fig. 3.5, we get for D ! D(p1;�k1;�k2; 0; m;m;m)

and D ! D(p2;�k2;�k1; 0; m;m;m) exactly the same projection coeÆcients. This can

be easily checked by noting that the matrix XD of the projective momenta in (3.23) and

5For every of the n components the minus in the measure is compensated by the minus in the inte-

gration limits, e�ectively only the kernel changes.
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the fi collected in (3.18) are the same in both cases. The new scalar integrals obtained

by the projection will also be the same, since the second and fourth propagator, L2 and

L4, which are interchanged in D $ D, have on one hand the same mass and on the other

hand the same square of the sum of external qi. As an explicit example compare C0(1; 3; 4)

with C0(1; 3; 4). Both have the same masses mi and inserting q1 = p1 � k1; q2 = �k2
and q1 = p2 � k2; q2 = �k1, respectively, in the K found in Tab. 3.1 will yield the

same kernel. A di�erent way of coming to this conclusion is noting that (A.3) introduces

Feynman parameters to a numerator with loop four momenta q�q� : : : , so that for the

tensor integrals the assignment of a; b; c; d changes the result obtained for the projection

coeÆcients. But in the QED-like integral here the switch b $ d mentioned below (3.42)

is not necessary: the propagators already lead to the same K, because of the similarity

between L2 and L4. So the projection coeÆcients will be equal. At any rate, we can

set Dij = Dij here! Then of course the relations like in (3.44) can be used to eliminate

dependent scalar coeÆcients. One �nds eight relations:

D11 = D12 +D13 ; D24 = (D21 +D22 �D23)=2 ;

D25 = (D21 �D22 +D23)=2 ; D31 = �2D32 � 2D33 + 3D36 + 3D37 ;

D34 = �D32 �D33 + 2D36 +D37 ; D35 = �D32 �D33 +D36 + 2D37 ;

D310 = (�D32 �D33 +D36 +D37 +D38 +D39)=2 ; D311 = D312 +D313 :

(3.45)

We can now write the Lorentz structure of D(p1;�k1;�k2; 0; m;m;m) in a neat way,

using the following further rede�nitions:

~D21 = �1

2
(D21 �D22 �D23) ; ~D36 =

1

2
(D32 �D36) ;

~D37 =
1

2
(D33 �D37) ; ~D38 =

1

2
D38 ; ~D39 =

1

2
D39

(3.46)

The �nal simpli�ed result is then

D� =t�D12 + u�D13 ;

D�� =fp1p2g�� ~D21 + t�t�D22 + u�u�D23 + fk1k2g��D26 + g��D27 ;

D��� =t�t�t�D32 + u�u�u�D33 + ftp1p2g��� ~D36 + fup1p2g��� ~D37

+ ftk1k2g��� ~D38 + fuk1k2g��� ~D39 + ftgg���D312 + fugg���D313 ;

(3.47)

where we have used the abbreviations t� = (p1�k1)� and u� = (p1�k2)�. This compares
favorably with (3.17). The other occurring boxes cannot be simpli�ed like that, since

the b $ d interchange has to be performed. There we can only check relations like

D12 �D12 = D13 �D13, which always have to be ful�lled.

Finally, as has been mentioned already when introducing the projective momenta

in (3.21) to (3.23), the Passarino-Veltman decomposition breaks down when the inverse

of the matrix X does not exist. In our calculations this occurs only in simple bubble

diagrams of the type depicted in Fig. 3.6, inserted in the incoming on-shell gluons. They



38 Chapter 3. Virtual Contributions

k k

q

m

q + k

m

Figure 3.6: This bubble graph with k2 = 0 and m 6= 0 cannot be decomposed with the

Passarino-Veltman technique.

lead to integrals B(k;m;m) with k2 = 0 but m 6= 0. But here XB = k2, so obviously it

cannot be inverted. The integral occurring in this situation is

I = ��"
Z

dnq

(2�)n
Tr h
�(q=+m)
�(q=+ k= +m)i
(q2 �m2)[(q + k)2 �m2]

= 4��"
Z 1

0

dx

Z
dnq

(2�)n
2q�q� + (k�q� + q�k�) + (m2 � k � q � q2)g��

[q2 + 2xk � q �m2 + k2x]2

= �8(k�k� � g��k2)��"
Z 1

0

dx x(1� x)I0 ;

(3.48)

where we have used Equations (A.18)-(A.20) of [68], see also Appendix C of [69]. The

basic integral I0 is given to O(1) by

I0 = � i

16�2

�
2

"
+ 
E � ln(4�) + ln(k2x(1� x)�m2)

�
; (3.49)

with the Euler 
E. If m = 0 = k2, then I0 = 0 and thus I = 0. Otherwise we get

I =
i

2�2
(k�k� � g��k2)��"

(
1

6

�
2

"
+ 
E � ln(4�)

�

+

Z 1

0

dx x(1� x) ln(k2x(1� x)�m2)

)
: (3.50)

This formula is valid in general, it is for example easy to obtain Equation (III.29) of [69]

for k2; m 6= 0 from it. But here we are interested in the case of k2 = 0 with m 6= 0, and

then using C" de�ned in (3.6) to O("), we can write the integral to O(1) as

I = iC"(k
�k� � k2g��)

8

3"
; (3.51)

where we have kept k2 in the Lorentz structure, since there will be a 1=k2 dependence

due to a gluon propagator when attaching Fig. 3.6 to the rest of the Feynman diagram.

The limit k2 ! 0 is possible in the Lorentz structure only after contracting the Lorentz

indices in the matrix element.



Chapter 4

Renormalization

4.1 The QCD Lagrangian and its Renormalization

The last chapter has shown that we encounter singularities when we calculate higher order

corrections using the Feynman rules derived from the bare QCD Lagrangian. The infrared

singularities cancel in the sum with the real contributions which will be introduced in the

next chapter. This is guaranteed by the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg

theorems [70], respectively. The real contributions also have a new type of singularities

called collinear or mass singularities, which will be dealt with by the mass factorization

procedure of Chap. 6. Basically this amounts to a rede�nition of the parton densities of

the hadrons (and photons). This leaves us with the ultraviolet divergencies. We will see

in this chapter how a rede�nition of the �elds and parameters of the bare Lagrangian

can be used to eliminate the UV singularities. We note that details about our particular

scheme for the renormalization of QCD, which uses the MS scheme for light quarks and an

on-shell scheme with explicit decoupling for the heavy quarks, cannot easily be found in

the literature. In the corresponding unpolarized calculations, which also use this scheme,

an e�ective procedure using only mass and strong coupling renormalization is used, see for

example Eqns. (2.9)-(2.11) in [46]. However, no derivations of the formulae are given, so

we will supply them here. Furthermore, the only calculation of the needed renormalization

constants Zi known to us is [71], which however does not provide much technical detail on

their derivation. Actually this reference was pointed out to us only after we had already

(re-)calculated the Zi. Since the available information on this scheme seems to be scarce,

we will provide suÆcient detail of our independent calculation.

Let us start by writing down the bare QCD Lagrangian1. It can be split into parts

L = LG +LGF +LFP +LF = L0 +LI ; (4.1)

where the parts are

gauge: LG = �1

4
F a

��
F a�� with F a

��
= @�A

a

�
� @�A

a

�
+ gfabcAb

�
Ac

�
; (4.2)

1The following derivation of the counterterm Feynman rules is standard and follows closely [64].
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gauge �xing: LGF = � 1

2�

�
@�Aa

�

�2
with � = 1 in Feynman gauge ; (4.3)

Faddeev-Popov: LFP = (@��a�)Dab

�
�b with Dab

�
= Æab@� � gfabcAc

�
; (4.4)

fermion: LF = 	i (iD= ij �mÆij)	j with D�

ij
= Æij@

� � igT a

ij
Aa� ; (4.5)

where T a and fabc are the generators and structure constants of SU(3)color, respectively,

and the \gluon" color indices can take the values a; b; c; : : : = 1; : : : ; 8 and the \quark"

ones can have i; j; : : : = 1; 2; 3. See App. B.3 for more details about the SU(N) groups.

Also the �a and �a� ghost �elds should be viewed as independent, i.e., one could write

�a = (�a1 + i�a2)=
p
2 with two independent real ghost �elds �a1 and �a2 . Furthermore we

have only written the fermion �eld for one quark 
avor in (4.5) for simplicity. Splitting

into a free part L0 and an interaction part LI then gives

L0 =� 1

4

�
@�A

a

�
� @�A

a

�

�
(@�Aa� � @�Aa�)� 1

2�

�
@�Aa

�

�2
+ (@��a�) (@��

a)

+ 	i(i@= �m)	i ; (4.6)

LI =� g

2
fabc

�
@�A

a

�
� @�A

a

�

�
Ab�Ac� � g2

4
fabef cdeAa

�
Ab

�
Ac�Ad� � gfabc (@��a�) �bAc

�

+ g	iT
a

ij

�	jA

a

�
: (4.7)

Now the bare Lagrangian (4.1) will be renormalized by introducing renormalization

constants Zi

�elds Aa

�
=
p
Z3A

a

r�
; �a(�) =

p
Z3h�

a(�)
r

; 	 =
p
Z2	r ; (4.8)

parameters g = Zggr ; � = Z3�r ; m = Zmmr : (4.9)

Note that the gauge �xing parameter � is renormalized with the same constant as the

gluon �eld. The reason can be seen by examining the Lorentz structure of the gluon

propagator g�� � (1��)k�k�=k2. A Slavnov-Taylor identity ik�k� ~Dab

��
(k)=� = Æab for the

full gluon propagator ~Dab

��
can be derived, see [52, 53, 72] and App. B.4. It implies for the

gluon self-energy �ab

��
(k) that k�k��ab

��
(k) = 0, since ~Dab

��
= Dab

0�� +Dac

0���
cd��Ddb

0�� + : : :

with the free gluon propagator Dab

0�� = �iÆab[g�� � (1 � �)k�k�=k
2]=k2. Thus �ab

��
(k) =

Æab(k�k� � k2g��)�(k2) and we see that only the transversal part of the gluon propagator

will receive higher order corrections. Then only one multiplicative renormalization con-

stant Z3 is enough for the full gluon propagator, and from the Lorentz structure of the

propagator one gets �
!
= Z3�r.

Now we can insert (4.8) and (4.9) into (4.1) and obtain a renormalized Lagrangian

Lr = Lr0 +LrI +LC : (4.10)

The �rst two terms are simply obtained from the free (4.6) and interaction (4.7) parts of

the bare Lagrangian by adding a subscript \r" to every �eld and parameter, i.e., writing
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down the bare Lagrangian structure with renormalized quantities. Obviously then LC

collects the Zi terms and we �nd

LC =
1

2
(Z3 � 1)ÆabAa

r�
(g���� @�@�)Ab

r�
� (Z3h � 1)Æab�a�

r
��b

r

+ (Z2 � 1)Æij	ri(i@=)	rj + (Z2Zm � 1)Æij	ri(�mr)	rj

� (Z1 � 1)
gr

2
fabc

�
@�A

a

r�
� @�A

a

r�

�
Ab�

r
Ac�

r
� (Z4 � 1)

g2
r

4
fabef cdeAa

r�
Ab

r�
Ac�

r
Ad�

r

� (Z1h � 1)grf
abc (@��a�

r
) �b

r
Ac

r�
+ (Z1f � 1)gr	riT

a

ij

�	rjA

a

r�
; (4.11)

with

Z1 � ZgZ
3
2

3 ; Z1h � ZgZ3h

p
Z3 ; Z1f � ZgZ2

p
Z3 ; Z4 � Z2

g
Z2
3 ; (4.12)

and the �rst two terms of (4.11) are rewritten using the fact that a total divergence does

not change the equations of motion.

For practical calculation one should now derive the Feynman rules from the La-

grangian. This derivation is lengthy but straightforward and can be found for example

in [64], it will not be demonstrated here. But it is important to note the following point:

Lr0 and LrI are identical to L0 and LI , respectively, in structure. The only di�erence

is that every quantity has been replaced by the corresponding renormalized quantity. So

we can simply use the bare QCD Feynman rules for them and set the coupling g ! gr
and the mass m ! mr to the renormalized values! The new part of the renormalized

Lagrangian LC of course leads to additional Feynman rules. Note that we have written

them in the form of new \interaction vertices", which is possible since LC is suppressed

by powers of g2. We will return to this point at the end of the next section. The last four

terms of LC are identical in structure to the terms in LI , so we can simply multiply the

corresponding bare QCD vertex rules with the appropriate (Zi� 1) term. The �rst three

terms are written in a form that allows us to (heuristically) read o� the corresponding

\vertex" rules by assuming the terms act on the e�ik�x or e�ip�x of a four-dimensional

Fourier-transformation to momentum space, dropping the �elds2 and multiplying by a

factor i. The set of new vertex rules we have found in this way are commonly called

counterterms and we collect them in Tab. 4.1. Note that we have included a photon-

quark counterterm, which is obtained in a completely similar manner as the gluon-quark

counterterm from the QED Lagrangian3. To avoid confusion with the QCD Z1f , we have

used the Ward identity ZQED
1f = Z2 [73] for writing down the rule.

It is far from trivial to prove that the renormalizations introduced in (4.8) and (4.9)

are suÆcient in all orders to remove the UV singularities. For a thorough discussion one

should turn to the appropriate literature, for example to [74]. On the other hand for a

one-loop calculation such as ours this is easy to see. Basically for every type of diverging

2The two gluon �elds contribute a factor 2 for exchanging identical bosons.
3But only QCD corrections are considered.
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�
a

�
b

k
i(Z3 � 1)Æab(k�k� � k2g��)

a b
k

i(Z3h � 1)Æabk2

i j

p
iÆij[(Z2 � 1)p=� (Z2Zm � 1)mr]

�
a

�
b

�c

k1 k2

k3
�(Z1 � 1)grf

abc[g��(k1 � k2)
� + g��(k2 � k3)

� + g��(k3 � k1)
�]

�
b

�
c

�
a

�
d

�i(Z4 � 1)g2
r
[fabef cde(g��g�� � g��g��)

+ facef bde(g��g�� � g��g��)
+ fadef cbe(g��g�� � g��g��)]

a �
b

c

k
� (Z1h � 1)grf

abck� �

c �
b

a

k

i �
a

j

� �i(Z1f � 1)grT
a

ij

�

i(Z2 � 1)eqeÆij

� �

i �

j

Table 4.1: The Feynman rules for the renormalization counterterms derived fromLC in (4.11).

For convenience both directions of the ghost-gluon counterterm are shown. Also the photon-

quark counterterm obtained similarly from the QED Lagrangian is included, where eq is the

fractional quark charge and we do not consider QED corrections: � = e2=(4�) ' 1=137.
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loop we will also have one particular counterterm contribution, so that we can adjust the

Zi to cancel the singularities. This will become clear in the next section, where the Zi

will be worked out. One important point remains: We see from (4.12) that

Zg

p
Z3 =

Z1

Z3

=
Z1h

Z3h

=
Z1f

Z2

=
Z4

Z1

: (4.13)

This is the Slavnov-Taylor identity [52, 53, 72] for the renormalization constants. It

appears to result trivially from our renormalization procedure, but this is only the case

because we have assumed the universality of the renormalized coupling gr and hence

that there is only one Zg: g = Zggr. In principle we could determine each of the Zi in

Tab. 4.1 separately by calculating the corresponding loop diagram(s) and canceling their

divergencies. Then we could chose to regularize and subtract in such a way that (4.13) is

violated. As one may intuitively guess from the involvement of the gauge coupling, this

would amount to breaking the local gauge symmetry4 of the renormalized Lagrangian. A

detailed discussion of these points is beyond the scope of this work and can be found for

example in [74].

Important for our practical calculation is that we should chose a regularization proce-

dure and a renormalization scheme which respects (4.13) and thus local gauge symmetry.

Our choice of using dimensional regularization and the (modi�ed) MS renormalization

scheme ful�lls this condition. By comparing Tab. 4.1 with (4.13), we realize that then we

only need to calculate the 2PF Zi and one 3PF Zj of our choice. Each 3PF Zj is related

to a corresponding 2PF Zi in exactly the same way as the gluon 4PF Z4 is to the gluon

3PF Z1. In the following section the renormalization constants Z3h, Z1h, Z3, Z2, and Zm

will be calculated at one-loop. The remaining Z1, Z4 and Z1f are then obtained by using

(4.13). In this way local gauge symmetry allows us to obtain results that would require

quite complicated calculations for free!

4.2 Renormalization Constants and Scheme Choice

Our scheme choice will be the following [43, 42, 46]: we wish to have nlf light 
avors

active in the running of �s and in the parton evolution in addition to one produced heavy


avor, i.e., the total number of 
avors is nf = nlf + 1. To this end we renormalize

the light 
avors using the standard MS prescription. The heavy (anti)quark is however

renormalized on-shell and furthermore we remove the heavy quark loop contribution to

the gluon self-energy, see the calculation of Z3 below, which explicitly decouples the heavy

(anti)quark at low energies. This modi�ed MS �xed 
avor scheme, which singles out the

heavy (anti)quark according to its pole mass scale m, will be called MSm henceforth. We

will use the Feynman gauge5 and n = 4 + " in all our calculations. This is a variant of

4More precisely, due to the terms LGF and LFP , the Lagrangian is Becchi-Rouet-Stora (BRS) sym-

metric [75], see also App. B.4. So it is BRS symmetry that would be violated.
5This implies that the renormalized gauge parameter �r = 1.
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the Collins, Wilczek and Zee scheme [76, 71], whose factorization properties have been

worked out explicitly in [77].
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b
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q d

a b
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k

�q

d

(a) (b)

Figure 4.1: The loop contributions needed for the calculation of (a) Z3h (ghost self-energy)

and (b) Z1h (ghost vertex).

It is convenient to �x the gauge sector �rst. The ghost graphs are particularly simple

and so we begin by calculating Z3h and Z1h, which are needed to cancel the divergent

expressions of the loop graphs displayed in Fig. 4.1. The ghost self-energy loop has a color

factor facdf cbd = �CAÆ
ab and the ghost vertex loop contributions both have a color factor

fadff febf edc = CA

2
fabc. Thus as expected the color structure corresponds to a color-factor

times Æab and fabc, respectively. We start by writing down the self-energy, equating6 �i~�
to the (truncated) loop diagram:

~�(k2) = �iCAÆ
abg2

r
��"

Z
dnq

(2�)n
k2 + k � q
q2(k + q)2

= CAÆ
abg2

r
k2
�
�2

"

�
�
�
1� "

2

�
(16�2)1+

"

4

�
�k

2

�2

� "

2
Z 1

0

dx x
"

2 (1� x)1+
"

2

= �CAÆ
ab

g2
r

32�2
k2
�
2

"̂
� 2 + ln

�
�k

2

�2

��
: (4.14)

Here and in the following we have made frequent use of standard Feynman integral re-

lations for \simple" cases. One can �nd them for example in Appendix A of [68] and

Appendix C of [69]. We have de�ned the typical pole related terms

2

"̂
=

2

"
+ 
E � ln(4�) and

2

"̂m
=

2

"̂
� ln

�2

m2
r

; (4.15)

where 2
"̂m

will occur later on. It is just this 2
"̂
combination of pole and �nite terms which

is subtracted in MS. The counterterm comes with a factor i, see Tab. 4.1, and so we set

Z3h � 1 = �CA

g2
r

32�2
2

"̂
: (4.16)

6The convention of having a factor �i comes from considering this correction as a term in a geometric

sum, see the discussion at (4.52) below.
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Next we add both ghost vertex contributions

~��(k) = i
CA

2
fabcg3

r
��"

Z
dnq

(2�)n
(b)� (c)

q2(~k + q)2(k + q)2

with
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h
k � (~k + q)(k + q)�

i
(c) =

h
q�(k2 � 2k � ~k + k � q) + k�(�q2 � k � q + ~k � q) + ~k�k � q

i
~k�=0
y i

CA

2
fabcg3
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��"

Z
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[k � q(k + q)�]� [(q�k � k�q) � (k + q)]

q4(k + q)2

= CAf
abcg3
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2

�
(16�2)

1+ "

4

�
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2
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� "

2
Z 1

0

dx x1+
"

2 (1� x)
"

2

= �CAgrf
abck�

g2
r

32�2

�
2

"̂
� 2 + ln

�
�k

2

�2

��
; (4.17)

where we have used the non-trivial fact that ~k� can be set zero without in
uencing the

singularity structure [69], to shorten our presentation. We can immediately read o� the

MS renormalization constant

Z1h � 1 = CA

g2
r

32�2
2

"̂
: (4.18)

Thus we can determine to O(g2
r
)

Zg

p
Z3 =

Z1h

Z3h

= 1 + CA

g2
r

16�2
2

"̂
; (4.19)

which con�rms the na��ve expectation that pure gauge loops get a \non-abelian" CA con-

tribution only.
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Figure 4.2: The loop contributions needed for the calculation of Z3: (a)+(b) gauge loops,

(c) vanishing gluon tadpole, and (d) massless and massive quark loop.

The obvious next step is to calculate Z3. The needed loop diagrams are shown in

Fig. 4.2 and we equate �i��� to them. It is not diÆcult to calculate these contributions

directly, however for brevity we here use the fact, mentioned already in the last section,

that we know their Lorentz structure due to the Slavnov Taylor identity (B.31):

�ab

��
(k) = Æab

�
k�k� � k2g��

�
�(k2) y Æab�(k2) = � 1

(3 + ")k2
g���ab

��
: (4.20)
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Thus we will only calculate the �(k2). Next we see immediately that the tadpole con-

tribution Fig. 4.2 (c) vanishes, since it leads to an integral of the type (3.3). We must

treat the gluon and ghost loops together, since only their sum will conform to (4.20).

Their color factor is of course the same as for the ghost self-energy. Note that we have

to multiply the loops with two identical particles by 1=2! and �1 due to the boson and

fermion statistics, respectively. After the Lorentz contraction and dropping terms of the

type (3.3), we obtain the simple integral

�(k2)
(a)+(b)
= iCA

g2
r
��"

(3 + ")k2

Z
dnq

(2�)n
(8 + 3")k � q � k2
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�
: (4.21)

The quark loop contribution Fig. 4.2 (d) has to be calculated both for massive and

massless quarks. For one quark 
avor we have

�(k2)
(d)
= iCA

g2
r
��"

2(3 + ")k2

Z
dnq

(2�)n
Tr h
�(q=+mr)
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for mr = 0
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� 4m2
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�
bk ln(�{k) for mr 6= 0

; (4.22)

with bk =
p
1� 4m2

r
=k2 and {k = (1 � bk)=(1 + bk). Here we see the basic problem of

a pure MS treatment when quark masses come into play. The gauge (4.21) and massless

quark parts have a ln(�k2=�2) term, whereas the heavy quark part has a ln(�2=m2
r
) term

from the 2
"̂m
. But for low energies k2 � m2

r
, this means that no matter what the arbitrary

mass scale � is, we will keep at least one large logarithm after subtracting only the poles.

So here we deviate from the pure MS treatment and do not ignore the (�nite) logarithm

depending on the heavy quark mass.

Then the total sum of (4.21), of nlf light 
avors, and of one heavy 
avor is

�(k2) =
g2
r
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+ : : :

�
;

(4.23)
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with �0 = (11CA�2nlf )=3 and �
f

0 = (11CA�2nf )=3 and the dots stand for the remaining

�nite terms. It becomes obvious from the last line in (4.23) that our choice

Z3 � 1 =
g2
r

16�2

�
(2CA � �0)

2

"̂
+
2

3

2

"̂m

�
=

g2
r

16�2

�
(2CA � �f0 )

2

"̂
� 2

3
ln

�
�2

m2
r

��
(4.24)

does not only subtract the usual MS term (2CA � �f0 )
2
"̂
, but in addition the ln(�2=m2

r
)

term. Note that if we had calculated (4.22) with m2
r
= k2 = 0, it would have given zero7.

But with k2 = 0 and m2
r
6= 0 the integral gives � g2

r

4�2
1
6

2
"̂m
. This term is exactly eliminated

by our subtraction, whereas the normal MS prescription would leave the ln(�2=m2
r
) term.

Thus we see that in the limit of small energies k� ! 0 
owing into the heavy quark loop

(and actually for all light-like momenta, as encountered in external partonic legs), the

heavy quarks explicitly decouple with the prescription used here.

From (4.24) and (4.19) we directly obtain

Zg � 1 =
g2
r

32�2

�
�0
2

"̂
� 2

3

2

"̂m

�
: (4.25)

At this point a short digression concerning the renormalization group equation (RGE) is

helpful, in order to derive the e�ect of our choice on the running coupling. First note

that the action
R
dnxL should be dimensionless, which means that the dimension of

the Lagrangian density [L ] = massn. By inspecting (4.1), we can directly determine

the dimensions of the parameters and �elds. In particular we �nd [g] = mass(4�n)=2 and

similarly from (4.10) [gr] = mass(4�n)=2. So let us de�ne a mass scale for the bare and

renormalized coupling

g � ~g(�b)�
� "

2

b
and gr � ~gr(�)�

� "

2 : (4.26)

Here ~g and ~gr are dimensionless quantities. Also g and gr do not depend on the scales

�b and �. However, if we take a look at our treatment of the loop integrals until now,

e.g., the self-energy (4.22), we see that we have treated gr as being dimensionless and

introduced an arbitrary mass scale � to keep the correct dimensionality of the occurring

integrals. It is obvious from (4.26) that we should have more precisely written

gr ! ~gr(�) y Zg(gr; �)! Zg[~gr(�); �] ; (4.27)

in the results obtained so far. Note that ~gr depends explicitly on the scale �. Performing

the replacements in g = Zggr and inserting (4.26) gives

~gr(�) =

�
�b

�

�� "

2 ~g(�b)

Zg(~gr; �)
: (4.28)

7The expansion to the logarithmic integral is not valid then, the integral is of the same type as (3.3).
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By simple di�erentiation we obtain

� � �
d~gr(�)

d�
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�
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� �

Zg

dZg(~gr; �)

d�

�
~gr(�)

=

�
"

2
� �

Zg

@Zg(~gr;�)

@�
� �

Zg

dmr

d�

@Zg(~gr;�)

@mr

�
~gr(�)

1 +
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Zg(~gr;�)

@Zg(~gr;�)

@~gr

= ��0
~g3
r
(�)

16�2
+O(~g5

r
; ") : (4.29)

In the last step we have used the fact that the dmr=d� term only contributes at O(g5).
Note that this result means that in the running coupling only the nlf light 
avors con-

tribute due to our choices for Zg! The contribution of the heavy quark 
avor cancels due

to the subtraction of the massive loop logarithm, i.e., because of the explicit decoupling

of the heavy quark at small energies. Without this subtraction, we would have found �f0
with nf = nlf + 1 
avors instead.

With �s = ~g2
r
=(4�) we can immediately obtain from (4.29) the RGE of the running

coupling constant at LO

d�s(�
2)

d ln(�2)
= � �0

4�
�2
s
(�2) +O(�3

s
) (4.30)

The solution is easily obtained as

�s(�
2
r
) =

�s(�
2
0)

1 + �s(�
2
0)

�0

4�
ln

�2r

�20

=
4�

�0 ln
�2r

�2
LO

; (4.31)

�2
LO � �20 exp

�
� 4�

�0�s(�
2
0)

�
: (4.32)

In (4.31) we have integrated from a scale at which we renormalize the coupling, �20, to

a large scale, �2
r
, at which we chose to evaluate �s, i.e., we use �s(�

2 = �2
r
) in our �nal

results. We see here the property of asymptotic freedom, i.e., for �2
r
!1 (and �xed small

�20) the coupling constant �s ! 0, which of course is the reason why the expansion in

�s we have been using is justi�ed for a large scale �2
r
! Due to � = �r, we �nd in our

cross sections logarithms ln(�r=m) depending on a typical scale m of the process. To

prevent these terms from becoming large, we must set �r approximately equal to this

typical scale. So we need a large scale m, provided in our cases by the heavy quark

mass. In (4.32) we have introduced the QCD scale parameter in LO �LO, which brings

our result for the running coupling in a convenient form. It is, apart from the quark

masses, the only free parameter of QCD and has to be determined by experiment. Note

that we require �s to be continuous when changing the number of (light) 
avors, which

is still possible at NLO. We will follow the usual prescription of doing so at the quark

mass scales. This means �2
LO has to be adjusted at these thresholds accordingly and we
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will have to quote the number of (light) 
avors when stating the value used for it. We

see that the dimensionless coupling constant at the renormalization point �s(�
2
0) and the

renormalization point scale �0 itself are hidden in (4.31) by the introduction of the mass

scale �2
LO in (4.32). This is an example of \dimensional transmutation" [78]. Thus only

�r will appear in our results and so it, and not �0, is usually called the renormalization

scale. As a �nal point we note that taking two loop corrections into account, we would

�nd for (4.29) and (4.30)

� � �
d~gr(�)

d�
= ��0

~g3
r
(�)

16�2
� �1

~g5
r
(�)

(16�2)2
+O(~g7

r
; ") : (4.33)

d�s(�
2)

d ln(�2)
= � �0

4�
�2
s
(�2)� �1

(4�)2
�3
s
(�2) +O(�4

s
) (4.34)

Where we have the new coeÆcient8 �1 = 102� 38
3
nlf [79]. Thus the two-loop correction to

the running coupling is of relative order ~g2 � �s. If we now use the running coupling in the

LO part of our calculation, this two-loop correction to the coupling leads to a contribution

of the same order as the NLO part! Thus it should be used when we calculate in NLO.

In practice we will follow the usual prescription of using (4.31) when calculating in LO,

and the solution of (4.33) when calculating in NLO9. To obtain a solution of (4.34), we

must integrate

ln
�2
r

�20

2 loop
=

Z
�s(�

2
r
)

�s(�
2
0)

d�s

��0

4�
�2
s
� �1

(4�)2
�3
s

(4.35)

and obtain after again absorbing �s(�
2
0) for convenience

L � ln
�2
r

�2
NLO

=
4�

�0�s(�2r)
�
�1 ln[

4�
�0�s(�2r)
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]
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; (4.36)
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: (4.37)

We can now solve (4.36) numerically, given a value for �NLO, for �s(�
2
r
) at any �2

r
. Alter-

natively an approximate solution of (4.36) can be obtained by iteration and expansion in

1=L. The �rst iteration at O(1=L2) then yields

�s(�
2
r
) =

4�

�0 ln
�2
r

�2
NLO

241� �1

�20

ln
�
ln

�2
r

�2
NLO

�
ln

�2
r

�2
NLO

35 ; (4.38)

8Subtracting the heavy quark loop contributions at k2 = 0 in MSm naturally leads to the well-known

MS results, but with nf ! nlf = nf � 1.
9The error of using the two loop correction to �s with the NLO part is next-to-NLO (NNLO).
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and this formula will be used in our calculations for the NLO running coupling, since a

typical scale �r in our processes is of the order of the heavy quark mass and then the

deviation between a numerical solution of (4.36) and (4.38) is below 1% even for the

charm mass with nlf = 3. In the remainder of the chapter we will again use our old

notation with gr instead of ~gr(�) for brevity, but the identi�cation (4.27) and the scale of

evaluation � = �r are implied.

Back to the calculation of the renormalization constants: Z3 together with (4.13) also

allows us to easily derive

Z1 � 1 = � g2
r

16�2
2

3

�
CA

2

"̂
�
�
nlf

2

"̂
+

2

"̂m

��
; (4.39)

Z4 � 1 =
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r

16�2
1
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2

"̂
+ 2

�
nlf

2

"̂
+

2

"̂m

��
; (4.40)

which completes the gauge sector counterterms. The only missing piece is the quark sector

and it is suÆcient to calculate the quark self-energy displayed in Fig. 4.3 to determine

it. Before we start, let us motivate our scheme choices. For the light quarks we will

use the usual MS scheme throughout. But the heavy quark will be treated di�erently.

We use the on-shell prescription to �x the renormalized mass at the pole mass. The

pole mass is the only mass parameter of perturbative QCD which is independent of the

renormalization scale, renormalization scheme, and gauge parameter and is IR insensitive

[80], thus it is certainly a \good" mass scale to use. Furthermore, we note that the Slavnov-

Taylor identity we need for being allowed to eliminate the unphysical gluon polarizations

with external ghosts10, is only valid if additional external lines are on-shell ! Since the

renormalization procedure keeps massless particles massless, gluons and light quarks are

on-shell anyway. But we need to renormalize the heavy quark mass on-shell as well, if we

wish to use the \ghost trick" in our calculations.

i
l

j
p

q a

Figure 4.3: The quark self-energy loop contribution needed for the calculation of Zm and Z2.

The general expression for the quark self-energy can be read o� the loop diagram

Fig. 4.3. We set �i� equal to the (truncated) loop and obtain

�(p=;mr) = �iÆijCFg
2
r
��"

Z
dnq

(2�)n
1

q2

�

1

p=+ q=�mr


�

10External ghosts appear in our unpolarized calculation since we use the metric instead of the physical

polarization tensor, see (2.15).
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We have already performed the sum over loop colors: T a

jl
T a

li
= CF Æij. Note that the

divergence already is manifest, thus the integral I must be �nite and can be expanded

in ", due to the pole 1=" in (4.41), we must calculate it to O("):

I =
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(4.42)

Inserting this back into (4.41) and expanding in ", we get the �nal result

�(p=;mr) = Æij [Amr +B(p=�mr)] ; (4.43)
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We see from Tab. 4.1 that the counterterm contribution, obtained similarly to (4.41) by

equating �i�C to the counterterm insertion, is

�C = �Æij[(Z2 � 1)p=� (Z2Zm � 1)mr]
O(�s)' Æij [(Zm � 1)mr � (Z2 � 1)(p=�mr)] ;

(4.44)

where we have used the general structure Zi = 1 + �szi + O(�2s) of the renormalization
constants to separate the contributions. Thus the sum of (4.43) and (4.44) is

� + �C = Æij f[A + (Zm � 1)]mr + [B � (Z2 � 1)](p=�mr)g ; (4.45)

and has to be (UV) �nite.

The MS prescription used for mr = 0 requires the subtraction of only the 2="̂ pole,
see (4.15). So from (4.45) we directly see

mr = 0 : Zm � 1 =
g2
r

16�2
CF

6

"̂
and Z2 � 1 =

g2
r

16�2
CF

2

"̂
: (4.46)
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In practical calculations we do not need Zm for the massless quarks, since then the Zm

counterterm part vanishes, see (4.44). For the heavy quarks we will renormalize the mass

on-shell as discussed above. This means the inverse propagator (the proper two-point

function), which is given by �(2)(p=;mr) = �i[p=�mr � (� +�C)], is supposed to become

zero at p= = mr, so the condition we use is

mr 6= 0 : (� + �C)jp==mr

!
= 0 ) Zm � 1 = �Ajp==mr

: (4.47)

We now have to chose a way to also determine Z2. Since we are going to determine Z1f

from (4.13), any choice will respect the Slavnov-Taylor identities by construction. We

chose here the simplest possible extension11 of the MS choice, which subtracts the mass

logarithm ln(�2
r
=m2) as well

mr 6= 0 : Zm � 1 = CF

g2
r

16�2

�
6

"̂m
� 4

�
and Z2 � 1 = CF

g2
r

16�2
2

"̂m
: (4.48)

Now we can immediately derive the last missing renormalization constant, the quark-gluon

vertex correction, from (4.13) to be

Z1f = Z2 + CA

g2
r

16�2
2

"̂
; (4.49)

where for massless quarks at the vertex one inserts Z2 from (4.46) and for massive ones

from (4.48).

