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Chapter 1

| ntroduction

Computer vision as a sensor of interaction with technical systems has found increasing interest in the past few
years. In many of the proposed case studies and applications, the user’s current pose or motion is observed
by the computer using cameras, and the computer’s reaction is displayed to the user who changes the pose
accordingly in order to reach a desired goal of interaction. Often, the data delivered by computer vision is just
one type of sensor data used for interaction, which is, for instance, complemented by speech input.

An advantage of computer vision over other sensor technologies, like e.g. electromagnetic tracking, is that
usually less efforts are necessary in order to bring the users into a state in which they can start with interaction.
In environments where other channels are blocked, for instance by noise, long distances, or electromagnetic
fields, visual sensors may get a dominant role.

1.1 A casestudy: Interaction with a Backprojection Wall

Figure 1.1 shows an environment for computer vision-based interaction with a backprojection wall. In front
of the backprojection wall, two standard video cameras are positioned, one under the ceiling and one on the
side, depicted on the right side in the figure. The views of the cameras cover a stripe of about 1.5 meters width
in front of the backprojection wall, which serves as a region sensitive for interaction. The user interacts with
the projected application by pointing with the arm towards the wall, where the arm is required to be in the
region covered by the cameras. Based on the images obtained from the cameras, the computer-vision system
calculates a location on the wall representing the pointing goal of the arm. By e.g. attaching the cursor of the
graphical user interface of the application to this location, the user may move the cursor on the screen.

The scenario of figure 1.1 contains a third camera which is depicted on the left side of the figure. This camera
is an active camera whose pan, tilt, and zoom can be controlled by the computer vision system. The camera
can be used to track special body parts in order to yield a magnified image. In the case study, the active camera
is focused on the hand of the pointing arm in order to capture hand postures shown by the user. The hand
postures are analyzed and classified by the computer vision system. To every relevant hand posture, a signal
to the application is assigned. The signals can e.g. correspond to button clicks of the mouse of a conventional
application.

We use this environment as a case study for the particular challenging problems of computer vision-based
human-computer interaction treated in this thesis, but it also has practical relevance. Video projection is in
widespread use for multimedial presentations in classrooms and at conferences. It also plays an important role
in group meetings for visualization purposes. Usually interaction is performed at a standard keyboard/mouse
computer whose screen content is additionally directed to a video beamer. This type of interaction limits the
possibilities of group meetings because the interaction has to be performed at the computer, although it would
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Figure 1.1: Configuration of a computer vision-based interactive backprojection wall.

be more natural to interact directly at the backprojection wall. For that purpose, special displays augmented
with sensors have been developed, like e.g. the SmartBoard [SGHH94]. Another recent development is to
use classical laser pointers by capturing the laser point on the projection screen by video cameras. \ersions
for front- and backprojection have been implemented based on that idea [KM98, WWZ01]. In contrast, the
scenario of the case study lets the user directly interact with the projection wall, without additional pointing
tools.

1.2 Problemsand Contributions

A difficulty with computer vision is that the cameras have to see the body parts relevant for interaction. This
can be achieved by careful positioning of the cameras and possibly by constraints on the interaction. The case
study is an example for this approach.

In this thesis, we focus on two further major difficulties of computer vision-based, or perceptual, human-
computer interaction, distinguishing gestures from arbitrary postures or motions, and coping with troubles
caused by natural environments. Furthermore, we address the question of decoupling the computer vision-
based interface from the application in order to achieve independency from the application, analogously to
today’s application-independent graphical user interfaces.

1.2.1 Decoupling of the computer vision interface from the application

A typical property of today’s graphical user interfaces is that they are independent from the application. Ap-
plication independence on the input side can be achieved by abstraction of the input devices as practiced in
graphics standards like GKS or PHIGS. The classical hardware input devices are close to the abstracted func-
tionality and usually yield reliable input. Sometimes devices have to be combined in order to implement an
abstract functionality, but this is not covered by the standards. In computer vision-based human-computer
interaction the "input device” may be a complete interaction room equipped with several cameras and lighting,
possibly controlled by the system. The complexity of the overall interaction environment, and the advantage
of possibly using the knowledge about its construction for improving the reliability of the input, is a reason to
extend the abstraction of input devices.

We propose a concept, the so-called interaction space architecture, which uses a sequence of interaction spaces
mapped on each other. A physical interaction space, a virtual interaction space, an abstract interaction space,
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and the application are distinguished. The virtual interaction space is a model of the physical interaction space
which may help to overcome troubles with the sensor system. The abstract interaction is a placeholder for the
real application. It may decouple the application from the possibly still problematic input data. The application
interface offers parameters which control the application.

1.2.2 Multi-type Gesture Interaction

A crucial problem to be solved by a system of computer vision-based human-computer interaction is to distin-
guish relevant input from non-relevant input. It may happen that motions or postures of the users correspond
to a legal gesture, although it happened without intention. The system might nevertheless react and perform
the related action, a case which should evidently be avoided.

If multiple modes of input are available, the coincidence of events on several channels can be used for con-
firmation that the input has been intended. For example, in an interactive system with speech and computer
vision-based input, the user might move the cursor on a screen by the optically tracked arm on a menu item.
By saying “select” the user may start a process of selecting a menu item on the screen by a cursor attached to
the arm on the menu item. If the desired item is reached the user may activate the item by saying “activate”,
still pointing with the arm on the desired location. In this way, the menu item is only selected if three events
coincide: saying “select”, the arm is pointing to the cursor position, and saying activate”. The user can still
speak for other purposes than interaction, also using the words select” and "activate”, or may move the arm
without the intention to select a menu item, since the probability that all three events occur in the necessary
way is low.

In the case of just one available mode, this sort of time-parallel redundancy has to be replaced with other
types of redundancy. For the case of the computer-vision sensor, we introduce a concept of multi-type gesture
interaction, which combines several gestures with spatial and temporal constraints.

1.2.3 Calibration of the Interaction Space

Interaction requires to determine positions and orientations of body parts of the user relative to the interaction
space and objects of the interaction space, like for instance the backprojection wall in figure 1.1. For this
purpose, the system has to be provided with data about the position, orientation and mapping properties of the
cameras and the location of objects of the interaction space. These data usually are acquired in a preprocessing
or calibration phase by manual or optical measurement, or both. In particular, manual measurement can be
time consuming, tedious, and imprecise. We present approaches to diminish these efforts for two interaction
environments, pointing by the arm and projection-based pointing by the hand, on basis of the hardware config-
uration of figure 1.1, without the active camera which is not required in this case. We use methods of optical
calibration, and in particular methods of calibration-free reconstruction which turn out to be well adaptable to
the given configuration.

1.2.4 Combining Pointing with Static Hand Gestures

A problem of computer-vision is that the object of interest has to appear sufficiently detailed in the images
in order to recognize features relevant for an application. For example, gestures expressed by hand postures
require to see the fingers and the hand in a way that their mutual arrangement can be recognized in the image.
If a larger interaction space has to be surveyed by a camera, this requirement is problematic. One solution is
to install several cameras each of which shows just a part of the interaction space with sufficient resolution. A
less expensive method is to use a camera whose orientation and zooming can be controlled by computers.
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A further reaching challenge is if this sort of local gestures is combined with gestures which require a global
view on the interaction space. An example are pointing gestures which require to know the location of the
hand or the arm relative to the whole interaction space.

A case study including both aspects is the interaction with a backprojection wall by pointing and static hand
gestures as described in section 1.1. The local view is provided by an active camera, while the global view is
delivered by two static cameras (figure 1.1). Using this hardware configuration and the interaction space archi-
tecture, we present a modular computer vision-based interface which combines a module of global observation
(using the two static cameras) and a module of local observation (using the active camera) into a system which
fuses data from both sources. The advantage of data fusion is that the global system may help the local system
in particular in the critical case that the hand is lost by the active camera. In this way, this problem, which also
can be observed for the built-in auto-tracking of the used active cameras, can be diminished.

The case study also allows to demonstrate the multi-type gesture concept of interaction. The gesture types
used are static hand gestures based on hand postures and pointing gestures based on hand or arm location. The
gesture types can be used in parallel or sequentially. In the case study, for example, a cursor might be moved
to a certain item on the screen in the pointing gesture mode, and then an action associated with the item might
be activated by a static hand gesture. Static hand gestures might also be used to enter or to leave the pointing
mode, that is a pointing phase is embedded into a starting and a terminating static hand gesture.

1.25 Coping with Natural Environments

Reliable image analysis is hard to achieve in natural environments with not too severe restrictions concerning
e.g. illumination. Following the classical image processing pipeline, the main problem is the phase of segmen-
tation whose result is the interface between low-level image processing and signal interpretation. The result of
the phase of segmentation are image segments which are regions of the image which represent parts of interest
for signal interpretation. In our case study, parts of interest are the arm or the hand of the user.

The problem with segmentation is that the segments delivered are often not correct and that the type of error
varies over time. The idea of our approach to treating this problem it to accept the instability of segmentation
and try to extract the relevant information from possibly erroneous data. For this purpose, we combine a
number of methods:

Error detection and contour correction from image sequences and different views. Every camera cap-
tures a continuous sequence of images. Often, the segments in consecutive image are similar, in par-
ticular in the important phase of interaction where the arm is hand still in order to e.g. select an item.
In this case, a segment which differs significantly from the segments of the preceding images may be
considered as erroneous. Even more, by matching consecutive segments and detecting regions of sig-
nificant difference, it can be possible to correct errors. Similarly, in computer vision-based interaction
environments with more than one camera, the segments delivered by the camera can be cross-checked.
An error is detected if the segments are contradictory. We present an approach of error detection and
correction using these observations.

Situation-dependent signal processing. The most severe troubles occur in phases of detailed interaction.
Two problems have to be solved here, recognition of a phase of detailed interaction, and processing
the signal dependent on the requirements of the detailed interaction.

In the case of pointing, the critical phase is precisely locating the goal of pointing. This phase can be
recognized by almost or just minor motions of the pointing arm or hand. The goal of signal processing
is to hold the goal of pointing stable at one location. For this purpose, in particular noise caused by
erroneous segmentation has to be eliminated.
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Another problem is that the data stream delivered by the system might not be dense enough for the
requirements of interaction because of the time requirements of processing. For example, the cursor
controlled by pointing may jump discontinuously on the screen. A solution to this problem is to interpo-
late or approximate the data points by a continuous curve from which, for instance, a sequence of points
can be sampled which is sufficient for the classification of the hand path in the gesture space.

In order to diminish these problems we propose filters adapted to these situations.

Automatic parameter control. The image data delivered by the cameras are processed in a sequence of pro-
cessing stages. A processing stage usually has a number of parameters by which its behavior can be
influenced. Usually the parameters are chosen based on experience, or set during the initialization phase
of the system. A more sophisticated approach is dynamic adaptation of the parameters during application
of the system. The behavioral data on which parameter adaptation may be based, can be delivered by the
processing stage itself, but also by subsequent processing stages on which it might be more favorable
to detect improper behavior. We apply automatic parameter control to parameters of error detection and
error correction.

1.3 Organization of the Thesis

Chapter 2 introduces into the state-of-the-art and localizes the contributions of the thesis. Furthermore, it
compiles fundamental methods used in the subsequent chapters. Chapter 3 describes the interaction space
architecture. Chapters 4, 5, and 6 are devoted to arm-based pointing, projection-based pointing, and hand-
posture-based gestures in a global environment, respectively. They give a particular detailed description of
the calibration procedures, although basically known methods are used. One reason is that the methods are
somewhat complex and not widely known outside the computer-vision community. Another reason is that they
are applied in an extended way by including the environment. Each of the chapters ends with experimental
investigations of the solutions presented in the chapter. Chapter 7 gives some concluding remarks.
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Chapter 2

Fundamentals and Related Wor k

This thesis is located in the field of human-computer interaction. Human-computer interaction is a huge area
comprising numerous aspects. Good surveys are provided by several handbooks devoted to the topic, like e.g.
those edited by Jacko, Sears [JS02] and Helander et al. [HLP97].

In the following we will first define the place of this thesis in the field of human-computer interaction (sec-
tion 2.1). Afterwards we will give a survey of the state-of-the art with respect to two main aspects of our work,
gestures as a mode (section 2.2), and computer vision as a sensor (section 2.3). The emphasis will be on the
combination of both. Then a brief overview of HCI-system architectures in general is presented, followed by
examples of existing systems related to our task (section 2.4). Finally existing approaches to evaluation of HCI
systems are briefly outlined, with the intention to find a basis for the experimental evaluation of our systems
(section 2.5).

2.1 Our Placein the Field of Human-Computer Interaction

In human-computer interaction, four items can be distinguished [Sut02]: senses and modes on the human side,
and sensors and presentation media on the machine side, see figure 2.1. The senses are given by the human
sense-organs. The counterpart concerning the machine are sensors. There is a wide variety of sensor using
in particular mechanical, optical, electromagnetic, and acoustic effects. Presentation media form the output
of the machine. Examples are optical displays like CRT or TFT screens, and loudspeakers for sound. The
counterpart of presentation media on the human side are the so-called modalities. Examples of modalities are
speech, motion, gestures, and face expressions. Our interest lies on computer-vision as a sensor for human
machine interaction, and hand- and arm-gestures as modality of interaction. Our concepts presented in the
thesis, however, are often more general so that other sensors and modalities can be included, too. We do not
further discuss output channel of human-computer interaction, that is the presentation media / sense organs
pair.

.',f’ modalities Sensors
computer
T NI <
sense organs media

Figure 2.1: The items of human-computer interaction: sense organs, modes, sensors, and presentation media.
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2.2 GesturesasaMode

Kurtenbach and Hulteen [KH90] define ”gesture as a motion of the body that contains information. Waving
goodbye is a gesture. Pressing a key on the keyboard is not a gesture because the motion on its way to hitting
a key is neither observed nor significant. All what matters is which key was pressed.” However, restriction to
body motion is somewhat restrictive since it could exclude static gestures expressed e.g. by hand postures, like
forming the hand to the victory sign ”V”. Seeing gestures as a motion or a posture of the body or parts thereof
that contains information overcomes this problem.

As mentioned in [Tur01], Cadoz has described three functional roles of human gesture:

Semiotic: to communicate meaningful information
Ergotic: to manipulate the environment

Epistemic: to discover the environment through tactile experience.
Rime and Schiaratura, cf. [Bil], have proposed the following taxonomy of gestures:

Symbolic gestures: These are gestures which, within each culture, have a single meaning. An emblem such
as the "V for victory is such an example, but also sign-languages for deaf people fall into this category.

Dietic gestures: These are gestures of pointing, or otherwise directing the listener’s attention to specific events
or objects in the environment. They are gestures made when someone says "Put that there”.

Iconic gestures: Representational gestures depicting some features of the object, action or event being de-
scribed. They are gestures made when someone says "The plane flew like this”, while moving the hand
through the air like the flight path of the aircraft.

Pantomimic gestures: These are the gestures typically used in showing the use of movement of some invisible
tool or object in a person’s hand. When a speaker says "'l turned the steering wheel hard to the left”, while
mimicking this action of turning the wheel with both hands, they are making a pantomimic gesture.

The use of gestures for human-computer interaction can be divided in two categories, multimodal interfaces
and gesture only interfaces.

In the first category, the combination which probably has found most interest is gesture with speech, see [Bil,
CMO™99] for surveys and examples. In general, according to Oviatt [Ovi02], "multimodal interfaces process
two or more combined user input modes — such as speed, pen, touch, manual gestures, gaze, and head and
body movements — in a coordinated manner with multimedia system output. They are a new class of interfaces
that aim to recognize naturally occurring forms of human language and behavior, and that incorporate one ore
more recognition-based technologies (e.g. speech, pen, vision)”. Oviatt distinguishes between

active input modes which are the ones that are deployed by the user intentionally as an explicit command to
a computer system (e.g. speech)

passive input modes which refer to naturally occurring user behavior or actions that are recognized by a
computer (e.g., facial expressions, manual gestures). They involve user input that is unobtrusively and
passively monitored, without requiring any explicit command to a computer.

Concerning the composition of modalities, he defines two types of multimodal interfaces:
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blended multimodal interfaces which are the ones that incorporate system recognition of at least one passive
and one active mode (e.g., speech and lip movement systems)

temporally cascaded multimodal interfaces which are the ones that process two or more user modalities
that tend to be sequenced in a particular temporal order (e.g., gaze, gesture, speech), such that the partial
information supplied by recognition of an earlier mode (e.g., gaze) is available to constrain interpretation
of a later mode (e.g. speech). Such interfaces may combine only active input modes, only passive ones,
or they may be blended.

An important reason for multimodal interfaces is mutual disambiguation. Mutual disambiguation involves dis-
ambiguation of signal- or semantic-level information in one error-prone input mode from partial information
supplied by another. Mutual disambiguation can occur in a multimodal architecture with two or more seman-
tically rich, recognition-based input modes. It leads to recovery from unimodal recognition errors within a
multimodal architecture, with the net effect of suppressing errors experienced by the user [Ovi02, Ovi99].

With respect to fusion of modes, Oviatt [Ovi02] distinguishes between two approaches:

feature-level fusion which is a method for fusing low-level feature information from parallel input signals
within a multimodal architecture, which has been applied to processing closely synchronized input such
as speech and lip movement

semantic-level fusion which is a method for integrating semantic information derived from two input modes
into a common meaning representation during multimodal language processing.

Methods of semantic level fusion, in particular in the context of language processing, are frame-based integra-
tion which is a pattern-matching technique for merging attribute-value data structures, and unification-based
integration which is a logic-based method for integrating partial meaning fragments derived from two or more
input modes into a common meaning representation.

The second category, gesture-only interfaces, ranges from interfaces that recognize a few symbolic gestures to
those that implement fully fledged sign language interpretation. The gestures used in gesture-only interfaces
can be divided into head and face gestures, hand and arm gestures, body motion gestures, and pen- and mouse-
based gestures [Bil, Tur01, GPJ04, Cohb, Coha]. Examples of head and gestures include nodding or shaking
the head and raising the eyebrows. Human hand gestures can be static hand postures, dynamic hand motions,
or a combination of both. In his taxonomy of hand gestures, Quek [Que95] distinguishes between symbols
(referential and modalizing gestures) and acts (mimetic and deictic gestures). Body gestures include full or
partial body motion (e.g. movement of waist or chest, of the shrug shoulders), body postures (e.g. postural
shifts, upright position witch ankles locked), or self-adaptors (e.g. rubbing the chin, scratching the cheek,
smoothing the hair). In all cases each gesture has an unambiguous semantic meaning associated with it, which
can be used in interfaces. For recognition of body motion, three levels have been proposed [GPJ04]: movement
— the atomic elements of motion, activity — a sequence of movements or static configurations, action — high-
level description of what is happening in context.

Our work focuses on the second category, although the conceptual approach is general enough to include
other modalities, too. An interesting aspect which seems to have not yet been systematically addressed, is
combination of different types of gestures into a stand-alone gesture interface. In chapter 3 we will sketch an
approach to multi-gesture-type interfaces, analogously to multimodal interfaces, which for that reason have
been described in this section more detailed.

2.3 Computer Vision asa Sensor in Human-Computer Interaction

Using gestures for human-computer interaction needs sensors to capture gesture input. Turk [Tur01] distin-
guishes between pen-based and tracker-based systems. Tracker-based systems include data gloves, body suits,



16 CHAPTER 2. FUNDAMENTALSAND RELATED WORK

and computer-vision. ”Body suits” mean any devices attached to the human body, like markers for optical
motion capturing, electromechanical or electromagnetic devices. Computer-vision-based tracking means the
application of cameras as trackers, with no or just minor use of markers attached to the body of the user. This
excludes optical motion capturing and tracking systems like e.g. those of ART [Que] or computer animation
and virtual environments [TMT98]. In the following we will restrict ourselves on the field of computer-vision-
based sensors and interaction since they are in focus of this thesis.

2.3.1 Computer Vision

Computer vision is concerned with perceiving objects from images. The images are usually taken by cameras.
The field can be split in 2D and 3D computer vision.

The main tasks of 2D computer vision are reconstruction and classification of objects from a single image
or an image sequence. Both aspects are of relevance for vision-based interaction. Typically the objects are
2D like in e.g. optical character recognition, but also 2D views of spatial objects could be subject of interest.
Reconstruction means to extract and describe the geometric shape or motion of an object of interest shown
in an image or an image sequence. This task is performed by finding the region of the image covered by the
objects. This process is called segmentation. Among the approaches to segmentation two important types can
be distinguished: feature-based and template-based segmentation. Feature-based approaches use features of
pixels and their environment to assign them to the region of interest. Template-based approaches use predefined
images of the object of interest, and try to match them with regions in the image to be analyzed. Template-
based approaches can also be considered as model-based because they use a model, the template, of the object
to be found in the image.

Classification means to assign the object to one of several classes to which the objects that could appear in
the images of a particular domain of application may belong. Classification is often performed by deriving a
vector of features from the image. A common way is to find the region covered by the object of interest and
derive the features from properties of the region, like shape, color, texture, and motion. Sometimes the images
are directly used for classification.

In this thesis we will use segmentation in order to find objects of interest for interaction, like the arm or the
hand. However, we will not contribute new methods, but will mainly use solutions contributed by others in the
framework of the project within which this thesis has been written [Leu02, Afo02].

2D computer vision is usually treated within the field of image processing and image analysis. A good survey
can be gained from the book of Gonzalez et al. [GWO02].

In 3D computer vision, perception of objects also reaches from full reconstruction their 3D shape and possibly
motion to their classification in order to distinguish them with respect to their appearance.

3D reconstruction usually needs several images or image sequences which show different views of the object.
A central tool for 3D reconstruction is the knowledge of the mapping properties and the positions of the
cameras which recorded the images. With this knowledge, points of the object visible in images showing
the object from different views, the spatial location of the points can be calculated by so-called triangulation
methods.

The mapping properties are defined by the camera model. A wide-spread camera model is the pinhole-model.
A camera model usually has a set of parameters which have to be fixed in order to describe the behavior of
a particular camera used. These parameters are called the intrinsic camera parameters. The location of the
cameras in space is described by the extrinsic camera parameters. The camera parameters are often deter-
mined in a calibration step after installation of the system, before application to object reconstruction. The
intrinsic parameters are usually determined using simple calibration objects. Well-known methods are those
by Tsai [Tsa86] and Zhang [Zha00] which we will use, too. The external camera parameters are sometimes



2.3. COMPUTER VISION ASA SENSORIN HUMAN-COMPUTER INTERACTION 17

determined by manual measurement of the position and orientation of the cameras which, however, often is
error-prone. In stereo vision, often pairs of cameras are used which are mounted to a rigid camera head with
known mutual position and orientation of the cameras, thus reducing the requirements of calibration. For
cameras at arbitrary locations or in motion, image-based techniques for reconstruction and corresponding ex-
trinsic calibration have been developed which should be preferred in complex configurations against manual
measurement. These techniques use corresponding points in the images taken from the involved camera po-
sitions. Corresponding points are image points representing the same point in space. The problem of finding
corresponding points is known as stereo correspondence problem and has found much attention. Schemes
have been developed which are able to reconstruct the involved camera positions and orientations, as well as
the location of spatial points, from the images, up to certain degrees of freedom. An example is projective re-
construction by Faugeras [Fau99]. If the available views are similar and if corresponding points can be found
reliably, the extrinsic parameters required for reconstruction can be determined on-line, without an initializing
calibration step. We will apply these techniques in chapters 4 and 6, and will extend them for integration of
the backprojection wall in order to avoid manual measurement, thus reducing the efforts of calibration. Since
the views available in our interaction spaces are quite different, an initial calibration step is still required.

The techniques just mentioned allow geometric reconstruction from several views by triangulation, and from
(camera or object) motion, typically denoted as structure from motion. Other approaches to understanding
the 3D structure of objects are shape from texture, shape from shading, shape from contours, and shape by
alignment. Textures allow to find dense sets of corresponding points for example by analysis of correlation
from which disparity images can be determined, which lead depth images. Textures can also be used to
determine the optical flow in image sequences. Shape by alignment means to align a known 3D-object which
is a model of the object represented in the image, to the data derived from image analysis, in order to find out
the current pose of the object. Model-based approaches are used in order to cope e.g. with the problem of
occlusion. Usually models concern shape and motion behavior, but optical properties, for instance, could also
be included.

The second branch of 3D computer vision, classification, is analogous to that of 2D computer vision, with the
possibility of including additional features derived from the 3D configuration.

From all those techniques, we will apply reconstruction of relevant objects by corresponding points and by
silhouettes, in simple versions because of the constraints imposed by online processing. For example, in
chapter 4, we will reconstruct the direction of a stretched arm in space from two approximately orthogonal
views using 2D directions derived from the silhouettes of the arm in the two images.

A good introduction into computer vision is given by the book by Forsyth et al. [FP03].

Besides these physically and geometrically oriented concepts, computer vision may also be connected to the
areas of biological vision — psychophysics and neurobiology. A pioneer in this field has been Marr [Mar82].
Marr’s observations resulted in a data-driven and straightforward analysis strategy. Nowadays, the concept
of active vision described by Aloimonos et al. [AWB88] becomes more and more important. In contrast to
Marr’s philosophy, active vision implies a feedback loop which allows to control the sensors. Our architecture
presented in chapter 3 will include sensor control, too, which is also central for the combination of pointing
and static hand gestures in the configuration of figure 1.1 described in chapter 6.

2.3.2 Computer-Vision and Human Shape and Motion Capturing

The subject of particular interest in human-computer interaction is the human being. In [MGO01, Moe99],
Moeslund gives a survey on vision-based human motion capturing which contains on one hand a quite com-
prehensive collection of existing systems, also such related to vision-based interaction. On the other hand, by
abstracting the existing systems, he defines general framework of taxonomy of vision-based human captur-
ing systems. The framework is oriented at the typical phases of data processing, and consists of four parts:
initialization, tracking, pose estimation, and recognition.
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In the phase of initialization, the state of the user and the state of the system are brought in correspondence.
Aspects are geometric calibration and initialization of a system-internal user model which is used more or less
intensively by different systems.

In the phase of tracking, those regions in the image streams are identified which correspond to the user’s parts
of interest, like e.g. the hands and the head. The main task is figure-background segmentation which may be
based on motion data, range data, and appearance data. Tracking over time and spatial reconstruction in case
of more than one camera input stream are also performed in this part. The result is a 2D- or 3D-representation
of information on the user’s pose, as recognized in the input image stream.

In the phase of pose estimation, the user’s pose is reconstructed. In the most simple case, just the image-based
data of tracking are used. More sophisticated systems use computer-internal models of the user which may be
passive or active. The model’s current state is adapted to the pose information delivered by the tracking part.
The result of pose estimation is a pose representation, for instance represented by the state of the user model.

In the phase of recognition, application-related features are derived and classified. They are reported to the
application in order to cause related actions. The features can be static or dynamic. A static feature, for
instance, is the arrangement of the fingers in a hand gesture. A dynamic feature might be the shape of a curve
drawn by the user with the hand in space.

Moeslund distinguishes between assumptions on movement and assumptions on appearance, and gives a list
of assumptions which can be found in systems developed up to now. According to his taxonomy, the case
studies of the chapters 4 and 5 of this thesis are weakly model based, 3D, have two stationary sensors, are
tracking, perform pose estimation, are one-person, track one limb, are distributed, and assume rigid motion.
The assumptions on movements are that the subject remains inside the workspace, there is no camera motion
and no occlusion, only one person is in the workspace on the same time, and movement is slow and continuous.
The assumption on appearance of the environment are characterized by an almost static background and almost
static lighting and known camera parameters. There are no strong assumptions on the appearance of the subject.

The case study of chapter 6 is more general and includes three sensors one of which is dynamic, and non-rigid
motion.

Gavrila [Gav99] gives an overview of the visual analysis of whole body movement. The overview compre-
hends applications in other fields besides human-computer interaction which have been further developed in
the last years. Examples are smart surveillance systems, motion analysis in sports, choreography, medical
rehabilitation, computer animation and games, 3D video conferencing and 3D interactive video and TV. The
latter two include video-based rendering which combines motion capturing and realistic rendering based on
video sequences acquired by a set of cameras [CFKS03, Mag05].

Gavrila classifies approaches to vision-based analysis of body movement along two criteria: the type of model
used and the dimensionality of the tracking space. The type of model concerns model-based approaches.
Model-based approaches use a computer-based body model. The simulated behavior of the model is adapted
to the captured data. The model may serve to fulfill physical constraints of human body motion, to resolve
ambiguities in the image data, to cope with occlusion or failures in data processing chain, and to understand
the semantics of the observed motion. Gavrila distinguishes between 2D approaches without explicit shape
models, 2D approaches with explicit shape models, and 3D approaches. Although model-based approaches
seem to dominate in 3D, examples based on model-free geometric reconstruction without markers exist, in
particular for image- or video-based rendering [CFKS03, Mag05] or vision-based interaction, e.g. [Hoc99,
Koh99].

In contrast to the overviews mentioned up to now, the surveys by Kohler [Koh99, Koh] emphasize systems
which are dedicated computer-vision-based interfaces, sometimes also called perceptual interfaces. Kohler
introduces a taxonomy which uses the features one camera/multi-camera system, tasks treated by the sys-
tem (tracking, brick tracking, handtracking, limb tracking, pointing, static gesture recognition, dynamic ges-
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ture recognition, sign language recognition, specific language recognition, dynamic body gesture) segmen-
tation method, features extracted from the images to be used for further processing, method of reconstruc-
tion/classification, constraints on properties of the environment (uniform background, static background, spe-
cial illumination) or on the appearance of the user, and field of application.