After completing the derivation of the renormalization constants, we should come

back to their application. First let us reconsider why we were allowed to write down

\interaction vertices" even for those three �rst terms of LC (4.11) which should have

by analogy yielded propagator rules. To this end consider the simpler example of the

well-known Klein-Gordon Lagrangian for a free massive �eld

L =
1

2
(@��)(@

��)� 1

2
m2�2 (4.50)

and interpret it as the Lagrangian of a massless �eld with an interaction given by the

second term. Then we have the Feynman rules

=
i

p2
; = �im2 ; (4.51)

and the massive propagator appears as an in�nite sum of interactions

= + + + : : :

=
i

p2
+

i

p2
(�im2)

i

p2
+

i

p2
(�im2)

i

p2
(�im2)

i

p2
+ : : :

=
i

p2 �m2
:

(4.52)

11With this choice the derivative of the inverse propagator @�(2)(p=;mr)=@p= remains �nite for p= ! 0,

compare also [76, 71].



4.2. Renormalization Constants and Scheme Choice 53

Similarly, in our case we could have derived \counter-propagator" rules, and they would

have corresponded to an in�nite sum of counter-interactions. However, each of the

counter-interactions is suppressed by �s. Hence for our one loop calculation it is suf-

�cient to stop the series after only the �rst two-point interaction counterterm, all other

terms would be of higher order. For this reason we have interpreted the �rst three rules

in Tab. 4.1 as \vertices". Note that the �rst interaction of a counterterm will always

contribute negatively, since it is de�ned � i instead of the �im2 above. For example take

the ghost counterterm put on a propagator line. Then instead of just one propagator, we

have the propagator, then the counterterm and then again the same propagator:�
iÆac

1

k2

�
i(Z3h � 1)Æcdk2

�
iÆdb

1

k2

�
= �(Z3h � 1)

�
iÆab

1

k2

�
; (4.53)

compared to the one propagator iÆab=k2 we had before, just a factor �(Z3h � 1) appears.

It is also clear, that counterterm contributions only come from inserting elements from

Tab. 4.1 into graphs of at least one order in �s below the highest order being calculated,

since the elements are of order �s themselves. This means for our NLO calculation, that

we will just insert them in the LO graphs. Let us assume that mass renormalization

with Zm has already been performed on-shell, as discussed above, then (4.44) will give

similarly a factor �(Z2 � 1) when inserted at a quark propagator. For the gluon two

point counterterm inserted at a gluon propagator, we get a factor �(Z3� 1) for the same

reason12. On the other hand the lower four counterterms in Tab. 4.1 have exactly the

same structure as the bare Feynman rules. So for example replacing the quark-gluon

vertex by the quark-gluon three-point counterterm will just yield a factor (Z1f � 1) and

so on.

Thus we conclude, that upon inserting the renormalization counterterms in the LO

graphs, we will simply get the LO amplitudes times a sum of appropriate factors �(Zi�1)
for each propagator and appropriate factors Zj � 1 for each vertex. What about external

lines? We can insert two-point counterterms there as well, getting contributions with a

factor �(Zi�1). But we must remember that according to (4.8), for example an outgoing

electron will now appear in the amplitudes as u =
p
Z2ur. Since we have always the same

external legs in coherently added amplitudes, we can factor out these terms, and use only

the renormalized �elds, like ur, in the amplitudes. However, since Zi = 1+�szi, the factor

obtained from k external (anti)quarks, l external gluons and m external ghosts (keeping

our \external ghost trick" in mind), will give

Z
k

2

2 Z
l

2

3 Z
m

2

3h = 1 + �s

�
k

2
z2 +

l

2
z3 +

m

2
z3h

�
+O(�2

s
)

= 1 +
k

2
(Z2 � 1) +

l

2
(Z3 � 1) +

m

2
(Z3h � 1) +O(�2

s
) :

(4.54)

12The gauge term � k�k� does not contribute in the gauge invariant �nal result. There will be a �nite

correction � k2 to the gluon propagator, for the photon called Uehling term, important for the Lamb

shift. However, in MS we do not subtract �nite terms, except for the artifacts of regularization.
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This factor multiplied with the NLO and counterterm amplitudes gives no new contri-

butions at NLO, as it is 1 + O(�s). But multiplied with the LO amplitudes we get the

O(�s) part of (4.54) as new contribution. The end result of all this is, that for each

external line we get into the sum a factor �(Zi � 1) from the two-point counterterm and

a factor (Zi � 1)=2 from the rede�nition of the �elds, which gives a total of �(Zi � 1)=2.

This is exactly 1=2 of what we got for inserting counterterms at a propagator! But then

a propagator has two ends, so if we associate 1=2 of the counterterm contribution with

each end, we have the following simple e�ective rule: for each LO vertex, we take the

factor Zj � 1 of the corresponding counterterm vertex and add factors �(Zi� 1)=2 of the

corresponding counterterm two-point interactions for each of the (three or four) attached

legs. Then we sum the results for all LO vertices and get a factor, which times the sum

of the LO amplitudes is equal to the total sum of counterterm amplitudes, including the

e�ect of external �eld renormalization. Perhaps it is easier to describe this in a pictorial

fashion, as in Fig. 4.4 for a quark-gluon vertex. Note that previous removal of the mass

divergencies with the Zm counterterms is always implied.

�(Z2 � 1)

Z1f � 1

1
2
(Z2 � 1)

�(Z3 � 1)

1
2

1
2

Figure 4.4: E�ective counterterm contributions to be summed for the renormalization of the

quark-gluon vertex. An example con�guration is shown, where both quark lines are external

and the gluon internal. The (crossed) circles indicate the contributions from Tab. 4.1, and the

empty circle means mass renormalization with Zm has been done previously. The gray ovals

indicate the wave functions and the dotted line splits the internal contribution.

We can go even one step further, by now simply calculating what contribution we get

at each vertex13:

quark-gluon: 2

�
�Z2 � 1

2

�
� Z3 � 1

2
+ Z1f � 1 = Zg � 1 ;

quark-photon: 2

�
�Z2 � 1

2

�
+ Z2 � 1 = 0 ;

13Remember that we do not consider QED corrections, hence the quark-photon QED vertex is not

being renormalized.
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ghost-gluon: 2

�
�Z3h � 1

2

�
� Z3 � 1

2
+ Z1h � 1 = Zg � 1 (4.55)

3-gluon: 3

�
�Z3 � 1

2

�
+ Z1 � 1 = Zg � 1 ;

4-gluon: 4

�
�Z3 � 1

2

�
+ Z4 � 1 = 2(Zg � 1) :

But actually this means, that we can get the sum of the LO amplitudes and the countert-

erm amplitudes, by just setting g ! Zggr in the sum of bare LO amplitudes! To O(�s)
we have gk

r
! [1 + (Zg � 1)]kgk

r
= [1 + k(Zg � 1) +O(�2

s
)]gk

r
, so we get the LO part from

the one and for every vertex a factor Zg � 1. As is appropriate, a 4-gluon vertex with

g2, counts as 2(Zg � 1). A quark-photon vertex, which has no power of g, does not add

a factor. Finally, since the contribution to the cross section of the counterterms comes

from the interference of the LO amplitudes with counterterm amplitudes, we derive the

following e�ective formula for renormalizing the NLO cross section:

d~�(1)
r

= d~�(1) + 2k(Zg � 1)d~�(0) ; (4.56)

where k is the power of the strong coupling constant in the LO cross section d~�(0) � �k
s
�

g2k
r
, and mass renormalization has to be performed �rst.

Basically we have proven painstakingly this way, that we only need to renormalize the

coupling and the masses of the cross section. Then (4.56) just follows from the fact, that

a change in the coupling g ! Zggr has to be compensated at the order we are considering,
since the cross section is a renormalization group invariant. So for the cross sections all

our detailed scheme choices are super
uous, except for the Zm in (4.46) and (4.48), the

Zg in (4.25) and the statement that we respect the Slavnov-Taylor identities (4.13) with

our scheme. But of course knowing all the renormalization constants allows checks on

the amplitude level, so we can test whether the singularities coming from a particular

loop are cured by the appropriate counterterm. In addition, the explicit derivation of Zg

and Zm showed in detail the physical content of our choices. Nevertheless, (4.56) is a

convenient master formula for renormalization, in particular if we want to change to a

di�erent scheme. Finally, it should be mentioned that we have not derived a RGE for the

mass as we did for the coupling (4.30). The simple reason is, that of course the heavy

quark mass does not run, as we have renormalized it on-shell. It is easy to check this by

explicit calculation. On the other hand, the light quark masses do \run" in principle, but

as they start with zero mass at �0, they stay at zero mass. So e�ectively, all the masses

have constant values independent of the renormalization scale.
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Real Contributions

5.1 2! 3 Phase-Space and Singularities

k2

k1

p2

p1

LO

+

k2

k1

p2

p1

q

NLO virtual

2

+

k2

k1

p2

p1

k3

NLO real

2

Figure 5.1: The structure of LO and NLO contributions and the way in which the amplitudes

are added is shown symbolically. Incoming particles could also be photons or light (anti)quarks

and in the real case the outgoing gluon could instead be a light (anti)quark.

The processes under consideration here are one-particle-inclusive, which means that

only one outgoing particle, an open heavy (anti)quark state, is observed. Thus we lose

all information about the other particles involved in the hard subprocess, except for what

we can conclude from the conservation laws. In particular we do not know the number of

other particles involved and the four momentum of each. Since we are only considering

NLO here, i.e., only one additional power of �s, it is obvious that compared to the tree

graphs we can at most produce one additional particle. Thus at NLO we need to consider

2 ! 3 graphs, which mutually interfere, but of course will be added incoherently to the

2 ! 2 LO and NLO virtual contributions of Chap. 2 and Chap. 3, respectively. See

Fig. 5.1 for a graphical representation of the structure of the contributions including the

general naming scheme for the momenta. The 2 ! 3 \real contributions", so-called

because they involve the production of a (quasi-)real particle, have to be integrated over

the appropriate 2 ! 3 phase-space. In particular the unknown four momentum of the

additional particle has to be integrated out. It is in this integration that singularities will

arise when the additional particle sets the denominator of an internal propagator to zero.
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In order to see this more clearly, let us calculate two simple sub-diagrams occurring in the

calculation, displayed in Fig. 5.2.

k2

k3 + p1

k3

p1

(a)

k2

k2 � k3

k3

p1

(b)

Figure 5.2: Two examples of 1! 2 sub-diagrams occurring in the real NLO graphs. The full

2! 3 process is decomposed in a 2! 2 process followed by a 1! 2 decay, examples of the

latter are shown here.

We will formally treat the 2 ! 3 process as a 2 ! 2 process, with one of the three

outgoing particles and a pseudo-particle as products, followed by a 1 ! 2 decay of the

pseudo-particle to the other two outgoing particles. We only observe one outgoing particle

and we will stay in the c.m.s. of those two outgoing particles which are not observed,

i.e., whose momenta have to be integrated over1. We chose the two outgoing particles of

Fig. 5.2 with the momenta k3 and p1 as unobserved decay products of the pseudo-particle.

Thus the 1 ! 2 decay proceeds in the \laboratory" frame, the c.m.s. of the unobserved

decay products, and we keep the momentum of the pseudo-particle p unspeci�ed for now.

It will be integrated out later. To simplify the phase-space integration further, we can

chose to align the z-axis with one of the other three momenta k1, k2 and p2, which will

result in three distinct parametrizations. Here we will align the z-axis with the incoming

momentum of the sub-diagram examples in Fig. 5.2, k2, a choice called \set one" below.

The parametrization used for the n-dimensional vectors occurring in Fig. 5.2 is then

p1 = (E1; p
x

1 ;�!3 sin �1 cos �2;�!3 cos �1; p̂1) ;
k3 = (!3;�px1 ; !3 sin �1 cos �2; !3 cos �1;�p̂1) ;
k2 =

�
!2; 0; 0; !2; 0̂

�
:

(5.1)

Here the \hat" momenta symbolize the n � 4 additional components introduced in di-

mensional regularization. So we get for the 1! 2 decays of Fig. 5.2 with pseudo-particle

momentum p � k3 + p1 = (p; 0; 0; 0; 0̂)

1! 2 =

Z
dnk3 d

np1 Æ(k
2
3)�(!3)Æ(p

2
1 �m2)�(E1)Æ

(n)(p� k3 � p1)

=

Z
dnp1 Æ(p

2 � 2pE1 +m2)�(p� E1)Æ(p
2
1 �m2)�(E1)

=
�
n�4
2

�
�
n�4
2

� !2
3

2p

�ZZ
0

d�1 d�2 sin2 �1 sin �2

p̂
2
1maxZ
0

dp̂21
(p̂21)

n�6
2q

(p2�m2)2

4p2
sin2 �1 sin

2 �2 � p̂21
1In the following the Gottfried-Jackson frame [55] is introduced. Similar phase-space calculations

appear in [56, 44], but the hat momenta are only treated here. Our notation follows Appendix B of [44].
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=
�
n�4
2

4

�
�
n

2
� 1
�

�(n� 3)

(p2 �m2)n�3

(p2)
n

2
�1

Z
d
n�4 I : (5.2)

In the third step we have integrated over the x-components. This implies that the

matrix elements to be integrated do not depend on these components. Thus we must

later chose the momentum of the observed particle, p2, to lie in the y � z plane, which is

always possible. Furthermore we have used

dn�4p̂1 =
�
n�4
2

�
�
n�4
2

� �p̂21�n�62 dp̂21 ;

p̂21max =
(p2 �m2)2

4p2
sin2 �1 sin

2 �2 ;

(5.3)

and de�ned Z
d
n�4 �

�ZZ
0

d�1d�2 sin
n�3 �1 sin

n�4 �2 ; (5.4)

I � 1

B
�
1
2
; n�4

2

� Z 1

0

dx
x
n

2
�3

p
1� x

; (5.5)

x � p̂21
p̂21max

=
4(s4 +m2)p̂21
s24 sin

2 �1 sin
2 �2

; (5.6)

where s4 � (k3 + p1)
2 � m2 = p2 � m2 and B(v; w) is the Euler Beta function. Note

that the integral-operator I is normalized in the sense that for those parts of the matrix

element independent of hat momenta we have I � 1 = 1! We will postpone the discussion

of the hat momenta and continue here by setting that integration to one, i.e., by not

considering hat momenta.

Now p2 = 2!3(E1 + !3) +m2 � m2, as is evident from k23 = 0 and p21 = m2. So the

variable s4 introduced below (5.6) is positive s4 � 0, and s4 ! 0 when the additional

massless particle emission becomes infrared, i.e., !3 ! 0. In (5.2), we �nd a term (p2 �
m2)1+" = s1+"4 with n = 4 + ". On the other hand the gluon emission in Fig. 5.2 (a)

leads to a massive fermion propagator with momentum k3 + p1, so upon integrating over

the momentum of the pseudo-particle later in the 2! 3 phase space, the square of that

particular amplitude will led to terms of the following formZ
ds4 s

1+"
4

�
1

(k3 + p1)2 �m2

�2
=

Z
ds4 s

�1+"
4

!3!0�!
"!0

1 : (5.7)

This means we have found an IR singularity! It is regularized by our shift to 4 + "

dimensions. We can make this explicit by introducing a �-distribution2 corresponding to

2If v � 1 + t1=s and w � �u1=s + t1 are introduced, then s4 ! 0 poles show up for w ! 1, i.e.,

1=s4 ! 1=(1 � w). The singular w ! 1 behavior can then be treated with the usual +-distribution

1=(1� w)+ [56].
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cutting o� the s4�divergence:Z �

0

ds4 f(s4)[g(s4)]� �
Z �

0

ds4 [f(s4)� f(0)] g(s4) ; (5.8)

where g(s4) is singular and f(s4) is �nite for s4 ! 0. Then we can write the following

identity

s�1+"4 =
�"

"
Æ(s4) + [s�1+"4 ]� : (5.9)

For this reason, those squared matrix elements that have a 1=s24 dependence will lead to

infrared 1=" poles. These poles will cancel the 1=" IR poles of the virtual contributions

in accordance with the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems [70].

In Fig. 5.2 (b) we encounter a propagator with the denominator t0 � (k2 � k3)
2 =

�2!2!3(1 � cos �1). We immediately see the potential for an infrared divergence when

!3 ! 0. But for the moment let us assume that the phase-space integration is infrared

�nite, i.e., we are looking at a term in the squared matrix element which does not introduce

a second !3 in the denominator. What about the angular dependence? We see in (5.1)

that for �1 ! 0 the momenta k2 and k3 can become collinear, both pointing along the

z-axis3. The propagator with t0 will lead to following terms in the phase-space integration

Z
d
n�4

1

t0j
�
Z
d
n�4

1

(1� cos �1)j
=

2(2�j)�

n� 4

�
�
n�2(1+j)

2

�
�
�
n�4
2

� �(n� 3)

�(n� (2 + j))
: (5.10)

Obviously, for j = 1 and n = 4+" one again gets a 1=" pole, a collinear one. If we had given

k2 a mass, then the integral in (5.10) would become �nite for j = 1. A singularity would

occur in the limit of this mass going to zero. For this reason the collinear singularities

are also often called mass singularities. They are absorbed by a rede�nition of the parton

densities in the so-called mass factorization procedure, as will be shown in Chap. 6. As

a �nal point we note that it is of course possible that a second !3 is introduced into the

denominator with j = 1, for example from the the interference of sub-diagrams (a) and

(b) of Fig. 5.2. Then we will get an infrared and collinear pole at the same time, leading

to 1="2 poles. These will also be canceled against virtual double poles according to the

theorems [70] mentioned above.

Now we will calculate the full 2 ! 3 phase-space. First to complete the kinematical

parametrization, we will place p2 in the y� z plane, as discussed below (5.2), and k1 then

follows from momentum conservation ~k1 + ~k2 = ~p1 + ~p2 + ~k3

p2 =
�
E2; 0; j~p2j sin	; j~p2j cos	; 0̂

�
;

k1 =
�
!1; 0; j~p2j sin	; j~p2j cos	� !2; 0̂

�
:

(5.11)

3The x- and hat-space components are integrated over in the phase space, so they can become zero.
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Remembering the de�nitions of the 2! 2 variables (2.18), which with this choice do not

contain the �1; �2 angles, and adding the c.m.s. momenta variable s4, we have

s � (k1 + k2)
2 = (!1 + !2)

2 � j~p2j2 ;
t1 � (k2 � p2)

2 �m2 = 2!2(j~p2j cos	� E2) ;

u1 � (k1 � p2)
2 �m2 = �!2

2 �m2 + (!1 � E2)
2 ;

s4 � (k3 + p1)
2 �m2 = 2!3(E1 + !3) = s+ t1 + u1 :

(5.12)

By using the non-trivial squared momenta4 and energy-momentum conservation, we �nd

k21
!
= 0 = !2

1 � (j~p2j2 � 2j~p2j!2 cos	 + !2
2) ; p21

!
= m2 = E2

1 � !2
3 ;

p22
!
= m2 = E2

2 � j~p2j2 ; !1 + !2
!
= E1 + E2 + !3 :

(5.13)

Then we can solve towards three arbitrary independent variables, e.g.,

!2 =
s+ t1

2
p
s4 +m2

; j~p2j =
p
(t1 + u1)2 � 4m2s

2
p
s4 +m2

;

cos 	 =
t1s4 � s(u1 + 2m2)

(s+ t1)
p
(t1 + u1)2 � 4m2s

:

(5.14)

The remaining variables !1; !3; E1; E2 immediately follow from (5.13). So together with

�1; �2 we �nd �ve independent variables, as it should be for three independent four-vectors
with three mass and four energy-momentum constraints.

We can now write down the the 2! 3 phase-space dPS3Z
dPS3 =

Z
dnk3

(2�)n�1
dnp1

(2�)n�1
dnp2

(2�)n�1
Æ(k23)�(!3)Æ(p

2
1 �m2)�(E1)Æ(p

2
2 �m2)�(E2)

� (2�)nÆ(n)(k1 + k2 � k3 � p1 � p2)

=
1

(2�)2n�3

Z
dnp dnp2 Æ(p

2
2 �m2)�(E2)Æ

(n)(k1 + k2 � p� p2) � (1! 2)

=
�
n�4
2

4

�
�
n

2
� 1
�

�(n� 3)

1

(2�)2n�3

Z
dnp2 Æ(p

2
2 �m2)�(E2)

sn�34

(s4 +m2)
n

2
�1

Z
d
n�4 I

(5.15)

where we have split the 2 ! 3 process into a 2 ! 2 process with a pseudo-particle of

four-momentum p, which subsequently decays in a 1! 2 process. That way we are able

to use (5.2). After the integration over p in (5.15) any frame can be used for the remaining
2! 2 integration with the pseudo-particle. The c.m.s. is advantageous and we chose

k1;2 =

p
s

4

�
1; 0; 0;�1; 0̂

�
; p2 =

�
E2; 0; j~p2j sin �; j~p2j cos �; 0̂

�
: (5.16)

4From k23
!
= 0 we know that (px1)

2 + p̂21 = !23 sin
2 �1 sin

2 �2.
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Then (5.15) becomesZ
dPS3 =

2

(4�)n
1

�(n� 3)

Z
dE2(E

2
2 �m2)

n�3
2 �(E2)

�
Z

�

0

sinn�3 �
sn�34

(s4 +m2)
n

2
�1

Z
d
n�4 I : (5.17)

Using
p
E2 �m2 sin � =

p
t1u1 �m2s=

p
s and dE2d� = dt1du1=(2

p
s
p
t1u1 �m2s), we

arrive at the �nal result

dPS3 = dt1du1
1

(4�)n�(n� 3)s

�
t1u1 �m2s

s

�n�4
2 sn�34

(s4 +m2)
n

2
�1

Z
d
n�4 I : (5.18)

For the double di�erential real cross section, the 
ux factor 1=(2s) is introduced. Also
an auxiliary mass parameter �(4�n)=2 for every power of the gauge coupling has to be

multiplied, so that the gauge coupling stays dimensionless in n dimensions. The �nal

result to be used for the NLO real 2! 3 cross sections is then with n = 4 + ":

d2~�
(1)
2!3

dt1du1
= F"G"

Z
d
" I j ~MRj2 ; (5.19)

G" �
��"

2�(4�)2+
"

2

�
�
1 + "

2

�
�(1 + ")

s1+"4

(s4 +m2)1+
"

2

; (5.20)

where F" is given in (2.25) and G" parametrizes the di�erence to the LO cross section, as

compared to (2.24).

5.2 Partial Fractioning of Angular Integrals

Now we should complete the set of kinematical invariants occurring in the matrix elements

by writing down those depending on the angles �1; �2. We de�ne in addition to (5.12)

s3 = (k3 + p2)
2 �m2 ; s5 = (p1 + p2)

2 = �u5 ; t0 = (k2 � k3)
2 ;

u0 = (k1 � k3)
2 ; u6 = (k2 � p1)

2 �m2 ; u7 = (k1 � p1)
2 �m2 :

(5.21)

Since they represent only the two angular degrees of freedom, we can �nd four independent

relations between them, e.g.,

u0 = �s� u1 � u7 ; t0 = �s� t1 � u6 ;

u5 = t1 + u1 + s3 ; s3 = s+ u6 + u7 :
(5.22)

Furthermore we see that, for example, u7 would be identical to t1 in 2 ! 2 kinematics

with k1 + k2 = p1 + p2. Thus in the infrared limit, !3 ! 0, or equivalently s4 ! 0, we
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set a or A b or B C coll.

s3 I r6 r3 r5

s3 II " with t1 $ u1 "

t0 I r1 �r1 X

u0 II " with t1 $ u1 " X

u0 I r1(t1 $ u1) r4 �r5 X

t0 II " with t1 $ u1 " X

u5 I r7 r3 r5

u5 II " with t1 $ u1 "

u6 I r2 r1

u7 II " with t1 $ u1 "

u7 I r2(t1 $ u1) �r4 r5

u6 II " with t1 $ u1 "

Table 5.1: The �1; �2-coeÆcients according to (5.25) for the angular Mandelstam variables

(5.21). For brevity, (5.23), (5.24) and (5.26) have been employed. Results for \set one" and

\set two" with k2 and k1 aligned with the z-axis, respectively, are shown. It is indicated which

variables can develop a collinear divergence, see Sec. 5.3. " : : : " symbols mean inserting the

columns of the row above changed as indicated.

�nd u7 ! t1. On the other hand s3 will simply vanish in that limit. For the invariants of

(5.21) we can write

s3 = s4s3 ; t0 = s4t
0 ; u0 = s4u

0 ; (5.23)

u5 = �s + s4u5 ; u6 = u1 + s4u6 ; u7 = t1 + s4u7 ; (5.24)

where the underlined quantities are dimensionless and become �nite functions of the 2! 2

Mandelstam variables (5.12) and m2 in the s4 ! 0 limit.

The angular variables (5.21) all have one of the following two structures

[ab] a+ b cos �1 or [ABC] A+B cos �1 + C sin �1 cos �2 ; (5.25)

and we will symbolize the angle independent variables of (5.12) as [�]. Whether an an-

gular variable is of [ab] or [ABC] type depends on the chosen parametrization. In our

calculation we really only need the \set one" parametrization given above. A \set two"
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parametrization can be helpful at times, however. Compared to (5.1) and (5.11), we align

k1 with the z-axis and adjust k2, so that all other momenta stay untouched. Then in

(5.14) in the cos	 we get a t1 $ u1 crossing and no other changes. The third possibility

of putting p2 on the z-axis is not employed by us. In Tab. 5.1 we have collected the

angular coeÆcients in terms of the [�] variables for both sets of parametrizations. We

have used the following abbreviations

r1 = � s+ t1

2(s4 +m2)
; r2 = �s4 + u1 + 2m2

2(s4 +m2)
; r3 =

2m2s� s4t1 + su1

2(s+ t1)(s4 +m2)
;

r4 = �s(s4 +m2) +m2s� t1u1

2(s+ t1)(s4 +m2)
; r5 = �

p
s(s4 +m2)(t1u1 �m2s)

(s+ t1)(s4 +m2)
;

r6 = �t1 + u1 + 2m2

2(s4 +m2)
; r7 =

s+ s4

2(s4 +m2)
:

(5.26)

The variables in Tab. 5.1 have been grouped so that one can easily see the e�ects of

switching between the sets: on one hand there is t1 $ u1 crossing, on the other hand the

pairs t0; u0 and u6; u7 exchange their rôle as [ab] and [ABC] variables.

Let us quickly return to the question of hat momenta. We noted already concerning

(5.5) that I � 1 = 1. Squares of hat momenta occur always linearly in the squared matrix

elements, so we need to look at

I � p̂21 =
s24 sin

2 �1 sin
2 �2

4(s4 +m2)

1

B
�
1
2
; n�4

2

� Z 1

0

dx
x
n

2
�2

p
1� x

=
n� 4

n� 3

s24 sin
2 �1 sin

2 �2

4(s4 +m2)
= "

s24 sin
2 �1 sin

2 �2

4(s4 +m2)
+O("2) :

(5.27)

In the squared matrix elements at worst a 1=s24 can appear, since in the amplitudes

emitting one real particle can result in only one infrared divergent propagator. From

(5.27) and (5.19) we get for a 1=s24 hat term a factor of s1+"4 =(s4 + m2)2+"=2, which is

obviously infrared s4 ! 0 safe. Thus we will not get infrared divergencies from the hat

terms, no 1="2 poles are possible and the expansion toO(") in (5.27) is justi�ed. Note that
for m! 0 we would get an infrared divergence, i.e., the mass acts as an infrared regulator

here. Concerning collinear divergencies stemming from terms like (5.10), we note again

that only one propagator can become collinearly divergent by the emission of one real

particle in the amplitude, so that j = 1 or j = 2. The sines of (5.27) when inserted into

(5.10), basically shift n! n+ 2. Then for j = 1 we will obtain no divergence. But j = 2

in (5.10) gives 2�=(n�6) which yields a 1=" pole for this shift. In this case the " factor of

(5.27) will be canceled and a �nite contribution at O(1) exists. This means, that in our

calculation the only hat terms we have to keep are those having a double collinear form,

i.e., with 1=t02 or 1=u02, the others can be dropped.

As we have seen, the variables (5.21) have either the [ab] or the [ABC] form of (5.25).

In the matrix elements, various complicated combinations of those variables can occur. It
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is impossible to directly perform the angular integrations over them, in particular not in

n dimensions. But it turns out to be possible to reduce all of the integrals to the following

standard form

I(k;l)
"

=

Z
d
"(a+ b cos �1)

�k(A+B cos �1 + C sin �1 cos �2)
�l ; (5.28)

i.e., an angular integration with (5.4) and an [ab] variable to the power k and an [ABC]

variable to the power l in the denominator. We also set n = 4+" here and in the remainder

of the chapter. How can one obtain such a form from expressions like (t1u
0)=(s4t

0u7)

occurring in the squared matrix elements? The trick is to use Mandelstam relations like

(5.22) for partial fractioning. These expressions are of the type

e[ABC] = f [�] + g[ab] + h[ABC] : (5.29)

Since [�] variables can be factored out of the angular expressions, we only have to worry

about terms with e, g, and h. Also expressions with only powers of e and g or g and h in

the denominator already comply with the (5.28) form. So the only terms we have to look

at are combinations of all three e, g, and h or of only e and h, i.e., those cases that have

two [ABC] variables.

Starting with the combinations of all three variables, we have

1

egh
=

1

f

�
1

gh
� 1

eg
� 1

eh

�
;

e

gh
=

1

g
+

1

h
+

f

gh
;

g

eh
=

1

h
� 1

e
� f

eh
;

h

eg
=

1

g
� 1

e
� f

eg
;

eg

h
= g +

fg

h
+
g2

h
;

gh

e
= g � fg

e
� g2

e
;

eh

g
= h+

fh

g
+
h2

g
; egh = fgh+ g2h+ gh2 :

(5.30)

In order to rewrite the combinations of two variables, we use the fact that [�]+[ab]! [ab].

So with

gf [ab] � f [�] + g[ab] ) e[ABC] = gf [ab] + h[ABC] ; (5.31)

terms with only powers of e; gf or gf ; h in the denominator also comply with the (5.28)

form. Then

1

eh
=

1

gfh
� 1

gfe
;

e

h
= 1 +

gf

h
;

h

e
= 1� gf

e
; eh = gfh+ h2 : (5.32)

Equations of the form [ab]; [ABC] = [�] + [�] + [ab]; [ABC] can also be treated by (5.32).

Powers of the variables can be treated by repeated application of these rules, for example

gh2

e2
=
gh

e
� fgh

e2
� g2h

e2
= g � 2fg

e
� 2g2

e
+
2fg2

e2
+
f 2g

e2
+
g3

e2
: (5.33)
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So we can �nd, e.g., the appropriate expressions for u6u
2
7=s

2
3, complying with (5.28), by

setting fe; f; g; hg ! fs3; s; u6; u7g in (5.33). If we have for example 1=(s3u7), then the

�rst relation of (5.32) tells us that we need to introduce the auxiliary variable u6s = s+u6
to write the result in the desired form.

Our goal is to eliminate all occurrences of two [ABC] variables. As we see from the

example (5.33), repeated application of the appropriate rules (5.30) and (5.32) will achieve

this aim. In order to automate this procedure in a Mathematica [57] program, one has to

chose a complete set of relations like (5.22) in order to eliminate all such terms:

u0 = �s� u1 � u7 ; u5 = u1 � t0 + u7 ; s3 = �t1 � t0 + u7 ;

u0 = �s4 � t0 � s3 ; u5 = t1 + u1 + s3 ;

u0 = �s� t0 � u5 ; t0 = �s� t1 � u6 :

(5.34)

Though using this completely computerized method of obtaining standard form integrals

has the advantage of producing error free results quickly, it has the disadvantage of often

yielding unnecessarily complicated expressions. For example

1

(s3u0)2
set one�!

automatic

2

u5(t1 + u6)3
+

1

u25(t1 + u6)2
+

1

u02(t1 + u6)2
+

2

u0(t1 + u6)3
; (5.35)

whereas the original expression 1=(s3u
0)2 is already in the standard form (5.28) if we use

\set two" instead. In general we have used the automatic partial fractioning using \set

one" for the long expressions, where also often cancellations occur upon fractioning, and

proceeded term by term using both sets for short expressions, like in the soft s4 ! 0

limits.

5.3 Calculation of Basic Angular Integrals

After performing the extensive partial fractioning of the squared matrix elements de-

scribed in the last section and collecting the terms, what remains to be done is the

calculation of the integrals brought to the standard form (5.28):

I(k;l)
"

=

�ZZ
0

d�1d�2
sin1+" �1

(a + b cos �1)k
sin" �2

(A +B cos �1 + C sin �1 cos �2)l
: (5.36)

The �rst important point to notice is that there are four classes of integrals, depending

on the collinear structure. The [ab] and [ABC] variable can both be either \collinear" or

not, which yields four combinations. In the case of the [ab] variable, collinearly divergent

behavior is possible for a2 = b2, so that (a+b cos �1)! a(1�cos �1). Then the zero occurs
at the edge of the �1 integration region and is not integrable. For the [ABC] variable the

same comments apply for �2 when A2 = B2 + C2. This is more diÆcult to see due to

the more complicated structure including a �1 dependence. In principle integration over
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�1 will give terms with a A2 � B2 � C2 cos2 �2 dependence, which explicitly shows the

appropriate \collinear" behavior. But in practice it is more convenient to integrate out

�2 �rst, which means that the divergence will be shifted to the �1 integration. Note that

the D�-rotation introduced below demonstrates the similarity of the collinear behavior

in �1 and �2. Perhaps simple integration examples show the possible collinear poles most

clearly: setting k = 2, l = 0 and " = 0 in (5.36), we get 2�=(a2� b2), whereas k = 0, l = 2

and " = 0 gives 2�=(A2 �B2 �C2). It has already been pointed out in Tab. 5.1 that the

only \collinear" variables in our calculation are t0 and u0.

We shall use the following notation for angular integrals I
(k;l)
"

a2 6= b2 and A2 6= B2 + C2 ) I
(k;l)
0 ;

a2 = b2 and A2 6= B2 + C2 ) I(k;l)
a

;

a2 6= b2 and A2 = B2 + C2 ) I
(k;l)

A
;

a2 = b2 and A2 = B2 + C2 ) I
(k;l)

aA
:

(5.37)

I0 integrals are �nite and so for them we could set " = 0. The others require regularization.

Note for the IaA integrals that when one angular integral is diverging the other is not, as

is obvious from A+B cos �1+C sin �1 cos �2 ! A�B 6= 0 at �1 = 0; �, see Tab. 5.1. This
means concerning regularization that no double poles 1=" � 1=" appear, when performing

the angular integrations. Double poles only appear when there is in addition an infrared

pole for s4 ! 0. In principle, if one could calculate all integrals keeping the full "
dependence, i.e., calculate I

(k;l)
" without approximation, one could obtain all results by

inserting the conditions (5.37) afterwards. In practice, most of the time it is necessary to

split up the integrations according to (5.37) �rst, so that one calculate the integrals by

exploiting the divergence structure.