In this thesis we are interested in hand and arm gestures so that we will restrict the following discussion of
the state-of-the-art in this field. Further, we restrict motion hand gestures to pointing, which excludes dynamic
hand gestures like they are typically used in sign languages. For interested readers we refer to the reviews
of Wu et al. [WH99] and Aggarwal et al. [AC99] which in particular treat temporal gesture modeling and
recognition. Dynamic hand gestures can be immediately embedded in the concept of this thesis. In fact, we
have implemented an extension of the case study of chapter 5 which includes a hand motion gesture recognition
by using the freely available Gesture Design Tool (GDT) [LLR99]. However, we will not further describe this
extension in the following.

2.3.3 Computer-vision-based Pointing and Static Hand Gestures

In the interaction environment of the figure 1.1, pointing and hand gestures are applied in an interaction space
which has a relative large extension, when compared to a CRT screen or a table top. In the latter case, the users
are usually located at a fixed position by e.g. sitting on a chair or standing in front of a table at a relative fixed
position, while they can move relatively arbitrarily in front of the backprojection screen. As we will see in the
following, this situation of remote interaction has not yet been treated in a satisfying way in the past.

The probably most comprehensive concept of remote interaction has been presented by Kohler [Koh99]. The
concept, called ARGUS, allows to define sensitive regions in the interaction space which typically is a room.
The sensitive regions may be rectangles on a wall or box-shaped regions enveloping a device. For example,
a simplified version of the ARGUS concept has been implemented for remote control of home devices like
a tuner or a TV set by pointing and static hand gestures, (see figures 2.2 and 2.3a). The interaction space is
surveyed by several active cameras which are virtually arranged into stereo camera pairs (the figure shows
just two cameras which have been used in the prototype). The prototype has been even more restrictive since
it was assumed that the user is located at a defined position, by e.g. sitting on a chair in front of a table, as
shown in figure 2.2. This allows to fix the focus and orientation of the cameras so that the hands and the head
appear in the camera image at a size favorable for hand posture analysis. Although many components of the
ARGUS concept have been analyzed experimentally, it has not been completely implemented. In particular,
the combination of pointing with static hand gesture acquisition by hand tracking with an active camera into a
complete system has not be performed. This task is one emphasis of this thesis (chapter 6).

In the following we will briefly review several other computer-vision-based interactive systems which have a
relation to our work with respect to construction or application. In order to structure the presentation, we use the
following features: structure of the interaction environment (e.g. camera placement, location of displays), type
of interaction (e.g. gesture types, areas of application), processing (e.g. applied methods of image processing
and reconstruction/classification), and performance.

We start with table-top-oriented systems. A typical example of this sort of system is ZYKLOP which also has
been presented by Kohler.

ZYKLOP

Author: Kohler et al. [Koh99]

Structure of the interaction environment: Originally ZYKLOP has been developed for execution of hand
gestures on a table top which is surveyed by a single camera from the top (figure 2.3b). Later it has been
also applied to execution of hand gestures in a region in front of an arbitrary static background roughly
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Figure 2.2: The interaction space concept of ARGUS (left) and the interaction space of a prototype case study
for ARGUS (right).

in parallel to the image plane of an arbitrarily oriented camera, e.g. a camera looking in direction of a
wall (figure 2.3c).

Type of interaction: Static hand gestures, pointing by moving the hand or finger to the desired location, and
simple dynamic gestures, all executed on or in parallel to the table top or the wall.

Processing: Mainly skin-color-based segmentation of the hand, combination of several shape and motion-
related features, multi-classification.

Performance: 15-20 frames per second.

We have used ZYKLOP as a subsystem in the implementation of the case study of chapter 6.

Several other systems of this type has been developed in the past, see the survey by Kohler [Koh99]. Similar,
but slightly different are the following two systems.

SIVIT - Siemens Virtual Touchscreen

Author: Maggioni [Ebe98, Mag95]]

Structure of the interaction environment: Images of an application are projected from above on a table top.
The table top is surveyed by a black-and-white camera with infrared filter, looking in direction of pro-
jection, mounted in parallel to the projector (figure 2.3d).

Type of interaction: Pointing by moving the hand or finger to the desired location on the table top.

Processing: Infrared light sources, infrared filters on the cameras, and a special reflecting film on the table top
are used to exclude artifacts caused by the environment and by projection. This allows to apply simple
segmentation methods like e.g. thresholding.

Performance: By the special way of illumination and image processing, high frame rates and a reliable be-
havior has been achieved. SIVIT has become a commercial product.
Vision-based interaction with a monitor

Author: Bretzner etal. [BLLT01, BLL02]
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Figure 2.3: Configurations of environments for interaction with displays published in literature (1).
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Structure of the interaction environment: A single camera is mounted on top of a computer CRT screen.
The user sits in front of the monitor and presents the hand to the camera (figure 2.3e).

Type of interaction: (1) Static hand gestures by holding the hand in a fixed state during a period of time in
which the system recognizes the current state in a predefined set of states. (2) Quantitative hand motion
where the 2D or 3D hand motion is measured. (3) Qualitative hand motion for the input of dynamic
gestures.

Processing: Tracking and recognition are performed by using color-based segmentation and comparison of
the segments with a set of object hypotheses applying the statistical approach of particle filtering or
condensation in a hierarchical way.

Performance: No data available.

GestureVR
Author: Segen et al. [SK98]

Structure of the interaction environment: Two cameras look from above on a table top which has uniform
color.

Type of interaction: 3D tracking of the thumb and the pointing finger. Three static hand gestures can be
applied which are recognized based on the location and orientation of the two fingers (figure 2.3f).

Processing: By the uniform color of the table top, the fingers can be easily separated from the background
by a simple segmentation method like thresholding. Both cameras are pre-calibrated with respect to a
world coordinate system.

Performance: 60 frames per second.

The SIVIT system described above uses front projection on a table top. The following systems, in contrast,
use backprojection on a transparent table top.

Vision-based augmented desk
Author: Starner et al. [SLMT03]

Structure of the interaction environment: The interaction environment is defined by a backprojection table,
similar to the responsive workbench of Krueger et al. [KBFT95]. The workbench is illuminated from
above by infrared light-sources. A black-and-white-camera with infrared filter is mounted close to the
projector and looks in the direction of projection. In this way the camera sees the shadows induced by
the light sources, and cast by the user’s arm on the table. Furthermore, a black-and-white camera with
an infrared filter is mounted above the table, giving a side view of the user’s arm. Additionally, infrared
light sources are mounted close to the projector which are directed in the same way as projection. The
light is reflected by the bottom side of objects placed on the table (figure 2.39).

Type of interaction: The configuration allows arm pointing in space by reconstruction of the direction of
the arm, localization of objects placed on the table, and partial 3D-reconstruction of objects placed on
the table. The objects can be used as part of an augmented reality scenario, that is fusion of the real
environment with a computer-generated graphical environment.

Processing: The arm seen by the side camera, and the shadows of the arm and of the objects induced by
the infrared light sources are determined in the images by segmentation. Due to the infrared light,
segmentation can be easily performed e.g. by thresholding. 3D reconstruction is achieved by using the
locations and shapes of the shadows, and the positions of the light sources and the cameras.
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Performance: 14 to 20 frames per second.

Visual gestures for a virtual desk
Author: O’Hagan et al. [O0ZR92]

Structure of the interaction environment: The interaction environment is defined by a backprojection table
as for the vision-based augmented desk (figure 2.3h). The projection area is surveyed by a stereo camera
system from above the table.

Type of interaction: Static hand gestures which are located in space are used.

Processing: The cameras are calibrated using the method of fundamental matrices, see [Fau99] and chapter 6.
The hands are found by skin-color-based segmentation. Estimates of the poses are determined by tem-
plate matching. The template images are acquired in a preprocessing step. Classification of the static
gesture is performed by a statistical method similar to the one used in ZYKLOP.

Performance: 30 frames per second.

O’Hagan et al. use a Barco Baron projection table which can be configured as a horizontal table, but also as a
vertical wall display, and something in-between, and thus is a step towards backprojection walls (figure 2.4a).
In contrast to table-oriented projection, projection walls allow to extend the size of the interaction environment.
Projection walls have been used for many application scenarios. Several of them are built on the following
Pfinder system.

Pfinder
Author: Azarbayejani, Wren, Pentland [WADP97]

Structure of the interaction environment: The interaction environment consists of a backprojection wall
and one camera mounted on the top border of the wall, surveying a region of several square meters
in front of the screen.

Type of interaction: The system performs full 2D body tracking and can distinguish body parts like e.g. the
hand and the head by color. The distance of the body from the camera (depth) can be estimated from
location of the user’s feet on the floor. One or more of the identified body parts can be attached to objects
on the screen whose position can be controlled in this way by moving the body parts. For example, a
screen cursor can be tied to one of the hands in order to implement pointing.

Processing: Segmentation is performed using blobs to represent the user region and a texture image to repre-
sent the background. A blob is a Gaussian color distribution around a pixel on the screen. The object
is represented by a set of blobs which are acquired and updated by unsuperwised learning from the dif-
ference between a current image including the user and an image of the background without the user.
The background image is represented by a Gaussian color distribution of every pixel which is initialized
at the beginning and permanently updated during interaction. Body parts are identified by the color
distributions of blobs, e.g. the hand and the head by blobs of skin color.

Performance: 10 to 30 frames per second.

Spfinder

Author: Azarbayejani, Wren, Pentland [WADP97]
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Structure of the interaction environment: The interaction environment of Spfinder is almost the same as
that of Pfinder. The only difference is that the camera is replaced with two cameras, typically mounted
in the upper left and upper right corners of the screen, serving as a stereo camera system (figure 2.4a,b).

Type of interaction: Spfinder yields spatial blobs, not just 2D or 2.5D blobs like Pfinder. This opens the
possibility of true 3D-control of objects. Concerning pointing, a spatial pointing direction can now be
derived by e.g. connecting the head blob with the hand blob by a line or using the longest axis of the
spatial extension of a hand blob as pointing direction.

Processing: Blob extraction is the same as for Pfinder. 3D-reconstruction is performed motion-based using
self-calibration of the extrinsic camera parameters, by detecting corresponding blobs in the two camera
images [AP96].

Performance: 10 to 30 frames per second.

Examples of applications of Pfinder are the Visualization Space by Lucente et al. [LZG98] and the Smart
Room by Wren et al. [WSA™97]. Both systems use additional speech input in order to perform gesture-based
operations. For instance, in the Visualization Space, with an additional spoken command ”Make this big!” the
size of an object presented on the projection screen is changed according to the distance of the hands delivered
by Pfinder. In the Smart Room, users can “touch” the objects, by positioning themselves so that they virtually
point at the objects. By speech input, the user can select and move the virtual objects. The Intuitive Interface
by Hoch [Hoc99] combines the blob technique with a 3D-model of the upper body in order to cope with
occlusion.

The following system uses a projection wall, too. It extends the idea of “smart boards” which has been
implemented in a simpler way by Hardenberg et al. [HB01] and Hall et al. [HGM *01].

Camera projector system

Author: Licsar et al. [LS04]

Structure of the interaction environment: The interaction space contains a front projection screen. A cam-
era looks onto a subregion of the screen, in direction of the projection (figure 2.3). The camera could
e.g. be mount side-to-side with the projector. Therefore the camera sees the projected image and the
arm of the user which covers a part of the projection screen and hence reflects the projected image.

Type of interaction: Pointing gestures and simple static hand gestures.

Processing: The arm is extracted by a difference image approach. The hand gestures are classified by standard
methods.

Performance: In real time, but figures not available.

HMM pointing
Author: Nickel et al. [NSO03]

Structure of the interaction environment: A region of a room is surveyed by a stereo camera pair in order
to track the hands and the head of the user. Additionally possible is electromagnetic tracking of the head
in order to improve the reliability of head-hand pointing gestures (figure 2.4d).

Type of interaction: Head-hand pointing gestures for pointing on objects placed in the region surveyed by
the cameras.
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Processing: Reconstruction is performed by a combination of skin color-based segmentation and a stereo-
scopic range image obtained from disparity maps. Static pointing gesture (motionless hand at the
pointing position) are recognized by a combination of Hidden-Markov-Models (HMM) covering three
phases: (1) moving to the static position, (2) static position, (3) moving away from the static position.
For detection of the pointing direction, several approaches are applied: (1) detection from the mutual
location of the hand and the head, (2) detection from the forearm direction obtained from the 3D pix-
els close to the hand, (3) detection from the head-hand-line, and (3) inclusion of the head orientation
detected by electromagnetic tracking for detection of the head-hand-line.

Performance: Using electromagnetic tracking improves the experimentally evaluated rate of identification of
targets from about 65% to about 83%.

Vision-based interaction using head mounted cameras
Author: Storring et al. [SMLGO04]

Structure of the interaction environment: The user wears a head mounted stereo camera pair and an aug-
mented reality head mounted display (figure 2.4e).

Type of interaction: Static hand gestures (a point and a click gesture).

Processing: Hand segmentation is based on skin color. The 3D finger tip is reconstructed by triangulation.
Information about calibration is not available.

Performance: 25 frames per second.

The environment of our configuration of interaction with a backprojection wall is different from those of the
systems presented up to now, as can be seen by comparing the sketches of figure 2.3. The main difference is
that an active camera is used to get a large view of the hand. Alternatively, several static cameras could have
been used which cover the region of interaction, but this would require considerably more resources.

Using an active camera has already been proposed in ARGUS. The main difference, however, is that we fuse
data of the static cameras and the active camera in order to track the object of interest. Furthermore, ARGUS
has not been implemented into a working system.

Another difference is that for acquisition of the 3D location of the object of interest, static cameras with
considerable different view are used instead of the usual stereo camera arrangements with just minor deviation
of view similar to the human eyes. The views of our cameras are about perpendicular to each other. This opens
the way to application of the silhouette-based approach of reconstruction instead of the usually used technique
of matching of corresponding points. The advantage of the silhouettes is that color or texture changes on the
surface of the tracked object are not relevant, so that the user can be more flexible with respect to clothing.

In order to be able to apply the silhouette-based approach with just two cameras, the configuration of our
interaction environment is completely different from the other ones. It restricts the space of interaction to a
region of more limited extension than for those systems which observe the whole area in front of the screen.
For backprojection walls, however, it is not uncommon that the user is close to the wall. Furthermore, with
increasing size of the wall and the required hight of the presentation room, the region which can be surveyed
by our camera configuration increases, and opens the possibility to interact in larger distances from the wall,
by letting the computer vision system scanning the space starting at the projection wall.

We do not use strictly restricted or special illumination, in particular no infrared light, as some of the existing
systems do. This generality causes troubles, and, in contrast to other systems, we propose several approaches
to reduce these problems in the steps following segmentation. Segmentation under varying conditions of
illumination has been the subject of an other thesis [Leu02].
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In contrast to Pfinder, our configurations need pre-calibration. Calibration-free reconstruction requires that the
correspondence problem is solved reliably. This is a critical issue under the condition of natural illumination.
In the case of pre-calibration, conditions can be created which allow reliable image segmentation. Furthermore,
the data of calibration can be used to diminish the troubles caused by unreliable image processing, like we do
it in our approach. However, we apply techniques of calibration-free reconstruction for pre-calibration in order
to diminish the efforts required for calibration, but under conditions allowing reliable image processing.

Furthermore, we include the projection wall into the process of optical-based calibration. In this way, addi-
tional measurements by hand are practically excluded. Most of the papers overviewed in this chapter have no
explicit statement about inclusion of the projection screen, but it can be concluded from the remarks about
camera calibration that the geometric relations are known from system construction or by manual measure-
ment. Advantages of optical calibration are good precision and reduced time to build up the system in cases of
no-permanent installation.

2.4 System Architectures for Human-Computer Interaction

Several general system architectures for systems of human-computer interaction have been proposed in the
past. They can be classified into [Pre99]

layer models where an interactive system is subdivided in layers, similar to the translation process of pro-
gramming languages. Examples are the Seeheim model and the IFIP model. An important property
of these models is the separation of interaction from application. In the Seeheim model, separation
is achieved by defining three layers, the presentation layer, the dialog control layer, and the applica-
tion layer. The presentation layer is responsible for the input and the output. Within this model, the
contribution of the thesis concerns the presentation layer.

object-oriented models where an interactive system is organized as a system of cooperating interaction ob-
jects. A well-known example is the Model-View-Controller (MVC) design pattern. The model represents
the core application and contains the necessary data which can be accessed and manipulated by methods.
The views present data to the user. The controller objects accept user input and translate it into requests
to the model or the associated views.

device-oriented models which focus on in- and output devices. The huge number of possible devices is
reduced to a set of abstract devices which represent device-independent functionality. Examples are the
graphics standards GKS and PHIGS [FDFH90].

The architectural concept presented in chapter 3 of this thesis is not another system architecture of a complete
interactive system. It covers a special aspect and can be embedded in the existing approaches. With respect
to the Seeheim model, the contribution of the thesis concerns the presentation layer. Within the MVC-model
the controller objects are the part of interest. Our system concept is device-oriented, but it is closer to real
physical interaction than the abstraction of GKS or PHIGS is. On the other hand, it gives a more general view
of the embedding of vision-based human computer interaction into applications, an issue which has not been
in the focus of many of the existing prototypes which are hard-coded along the given configuration, the applied
methods of computer-vision, and the special application.

There are only very few concepts in literature which exceed the structures required for image- and computer-
vision-processing. These structures are immediately implied by the applied algorithms. One of the more gen-
eral architecture is ARGUS (figure 2.5). The ARGUS architecture consists of four main layers, low level/2D
image processing, high level/2D and 3D image processing, a general gesture interface, and a layer of global
environment control. The first two layers are structured according to the sophisticated image analysis approach.
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Figure 2.5: The architecture of ARGUS.

The knowledge base contains the result of a learning phase for gestures required to distinguish arbitrary pos-
tures and motions from gestures. The result of image analysis consists of geometric features of objects, in
particular positions and orientations, and gesture codes. They are used by the region selection and activation
unit of the layer of global environment control in order to decide which region has been selected and to forward
this information together with gesture codes to the application control unit.

Another example is Oviatt’s multimodal interface architecture [Ovi02], cf. figure 2.4. It can be split into two
parts, the device-oriented part and the dialogue-oriented part. The dialogue-oriented part is defined by the
lower part of the diagram, starting with the dialogue manager. This part is provided by the device-oriented
part with feature/frame-structures which can represent the input data up to the semantic level. This means in
particular that in the case that speech is involved, speech understanding has taken place in the device-oriented
part. The device-oriented part consists of three levels, sensor data recognition, sensor data understanding,
and multimodal integration. Sensor data recognition performs low level data processing resulting in feature
data. Sensor data understanding derives semantic information from the features, like identifying postures
or motions as gestures and representing the semantics if natural language input. The derived information of
every input mode is represented by its own feature/frame-structures. The multimodal integration fuses them
into feature/frame-structures which represent the input information uniformly. Integration is influenced by the
dialogue manager and by interpretation of the current context provided by a context management.

On the level of image processing, we will proceed quite similarly to the first two layers of the ARGUS concept
in our architecture (figure 3.4). We also will split image analysis in a 2D and a 3D part, and will match results
of the 2D process in order to compensate errors. Also the data reported for further processing are similar. The
difference on this level lies mainly in the algorithmic approaches used in these layers.
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The main difference of our architecture to those of Kohler and Oviatt is the method of transition between the
physical interaction environment and the interaction interface of the application. Both sides are represented by
computer-based models called virtual interaction space and abstract interaction space, which are mapped to
each other. In figure 3.1 which sketches the interaction space concept, the virtual interaction space is hidden
in the interaction space processing unit. The abstract interaction space may be considerably simpler than the
virtual interaction space which may describe the physical environment very accurately in order to support
sensor data processing in a model-bases way. In the ARGUS concept, the idea of having a model of the
physical interaction space is already indicated by the concept of a knowledge database and a world model data
base, together with the region selection and activation unit, but it is specialized on the concept of sensitive
regions while we allow arbitrary models. The flow control of ARGUS responsible for view control is taken
over in our concept by the virtual interaction space. Analogously, the application control unit can be seen as a
less flexible predecessor of the abstract interaction space.

Another difference is that we propose a concept of combination of sensor data processing units which is more
flexible than in ARGUS (figure 3.2).

Finally, in contrast, our architecture does not have a dialogue manager. It has to be provided by the application
program. The advantage of this approach is its particular flexibility of attaching applications.

2.5 Evaluation of Vision-based Human-Computer Interaction Systems

The primary goal of the analysis of human-computer interaction systems is evaluation of the usability. Aspects
of usability are efficiency, effectivity, and contentment of the user. Efficiency means the time a user needs to
solve a given task. Effectivity denotes the extent to which the goal of the interaction task is reached by the
user. Contentment describes the subjective feeling of the user. Another aspect is ergonomics which concerns
evaluation of the physiological and psychical strain of the user. Evaluation helps to compare systems and, if
already applied during the phase of construction, to achieve a good result.

Several approaches of evaluation of interactive systems have been proposed in the past [Pre99]: formal eval-
uation, for example according to the GOMS-model (GOMS = Goals, Operators, Methods, Selection Rules),
heuristic evaluation, typically based on usability inspection by experienced specialists, empirical evaluation
based on comprehensive data acquired, for example, in usability laboratories, and discount usability engineer-
ing which aims on the reduction of the efforts of testing for smaller projects. Furthermore, there are standards
giving recommendations how to evaluate the usability, like e.g. 1SO 9241. The standards, however, focus on
the conventional keyboard-screen-mouse-based human-computer systems.

The evaluation of vision-based human-computer interaction systems usually concerns technical features like
number of frames processed per second, achieved updating rates and precision of output parameters like posi-
tions in the case of pointing [OZR92, SK98, NS03], achieved speed of gesture recognition and rate of correct
recognized gestures [Koh99, LS04, NS03], and input latency and display lag [SLM*03].

Several difficulties have been recognized concerning collection of the data and the possibility of generalization.
O’Hagan et al. [0ZR92] state that "limitation in measuring ground truth restrict our ability to gather accurate
performance data”. Segen [SK98] notes that “estimation of the absolute accuracy of pose estimation is prob-
lematic since this requires measurement of the position and orientation during image acquisition, and such
measurements would generally interfere with the acquisition.” Storring et al. [SMLGO04] tell that "although
the system has been used by several users — including people with no technical background — it is difficult to
give quantitative results on the gesture and pointing recognition”. The paper [WADP97] on Pfinder does not
contain an explicit evaluation, but Pfinder has been used in several applications, also by people different from
the authors. Many papers do not tell the number of test persons involved. The following statement by Starner
et al. describes an approach which is typical for the field: “To evaluate the current usability of the system, we
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performed a small user study with the goal of determining the relative efficiency and accuracy of the object
tracking capability. We designed a task that required users ...”. Segen [SK98] presents recognition rates based
on “informal trials with users of different age, gender, skin, and hand size”.

These statements can be understood to express an unsatisfactory state of evaluation of computer-vision-based
interactive systems, and they present reasons. The applied methods mainly fall into the category of empirical
evaluation. The crucial point of empirical evaluation is how a test has to be designed in order to become
statistically relevant. A particular problem of computer-vision-based interaction is that the dimensionality of
the test environment is considerably higher than of classical interactive systems. Two types of parameters
of influence can be distinguished: extrinsic parameters which characterize the environment, the appearance,
and the behavior of the user, and intrinsic parameters of the system whose values influence the behavior of
the system. Important parameters of the environment are the appearance of the background and lighting.
Parameters of appearance of the user concern the clothing, the skin and hair color, and the anatomy. This
illustrates the size of the parameter space.

If a system has intrinsic parameters, the goal can be intrinsic parameter optimization which means to find
a setting so that a good behavior of the system can be observed a particular large number of settings of the
extrinsic parameters. Another issue is feasibility analysis which means to describe, for a given setting of the
intrinsic parameters, a particular large set of settings of the extrinsic parameters for which the system shows a
favorable behavior.

The result of an experiment is evaluated using quality measures which depend on the extrinsic and intrinsic
parameters. The quality measures may characterize efficiency and effectivity of a system, but also contentment
of the user if ”system” means the configuration consisting of the human user and the computer-based interactive
system. Often not all parameters of an experiment equally influence the result of an experiment. In the field of
experimental design methods have been developed which find out in a systematic way which parameters have
the greatest impact on the system behavior [Sta03].

As far as we know, a systematic analysis of computer vision-based interaction environments in the sense
of experimental design has not yet been performed. It is not clear whether a considerable reduction of the
parameter space can indeed be achieved. The analysis of this issue would have had exceeded the scope of this
thesis so that we have decided to restrict the experimental evaluation. Nevertheless, it give some insight into
the behavior of the proposed systems.

Concerning the human component, we go back to an observation noted by Dumas [Dum02], that in a diagnostic
test, the sessions begin to get repetitive after already a small number of test persons. The research studies by
Vizzi [Viz90, Viz92] show that 80% of the problems are uncovered with about five participants and 90%
with about ten. As also observed, this observation may fail for very large products. Since our interaction
environment is very focused, we assume for our tests that a small number of test persons is sufficient.

With respect to the environment we do not analyze the dependency of the system behavior on its parameters.
We use only one setting, however, with slight variations caused by performing the experiments at different
times. To our opinion this approach is feasible because of our goals: (1) diminishing the effects of faulty
segmentation in later steps of the processing chain, and (2) demonstrating of the possibility to combine pointing
with static hand gestures by using an active camera. This means that we are not interested in analysis of
the performance of segmentation which is the phase most sensitive to the environment. For both goals it is
sufficient to have an environment where segmentation works in some way in a not too restricted environment.
The results of the experiments show that at least one environment exists which shows this behavior. Further,
they hold for at least those environments for which segmentation shows a similar behavior.

In the following we will use a uniform format of description of experiments. It consists of three parts: ap-
proach where the experiment is described, measured quantities which compiles the quality measures of the
experiment, and observation where the results of the experiment are described and discussed.
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Chapter 3

| nteraction Space Architecture

The so-called interaction space architecture of this chapter gives a concept of structuring complex interaction
environments like the vision-based interactive backprojection wall of figure 1.1. The concept is application-
independent in the sense that existing interactive applications can be combined with this type of interaction
environment, if they have accessible input and output channels. For example, the implementation of the vision-
based interactive backprojection wall allows to install Windows-based applications by using the mouse input
channel in order to transfer hand or arm pointing data to the application. Application-independence is achieved
by abstraction.

The interaction space architecture does not provide a complete interactive system with complex dialog ele-
ments. It rather is an architecture of a complex input device which can be connected to an existing interactive
application. Its emphasis lies on processing of data acquired by sensors placed in the interaction space of the
user. For the vision-based interactive backprojection wall, the sensors are the cameras observing the actions of
the user in front of the projection wall. The interaction space architecture allows model-based data analysis by
introducing the concept of a virtual interaction space which is an image of the relevant features of the physical
interaction space in the computer. This reality-oriented part has an abstract counterpart in form of an abstract
interaction space which is independent from the concrete implementation of the physical interaction space.

Another property of the interaction space architecture is that it supports multi-sensor and multi-modal inter-
action. The data captured by several sensors can either be input of a single virtual interaction space, or of
several virtual interaction spaces. The first possibility supports sensor synchronization, the second does not.
Multi-modality is achieved by the type of sensors used.

The interaction space concept and architecture has been motivated by the requirements of computer-vision-
based interaction by gestures. Computer-vision-based interaction by gestures is the case study for the archi-
tecture on which we will emphasize in the following chapters after having introduced the basic concept in
this chapter. The focus will be on image data processing with the goal of using hand- and arm-gestures for
interaction.

A common application of gestures as means of interaction is one of several modes in multi-modal approaches
to interaction. However, the question for the possibility of interaction just by gestures can be posed. The stand-
alone application of gestures could be of interest if other modes are not available or considerably restricted, for
instance speech in noisy environments. Another example is the interaction with a presentation environment.
In this case interaction concerns switching to the next or previous slide, or interaction with an application
program which is subject of explanation in the presentation. In this case the channel of speech is occupied for
the talk, and other modes have been taken for the interaction with the presentation system. One possibility is
gestures.

Gestures as stand-alone mode lead to the problem of deciding whether a posture or motion of the user is indeed
meant as a gesture. If multiple modes are available, the coincidence of events on several channels can be used
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as confirmation that the input has been intended. The question is how to proceed if just one mode is available.
We will outline a possibility of so-called multi-gesture type interaction in this chapter. Multi-gesture type
interaction is also supported by the interaction space architecture. As a case study, we will combine pointing
gestures and hand-posture-based gestures in chapter 6.

The following section 3.1 outlines the interaction space architecture. Section 3.2 addresses the different com-
ponents more detailed. Section 3.3 is devoted to a classification of hand- and arm-based pointing gestures
and their combination into multi-gesture-type interactions. Section 3.4 describes the details of the principle
architecture of a multi-camera sensor processing unit which will be adapted to special configurations in the
chapters 4 and 5.

3.1 Outlineof the Interaction Space Architecture

The interaction space architecture sketched in the following concerns capturing and processing of the input data
of an interactive system by a possibly complex sensor configuration. It may be understood as a generalization
of the input side of the "workstation” concept of GKS or PHIGS [FDFH90]. These graphics standards have
introduced an abstract concept of a workstation with abstract input and output devices. The interaction space
architecture connects the physical environment and the application in an application-independent manner.