We wish to calculate the minimal number of integrals necessary. As a �rst step we

will show, that all IA integrals can be transformed to Ia ones. With the unit vector

~e T = (sin �1 cos �2; sin �1 sin �2; cos �1) ; ~e 2 = 1 ; (5.38)

where T signi�es transposition, we can write the scalars

A+B cos �1 + C sin �1 cos �2 = A+ (C; 0; B) � ~e ;
a + b cos �1 = a+ (0; 0; b) � ~e : (5.39)

So the parameter vector of the [ab] variable points along the z-axis. Now we use a rotation

that puts the parameter vector of the [ABC] variable on the z-axis [81]:

D� =

0BBB@
� Bp

B2+C2
0 � Cp

B2+C2

0 1 0

� Cp
B2+C2

0 � Bp
B2+C2

1CCCA ; D�1
� = DT

� : (5.40)
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Obviously a rotation will simply transform a unit vector to a new one and we have

~e 0T � (D� � ~e)T = (sin �01 cos �
0
2; sin �

0
1 sin �

0
2; cos �

0
1) ; ~e 02 = 1 ; (5.41)

(C; 0; B) � DT

� = (0; 0;�
p
B2 + C2) ; (0; 0; b) � DT

� =
1p

B2 + C2
(�bC; 0;�bB) :

Now we can rewrite the scalars by inserting a one, which gives

(C; 0; B) � ~e = (C; 0; B) � D�1
� � D� � ~e = (0; 0;�

p
B2 + C2) � ~e 0 ;

(0; 0; b) � ~e = (0; 0; b) � D�1
� � D� � ~e =

1p
B2 + C2

(�bC; 0;�bB) � ~e 0 :
(5.42)

The integration ranges 0 � �1; �2 � � in (5.38) cover the complete half-space of positive

y-components of ~e. Since the rotation (5.40) leaves the y-components intact, this remains

unchanged by the transformation, i.e., we must have 0 � �01; �
0
2 � �, so that the same is

true for ~e 0. Then we can rewrite (5.36) as

I(k;l)
"

D��! I(l;k)
"

�
a$ A; b! �

p
B2 + C2; B ! � bBp

B2 + C2
; C ! � bCp

B2 + C2

�
(5.43)

=

�ZZ
0

d�01d�
0
2

sin1+" �01

(A�
p
B2 + C2 cos �01)

l

sin" �02
(a� bBp

B2+C2
cos �01 � bCp

B2+C2
sin �01 cos �

0
2)
k
:

We see clearly, that an I
(k;l)

A
integral will directly transform to an I

(l;k)
a integral, and

vice versa. So in our collection of integral results no I
(k;l)

A
integrals will appear, since they

can be directly obtained from the corresponding I
(l;k)
a results, which are easier to calculate,

using the substitutions displayed in (5.43). Note that there is an ambiguity inherent in

our de�nitions of Ia, IA and IaA concerning the sign of the \collinear" solutions for the

variables in (5.37). This ambiguity is of course present when (5.43) is used to relate IA
to Ia, since we must chose whether

p
B2 + C2 is +A or �A. Since in \set one" t0 and

in \set two" u0 have b = �a, i.e., the collinear divergence appears for forward emission,

we calculate our integrals for b = �a. In particular we will relate IA to Ia in such a way,

that a becomes �b after transformation. If we are not deriving general formulae, but

already inserting speci�c variables, we can still get relations from D�. From (5.26) we

have r1 = �
p
r24 + r25, and so Tab. 5.1 shows

D+ : I(k;l)
"

(t0; u0) = I(l;k)
"

(t0; u0)
��
t1$u1

; (5.44)

D� : I(k;l)
"

(u6; u7) = I(l;k)
"

(u6; u7)
��
t1$u1

: (5.45)

To further reduce the number of integrals that have to be calculated, we can use the

technique of di�erentiating with respect to a parameter. The obvious targets are the



68 Chapter 5. Real Contributions

parameters a; A, which do not multiply an angular dependence, and we �nd

I(k;l)
"

k>1
=

(�1)k�1
(k � 1)!

@k�1

@ak�1
I(1;l)
"

with a2 6= b2 ;

l>1
=

(�1)l�1
(l � 1)!

@l�1

@Al�1 I
(k;1)
"

with A2 6= B2 + C2 ;

I(k;l)
"

m<k�0
=

(�k)!
(�m)!

@k�m

@ak�m
I(m;l)
"

with a2 6= b2 ;

m<l�0
=

(�l)!
(�m)!

@l�m

@Al�m I
(k:m)
"

with A2 6= B2 + C2 :

(5.46)

Note that for the parameter di�erentiation to work properly, we need to assume that the

parameters are independent. Hence the collinear cases are excluded.

At this point we can state which basic integrals we need to calculate in order to obtain

all other required integrals with the methods explained above. Firstly, those integrals

where l = 0 and k � 0 can be performed keeping the complete " dependence, so that

the I0 and Ia (and IA using D�) cases can be easily derived from I" by taking the "! 0

and b2 ! a2 limits. We need k = �2;�1; 0. For the non-divergent I
(k;l)
0 , the (k; l)

combinations (�1;�1), (1;�3) and (1; 1) are needed. For the single collinear I
(k;l)
a , (and

thus I
(k;l)

A
), the combinations (1;�2), (1; 0), (1; 1), (2;�2), (2; 0) and (2; 1) are necessary.

Finally for the double collinear I
(k;l)

aA
we only need (1; 1). So by calculating only 13 integrals

we can reproduce the 29 integrals of [44] which are needed for the processes5. Let us start

with the l = 0; k � 0 cases. They are simple enough to be directly computed with the

help of Mathematica [57] or integral tables like [82], yielding

I(0;0)
"

= 2�
1

1 + "
; (5.47)

I(�1;0)
"

= 2�
a

1 + "
; (5.48)

I(�2;0)
"

= �

�
2a2 + b2

1 + "
� b2

3 + "

�
: (5.49)

Next concerning the non-divergent I
(k;l)
0 , we �nd for those with negative l

I
(�1;�1)
0 =�

�
2aA+ bB

1 + "
� bB

3 + "

�
: (5.50)

I
(1;�3)
0 =

�

6b4

(
4bB(9A2b2 � 9aAbB + (3a2 + b2)B2) + 6b(3aAb� 3a2B

5In [44] there are two additional integrals, I
(�1;1)

aA
and I

(�2;1)

aA
, not appearing in our decomposition

procedure. They can be obtained directly using (5.61) below and App. B.1. Some integrals not found in

[44], that do appear in our decomposition, follow from the 13 integrals listed here.
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+ 2b2B)C2 + 3(Ab� aB)(2(Ab� aB)2 � 3(a2 � b2)C2) ln
a + b

a� b

+
"

12

�
4b(�4B(27A2b2 � 27aAbB + (9a2 + 4b2)B2) + 3(�27aAb

+ 27a2B � 16b2B)C2) + (Ab� aB)(9 ln
a + b

a� b
(6(a2 � b2)C2

+ (2(Ab� aB)2 � 3(a2 � b2)C2) ln
a+ b

a� b
) + 36(2(Ab� aB)2

� 3(a2 � b2)C2) Li2

�
� 2b

a� b

�
)

�)
+O("2) : (5.51)

To obtain these results we have done the �2 integration part by part as is demonstrated in

(5.55) below. In the case of I
(1;�3)
0 the �1 integration gives hypergeometric functions that

were expanded using (B.7) and (B.8) and linear transformations. The last �nite integral

is to O(1) given by

I
(1;1)
0 =

�p
X

ln

 
aA� bB +

p
X

aA� bB �
p
X

!
;

X = (aA� bB)2 � (A2 �B2 � C2)(a2 � b2) ;

(5.52)

which is obtained by straightforward integration with " = 0.

In the single collinear case, we begin with those integrals having l = 0. It is easy to

perform them directly, and we obtain

I(1;0)
a

=
�

a

2

"
; (5.53)

I(2;0)
a

= � �

a2
2

2� "
: (5.54)

We note the curious fact, that I
(2;0)
a is �nite for " ! 0, whereas the integral diverges

when we set " = 0 before integrating. Actually we used this integral above as a simple

divergent example! The situation is exactly like for (3.3). We can transform the integral

using t = (1 � cos �1)=2 and then introduce a cuto� � with 0 < � < 1. We �nd

hypergeometric functions and the integration [�; 1] has to be analytically continued from

Re "0 > 2 exactly in such a fashion, that its �-dependence cancels against that of the

[0;�] integration, which is unproblematic with Re " > �2. Using linear transformations

of the hypergeometric functions, we �nd that this is the case for "0 ! ". A �nite rest

remains which gives (5.54) after the �2-integration. Next we treat the Ia integrals with

l = �2. Here we can expand the [ABC] term and then the �2-integration of the parts is

easy, resulting inZ
�

0

d�2 sin" �2(A+B cos �1 + C sin �1 cos �2)
2
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=

p
��
�
1+"
2

�
�
�
1 + "

2

� �A2 +B2 + 2AB cos �1 +

�
C2

2 + "
�B2

�
sin2 �1

�
: (5.55)

The integration over �1 of the parts again delivers only gamma functions and so the full

" dependence can be obtained

I(1;�2)
a

=
2�

a

�
(A+B)2

"
� B2 + 2AB � C2

1 + "
� C2

2 + "

�
; (5.56)

I(2;�2)
a

=
2�

a

�
(A+B)2

�2 + "
+
C2 � 2B(A+B)

"
+
B2 � C2

1 + "

�
: (5.57)

Next let us treat the two remaining cases which have an [ABC] term in the denom-

inator. For t0 we have a = �b and so the divergence appears with 1 � cos �1 in the

denominator. We subtract the cos �1 ! 1 limit of 1=(A+B cos �1+C sin �1 cos �2), multi-

plied by the rest of the kernel, as a counterterm. Then the remaining integral is �nite, can

be expanded in " prior to integration and is thus easily performed. Adding the integrated

counterterm, which is expanded in " only after integration, yields the complete answer.

The needed limits are

I(1;1)
a

:
1

A+B
; I(2;1)

a
:

1

A +B
+
B(A+B) + C2 cos2 �2

(A+B)3
(1� cos �1) ; (5.58)

where a term � cos �2 has been dropped in the latter since it does not contribute. The

results are

I(1;1)
a

=
�

a(A +B)

(
2

"
+ ln

�
(A+B)2

A2 � B2 � C2

�
+
"

2

"
ln2

 
A�

p
B2 + C2

A+B

!

� 1

2
ln2

 
A+

p
B2 + C2

A�
p
B2 + C2

!
+ 2Li2

 
�B +

p
B2 + C2

A�
p
B2 + C2

!

� 2 Li2

 
B �

p
B2 + C2

A +B

!#)
+O("2) ; (5.59)

I(2;1)
a

=
�

a2(A+B)

(
B2 + AB + C2

(A+B)2

�
2

"
+ ln

�
(A+B)2

A2 � B2 � C2

��

� 2C2

(A+B)2
� 1

)
+O(") : (5.60)

The double collinear case occurs in our calculation for t0 and u0. t0 has a = �b and u0
has A = �

p
B2 + C2 with 0 � �C

A
; B

A
� 1. Then by setting cos � = �B

A
in the results

(A4) and (A11) of [83], we obtain

I
(k;l)

aA

0��C

A
�1

=
0�B

A
�1

2�

akAl
2�(k+l)

�(1 + ")

�
�
1 + "

2

�2B �1 + "

2
� k; 1 +
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2
� l
�

2F1

�
k; l; 1 +

"

2
;
A� B

2A

�
:

(5.61)
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which, using a linear transformation of the third result in (B.6), immediately gives

I
(1;1)

aA
=

2�

a(A+B)

�
2

"
+ ln

�
A +B

2A

�
� "

2
Li2

�
�A� B

A +B

��
+O("2) : (5.62)

This �nishes the derivation of basic angular integrals. We will give one quick example

of how they are used in practice. In our decomposition procedure we may �nd a term

� u6=u
0, with no other angular variables. In set one, u0 is an [ABC] variable and can

diverge collinearly, whereas u6 is an [ab] variable and cannot diverge collinearly, compare

Tab. 5.1. So we need the integral I
(�1;1)
A

. We can relate this integral to I
(1;�1)
a by D�.

So �rst we use I
(1;�1)
a = 1

2
@

@A
I
(1;�2)
a , compare (5.46) and (5.56), then apply D+ withp

B2 + C2 = �A. We could of course also use D� with
p
B2 + C2 = A to derive the same

general formula, but the former corresponds to u0 ! t0 directly. We get

I
(�1;1)
A

=
�(aA� bB)

A2

�
2

"
+
2bB(1 + ")

(aA� bB)

�
: (5.63)

Now we plug in the values from Tab. 5.1 and �nally �nd

I
(�1;1)
A

(u6; u
0) =

2�(m2 + s4)t1u1

s4(s4 � t1)2

�
�
2

"
+
(1 + ")s4[(2m

2 + s4)(s4 � t1)� (2m2 + s4 + t1)u1]

(m2 + s4)t1u1

�
: (5.64)

Most of the integrals presented here were already derived in [44] and we agree on the

common results. Note however that we have extended almost all integrals to O("). We

need O(") when the integrals also have a soft divergence, i.e., when they are � 1=s24,

which will result in an extra 1=", see next section. Of course those O(") parts needed in

our processes were already presented in [44], but our extended results may become useful

for other processes.

5.4 Phase-Space Slicing

Now that we have completed the necessary angular integrations and identi�ed the collinear

singularities, let us brie
y return to the infrared singularities. Remember that (5.9) allows

us to isolate the infrared singularities by introducing a cut � on an integration diverging

for s4 ! 0. Take the s4-integration of a function H(s4) with a soft pole s�1+"4 S(s4) and
a �nite F(s4) part, i.e., both S and F are well behaved for s4 ! 0 when " = 0 and

S(0) 6= 0. ThenZ
s
max
4

0

ds4H(s4) �
Z

s
max
4

0

ds4
�
s�1+"4 S(s4) + F(s4)

�
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=

Z �

0

ds4

�
�"

"
Æ(s4)S(s4) + fS(s4)� S(0)gs�1+"4 + F(s4)

�
+

Z
smax4

�

ds4H(s4)

'
Z

smax4

0

ds4

�
�"

"
Æ(s4)S(s4) + �(s4 ��)H(s4)

�
(5.65)

In the last step we have assumed that � is chosen small enough to be negligible with

respect to the 2 ! 2 Mandelstam variables (5.12) and m2. Then S(s4) � S(0) ' 0 in

the range 0 � s4 � � and the integral of F(s4) from 0 to � gives approximately zero as

well. In practice one has to chose � so small that the integral over s4 does not change

anymore, � = 10�5 : : : 10�7m2 guarantees that the approximation is valid for our cross

sections.

As we can see the integral has been split into two parts. The part with the soft pole

S(s4) is now evaluated in 2! 2 kinematics due to the Æ(s4). This means that it can be

considerably simpli�ed! How can we extract this part from the total result H(s4)? If we

remember that the s4 ! 0 dependence of G" in (5.20) is s1+"4 and the only infrared poles

come from s�1+"4 terms as shown above, then obviously we have to isolate all the � 1=s24
parts of the matrix elements. By rewriting the results with the underlined variables of

(5.23), we make the hidden s4-poles due to s3 = s4s3, t
0 = s4t

0 and u0 = s4u
0 appear

explicitly. Then we can directly collect all contributing terms and drop the rest. We can

also use the s4 ! 0 limit of (5.24) to simplify the algebraic structure further: u5 ! �s,
u6 ! u1 and u7 ! t1. Thus it is easy to extract and simplify the part Æ(s4)S(s4) in (5.65).
It will be given in terms of the 2! 2 Mandelstam variables s, t1 and u1 and the reduced

2! 3 Mandelstam variables s3, t
0 and u0.

Let us examine what we get including the G" factor. Say we have collected all pole

terms in s�24 S(s4), then

G"s
�2
4 S(s4) =

��"

2�(4�)2+
"

2

�
�
1 + "

2

�
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2
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2�(4�)2+
"

2
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1 + "

2
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�(1 + ")

(m2)�1�
"

2
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"
S(0)

= C"

�
1� 3

8
�(2)"2

��
�

m2

�"
1

"

S(0)
2�m2

+O("3) : (5.66)

Note that we can rewrite G", which parametrizes the di�erence of the 2 ! 3 and 2 ! 2

phase-spaces, see (5.19), using the integration factor C" that occurs in all the virtual loop

integrals, see (3.5) and (3.6). This is of course expected, since the soft limit has e�ectively

2 ! 2 kinematics and its infrared poles cancel those of the virtual contributions. The

1=" infrared pole is clearly exhibited in (5.66) and can in combination with a potential

collinear pole in S(0) give rise to 1="2 poles.
It is easy to calculate S(0) algebraically and thus the cancellation of the infrared

poles can be performed explicitly. The remaining \hard" real piece is infrared safe due

to the � cuto�. This method which singles out the part of the phase-space which is
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infrared divergent is called \phase-space slicing" and has also been used in the unpolarized

calculations, see e.g., [44]. In principle the splitting in a hard and soft part in (5.65) is

already suÆcient for a numerical evaluation after the poles have been canceled. However,

note the term
�
�
m2

�"
in (5.66). In combination with 1=" or 1="2, logarithms of �=m2 after

expansion and cancellation of the poles will be left over6. Though these logarithms are

�nite they of course grow large for �! 0. In the integral (5.65) they cancel in the sum

with the �(s4 ��)H(s4) part.
It is thus advisable to shift the logarithmic � terms to the, in this way rede�ned,

hard part in order to achieve a numerically directly stable result independent of �. For

any numerical calculation of physically relevant hadronic cross sections, it is also useful

to directly add the complete soft plus virtual piece to the hard part. In both cases this

can be achieved by rewriting the soft plus virtual piece, expanded in powers of lnk�=m2

(k = 0; 1; 2), as follows [45]

Æ(s4)

2X
k=0

�k ln
k
�

m2
! �(s4 ��)Ak�k js4=0 (5.67)

with coeÆcients �k which are �nite for s4 = 0. Proper care is taken in (5.67) concern-

ing the di�erent distributions Æ(s4) and �(s4 � �) multiplying the soft and hard parts,

respectively, see (5.65). As indicated in (5.67), the �k have to be always evaluated using

the \elastic" 2 ! 2 kinematics, i.e., s4 = 0, even when added to the 2 ! 3 hard cross

section. The coeÆcients Ak are given by

A0 =
1

smax
4 ��

; A1 =
ln(smax

4 =m2)

smax
4 ��

� 1

s4
; A2 =

ln2(smax
4 =m2)

smax
4 ��

� 2 ln(s4=m
2)

s4
(5.68)

as can be easily veri�ed by integrating the r.h.s. of (5.67) with
R
smax4

�
ds4, which recovers

the lnk�=m2 terms. As a �nal note we mention that G" of course has to be expanded

only to O(") for the hard part, since at worst we still �nd collinear 1=" poles there.

6Terms of the form log
�
�
m2

�
=" are eliminated by mass factorization, see Chap. 6.



Chapter 6

Mass Factorization

Using the work of the last three chapters, we �nd that the infrared singularities cancel

in the sum of virtual and real contributions, as guaranteed by the Bloch-Nordsieck and

Kinoshita-Lee-Nauenberg theorems [70], respectively. This includes collinear (mass) sin-

gularities, if they are accompanied by an infrared singularity, i.e., 1="2 = 1="jIR � 1="jM
terms. However, there still can be singularities 1=" left over, which are purely collinear

in nature. We wish to show now how these singularities can be \absorbed" in a redef-

inition of the parton densities, which are convoluted with the partonic cross sections to

obtain the experimentally measurable hadronic cross sections. A complete proof of mass

factorization is of course not the aim here. However, it is useful to see in detail how the

method works for one particular subprocess, since one can then by analogy easily write

down the formulae for all the other kinds of subprocesses occurring here. The proof that

this procedure can indeed be generalized and that the rede�nition of the parton densities

is universal, i.e., the same in all QCD processes, can be found in the literature. An ex-

tension of the methods used here is for example employed in [84] for the general proof.

Note that we will have to deal with initial collinear singularities only in our subprocesses.

It is fortunate that one of the 2 ! 3 subprocesses of our calculation is ideal for the

demonstration. In NLO photoproduction one encounters a new type of subprocess with

a light (anti)quark in the initial state, for which we will use the external momentum and

color assignment

~
(k1) + ~qj(k2)! Qk(p1) +Q
l
(p2) + qi(k3) : (6.1)

The squared matrix element calculated from the graphs shown in Fig. 6.1 can be decom-

posed according to whether the photon couples to the heavy quark with charge eQ (in

units of e) in the \Bethe-Heitler" graphs (a) and (b), or to the light quark with charge

eq, as for the \Compton" graphs (c) and (d):

j ~M
qj2 = M̂
qM�

q
= E"g

4e2
CF

2

h
e2
Q
~A1 + e2

q
~A2 + eqeQ ~A3

i
; (6.2)

where ~A3 denotes the contribution of the interference of both types of subprocesses. Notice

that since we now have only one boson in the initial state, the photon, only one factor
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(a) (b)

(c) (d)

Figure 6.1: Feynman diagrams for the NLO light quark initiated subprocess 
q ! QQq:

\Bethe-Heitler" graphs (a) and (b), \Compton" graphs (c) and (d).

E" appears in (6.2), see the discussion of (2.12). Since this production mechanism occurs

for the �rst time in NLO and there are no gluons in the �nal state, we do not encounter

IR singularities in the calculation. All (single) poles can be solely attributed to collinear

con�gurations, hence our choice of this subprocess to show the treatment of collinear

singularities.

The 2 ! 3 phase space integration including the partial fractioning proceeds just as

was explained in Chap. 5, and so we can immediately quote the results here
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2
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2
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+
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(x2t1)u1

��
;

�Apole
2 = � 1

t1
(2x1 � 1)

�
�t

2
1 + (x1u1)

2

(x1s)2
� 2m2

x1s

�
;

Apole
2 = � 1

t1

�
x21 + (1� x1)

2
� �t21 + (x1u1)

2

(x1s)2
+
2m2

x1s

�
;

(6.3)

where only the (collinear) pole contributions are given and e2
i
denotes e2

Q
, e2

q
, and eQeq

for i = 1; 2; and 3, respectively. The interference contribution ~A3 is not shown, because

it is completely �nite. ~A3 together with the other �nite parts is available upon request,
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the lengthy expressions will not be given here. Two new variables have been introduced:

x1 � � t1

s+ u1
and x2 � � u1

s + t1
: (6.4)

Note that we have not minimized the occurrence of these new variables in (6.3) to keep

the combination of these variables with s, t1, and u1 in the results obvious. As no double

poles can exist due to the absence of IR singularities, one needs G" in (5.19) only to O(")
when writing down the partonic cross section (6.3):

GH

"
� 2(4�)4(s4 +m2)

s4
G" = 16�

�
1 +

"

2

�

E � ln(4�) + ln

s24
�2(s4 +m2)

��
+O("2) ;

(6.5)

where we have also absorbed some additional factors into GH

"
for convenience.

We see that ~Apole
1 corresponds to the O(1) of ~BQED found in the LO photon-gluon

subprocess (2.21), but with the replacement (s; t1; u1)! (x2s; x2t1; u1). Noting that

Æ[(x2s) + (x2t1) + u1] =
1

s + t1
Æ

�
x2 +

u1

s+ t1

�
= �x2

u1
Æ

�
x2 +

u1

s+ t1

�
; (6.6)

we �nd that the Æ-function of the 2! 2 phase space (2.24) sets x2 to just the right value

(6.4) with the same replacement. Thus collecting all the factors, we �nd that we can write

the ~Apole
1 -part of (6.3) in the following form

�s

2�

Z 1

0

dx2 ~Pgq(x2)

�
2

"
+ ~Egq(�

2)

�
x2

"
d2~�

(0)

g

dt1du1

#�
s! x2s

t1 ! x2t1

�
: (6.7)

Here ~Egq collects �nite terms and depends not only on the usual kinematic variables, but

also on the mass scale � introduced to keep the coupling dimensionless. The functions
~Pgq can be directly read o�

Pgq(x) = Pg�q(x) = CF

�
1 + (1� x)2

x

�
; �Pgq(x) = �Pg�q(x) = CF (2� x) : (6.8)

We �nd that this is exactly the LO (anti)quark to gluon splitting function of [85]!

This splitting function corresponds to the probability that a quark with momentum

k sends out a collinear gluon with momentum xk and thus moves on with momentum

(1� x)k. In our ~Apole
1 case we then obviously must have the momentum of the exchanged

gluon in Fig. 6.1 (a) and (b) set to x2k2, i.e., the gluon is emitted collinearly to the light

quark with a fraction x2 of its momentum. This explains the appearance of the splitting

function depending on x2. The outgoing light quark has then the momentum k3 =

(1� x2)k2. The propagator of the gluon is found to be � 1=t0 = 1=(x2k2)
2 =\1/0", which

is readily identi�ed as the source of the collinear poles, see (5.10). Finally, the exchanged
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gluon with momentum x2k2 couples to the heavy quark line. But then this upper part of

the diagram is just like the Born amplitude for 
g ! QQ with the replacement k2 ! x2k2.

So the appearance of the LO cross section with (s; t1; u1) ! (x2s; x2t1; u1) is a natural

consequence of the incoming light-like momentum x2k2, e.g., t1 = �2k2�p2 ! �2x2k2�p2 =
x2t1, and x2 is �xed by (6.6). Our results so far are depicted by Fig. 6.2 (a) and (b).

k2

x2k2

(a)

k2

x2k2

(b)

k1

x1k1

(d)

Figure 6.2: Factorized Feynman diagrams for obtaining the collinear contributions of Fig. 6.1.

There is no factorized diagram corresponding to Fig. 6.1 (c).

Why did no similar collinear singularity occur for setting the heavy quark propagator

on-shell in Fig. 6.1 (a) and (b)? The heavy quark propagator momentum in Fig. 6.1 (a)

is k1� p1. So let us assume for the three-momenta collinear emission ~k1� ~p1 !
= x~k1 with

1

x � 0. Then the denominator of the propagator becomes

u7 = �2k1 � p1 = �2
�
j~k1j
q
(1� x)2~k21 +m2 � (1� x)~k21

�
: (6.9)

We see, that this can only become zero for m = 0 and x � 1! Then for m = 0 we recover

four-momentum collinearity k1 � p1 = xk1 with 0 � x � 1. Note that there is no soft

limit k1 ! 0 possible here to set the propagator on-shell, since the center-of-mass energy

s = 2k1 � k2 � 4m2. The next possibility, with a propagating gluon decaying to a heavy

quark and antiquark pair, is realized in Fig. 6.1 (c) and (d) and can be treated similarly:

The propagator momentum is p1 + p2, so we assume a collinear decay ~p1 = x(~p1 + ~p2)
with2 x � 0. So this time the denominator of the propagator is

s5 = (p1 + p2)
2 = 2m2 + 2

24q~p 2
1 +m2

s�
1� x

x

�2

~p 2
1 +m2 � 1� x

x
~p 2
1

35 ; (6.10)

which again can only become zero for m = 0 and x � 1. We once more �nd for m = 0

the four-momentum collinearity p1 = x(p1 + p2) with 0 � x � 1 and that no soft limit is

1x � 0 is necessary for energy conservation.
2The special case x = 0 leads to the same conclusions, we assume x 6= 0 in the following.
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possible. The �nal possibility in QCD involving massive particles, emitting an external

gluon from a heavy quark line Q ! Qg, will become relevant for 
g ! QQg and can

be analyzed in exactly the same fashion as g ! QQ with almost the same result. The

only di�erence is that now for soft collinear emission (k3 = 0), we can obtain an on-shell

propagator in spite of the masses. However, these soft plus collinear singularities cancel

against virtual contributions and thus do not have to be factorized. So we �nd that for

non-zero mass propagators, we do not have any (surviving) collinear singularities. Hence

we could have regularized the collinear singularities by giving the massless particles a

small mass �. Then the expressions would have diverged for � ! 0. This explains the

alternative name \mass singularities" and the label \mass (singularity) factorization".

Turning now to the \Compton" graphs of Fig. 6.1 (c) and (d), we see that (c) can

not have a collinear part, since the light quark propagator is attached to two incoming

particles. If it became on-shell, then indeed the center-of-mass energy would be zero, so

this is kinematically forbidden. We do not have to worry about the gluon propagator

either, since it is attached to heavy particles. On the other hand in Fig. 6.1 (d) the

light quark propagator is attached only to one incoming particle, the photon, and thus

we expect the collinear case depicted in Fig. 6.2 (d). So the antiquark propagator now

has momentum x1k1 and correspondingly we �nd for the outgoing light quark k3 = (1�
x1)k1. The collinear propagator diverges � 1=u0 = (xk1)

2 =\1/0" and the attached LO

subprocess is the quark-antiquark annihilation3 (2.29) with the replacement (s; t1; u1)!
(x1s; t1; x1u1) due to the incoming antiquark momentum x1k1. So we expect for the

Apole
2 -part

�s

2�

Z 1

0

dx1 ~P�q
(x1)

�
2

"
+ ~E�q
(�

2)

�
x1

"
d2~�

(0)
�qq

dt1du1

#�
s! x1s

u1 ! x1u1

�
; (6.11)

which is readily con�rmed by comparing with (6.3). We can also read o� the photon-

(anti)quark splitting functions

P�q
 = Pq
 = e2
q
NC

�
x2 + (1� x)2

�
; �P�q
 = �Pq
 = e2

q
NC(2x� 1) ; (6.12)

and they indeed have exactly the form derivable from [85].

At this point we should try to give more physical meaning to our results. We have

found that the singularities occur when the propagator of an internal (massless) particle

goes on-shell. But the propagator basically corresponds to the time the virtual particle can

propagate according to the uncertainty principle4! So as the propagator denominator goes

to zero, the propagation time becomes in�nite. In other words, the internal particle then

becomes (quasi-)real and can be treated on the same footing as external particles. This can

occur whenever an internal momentum happens to become parallel to the momentum of an

3The momenta are reassigned ~�q(k1) + ~q(k2)! Q(p1) +Q(p2), which leaves (2.29) unchanged.
4This is most evident in non-relativistic perturbation theory, where the \propagator" is simply the

inverse of the energy di�erence between the virtual and real state and �t � 1=�E. That the relativistic
propagator is the corresponding generalization is easily shown, see for example [86].
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external (massless) particle. But that this happens by chance for two unrelated (internal

and external, respectively) particles, both obeying their local momentum constraints, is

unlikely and hence suppressed by phase space. The only probable subprocesses leading

to a contribution will be those, in which either an incoming particle decays collinearly to

an internal particle or an internal particle decays collinearly into an external particle. We

will only consider the �rst case in the following, because it is relevant for our calculation,

but the second case can be analyzed analogously. Obviously this reaction happens in two

steps with very di�erent associated time scales. First one has the collinear decay into a

quasi-real particle followed by a long (\in�nite") propagation of the produced particle.

Then on a very short time scale (large propagator virtuality) a hard scattering subprocess

occurs. It is obvious that we can describe this by the probability of the external particle

decaying into the (quasi-)real particle (the splitting function) times the cross-section of

the hard scattering with the (quasi-)real particle (for NLO cross sections this will be a LO

cross section, as one interaction is used up for the collinear splitting) times the regularized

in�nity of the on-shell propagator and then integrated over the possible collinear momenta.

This is exactly the form of our results encountered in (6.7) and (6.11).

We can now draw some additional conclusions: Firstly, we immediately understand

why the interference of Fig. 6.1 (a) and (b) with (c) and (d) gives ~Apole
3 = 0. The LO

amplitudes left over after separating o� the long time scale subprocess (splitting and

propagating) belong to di�erent subprocesses and hence cannot interfere. Secondly, it is

clear that we need to add Fig. 6.2 (a) and (b) amplitudes coherently to obtain ~Apole
1 , since

both short time scale LO amplitudes are needed, see Fig. 2.2. Thirdly, we can simply

square Fig. 6.2 (d) on its own to obtain ~Apole
2 , since Fig. 6.1 (c) cannot have the same

long time scale subprocess and indeed one short time scale LO amplitude is enough, see

Fig. 2.4. However, the last statement concerns contributions within a gauge invariant

part, and is strictly only true when we use a physical gauge, for example an axial one5.

When using our polarization sum (2.15), one obtains singularities from the interference

of Fig. 6.1 (c) with (d). But the �nal (gauge invariant) result (6.11) has of course the

structure we expect from the third argument. However, the �rst two conclusions are

directly valid in any gauge, since they concern gauge invariant parts. The �nal step

leading to the mass factorization procedure now becomes conceptionally simple: as the

on-shell propagating internal particles are (quasi-)real, we should be able to pass them o�

as \partons". We can then try to absorb the singularities in a rede�nition of the \bare"

parton distributions used in calculating hadronic cross sections. Since these distributions

parametrize our ignorance about processes at large time scales and distances anyway,

we can safely declare these rede�ned densities as the \measurable" ones. Of course as

mentioned above, we skip here the all important but diÆcult proof, that this rede�nition

is universal, e.g., the same in all (factorizable) QCD processes, see for example [84]. The

�nal procedure is remarkably similar to the rede�nition of the \bare" �elds and couplings

5One then �nds, that the divergence of the interference term between Fig. 6.1 (c) and (d) is �
��[(s4 � u1)k

�

3 � s4k
�

1 ]=(� � k1), i.e., vanishes identically in the collinear limit k3 = (1� x1)k1. Of course
in the end all terms proportional to ��, which �xes the gluon �eld A� via � �A = 0, vanish.
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in the renormalization procedure. But here we will be forced to leave the purely partonic

level in order to obtain the �nal �nite results. This re
ects the fact that partons are not

directly observable.

First let us de�ne a �nite reduced cross section d~̂�
(1)


q
by

d2 ~̂�
(1)


q

dt1du1
(�2

f
) =

d2~�
(1)

q

dt1du1
(�2)�

d2~�
(1)

M
q

dt1du1
(�2

f
; �2) ; (6.13)

d2~�
(1)

M
q

dt1du1
(�2

f
; �2) =

Z 1

0

dx1 x1G�q
(x1; �
2
f
; �2)

"
d2~�

(0)
�qq

dt1du1

#�
s! x1s

u1 ! x1u1

�

+

Z 1

0

dx2 x2Ggq(x2; �
2
f
; �2)

"
d2~�

(0)

g

dt1du1

#�
s! x2s

t1 ! x2t1

�
(6.14)

Gij(xk; �
2
f
; �2) =

�s(�
2)

2�

�
~Pij(xk)

2

"
+ ~Fij(xk; �

2
f
; �2)

�
: (6.15)

Comparing this to (6.7) and (6.11), we see that d~̂�
(1)


q
becomes �nite as long as the ~Fij

are �nite. What we use for the ~Fij is then another choice of scheme, which is in principle

independent of our choice in the renormalization procedure. Also the factorization scale

should in principle be independent of the regularization scale �, which we had set equal to

the renormalization scale �r. We see that due to the GH

"
of (6.5) this scale is introduced

in a logarithm proportional to the splitting function in the �nite ~Eij(�
2) of (6.7) and

(6.11). To eliminate this logarithmic dependence on the renormalization scale explicitly

in the reduced cross section, we will subtract ln(�2
f
=�2) proportional to the splitting

function in the ~Fij of (6.15). Then the reduced cross section will only depend on the

new factorization scale �f . Furthermore a glance at (6.5) suggests, that the pole again

comes with the usual �nite artifacts of dimensional regularization. So we will use the MS

prescription and additionally only eliminate these artifacts. The general MS factorization

choice then amounts to

~Fij(x; �
2
f
; �2) = ~Pij(x)

�

E � ln(4�) + ln

�2
f

�2

�
; (6.16)

and we will use it throughout our calculation. Finally there is a hidden choice of �nite

terms implied in (6.14). To what order in " are we going to use the LO cross sections?

Our choice is to use them to O("), not O(1), which leads to �nite terms in conjuction

with the 1=" pole. This is consistent with the conventional de�nition of MS factorization,

which uses n-dimensional cross sections! If we considered our processes at next-to-NLO

(NNLO) using MS factorization, then O("2) parts of the n-dimensional LO cross sections

would have to be included, since they yield �nite contributions with the double collinear

emission 1="2 poles. In principle one could chose to never subtract this type of �nite terms

by adjusting the order in " appropriately, but in our case the conventional MS choice is

mandatory! As has been mentioned in the discussion of (2.30), helicity conservation is
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broken by the commuting [
5; 
�] = 0 of the HVBM scheme [54] in the non-physical

n� 4 = " dimensions. The e�ect is thus naturally of O(") and can contribute only when

the LO cross section is multiplied by a pole 1=". But such �nite terms will be generated

from the collinear pole contributions in (6.11). In order to restore helicity conservation,

we have to subtract them via (6.14) again, which is simply possible by inserting the LO

cross sections to O(").
In order to �nally factorize the singularities, we use the result, that to all orders in �s

and lowest order in �, we can write the collinear-singular partonic cross section as

d~�ij(�
2; k1; k2) =

X
l;m

Z 1

0

dz1

Z 1

0

dz2 �li(z1; �
2
f
; �2)�mj(z2; �

2
f
; �2)d~̂�lm(�

2
f
; z1k1; z2k2) ;

(6.17)

with i; j; l;m = g; q; �q; 
 and to �rst order in �s we have

�ij(z; �
2
f
; �2) = ÆijÆ(1� z) +Gij(z; �

2
f
; �2) : (6.18)

In writing the dependence on the scales � and �f in (6.17) and (6.18), we refer here

only to the additional ln(�2
f
=�2), see (6.16). We continue using �s(�

2) and F"(�
2), see

(2.25), throughout, and this dependence on � is always implied. It is a simple exercise to

convince ourselves that (6.17) together with (6.18) reproduces exactly our result (6.14),

when we drop all higher order terms and those suppressed by �=�s. The only remaining

structures are then �

�qqd~̂�
q, ��q
�qqd~̂��qq and �

�gqd~̂�
g, and in O(�s) only the Gij

terms found in (6.14) appear. Note that the extra x1 and x2 cancel against
d

d(x1u1)
= 1

x1

d

du1

and d

d(x2t1)
= 1

x2

d

dt1
, respectively. The general factorization prediction for a hadronic cross

section with two initial hadrons a and b can be written as

d~�ab(K1; K2) =
X
i;j

Z 1

0

dy1

Z 1

0

dy2 ~fa
i
(y1; �

2) ~f b
j
(y2; �

2) d~�ij(�
2; y1K1; y2K2) ; (6.19)

where ~fa
i
(y; �2) denotes the \bare" density of partons of type i in hadron a with longitu-

dinal momentum fraction y. Their dependence on the regularization scale � is dictated

by the fact6, that the all orders physical cross section d~�ab cannot depend on an arbitrary

scale. K1 and K2 are the external hadronic momenta of the hadrons a and b, respectively.
If we now de�ne \dressed" parton densities

~fa
l
(x1; �

2
f
) =

X
i

Z 1

0

dy1

Z 1

0

dz1Æ(x1 � y1z1) ~f
a

i
(y1; �

2)�li(z1; �
2
f
; �2) ;

~f b
m
(x2; �

2
f
) =

X
j

Z 1

0

dy2

Z 1

0

dz2Æ(x2 � y2z2) ~f
b

j
(y2; �

2)�mj(z2; �
2
f
; �2) ;

(6.20)

6The regularization dependence is often not shown and depends on the regularization method used.
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we can rearrange the sums and integrations that occur after inserting (6.17) in (6.19) to

an outer sum in l and m over the \dressed" parton densities, where outer integrations

over x1 and x2 with the appropriate Æ-functions have been added. So our �nal result has

a form very similar to (6.19)

d~�ab(K1; K2) =
X
l;m

Z 1

0

dx1

Z 1

0

dx2 ~fa
l
(x1; �

2
f
) ~f b

m
(x2; �

2
f
) d~̂�lm(�

2
f
; x1K1; x2K2) ; (6.21)

where we now however have a sum over the �nite reduced d~̂�lm! The singularities have

disappeared in our de�nition of \dressed" partons (6.20). Since the physical cross section

d~�ab and the reduced cross sections are �nite, we now assume the dressed partons to be

�nite by construction. Thus (6.21) �nally allows us to obtain physical predictions after

we have computed the relevant (reduced) cross sections, like in (6.13). Note that in other

subprocesses there are LO contributions, i.e., generally one has d~̂� = d~̂�(0)+d~̂�(1). We see

from (6.17) and (6.18), that we can generally extract the needed reduced cross sections

to O(�s) from

d~̂�
(0)
ij

= d~�
(0)
ij

;

d~̂�
(1)

ij
(�2

f
) = d~�

(1)

ij
(�2)� d~�

(1)

Mij
(�2

f
; �2) ;

d~�
(1)

Mij
=
X
l;m

Z 1

0

dz1

Z 1

0

dz2 Gli(z1; �
2
f
; �2)Gmj(z2; �

2
f
; �2)d~�

(0)

lm
(z1k1; z2k2) :

(6.22)

The dependence of the \dressed" partons (6.20) on only the factorization scale �f is

again motivated by the fact, that the physical cross section in (6.21) is independent of the

arbitrary scale �f . Technically, the \dressed" partons in (6.20) depend on the scale �f
through the logarithm in the �ij functions according to (6.18), (6.15) and (6.16). Thus

we can by simple di�erentiation obtain the LO RGE of the form

dfi(x; �
2
f
)

d ln(�2
f
)
=
�s(�

2)

2�

X
j

Z 1

x

dy

y
fj(y; �

2)Pij

�
x

y

�
O(�s)
=

all LL

�s(�
2
f
)

2�

X
j

Z 1

x

dy

y
fj(y; �

2
f
)Pij

�
x

y

�
: (6.23)

In the second line of (6.23), we have assumed that �f is of the order �, which means

that both �s(�
2
f
) and �s(�

2) are suÆciently small to serve as expansion parameter. Also

then the logarithm of the ratio of these two scales cannot become large and spoil the

expansion. So we can employ �s(�
2) ' �s(�

2
f
) + O[�2

s
(�2

f
); �2

s
(�2

f
) ln(�2=�2

f
)], compare

(4.31), and ~fi(x; �
2
f
) = ~fi(x; �

2) +O[�s(�2); �s(�2) ln(�2f=�2)], see (6.20) and (6.18). But

we have also changed the nature of the di�erential equation by writing the second line!

This is however justi�ed upon closer physical examination: We can now construct parton

distributions at a low scale �2
f0, where we �rst trust factorization to be valid. So this is our
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initial scale, setting a lower limit for \hard" scales whose occurrence allows to separate

o� a \hard" subprocess calculable with perturbative methods. Then we use (6.23) to

\evolve" these partons to a higher scale7 �f ' � ' m close to the typical hard scale

m of the process, so that the reduced cross sections do not contain large logarithms of

the type ln(�f=m). We see that we are summing logarithms along the way from �f0 to

�f , when iteratively solving (6.23). Indeed it can be shown, that our mathematical sin

of writing the second line in (6.23) corresponds to the physical good work of resumming

the leading logarithmic (LL) corrections to all orders. These appear in axial gauges as

strongly ordered ladder graphs �2
f0 � k21T � : : : � k2

nT
� �2

f
, with the kiT being the

transverse momenta along the rungs of the ladders. Summation over all ladders will lead

to (6.23). A detailed derivation can be found in [87], see also [88]. In the �rst line of

(6.23), we have basically derived the result for only one rung. We can now use the LO

RGE for determining the scale dependence of the parton distributions to LL accuracy. A

corresponding NLO RGE, which additionally resums logarithms accompanied by an extra

power of �s, next-to-leading logarithms (NLL), can be obtained similarly.

Since however the partons in (6.21) are convoluted with both the LO and NLO (re-

duced) cross sections, one should use the O(�2
s
) NLO RGE [26, 27, 89] and thus the

summation of NLL. To see this, we will write down the solution of (6.23) for LO and

NLO in the hypothetical case8 when there is only one parton f and one f ! f split-

ting function P . The LO and NLO cases correspond to inserting P = P (0) + O(�s) and
P = P (0) + �s

2�
P (1) + O(�2

s
) in (6.23), respectively. The appropriate LO and NLO \run-

ning" of �s also has to be used, see (4.30) and (4.34), respectively. We exploit the fact

that for Mellin moments an �
R 1
0
dxxn�1a(x) the convolution becomes a simple producthR 1

0

dy

y
a(y)b

�
x

y

�i
n

= anbn. Then we get from (6.23) the simple NLO di�erential equation

and its solution in Mellin moment space

dfn(�
2
f
)

d�s(�
2
f
)
= � 2

�0�s(�
2
f
)
fn(�

2
f
)

�
P (0)
n

+
�s(�

2
f
)

2�

�
P (1)
n
� �1

2�0
P (0)
n

�
+O[�2

s
(�2

f
)]

�
; (6.24)

fn(�
2
f
) = fn(�

2
f0)

"
�s(�

2
f
)

�s(�
2
f0)

#� 2
�0
P
(0)
n

�
�
1�

�s(�
2
f
)� �s(�

2
f0)

��0

�
P (1)
n
� �1

2�0
P (0)
n

�
+O[�2

s
(�2

f
; �2

f0)]

�
; (6.25)

and the LO di�erential equation and solution correspond to taking O(1) in the curled

brackets. We see that fNLO
n

� fLO
n

� �s. The inversion of the Mellin transformation9

a(x) = 1
2�i

R
C dnx

�nan applied to fn(�
2
f
), keeps this �s-structure intact. Thus a LO cross

7To not confuse names, one can think of (6.23) written with �0 instead of �f as \evolution" variable.

We then \evolve" from �f0 to �f .
8This is in practice realized for the evolution of 
avor non-singlet combinations of quark distributions.
9The simplest integration contour C runs from c� i1 to c+ i1 with real c, which lies to one side of

all singularities of an in the complex n-plane, see for example [90].
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sections times the �s part of the NLO partons has the same order as a NLO reduced cross

section times the O(1) LO partons, and the error of multiplying a NLO reduced cross

sections with the �s part of the NLO partons is NNLO. So we have to use the NLO RGE

evolved partons in our NLO calculations (and the LO ones for LO calculations) to achieve

consistent orders of �s. A �nal point is that collinear singularities occur only for massless

particles, so we should stay consistent with our renormalization choice and always evolve

only the nlf light 
avors as partons and not the heavy one.

It is important to realize that (6.20) mixes di�erent contributions. In particular in our

example we have to introduce the bare parton distribution f 
�q (y1; �
2), and thus of course

also its \dressed" counterpart, to absorb ��q
(z1; �
2
f
; �2). So for a factorization scheme

independent result we need to consider \resolved" photons with their own parton content.

The photon can act like a hadron, by 
uctuating into a virtual state with the appropriate

quantum numbers, and thus it should not surprise us to see that this possibility has to

be included. Obviously we will then also get resolved contributions to the cross section,

in which the physical photon interacts via its partonic content. In the hadronic cross

section (6.21), setting a = 
 denotes a physical photon and l = 
 an elementary photon.

So for the \direct" part of (6.21), we use the (zeroth order in �) probability distribution

for �nding an elementary photon in the physical photon f 



(x1; �

2
f
) = Æ(1� x1) with the

reduced partonic cross sections for photoproduction. On the other hand for the resolved

part of (6.21), we use the probability distributions for �nding a parton l = g; q; �q in the

physical photon f 

l
(x1; �

2
f
) with the reduced partonic cross sections for hadroproduction.

Note that since photonic densities are of O(�=�s), LO resolved contributions e�ectively

have the same order in the coupling constants as LO direct contributions. Similarly, NLO

direct and NLO resolved contributions belong together. So we use for photoproduction

at O(�)

d~�
b(K1; K2) =
X
m

Z 1

0

dx2 ~f b
m
(x2; �

2
f
) d~̂�
m(�

2
f
; K1; x2K2) ;

+
X
l;m

Z 1

0

dx1

Z 1

0

dx2 ~f 

l
(x1; �

2
f
) ~f b

m
(x2; �

2
f
) d~̂�lm(�

2
f
; x1K1; x2K2) ; (6.26)

with l now restricted to g; q; �q. A further complication arises here, because the parton

content of longitudinally, i.e., circularly, polarized photons is experimentally completely

unknown for the time being, and one has to rely on realistic models [91] when estimating

the size of the resolved contribution. However, it has been demonstrated in [33] that

even for large spin-dependent photonic densities, the \background" from resolved photon

reactions should be very small for all experimentally relevant total or di�erential cross

sections in the MS scheme. In particular this is the case at �xed target energies, as for

COMPASS with
p
S
p ' 10 GeV.

For the polarized total charm production cross section at collider energies, the re-

solved contribution can become as large as about 1=3 of the direct contribution but with

opposite sign [33]. When everything is taken into account, the total charm production
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spin asymmetry appears to be too small to be measurable [33] at the polarized HERA

option [28]. However, it is expected that for bottom production the resolved part is less

important: Though the change in the heavy quark charge e2
b
=e2

c
=
�
�1

3

�2
=
�
2
3

�2
= 1=4

suppresses the direct part, the minimal x at which the photonic densities in the resolved

part are evaluated becomes m2
b
=m2

c
' 9 times larger. For example at

p
S
p = 200 GeV

with mb = 4:5 GeV and mc = 1:5 GeV, we �nd xmin = 2:025 � 10�3 and xmin = 2:25 � 10�4,
respectively, see (8.10) in Chap. 8. This strongly suppresses the resolved part. So for

polarized photoproduction in the MS scheme, the resolved part can be neglected in ex-

perimentally relevant circumstances (�xed target energies or bottom at collider energies)

as a �rst approximation. It should also be remarked that for NLO photonic parton densi-

ties, unpolarized [92] as well as polarized [93] ones, often the so-called DIS
 factorization

scheme [94] rather than the MS prescription is used, since it provides a better perturbative

stability between LO and NLO quark densities. In this case one either has to transform

the densities back to the MS scheme [92, 93], before using them in the calculation of the

NLO resolved contribution or one has to use the appropriate DIS
 expression for ~F�q
 in

(6.14), see the Appendix of [94].

We will �nish this chapter by quickly deriving the other needed mass factorization

subtractions leading to the reduced cross sections. From diagram Fig. 6.3 (a) we see that

for the photoproduction real emission we have to subtract

d2~�
(1)

M
g

dt1du1
(�2

f
; �2) =

Z 1

0

dx2 x2Ggg(x2; �
2
f
; �2)

"
d2~�

(0)

g

dt1du1

#�
s! x2s

t1 ! x2t1

�
; (6.27)

with Ggg de�ned according to (6.15) and the LO gluon splitting functions are10

Pgg(x) = �(1� x� Æ)2CA

�
1

1� x
+

1

x
� 2 + x(1� x)

�
+ P Æ

gg
(x) ;

�Pgg(x) = �(1� x� Æ)2CA

�
1

1� x
� 2x+ 1

�
+ P Æ

gg
(x) ;

P Æ

gg
(x) = Æ(1� x)

�
�0

2
+ 2CA ln Æ

�
:

(6.28)

Since we have regularized all soft singularities in our calculation by a small parameter �

as outlined in Sec. 5.4, we have to stick to the same framework here to deal with the soft

x! 1 divergence of ~Pgg and cannot simply use the usual \plus-prescription" 1=(1� x)+
of [85]. In (6.28) we have thus introduced another small auxiliary quantity Æ [46, 95]. Of

course, � introduced above and Æ are not independent. Inserting (6.28) in (6.27) one gets

schematicallyZ 1

0

dx2[Æ(1� x2)A+�(1� x2 � Æ2)B(x2)]x2Æ(x2(s+ t1) + u1)C(x2s; x2t1; u1)

10This form is easy to derive from the conventional one with a +-distribution, by insuring thatR 1
0
dx ~Pgg(x) gives the same total splitting probability upon taking the Æ ! 0 limit.
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= Æ(s4)AC(s; t1; u1) + �(s4 � Æ2)

�
� 1

u1
B

� �u1
s+ t1

�
C

��u1s
s+ t1

;
�u1t1
s+ t1

; u1

��
; (6.29)

where we de�ne the small parameter Æ2 � �=(s + t1) to obtain the appropriate cut-o�

�(s4 ��) from �( s4

s+t1
� Æ). A subtraction with respect to the other incoming leg would

yield a similar expression with x1, Æ1 and t1 $ u1. Thus the contribution from mass

factorization naturally splits into a soft (xi > 1� Æi) and a hard (xi < 1� Æi) part, which
can be added to the corresponding cross sections. �0 in (6.28) again includes only the nlf
light 
avors, since we let only these 
avors run.

(a) (b) (c) (d)

Figure 6.3: Factorized Feynman diagrams for obtaining the collinear contributions for the

remaining photo- and hadroproduction subprocesses.

The gluon-gluon cross section of hadroproduction obviously has graphs like Fig. 6.3 (a)

with the photon replaced by a gluon, but also those with \non-abelian" LO parts, see

Fig. 6.3 (b). Thus we simply get here gluon-gluon fusion (GGF) instead of photon-gluon

fusion (PGF) as the LO subprocess, see Fig. 2.2 and Fig. 2.3, and of course this time the

graphs are symmetric concerning the incoming particles, so we have to subtract

d2~�
(1)

Mgg

dt1du1
(�2

f
; �2) =

Z 1

0

dx1 x1Ggg(x1; �
2
f
; �2)

"
d2~�

(0)
gg

dt1du1

#�
s! x1s

u1 ! x1u1

�

+

Z 1

0

dx2 x2Ggg(x2; �
2
f
; �2)

"
d2~�

(0)
gg

dt1du1

#�
s! x2s

t1 ! x2t1

�
:

(6.30)

Similarly the addition of diagram Fig. 6.3 (c) will simply replace LO PGF (2.20) by

LO GGF (2.27) for the NLO gluon-quark part of hadroproduction, and thus we need to

subtract

d2~�
(1)

Mgq

dt1du1
(�2

f
; �2) =

Z 1

0

dx1 x1G�qg(x1; �
2
f
; �2)

"
d2~�

(0)
�qq

dt1du1

#�
s! x1s

u1 ! x1u1

�

+

Z 1

0

dx2 x2Ggq(x2; �
2
f
; �2)

"
d2~�

(0)
gg

dt1du1

#�
s! x2s

t1 ! x2t1

�
;

(6.31)
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and we need the additional LO splitting functions

P�qg = Pqg = Tf
�
x2 + (1� x)2

�
; �P�qg = �Pqg = Tf (2x� 1) ; (6.32)

where Tf = 1=2 and we see compared to (6.12) the usual factor 1=(2NC). Finally for

NLO quark-antiquark annihilation in hadroproduction we have Fig. 6.3 (d) and similarly

for the other incoming leg, so that we have to subtract

d2~�
(1)

Mq�q

dt1du1
(�2

f
; �2) =

Z 1

0

dx1 x1Gqq(x1; �
2
f
; �2)

"
d2~�

(0)
q�q

dt1du1

#�
s! x1s

u1 ! x1u1

�

+

Z 1

0

dx2 x2G�q�q(x2; �
2
f
; �2)

"
d2~�

(0)
q�q

dt1du1

#�
s! x2s

t1 ! x2t1

�
:

(6.33)

with the appropriately regulated LO splitting function

Pqq = P�q�q = CF

�
�(1� x� Æ)

1 + x2

1� x
+ Æ(1� x)

�
2 ln Æ +

3

2

��
;

�Pqq = �P�q�q = Pqq + PHVBM
qq

:

(6.34)

Here we encounter the problem of the HVBM scheme [54], that helicity conservation at

the qqg-vertex is violated due to the commuting 
5 in the extra "-dimensions, as was al-

ready mentioned in Chap. 2 and also discussed below (6.16). Thus actually the collinear

singularities in the polarized quark-antiquark annihilation do not appear in conjunction

with �Pqq = Pqq, as they should. If helicity were conserved, then splitting that mixes

helicities would be forbidden and hence the piece with mixed helicities, which is added in

the unpolarized and subtracted in the polarized case, would be zero, leading to identical

splitting functions. The HVBM violating e�ect is naturally of O("), but together with
the collinear pole this will give rise to �nite contributions. However, since we are elimi-

nating the collinear contributions anyway by a rede�nition of the parton densities, we can

remove this unphysical property of the HVBM scheme by simply subtracting this �nite

contribution together with the poles. So we simply chose for PHVBM
qq

not the physical

value zero, but rather the value it has in the HVBM scheme, see [27]:

PHVBM
qq

= ��(1� x� Æ)2CF (n� 4)(1� x) = ��(1� x� Æ)2CF"(1� x) ; (6.35)

and thereby restore helicity conservation.

To �nish this section, we note that after mass factorization all reduced cross sections

will be �nite. Thus for factors depending on " one can then safely perform the "! 0 limit.

Examining the factor (6.5) and our choice for the MS factorization scheme in (6.16), it is

easy to see that the former pure pole parts are converted to �nite parts in the reduced

cross sections by

F" ~G
H

"
! 1

s2
; E" ! 1 ; and

2

"
! ln

s24
m2(s4 +m2)

� ln
�2
f

m2
; (6.36)

so one can easily obtain these contributions from the pole parts we will quote.



Chapter 7

Parton Level Results

7.1 Photon-(Anti)Quark Scaling Functions

We will now present our results for the di�erent subprocesses on a parton level, i.e., we

will present the appropriate reduced partonic cross sections. As has been explained in

the last chapter, these will have to be convoluted with the dressed parton distribution to

obtain hadronic cross sections and thus physical predictions. Interesting phenomenological

applications will be examined in the next chapter. However, the convolution with the

parton distribution functions makes it diÆcult to distinguish characteristic features of

the reduced partonic cross sections themselves, so it is worthwhile to consider them on

their own. In particular we will consider the total reduced partonic cross sections. That

means, we have to integrate our double di�erential results, see (2.24) and (5.19), over the

possible range of the partonic variables t1 and u1 to obtain \total" results. The reason is

the following: we expect the cross section to depend logarithmically on the renormalization

and factorization scale, due to (4.56) and (6.15). Furthermore the running �s also depends

logarithmically on �r, see (4.38). Let us concentrate on the factors multiplying these

logarithms and �s. When we integrate out t1 and u1, to obtain the total cross section, the

only scales left will be the partonic center-of-mass energy s and the heavy quark mass m.

We �nd that the total cross section is � 1=m2, i.e., we see the expected divergence of the

total cross section for m ! 0. If we take this factor out as well, then what is left must

be dimensionless and hence can be rewritten in some scaling variable depending only on

s=m2. We will call these remaining expressions scaling functions and the form we give

for the total cross section (7.2) below makes this scaling explicit. The usefulness of the

scaling functions is simply that we can use them to display our results without specifying

s and m.

In order to obtain the total partonic cross section, we must �rst consider the kinematic

boundaries of the t1; u1-integrations. From the positivity of the energy of the third particle

!3 � 0, we get s4 = s + t1 + u1 � 0. In the true 2 ! 2 cross sections (2.22), s4 is equal

to zero due to energy-momentum conservation. It is suÆcient to consider only the 2! 2

phase space, in the case of 2! 3 this corresponds to the e�ective 2! 2 of (5.16), to �nd



7.1. Photon-(Anti)Quark Scaling Functions 89

the limits of the t1 and u1 integrations. We have

t1 = �
p
s(E2 + j~p2j cos �) ; u1 = �

p
s(E2 � j~p2j cos �) ; (7.1)

so we know that t1 and u1 are negative. Thus s > s4 and from ~p 2
2 � 0 we �nd the

threshold condition s � 4m2. Obviously extreme values of t1 and u1 are obtained for

cos � = �1. Using (7.1), we �nd u1 � t1 = cos �
p
(t1 + u1)2 � 4m2s, so by squaring we

directly get t1u1 � m2s. Now we have two constraints, which we can solve for �u1 to get
�m2s=t1 � �u1 � s + t1. This can serve as an inner integration range of u1 depending

on t1. For the true 2 ! 2 processes �u1 is exactly at the upper limit. We next get

the range of the outer integration over t1 directly from the intersection of the u1 limits:

�m2s=t1
!
= s+t1. This yields s(1��)=2 � �t1 � s(1+�)=2, with � �

p
1� 4m2=s. The

(reduced) total partonic cross sections can then be expressed in terms of scaling functions

in both the unpolarized and polarized case (l; m = g; q; �q; 
) [43, 46, 34]:

~̂�lm(s;m
2; �2

f
; �2

r
) =

Z s

2
(1+�)

s

2
(1��)

d(�t1)
Z

s+t1

�m2s
t1

d(�u1)
d2 ~̂�lm(s; t1; u1)

dt1du1

=
�2�k�k

s
(�2

r
)

m2

�
~f
(0)

lm
(�) + 4��s(�

2
r
)

�
~f
(1)

lm
(�) + ~�f

(1)

lm
(�) ln

�2
f

m2

��
;

(7.2)

� =

r
1� 4m2

s
=

r
�

1 + �
; � =

s

4m2
� 1 =

�2

1� �2
; (7.3)

where k = 1 for photo- and k = 2 for hadroproduction. We have introduced the variable �

in (7.3), since it will be particularly convenient for showing both the approach to threshold

� ! 0 and high energy � !1 in logarithmic plots of the scaling functions. The scaling

functions ~f
(0)

lm
and ~f

(1)

lm
, ~�f

(1)

lm
stand for the LO and NLO corrections, respectively1.

We have not written a ln(�2
r
=m2) piece in (7.2), though it of course exists. But we can

extract the renormalization logarithms from (4.56):

d~�(1)
r

= d~�(1) + k
�s

4�

�
�0
2

"̂
� 2

3

2

"̂m

�
d~�(0) ; (7.4)

with d~�(0) � �k
s
and �0 = (11CA � 2nlf)=3. The general form of the UV singularities of

the virtual contributions is � C"
2
"
, i.e., in (3.5) the integral will give a pole � 2=" and

there is an overall factor C" in front. For the UV renormalization we do not have to worry

about double poles � 1="2 that can occur in our loop integrals, since they only come from

the infrared plus collinear limit. Note that C"
2
"
� 2

"̂m
+O("), with

2

"̂m
=

2

"̂
� ln

�2
r

m2
=

2

"
+ 
E � ln(4�)� ln

�2
r

m2
: (7.5)

1Note that we still use the \tilde notation" as a shorthand to denote both the longitudinally polarized

and unpolarized cross sections simultaneously.
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Figure 7.1: The NLO polarized and unpolarized \Bethe-Heitler" scaling functions ~c
(1)

q and

~�c
(1)

q in the MS scheme as function of � as de�ned in (7.12). The unpolarized scaling functions

have been divided by 25.

The counterterm of (7.4) will cancel the 2=" poles, so they must come in the form

�k �s
4�

�
�0

2

"̂m
� 2

3

2

"̂m

�
d~�(0) ; (7.6)

where we however always have 2
"̂m

due to C". We can ignore all common factors, even

when they depend on " like F", since after the cancellation of these singularities only soft

and collinear ones remain, which will not yield renormalization logarithms. Summing

both contributions, we get

k
�s

4�
�0(

2

"̂
� 2

"̂m
)d~�(0) = k

�s

4�
�0 ln

�2
r

m2
d~�(0) ; (7.7)

We chose to rewrite the renormalization logarithm as ln(�2
r
=m2)! ln(�2

r
=�2

f
)+ln(�2

f
=m2)

and absorb the ln(�2
f
=m2) contribution in ~�f

(1)

lm
of (7.2). This is convenient in particular

for the cases where the splitting function ~Pgg appears in the factorization, since the �0
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term in the soft Æ(1� x) part, see (6.28), exactly cancels this contribution. At any rate,

keeping in mind that the k in (7.7) comes from the power of �s in the Born cross section,

we can get the renormalization log contribution missing in (7.2) by setting

�s(�
2
r
)! �s(�

2
r
)

 
1 + �s(�

2
r
)
�0

4�
ln
�2
r

�2
f

!
; (7.8)

and keeping only NLO terms. So in our case we have

~f
(1)

lm
(�)! ~f

(1)

lm
(�) +

k�0

16�2
~f
(0)

lm
(�) ln

�2
r

�2
f

; (7.9)

where again k = 1 for photo- and k = 2 for hadroproduction. So we see that the

contribution depending on the ratio of the factorization and renormalization scale does

not require a new scaling function and is furthermore easily derivable. Thus we will not

worry about it any further in this chapter2.

We have already performed the calculation of the photon-light quark contribution,

including its factorization, in the last chapter so we can now immediately obtain the

scaling functions. Part of the �nite reduced quark cross section can be obtained by

applying (6.36) to (6.3). Our results fully agree with [46] in the unpolarized case. There is

no LO contribution, and thus ~f
(0)

q = 0. Note that we have only calculated the contribution

for the production of a heavy antiquark. But we can split up the squared matrix elements

of photo- and hadroproduction in parts that are symmetric j ~M j2
S
(p2; p1) = j ~M j2

S
(p1; p2)

and antisymmetric j ~M j2
A
(p2; p1) = �j ~M j2

A
(p1; p2) with respect to exchanging p1 $ p2,

respectively. However, applying p1 $ p2 to the phase space integrations means that

instead of the heavy quark p1 one integrates out the heavy antiquark p2 (plus a gluon

k3 in both cases in the 2 ! 3 processes), i.e., the heavy quark is observed. So we can

directly apply p1 $ p2 to the double di�erential partonic cross sections for heavy antiquark

production to obtain those for heavy quark production

d2�Q(t1; u1)

dt1du1
�
Z
dnp1

h
j ~M j2

S
(p1; p2) + j ~M j2

A
(p1; p2)

i
p1$p2
=

Z
dnp2

h
j ~M j2

S
(p2; p1) + j ~M j2

A
(p2; p1)

i
=

Z
dnp2

h
j ~M j2

S
(p1; p2)� j ~M j2

A
(p1; p2)

i
� d2�Q(tQ1 ; u

Q

1 )

dtQ1 du
Q

1

;

tQ1 � (k1 � p1)
2 �m2 and uQ1 � (k2 � p1)

2 �m2 ;

(7.10)

i.e., the sign of the antisymmetric part changes. But one has to keep in mind that now

t1 and u1 are taken with respect to the observed heavy quark p1 instead of the heavy

2One has to keep in mind though, that in the quark-antiquark case we are absorbing �0 terms in
~�f
(1)

lm
,

which normally would be absent.
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Figure 7.2: The NLO polarized and unpolarized \Compton" scaling functions ~d
(1)

q and ~�d

(1)

q in

the MS scheme as function of � as de�ned in (7.12). The unpolarized scaling functions have

been divided by 2.

antiquark p2, as it was in (5.12). This rede�nition is always implied for quark production

in the following, i.e., we will write t1 and u1 also there. For the 2! 2 processes there is

of course no di�erence between these de�nitions. In the case at hand, ~A1 and ~A2 in (6.3)

stay unchanged for p1 $ p2, whereas ~A3 changes sign. Thus if one wants to observe a

heavy quark instead of a heavy antiquark, one can use [e2
Q
~A1 + e2

q
~A2 � eqeQ ~A3] in (6.2)

with the same expressions for the ~Ai [46].

In addition charge conjugation gives us even more information, since we have a light

quark in the initial and �nal state

d2 ~̂�

dt1du1

�

�q ! Q

�
=

d2 ~̂�

dt1du1
(
q ! Q) and

d2 ~̂�

dt1du1
(
�q ! Q) =

d2 ~̂�

dt1du1

�

q ! Q

�
:

(7.11)

Thus one can use the same ~Ai for the contribution due to an incoming antiquark in (6.1)

as well, taking into account a negative sign for ~A3 again [46]. Note that the sign change of
~A3 also implies that ~A3 does not contribute to the total cross section (7.2), since the result
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cannot depend on whether the heavy quark or heavy antiquark is integrated �rst. This is

also expected from Furry's theorem, which can be applied to the interference term if we

integrate over the complete phase space. So there will be no scaling function � eqeQ and

the scaling function ~f
(1)

q can be written as the sum of the \Bethe-Heitler" contribution

~c
(1)

q and the \Compton" contribution ~d

(1)

q

~f (1)

q
(�) = e2

Q
~c(1)

q
(�) + e2

q
~d(1)

q
(�) ; (7.12)

and similarly for the \bar" scaling function ~�f
(1)

q . There is no LO scaling function, of

course. We plot ~c
q in Fig. 7.1 and ~d
q in Fig. 7.2. In both cases the solid line represents

the NLO polarized, the dot-dashed line the NLO polarized \bar", the dashed line the

NLO unpolarized and the dotted line the NLO unpolarized \bar" scaling function. The

unpolarized scaling functions have been divided by a constant factor in order to �t into

the same plot.

We see that the form of the unpolarized and corresponding polarized scaling functions

di�ers quite strongly. What one cannot see in the plots, because the functions become

small and because the unpolarized ones have been divided by a factor, is that for � ! 0

the scaling functions have the behavior �c
(1)

q ! c

(1)

q , �d

(1)

q ! �d(1)
q , and similarly for the

\bar" scaling functions. By inspecting

�̂ =
1

2
[�̂(++) + �̂(+�)] ; ��̂=

1

2
[�̂(++)� �̂(+�)] ; (7.13)

we conclude that for � ! 0 in the \Bethe-Heitler" ~c
(1)

q part of the partonic cross section

�̂(+�) ! 0, whereas in that limit for the \Compton" ~d
(1)

q part we �nd �̂(++) ! 0. Or

more precisely - that one helicity combination goes faster to zero than the other. On

the other hand for � ! 1, we �nd c
(1)

q becomes constant whereas �c

(1)

q ! 0 and the

same happens for the \bar" functions, implying �̂(++)! �̂(+�) for the \Bethe-Heitler"
process. For the \Compton" process we �nd no obvious high energy limit of the partonic

cross sections numerically. The observed plateau in the unpolarized c
(1)

q is due to a 
avor

excitation process, in which a t-channel gluon is exchanged in the subprocess Q�q ! Qq,

and the virtual heavy quark is produced in 
 ! Q�Q �rst, and similarly for the heavy

virtual antiquark, compare Fig. 6.1 (a) and(b).

7.2 Photon-Gluon Scaling Functions

Next we turn to the NLO corrections to the PGF process (2.17)

~
(k1) + ~g a(k2)! Qi(p1) +Q
j
(p2) ; (7.14)

where one-loop virtual and gluon bremsstrahlung contributions have to be taken into

account. We start with the one-loop virtual corrections displayed in Fig. 7.3. They

are calculated by the methods of Chap. 3. Remember that they have the same 2 ! 2
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.3: The NLO virtual corrections to ~
~g ! QQ. Reversing the heavy quark lines, except
for the non-planar graph (b), yields the remaining graphs. Massless particle loops similar to

graph (i) vanish, similarly to (3.3).

kinematics as the LO reaction (7.14) and thus can be calculated using (2.18) and (2.24). As

mentioned, at O(��2
s
) only the interference between the virtual V and Born B amplitudes

of Fig. 7.3 and Fig. 2.2 contributes

j ~M j2
V B

= 2Re
�
M̂VM

�
B

�
= E2

"
g4e2e2

Q

h
2CF

~VQED + CA
~VOK

i
; (7.15)

where all quantities with a tilde denote as always, both the unpolarized and polarized

expressions, e.g., ~VQED denotes either VQED or the spin-dependent �VQED. The results

have been sorted according to the color-factors 2CF and CA. We will not show the

reduced virtual cross sections because of their length, but they can be reconstructed from

the virtual plus soft cross sections discussed later. We note that ~VQED, which receives

contributions only from the graphs (a), (c), (d) and (f)-(h) in Fig. 7.3, corresponds to

the process where the gluon is replaced by a photon in the initial state, i.e., ~
~
 ! QQ.

Complete NLO QCD O(�2�s) calculation of this process have been performed recently

in [60] for both the unpolarized and polarized case. Our NLO results for the QED-part

of ~
~g ! Q �Q agree analytically with the ones presented in [60].
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Each fermion propagator and each triple-gluon vertex in the loop introduces a loop

momentum q� in the numerator. A glance at Fig. 7.3 then reveals that the maximal num-

ber of loop momenta we face in the numerator is one less than the number of propagators,

except for graph (i). In particular, one has to deal with tensor four-point integrals of �rst

(q�) to third (q�q�q�) order and with tensor three- and two-point integrals of �rst (q�) and

second (q�q�) order. We use our program, described in Chap. 3, to reduce these tensor

integrals to a set of scalar ones by using an adapted Passarino-Veltman decomposition

method [47]. This accounts properly for all possible n-dimensionally regulated divergen-

cies in QCD. For graph (i) we need (3.51). In the results ultraviolet (UV), infrared (IR)

and collinear/mass (M) singularities show up as 1=" poles. In the non-abelian \OK"-part

also double poles 1="2 occur when IR and M singularities coincide. The UV divergencies

are removed by the renormalization procedure of Chap. 4. The IR and IR+M singularities

cancel against the soft part of the gluon bremsstrahlung, which we will derive below. A

left over M singularity cancels against the soft Æ(1� x) part of ~Pgg, see (6.28), when we

obtain the reduced bremsstrahlung cross section using (6.27) in the mass factorization

procedure.

(a)
(b) (c)

(d) (e) (f)

Figure 7.4: Feynman diagrams for the NLO gluon bremsstrahlung process ~
~g ! QQg. Re-

versing the heavy quark lines yields the remaining graphs. In the unpolarized calculation

the ghost contributions (e) and (f) have to be subtracted to cancel unphysical polarization

contributions, see Fig. 2.1 and App. B.4.