Figure 3.1 gives a survey of the architecture of the interaction space concept. The user is embedded in a
physical interaction space. The physical interaction space is the physical environment in which the user is
present, augmented by display media and sensors which are the link between the user and an interactive
application. Display media may be image-oriented, sound-oriented, or others. Sensors can be mechanical,
electro-magnetic, optical or others. The user closes the loop between media and sensors.

The sensors deliver physical signals about the wishes of the user, expressed by one or more modalities. The
signals are processed in the interaction space processing unit. The interaction space processing unit itself
consists of two parts, the sensor data processing unit and the virtual interaction space (figure 3.2a). The
sensor data processing unit takes the raw sensor data and derives relevant interaction space features. The
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features specify the current state of the variable part of interest of the physical interaction space. The features
are transferred to the virtual interaction space. The virtual interaction space is a computer-based model of the
part of interest of the physical interaction space. It has three roles. First, it may support sensor data analysis
by a model-based approach. This is indicated in the figure by the arrow back to the sensor processing unit.
Second, if sensors are used which can be controlled, like e.g. active cameras or robots, the virtual interaction
space may send updating signals to the sensor control unit. Third, the virtual interaction space provides features
to the next unit in the circle in the figure, the abstract interaction space, after possibly being transformed by
an abstraction mapping unit. The abstract interaction space is a place-holder for the application. It has two
types of output. The first type of parameters control the application after possibly being transformed by an
application mapping unit. The second type are data showing the state of the abstract interaction space, which
are sent to the display media as an interaction-space related feedback to the user. The application performs
the action triggered by the application control parameters from the abstract interaction space, and updates its
display media.

The following sections give additional details of the different units of the architecture.

3.2 Interaction Space Concept

The following subsection describes the requirements of applications which can be part of the interaction space
concept. It is followed by subsections explaining the concepts of physical interaction space, virtual interaction
space, and abstract interaction space. The final subsection is concerned with the mapping units.

3.2.1 TheApplication

The application is an interactive system which provides input and output. For our purposes it is sufficient
that the output can be accessed on the signal level, e.g. video signals or audio signals. The signals can be
transferred to a suitable display in the physical interaction space. The video signal, for instance, can be given
on video projector instead of a CRT or TFT screen.

For the model of the virtual interaction space, it could be helpful if the output of the application would be
provided on levels closer to the contents of the displayed data. For example, it could be useful to use the
frames displayed on the projection screen in our scenario for a simulation of the lighting effects of the physical
interaction environment.

The application has to provide a device-independent input interface which allows to change its state. This
condition is fulfilled by many interactive systems by allowing to attach physical devices using a driver interface.
For example, in our scenario of interaction, the mouse pointer of a Windows-based application is controlled
by data resulting from processing the frames of the cameras surveying the region of interaction.

3.2.2 Physical Interaction Space

The physical interaction space consists of the physical environment. The physical environment comprehends
the mechanics, optics, sound, etc. of the environment including the body of the user, the input sensors, and the
output media.

3.2.3 Virtual Interaction Space

The virtual interaction space is a computer-based model of the physical interaction space. Analogously to the
physical interaction space, the virtual interaction space can be split into the physical environment and the user
behavior.
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In contrast to the abstract interaction space, the virtual interaction space may consider the concrete configura-
tion of the given physical interaction space, for example its geometric layout, the location of the sensors, and
its illumination. In our scenario, we will see that the mutual location of the cameras and the screen will be
modeled in order to derive the user’s hand or arm position in space from the image streams delivered by the
cameras.

The model of the physical environment can be formulated by any mechanism in use in the field of computer-
based modeling and simulation. Examples are automata-based approaches or object-based approaches The
state of the virtual physical environment is adapted by simulation which takes into account the state of the
physical interaction space. The link between the real physical and virtual-physical environment is established
by the data provided by the sensors.

For example, the virtual interaction space might describe the geometry of the physical interaction space, the
illumination, and the cameras, represented by the possibilities of today’s computer graphics. Furthermore,
it might contain a biomechanical human model which represents the user. The simulation has the goal of
permanent adaptation of the state of the virtual interaction space to the state of the physical interaction space.
The adaptation can in particular concern the pose of the user, the lighting, and the behavior of the cameras.
The simulation might also comprehend the simulation of the real cameras, what allows to compare real and
simulated image data as an additional possibility of synchronization of the physical and the virtual world.

An advantage of a comprehensive model like that is that it may improve the reliability of image analysis.
Furthermore, the virtual world can be held in a reasonable state even if the sensors temporally yield erroneous
information or fail completely.

A disadvantage of the approach is that real environments often are not deterministic enough in order to allow
perfect modeling. Furthermore, the computational resources to achieve interactive simulation speed may be
considerable. As typical for models, however, the model needs to take into account just those aspects which
are relevant for sensor data processing. For example, in the case of speech input it could be helpful to have
a model of background noise, but the illumination of the environment is of minor importance. For computer-
vision-based sensors, the illumination is important, while sound usually needs not to be modeled. Also within
one modality, simplifications are possible. The system may maintain a model of the interaction environment
and of just those body parts of the user which are relevant for the particular type of interaction. Examples of
relevant parts of a user are the hand tip or hand, the (fore)arm, the head, or, more comprehensively, a kinematic
chain describing the upper body.

As already noted, the virtual interaction environment has parameters which define the interface of the physical
interaction space. Examples of parameters are a 3D point describing the location of a hand in space, a line
describing the direction of the arm, the location and orientation of a coordinate frame in space giving the
location and orientation of the head, and a set of points describing the spatial locations of the hands and the
head. These parameters can be input and output parameters.

The physical interaction space might be complemented by behavioral model. The behavior of the user for
example means the performance of a sequence of actions related to a task of interaction. Using a behavioral
model, the system could simulate the expected behavior of the user. For instance, if the task of interaction is
selecting a menu item on the screen it can be expected that the user will move the cursor to the appropriate
menu item and activate the item. During activation the cursor has to be kept on the region covered by the menu
item. In the case of our scenario this task has to be performed by holding the arm still. Because of noise present
for several reasons there could be a notable cursor motion even if the user is able to keep the arm precisely on
the goal. If the system would understand that the user intends to select a menu item, the cursor motion could
be particularly smoothed or made less sensitive against arm motion in this phase of interaction, in this way
simplifying the task of selection for the user.

This is just a simple example and could be extended to more sophisticated user modeling as e.g. described
by [Yos02].
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3.24 Abstract Interaction Space

The abstract interaction space generalizes concrete physical interaction spaces, similar to abstract input devices
of GKS or PHIGS. Different concrete physical interaction spaces can be used to control an abstract interaction
space.

For example, with respect to our scenario of interaction with a backprojection wall, the abstract interaction
space could be a model consisting of a rectangle and a line or line-segment in space. The rectangle might
represent the screen and the line-segment the pointing direction. The line-segment might have parameters
like position and orientation in space which define the interface of the abstract interaction space to the virtual
interaction space. The intersection point of the line or extended line-segment with the screen, expressed in
coordinates relative to the screen, might define the interface of the application.

This example of an abstract interaction space can be controlled by different physical implementations of an
interaction space. An example is the computer-vision-based environment of figure 1.1. The line segment of
the abstract interaction space can be directly tied to the arm. Another possibility could be to have the top of
a table seen from above by a video camera as interaction space. A square on the table top could be mapped
onto a hemisphere by polar coordinates, and every point on the hemisphere might correspond to a direction of
the line segment. In this way motions in the square induce changes of orientation of the line segment in the
virtual interaction space. If the location should be controlled, too, the mode could possibly changed by a hand
posture so that the coordinates influenced by the square could now be the x-y-, y-z-, or x-z-coordinates. This
is a simple example of indirect interaction which can be used in order to control interactive objects with many
degrees of freedom in a physical interaction space with less degree of freedom. Another example is to control
the degrees of freedom of an object in the abstract interaction space by small motions of the finger of the hand
placed flat on the table top, similar to a marionette. Besides high degrees of freedom, a reason for indirect
control may be that motion capturing might not be precise enough in order to map the user’s pose one-to-one
onto an object in the abstract interaction space, like e.g. a virtual actor.

As we see from the examples, like the virtual interaction space, the abstract interaction space offers an interface
of input parameters for its control, and an interface of output parameters which usually control a concrete
application.

One way of feedback the user can get on input actions is from the output of the application. However, it
could be useful to have additional feedback directly from the abstract interaction space. For example, for the
sample abstract interaction space with the square and the line segment, the square and the line segment could
be graphically displayed in an additional window on the screen. Reasons could be learning purposes of the
user or parameter calibration when initializing the system.

In simple cases, in particular if no model-based support is provided to sensor-data processing, the abstract
interaction space may take over the role of the virtual interaction space.

3.25 Processing and Mapping Units

The interaction space processing unit takes the raw sensor data and transfers it into parameters which define
the interface to the rest of the processing chain. The parameters provide the data relevant for a special mode
or type of interaction. Particular flexibility can be achieved if more than one interaction space processing
unit is allowed. For example, in chapter 6 we will use pointing to the wall and hand-posture-based gestures
simultaneously. In this example, one interaction processing unit takes over the pointing part, and a second one
the hand-posture-based gestures. Both may deliver their output parameters into a further virtual interaction
space which comprehends both types of input. This new combination can be considered again as an interaction
space processing unit. The former interaction space processing units together take over the role of a sensor
data processing unit. This interpretation leads to a scheme of iterative combination illustrated in figure 3.2.
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The sensor control unit allows a feedback of sensor data processing to sensors which can be controlled by
computers. On the left side of figure 1.1, an active camera is indicated. We will use this camera in chapter 6
for hand tracking in order to get images of the hand of reasonable size for hand posture recognition. The
concept also allows to integrate more flexible devices into the interaction space, for example robots equipped
with sensors like e.g. cameras which, in this way, can move around. This scenario, however, is beyond the
scope of this thesis.

Furthermore, the input data processing circle of figure 3.1 contains two so-called mapping units. The abstrac-
tion mapping unit assigns output parameters of the virtual interaction space to the control parameters of an
interaction model in the abstract interaction space. The application mapping unit assigns output parameters of
the abstract interaction space to the parameters of the interaction interface of the application.

The mapping units give flexibility in connecting a virtual interaction space, an abstract interaction space, and
an application. A simple example is the adaptation of the range of an output parameter to the domain of an
input parameter by e.g. a linear transformation. It also could happen that one output parameter has to be
connected to more than one input parameter of the next stage. A more complicated situation might be mapping
m output parameters to n input parameters what, however, possibly could be not quite intuitive to the user.

The sensor processing unit of figure 3.1 may also be understood as an implicit mapping unit which transforms
data of the physical world into data for computational processing. For this reason, no explicit mapping unit
has been inserted between the sensor processing unit and the virtual interaction space. Section 3.4 is devoted
to computer-vision-based sensors.

3.3 Multi-type Gesture I nteraction

Our interest lies in the application of gestures for human-computer interaction. We restrict ourselves to hand-
and arm-based gesture types which are compiled in the first subsection. The subsection also illuminates pos-
sibilities of processing these types of gestures in the architectural framework of figure 3.1. The subsequent
subsection describes the possibilities of combination of several gesture types into multi-type gesture interac-
tion.

3.3.1 Hand- and Arm-based Gesture Types

We distinguish between six types of hand- and arm-based gestures: point-selecting pointing gestures,
projection-based pointing gestures, arm pointing gestures, head/hand pointing gestures, hand-based motion
gestures (or static hand gestures), and hand-based motion gestures (or dynamic hand gestures).

A point-selecting pointing gesture in the physical interaction space is performed by holding one of the hands
at a desired position. In the virtual/abstract interaction space the hand may be represented by a point in a fixed
region in space. The fixed region can be mapped one-to-one on a region in the real interaction space which
defines a sensitive region. Sensitive region means that the hand is accepted as a point-selecting pointing gesture
only if it is within the region.

A projection-based pointing gesture is a point-selecting pointing gesture which is combined with a plane region
in space being subject of pointing. The plane region can be one of the faces of a spatial sensitive region of
the point-selecting pointing gesture. For example, in the virtual/abstract interaction space, the spatial sensitive
region may be given in parameter representation f : Q — IR3, Q = [0, 1]3 the unit cube. The region pointed
at may correspond to the wall region defined by f(u,v,0), (u,v) € [0,1]%. Let f(u*,v*, w*) be a gesture
point in the abstract interaction space. Then its associated pointing direction is defined by the vector from
f(u*, v*, w*) to f(u*,v*,0). The associated pointing direction is another item of the possible virtual/abstract
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interaction space. A further item is the pointing goal which is the point f(u*,v*,0). The corresponding
pointing direction in the physical interaction space is obtained by the implicit mapping between the physical
and the virtual/abstract interaction space.

An arm pointing gesture in the physical interaction space is defined by the location of the lower arm in space,
combined with a plane region in space which is subject of pointing. The corresponding items of a possible
virtual/abstract interaction space are a plane region R in space and a line L. The intersection of L and R is the
pointing goal. The implicit mapping between the physical and the virtual/abstract interaction space assigns L
to a line along the lower arm, and R to a plane region, like, for instance, a projection wall.

A further type of pointing gesture is the head/hand pointing gesture, see e.g. [Koh99]. In this case the pointing
line is determined by connecting a reference point of the head with a reference point of the hand. We do not
further use this gesture type in the following.

A hand-based motion gesture or dynamic hand gesture is given by a trajectory drawn into the air by moving the
hand in the physical interaction space. The curve is recognized as a gesture if it has certain features. Different
gestures have different features. In the virtual/abstract interaction space, the items are the same as for the
pointing gestures. This approach leads to two types of dynamic hand gestures, spatial dynamic hand gestures
and projected dynamic hand gestures. The first version results if the items of point selecting pointing gesture
are used, the second version corresponds to projection-based pointing or arm pointing. In this case the curve
drawn by the pointing goal is taken as input of gesture recognition.

A hand-posture-based or static hand gesture in the physical interaction space is defined by a posture of the
hand. A hand posture is characterized by the deformation of the hand and bending of the fingers (Figure 3.3).
A hand posture is recognized as a gesture if it has certain features. The items of a possible virtual/abstract
interaction space are a spatial sensitive region, a point in space, and a plane contour. The plane contour
corresponds to the hand in the physical interaction space observed by a camera. The point corresponds to the
location of the hand in the physical interaction space. The contour is only relevant for gesture analysis if the
point is in the sensitive region and does not move. These two constraints can be used as a feature for entering
or leaving the static hand gesture mode. This is one possibility of implementing multi-type gesture interaction
which is subject of the next subsection.

-

Figure 3.3: Examples of static hand gestures and, in the right image, the result of hand segmentation for hand
tracking.