In order to be able to present �nite results, we will thus �rst calculate the corresponding

real gluon emission reactions as well. The corresponding Feynman diagrams are shown in

Fig. 7.4 and the momentum and color assignment is

~
(k1) + ~g a(k2)! Qi(p1) +Qj(p2) + gb(k3) : (7.16)
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The techniques for handling these graphs, in particular our program for automatic partial

fractioning of the angular integrals, have been explained in detail in Chap. 5. The squared

matrix element, to be inserted in (5.19), can again be split into an abelian and a non-

abelian part like (7.15)

j ~MRj2 = M̂RM
�
R
= E2

"
g4e2e2

Q

h
2CF

~RQED + CA
~ROK

i
: (7.17)

We use the phase space slicing of Sec. 5.4 to isolate the hard and soft parts. The collinear

pole part of the hard photon-gluon cross section then becomes

 
d2~�

(1)


g;OK

dt1du1

!H

= CAF"G
H

"
E2
"
�2
s
�e2

Q

2

"
~Hpole
OK +O(1) ; (7.18)

Hpole
OK = � 1

u1

�
1

1� x2
+

1

x2
� 2� x2(1� x2)

�
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x2t1

u1
+

u1

x2t1
+
4m2(x2s)

(x2t1)u1

�
1� m2(x2s)
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; (7.19)

�Hpole
OK = � 1

u1

�
1

1� x2
� 2x2 + 1

��
x2t1

u1
+

u1

x2t1

��
2m2(x2s)

(x2t1)u1
� 1

�
; (7.20)

where only the non-abelian \OK" part is shown, because the hard abelian \QED" part

is completely �nite. GH

"
is de�ned in (6.5) and x2 in (6.4). As expected, we �nd the form

necessary for the mass factorization in (6.27), see the hard �(1�x�Æ) part of (6.28). The
�nite contributions are too long to be presented here in an analytical form, but they can

be found in our computer program, which is available upon request. Remember that one

can extract the �nite rest of the pole part in (7.18) after mass factorization, by applying

(6.36). Our unpolarized results agree with those of [46].

We now turn to the soft gluon emission. According to the discussion in Sec. 5.4, we

only need to isolate the 1=s24 poles of the squared matrix element by applying (5.23) and

(5.24). In this way one can easily derive the soft limit of ~RQED and ~ROK in (7.17)

~SQED = � 2

s24

"
m2

 
1 +

1

s23

!
+
(2m2 � s)

s3

#
~BQED ; (7.21)

~SOK =
2

s24

�
1

t0

�
t1
s3

+ u1

�
+
(2m2 � s)

s3

�
~BQED ; (7.22)

using the polarized and unpolarized �BQED and BQED given in (2.21), respectively. We

agree again in the unpolarized case with [46]. The soft cross section is obtained from

(7.21) and (7.22) with the 1=s24 ! s�1+"4 replaced by Æ(s4)�
"=" according to (5.65) and

(5.66). Using this replacement and performing the angular integrations d
" the soft gluon
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cross section is then given by 
d2~�

(1)


g;QED

dt1du1

!S

= 2CFF"G
S

"
E2
"
�2
s
�e2

Q

~BQED

2

�
�2

"
+ 1 +

2m2 � s

s�
[ln{ � S({)]

�
Æ(s4) ;

(7.23) 
d2~�

(1)


g;OK

dt1du1

!S

= CAF"G
S

"
E2
"
�2
s
�e2

Q

~BQED

2

"
4

"2
+
2

"
ln
t1

u1
+ ln{ ln

u1

t1
+
1

2
ln2

u1

t1
� 1

2
ln2 {

+ Li2

�
1� t1

{u1

�
� Li2

�
1� u1

{t1

�
+
2m2 � s

s�
S({)

#
Æ(s4) ; (7.24)

with ~BQED de�ned in (2.21) and

S({) � �2

"
ln{ + Li2

�
{2
�
� ln2 { + 2 ln{ ln(1� {2)� �(2) ; (7.25)

GS

"
� 4(4�)3C"

�
1� 3

8
�(2)"2

��
�

m2

�" b= 2(4�)4m2"

s24
G" ; (7.26)

where we have used { � (1 � �)=(1 + �), the dilogarithm function Li2 as de�ned in

App. B.2, and the Riemann zeta function �(2) = �2=6. Our unpolarized results for

the soft bremsstrahlung cross section are again identical to those of [46]. In addition

we have checked that the abelian \QED" part of the polarized (and unpolarized) total

bremsstrahlung cross section is in complete analytical agreement with the NLO expres-

sions for 

 ! Q �Q presented in [60].

To complete the calculation of the photon-gluon cross section, we now add the Æ(1�
x) ! Æ(s4) mass factorization contribution from (6.27), see (6.29), to the renormalized

virtual plus soft part V + S. We write the result in three parts using the usual abelian

and non-abelian split and, in addition, separating o� the part3 proportional to �0. The

latter piece vanishes if one identi�es the renormalization scale with the factorization scale,

�r = �f , as is usually done, and corresponds to the �s rede�nition of (7.8): 
d2 ~̂�

(1)

g

dt1du1

!V+S

=
�2
s
�e2

Q

s2

�
2CF

�
~LQED + ~L�

QED

�
+ CA

�
~LOK + ~L�

OK

�
+
�0

4
~LRF

�
Æ(s4) :

(7.27)

The ~L� explicitly depend on the auxiliary cuto� �. The polarized �L are presented

in App. C and the unpolarized L are in complete agreement with those obtainable from

App. A of [46] and App. D of [44]. The treatment of the ~L� terms has been discussed in

Sec. 5.4. Both for numerical stability and in order to be able to present the V +S and H

3The factor 1=2 compared with the expression in [35] is compensated by the squares in the logarithm

of (C.11).
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Figure 7.5: The NLO polarized and unpolarized scaling functions ~c
(1)

g in the MS scheme as

function of � as de�ned in (7.28). The \bar" scaling functions ~�c
(1)

g are also shown.

parts separately in the plots, we shift the lnk�=m2 terms with k = 1; 2 from the V +S to

the H part. So written symbolically, the meaning of soft and hard is \soft" = S + V ��

and \hard" = H + �, respectively. Note that again the presented results have been

calculated for a detected heavy antiquark in the �nal state, because the heavy quark was

integrated out in the calculations. Due to the p1 $ p2 symmetry of the matrix elements,

the same double di�erential photon-gluon cross section can be used for a detected heavy

quark as well [46]. Only then t1 and u1 are de�ned with respect to the observed heavy

quark, see (7.10). On the other hand there is an asymmetry in the non-abelian part of

the photon-gluon cross section with respect to k1 $ k2, since the outgoing gluon with

momentum k3 can only \couple" to the incoming gluon with momentum k2, but not to

the photon with momentum k1. So the photon-gluon cross section is t1 $ u1 asymmetric.

The scaling functions for photon-gluon have the form

~f
q(�) = e2
Q
~c
q(�) ; (7.28)

which is valid for LO, NLO and for the \bar" scaling functions ~�c
(1)

g as well. In Fig. 7.5

we display the NLO scaling functions. Again the solid line represents the NLO polarized,



7.2. Photon-Gluon Scaling Functions 99

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

η=s/(4 m2) −1

∆cγ  g
 (0)

cγ  g
 (0)

∆cγ  g
 (0)+2.7∆cγ  g

 (1)

cγ  g
 (0)+2.7cγ  g

 (1)

Figure 7.6: The LO polarized and unpolarized scaling functions ~c
(0)

g in the MS scheme as

function of � as de�ned in (7.28). For comparison the e�ective NLO combinations ~c
(0)

g +2:7~c

(1)

g

are also shown.

the dot-dashed line the NLO polarized \bar", the dashed line the NLO unpolarized and

the dotted line the NLO unpolarized \bar" scaling function. In Fig. 7.6 we show the

LO polarized (solid line) and unpolarized (dot-dashed line) scaling functions, as well as

the combination ~c
(0)

q + 2:7~c

(1)

q in the polarized (dashed line) and unpolarized case (dotted

line). The reason for showing this particular combination is that 4��s(m
2
c
) ' 2:7 for

charm production at COMPASS [31], where our photoproduction cross section will be

mainly used. We see from (7.2), that in order to obtain an estimate of the size of the

corrections LO ~f
(0)

lm
and NLO ~f

(0)

lm
+ 4��s ~f

(1)

lm
should be compared with each other.

The form of the unpolarized and polarized scaling functions again di�ers quite strongly.

This time we can see directly that the scaling functions have in LO and in NLO the

behavior �c
g ! c
g for � ! 0, and similarly for the \bar" scaling functions. Thus we

can conclude using (7.13), that as � ! 0 the PGF partonic cross section �̂(+�)! 0. In

LO this means that one helicity combination goes faster to zero than the other, but in

NLO actually �̂(++) becomes a non-zero constant in the � ! 0 limit. The reason for

this is on one hand the graph Fig. 7.3 (a). Close to threshold the corresponding matrix
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Figure 7.7: The soft (V +S��), hard (H+�), non-abelian (OK), and abelian (QED) parts

of the NLO polarized scaling function �c
(1)

g in the MS scheme as function of �. Soft+hard

and OK+QED will both give �c
(1)

g of Fig. 7.5.

element diverges � 1=�, which corresponds to a Coulomb singularity for the heavy quark-

antiquark pair produced in close proximity and almost at rest. This becomes suppressed

by phase space integration � �, and one ends up with a non-zero constant at threshold.

The LO matrix element does not diverge close to threshold since there is no interaction

between the produced heavy quark and heavy antiquark, compare Fig. 2.2, and so due

to the phase space the LO partonic cross section goes to zero. On the other hand soft

gluon emission from the diagrams in Fig. 7.4 actually enhances the \hard" cross section

at threshold, since we have shifted the lnk(�=m2) terms. Looking for example at A1 in

(5.68), we see that it does cancel a 1=s4 soft s4 ! 0 divergence when added to the hard

cross section. But it also introduces a �nite term, which after integration4 over s4 results

in a ln(smax
4 =m2). Since smax

4 =m2 � �2 for small �, we get together with the phase space

4smax
4 (t1; u1) occurs for t1u1 = m2s, so in practice we transform the �u1 integration to an s4 in-

tegration from � to smax
4 (t1) in (7.2). Then the Ai depend on smax

4 (t1) = s + t1 + m2s=t1. If we do

not transform, then smax
4 = s � 2

p
m2s with t1 = u1 =

p
m2s. We cannot go closer to threshold than

smax
4 = �.
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suppression a term � � ln�2. So these remaining logarithms give large contributions up

to small values of �. We can clearly see in Fig. 7.7 both threshold e�ects: the \soft" part

(solid line), containing the Coulomb singularity goes to a constant and the \hard" part

(dot-dashed line) containing the remainders of soft gluon emission falls very slowly to zero.

Also shown is the separation according to color-factors, the 2CF \QED" part is displayed

as a dashed line and the CA \OK" part as a dotted line. We see that there are strong

cancellations between these two close to threshold: �c
(1)

g (� = 0) = (2CF � CA)�=32.

For � ! 1, we �nd, like for ~c
(1)

q , that c

(1)

g becomes constant, whereas �c

(1)

q ! 0

and the same happens for the \bar" functions. So (7.13) implies �̂(++)! �̂(+�). The
observed plateau in the unpolarized c

(1)

g again comes from a 
avor excitation process, this

time a t-channel gluon is exchanged in the process Q
�
g ! Qg, compare Fig. 7.4 (d), and

similarly for the heavy virtual quark in the crossed graph. This appearance of qualitatively

new diagrams for the �rst time in NLO suggests, that really only NLO can be considered

to be the �rst relevant order for this process. The large di�erence between the \e�ective"

NLO combination and the LO result in Fig. 7.6 is thus no surprise. It is reasonable to

expect, that at NNLO we will not see similar drastic changes again, since corrections to the

Coulomb singularity, to soft gluon emission and to 
avor excitation will be suppressed

by �s and no qualitatively new diagrams appear in NNLO in comparison to NLO. To

demonstrate clearly the NLO e�ects, we display in Fig. 7.8 ratios of the partonic cross

sections. To avoid zeroes in the denominator at least in the gluon case, we will use flm(++)
and flm(+�) instead of flm and �flm. We show as solid (++) and dot-dashed (+�) lines
the ratios of the \e�ective" NLO to the LO results, e.g., the solid line corresponds to

1+2:7c
(1)

g (++)=c

(0)

g (++). The dashed line represents the absolute value of 2:7[c

(1)

q (++)+

0:6d
(1)

q (++)]=[c

(0)

g (++) + 2:7c

(1)

g (++)] and the dotted line similarly for (+�). These two

lines are supposed to give a rough idea5 of how large the light quark scaling functions are

compared to the gluon ones. To explain the crosses with associated xmin values in the

plot, note that when we calculate the hadronic photoproduction process by folding in the

appropriate parton densities, we will use s = xS, where S is the hadronic center-of-mass

energy6. Then

� =
x

xmin

� 1 ; with
4m2

S
� xmin � x � 1 (7.29)

We obviously have �max = 1=xmin � 1. So the crosses show the maximally probed �max

for di�erent xmin. It is also indicated which � range the COMPASS experiment [31] will

probe with charm photoproduction (m ' 1:5 GeV and
p
S ' 10 GeV for E� = 100 GeV).

We see from Fig. 7.8, that the light quark scaling functions only contribute signi�cantly

at high energies. There they can reach up to 35% of the gluon scaling functions. The

large � region is folded with the partons at large x, so the light quark contribution will get

5The factor 0:6 multiplying d
(1)

q (++) is a simple minded average of e2

q
=e2

Q
= 1=4 or = 1 for eQ = 2=3.

6For photoproduction f



(x1; �f ) = Æ(1� x1), so that in (6.21) only the x = x2 integration remains,

and from k1 = x1K1 = K1 and k2 = x2K2 = xK2 we �nd s = x1x2S = xS.
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Figure 7.8: Ratios of NLO to LO gluon photoproduction scaling functions for the helicity

combinations (++) and (+�). Also shown are the absolute values of the ratios of NLO quark

to NLO gluon scaling functions. For details on the ratios, see the text. �max = 1=xmin � 1

is displayed by crosses with corresponding xmin values. The � range that will be probed by

COMPASS [31] is indicated by an arrow.

enhanced there relative to the gluon one. But for COMPASS energies, we do not expect

much \contamination" from the quark sector, unless �g is very small. We also see, that

the high energy NLO enhancements from 
avor excitation is irrelevant for COMPASS. We

should not be worried by the massive growth of the NLO to LO ratio: LO goes to zero and

NLO to a plateau, so obviously the ratio becomes in�nite for � !1. On the other hand

COMPASS will see the threshold enhancement from the Compton singularity and from

soft gluon bremsstrahlung, in particular since the gluon scaling functions at the smallest

� will be folded with the gluons at the smallest x. However, for COMPASS \small" x

are still rather large xmin ' 0:1 and the factorization scale �2
f
' m2 ' 2:25 GeV2 is

rather low, so the enhancement due to the rising gluon at small x will not be too strong.

Furthermore both helicity combinations are enhanced, so we can expect less changes for

the NLO asymmetry ratios of polarized to unpolarized results. For � ! 0 we indeed see

from Fig. 7.6, that at least on the partonic level LO and NLO ratios both become one.
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7.3 Gluon-(Anti)Quark and Quark-Antiquark Scal-

ing Functions

Figure 7.9: The only new Feynman diagram appearing in the ~g~q ! QQq process. The others

follow from Fig. 6.1 by replacing the photon by a gluon.

We now turn to the scaling functions for hadroproduction. Our �rst task will be to

compute the scaling functions for the process

~g a(k1) + ~qj(k2)! Qk(p1) +Ql(p2) + qi(k3) : (7.30)

This is rather simple, since there is only one additional Feynman diagram. It is shown

in Fig. 7.9. The other contributions come from the diagrams of Fig. 6.1 with the pho-

ton replaced by a gluon, which naturally leads to a more complicated color-structure.

Furthermore, of course we have to compute the complete squared matrix element, which

includes the interference between the \new" graph and the \old" graphs. We can split up

the squared matrix element according to two color-factors:

j ~Mgqj2 = M̂gqM�
qg
= E"g

6 1

8NC

h
2CF

~JQED + CA
~JOK

i
: (7.31)

By inspecting the color-factors of the amplitudes and comparing with (6.2), we can im-

mediately conclude that

~JQED = ~A1 + ~A2 + 2 ~A3 : (7.32)

Thus we do not have to calculate the \QED" part! We can completely construct it from

the already known ~Ai.

The pole structure of the \QED" cross section can be obtained from (6.3), and we set

eq; eQ ! 1 and e ! g and divide by 1=(2NC) to get the factors right. Note that for the

pole part we do not have to worry about the factor two in front of ~A3, since it is �nite

and does not appear. Also, as has been mentioned below (7.11), ~A3 does not contribute

to the total cross section. So by de�ning two color-factor sorted scaling functions as

~f (1)
gq
(�) = ~f

(1)

gq;QED(�) +
~f
(1)

gq;OK(�) ; (7.33)
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Figure 7.10: The NLO polarized and unpolarized scaling functions ~f
(1)
gq and ~�f

(1)
gq in the MS

scheme as function of �. The unpolarized scaling functions have been divided by 45.

corresponding to the parts of the total partonic cross sections that follow from the ~JQED
and ~JOK parts, respectively, we already know that

~f
(1)

gq;QED(�) =
1

2NC

h
~c(1)

q
(�) + ~d(1)


q
(�)
i
; (7.34)

with ~c
(1)

q and ~d

(1)

q de�ned in (7.12). Once more we get the \usual" factor 1=(2NC) for

replacing a photon by a gluon. Analogous expressions to (7.33) and (7.34) are true for

the \bar" scaling functions ~�f
(1)
gq .

So we only need to calculate the non-abelian part. Its pole part is given by

d2~�
(1)

gq;OK

dt1du1
=

CA

8NC

F"G
H

"
E"�

3
s

2

"

�
�2(x2t1)u1

(x2s)2

�
~Apole
1 +O(1) ; (7.35)

with ~Apole
1 as in (6.3). GH

"
is de�ned in (6.5) and x2 in (6.4). Of course we see that we

obtain exactly the necessary form for the mass factorization (6.31), if we compare the

newly appearing factor with the CA part of (2.27). Again we do not quote the rather
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lengthy �nite parts of both the \QED" and \OK" corrections. Our unpolarized results

are in complete agreement with those in [45].
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Figure 7.11: The non-abelian \OK" parts of Fig. 7.11 associated with the color-factor CA.

The abelian \QED" parts with color-factor 2CF can be obtained from (7.34), and thus can

be compared to Figs. 7.1 and 7.2.

In Fig. 7.10 we show the corresponding scaling functions, the solid line shows the

polarized �f
(1)
gq and the dot-dashed line shows � �f

(1)
gq for the factorization logarithm. The

dashed and dotted lines display the corresponding unpolarized scaling functions, scaled

down by a factor 45 in order to �t in the same plot. We see again the behavior, that

for � ! 1 there is a plateau in the unpolarized part due to 
avor excitation, whereas

the polarized part goes to zero, so we have �̂(++) ! �̂(+�) for this process. There is

however no clean numerical limit for � ! 0, which is not surprising, since we have here

basically a combination of ~c
(1)
gq and ~d

(1)
gq , which have di�erent behaviors in that limit. The

rôle played by the additional ~f
(1)

gq;OK(�) and the corresponding \bar" functions is examined
in Fig. 7.11. The lines show the corresponding non-abelian \OK" parts for the color-factor

CA of the scaling functions plotted in Fig. 7.10. The abelian \QED" part with 2CF is not

plotted, since it can be constructed from the ~c
(1)
gq and ~d

(1)
gq , see (7.34). We �nd that the

~f
(1)

gq;OK(�) and also the \bar" counterparts share the properties of the ~c
(1)
gq and their \bar"
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functions with respect to the � limits. This is no surprise, since its cross sections are

related in form, see (7.35) and (6.3). We see that in the polarized case, the non-abelian

parts in Fig. 7.11 are of similar size but quite di�erent shapes compared to the totals in

Fig. 7.10, which means that we have strong cancellations with the abelian parts. On the

other hand in the unpolarized parts we observe similar shapes, but opposite signs. So

there are similar cancellations. Finally we would like to mention, that we can obtain the

reduced cross section for the production of a heavy quark instead of a heavy antiquark by

switching p1 $ p2 with t1 and u1 de�ned with respect to the heavy quark. The behavior of

the abelian \QED" part for p1 $ p2 is clear from the 
q case, see (7.32) and the discussion

following (7.10). The non-abelian \OK" contribution to heavy antiquark production can

be similarly split into the sum of p1 $ p2 symmetric and antisymmetric parts. Then the

heavy quark production contribution is obtained by simply subtracting instead of adding

the antisymmetric part. Once more, charge conjugation

d2 ~̂�

dt1du1

�
gq! Q

�
=

d2 ~̂�

dt1du1
(gq ! Q) and

d2 ~̂�

dt1du1
(gq ! Q) =

d2 ~̂�

dt1du1

�
gq! Q

�
;

(7.36)

allows us to directly derive the reduced cross section of an incoming light antiquark [43].

Now we turn to the NLO corrections to the process

~qj(k1) +~�qi(k2)! Qk(p1) +Ql(p2) : (7.37)

The needed Feynman diagrams for the virtual corrections, which have the same external

momentum and color assignment as the LO process (7.37) and are computed with the

2 ! 2 phase space (2.24), are shown in Fig. 7.12. We can separate the squared matrix

element of the interference of virtual with Born graphs according to the color factors

j ~M j2
V B

= 2Re
�
M̂VM

�
B

�
= g6

CF

4NC

h
2CF

~NQED + CA
~NOK + ~NQL

i
; (7.38)

where the only diagrams contributing to ~NQL are the quark loops of Fig. 7.12 (g). The

reduced partonic cross sections can be constructed for each color-part separately. The

one following from the quark loop ~NQL is �nite after renormalization and yields 
d2 ~̂�

(1)

q�q;QL

dt1du1

!V

=
�s(�

2
r
)

3�

�
�5(nlf + 1)

3
� 4m2

s
+ nlf ln

s

�2
r

� �(s+ 2m2)

s
ln{

�
d2~�q�q;LO

dt1du1
;

(7.39)

where the LO cross section can be read o� (2.24) and (2.29) with "! 0. In the unpolarized

case this is equivalent to Eqn. (2.15) in [45] upon taking the limit mL ! 0, where mL is

the mass of the light quarks. We will not show the other reduced virtual cross sections

because of their length, but they can be reconstructed from the virtual plus soft cross

sections discussed later.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12: The NLO virtual corrections to ~q ~�q ! QQ. There are two additional diagrams,

one is obtained from reversing the heavy quark lines of graph (a), the other from replacing the

gluon loop of graph (f) by a ghost loop. The quark loop of graph (g) has to be computed for

massless and massive quarks. Vanishing light quark self-energy loops on the incoming lines,

see (3.3), are not shown.

Next we need to calculate the bremsstrahlung process

~qj(k1) +~�qi(k2)! Qk(p1) +Ql(p2) + ga(k3) : (7.40)

The corresponding Feynman diagrams are shown in Fig. 7.13 and lead to a squared matrix

element

j ~MRj2 = M̂RM
�
R
= g6

CF

4NC

h
2CF

~OQED + CA
~OOK

i
; (7.41)

where we have again sorted according to the occurring color factors. We have calculated

these graphs, but in the unpolarized case they can also be obtained from those for the

g�q ! QQ�q process, by crossing k3 $ �k1 and multiplying with (-1) for crossing a boson

and fermion. By crossing and comparing graph by graph, we have a consistency check of

our unpolarized results. The collinear pole part of the hard bremsstrahlung cross section
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(a)
(b) (c)

(d) (e)

Figure 7.13: Feynman diagrams for the NLO gluon bremsstrahlung process q�q ! QQg.

then becomes

 
d2~�

(1)

q�q;QED

dt1du1

!H

=
CF

4NC

2CFF"G
H

"
�3
s

2

"
~Hpole
QED +O(1) ; (7.42)

Hpole
QED = � 1

t1

1 + x21
1� x1

�
t21 + (x1u1)

2

(x1s)2
+
2m2

x1s

�
� 1

u1

1 + x22
1� x2

�
(x2t1)

2 + u21
(x2s)2

+
2m2

x2s

�
; (7.43)

�Hpole
QED = �Hpole

QED : (7.44)

where only the abelian \QED" part is shown, because the hard non-abelian \OK" part

is completely �nite. GH

"
is de�ned in (6.5) and x1; x2 in (6.4). As expected, we �nd the

form necessary for the mass factorization in (6.33), see the hard �(1 � x � Æ) part of

(6.34). The lengthy �nite contributions can be found in our computer program, which is

available upon request. Our unpolarized results agree with those of [45].

We can quickly derive the soft limits of the ~OQED and ~OOK, as we did in the case of

~
~g in (7.21) and (7.22)

~SQED =
8

s24

�
s

t0u0
+

2t1

s3t0
+
2t1

u0
� 2u1

t0
� 2u1

s3u0
+
s� 2m2

s3
� m2

s32
�m2

�
~AQED ; (7.45)

~SOK =
8

s24

�
� s

t0u0
� t1

s3t0
� t1

u0
+
2u1

t0
+

2u1

s3u0
� s� 2m2

s3

�
~AQED ; (7.46)
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in agreement with [45] in the unpolarized case. From them we derive the soft cross section,

as for (7.23) and (7.24): 
d2~�

(1)

q�q;QED

dt1du1

!S

=
CF

4NC

2CFF"G
S

"
�3
s
~AQED

(
8

"2
� 4

"
+
4

"
ln
sm2

t1u1
+
16

"
ln
t1
u1

+ 2

� 8 ln{ ln
t1

u1
+ ln2

sm2

t1u1
+ 2Li2

�
1� sm2

t1u1

�
+ 8Li2

�
1� t1

{u1

�
� 8 Li2

�
1� u1

{t1

�
+
2(2m2 � s)

s�
[ln{ � S({)]

)
Æ(s4) ; (7.47)

 
d2~�

(1)

q�q;OK

dt1du1

!S

=
CF

4NC

CAF"G
S

"
�3
s
~AQED

(
� 4

"
ln
sm2

t1u1
� 12

"
ln
t1

u1
� ln2

sm2

t1u1
+ 6 ln{ ln

t1

u1

+ ln2
t1

u1
� ln2 { � 2 Li2

�
1� sm2

t1u1

�
� 6 Li2

�
1� t1

{u1

�
+ 6Li2

�
1� u1

{t1

�
+
2(2m2 � s)

s�
S({)

)
Æ(s4) ; (7.48)

where S({) and GS

"
are de�ned in (7.25) and (7.26), respectively. ~AQED is the LO ex-

pression of (2.30). Our unpolarized results for the soft bremsstrahlung cross section once

more are identical to those of [45].

We now perform mass factorization for the hard H and the renormalized virtual plus

soft V +S part, keeping in mind to use (6.35) to guarantee helicity conservation. We can

then split the V + S part as 
d2 ~̂�

(1)
q�q

dt1du1

!V+S

=
�3
s

s2
CF

4NC

h
2CF

�
~KQED + ~K�

QED

�
+ CA

�
~KOK + ~K�

OK

�
+ ~KQL + 2�0 ~KRF

i
Æ(s4) ; (7.49)

where we have included the virtual quark loop contribution of (7.39) in the ~KQL and ex-

plicitly separated out the part proportional to �0, which corresponds to (7.8) and vanishes

for �r = �f . The coeÆcients are given in App. C and are exactly equal in the unpolarized

case to those found in App. A of [45]. Actually we show in App. C the unpolarized results,

which then can be directly compared to the results of [45]. We �nd for our polarized re-

sults that as expected helicity conservation holds and thus the polarized coeÆcients are

simply (-1) times the unpolarized ones7. We �nd that helicity conservation holds for the

hard part as well after mass factorization. Thus our unpolarized and polarized H parts

7Helicity conservation requires for a quark-antiquark vertex that jM j2 (++) = 0 and hence that

jM j
2
= �� jM j2, see (2.10) and (2.11).
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Figure 7.14: The polarized quark-antiquark scaling functions in LO �f
(0)
q�q , and NLO �f

(1)
q�q

and � �f
(1)
q�q , in the MS scheme as function of �. The quark loop contribution is included

with the number of light 
avors nlf = 3. For comparison the e�ective NLO combination

�f
(0)
q�q + 2:7�f

(1)
q�q is also shown.

are equal to those of [45], with a sign for the polarized case. It is important to keep

in mind though, that this would not have happened, if we had not corrected the helic-

ity breaking of the HVBM 
5 scheme [54] by using (6.35). Furthermore we would also

not have obtained this result without calculating the hat momenta contributions, which

happen to be equal to one half the HVBM corrections.

We can of course again extract scaling functions from our results according to (7.2).

Note that we enforce (7.8), i.e., the only dependence on the renormalization scale apart

from �s(�
2
r
) is due to a logarithm ln(�2

r
=�2

f
). So ln(�2

r
=m2) terms from ~KOK and ~KQL are

changed to ln(�2
f
=m2) and the additional ~KRF collects the ln(�2

r
=�2

f
) pieces to keep the

sum unchanged. This means ~�f
(1)
q�q multiplying ln(�2

f
=m2) receives additional contributions

when requiring (7.8). We plot the polarized scaling functions in Fig. 7.14. Apart from

extending the �-range and having a sign due to helicity conservation, this plot does not

exactly reproduce Fig. 5 of [45], though the di�erences, which occur in the medium �
range, are small. The reason is that when one includes the quark loop contributions
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Figure 7.15: The non-abelian (OK), abelian (QED), and quark loop (QL) parts of the NLO

polarized scaling function �f
(1)
q�q in the MS scheme as function of �. The quark loop contri-

bution is shown for three and four light 
avors nlf , and the OK and QED scaling functions

have been divided by six. OK+QED+QL(nlf = 3) will give the �f
(1)
q�q of Fig. 7.14.

~KQL, one has to specify the number of light 
avors nlf . We have chosen nlf = 3 with

charm production in mind, whereas the authors of [45] have chosen nlf = 4. Thus there

are slight di�erences in the soft plus virtual parts, which disappear when we also set

nlf = 4. We have again plotted the \e�ective" NLO combination for charm production

�f
(0)
q�q + 2:7�f

(1)
q�q , which gives an estimate of the total scaling function at NLO with

4��s(m
2
c
) ' 2:7. We see that the NLO contributions strongly dominate towards threshold

� ! 0. Again this comes about on one hand because of a Coulomb singularity yielding

a constant at threshold in the S + V part, see Fig. 7.12 (d), and on the other hand

because of soft gluon emission left-overs in the hard part, see Fig. 7.13. There are no


avor excitation graphs in this process, so we do not �nd an enhancement at � ! 1.

Note that the NLO part �f
(1)
q�q changes sign in the � range of approximately 0.7 to 20.

Thus the e�ective NLO combination (dotted line) is above the LO result (dashed line) in

that region. Concerning hadronic cross sections at RHIC [32] with
p
S = 200 GeV and

mc = 1:5 GeV, we �nd xmin = 2:25 � 10�4. So using (7.29) we get for the product x1x2,
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which replaces the single x of photoproduction, 3:8 � 10�4 to 4:5 � 10�3 in this � range.

Thus we can expect signi�cant contributions from this region.

Finally, in Fig. 7.15 we show �f
(1)
q�q split according to its color-structure. The sum

of the non-abelian, abelian and quark loop contributions gives back �f
(1)
q�q , see (7.41)

and (7.49). To make the small quark loop parts more visible, we have divided the other

contributions by a factor six in the plot. We see once more the strong cancellations

between the \OK" and \QED" parts. But even their sum dominates over the \QL"

contribution for � . 0:4, there the ratio \QL/(OK+QED)" is below 10%. At threshold

we �nd �f
(1)
q�q = � CF

4NC

(2CF � CA)
�

16
. The \QL" part is shown for three and four light


avors and we see that the changes introduced by adding one light 
avor are small, and

will mainly be felt in the medium � range. Finally we would like to mention that we can

again obtain the results for the production of a heavy quark instead of a heavy antiquark

by switching p1 $ p2. In this case it is however easier to use charge conjugation

d2 ~̂�

dt1du1

�
q�q ! Q

�
=

d2 ~̂�

dt1du1
(�qq ! Q) and

d2 ~̂�

dt1du1
(q�q ! Q) =

d2 ~̂�

dt1du1

�
�qq ! Q

�
;

(7.50)

and additionally k1 $ k2 or equivalently t1 $ u1, which crosses the initial states q�q $ �qq.
So in this case one obtains the corresponding heavy quark production expressions by

interchanging t1 $ u1, with t1 and u1 now referring to the heavy quark [45]. Naturally

we can also derive the results for a light antiquark instead of a light quark as parton for

one hadron and vice versa for the other hadron by using k1 $ k2 (t1 $ u1) [45].

7.4 Gluon-Gluon Scaling Functions

The �nal subprocesses we have to calculate for hadroproduction are the NLO corrections

to gluon-gluon fusion

~g a(k1) + ~g b(k2)! Qi(p1) +Q
j
(p2) : (7.51)

The virtual corrections, with the same external momentum and color assignment as in LO

(7.51), are computed with the 2 ! 2 phase space (2.24), and are displayed in Fig. 7.16.

We can again split the squared matrix element according to color factors

j ~M j2
V B

= 2Re
�
M̂VM

�
B

�
= E2

"
g6

1

2(N2
C
� 1)

h
(2CF )

2 ~UQED + C2
A
~UOQ + ~UKQ + CA

~UQL

i
;

(7.52)

where the \abelian" ~UQED is connected to ~VQED of (7.15) with the usual factor 1=(2NC)

for replacing a photon by a gluon. ~UQL only receives contributions from the quark loops.

The other two collect \non-abelian" contributions. Compared to Eq. (3.3) in [44], we have

averaged over color and chosen a slightly di�erent way of splitting the results according
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 7.16: The NLO virtual corrections to ~g~g ! QQ. Additional graphs are obtained by:

replacing the photon by a gluon in Fig. 7.3; reversing the heavy quark lines in (a), (d), and

(e); and setting the loop particle to a (heavy) quark and ghost in (h), a ghost in (j) and a

heavy quark in (k). Massless particle loops similar to graph (e), (n) and (o) vanish, see (3.3).
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to color. Also we already include a factor 1=4 for spin-averaging in the unpolarized and

as a convention in the polarized case. Taking all this into account, for comparisons with

[44] one should use

UQED =
1

2
V BKNS
QED ; UOQ =

1

2
(V BKNS

O � V BKNS
QED ) ;

UKQ =
1

2
(V BKNS

K + 3V BKNS
QED ) ; UQL =

1

2
V BKNS
f ;

(7.53)

where the coeÆcients marked \BKNS" are those of [44]. Note that due to our \ghost

trick", see Fig. 2.1 and App. B.4, for the diagram structures (a), (f), (g), (h), (j), (l) and

(m) in Fig. 7.16, there are also diagrams with incoming ghosts to be considered, which

are not shown. We postpone further discussion of the virtual results, and examine �rst

the bremsstrahlung reactions.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.17: Feynman diagrams for the NLO gluon bremsstrahlung process ~g~g ! QQg.

Replacing the photon by a gluon in Fig. 7.4 and reversing the heavy quark lines of (a) yields

the remaining graphs. Many initial to �nal or initial to initial ghost contributions, for example

(h) and (i), have to be subtracted in the unpolarized case to cancel unphysical polarization

contributions, compare Fig. 2.1 and App. B.4.
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The bremsstrahlung diagrams are presented in Fig. 7.17 and we assign color and

momentum according to

~g a(k1) + ~g b(k2)! Qi(p1) +Q
j
(p2) + gc(k3) : (7.54)

Note that we have this time external ghost graphs both for replacing two initial gluons

and for replacing one initial and one �nal state gluon. There is a similar color split for

the squared matrix element

j ~MRj2 = M̂RM
�
R
= E2

"
g6

1

2(N2
C
� 1)

h
(2CF )

2 ~DQED + C2
A
~DOQ + ~DKQ

i
; (7.55)

and compared to the Ri in Eq. (4.4) of [44] analogous relations as in (7.53) apply. The

collinear pole part of the hard gluon-gluon cross section then becomes 
d2~�

(1)

gg;OQ

dt1du1

!H

=
C2
A

2(N2
C
� 1)

F"G
H

"
E2
"
�3
s

2

"

h
(1�HL1) ~H

pole
OK1 + (1�HL2) ~H

pole
OK2

i
+O(1) ;

(7.56) 
d2~�

(1)

gg;KQ

dt1du1

!H

= � 1

2(N2
C
� 1)

F"G
H

"
E2
"
�3
s

2

"

h
~Hpole
OK1 +

~Hpole
OK2

i
+O(1) ; (7.57)

HL1 =
2t1(x1u1)

(x1s)2
; HL2 =

2(x2t1)u1

(x2s)2
; (7.58)

Hpole
OK1 = � 1

t1

�
1

1� x1
+

1

x1
� 2� x1(1� x1)

�
�
�

t1

x1u1
+
x1u1

t1
+
4m2(x1s)

t1(x1u1)

�
1� m2(x1s)

t1(x1u1)

��
; (7.59)

�Hpole
OK1 = � 1

t1

�
1

1� x1
� 2x1 + 1

��
t1

x1u1
+
x1u1

t1

��
2m2(x1s)

t1(x1u1)
� 1

�
;

Hpole
OK2 = � 1

u1

�
1

1� x2
+

1

x2
� 2� x2(1� x2)

�
�
�
x2t1

u1
+

u1

x2t1
+
4m2(x2s)

(x2t1)u1

�
1� m2(x2s)

(x2t1)u1

��
; (7.60)

�Hpole
OK2 = � 1

u1

�
1

1� x2
� 2x2 + 1

��
x2t1

u1
+

u1

x2t1

��
2m2(x2s)

(x2t1)u1
� 1

�
;

and the \QED" part is completely �nite. GH

"
is de�ned in (6.5) and x1; x2 in (6.4). We

have written the results in a form which is easily comparable with the mass factorization

formula (6.30). To this end note that 2CFCA = C2
A
� 1. Our unpolarized results agree8

8The comparison is somewhat protracted, since they do not bring the result in a simple \factorization"

form. Replacing s+ t1 ! �u1=x2 in their expressions helps to disentangle the terms.
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with those of [44]. The �nite results are too long to be quoted here, but can be found in

our computer program.

We take the soft limit of the matrix elements in (7.55) and �nd

~SQED = � 2

s24

�
m2 +

m2

s32
+
2m2 � s

s3

�
~BQED ; (7.61)

~SOQ =
2

s24

"
2m2 � s

s3
+
t21 + u21
st0u0

+
2m2t1u1

s2

�
1 +

1

s32

�
+
t21u1

s2

�
1

t0
+

1

s3u0

�

+
t1u

2
1

s2

�
1

u0
+

1

s3t0

�#
~BQED ; (7.62)

~SKQ = � 2

s24

"
2(2m2 � s)

s3

�
1 +

t1u1

s2

�
+
2m2t1u1

s2

�
1 +

1

s32

�
+ t1

�
1

u0
+

1

s3t0

�

+ u1

�
1

t0
+

1

s3u0

�#
~BQED : (7.63)

Using relations analogous to (7.53), we �nd that these limits are indeed equal to those

found in [44] for the unpolarized case.

From these soft matrix elements we can directly derive the soft cross sections as before,

and obtain 
d2~�
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gg;QED

dt1du1

!S
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(7.64) 
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(7.66)



7.4. Gluon-Gluon Scaling Functions 117

where S({) and GS

"
are de�ned in (7.25) and(7.26), respectively. Our unpolarized results

agree9 with those of [44]. We see comparing (7.61) and (7.64) with (7.21) and (7.23),

that the \QED" part of the gluon-gluon partonic cross section is indeed just 1=(2NC)

of the \QED" part of the photon-gluon one. So our choice is \natural" concerning the

color-factor of the \QED" part, since we get the usual factor for replacing a photon by a

gluon.
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Figure 7.18: The hard (H +�) part of the NLO polarized and unpolarized scaling functions

�f
(1)
gg and f

(1)
gg , respectively, in the MS scheme as function of �. For comparison the LO

polarized and unpolarized scaling functions �f
(0)
gg and f

(0)
gg , respectively, are also shown.

Now we should combine the virtual and soft cross sections. However, though the

matrix elements and tensor integrals have been calculated, we have not yet combined

the virtual results. This will be done in a later publication. For the time being we will

just take the ln(�=m2) parts of the soft cross sections (7.64) to (7.66) and add them

to the reduced hard parts after mass factorization. This way we can already present

the \hard" part of the ~f
(1)
gg coeÆcient functions in Fig. 7.18. There the solid line shows

the \hard" part of the polarized scaling function �f
(1)
gg , and the dot-dashed line displays

9It is useful to note that their color-factor K �CQED = 2[(2CF )
2 � C2

A
+ 3]=[2(N2

C
� 1)].
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the corresponding unpolarized scaling function f
(1)
gg . For comparison we also plot the

dashed and dotted curves, displaying the polarized �f
(0)
gg and unpolarized f

(0)
gg LO scaling

functions, respectively. We see that the situation is very similar to the 
g case concerning

the threshold and high energy limits. But here the NLO corrections are even larger, in

particular at high energies. The corresponding heavy quark production expressions have

the same form, but with t1 and u1 referring to the heavy quark, since the squared matrix

elements are p1 $ p2 symmetric [43]. We postpone further discussions of the gg scaling

functions till the time when the virtual plus soft part and hence the complete result is

available.



Chapter 8

Hadron Level Results

8.1 Hadronic Cross Sections

Let us �rst of all recall the relevant formulae for calculating di�erential single-inclusive

heavy (anti)quark distributions. We denote the momenta in the heavy (anti)quark pro-

duction cross section of a hadron of type a with a hadron of type b by

Ha(K1) +Hb(K2)! Q(p2) [Q(p1)] +X ; (8.1)

and use the following hadronic invariants for the observed heavy antiquark

S � (K1 +K2)
2 with s = (x1K1 + x2K2)

2 = x1x2S ;

T1 � (K2 � p2)
2 �m2 with t1 = (x2K2 � p2)

2 �m2 = x2T1 ;

U1 � (K1 � p1)
2 �m2 with u1 = (x1K1 � p1)

2 �m2 = x1U1 ;

(8.2)

where we have introduced the momentum fractions x1 in k1 = x1K1 and x2 in k2 = x2K2

to relate the hadronic to the partonic variables in (2.18), thus K2
1 = K2

2 = 0. For an

observed heavy quark one would set p1 ! p2 in (8.2). Thus the hadronic and partonic

Mandelstam variables are always de�ned with respect to the observed heavy (anti)quark.

How one can obtain the reduced partonic cross sections for heavy quark instead of heavy

antiquark production has been discussed for each subprocess individually in Chap. 7.

We have in the hadronic cross section formula (6.21) the conditions 0 � x1; x2 � 1.

But we know that

s4 = s+ t1 + u1 = x1x2S + x1T1 + x2U1

!

� � ; (8.3)

where � > 0 only for the \hard" parts and zero otherwise. Hence we can derive lower

limits from the process kinematics

d~�ab(K1; K2)

dT1dU1

=
X
l;m

Z 1

xmin1

dx1

Z 1

xmin2

dx2 x1 ~f
a

l
(x1; �

2
f
) x2 ~f

b

m
(x2; �

2
f
)
d~̂�lm(x1K1; x2K2)

dt1du1
;

(8.4)
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with

xmin
1 = � T1

S + U1

; and xmin
2 =

�� x1U1

x1S + T1
; (8.5)

and � = 0 in (8.5) except for the \hard" parts of the cross section1. Note that the

extra factor x1x2 on the r.h.s. in comparison to (6.21) comes from dt1du1 = x1x2dT1dU1.

2! 2 partonic cross sections (Born, virtual and soft ones) have a factor Æ(s+ t1 + u1) =

Æ(x1x2S + x2T1 + x1U1), so then (8.4) becomes

d~�ab(K1; K2)

dT1dU1

=
X
l;m

Z 1

xmin1

dx1

x1S + T1
x1 ~f

a

l
(x1; �

2
f
) xmin

2
~f b
m
(xmin

2 ; �2
f
)
d~̂�

2!2

lm
(x1K1; x

min
2 K2)

dt1du1
;

(8.6)

with � = 0 in xmin
2 . For the hard 2 ! 3 parts it is advantageous to change the inner

integration variable x2 ! s4, then we have

d~�ab(K1; K2)

dT1dU1

=
X
l;m

Z 1

xmin1

dx1

x1S + T1
x1 ~f

a

l
(x1; �

2
f
)

�
Z

smax4

�

ds4 x
0
2
~f b
m
(x02; �

2
f
)
d~̂�

2!3

lm
(x1K1; x

0
2K2)

dt1du1
; (8.7)

with

x02 =
s4 � x1U1

x1S + T1
and smax

4 = x1S + T1 + x1U1 : (8.8)

Note the common factor 1=(x1S + T1) in (8.6) and (8.7). Written this way, it is obvious

that (8.6) is the s4 ! 0 limit of (8.7). Also we can easily see how 2! 2 processes can be

included in the 2 ! 3 integration of (8.7) by using (5.67) for the partonic cross sections

and x02 ! xmin
2 (� = 0) in x02

~f b
m
(x02; �

2
f
).

To obtain the integration limits for the total hadronic cross section, we can proceed like

for the derivation of the limits for the partonic cross sections, see the discussion leading

to (7.2). We just have to replace the s; t1; u1 by their hadronic counterparts S; T1; U1 and

so the result is

~�ab(S;m2) =

Z S

2
(1+�S)

S

2
(1��S)

d(�T1)
Z

S+T1

�m2S
T1

d(�U1)
d2~�ab(S; T1; U1)

dT1dU1

=
X
l;m

Z 1

xmin

dx1

Z 1

xmin
x1

dx2 ~fa
l
(x1; �

2
f
) ~f b

m
(x2; �

2
f
) ~̂�lm(x1x2S;m

2) ;

(8.9)

1The tilde notation refers here, as throughout the text, to both the polarized case, ~a ! �a, and the

unpolarized case, ~a! a.
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�S =

r
1� 4m2

S
; xmin =

4m2

S
= 1� �2

S
; (8.10)

where the ~̂�lm are the total partonic cross section of (7.2). The second line of (8.9) follows

from inserting (8.4) and reshu�ing the integrations. In the case of \direct" photoproduc-

tion we can insert

f 



(x1; �

2
f
) = Æ(1� x1) ; (8.11)

in the formulae (8.4) to (8.9) we have just derived, see the discussion leading to (6.26),

which immediately yields simpler formulae by collapsing the x1-integration to x1 = 1.

The di�erential heavy (anti)quark cross section (8.4) should be expressed in variables

more suited for experimental measurements:

transverse momentum/mass : xT �
pT
pmax
T

; m2
T
� m2 + p2

T

hCMS
=

T1U1

S
;

rapidity : y � artanh
pL

E

hCMS
=

1

2
ln
U1

T1
;

Feynman� x : xF �
pL
pmax
L

hCMS
=

1

�S

T1 � U1

S
;

(8.12)

where the relations to invariant hadronic Mandelstam variables (8.2) are valid in the

hadronic center of mass system (hCMS). The energy and the longitudinal momentum

of the heavy antiquark are given by E = mT cosh y and pL = mT sinh y, respectively.
pT = j~pT j is the absolute size of the transverse momentum and

pmax
T

= pmax
L

=

p
S�S

2
: (8.13)

y and xF of the observed Q in (8.12) are de�ned in the hCMS with the forward direction

(y; xF > 0) along the incoming particle with K1 (the photon in photoproduction), i.e.,

T1 = �
p
SmT e

�y = �
p
Spmax

L
(�� xF ) ;

U1 = �
p
SmT e

y = �
p
Spmax

L
(�+ xF ) ;

(8.14)

where � �
p
x2
F
+ (mT =p

max
L

)2. Under a boost in the direction of the unit vector ~eL
with pL = ~p � ~eL to a frame K� with velocity ��, p�

T
= pT is of course invariant and

y� = y�artanh ��. Hence also the shape of a rapidity distribution df(y�)=dy� = df(y)=dy
remains unchanged by such a boost.

The Jacobians needed to express (8.4) in the variables (8.12) are

dT1dU1 = Sdm2
T
dy =

S

�
dm2

T
dxF ; (8.15)
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and dm2
T
= 2xT (p

max
T

)2dxT , etc. By integrating the variables in (8.12) over the appropriate

limits

S

Z
S=4

m2

dm2
T

Z arcosh
p
S

2m
T

�arcosh
p
S

2mT

dy = S

Z 1
2
ln

1+�
S

1��
S

� 1
2
ln

1+�
S

1��S

dy

Z S

4 cosh2 y

m2

dm2
T
; (8.16)

S

Z
S=4

m2

dm2
T

Z 1
�
S

r
1�

4m2
T

S

� 1
�
S

r
1�

4m2
T

S

dxF

�
= S

Z 1

�1
dxF

Z S

4
(1��2

S
x2
F
)

m2

dm2
T

�
(8.17)

the total cross section (8.9) is of course recovered.

Finally it should be noted that experiments do not determine the (di�erential) longitu-

dinally polarized cross section (d)�� itself, but rather the corresponding spin asymmetry

Aab =
(d)��ab

(d)�ab
: (8.18)

In (8.18), which is nothing but the counting rate asymmetry for the two possible helicity

alignments of the incoming hadrons (2.2), the experimental normalization uncertainty

and some systematical errors conveniently drop out. However, in the following we will

concentrate on the polarized cross section itself as well, since we are interested in the

in
uence of the spin-dependent NLO corrections. The calculation of the spin asymme-

try (8.18) introduces additional theoretical uncertainties associated with the unpolarized

(di�erential) cross section.

8.2 Numerical Studies for Photoproduction

Equipped with the necessary technical framework, we now turn to some numerical appli-

cations. Unless otherwise stated we use here the GRV'94 [62] and GRSV standard [15] set

of unpolarized and longitudinally polarized parton distributions, respectively. However,

it should be mentioned that the detailed choices with respect to the running of �s and
the evolution of the parton distributions used in the MS parton density �ts are usually

not exactly the same as in our MSm scheme. Generally nf instead of nlf is used in �0;1,

i.e., the produced heavy quark 
avor is not explicitly decoupled at low energies. Fur-

thermore, bottom production in the MSm scheme requires four light 
avors, i.e., charm is

treated as \massless" and should enter the calculation with its own evolving probability

distribution. But for example in the case of GRV/GRSV [62, 15], 
avor thresholds are

only introduced in the running of �s, i.e., there is no charm distribution. On the other

hand, the e�ect of setting nlf ! nf on the running of �s is negligible. Also the quark

contribution is small compared to the gluon one, as we will see, but particularly so for

\heavy" (massless) quarks, which are introduced only at high scales and are always sup-

pressed due to the longer evolution length of the light partons. Hence we will simply use

nf instead of nlf in �0;1 for the running of �s and use only three light 
avors even when
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calculating bottom production. So our conventions for calculating hadronic cross sections

match those of the GRV/GRSV parton densities [62, 15], but we nevertheless use our

MSm results for the reduced partonic cross sections. The errors introduced by this slight

inconsistency are completely swamped by the scale variation uncertainties we will discuss

next and hence are of no practical relevance. Since only the photoproduction result is

complete in NLO, we can only examine this reaction2. Unfortunately we have no data so

far, but in the near future COMPASS [31] is going to measure the total (anti)charm spin

asymmetry Ac�c

p

with suÆcient accuracy. Therefore we mainly focus on the kinematical

range accessible by COMPASS in our analysis below, i.e.,
p
S =

p
S
p = 10 GeV. It is

currently under scrutiny whether it is physically feasible and sensible to run HERA in a

polarized collider mode in the future [28], and therefore we either show or comment on

the corresponding results at HERA collider energies as well. At HERA a sizable portion

of the ep c.m. energy 300 GeV can be transferred to the photon-proton system. We usep
S
p ' 200 GeV in the following as typical3 HERA photoproduction energy.

In order to investigate the theoretical uncertainty of predictions for the total polarized

cross section induced by the dependence on �r, �f and mc, we de�ne

R(r; f; c) =
��c


p
(r; f; c)���c


p
(r = f = 2:5; c = 1:5)

��c

p
(r = f = 2:5; c = 1:5)

�2
r
= rm2

c
; �2

f
= fm2

c
; mc = c GeV ;

(8.19)

which uses the prediction for one particular choice of scales ��c

p
(�2

r
= �2

f
= 2:5m2

c
; mc =

1:5 GeV) as basic value for computing relative deviations. In the plots of R the LO

and NLO GRSV standard parton densities [15] have been used. We start by keeping

mc = 1:5 GeV �xed and varying only �r and �f . Thus we plot R(r; f; 1:5) in Fig. 8.1 for

two center of mass energies
p
S = 10 and 200 GeV. R is shown in percent and contour

lines in steps of 5% are drawn on the surface of the plot and as projection on the base.

A small circle marks R(r = 2:5; f = 2:5; c = 1:5) � 0, so the contour of zero R runs

through this circle. At the base we also draw a line for the usual choice �r = �f to

guide the eye. Note that in plot (d) we have multiplied R with (-1) to to achieve a nice

presentation in the same form, i.e., the change in the low r and high f region is opposite

to the one for the LO plot (c). As can be inferred from comparing the LO and NLO

results at both center of mass energies in Fig. 8.1 (a) vs. (b) and (c) vs. (d), respectively,

the scale dependence has been drastically reduced in NLO over the entire range of �f and

�r, which underlines the importance of the NLO results. Moreover, in NLO the choice

�f = �r is approximately on the contour for R = 0, and R is 
attest for large �f and �r.
This motivates the choice of scales, �f = �r, which we will use henceforth. For reasonable

changes of �f and �r in Fig. 8.1, the polarized total charm production cross section (8.9)

varies by about 15% at
p
S = 10 GeV and 25% at

p
S = 200 GeV in NLO as compared

2Also we are forced to ignore the resolved contributions. However, they are not expected to introduce

major changes to the results presented here, see the discussion above (6.27).
3For example the \ETAG33" sample of [22] has h

p
S
p i =194 GeV.
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Figure 8.1: R(r; f; 1:5) in percent, see (8.19), for renormalization �2
r
= rm2

c
and factorization

�2
f
= fm2

c
scale variations with

p
S = 10 GeV: LO (a) and NLO (b), and

p
S = 200 GeV:

LO (c) and NLO, times (-1), (d). The charm mass mc = c GeV is set to c = 1:5. Also shown

are a 
 symbol at R(2:5; 2:5; 1:5) � 0, contour steps of 5% and a r = f line at the base.
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to about 45% at
p
S = 10 GeV and 50% at

p
S = 200 GeV in LO. Contrary to the na��ve

expectation, the scale dependence becomes slightly stronger for higher energies. But this

e�ect mainly comes from the corner of low r and high f . For larger r, the dependence on

f is reduced at higher energies in NLO. Note also that at
p
S = 200 GeV, the LO R = 0

contour has moved closer to the �r = �f line. This is in contrast to
p
S = 10 GeV, where

this line is basically the direction of strongest change. We have not studied whether this

trend persists at even higher energies, since the numerical integrations become very time

consuming and since LO is expected to be inadequate at high energies due to the lack of


avor excitation subprocesses.

Next we wish to examine the dependence on mc. Fig. 8.2 shows R(r; r; c), i.e., we now

keep �r = �f = � all the time, but still vary � to see whether the mc dependence of the

total polarized cross section is in
uenced. Again contours show steps in percent, but now

they mean di�erences of 15% each! So we can immediately conclude that the dependence

on the charm mass is much stronger than the one on the factorization and renormalization

scales, in particular at lower energies. Again a small circle marks R(r = 2:5; f = 2:5; c =
1:5) � 0 and we show a line for r = f = 2:25 at the base of the plots. We see that

at low energies NLO is much more stable than LO, we get about 135% variation in LO

compared to about 45% in NLO in Fig. 8.2 (a) and (b), respectively. However, at large

energies LO and NLO both vary by about 45%. So in NLO the dependence on mc stays

roughly constant, whereas it strongly increases in LO at lower energies. It is surprising

that NLO improves the stability of the predictions against variations of mc. But we have

set �2
f
= �2

r
= rm2

c
, so we indirectly probe the stability along the �r = �f line! Obviously

then the di�erences between LO and NLO are largely due to their behavior for �r = �f
discussed above. Note that at

p
S = 10 GeV the dependence on mc is least in NLO

for small r = f values, in particular there is little variation for low values of mc. But

concerning the dependence on r and f separately in Fig. 8.1 we would favor larger values

to stay in the \
attest" region. We will use a compromise value of �r = �f = 1:5 mc,

which means r = f = 2:25, as standard value in the following. This choice is shown by the
line included at the base of the plot in Fig. 8.2. It is lower than the choice �r = �f = 2mc

used in [34, 35], which optimized the dependence on �r and �f . Here we will basically

only vary mc, since comparing Fig. 8.2 and Fig. 8.1 makes obvious that this will give the

major part of the theoretical uncertainties. Note in particular that the changes induced

by varying mc are more or less independent of the variation of r = f , i.e., the contours

are close to being parallel to the r = f axis. Finally it is perhaps more natural to use

a standard value for �r;f , which is not at the high edge but rather in the middle of the

usual variation range mc � �r;f � 2mc. We will in the rest of the paper vary mc in the

range from 1:4 to 1:6 GeV, instead of the larger range 1:35 to 1:7 GeV in the R(r; r; c)

plot, to give a rough estimate of the theoretical uncertainty. This basically amounts to

taking the results for the charm mass collected in4 [1] at face value instead of using the

conservative range also quoted there.

4Note that their table shows all results converted to the running mass of the MS scheme. The pole

mass we need here is approximately 20% larger.
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Figure 8.2: R(r; r; c) in percent, see (8.19), for charm mass mc = c GeV and renormalization

scale �2
r
= rm2

c
variations with

p
S = 10 GeV: LO (a), NLO (b) and

p
S = 200 GeV: LO (c),

NLO (d). The factorization scale �2
f
= fm2

c
is set to f = r. Also shown are a 
 symbol at

R(2:5; 2:5; 1:5) � 0, contour steps of 15% and a r = f = 2:25 line at the base.
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Figure 8.3: xT -di�erential polarized anticharm photoproduction cross section d���c

p
=dxT in

LO and NLO at
p
S = 10; 200 GeV with the GRSV standard polarized parton densities [15].

Thick lines have mc = 1:5 GeV, thin lines with largest positive peak have mc = 1:4 GeV, and

the other thin lines have mc = 1:6 GeV. In NLO the thin lines are connected to form a band.

We have set �2
r
= �2

f
= 2:25(m2

c
+ p2

T
). The curves for

p
S = 200 GeV are multiplied by 1=7.

We will now take a look at pT , or equivalently xT , see (8.12), di�erential results.

The reason is that we wish to derive a good value for an acceptance cut on pT in order

to enhance the asymmetry. We expect that the COMPASS experiment [31] will not be

able to accurately measure di�erential distributions. But they are still useful as a guide

for possible cuts. Fig. 8.3 shows5 d���c

p
=dxT for

p
S = 10 GeV and 200 GeV. We use

�2
r
= �2

f
= 2:25(m2

c
+ p2

T
) here, since it can be expected that p2

T
becomes a relevant scale

when it is not integrated out. This choice reduces to the standard choice for the total

cross section �r = �f = 1:5mc in the limit of small pT . Here and in the following we

always plot as thick line the result for mc = 1:5 GeV and for the thin lines we vary the

5There are changes in the ballpark of 10% in the following di�erential curves as compared to [35]

due to the scheme inconsistency corrected in [37]. For the total polarized cross section the changes are

smaller.
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Figure 8.4: xT -di�erential polarized anticharm photoproduction cross section d���c

p
=dxT

in NLO at
p
S = 10 GeV with the GRSV standard, DSS set 3, and GS A polarized parton

densities [15, 17, 18]. Thick lines havemc = 1:5 GeV, thin lines with largest positive peak have
mc = 1:4 GeV, and the other thin lines have mc = 1:6 GeV. The GRSV standard curves are

connected to form a band. We have set �2
r
= �2

f
= 2:25(m2

c
+ p2

T
). An analogous unpolarized

curve (NLO GRV'94 parton densities [62], mc = 1:5 GeV) is shown divided by 2:5.

charm mass from mc = 1:4 GeV to mc = 1:6 GeV. By adding p2
T
in our scale de�nition we

shift towards larger �r and �f , where the dependence on independent �r and �f variations

becomes less and the dependence onmc slightly larger for the total polarized cross section.

Thus varying mc still is a reasonable estimate for the theoretical uncertainty, at least for

the lower energy
p
S = 10 GeV, and with an integrated cross section in mind. The

independent variation of �2
r
and �2

f
as a(p2

t
+m2

c
) with a = 1=4; : : : ; 4 has already been

shown in Fig. 10 of [35]. Note that the range of a chosen there is rather conservative

and yields large uncertainties. The lower and upper limits in this case come from one

scale set to a = 1=4 and the other set to a = 4. Since (m2
c
+ p2

T
)=4 < m2

c
for xT . 0:54

at
p
S = 10 GeV (for xT . 2:6 � 10�2 at

p
S = 200 GeV), the large uncertainties of the

di�erential distribution shown in Fig. 10 of [35] are mainly due to a scale choice lower than

the lowest one �r;f = mc used for the total cross sections. For
p
S = 200 GeV varying
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mc will underestimate the theoretical uncertainty, as pt can become quite large and then

dominates the sum m2
c
+ p2

T
. We nevertheless show the mc variation in order to compare

with
p
S = 10 GeV and because the total polarized cross section uncertainty is dominated

by it, as we just showed. In Fig. 8.3 the NLO curves are connected to form bands and we

have multiplied the curves for
p
S = 200 GeV by 1=7 in order to �t them into the same

plot. We see that in NLO the variation with mc is slightly reduced in comparison to LO.

On the other hand going to higher energies suppresses the variations more strongly than

for the total polarized cross section. The reason is that the amplitude of the oscillating

xT -di�erential polarized cross section is both larger positive and larger negative for lower

mc, so that in the integration part of the larger relative variations cancel.

The oscillating behavior in xT is explored further in Fig. 8.4 for
p
S = 10 GeV only.

We show the result for three di�erent sets of polarized parton densities, GRSV standard

(solid line), DSS set 3 (dot-dashed line), and GS A (dashed line) [15, 17, 18]. The

prediction for the polarized cross section turns negative at approximately the same xT ,

no matter which parton distribution is chosen. Also the variation of mc does not strongly

change the position of the zero. We see that by taking a cut xT . 0:25 or equivalently

pT . 1:2 GeV, the negative contributions are cut o� and hence the total polarized cross

section is enhanced. On the other hand the unpolarized cross section, which is shown

multiplied with a factor 1=2:5 by the dotted line, does of course not oscillate. Thus the

cut takes out a signi�cant part of the unpolarized cross section. Hence we expect that

the asymmetry A = ��=� should be strongly enhanced by this cut, since the numerator

grows and at the same time the denominator is diminished. This should take place for all

the polarized parton densities and mc values we are exploring.

We see exactly the expected features in Fig. 8.5, which shows the total NLO anticharm

photoproduction spin asymmetry A�c

p

with a cut pT � 1:2 GeV. Comparing the bands

for the GRSV standard parton density prediction with cut (solid lines) and without cut

(dotted lines) at NLO, we see that the asymmetry is strongly enhanced, by about 60%

at
p
S = 10 GeV! Examining the e�ect of introducing di�erent parton densities, we see

that there are strong di�erences in the predicted asymmetry. Certainly these di�erences

are larger than the theoretical uncertainties of our calculation, estimated here again by

varyingmc. Also compared to the expected statistical error for the COMPASS experiment

[31] the situation looks favorable. We use an expected asymmetry error 20% larger than

the estimate ÆAc�c

p

= 0:051 of [31]. This corresponds to the loss of statistics due to the

cut, i.e., for the unpolarized cross section
p
�no cut=�cut ' 1:2. The appropriately larger

error is shown by the point with error bar placed on the GRSV standard curve. It

should be possible to distinguish the di�erent parton densities, even when the theoretical

uncertainties are taken into account.

However, for a small gluon density like in the DSS set 3 �t, an improved experimental

measurement is required in order to unambiguously measure the asymmetry. Smaller
p
S

lead to a larger spread of the predictions, but COMPASS will not be able to measure at

lower
p
S. Higher energies are obviously not preferred for this measurement. There is a

simple reason why we show no LO predictions. For these values of
p
S only large x & 0:1
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Figure 8.5: NLO anticharm photoproduction spin asymmetry A�c

p

with a cut pT � 1:2 GeV

using the GRSV standard, DSS set 3, and GS A polarized parton densities [15, 17, 18]. For

the unpolarized cross section GRV'94 parton densities [62] were used. The thick lines have

mc = 1:5 GeV, the upper thin lines havemc = 1:4 GeV, and the lower ones havemc = 1:6 GeV
(order reverses at

p
S . 6 GeV for GRSV standard). The GRSV standard curves are connected

to form a band. We have set �2
r
= �2

f
= 2:25(m2

c
+ p2

T
). GRSV standard curves without

pT -cut and the expected error at COMPASS [31], see text, are also shown.

are probed. In Fig. 8.6 we plot the ratio of the NLO to the LO gluon for several di�erent

polarized gluon densities in this large x region. We see that for GRSV standard and DSS

set 3 [15, 17], the NLO gluon can be up to a factor two larger than the LO gluon. For GS

A [18] the situation is even worse, here the NLO gluon is up to 15 times larger than the

LO gluon. This massive enhancement is completely accidental in the parton density �ts,

since the polarized gluon is currently not constrained at these values of x. In comparison

the NLO to LO ratio for the unpolarized GRV'94 [62] gluon stays fairly 
at and close to

unity up to very large x. Due to the arti�cially enhanced gluonic contribution we would

obtain large di�erences between LO and NLO predictions, see [34]. One could for example

use the NLO parton densities also for the LO curves to avoid this [34, 96]. But as we have

argued in Chap. 7, NLO is here the �rst order in which all important classes of graphs

are included. So we refrain from showing LO curves, they can be found in [34].
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Figure 8.6: Ratios of NLO to LO polarized gluon distributions in the large x region. Shown

is �g(NLO)=�g(LO) for the GRSV standard [15], DSS set 3 [17], and GS A [18] polarized

parton densities. For comparison the ratio NLO to LO for the unpolarized GRV'94 [62] parton

densities is also shown.

Unfortunately, a measurement of A�c

p

at collider energies, where one could access

smaller x, appears to be not feasible, since A�c

p
is at best of the same size as the expected

statistical error for such a measurement [33]. This also does not improve for pT or y

di�erential charm distributions. Since A�c

p
already appears to be unmeasurable at HERA,

the prospects for a meaningful measurement of A
�b

p
seem to be not very promising at �rst,

since bottom cross sections are smaller due to the larger b quark mass and the smaller

heavy quark charge (eb=ec)
2 = 1=4. However, b quarks are experimentally much easier to

detect, e.g., through their longer lifetime (secondary vertex tag), which might compensate

these shortcomings. By looking at the curves for
p
S = 200 GeV in Fig. 8.3, which is for

anticharm but qualitatively shows what is to be expected for antibottom as well, we can

guess that introducing a cut in pT will also help here. However, experimentally it will not

be possible to measure very small pT at HERA, so we use a cut pT � 1:5 GeV instead, i.e.,

now we are cutting o� the positive part of the polarized cross section. Thus in Fig. 8.7

we turn to the longitudinal spin asymmetry A
�b

p
of polarized antibottom photoproduction

in NLO at the polarized HERA option [28] for three di�erent sets of polarized parton
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Figure 8.7: NLO antibottom photoproduction spin asymmetry A
�b

p

with a cut pT � 1:5 GeV

using the GRSV standard, DSS set 3, and GS A polarized parton densities [15, 17, 18].

For the unpolarized cross section GRV'94 parton densities [62] were used. The thick lines

have mb = 4:5 GeV, the lower thin lines have mb = 4:4 GeV, and the upper ones have

mb = 4:6 GeV. We have set �2
r
= �2

f
= 2:25(m2

b
+p2

T
). For GRSV standard varying �2

r
and �2

f

independently with a(m2
b
+ p2

T
), mb = 4:5 GeV, and a = 1; : : : ; 3:5 yields the outer thin lines.

GRSV standard curves without pT -cut and points with the expected statistical error according

to (8.20) are also shown.

distributions [15, 17, 18]. Again thin lines show the variation with the heavy quark

mass, here from mb = 4:4 GeV to mb = 4:6 GeV, and the thick line is for the central

value mb = 4:5 GeV. Choosing a more conservative range hardly matters at the higherp
S
p mainly probed by experiment. The results obtained for the di�erent sets of parton

densities are well separated and sensitive to the di�erent �g, but A
�b

p

is extremely small.

The points with error bars in Fig. 8.7 illustrate the expected statistical accuracy for such

a measurement at HERA estimated via

ÆA
�b

p
' 1

PePp

1q
"bL��b
p

(8.20)
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assuming a polarization PePp ' 0:5 of the electron and proton beams, an (optimistic)

integrated luminosity of L = 500 pb�1 [28], and an optimal detection eÆciency of "b = 0:05

[97]. Note that we do not bin in
p
S
p here, i.e., the errors are estimated at the point

where they are drawn. Since HERA is an ep, not 
p, collider, the center of mass energy

of the 
p system varies and usually one averages over a large
p
S
p bin.
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Figure 8.8: y-di�erential polarized anticharm photoproduction cross section d���c

p
=dy in

LO and NLO at
p
S = 10 GeV with the GRSV standard densities [15] as measured in the

hCMS. The thick lines have mc = 1:5 GeV, the thin lines with largest positive peak have

mc = 1:4 GeV, and the ones with smallest positive peak have mc = 1:6 GeV. We have

set �r = �f = 1:5mc. The initial light quark contributions to the NLO curves are shown

separately, for them the mc = 1:4 GeV curve has the largest negative peak and so on. For

comparison analogous unpolarized curves with NLO GRV'94 densities [62] are shown divided

by 10. They are also mirrored, i.e., we plot d�(�y).

For comparison we also display the GRSV standard curves without pT -cut as dotted

lines. They show that we succeeded in cutting o� the positive part of the polarized cross

section, which otherwise cancels the negative part, i.e., the total asymmetry without pT -

cut is close to zero for these energies. Instead we now see a decent separation of the

predictions for di�erent parton densities, which yield asymmetries distinguishable from
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Figure 8.9: xF -di�erential polarized anticharm photoproduction cross section d���c

p
=dxF

in LO and NLO at
p
S = 10 GeV with the GRSV standard densities [15] as measured in the

hCMS. The thick lines have mc = 1:5 GeV, the thin lines with largest positive peak have

mc = 1:4 GeV, and the ones with smallest positive peak have mc = 1:6 GeV. We have

set �r = �f = 1:5mc. The initial light quark contributions to the NLO curves are shown

separately, for them the mc = 1:4 GeV curve has the largest negative peak and so on. For

comparison analogous unpolarized curves with NLO GRV'94 densities [62] are shown divided

by 13. They are also mirrored, i.e., we plot d�(�xF ).

zero except perhaps for the small DSS set 3 gluon. We see that the dependence on

the bottom mass is quite small, in particular at larger energies. Since we know that

we underestimate the theoretical uncertainty by only varying the bottom mass, we also

vary �2
r
and �2

f
independently according to a(m2

b
+ p2

T
), where mb = 4:5 GeV and6 a =

1; : : : ; 3:5. This gives the outer thin lines for the GRSV standard densities. We see

that this is not a much larger uncertainty than for the mb variation. The uncertainty

also basically vanishes for larger energies, so we see that from a theoretical point of view

(anti)bottom photoproduction allows very precise predictions. One has to keep in mind

6This is a less conservative choice than the usual a = 1=4; : : : ; 4. We limit the lowest possible scale to

�r;f = mb and vary a by �1:25 around the standard value a = 2:25.
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though that we have calculated here only the direct (point-like photon) part of the cross

section as a �rst approximation, see the discussion above (6.27). Thus the uncertainties

due to the resolved contributions have not been taken into account. Also we will discuss

in the next section that in the unpolarized case theoretical predictions describe bottom

data less well than charm data. This is unexpected, since the larger bottom mass should

provide a better scale for perturbation theory. Without solving this issue the usefulness

of future polarized bottom data will be limited, at least for the extraction of the polarized

gluon density �g.