3.3.2 Combining Gesture Types

Gestures as a stand-alone modality lead to the problem of deciding whether a posture or motion of the user
is indeed meant as a gesture. If multiple modes are available the coincidence of events on several channel
can be used as confirmation that the input has been intended. In the case of one mode this sort of time-
parallel redundancy has to be replaced with other types of redundancy. Possibilities proposed in the following
are location-bound redundancy, time-sequential redundancy, state-bound redundancy, and time parallel redun-
dancy.
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By location-bound redundancy we understand that a posture has to occur at a certain location in the interac-
tion space in order to be accepted as a gesture. Examples are the sensitive regions defined in the preceding
subsection.

Time-sequential redundancy means that not just a single posture but a well defined sequence of postures has to
occur in order to be accepted as a gesture. By demanding a sequence of postures, the probability decreases that
the sequence occurs accidentally. On the other hand, however, gesture recognition has to work more reliable
than for one gesture because replication of a non-recognized gesture sequence requires more time than for a
single gesture.

State-bound redundancy means that a gesture is only accepted if the virtual interaction space, the abstract
interaction space, or the application are in a special state.

Time-parallel redundancy means that special gestures have to appear simultaneously. This requires that two
gestures can be executed simultaneously. An example is to use both hands, each expressing one hand posture.

In chapter 6, an interaction space based on the interaction wall configuration of figure 1.1 is presented which
allows to combine projection-based pointing gestures and static hand gestures into multi-gesture-type inter-
actions. It combines location-parallel and time-sequential redundancy. For example, pointing data may be
delivered only if the hand is sufficiently close to the backprojection wall. The hand-posture might only be
evaluated if the hand is held still before performing the static hand gesture.

3.3.3 Multi-type Gesture Processing

The gestures are captured by one or more sensors. Several configurations are possible. There can be one
sensor for every gesture, disjoint groups of sensors for every gesture, or overlapping groups of sensors for
every gesture. The latter in particular means that a sensor can contribute data to the recognition process of
different gestures. For the computer-vision-based interactive backprojection environment of figure 1.1, the top
and side cameras Yyield the data for pointing, while the active camera together with these cameras get the data
required for hand-posture recognition.

As already noted in subsection 3.2.5, the probably most flexible possibility of sensor data processing is to
assign an interaction space processing unit to every gesture. Every interaction space processing unit recognizes
features of the gesture type assigned to it. The features are forwarded to one virtual interaction space. This
interaction space performs the analysis of the received multi-gesture-type input stream.

This approach, sketched for gestures, can also be applied for other modalities. For example, we have imple-
mented a version of the environment augmented by a commercial speech input system. The speech input has
been used for single word commands. Speech input is assigned to an own sensor data processing unit with-
out supporting virtual interaction space, which forwards the recognized words to a virtual interaction space
supplied by additional data from camera processing.

3.4 Multi-Camera Data Processing

In this section, we present a general concept of multi-camera sensor processing which is a case study of the
interaction space processing unit of the interaction space architecture. This concept will be employed and
specialized in the next three chapters to three hand- and arm gesture-based interaction scenarios: arm-based
pointing, projection-based pointing, and combination of pointing and static hand gestures.

Figure 3.4 gives a survey of the architecture of multi-camera data processing. A set of static cameras provides
image sequences of the region of interaction. It is assumed that the image sequences are synchronized. In our
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Figure 3.4: An architecture of multi-camera data processing. The image shows a 3D interaction space process-
ing unit. The boxes represent processing units, the arcs are annotated with the processed data.

implementation, we have synchronized frame-grabbing by a sync-distributor, a self-constructed small hardware
module [DFHT02].

The image streams can be treated in two ways. The first one is that every image stream is processed separately.
This task is performed by 2D interaction space processing units. The second one is that several streams are
processed together. This task is taken over by a 3D interaction space processing unit. All these interaction
space processing units deliver their output data into a common virtual interaction space.

3.4.1 2D Interaction Space Processing Unit

A 2D interaction space processing unit consists of number sub-units with appropriate input and output data.
Figure 3.5 gives an overview. The arcs are annotated with the data.

The first sub-unit is the segmentation unit. Its input consists of the frames delivered by the camera. The
task of the segmentation unit is to determine the dynamic regions in the frames. Dynamic regions are regions
not present in images of the background environment which is assumed to be approximately static. Dynamic
regions are in particular those regions which represent the user. ”Approximately static” means that physical
objects remain at their location for a longer time period, and that illumination remains the same for a longer
time, or both change very slowly. Thus dynamic regions belong to the difference between the basic background
and the current image since a static camera is assumed.

In our implementations, we use an approach of segmentation which maintains a knowledge base, at every pixel
of every camera, on states of the background occurring during processing [Leu01, Leu02]. The knowledge
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Figure 3.5: Architecture of a 2D interaction space processing unit. The boxes represent processing units, the
arcs are annotated with the processed data.

base is initialized in a learning phase without user in the interaction phase. It is permanently updated during
interaction in regions not covered by the user. In order to decide which pixels are not background, fuzzy rules
are used for extraction of the relevant data by comparison of the knowledge base with the current image data
at every time during interaction.

The dynamic regions are further processed by the region filtering unit. Its task is to find those regions which
are relevant for interaction. It reports so-called filtered 2D regions.

Filtering can primarily be performed by using the location of regions in the frames of the input streams. The
reason is that in our scenario the location of the relevant body parts is often well defined. For example, the
hand of the user is the part of the region defined by the user which is closest to the projection wall.

The second criterion may be color. Color concerns mainly the color of skin, and could be used for instance if
the hands have to be located in the case of transferring the user’s pose one-to-one to an avatar in the abstract
interaction space.

A third criterion may be the shape. According to our experience, however, shape had turned out to be particu-
larly unreliable in this phase.

It might happen that the region identified by these criteria does not exactly represent the desired part of the
user, or even does not at all. A further dimension of filtering is opened by the fact that a stream of sequences
are available. Time-based region filtering allows to analyze the behavior of regions over time. Under the
assumption that the shape of contours should change only moderately from frame to frame, large changes
indicate errors and possibly be corrected in the current contour using preceding contours. An example is to
replace a segment of this type of the current contour with the corresponding segment of the old contour. An
approach to time-based region filtering is presented in chapter 5.

The filtered 2D regions are transferred to the feature extraction unit. The feature extraction unit extract geo-
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metric features relevant for interaction. Geometric features are derived from the filtered regions according to
the requirements of the task of interaction to be performed in the virtual interaction space. Geometric features
can be parameters specifying location and scaling of rigid bodies, or location and shape of non-rigid bodies
representing parts of interest of the user. The most simple case of "bodies” are points and lines. A point may
for example represent the location of a hand in space, a line may represent the direction of a straight arm.

The geometric features are the input of the virtual interaction space. The most simple case is a passive user
model. This means that the feature data are identical with the model. For example, the new pointing line found
for arm pointing may immediately determine the model’s pointing direction. The difficulty with this approach
is that the pointing direction could be unstable and nervous, because of the influence of segmentation errors
and noise. A solution could be to provide the model of the arm with a filter. The filter could be a heuristic
low-pass filter, but also a physical simulation model letting the arm react on the input data with a certain inertia.

The different processing units have control parameters which influence their behavior beyond the image-based
data. A typical example are threshold values. The objective parameters describe the quality of the current
behavior of the system, and can be influenced by the control-parameters. Typically, the control parameters are
preset or can be initially set interactively. An alternative possibility is to use a parameter control unit which
is arranged orthogonally to the chain defined by the processing sub-units. The parameter control unit uses
the objective parameters provided by the other units. It tries to optimize the objective parameters online by
modification of the control parameters of the processing sub-units.

3.4.2 3D Interaction Space Processing Unit

Figure 3.4 gives an overview of the components of a 3D interaction space processing unit. A 3D interaction
space processing unit processes several, or even all, camera image streams together. In the first phase, how-
ever, segmentation and region filtering is performed separately for every image stream, analogously to the 2D
interaction space processing unit. Technically, the responsible segmentation and region filtering sub-units can
be shared by the different interaction space processing units. At any time step, every region filtering sub-unit
delivers its filtered 2D region to a 3D region filtering unit which is the next sub-unit in the processing chain of a
3D interaction space processing unit. The 3D region filtering unit fuses the 2D regions segments obtained from
the different cameras. In the following we explain a possible method of fusion for two cameras, for illustration.

We assume that the cameras have been externally and internally calibrated, including their absolute positions
and orientations. Each of the two images is partitioned into cells, e.g. by a regular grid. Each cell together with
the viewpoint of the camera defines a viewing pyramid in space. All pairs of intersecting viewing pyramids,
consisting of one pyramid from every camera, are determined. The pairs can be found efficiently in a 2d-
setting using epipolar geometry [Fau99]. Those pairs are removed which contain a pyramid induced by a
cell not intersecting one of the image regions under consideration. Furthermore those pairs are eliminated for
which both inducing cells of the two pyramids do not belong to the object of interest. If both cells belong
to the object of interest, the pair is definitively reported. If one cell belongs to the object, and the other does
not, the pair is tentatively reported. The reported set of cells defines a spatial hull of the desired object. By
information about spatial geometry of the user model, the reported set of pairs is further reduced. By the
described consideration of heterogeneous pairs it is possible to merge segments or reduce segments which
are not correctly determined in one of the images. The decision of the membership of cells of images from
different cameras to the same object is based on color information. This approach has been implemented by
Leifkes [Lei02] using components of the system of this thesis.

A typical example is the determination of the arm regions in the scenario of Figure 1.1. The arm regions have
approximately the same color in the top and side view, and can thus be matched by this property. By consider-
ably different views of the cameras, like in the example with the pointing arm, many irrelevant segments, for
instance caused by people in the background or illumination effects like cast shadows can be removed.
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In contrast to the arm, other objects might have different appearance from different views. An interesting
problem in this case is to determine the location of the spatial object from the views provided by the cameras.

In chapter 5 we will present another realization of the idea of 3D region filtering which uses the special given
configuration in order to reduce the computational requirements.

The result of the 3D filtering unit can be 2D regions for every image stream, or 3D regions resulting from
fusion of the 2D regions of the different camera images. They are the input of the rest of the processing chain
which consists of a feature extraction unit and a virtual interaction space, analogously to the 2D interaction
space processing unit. In the same way, a parameter control unit is attached.

3.4.3 Implementation

Today, a computer-vision system like the one described in this section can be implemented on a network of
personal computers connected by a 100 MBit Ethernet. Every camera might be attached to its own PC which
is responsible for frame grabbing and segmentation. Frame-grabbing can be synchronized by the already
mentioned sync-distribution hardware.

The section from region analysis up to abstraction mapping of all interaction space processing units may
occupy another PC which additionally can be responsible for parameter control. This PC also keeps the
common virtual interaction space. For a high number of cameras, or for virtual interaction spaces using time
consuming simulations, more than one PC could be used.

The application can run on an independent computing environment, usually also a PC, being part of the net-
work. The computer of the application can also take over the output of the application. If a more complex
medial output is required, a suitable subsystem could be added in the same way as it would also be done
without computer-vision-based input.

The computers may communicate by Corba [MZ95]. Corba satisfies the communication requirement since
just results of segmentation and control values of moderate size are transferred between the computers, but no
images.

Based on configurations of this type, a typical rate of 8 processed frames per second is achieved by the imple-
mentations of the case studies described in the following three chapters of this thesis. This framerate is already
suitable for interaction, although more is desirable what, however, can be expected by the future advance in
hardware.
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Chapter 4

Arm-based Pointing

Arm-based pointing with a projection wall as treated in this chapter is based on the location of the straight arm
of the user in space. From the location of the arm, a line in space is derived. The location of the line in space
is used for further interaction. For instance, the intersection point of the line with the projection wall defines a
location on the two-dimensional screen which is forwarded to the application for further use.

The emphasis of this chapter lies on the problem of construction of the pointing line.

Problem: 3D Arm-based Pointing
Input. Data about the location of the user’s arm in space.

Output. A pointing line corresponding to the arm location.

The data about the location of the user’s arm is acquired in the interaction space of the scenario of figure 4.1.
In this interaction environment, the data consists of two images of the arm, one from each of the observing
cameras.

application

¥iSion

Figure 4.1: Configuration of a computer-vision-based interactive backprojection wall for interaction by poin-
ting.

47
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Figure 4.2: Adaptation of the general interaction space concept to arm pointing.

At least two possibilities exist to solve this problem. The first one is to derive a 3D-reconstruction of the user’s
arm from the images and to determine the pointing line from the reconstruction. The second alternative is to
determine 2D pointing lines in each of the given images, and to derive a 3D pointing line from the 2D lines.

Problem: 3D Pointing Line Construction from 2D-images

Input. Two images of the user’s arm, taken from two different views.

Output. A pointing line corresponding to the arm location.

A disadvantage of the first approach is the high methodical and computational requirement. The danger with
this approach is that interactive rates might not be achieved. Further, the precision of proper 3D-reconstruction

is probably not required because of the interaction loop in which the user may correct not too large deviations
of the pointing line. For that reasons we will follow the second possibility.

In terms of the general framework, our approach to pointing line constructions is structured as shown in fig-
ure 4.2. We give a brief outline in the following.
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First, the phase of segmentation, performed by the segmentation unit, determines the region covered by the
user in the current frame of the input image sequence. Next, the region covered by the user is extracted by the
2D region filtering unit. From the resulting data, a 2D pointing line is calculated by the feature extraction unit.
The details of these steps which together define the sensor data processing unit for every camera, are described
in section 4.2. The 2D virtual interaction space just stores and forwards the 2D-pointing line. Together with
the sensor data processing unit it defines the interaction space processing unit of a camera.

Next, from the 2D pointing lines yielded by the interaction space processing units of the two cameras, a 3D
pointing line is constructed in the 3D virtual interaction space of figure 4.2. A crucial point of this step is
calibration of the interaction space. Calibration means to determine the mapping behavior and the location of
the cameras, and the location of the backprojection wall in order to be able to conclude from the 2D image
data to the spatial geometry. Given the calibration data, some geometric calculations lead to the desired 3D
pointing line and an intersection point of the line with the wall (screen point). Section 4.3 is devoted to this
step.

A straightforward implementation of this approach on a frame-by-frame basis usually shows an unfavorable
behavior. The main reason is that segmentation does often not work perfectly for images taken in natural
environments of interaction. Because of segmentation errors, the region representing the arm can change its
shape considerably from frame to frame. In the thesis by Leubner [Leu02] having emerged from the same
project, several attempts have been undertaken in order to improve segmentation. We extend these attempts
in later phases of gesture processing by taking into account more global knowledge about the process of
interaction (Section 4.4).

Our calculations of 3D-data from the camera images make use of pinhole camera-based approaches of 3D
computer vision [Fau99]. The central definitions of the pinhole model are recalled in the next section.