Finally, let us turn to further results for di�erential distributions. Although their

experimental relevance seems to be remote, apart from y and xF acceptance cuts, a

comparison of the LO and NLO distributions is of theoretical interest to understand in

which kinematical regions the corrections are most relevant. In Fig. 8.8 and Fig. 8.9

we show the polarized rapidity y- and xF -di�erential anticharm photoproduction cross

sections as measured in the hadronic center of mass system (hCMS). We here revert top
S = 10 GeV and since pT is integrated over the entire kinematical range, we again

choose �f = �r = 1:5mc. The distributions are asymmetric in y and xF and the heavy

quark is dominantly produced \backward" with respect to the incoming photon, i.e., in the

direction of the proton. The NLO results are always larger than the LO ones and deviate

in shape, having a larger backward peak. In both �gures the unpolarized distributions,

scaled down to approximately the size of the polarized one, are shown for comparison.

Note that we have mirrored the unpolarized distributions in order to disentangle the lines.

This means, we have plotted the unpolarized distributions as a function of �y and �xF ,
respectively. We see that the more complicated shape only emerges in the polarized case

in NLO. The additional contribution with light quarks in the initial state at NLO is

included and also shown separately. It appears to be basically negligible in the entire y

and xF range at this energy. We have also again varied the charm mass, but this does

not change the general appearance of the distributions. However, the induced variations

are quite large and for the NLO polarized case lead to a more pronounced peak structure

for lower charm masses. We see however that the structures we observe in these cases do

not immediately suggest simple cuts in order to enhance the asymmetry, as had been the

case for pT .

8.3 Current State of Experiment vs. Theory

To make a fair assessment of the practical usefulness of our results, we now examine how

well heavy quark production theory and experimental data have matched in the past.

Our conclusion that heavy quark reactions are useful for the determination of the po-

larized gluon density �g is based on the theoretical predictions of the last section, but

the experience in the unpolarized case raises some serious caveats. However, we will �nd

that we are in a \win-win" situation, provided the future experiments also measure the

corresponding unpolarized reactions and possibly obtain independent information about

�g. Then we will either improve our knowledge about �g or obtain valuable information
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for the solution of the \heavy quark enigma" discussed below. The scope of this section is

limited. First, we will focus exclusively on the (QCD) production of open charm and bot-

tom. In particular we will not discuss heavy quarkonium production, like the production

of the charmonium bound state J= . Concerning heavy quarkonia, we just remark that

the sophisticated nonrelativistic QCD (NRQCD) calculations seems to be in serious trou-

ble due to preliminary experimental data on the transverse polarization of charmonium

states at high pT [98]. It remains to be seen whether this can be cured. Perhaps other

approaches like the color evaporation model (CEM), which has been revived recently [99]

but was proposed over twenty years ago, see for example [61], now become more attrac-

tive. However, at least there are alternatives to the color-singlet model (CSM) available,

which do not utterly fail to describe the direct production cross section of J= and  0, as

the CSM does [100].

Second, we can of course only comment on comparisons of unpolarized theoretical cal-

culations and data, as we are still waiting for the �rst polarized experimental results.

Third, we are relying here mainly on the work of other authors. In principle we could of

course use our unpolarized results and compare them to part of the existing data. How-

ever, we have not yet completed the NLO hadroproduction calculation, so thus far we

have concentrated on deriving the missing reduced partonic cross sections. The hadron

level results shown in the last section are thus �rst rough predictions. For in-depth phe-

nomenological studies of photoproduction at lepton-nucleon colliders, we should include

the convolution of the photoproduction cross section with the photon distribution in the

electron according to the Weizs�acker-Williams approximation (WWA) [101, 102, 103].

Then we could compare directly to lepton-nucleon data without depending on any ap-

proximate \WWA 
ux factor" treatment. Also the \resolved" photoproduction processes

should be taken into account. Finally, experiments do not really detect heavy quarks, but

rather (the decay products of) hadrons. Thus we should include fragmentation functions

like the one suggested by Peterson et al. [104] to model hadronization. These improve-

ments will be implemented in future versions of our program7. Note that we can expect

the numerical evaluation to become much slower then, since more convolutions are needed.

So for the time being we will turn to the comparisons available in the literature.

We begin by examining �xed-target production of open charm, using the results of

[106]. A convenient compilation of experimental results with references is provided there,

so we refer the reader to [106] concerning the experiments mentioned in the following.

The total cross sections both for hadroproduction (experimental collaborations for charm

in pion-nucleon { E653, E769, NA27, NA32, E769; charm in proton-nucleon { E653, E769,

E743, NA27, NA32; bottom in pion-nucleon { E653, E672, E706, NA10, WA78, WA92;

bottom in proton-nucleon { E605, E771) and photoproduction (experimental collabora-

tions for charm in photon-nucleon { E687, E691, NA14/2) are well described by the NLO

unpolarized calculations within the conservatively estimated theoretical uncertainty. The

covered center of mass energies are about 20 to 40 GeV in hadroproduction and 10 to

20 GeV in photoproduction. The major theoretical uncertainty is due to the variation

7A version including the WWA exists, but has not been thoroughly tested yet.
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Figure 8.10: Unpolarized total charm-pair photoproduction cross section �c�c

N
' ��c


p
compared

with experimental data [105]. Predictions for the charm masses 1.4 GeV (dot-dashed lines),

1.5 GeV (solid lines), and 1.6 GeV (dashed lines) are shown, where the thick lines have

�2
r
= �2

f
= 2:25m2

c
and the thin lines are obtained by independent variations of �2

r;f
by

�1:25m2
c
. The GRV'94 unpolarized parton densities [62] were used.

of the heavy quark mass in the case of charm, as expected from our results of the last

section. In the case of bottom this uncertainty is also sizable8, but variations of �r;f still

dominate the uncertainty there. Compared to the predictions of [106], the data for the

hadroproduction of charm prefer the value mc = 1:5 GeV we have been using, but values

down to mc = 1:2 GeV are possible. High values like mc = 1:8 GeV are disfavored. In

photoproduction mc = 1:5 GeV again gives the best description. Here both high and

low values of mc give worse agreement. However, this always just means that the overall

agreement with the broad band of theoretical uncertainties obtained for the conservative

range mc=2 � �r � 2mc with �f = 2mc is better in one case than the other. Experi-

mental data tend to scatter within the uncertainty band and sometimes are inconsistent,

e.g., E687 vs. E691 in photoproduction. The variations tried in [106] for the bottom mass

from 4.5 to 5 GeV all are in accord with the data in the same sense. Here both scales

8Note that the uncertainty due to mb variations increases for lower c.m. energies in Fig. 8.7.
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have been varied in the conservative range mb=2 � �r;f � 2mb. Furthermore, the authors

of [106] have also varied �NLO. Apart from correlations with the parton densities, this is

equivalent to an even larger range of �r being probed, up to the point where in the case

of charm the variations \induce values of �s(mc) too large to be used in a perturbative

expansion" [106].

Since we can calculate the direct part of the total photoproduction cross section with

our results and have assumed that the resolved contribution is small at these energies,

we can check their conclusions for this case. We will adopt here the opposite approach

to [106]: since they have already explored the possible theoretical uncertainty up to the

inapplicability of perturbation theory itself, we wish to see if \optimistic" scale variations

are still compatible with data. So in Fig. 8.10 we present curves for9 �c�c

N

with three

choices for the charm mass mc = 1:4; 1:5; and 1.6 GeV as dot-dashed, solid, and dashed

lines, respectively. The thick lines are obtained for our standard choice �2
r
= �2

f
=

2:25m2
c
, whereas the thin lines are obtained for independent variations of �2

r
and �2

f
by

�1:25m2
c
. We use the GRV'94 parton densities [62] and keep �NLO = 200 MeV �xed.

Thus our Fig. 8.10 corresponds to Fig. 3 in [106]. We see that even with our \optimistic"

choices, the overall theoretical uncertainty forms a band broad enough to still \agree"

with the available data [105]. Note that the dependence on the mass scales is worse in

the unpolarized case than in the polarized case. It is also evident that the experiments

do not match well with each other in the region where they overlap and also there seem

to be di�erences in the energy dependence. With our \optimistic" scale variations one

cannot say that one choice of mc �ts best, rather one could claim that mc = 1:5 GeV

is a compromise value which �ts all three experiments to some extent. We draw the

conclusion for the future COMPASS [31] measurement that in order to be able to extract

�g from the total charm spin asymmetry one should measure the unpolarized total cross

section as well. Though a rough agreement with the NLO QCD prediction is found, the

\optimistic" theoretical uncertainty we have explored here, which were basically also used

for the predictions of the last section, is the minimum required to \�t" current unpolarized

experiments, mainly because the experiments disagree with each other. An unpolarized

COMPASS measurement could be very helpful in that respect.

As a �nal point concerning the unpolarized �xed target experiments we note that in

the di�erential distributions usually the introduction of intrinsic transverse momentum

of the partons (a kT \kick") is required to match the theoretical description with the

data. Strangely enough the NLO QCD predictions for pure heavy quarks, i.e., without

hadronization, �t the hadroproduction data of the WA92 and E769 experiments on pT -

and xF -distributions well. However, the introduction of fragmentation functions [104]

softens the pT -distribution and then a rather large kT -kick hk2T i = 1� 2 GeV2 is needed

to agree with that data. The xF -distributions of most other hadroproduction experi-

ments are harder than the predictions for pure heavy quarks, in particular in the case of

\leading particles", see [106] for details. Here the introduction of other non-perturbative

9We use the approximation �c�c

N

= (�c

N

+ ��c

N

)=2 ' ��c

p
, which is valid since charge asymmetry and

quark contributions are small. The data have been read o� the plots in [105].



8.3. Current State of Experiment vs. Theory 139

QCD phenomena like beam-drag e�ects [107] may be necessary, we will brie
y comment

on this below. However, we are mainly interested in the pT -distributions here, since we

want to introduce pT -cuts. In Fig. 8.11 we show Fig. 6 of [106], which compares the NLO

QCD prediction for the unpolarized p2
T
distribution with data from the E687 and E691

collaborations. We see that the introduction of fragmentation functions (they used the

form of [104] with the parameter �c = 0:06) is required to describe the data. But the

good news is that the kT kick does not signi�cantly change the prediction for variations

hk2
T
i = 0:5 � 2 GeV2 and a fair description of the data is achieved. Thus we should be

able to estimate the non-perturbative e�ects with good accuracy when using a pT -cut to

enlarge the asymmetry in the polarized measurement. However, it would be preferable

if the COMPASS collaboration [31] would scan over di�erent pT -cut values and publish

the corresponding integrated unpolarized cross sections. That would allow us to test

our understanding of this issue. All in all we think that the prospects for a meaning-

ful measurement of the polarized gluon density �g at COMPASS are still good after

these considerations, provided the unpolarized cross section can be determined. Also one

can check this determination of �g against an independent measurement of the gluon

polarization at COMPASS, which uses correlated high pT hadron pairs [108].

Figure 8.11: p2
T
-di�erential distribution for unpolarized charm production in 
N collisions vs.

experimental data. The solid line shows the \pure" NLO QCD prediction for mc = 1:5 GeV,

the other lines include fragmentation (according to [104] with �c = 0:06) and di�erent amounts

of intrinsic kT assumed for the incoming partons. See [106] for details, this is their Fig. 6.

Next we turn brie
y to the HERA ep collider. First we remark that the description of

charm production in deep inelastic scattering (DIS) has been very successful so far. The

data for the charm tagged content of the inclusive proton structure function F2, called

F c

2 , are well described by theoretical predictions, see for example [24]. Data on di�erential

distributions are also in accordance with theory as is conveniently summarized in [109].
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However, for the distributions depending on the longitudinal momentum, like xF , one

has to include non-perturbative e�ects like beam-drag to obtain satisfactory agreement.

The idea is basically that the produced charm quark is usually color-connected to the

beam remnant of the incoming particle [107, 110]. Thus it can be \dragged" along in

the direction of the outgoing remnant and gain energy and momentum. The net e�ect

is that more than expected charmed hadrons are produced \forward" (in the direction of

the remnant), and less are produced \backward". This mechanism was �rst proposed for

the �xed target data, but also works well here. It is encouraging that charm production

in DIS is described so well by NLO QCD calculations. But of course the large virtuality

of the photon in DIS may very well be responsible for that success. So we will now turn

to photoproduction. Photons of (almost) zero virtuality, where the electron is scattered

by a small angle, are dominant in the heavy 
avor production at HERA. In particular

comparisons with (preliminary) ZEUS results from the large statistics sample collected

in the 1996 and 1997 runs with an integrated luminosity of 37 pb�1 are interesting. For

charm production once more increased forward production is observed. For the data taken

with photon-gluon c.m. energies between 130 and 280 GeV [111], beam-drag e�ects once

more may cure the observed discrepancies for di�erential distributions between theory and

data [112]. But this seems to work less well for events in the low photon-gluon c.m. energy

range between 80 and 120 GeV [113]. We note that the successful gluon extraction from

photoproduction [22] is based on two older data sets from 1994-96, with an integrated

luminosity of (10:7 + 10:2) pb�1. The results of this analysis were already shown in the

right half of Fig. 1.2. Here the problems in the di�erential distributions with forward

production seem to be less severe and occur only at high pT . Furthermore, the total c�c
pair photoproduction cross section is compatible with theory within errors [106]. Thus

it is in line with the �xed target measurements, in spite of being measured at energies

one order of magnitude larger. We �nd that at the higher energy of HERA the picture of

charm production has become less clear. However, we still conclude that charm production

at HERA is or will be describable with currently available theoretical methods, if non-

perturbative e�ects like beam-drag are taken into account for the di�erential distributions.

But we have already mentioned in Chap. 6 that charm spin asymmetries at HERA will

probably be unmeasurable anyway [33].

So we will now turn to bottom production. A general statement can be made about

bottom production at colliders, both for photo- (electro-) and hadroproduction: the the-

oretical predictions are about a factor two (or more) o�! H1 measures a visible cross

section �(ep ! b�bX ! �X 0) of about 176 pb, compared to a NLO QCD prediction of

104 pb [116]. Their estimate of the experimental error towards smaller values is about

23 pb (statistical and systematical error added in quadrature), whereas they estimate

the theoretical uncertainty to be 17 pb. However, it would be interesting to examine

the rôle of the AROMA Monte Carlo event generator [117] used in the extraction of their

data more closely, since after all the prediction of the same AROMA program for the visible

cross section is10 38 nb. A second method of measuring the production of b�b pairs at

10The LO QCD prediction is 69 nb, so the AROMA prediction is even lower than LO.
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Figure 8.12: Bottom quark production data from CDF and D; compared with the NLO QCD

prediction. The theoretical uncertainty displayed by the band is associated with �r, �f , and
mb variations. The dependence of the integrated cross section on a cut pT > pmin

T
is shown.

This is Fig. 11 of [114].

H1 gives similar large discrepancies between the experimental measurement and the LO

AROMA prediction [118]. Finally preliminary experimental results from ZEUS on b�b pro-

duction also show a factor 4 disagreement of data with the predictions from a di�erent LO

Monte Carlo [119, 112]. Even if the evidence from HERA is not as clear yet as one may

wish, the results for hadroproduction, mainly from the TEVATRON at FERMILAB, have

stood the test of time. Two recent articles [114, 120] conveniently summarize the com-

plex situation for bottom hadroproduction, details and references can be found therein.

Fig. 8.12, which is Fig. 11 of [114], shows what is typically found at the TEVATRON by

the CDF and D; collaborations: While the shape of the NLO QCD prediction is �ne,

the normalization is wrong. Displayed in Fig. 8.12 is the integrated pT -distribution for

bottom quark production depending on a pT -cut, i.e., a similar plot as our Fig. 2.5 but

with bottom, at a c.m. energy of 1:8 TeV and compared to NLO QCD calculations. We

�nd a ratio \data/theory' 2:5" in this plot. The data displayed there have been taken

in the central rapidity region, for forward production the shape still agrees, but then
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Figure 8.13: Ratio of bottom quark production data taken by CDF and D; at
p
S = 630 GeV

and 1.8 TeV compared with the NLO QCD prediction. The theoretical uncertainty displayed

by the band is associated with �r, �f and mb variations. The dependence of the ratio of the

integrated cross section on a cut pT > pmin

T
is shown. The �gure is taken from [115].

\data/theory' 4" [120]. A considerable amount of e�ort has been spent on improving

the theoretical description of these data, which have been consolidated over the years,

basically without avail11! This is very puzzling, since we can describe charm production

to a considerable extent, as we have just seen. Thus we are in the strange situation that

NLO QCD seems to be working better at the \dangerously low" scale m2
c
' 2:25 GeV2,

whereas it fails drastically at the \safe" scale m2
b
' 20:25 GeV2. This deserves to be called

the \heavy quark enigma". But the fact that NLO QCD at least describes the shape of

the data o�ers some hope. Furthermore, Fig. 8.13, taken from [115], shows that NLO

QCD also has the right energy dependence! In this plot the ratio of the pT -integrated

bottom production cross section measured at two di�erent energies 630 GeV and 1.8 TeV

is displayed and obviously within the rather large experimental errors the NLO QCD

prediction �ts perfectly. The D; errors are expected to become smaller after correlations

have been taken into account. Only CDF and D; data have been used in order to reduce

common systematic errors, but older UA1 data at
p
S = 630 GeV are compatible [106].

11If �s is maximized by an extreme choice of scales, then theory can �t the data [106].
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What does all this mean for our plan of extracting the polarized gluon distribution

�g from bottom production? Obviously it is seriously compromised, since we cannot be

sure that our theoretical treatment is correct. But it looks as if a common trend of all

bottom measurements in photoproduction (electroproduction) and in hadroproduction is

that basically only the normalization is o� by a factor. Let us assume that a polarized

collider is able to measure the unpolarized cross section separately and can perform at

least one independent measurement of �g using a di�erent process. In this case we should

be in a \win-win" situation: Either the normalization of the polarized measurement is

wrong by the same factor we have determined in the unpolarized case, i.e., the e�ect is

not spin-dependent. In this case of course the spin asymmetry d��=d� is not a�ected

and we would �nd it to be compatible with a prediction that also �ts the independent �g

determination. So then we can go ahead and measure �g by determining the asymmetry,

in spite of the fact that d�� is o�. Or the normalization of the polarized measurement is

not the same, i.e., a �g that �ts the independent polarized measurement does not yield the

experimental bottom spin asymmetry, when the theoretical prediction is multiplied with

the factor determined by unpolarized bottom production. The information that a spin-

dependence is observed could then possibly provide a tool for solving the \heavy quark

enigma"! In practice of course the question will be, whether the experimental accuracy is

good enough to distinguish the two cases. But here the rather large normalization factors

involved may be of advantage.

Polarized HERA and RHIC ful�ll the conditions mentioned above, the corresponding

unpolarized measurement has or will be done and several independent measurements of

�g are planned [28, 32]. Furthermore we note that RHIC will perform a �rst measurement

of hadroproduction of open charm at collider energies, in addition to open bottom pro-

duction. Thus they will be able to compare with open charm production at �xed target

experiments and at HERA, with bottom production at HERA and at FERMILAB, and

internally the results for both 
avors. Their planned c.m. energies of 200 and 500 GeV

are perfect for bridging the energy gap between HERA and FERMILAB. We conclude

that in spite of the \heavy quark enigma", measurements of polarized bottom production

still make sense. Polarized hadroproduction of charm at RHIC is still expected to be a

good candidate for measuring �g, if we can assume that the situation will not be worse

than what has been found at HERA for photoproduction of charm. However, the HERA

results suggest, that we may have to consider non-perturbative e�ects like intrinsic kT
to achieve consistency with di�erential charm data. It may be possible to test some of

these non-perturbative model assumptions using other observables, for example azimuth

correlations of the bottom pair were measured at the TEVATRON and disfavor large in-

trinsic kT in their bottom production reactions [114]. To sum up, we conclude for all the

mentioned experiments that polarized heavy quark production can be used to determine

�g, but that the corresponding unpolarized measurement is required in order to check the

validity of the theoretical methods. Furthermore, independent measurements of �g using

other processes at the same experiment should be used as a cross check.
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Summary

In this thesis we have presented the �rst complete NLO QCD calculation of the spin-

dependent production of heavy quarks in collisions of (point-like) photons and hadrons.

Furthermore, we have included our work on the spin-dependent hadroproduction of heavy

quarks. In order to obtain the full NLO QCD corrections for the latter reaction, we still

have to sum and simplify the already calculated gluon-gluon virtual loop contributions.

All other partonic cross sections of these two processes have been completed and are

documented here. We have tried to provide a sort of mini-review of the methods applied

in our calculation: On one hand, we explain how they are derived from the basic framework

of (perturbative) QCD. On the other hand, we demonstrate how they are used eÆciently

in practice. To the best of our knowledge, some of the techniques have not been explained

before either in detail, like the automatic partial fractioning of angular variables, or at

all, like the systematic expansion of hypergeometric functions. We hope that it will prove

advantageous for future perturbative QCD calculations that all the needed methods now

have been collected in one reference.

Our main goal has been to provide the theoretical basis for an experimental determi-

nation of the polarized gluon distribution �g in open heavy quark production. For this

reason we have presented predictions for spin asymmetries at experiments that will either

take data soon (COMPASS [31] and RHIC [32]) or have a chance to be realized in the near

future (polarized HERA [28]). We have improved our previous hadron level predictions

[34, 35] by investigating the theoretical uncertainties due to the not precisely known heavy

quark (pole) mass and by using cuts on the transverse momentum to enhance the spin

asymmetries. One should keep in mind that our NLO calculations are indispensable for

a meaningful interpretation of future experimental data: First, our NLO predictions are

much more stable against variations of the renormalization and factorization scales than

the LO ones. Second, in the reactions considered here several Feynman graph topologies

occur for the �rst time in NLO, which yield large contributions both close to the produc-

tion threshold and at high energies. Thus LO calculations may be misleading and should

ultimately be replaced by NLO ones. Finally, we have discussed in this paper the current

state of comparisons between theory and experimental data in the analogous unpolarized
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case. From this discussion we conclude that a measurement of only the ratio of polarized

and unpolarized cross sections will not be suÆcient. The unpolarized cross section itself

has to be measured, if our goal to determine �g is to remain realistic.

After this general overview, we now give a brief description of the salient features of

our work chapter by chapter. In the introduction we have emphasized that the full QCD

improved parton model is required to describe experimental data on the spin of the nucleon

and that the polarized gluon distribution �g represents the major remaining uncertainty

of this model. Polarized exclusive reactions can be used to determine �g better and open

heavy quark production is our suggestion. Chap. 2 shows how one can obtain polarized

and unpolarized cross sections simultaneously by projecting onto helicities, which makes

checks against previous unpolarized calculations possible. Also the LO cross sections and

the 2! 2 phase space have been derived there in n = 4+ " dimensions for later use with

the dimensionally regulated NLO pieces.

The treatment of the virtual loops occurring in NLO has been elucidated in the next

chapter. The Passarino-Veltman decomposition [47] of the occurring tensor integrals has

been derived there. This decomposition is simple in principle, but the results are very

lengthy. Take for illustration a 4PF tensor integral of third rank, it has thirteen di�erent

Lorentz covariant structures, so one has to calculate thirteen parts for just one matrix

element. Each of these parts is multiplied by a scalar coeÆcient, which is in general a

complicated function of basic scalar integrals, invariants, and in particular also of the

heavy quark mass. We have constructed a program that computes these coeÆcients, have

checked the lengthy general expressions, and have simpli�ed them for each speci�c case.

Second, the re-calculation of all the needed basic scalar integrals [44], which we have

included here, was non-trivial in the case of vertex and box integrals. The main problems

are the calculation in non-integer 4 + " dimensions, the branch cuts of the occurring

functions, and the increased complexity of the integral kernels due to the non-vanishing

heavy quark mass.

In Chap. 4 we have spent some time on the renormalization procedure, since the MSm
scheme we employ is widely used, but not well documented in the literature. We have

demonstrated how subtracting the heavy quark loop part of the gluon self-energy changes

the running of the strong coupling constant �s, so that only light 
avors contribute.

Furthermore, we have explicitly shown how the commonly used e�ective renormalization

formula for the coupling constant sums up all the counterterms, except for the one con-

nected to mass renormalization. So mass renormalization has to be performed separately.

Our treatment of the real contributions has been expounded in the next chapter. Since

we have used the HVBM scheme [54] for extending 
5 and ����� to n-dimensions, we �rst

had to generalize the n-dimensional 2! 3 phase space integration by deriving an integral

operator for the ensuing "-dimensional \hat-space" terms.

In addition, we have created a program which automatically rewrites the phase space

integration over the six di�erent angular Mandelstam variables as a sum of basic angular

integrals. Extensive partial fractioning is needed for this and we have explained the

procedure in detail. We have also recalculated the needed basic angular integrals [44]
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here, explaining how \tricks" can be used to reduce their number considerably. Most of

the integrals have been extended to O("), which may prove useful for future calculations.

Finally, we have demonstrated in this chapter how phase space slicing isolates the soft

real singularities, so that they can be canceled analytically against the infrared virtual

ones.

Mass factorization is another topic which is seldomly explored in detail. So in Chap. 6

we have bridged the gap between the general formulae and the practical prescriptions by

exhibiting the factorization of collinear singularities for one of our subprocesses. This also

enables us to derive the LO renormalization group equations. Naturally we have compiled

the other needed factorization formulae as well. In the next chapter we have calculated the

other subprocesses. In each case we have shown the needed set of Feynman diagrams and

the �nal parton level results. In order to facilitate comparisons with our calculation, we

have displayed the total partonic cross sections for each of the subprocesses. Furthermore

we have analyzed the properties of these partonic cross sections, in particular their spin

dependence and size at threshold and at high energies.

We have checked our unpolarized results either analytically (for the virtual plus \soft"

real part) or numerically (for the \hard" real part) against previous unpolarized calcu-

lations [44, 45, 46]. Also the \abelian" parts of ~g~
 ! Q have been compared with the

polarized and unpolarized NLO results for ~
~
 ! Q [60]. Finally, we have checked each

subprocess separately against the almost completely independent calculation of Dr. M.

Stratmann: First, the matrix elements have been compared analytically. Second, the

agreement after integration (loop and phase space, respectively), has been tested. Third,

the programs for the partonic cross sections (and later for the hadron level predictions)

give the same results. The Fortran source code of our photoproduction program, which

includes a simple script based user interface for future use by other people, is about

100 KByte long. Considerable time has been spent on testing the program, for example

by re-inserting all the programmed Fortran partonic cross sections into Mathematica and

comparing them with the original results1.

The �nal chapter then considers the hadron level and the main points already have

been discussed above. In the appendices we have collected some technical material. In

particular App. B contains additional topics of general interest, for example the automatic

calculation of color factors. To sum up, we have presented NLO QCD calculations that

will be used to interpret experimental results very soon. It is probable that our knowledge

about the polarized gluon distribution �g, and thus of the spin of the nucleon, will be

improved considerably by the experimental measurements and their theoretical analysis

in NLO QCD.

1Very recently a second calculation of the complete NLO QCD corrections to polarized photoproduc-

tion has been �nished [121]. Their virtual, soft, and collinear contributions are in full agreement [121].

However, in numerical comparisons at the hadron level di�erences of a few percent are seen [121]. In

order to pin down the origin of these minor discrepancies, we hope that the authors of [121] will publish

details about their parton level results and about comparisons of their unpolarized results to previous

unpolarized calculations.
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Additional Material Concerning

Virtual Corrections

A.1 General Formula for Virtual Integrals

The integrals of the type (3.4) can be brought into the form

�4�n
Z

dnq

(2�)n
1

(q2 �K)
j
; (A.1)

by introducing Feynman parameter integrals (3.7), i.e., (A.1) would have to be integrated

with Jj. For example in the case ofD0 in the denominator one obtains with three Feynman

parameters x; y; z running from 0 to 1

a(q2 �m2
1 + i�) + b

�
(q + q1)

2 �m2
2 + i�

�
+ c
�
(q + q1 + q2)

2 �m2
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(q + q1 + q2 + q3)

2 �m2
4 + i�

�
; (A.2)

where the parameters fa; b; c; dg are arbitrarily assigned to functions of the Feynman

parameters: f1� x; x(1� y); xy(1� z); xyzg. Substituting

q ! q + bq1 + c(q1 + q2) + d(q1 + q2 + q3) ; (A.3)

will bring (A.2) in the form q2�K with K as given in Tab. 3.1. Next we perform a Wick

rotation on (A.1), rotating the energy component

q0 ! ix1 ; q1;2;::: ;n�1 ! x2;3;::: ;n ; (A.4)

to get an Euclidean integration. So the integral kernel is now (�1)j=(r2 +K)j with

r2 � x21 + x22 + : : :+ x2
n
; (A.5)
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and the integral measure is idnx. Then we switch to n-dimensional spherical coordinates,

by setting

xk = r

n�1Y
i=k

sin �i cos �k�1 ;

x1 = r

n�1Y
i=1

sin �i ; xn = r cos �n�1 ;

(A.6)

with k = 1; : : : ; n. The integration ranges are

0 � r � 1; 0 � �1 � 2� and 0 � �k>1 � � : (A.7)

From the Jacobian we then get the integration measure rn�1drd
n�1, with

d
n�1 �
n�1Y
i=1

sini�1 �id�i : (A.8)

So �nally we have for (A.1)

�4�ni(�1)j
Z
dr

rn�1

(r2 +K)j

Z
d
n�1

(2�)n
: (A.9)

Using Z
�

0

d� sinm � =

p
��
�
m+1
2

�
�
�
m+2
2

� ; (A.10)

we obtain for the angular integration 2(16�2)�n=4=�
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and the �rst integration corre-

sponds to a beta function giving Kn=2�jB
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where n = 4 + " has been put in. Now we note that
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(A.12)

which directly leads to (3.5).
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A.2 Calculation of Basic Scalar Integrals

In the following we will always use the formulae (3.5) to (3.7) and Tab. 3.1. The end

results will be given up to O(1) and imaginary parts from the Feynman parameter in-

tegrals will be dropped, as explained in Sec. 3.2. The integrations are, if not mention

otherwise, straightforward using standard integration tables like [82, 122] or programs

like Mathematica [57]. The results are often only obtained after a fair amount of sim-

pli�cation using relations of higher transcendental functions, tabulated for example in

[66, 122, 123]. Starting with the 1PF, we have j = 1, which directly gives the result

A0(m) = iC"m
2

�
�2

"
+ 1

�
; (A.13)

with A0(0) = 0 in accordance with (3.3).

For the 2PF, with j = 2, we notice that the Feynman parameter integration itself

cannot result in a pole. Thus we can use a series expansion in " there, when this simpli�es

the integration. However, due to the pole of P"(2), we need to expand up to O("):
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where � �
p
1� 4m2=s and { � (1� �)=(1 + �).

For j = 3, we begin with three �nite 3PF integrals. The C0(p1;�k1; 0; m;m) kernel

can be written as K = x
�
x� (1� x)y t1

m2

�
, which is raised to the power �1 + "=2. With

the additional x in the numerator from (3.7), we get a �nite integral, which is evaluated

easily upon setting "! 0:
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Turning to C0(�k1;�k2; m;m;m), the integral is obviously �nite. With " ! 0 and the

parameters set so that K =
1��2�4(1�x)xy

1��2 , the integral over y is simple and leads to an

integration over
ln[((1�2x)2��2)=(1��2)]

1�x . Substituting z = 1� 2x and integrating over z gives
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Next C0(p1; p2; 0; m; 0) is also obviously �nite and after setting " ! 0 most easily calcu-

lated by taking K = �x(1 � x)(1 � y)(1 + {)2={ + x2y, which after integrating x leads

to a term
ln[�(1+{)2(1�y)=({y2)]
(1+{�{y)(1+{�y) , and the �nal result is
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The integral C0(p2; p1; m; 0; m) leads to K = �x2y(1�y) s

m2+x
2. We thus get separate

integrations for x and y, with the x integration simply giving a pole 1=". The left over

y integration is �nite and so we can expand up to O(1), getting a remaining integration

over (2
"
+ ln r)=r with r � (1� (1 + {)y)

�
1� 1+{

{
y
�
. So in the end

C0(p2; p1; m; 0; m) =
iC"

s�

�
�2

"
ln{ � 2 ln{ ln(1� {)� 2 Li2({) +

1

2
ln2 { � 4�(2)

�
:

(A.24)

C(�k1;�k2; 0; 0; 0) is a very simple integral, since with K = �xy(1 � x) s

m2 one �nds

again two separate integrations. The one over y directly gives 2=" and the one over x
corresponds to a beta function B(1 + "

2
; "
2
), so that the series expansion in " is

C0(�k1;�k2; 0; 0; 0) = iC"

1

s

�
4

"2
+
2

"
ln

s

m2
+
1

2
ln2

s

m2
� 7

2
�(2)

�
: (A.25)

Finally C0(�k1; p1; 0; 0; m) can be directly integrated to a double pole and a hypergeomet-

ric function using K = (1 � x)
�
xy
�
� t1

m2

�
+ 1� x

�
and with the appropriate expansion
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for the hypergeometric function (B.6) the result

C0(�k1; p1; 0; 0; m) =
iC"

t1

�
2

"2
+
2

"
ln

�
� t1

m2

�
+ ln2

�
� t1

m2

�
+ Li2

�
t

m2

�
+
�(2)

4

�
;

(A.26)

is obtained. This completes the set of needed 3PFs.