4.1 ThePinhole Camera Modéd

In the notation of Zhang [Zha00], the relationship between a 3D point p = (z,y,2)* and its projection
m = (u,v)* according to the pinhole model is

sth = A(Rp + t). (4.1)

where s is an arbitrary scale factor. m := (u, v, 1)* denotes the homogenization of m = (u,v), obtained by
adding an additional coordinate 1. The notation ~ will be used throughout the text for this operation. The 3 x 3
matrix of rotation R and the 3D vector of translation t relate a given world coordinate frame to the camera
coordinate frame. The camera coordinate frame has its origin in the optical center, its x- and y-coordinate axes
in parallel to the image plane, and its z-axis along to optical axis of the camera. The world coordinate frame is
located somewhere in the environment observed by the camera. R and t are called extrinsic parameters.

The matrix

ug
Vo (4.2)
1

A =

o o R
o w2

represents the intrinsic parameters of the camera. « and /3 are related to the distance between the center of the
lens and the image plane, called effective focal length, and describe the horizontal and vertical scaling of the
pixels delivered by the CCD-chip of the camera. (ug, vo) denotes the coordinates of the principal point with
respect to the image coordinate frame. ~ describes a possible deviation of the horizontal and vertical axes from
orthogonality.
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The relative position of two cameras C; and C; can be described by a rotation matrix R;; and a translation
vector t;; which establish the relation between the camera coordinate frames of the first and second camera
according to

p; = Rij (aroty Brot 7rot)pi + tij- (43)

p; and p; denote coordinates of the same spatial point, with respect to the coordinate frame of camera C; and
with respect to the coordinate frame of camera C';, respectively.

A more realistic model is obtained by taking into account lens distortion. Lens distortion is modeled by a
function which is applied to the (undistorted) image points m = (u,v) generated by the standard pinhole
model,
m=m+ (m—my) - (/<:1(a:2 + yQ) + k2($2 + 92)2)
where m = (a, v) is the point in the image of the camera with lens distortion, and
. vV — g
y ﬁ )
it - (4.5)
[0

(4.4)

are normalized coordinates obtained by referring (u, v) to the image center my = (ug, v9) and by elimination
of scaling [Zha00]. k1 and ko are parameters which describe the amount of lens distortion.

4.2 Calculation of the 2D Pointing Direction

The calculation of the 2D pointing direction uses data delivered by segmentation of a single camera image.

Problem: Calculation of the 2D Pointing Direction
Input: A region defining the arm, delivered by segmentation.

Output: A line defining the pointing direction.

The data of segmentation consists in a not necessarily connected region of the image representing the arm. We
assume the data given in a configuration-specific way.

From the specific mutual arrangement of the user, the cameras, and the backprojection wall we know on which
side of the image the hand is located, and how the arm traverses the image. Dependent on the direction
of traversal, segmentation is performed in overlapping horizontal or vertical rectangular stripes covering the
image. The stripes are in parallel to the projection wall, as shown in figure 4.3. In each subimage defined by
one of the stripes, segmentation yields the convex hull of the detected contour pixels. The convex hulls are the
input of our algorithm of 2D pointing line detection.

In a next step, the stripes are processed according to increasing distance from the projection wall, starting with
the one closest to the wall. The first stripe, which contains a convex hull, is assumed to contain the hand of the
user. Each neighboring stripe containing a hull polygon with a similar size is supposed to belong to the arm.
If a large deviation between the sizes of two neighboring hull polygons is detected, the algorithm concludes to
have reached the body. In this case stripe processing is terminated.

The size of a horizontal/vertical stripe 7 is defined as the horizontal/vertical extension e; of the hull polygon.
The deviation of two consecutive stripes ¢ and i + 1 is measured by r; := e;/e;+1 Where we assume that the
stripes are numerated from the border of the image. Stripe 7 is taken as an arm stripe, as long as r; < ¢g, ¢o > 1
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Figure 4.3: Top row: Contour approximation of the user in the images of the wall camera (right) and the ceiling
camera (left). The contour of the arm is approximated by a union of convex hull polygons which are visualized
in the picture as line drawings. The polygons are calculated in stripe-shaped sub-images arranged horizontally
and vertically, respectively. The darkened region of the image indicates a region which is recognized by seg-
mentation as definitive background [Leu02]. Bottom row: The detected boundary between the arm and the
body is indicated by a vertical or horizontal line, respectively. Furthermore, the approximated pointing direc-
tions are depicted by straight lines fitted to the centroids of the convex hull polygons of the stripes (indicated
by white crosses).

a constant. Let & be the first stripe violating this condition. Then in this and all subsequent frames the stripes
1,..., k are assumed to define the arm region, as long as ¢y < r; < ¢;. If the latter condition is violated a new
k is calculated for the current frame. A suitable choice is ¢g = 1.65 and ¢; = 1.8.

For each hull polygon classified belonging to the arm, its centroid is calculated. A straight line is fitted into
the set of centroids by the least squares method [BSM80]. This straight line is taken as the pointing direction
in the image (figure 4.3, bottom).

In the case that camera distortion is taken into account, the centroids have to be corrected by elimination of
distortion before the line is fitted. The reason is that the image of a straight line in space is usually not straight.
De-warping can be performed by execution of the iterative scheme

Ut — YYt — Uo Ut — Vo

T4l = — > Yt+1 = )
o g

W(Tpg1, Yeg1) = kl(mfﬂ + yt2+1) + k2($§+1 + yt2+1)2

U+ upw(Te+1, Yer1) Vprq = U+ vow(Tt41, Yr+1)
y Ut — )
I 4+ w(@is1, Y1) " I+ w(Tir1, yey1)

where w(z,y) = k1 (2? +y?) + ka(2% + y?)?, k1, ko the coefficients of distortion obtained by camera calibra-
tion [Zha00], a, © the distorted coordinates, w., v; approximations of the unknown undistorted coordinates, and
(up, vo) the image center [Fau99]. The iteration is started with the given distorted coordinates as an estimation
of the wanted undistorted coordinates,

Ut+1 =

Ul = ﬂ, v = 0.
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Experience, also documented in literature [Fau99], shows that a good approximation is usually achieved within
less than eight iterations. A disadvantage of the approach is that convergence cannot be guaranteed. In practice
we stop iteration if the difference between the results of to subsequent steps of iteration is less than a given
small threshold or 20 iterations have been performed. 20 iterations have never been reached in all applications
of the system.

4.3 Calculation of the 3D Pointing Direction

The next step is to transfer the 2D pointing direction into space.

Problem: Calculation of the 3D Pointing Direction

Input: The two 2D-lines from the preceding section, the matrices A;, A; of the intrinsic parameters of the
two cameras, the mutual arrangement of the two cameras, and parameters R, t;x, R, t ;1. describing
the mutual arrangement of the two cameras and the backprojection wall.

Output: The 3D-line.

The basic idea of solution is to intersect the planes defined by the center of an undistorted virtual camera
and the 2D-pointing line in its (undistorted) image. In the case of two cameras, the intersection consists of a
3D-line which is used as pointing direction.

The first step on this way is to determine the positions of the cameras and the size and position of the projection
wall. This is performed in a calibration step which yields the data with respect to a world coordinate frame
introduced in the real interaction space of the user. The calibration procedure is described in section 4.3.1.

The data allows to calculate the 3D pointing line with respect to the world coordinate frame and the intersection
point of the pointing line with the wall. The details are presented in section 4.3.2.

4.3.1 Euclidean Calibration

The approach to calibration of our interaction environment (figure 4.1) proposed in the following requires only
moderate effort and achieves sufficient precision for vision-based interaction. The calibration is performed op-
tically, and almost no manual measuring is necessary. It uses the camera calibration method by Zhang [Zha00]
in order to determine the intrinsic camera parameters, and consists of a sequence of steps for extrinsic cam-
era and wall calibration. The performance of the approach is experimentally analyzed in section 5.3.6 and
compared to alternative approach described later.

Using the pinhole camera model, calibration of the interaction space is performed as follows.

Algorithm: Euclidean Calibration of the Interaction Space

Input: The interaction space of figure 4.1 with at least two observing cameras C';, and an additional reference
camera.

Output: A world coordinate frame, the intrinsic parameters of the cameras C;, and the extrinsic parameters
R; and t; of C; with respect to the world coordinate frame.

Steps:

1. Choose a world coordinate frame so that
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e its x-y-plane coincides with the backprojection plane
e its z-axis is perpendicular to the backprojection plane
¢ the unit on all axes is centimeter.

The origin can be chosen arbitrarily on the backprojection plane.
2. Execute intrinsic calibration of the observing cameras.

3. Execute extrinsic calibration of the reference camera. The reference camera is located in front of
the wall, with view on the backprojection plane.

4. Determine the extrinsic parameters of the first observing camera relative to the reference camera.

5. Determine the extrinsic parameters of the other observing cameras relative to the first observing
camera.

Since the last step uses the first observing camera as the reference camera for calibration of further observing
cameras, and none of the further observing cameras is used in the step before, one of them can be used as
reference camera in step 3, mounting it afterwards to its observing location. Thus an additional camera is not
necessarily required.

The details of steps 2 to 5 are as follows.

Step 2. Intrinsic calibration of the observing cameras

For intrinsic calibration of the observing cameras and the reference camera we use the calibration method
of Zhang [Zha00]. However, other classical methods for calibration of the intrinsic parameters of a pinhole
camera, like e.g. [Tsa86], may also be applied.

Zhang uses a calibration plane showing a pattern of squares, as we do, too. The orientation of the plane defines
the location of the world coordinate frame. Its origin and its x- and y-axes are in the calibration plane, and
the z-axis is perpendicular to it. This definition implies that the calibration plane has the equation z = 0 in
the world coordinate frame. The unit on the coordinate axes is centimeter. In this way, the world coordinates
of the four corners of every square on the calibration plane can be easily determined. These corners are used
as calibration points. For calibration, pictures of the calibration plane are taken by the camera from k£ > 2
different views.

Step 3. Calibration of the reference camera

The reference camera is used in order to relate the backprojection wall and the observing cameras. Its intrinsic
parameters are known from the preceding step. In order to determine its extrinsic parameters, a computer-
generated calibration pattern according to Zhang is displayed on the backprojection wall (figure 4.4). The
locations of the calibration points p defined by the pattern are known by the indices of the pixels of the
displayed pattern image. From these data, the unknown extrinsic parameters R.., t. of the reference camera
are calculated by the method of Zhang [Zha00].

After doing so, the reference camera nevertheless stays at this position, for calibration of the first observing
camera in the subsequent step.

Since the calibration points p are given by their pixel indices, but the unit of the world coordinate frame of
the overall system are centimeters, the task remains to transfer the values of the parameters from pixel units to
centimeters. For this purpose, a scaling factor pixel-per-centimeter (ppc) must be determined. This is done
by pasting a calibration rectangle with known diagonal length ¢.,,, in centimeters on the backprojection wall
(figure 4.4). Let p; and p2 be two diagonally opposite corners of the calibration rectangle, represented in pixel
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Figure 4.4: Left: A reference camera is located in front of the backprojection wall and a calibration pattern
is projected on the backpojection screen. Right: A calibration rectangle of known size which is pasted on
the projection screen in order to determine the scaling factor between the unit of screen pixels and the unit of
centimeter.

units. We determine them from their images m; and my in the image plane of the calibration camera, using
equation (4.1), by

pi=R.N(A'm; —t.),i=1,2. (4.6)
Then the factor ppc of conversion between pixels and centimeters is obtained by

dem

ppc:

Alternatively, the coordinates of the projected pattern might be directly measured manually on the projection
wall, but this approach would be more elaborative than the one just described.

Step 4: Extrinsic calibration of the first observing camera

The first observing camera is now placed at its final position with respect to the backprojection wall. The goal
of extrinsic calibration in this step is to find the relative position of the observing camera and the reference
camera. The relative position of two cameras is described by

Po ‘= RCO(aTOt7 ﬂrota ’Vrot)pc + teo (48)

where p. and p, denote coordinates of the same spatial point, with respect to the coordinate frames of reference
camera and the observing camera, respectively. This relation results from equation (4.3).

Step 4 consists of two steps, calculation of the 3D world coordinates of a ball, and determination of the relative
position of the reference camera and the observing camera. The steps are described in the following.

Calculation of the 3D camera coordinates of a ball

A ball with known radius ., is used as calibration object. In the projection plane of the camera the ball
becomes an ellipse. However, the deviation of the ellipse from a disc is extremely minor. For the typical
intrinsic camera parameters

222.299 —0.947957 97.5193
A= 0 221.228  68.6043
0 0 1
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which we have observed in our implementation of the system, a ball of size 10 cm in a distance of 200
cm to the camera yields a disc of a diameter of 11.9 pixels if projected onto the center of the image.
If projected close to the boundary of the camera image, the difference between the lengths of the two
main axes of the resulting ellipse is just 0.1484 pixels. For that reason, we will perform the following
calculation for a disc instead of an ellipse.

The disc is separated from the rest of the image by simple image segmentation. The center point my =
(ug,v2)* and the radius rp;,.; Of the disc are calculated in camera coordinates, and a point m; =
(u1,v1)* on the boundary of the disc is selected. Then the related spatial points p; and p, are calculated
in camera coordinates, as shown in figure 4.5. p- is obtained from

m, m,

Figure 4.5: Calculation of the position of a calibration ball.

(Ailﬁ’ll)*Ailﬁ’lg
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where m; := (u1,v1,1)*, my := (ug, v, 1)*, and the formula on the last line results from resolving
h

—————my = A(Rpy + t
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for po. This calculation is performed for both cameras at » different positions of the calibration ball,
resulting in n position pairs (p..;, Po,;) Where c stands for the calibration camera and o for the observing
camera. The corresponding points are stored in the sets X, = {p¢ 1, ..., Pen } aNd Xo = {Po.1; -, Pon }
which are used in the following for detection of the relative position of the two cameras.

Just n = 3 different ball positions are sufficient, but practical tests have shown that at least seven different
positions are needed to get a sufficiently accurate solution. The locations of the points are significant as
they should cover the whole space of interaction.

Determination of the relative position of the observing and the reference camera

The relative position of the observing and the reference camera is determined as solution of the mini-
mization problem

n
ming . Y |[teok — teol|* with teo = (z,y, 2)", 4.9)
k=1

where

tco,k = Po,k — Rco(arota ﬁrot»’)/rot)pc,k’» ke {17 EE) TL} (410)



56

CHAPTER 4. ARM-BASED POINTING

and n is the number of ball positions.

We solve the optimization problem by an evolutionary strategy and refer to [Sch94] for details. In our
case, the chromosome of the evolutionary algorithm is a vector of real numbers with a chromosome
length of three,

q= (arotaﬂrotu%"ot)* = (Q17Q2,Q3)* (411)

where o, Brot, Yrot are the angles of the rotation matrix. The search space Q of the individuals q is

Q = {q = (q17q27q3)* ‘ dm € [_ﬂ-a +7TL m = 17273} (412)
where —7 and + are the lower and upper bounds of the feasible angles of rotation.