Turning to the box integrals, the calculation of

D0(�k1; p1; p2; 0; 0; m; 0) =
iC"

st1

�
8

"2
+
2

"

�
2 ln ~t+ ln ~s

�
+ 2 ln ~s ln ~t� 4�(2)

�
; (A.27)

is shown in Sec. 3.2. The second 4PF needed is D0(�k1; p1;�k2; 0; 0; m;m). The kernel

can be chosen as K = xyfx[~t � (~t � 1)y] + [~u(1 � x) � ~tx(1 � y)]zg, with ~t � �t1=m2

and ~u � �u1=m2. We can integrate over x2yK�2+"=2 with respect to z to get the result

Ixy + IIxy with

� 2x�1+"y�1+
"

2 [~t� (~t� 1)y]�1+
"

2

(�2 + ")[~u(1� x)� ~tx(1� y)]| {z }
Ixy

+
2x

"

2y�1+
"

2 [~u(1� x) + xy]�1+
"

2

(�2 + ")[~u(1� x)� ~tx(1� y)]| {z }
IIxy

: (A.28)

The integration of Ixy over x is straightforward:

Iy = �2y�1+
"

2 [~t� (~t� 1)y]�1+
"

2

(�2 + ")"~u
2F1

�
1; "; 1 + ";

~u+ ~t(1� y)

~u

�
: (A.29)

The hypergeometric function can be expanded, see (B.5), and we de�ne an appropriate

counterterm for the diverging y ! 0 limit

Ic
y
= �2y�1+

"

2 ~t�1+
"

2

(�2 + ")"~u

�
1� " ln

�
�
~t

~u

�
� "2 Li2

�
1 +

~t

~u

��
: (A.30)

Integration of the counterterm and adding the integration of the expansion of Iy�Icy leads
to

I =
1

~t~u

�
2

"2
+
1 + 2 ln ~u

"
+
1

2
+
�2

6
� ln2 ~t+ ln ~u+ 2 ln ~t ln ~u� 2 Li2

�
1 +

~t

~u

��
: (A.31)

Turning to IIxy we can expand xe=2 because the integral over x does not diverge for

x! 0. Starting with order one, xe=2 ! 1, we get

IIO(1)
y

= �4~u�1+
"

2y�1+
"

2 [~t� (~t� 1)y]�1+
"

2 (~u� y)�
"

2

(�2 + ")"

(
� i"���

"

2 +

�
(�1) "2

� 2F1

�"
2
;
"

2
; 1 +

"

2
; �
�
� ~t�

"

2 (1� y)�
"

2 y
"

2 2F1

�
"

2
;
"

2
; 1 +

"

2
;� y�

~t(1� y)

��)
; (A.32)
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with � � ~t+~u�~ty
~u�y . We use again (B.6) and the y ! 0 counterterm is

IIO(1)c
y

= �4~u�1+
"

2y�1+
"

2 ~t�1+
"

2

(�2 + ")"

(
� i"�(~t+ ~u)�

"

2 + ~u�
"

2

�
�
(�1) "2

�
1 +

"2

4
Li2

�
1 +

~t

~u

��
� ~t�

"

2y
"

2

�)
: (A.33)

This again enables us to calculate IIO(1). But there is also the next order of x"=2 to

consider, with xe=2 ! "

2
lnx in IIxy. Since for y ! 0 there is no divergence for x ! 1

because of the lnx, and since the y-integration can only deliver a 1="-pole, this is also

the last order we have to consider. Furthermore we can set "! 0 in [~u(1�x)+xy]�1+"=2
for the same reason and the only term that contributes after partial fractioning is

IO(")
xy

=
"y�1+

"

2 lnx

(�2 + ")(~u(1� x)� ~tx)(1� x)~u
; (A.34)

which can be easily integrated. So the sum becomes

II =
1

~t~u

"
2

"2
+
1 + 2 ln ~t

"
+
1

2
� 5�2

6
+ ln ~t+ ln2 ~t + 2Li2

�
1 +

~t

~u

�#
; (A.35)

and we obtain the �nal result

D0(�k1; p1;�k2; 0; 0; m;m) =
iC"

t1u1

�
4

"2
+
2

"

�
ln ~t + ln ~u

�
+ 2 ln ~t ln ~u� 7�(2)

2

�
: (A.36)

The last box integral needed is D0(p1;�k1;�k2; 0; m;m;m). We can write the kernel

as K = x

{

�
x [{ � (1 + {)2(1� y)y] +

�
{~t(1� x) + (1 + {)2x(1� y)

�
yz
	
, so we get for

the z-integration Ixy + IIxy, with

Ixy =
2{x

"

2

�
x + ~t(1� x)y

��1+ "

2

(�2 + ")
�
x+ {

�
~t+ (2 + { � ~t)x

�
� (1 + {)2xy

� ;
IIxy = � 2{2�

"

2x�1+" [x� (1 + {)2(1� y)y]
�1+ "

2

(�2 + ")
�
x + {

�
~t + (2 + { � ~t)x

�
� (1 + {)2xy

� : (A.37)

The integration of Ixy does not diverge and one easily gets upon setting "! 0

I =
m4

�st1

�
ln2 { + 4Li2(�{) +

�2

3

�
: (A.38)

Integrating IIxy over x gives

IIy = �
2{1�

"

2 [{ � (1 + {)2(1� y)y]
�1+ "

2
2F1

�
1; "; 1 + "; 1� (1+{)2(1�y)

{~t

�
(�2 + ")"~t

: (A.39)
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The integration over y does not give an additional pole, so we can expand to O(1) using
(B.5) and then integrate to obtain

II = � m4

�st1

�
2 ln{

"
+ ln{

�
1 + 2 ln� + ln{ + 2 ln ~t

�
+ Li2

�
{2
�
+
5�2

6

�
: (A.40)

The �nal result is then

D0(p1;�k1;�k2; 0; m;m;m)

= � iC"

�st1

�
2

"
ln{ + 2

�
ln{ ln(�~t)� Li2(�{) + Li2({)

�
+ 3�(2)

�
: (A.41)

This recalculation of the needed basic scalar integrals is in complete agreement with the

results presented in [44].

A.3 Passarino-Veltman Decomposition

In Sec. 3.3 the necessary projection mechanisms for the decomposition of the tensor in-

tegrals was constructed. Here we list the obtained formulae. Auxiliary coeÆcients are

named like in [67], to facilitate comparisons. Two additional relations as compared to [67]

will be derived to complete the consistency checks, i.e., for every coeÆcient that can be

obtained in more than one way at least two equations are given. Of course, all consistency

checks were successful. The notation for scalar integrals used here follows the conventions

employed in Sec. 3.3: Any non-standard product of propagators in integrals of the form

(3.4) is indicated by listing the numbers i of the propagator functions Li in brackets. From

(3.4) we have as standard 2PF and 3PF B0 = B0(1; 2) and C0 = C0(1; 2; 3), respectively.
Naturally there is only one 1PF A0 = A0(1) = A0(2) = A0(3) = A0(4), since we can

always rede�ne the loop momentum. Furthermore, there are only four external particles

in our (virtual) subprocesses, so the standard D0 = D0(1; 2; 3; 4) is the only 4PF that

occurs here. There is one non-standard 2PF: B0(2; 3), see (3.27), and there are three

non-standard 3PFs: C0(1; 2; 4), C0(1; 3; 4) and C0(2; 3; 4). The �rst two can be found in

the example given in (3.19) and C0(2; 3; 4) then corresponds to

C0(2; 3; 4) = ��"
Z

dnq

(2�)n
1�

(q + q1)
2 �m2

2

� �
(q + q1 + q2)

2 �m2
3

� �
(q + q1 + q2 + q3)

2 �m2
4

�
= ��"

Z
dnq

(2�)n (q2 �m2
2)
�
(q + q2)

2 �m2
3

� �
(q + q2 + q3)

2 �m2
4

� : (A.42)

The tensor 2PF coeÆcients are

B1 =
1

2q21
[f1B0 + A0(m1)� A0(m2)] ; (A.43)

B21 =
1

q21

�
1

2
[f1B1 + A0(m2)]� B22

�
; (A.44)
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Ca Cb Ma Mb

C11 C12 R1 R2

C21 C23 R3 � C24 R4

C23 C22 R5 R6 � C24

C35 C36 R10 R11

C31 C33 R12 � 2C35 R13

C34 C32 R14 R15 � 2C36

C33 C34 R16 � C36 R17 � C35

Table A.1: The Passarino-Veltman matrix coeÆcients of the 3PFs, to be inserted in (A.47).

The Ri are shown in (A.48).

B22 =
1

n� 1

�
m2

1B0 �
1

2
[f1B1 � A0(m2)]

�
: (A.45)

For the 3PFs we have one scalar equation

C24 =
1

n� 2
[B0(2; 3) +m2

1C0 �R3 � R6] ; (A.46)

and the Ri are given in (A.48) below. The rest is in matrix form0@Ca

Cb

1A = X�1
C

0@Ma

Mb

1A ; (A.47)

and the combinations are presented in Tab. A.1.

The R-coeÆcients of the 3PFs are

R1 =
1

2
[f1C0 +B0(1; 3)�B0(2; 3)] ; R2 =

1

2
[f2C0 +B0(1; 2)� B0(1; 3)] ;

R3 =
1

2
[f1C11 +B1(1; 3) +B0(2; 3)] ; R4 =

1

2
[f2C11 +B1(1; 2)�B1(1; 3)] ;

R5 =
1

2
[f1C12 +B1(1; 3)�B1(2; 3)] ; R6 =

1

2
[f2C12 � B1(1; 3)] ;

R10 =
1

2
[f1C24 +B22(1; 3)� B22(2; 3)] ; R11 =

1

2
[f2C24 +B22(1; 2)� B22(1; 3)] ;

R12 =
1

2
[f1C21 +B21(1; 3)� B0(2; 3)] ; R13 =

1

2
[f2C21 +B21(1; 2)� B21(1; 3)] ;

R14 =
1

2
[f1C22 +B21(1; 3)� B21(2; 3)] ; R15 =

1

2
[f2C22 � B21(1; 3)] ;
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Da Db Dc Ma Mb Mc

D11 D12 D13 R20 R21 R22

D21 D24 D25 R30 �D27 R31 R32

D24 D22 D26 R33 R34 �D27 R35

D25 D26 D23 R36 R37 R38 �D27

D311 D312 D313 R40 R41 R42

D31 D34 D35 R43 � 2D311 R44 R45

D36 D32 D38 R46 R47 � 2D312 R48

D37 D39 D33 R49 R50 R51 � 2D313

D34 D36 D310 R52 �D312 R53 �D311 R54

D35 D310 D37 R55 �D313 R56 R57 �D311

D310 D38 D39 R58 R59 �D313 R60 �D312

Table A.2: The Passarino-Veltman matrix coeÆcients of the 4PFs, to be inserted in (A.50).

The Ri are shown in (A.51). The last two rows show results that complete the set of consis-

tency checks.

R16 =
1

2
[f1C23 +B21(1; 3) +B1(2; 3)] ; R17 =

1

2
[f2C23 �B21(1; 3)] : (A.48)

In the 4PFs we also have only one scalar equation

D27 =
1

n� 3
[C0(2; 3; 4) +m2

1D0 � R30 �R34 � R38] ; (A.49)

and the Ri can be found in (A.51) below. The rest is again in matrix form0BBB@
Da

Db

Dc

1CCCA = X�1
D

0BBB@
Ma

Mb

Mc

1CCCA ; (A.50)

and the combinations are presented in Tab. A.2. The R-coeÆcients of the 4PFs are

R20 =
1

2
[f1D0 + C0(1; 3; 4)� C0(2; 3; 4)] ; R21 =

1

2
[f2D0 + C0(1; 2; 4)� C0(1; 3; 4)] ;

R22 =
1

2
[f3D0 + C0(1; 2; 3)� C0(1; 2; 4)] ; R30 =

1

2
[f1D11 + C11(1; 3; 4) + C0(2; 3; 4)] ;
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R31 =
1

2
[f2D11 + C11(1; 2; 4)� C11(1; 3; 4)] ; R32 =

1

2
[f3D11 + C11(1; 2; 3)� C11(1; 2; 4)] ;

R33 =
1

2
[f1D12 + C11(1; 3; 4)� C11(2; 3; 4)] ; R34 =

1

2
[f2D12 + C12(1; 2; 4)� C11(1; 3; 4)] ;

R35 =
1

2
[f3D12 + C12(1; 2; 3)� C12(1; 2; 4)] ; R36 =

1

2
[f1D13 + C12(1; 3; 4)� C12(2; 3; 4)] ;

R37 =
1

2
[f2D13 + C12(1; 2; 4)� C12(1; 3; 4)] ; R38 =

1

2
[f3D13 � C12(1; 2; 4)] ;

R40 =
1

2
[f1D27 + C24(1; 3; 4)� C24(2; 3; 4)] ; R41 =

1

2
[f2D27 + C24(1; 2; 4)� C24(1; 3; 4)] ;

R42 =
1

2
[f3D27 + C24(1; 2; 3)� C24(1; 2; 4)] ; R43 =

1

2
[f1D21 + C21(1; 3; 4)� C0(2; 3; 4)] ;

R44 =
1

2
[f2D21 + C21(1; 2; 4)� C21(1; 3; 4)] ; R45 =

1

2
[f3D21 + C21(1; 2; 3)� C21(1; 2; 4)] ;

R46 =
1

2
[f1D22 + C21(1; 3; 4)� C21(2; 3; 4)] ; R47 =

1

2
[f2D22 + C22(1; 2; 4)� C21(1; 3; 4)] ;

R48 =
1

2
[f3D22 + C22(1; 2; 3)� C22(1; 2; 4)] ; R49 =

1

2
[f1D23 + C22(1; 3; 4)� C22(2; 3; 4)] ;

R50 =
1

2
[f2D23 + C22(1; 2; 4)� C22(1; 3; 4)] ; R51 =

1

2
[f3D23 � C22(1; 2; 4)] ;

R52 =
1

2
[f1D24 + C21(1; 3; 4) + C11(2; 3; 4)] ; R53 =

1

2
[f2D24 + C23(1; 2; 4)� C21(1; 3; 4)] ;

R54 =
1

2
[f3D24 + C23(1; 2; 3)� C23(1; 2; 4)] ; R55 =

1

2
[f1D25 + C23(1; 3; 4) + C12(2; 3; 4)] ;

R56 =
1

2
[f2D25 + C23(1; 2; 4)� C23(1; 3; 4)] ; R57 =

1

2
[f3D25 � C23(1; 2; 4)] ;

R49 =
1

2
[f1D26 + C23(1; 3; 4)� C23(2; 3; 4)] ; R50 =

1

2
[f2D26 + C22(1; 2; 4)� C23(1; 3; 4)] ;

R51 =
1

2
[f3D26 � C22(1; 2; 4)] : (A.51)
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Some Technical Issues

B.1 Series Expansion of Hypergeometric Functions

In the calculation of integrals in dimensional regularization one often obtains hypergeo-

metric functions 2F1(a; b; c; z), in which the parameters a; b and c depend on the \hat

space" dimension parameter ". This is due to integrals having forms similar to

2F1(a; b; c; z) =
�(c)

�(b)�(c� b)

Z 1

0

dt
tb�1(1� t)c�b�1

(1� tz)a
for Re(c) > Re(b) > 0 : (B.1)

A straightforward evaluation or even worse further integration of the hypergeometric

function for non-integer values of a; b; c is usually not feasible. On the other hand a series

expansion in " of these functions is suÆcient, if we can obtain the appropriate order. In

our calculations the strongest poles are O(1="2), so that at most a series expansion to

O("2) is necessary. There are a few expansions collected in the literature, for example in

[65], but we have found no comment on how they were obtained. The following eÆcient

method may have been too simple to be mentioned explicitly.

The hypergeometric functions are solutions of the following di�erential equation and

boundary condition:

z(1� z)w00(z) + [c� (a+ b+ 1)z]w0(z)� abw(z) = 0 with w(0) = 1 ; (B.2)

in which the derivative is with respect to z. Now we simply set for �nite1 2F1

w(z) = r(z) + "s(z) + "2t(z) + : : : (B.3)

In our case the �rst three terms are suÆcient. By inserting (B.3) and the "-dependent
values of a; b and c in (B.2) and expanding the di�erential equation in ", we obtain a

system of simpler di�erential equations, since each coeÆcient of the powers of " has to be

1One can always use linear transformations of 2F1 to move a " ! 0 divergence in a; b; c out of the
hypergeometric function.
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zero. These equations are coupled, but since the parameters a; b and c have no poles in

", we can proceed step by step: �rst at O(1) we can obtain r(z), which is then inserted

in the O(") di�erential equation to get s(z) and so on. Furthermore (B.2) means that we

get the boundary conditions r(0) = 1 and s(z) = t(z) = : : : = 0.

An example should make this clear, 2F1(1; "; 1 + "; z) leads to the following set of

di�erential equations:

O(1)
O(")
O("2)

9>>>=>>>;)

8>>><>>>:
(1� 2z)r0 + (1� z)zr00 = 0

�r + (1� z)r0 + (1� 2z)s0 + (1� z)zs00 = 0

�s+ (1� z)s0 + (1� 2z)t0 + (1� z)zt00 = 0 :

(B.4)

Solving the O(1) part with r(0) = 1 yields r(z) = 1. This we can put in the O(") part
and using s(z) = 0 we have s(z) = � ln (1� z). Finally inserting r(z) and s(z) into the

O("2) equation with t(0) = 0 leads to t(z) = �Li2(z). Putting all together we have

2F1(1; "; 1 + "; z) = 1� " ln (1� z)� "2 Li2(z) +O("3) : (B.5)

Other needed hypergeometric functions, which can be easily obtained using this method,

are

2F1(1;�"; 1 + "; z) = 1 + " ln(1� z) + "2
�
ln2(1� z) + Li2(z)

�
+O("3) ;

2F1("; 1 + "; 2 + "; z) = 1� "

�
1 +

1� z

z
ln (1� z)

�
+O("2) ;

2F1(";�"; 1 + "; z) = 1� "2 Li2(z) +O("3) ;

2F1(1; 1 + "; 2 + "; z) = � ln(1� z)

z
� "

1

z
[ln (1� z) + Li2(z)] +O("2) :

(B.6)

Sometimes it is simpler to use the di�erentiation properties of the hypergeometric

function directly. For example using the above method it is straightforward to obtain

2F1

�
1; 1 +

"

2
; 2 + "; z

�
= � ln(1� z)

z
� "

z

�
ln(1� z) +

1

4
ln2(1� z) + Li2(z)

�
+O("2) :

(B.7)

But it becomes increasingly diÆcult to solve 2F1

�
1; 1 + "

2
; 2 + "+ k; z

�
for growing k.

Instead one can employ the formula

@k

@zk

�
(1� z)a+b�c 2F1(a; b; c; z)

�
=

(c� a)k(c� b)k

(c)k
(1� z)a+b�c�k 2F1(a; b; c + k; z) ;

(B.8)

where (x)k � �(x + k)=�(x) is the Pochhammer symbol. Since the di�erentiation with

respect to z of (B.7) is simple, we can quickly obtain the needed results. There are several

di�erentiation formulae to be found in the literature, see for example [66].
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B.2 Dilogarithmic and Logarithmic Branch Cuts

The dilogarithm Li2 is de�ned by

Li2(x) � �
Z 1

0

dy
ln(1� yx)

y
= �

Z
x

0

dy
ln(1� y)

y
: (B.9)

We use the common prescription for the branch cut of the complex logarithm, i.e., we

place it along the negative real axis from 0 to �1. That means for real x

ln(x� i�) = ln jxj � i��(�x) ;
lim
�!0+

[ln(x + i�)� ln(x� i�)]
x<0
= 2i� :

(B.10)

So by using (B.9) we �nd for the discontinuity of the dilogarithm

lim
�!0+

[Li2(x+ i�)� Li2(x� i�)]
x>1
= 2i� lnx ; (B.11)

at the branch cut extending from 1 to 1 on the real axis.

One often uses relations like the following [122] for the transformation of the diloga-

rithms:

Li2(y) + Li2(1� y) = � ln(y) ln(1� y) + �(2) ;

Li2(y) + Li2

�
1

y

�
= �1

2
ln2(�y)� �(2) ;

Li2(y)� Li2

�
y � 1

y

�
= � ln(y) ln(1� y) +

1

2
ln2(y) + �(2) ;

Li2(y) + Li2

�
y

y � 1

�
= �1

2
ln2(1� y) ;

Li2(y) + Li2(�y) =
1

2
Li2(y

2) :

(B.12)

So if we have arguments which are slightly shifted to the imaginary, in order to stay away

from the (di)logarithmic branch cuts, in principle we would have to carefully consider to

which side we have shifted, see (B.11). But as explained in Sec. 3.2, we can drop all purely

imaginary parts anyway. Since the dilogarithms only occur linearly with real coeÆcients,

we can actually ignore the problems completely for the dilogarithms and just compute

their real parts.

On the other hand logarithms do occur squared or with partly imaginary coeÆcients,

so we have to use (B.10), or we will not be able to correctly calculate the �2-terms of
the integrals. An eÆcient way of proceeding is to simply calculate with the kernels K

of Tab. 3.1 as if the causal i� was not there. Then in the end logarithms occur which

have arguments on the branch cut. We can now treat the original kinematic invariants

occurring in the logarithms as if they had small positive imaginary parts. For example,
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we �nd in the kernel the term : : :� ac(q1 + q2)
2=m2 + : : :� i�. Say q1 = k1 and q2 = k2,

then (q1 + q2)
2 = s. Now a; c; m are positive and we can consider s to have a small

positive imaginary part in order to preserve the correct shift away from the branch cut,

e.g.,

ln
�
� s

m2

�
! ln

�
�s+ i�m2

m2

�
= ln

� s

m2

�
� i� : (B.13)

In cases where the argument of the logarithm is a complicated function of the original

variable, we can perform a series expansion of it in �, e.g.,

ln

�
� {

1� {

�
! ln

�
� {

1� { + i�
m4

s2�3

�
= ln({)� ln(1� {) + i� ; (B.14)

where { = (1��)=(1+�) and � =
p
1� 4m2=s. Using these methods one arrives at the

correct real parts of the integrals, which are needed exclusively here.

B.3 Calculation of SU(N) Color-Factors
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Figure B.1: Contributions to the real (a) and the virtual (b) NLO squared matrix element

occurring in hadroproduction are used to illustrate the pairing of all occurring color indices.

In calculating a cross section, one obviously has to sum over all the color degrees of

freedom of the internally exchanged particles. But since observable hadrons are \white",

i.e., carry no color, there is no information at all on the color of their (unobserved) partons.

These partons enter as external particles in the partonic subprocess, so one also has to sum

over all their colors. Thus all color indices are summed over in the partonic subprocess2.

Furthermore as Fig. B.1 indicates, the Feynman rules will always result in paired color

indices for the squared matrix elements. The external particles have to match in colors

to be coherently added and the internal particles couple at two points. We will see below,

that then for every squared QCD matrix element one �nds that the color structure of

the particles is reduced to a number which multiplies a colorless squared matrix element

similar to what one gets in a QED calculation. These numbers are called color-factors and

2To obtain a proper normalization one should average over the incoming color states, i.e., divide the

sum over color indices of incoming partons by their total number of colors.
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we can calculate them independently of the remaining colorless squared matrix elements.

Though the calculation is rather simple in principle, it quickly becomes tedious for the

multiple color exchanges in higher orders. In the following an algorithm for calculating

SU(N) color factors is described which was inspired by the general ideas of [124].

First let us specify the notation for the N2� 1 independent N �N -matrix generators,

which yield the lowest-dimensional representation of the Lie algebra of SU(N):

T a

ij
=

1

2
�a
ij
; Tr hT ai = 0 ; Tr



T aT b

�
=

1

2
Æab ; (B.15)

[T a; T b] = ifabcT c ; fT a; T bg = 1

N
Æab1N + dabcT c : (B.16)

Here and below the fundamental (\quark") indices range over i; j; : : : = 1; 2; : : : ; N and

are written as subscripts. In QCD, the quarks are in the fundamental representation

of SU(3)color. The fundamental representation has the dimension N , i.e., in QCD the

quarks have N = NC = 3 color states. The adjoint (\gluon") indices range over a; b; : : : =
1; 2; : : : ; N2 � 1 and are written as superscripts. The gluons of QCD are in the adjoint

representation of SU(3)color. The adjoint representation has the dimension N
2�1, since a

special unitary group has N2�1 generators. Thus in QCD there areN2
C
�1 = 8 gluon color

states. The structure constants fabc and dabc are totally antisymmetric and symmetric,

respectively, under the interchange of any two indices. The �a matrices correspond to

those introduced by Gell-Mann [125] in the case of SU(3). The notation is valid for

SU(N), but commonly used only for SU(3). For SU(2) the conventional notation is

recovered by setting (�a; fabc; dabc) ! (�a; �abc; 0) with the Pauli matrices �a and the

Levi-Civita tensor �abc.

The central relations employed in the automatic evaluation of color-factors are

T a

ij
T a

kl
=

1

2

�
ÆilÆjk �

1

N
ÆijÆkl

�
; (B.17)

fabc = �2iTr


T a[T b; T c]

�
; dabc = 2Tr



T afT b; T cg

�
: (B.18)

Any structure constants appearing3 can be turned into strings of generators using the

trace relations with the (anti)commutator of generators in (B.18). Since all \gluon" color

indices come in pairs, relation (B.17) is suÆcient to reduce the corresponding collection of

generators into Æ-functions of \quark" indices. Thus repeated application of this relation

results in a color sum over Æ-functions, which yields the wanted color-factor.

In order to speed up the process it is also helpful to use (B.16) to reduce terms like

like fabcT a to terms with two generators directly, instead of having four generators in an

intermediate step upon rewriting fabc with the help of (B.18). Also

T a

ij
T b

ji
= Tr



T aT b

�
=

1

2
Æab (B.19)

3In QCD only fabc will enter due to the gluon self-coupling.
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can be used to quickly reduce some color structures. In QCD they will occur for (poten-

tially cut) \bubbles" of quarks, see graph (b) of Fig. B.1. Of course then some trivial

relations like ÆabT b = T a have to be built into the program as well. A nice feature

of this automatic procedure is that it does not rely on \advanced" color relations like

Tr


T aT bT aT c

�
= �Æbc=(4N). Thus one does not have to worry about building up traces

and applying rules in the correct order. In particular it is enough to write down the

color structure of the occurring amplitudes. Say Mi has a color structure ci, then to ob-

tain the color-factor of the squared matrix element MiM
�
j
one can simply use cic

T

j
, with

the transpose of cj generated automatically, without �rst analyzing which traces may be

formed. So obtaining the color factors with the program basically proceeds as fast as one

can de�ne the ci and enter the needed combinations into the program.

b

a

j

i

c

MI ; cI

b

a

j

i
c

MII ; cII

b

a

j

i

c

MIII ; cIII

Figure B.2: Three real NLO amplitudes occurring in hadroproduction serve as examples for

the calculation of color-factors. The naming of matrix elements Mi and color-structures ci is
indicated. Note that in the Mathematica [57] syntax cI y cI etc.

For example, the color de�nitions entered in the Mathematica [57] program for the

three sample graphs in Fig. B.2 would be simply cI=L[c,a,b,i,j], cII=L[a,b,c,i,j]

and cIII=T[d,i,j] f[a,b,e] f[e,d,c]. Here T[d,i,j] y T d

ij
, f[a,b,e] y fabe and

the L[a,b, : : : ,i,j] function automatically constructs a string of generators by inserting
auxiliary \quark" indices, e.g., L[c,a,b,i,j] ! T[c,i,k] T[a,k,l] T[b,l,j]. The

color-factor of MIM
�
II
is then obtained by typing su[cI t[cII]]/(N^2-1)^2, where the

function t[c] generates cT , the function su[c] calculates the color factor according to the

method described above and we have divided by (N2�1)2 to average over the two incoming
gluon color indices. The result is 1

8N2(N2�1) . Furthermore su[cI t[cIII]]/(N^2-1)^2

gives � N2

8(N2�1) and su[cII t[cIII]]/(N^2-1)^2 yields N2

8(N2�1) .

It is often advantageous to decompose the color factors into di�erent parts in order

to collect the matrix elements. We have chosen to rewrite them in terms of the Casimir

operator color factors CF � N
2�1
2N

and CA � N . In the real gluon-gluon matrix elements,

of which Fig. B.2 shows three examples, all color factors have a common factor 1
8(N2�1)

and the rest can be decomposed into linear combinations of (2CF )
2, C2

A
and 1. So the

total result can be organized into three di�erent color parts. On one hand this allows

cancellations between di�erent squared matrix elements to take place and on the other

hand we can directly obtain results which have similar colorless amplitudes. For example

the corresponding real photon-photon matrix element result can be read o� as the (2CF )
2
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coeÆcient. But one has to keep in mind that this decomposition is not unique, but rather

a tool for eÆciently organizing the results.

B.4 Two Useful Slavnov-Taylor Identities

Instead of employing the most general Slavnov-Taylor identity in its functional form to

derive our special result, we use the fact that the Green's functions themselves are directly

invariant under Becchi-Rouet-Stora (BRS) transformations [75], see for example [126, 50].

The BRS transformations are given by

ÆBRSA
a

�
= Æ!Dab

�
�b ;

ÆBRS�
a = �1

2
grf

abc�b�cÆ! ;

ÆBRS�
a� = � 1

�
Æ!@�Aa

�
;

ÆBRS	 = igrT
aÆ!�a	 ;

ÆBRS	 = igr	T
aÆ!�a ;

(B.20)

where Æ! is an in�nitesimal Grassmann variable Æ!2 = 0, which anticommutes with the

(Grassmann) ghost �elds. The other notations for the �elds and covariant derivatives

correspond to those used in (4.2) to (4.5). We will for simplicity use the unrenormal-

ized Lagrangian, but exactly the same derivations can be made for the renormalized

Lagrangian, using the corresponding renormalized BRS transformations, see for example

[64].

We consider the time-ordered four-point function h0jT(	(x4)	(x3)�a�(x1)Ab

�
(x2)j0i,

where the �elds are considered to be external and are to be used in the S-matrix. Its

invariance under BRS transformations means

0
!
= ÆBRSh0jT(		�a�Ab

�
)j0i

= h0jT[(ÆBRS	)	�a�Ab

�
]j0i+ h0jT[	(ÆBRS	)�a�Ab

�
]j0i

+ h0jT[		(ÆBRS�a�)Ab

�
]j0i+ h0jT[		�a�(ÆBRSAb

�
)]j0i :

(B.21)

Let us examine the �rst term in more detail, it yields with (B.20)

h0jT[(ÆBRS	(x4))	(x3)�a�(x1)Ab

�
(x2)]j0i

= igrÆ!h0jT[	(x4)T c�c(x4)	(x3)�
a�(x1)A

b

�
(x2)]j0i ; (B.22)

Now we wish to know if this can contribute to the S-matrix. In the LSZ reduction

formalism, h0jT(		�a�Ab

�
)j0i will be multiplied by the inverse propagators of the external

�elds, which for 	 gives k=4 � m, i.e., the external legs are \amputated". Here we have

considered the transformation to (external) momentum space with x1;2;3;4 ! k1;2;3;4. But
from the 	 in the two particle state of (B.22), there will be no corresponding one particle
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propagator � 1=(k=4�m), since only the sum of the momenta of the two particles gives k4.

A momentum space representation of (B.22) is shown for illustration in Fig. B.3. Then

taking the on-shell limit k=4 ! m will give zero for the S-matrix contribution of (B.22),

since there is no cancellation (k=4�m)=(k=4�m) = 1. The second term in (B.21) su�ers the

same fate when we put 	 on-shell, and in the last term the covariant derivative reduces

to a partial derivative if we set Ab

�
on-shell, since again the contribution due to two �elds

at one point vanishes with respect to the S-matrix. So we can, keeping the use with the

S-matrix in mind, write (B.21) as

� 1

�
Æ!h0jT[		(@�Aa

�
)Ab

�
]j0i+ Æ!h0jT[		�a�(@��b)]j0i = 0 : (B.23)

Note that in the �rst term we now have two gluons, in the second a ghost and an antighost

and that the only particle we did not have to set on-shell to proceed in our derivation was

the original ghost �eld �a�.

k2

k1

k3

k4

Figure B.3: The momentum space representation of (B.22) as it would appear in the S-matrix.

This contribution vanishes due to the absence of a one-particle pole in k4.

In Feynman gauge � = 1 this will correspond to the condition on the amplitudes4

k�1M
ab

��
= �k2�Mab

gh ; (B.24)

where on the l.h.s. we have a sum of all relevant amplitudes for two external gluons

multiplied with k�1 , instead of a polarization vector "�(k1; �1). On the right hand side we

have a corresponding sum of amplitudes, where instead of the gluons a ghost can \run

through", i.e., since only connected diagrams contribute and one couples always a ghost-

gluon-antighost, the external ghost and antighost are connected. Note that we can add an

arbitrary number of external on-shell fermions without changing the derivation of (B.24).

Also if the unreplaced gluon on the left hand side is transverse, then as we multiply by

"�2 = "�(k2; �2) in the S-matrix and "2 �k2 = 0, the contribution vanishes. Hence we could

also add an arbitrary number of external transverse on-shell gluons to the initial vacuum

expectation value and still obtain (B.24). Obviously by exchanging positions and labels

we can also derive

k�2M
ab

��
= �k1�Mab

gh ; (B.25)

4Both sides will also be multiplied by the polarization tensor "�2 of the gluon in the original vacuum

expectation value to obtain the S-matrix.
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and all considerations given above apply to the other leg, respectively. If we replace both

polarization tensors with the momenta and set k21 = k22 = 0, then obviously

k
�

1k
�

2M
ab

��
= 0 : (B.26)

The results (B.24) to (B.26) are the generalization in QCD of the well known result, that

in QED due to gauge invariance we get zero when replacing a polarization vector by the

corresponding momentum. We can now use (B.24) to (B.26) to easily calculate

P ��(k1)P
��(k2)M

ab

��
Mab�

��
= (�g��)(�g��)Mab

��
Mab�

��
�Mab

gh#M
ab�
gh" �Mab

gh"M
ab�
gh# ; (B.27)

where P ��(k1) and P
��(k2) are physical polarization tensors as de�ned by summing over

�1 and �2, respectively, in (2.14). The arrows at the ghost amplitudes indicate the di-

rection of the ghost line, from k1 to k2 or vice versa. The dependence on the arbitrary

light-like � drops out completely and we have thus proven the \external ghost trick". The

identity Fig. B.4 was derived �rst in [52] and later shown to survive the renormalization

process in [53].

=

Figure B.4: Pictorial representation of the Slavnov-Taylor identity (B.24). The dotted line with

a double line end represent the replacement of a polarization vector "�1 ! k�1 with possibly

k21 6= 0, the spiral with line represents an on-shell gluon k22 = 0 which is not transverse

"2 � k2 6= 0. The circle represents the set of all relevant Feynman graphs, and there can be

other external lines which have to be on-shell (and for gluons transverse).

A second useful Slavnov-Taylor identity is obtained from h0jT[(@�Aa

�
(x))�b�(y)]j0i,

where this time we put no conditions on the �elds. Setting its BRS transformation to

zero yields

1

�
h0jT[(@�Aa

�
(x))(@�Ab

�
(y))]j0i !

= h0jT[(@�Dab

�
�b(x))�b�(y)]j0i = 0 ; (B.28)

where we have used the equation of motion for �b from

@�
@L

@(@��a�)
� @L

@�a�
= @�Dab

�
�b = 0 : (B.29)

The choice for gauge �xing (4.3) leads to the following regularization prescription for

equal times

h0jT[(@�Aa

�
(x))(@�Ab

�
(y))]j0i = @�

x
@�
y
h0jT[Aa

�
(x)Ab

�
(y)]j0i+ iÆabÆ

(4)(x� y) ; (B.30)
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see [64]. Taking the Fourier transform x � y ! k of h0jT[Aa

�
(x)Ab

�
(y)]j0i gives the full

gluon propagator ~Dab

��
in momentum space, and we derive

i

�
k�k� ~Dab

��
= Æab : (B.31)



Appendix C

Virtual Plus Soft CoeÆcients

First we list the polarized coeÆcients for the virtual plus soft (V + S) photon-gluon

reduced partonic cross section as de�ned by (7.27), i.e., sorted according to their color-

factors. Furthermore, the ln(�=m2) terms are collected in separate coeÆcients and all the

logarithms depending on the renormalization scale �r have been rewritten, so that the only

dependence now resides in the ln(�2
r
=�2

f
) of (C.5). Note that in [35] this coeÆcient was

written with ln(�r=�f). �BQED is given by (2.21), � �
p
1� 4m2=s, { � (1��)=(1+�),

and t and u are de�ned in (2.18).

�LQED = [�t1(2t1 + u1)=(tu1)� u1(t1 + 2u1)=(t1u)] =4 +
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2
1 + 2t1u

3
1 + u41)

�
=(4t31u

3
1)
	
�(2)

�
�
�(2m2s+ t21 + 4t1u1 + u21)=8 + (�24m4 + 3t21 + 4t1u1 + 3u21)=8
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=(2t1u
3
1) Li2

� u

m2

�
+ �(2m2s+ t21 + 4t1u1 + u21)=(2t1u1) Li2(�{) + �BQED
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�LRF = �BQED ln
�2
r

�2
f

: (C.5)

Next we list the coeÆcients of the unpolarized reduced V +S partonic cross section for

the quark-antiquark subprocess of hadroproduction, according to (7.49). The polarized

parts follow exactly from �Ki = �Ki in each case, i.e., helicity is conserved. Again the

coeÆcients are sorted according to their color-factors, the ln�=m2 terms are collected

separately, and the logarithms depending on the renormalization scale have been brought

into the form ln�2
r
=�2

f
and are collected in (C.11). AQED is given in (2.30).
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