The definition of the fitness function is based on t., 1, & € {1,...,n}. The fitness function g is defined
as the variance over all those vectors,

g(qa Xca X07 tco,l» ceey tco,n) = Ut2 = %Z?:l ((tco,l - ,U)*(tco,l - :u))a
=230 teoy (4.13)

where X, and X, are the sets of used test locations of the ball seen from the calibration and observation
camera, respectively.

After initialization of the population, the recombination scheme executes one-point-crossovers and
normal-distributed mutations. A crossover produces new individuals in the search space by marrying
N/2 parent pairs of the current NV individuals randomly. Each pair creates two children. Let q¢ and q§-
be two parent individuals at time ¢. Then the two children are

t .
. 1 A s s P, i gq=X
Pt = (AL P with it = { P e ¢=123 (4.14)
Pig
t .
. 1 AT s pig i ¢g=X
P = (PG DL 0G5 with pilt = { o else ¢=1,2,3 (4.15)
7,9

where X € [1,2, 3] is randomly chosen with uniform probability.

The second operation, mutation, modifies all genes of the created children. The amount of perturbation
is a crucial issue of this operation. Too large mutation may cause the evolutionary algorithm to oscillate
or converge erroneously, and too small mutation may lead to a sluggish convergence. In order to reduce
the problem, a fraction

s:=1—x1-%) (4.16)

is introduced which reduces the effect of mutation over time, where X € [0, 1] is a random number, ¢ the
time step of the current generation, and m the maximum number of generations. The new individuals

generated by mutation are p/*' and p/*' attime ¢ + 1,

P! =I-s-m+(1—1I)-s-(—m)+pH (4.17)
pz-gl 3:I‘S‘ﬂ'"’_(1_1)'3‘(_W)+ﬁ;zlwithq:17273 (4.18)
where the uniformly chosen random number I € [0, 1] sets the direction of mutation.

The proposed selection scheme is a combination of the (x + A)- and the (u, A)-strategy. N children are
created by N parents like for the (N + N) strategy [Sch94]. In order to avoid too fast convergence to a
local optimum, the children replace their parents only if they have better fitness values. This resembles
the (IV, IV)-strategy.

The evolutionary algorithm terminates at the maximum generation number. The chromosome of the best
individual creates the rotation matrix and the translation vector of equation (4.8).
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Step 5. External calibration of further observing cameras

The second and possibly further observing cameras are now mounted at their final position with respect to the
backprojection wall. The reference camera is no longer needed so that it can be used for this purpose. Another
iteration of the external calibration method analogous to that of step 4 detects the relative positions of the two
observing cameras. The role of the calibration camera is taken over by the already calibrated first observing
camera. The following rules of transformation can be used for extracting external calibration data for camera
pairs not explicitly considered.

The transformation between camera C; and C; is calculated from the transformation p; = R;;p; +t;; between
C;and C; by Rj; = R;jl = R;*j and t;; = —R;jltij. If the transformation between camera pairs C;, Cy,
and C, C; are given, the transformation between the camera pair C; and Cj is given by R;; = Ry;R;;, and
tij = Ryjtix + i,

The system is now completely calibrated. An experimental analysis of Euclidean calibration is presented in
section 5.3.6.

4.3.2 Calculation of the 3D Pointing Direction

The 3D pointing direction of the arm is determined as follows. For every camera the plane spanned by the
optical center of the camera and the 2D pointing line, which has been fitted in the image as described in
section 4.2, is determined. The planes are calculated with respect to the perspective projection of the camera
model. Let m;; and m; o be two arbitrary points on the 2D pointing line fitted into the image of camera C’,
and m; ; and m; » two arbitrary points on the 2D pointing line from camera C;. Let ¢; und c; be the optical
centers of the cameras relative to the coordinate frame of the projection wall. The two planes are spanned by
the pairs of vectors

vii=A;'s;1m;q, vio = A lsiom; o

Vj71 = A;lsj,lmj,l, Vj,g = A;18j72mj72
where the s;,; > 0 are arbitrary, and A; and A ; are the intrinsic mapping matrices of the two cameras. Hence
the normal vectors of the planes are

li = Vi1 X V;2, lj =V;1 X Vjo.
The intersection of both planes yields a straight line in space that is taken as the desired pointing direction in

figure 4.6. Its direction is
a= 1Z X lj.

The point p on the projection wall to which the user points is calculated as the intersection point of the plane
of the projection wall and the just calculated pointing line as

P=¢C +a-vi;1i+7v7-a
where « and ~y are solutions of the system of equations
Cita-viit=c;+01-vji+P2Vjacita vii,+y a;=0.

Here c; +a-v; 1 is the starting point of the ray, and a its direction. The first equations tells that the starting point
lies on the plane induced by the second camera. The second equation expresses the condition of intersection
of the ray with the projection wall, using that the coordinate system is located on the projection wall so that
the z-coordinate of the points on the wall is equal to 0.

This scheme of calculation has been applied in a similar way in e.g. [Hoc99].

The coordinates of the intersection point on the projection wall are expressed with respect to the screen co-
ordinate frame. They are forwarded to the application system which performs a desired reaction, for instance
updating the cursor position to this location.
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Figure 4.6: The pointing direction is determined as the straight line resulting from the intersection of the planes
spanned by the optical center and the pointing line in the image of every camera.

4.4 Error Correction

The implementation of the approach shows that the motion of a cursor bound to the pointing location on the
backprojection wall is not continuous. Even if the user does not move the arm, the mouse cursor jumps around
the intended position by up to several centimeters in the worst case, and still by about one centimeter under
good illumination of the interaction space. In order to cope with this problem we have analyzed the reasons
and have developed several approaches of correction which are described in the following.

44.1 Weighted Centroids

A main reason of non-smooth motion is that segmentation may fail in one or more stripes. A particular undesir-
able effect is that the convex hull in a stripe changes its shape discontinuously because of wrong segmentation.
We correct this effect by assigning a weight to every stripe, describing the amount by which the term of the
resulting convex hull center of this stripe is multiplied in the least-square-fitting of the 2D line of pointing
direction. The weight is updated over time. It is determined from a certain number of centroids obtained for
the stripe in the past, and reduces the priority of the stripe in the calculation in the case of nervous motion.

The weight g! of stripe 4 for frame ¢ is iteratively defined as

o =gl (1)
w € [0,1] is an update factor. It indicates the percentage by which the old weight is considered in the new
weight. A suitable choice is w = 0.8. ¢! represents the changing of centroid from frame to frame. If a point
does not change its position, ! is high. If a point changes its position significantly, c! is low so that the weight
by which the point is considered in the future decreases. c! is defined as

o masytllag = af 17— fla — gl
FT S mag e — o 1)~ la — a i)

where the maximum and the sum is taken over all stripes, and q! is the centroid of stripe 4 at time ¢. The
exponent ¢ > 1 increases the influence of strongly jumping points, while the expression

max;{[aj — o[} — [laf —a; ||
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is high if q; varies moderately, and is equal to O for the centroid with highest change. A suitable choice is
q = 2. The final formula of ¢! is obtained by normalizing the expressions into [0, 1]. cq is set to 1/n where n
is the number of stripes.

4.4.2 Arm-Torso Separation

Another effect is that the boundary line between the arm and the body jumps rapidly and considerably. Depen-
dent on the location of the boundary line, the number of points involved in the calculation of the 2D pointing
line may vary considerably, which leads to quite different and non-reliable pointing lines. This effect is severe
if the user holds the arm still in order to fix the cursor at a particular point on the wall. An indicator for this
situation is that the fingertip, which usually is delivered quite reliably, shows none or just minor motion. The
criterion is whether the fingertip point does not change the stripe of segmentation. If this situation is identified,
the pointing line is not determined by line fitting, but by taking the line through the fingertip with the same
direction as in preceding frames in which the number of reliable convex hull centers on the arm has been high.

The location of the fingertip required as an indicator is determined as the point of the segmented arm in the
camera images which is closest to the projection wall. In our interaction environment, this point can be easily
determined as a point on the arm segment closest to one of the horizontal or vertical image boundaries, see
figure 4.3.

4.4.3 Filtering of the Screen Point

Because the final object of interest in our application is the position of the cursor on the screen, features of the
time behavior of this position may also be used for correction. As before, the correction depends on the mode
of interaction. We distinguish between location pointing — the user points to the projection wall and does not
move the arm, correcting pointing — the user moves the arm slowly to adjust the position of the cursor within
a small area, and dynamic pointing — the user moves the arm quickly to a completely new location. The mode
of interaction is identified by applying thresholds on the differences of cursor positions between successive
frames. In all the three cases the mouse cursor position is obtained by a weighted average of a number of
cursor positions in the past thus achieving a smoothing effect. For location pointing, the weights are chosen
so that smoothing is stronger than for correcting pointing. For dynamic pointing, just a minor smoothing is
performed.

Let p? be the point on the backprojection wall computed from the frames at time ¢. Let p'~! be the actual
cursor position at time t — 1. Let 0 < r; < 75 be two threshold values.

e If ||p! — p'!|| < 7y then the interaction mode is assumed to be location pointing.
o If r; < ||p! — p'!| < ro then the interaction mode is assumed to be correcting pointing.

o If ry < ||p! — p'~!|| then the interaction mode is assumed to be dynamic pointing.

For the choice of the values of 1 and ro we refer to section 4.5.

Let be 0 < wy < ws. Dependent on the recognized interaction mode, the new cursor location is calculated as

y wy -pt+ (1 —wy) - pt~!  for location pointing
pt =1 wy-p'+ (1 —ws) pt~! for correcting pointing
p’ for dynamic pointing

A suitable choice of the values of w; and ws is w; = 0.65 and wy = 0.4.
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4.5 Experimental Evaluation

In the following we present the results of an experimental investigation of an arm-based pointing implementa-
tion. We have implemented the approach in Visual C++ on a Dual Pentium PC 1100 MHz equipped with two
Matrox Meteor 2 framegrabbers.

Performance evaluation of an interactive system like the presented one has two aspects: the computational
performance and the usability. Both aspects are not completely separated. For example, usability also depends
on the time the system needs to react on actions by the user. The central technical quantity in our case is the
frame-rate, that is the number of frames delivered by the camera which are processed per second. The reason
is that the frame rate is equivalent to the update rate of the arm position reconstructed by the system. On the
hardware platform mentioned above, a frame-rate of 8 frames per second is achieved.

The following evaluation of usability concerns quantitative aspects of performing a task of localization. The
task is made concrete by demanding from the user to locate a cursor attached to the arm location at a desired
location on the backprojection screen. The analysis is restricted to the effect of system parameters in the last
phase of this task when the user is already close to the goal. The reason is that the arm motion performed to
move the cursor between two distant locations usually should be rapid so that the precise trajectory traversed by
the cursor between those locations usually is not of interest. We do not consider the input of precise trajectories
like e.g. required for free-form curve drawing. This task is not adequate for our scenario - the already existing
troubles in a mouse-based environment are extended by the fact that the users would certainly become rapidly
tedious if they would have to perform slow and precise arm motions over a longer period of time.

For the evaluation of the aspect of usability just described we have performed the following experiments.

Experiment: Usability of arm-based pointing

Approach: The quality how a user interacts with arm-based pointing is investigated with different parameter
settings of the arm-based pointing algorithm. For that purpose the user controls a cursor on the projection
screen by arm motions. The goal is to place the cursor, initially outside, into a button of size 170 mm x
50 mm (length x height) as fast as possible. The test was repeated several times.

Parameters: The effect of the filtering parameters r1 and ro is investigated. 1 and r, define cursor deviations
characterizing location pointing and correcting pointing. Their values are varied in order to check the
effect on the usability of the system.

Measured quantities: The experiment has been performed in two sessions. The two sessions have taken
place at different times. This means that the environment has not been identical with e.g. lighting. At
the beginning of the sessions, the system has been calibrated. In the first session, the experiment has
been performed by two different user, called user 1 and user 2 in the following. In the second session,
three users have been involved, called user 3, 4, and 5. User 1 and user 3 have been the same person. He
has been experienced with the system. Users 2, 4, and 5 have been novices, without knowledge of the
system. User 2 and 5 has been female, the others male.

The time necessary to place the cursor on the button is measured by a stop watch. The user enters an
interaction phase by saying “start” and terminates it by saying ”stop” when the cursor is on the button.

Observations: The table 4.1 compiles the best, worst and average times of the trial sequences for different
parameter settings. The best results are achieved for r; = 6 cm and ro = 12 cm in both sessions. The
measured values of both sessions are rather similar, although the environment has not been identical.

The test has shown that it is equal for the speed of interaction whether the user has much experience
with the system (user 1 and 3) or interacts with the system for the first time (user 2, 4, and 5). Further,
there is just a minor learning effect. Although the user already knows for the second test series where
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to move the hand in the areas of interaction in order to reach the button, the average times improve just
minor, if at all. The strong difference between the best-case time, the worst-cast time, and the average
time in seconds (see figure 4.1) shows that the user must have some luck to reach the goal. Reasons are
the troubles of image segmentation, the position of the cursor at the beginning of the interaction, and the
arm position from where the user starts with the interaction.

The following experiment analyzes the location of the cursor in the location mode of interaction quantitatively
and gives implications on the required size of interaction elements.

Experiment: Stability of the cursor position for location pointing

Approach: Jittering of the cursor position is measured for the situation that the user helds the arm in a fixed
position. Measurements are performed with and without weighting the centroids (chapter 4.4.1) in order
to investigate the effect of error correction.

Parameters: The same setting of the parameters r; and r5 like in the preceding experiment has been used.

Measured quantities: The experiment has been performed in the second session of the preceding experiment,
data from the first session do not exsit. The maximum distance of cursor positions, the average cursor
position, the variance of the cursor position, and the maximum and minumum difference of the cursor
positions from the average, measured on a representative sequence of positions (Table 4.3).

Observations: Measurements for the important situation of keeping the cursor at a desired fixed position
show that these techniques reduce the error to about one half of the original one. On good illumination
conditions a desired cursor location can be found with a deviation between 0.5 and 2 cm. An implication
of this observation is that selectable items, like icons or menu fields, should have at least this size on the
projection wall.
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User 1 User 2
T T2 best worst average best worst average

2 4| 823 16,32 1251 | 9,65 17,85 13,51
4,56 24,66 13,23 | 6,58 22,66 12,75
2 6| 565 18,22 11,78 | 4,52 19,74 12,60
3,25 19,65 12,84 | 4,65 19,65 14,03
3 8] 658 21,9 11,99 | 818 21,72 13,09
6,65 19,65 1463 | 898 21,95 15,49
4 101 10,19 19,65 13,13 | 11,67 25,65 15,53
6,87 15,55 1186 | 7,86 17,37 12,65
5 10| 358 19,65 11,01 | 698 23,25 12,57
3,55 16,98 9,84 | 598 18,98 11,35
6 12| 3,65 13,65 701 | 477 14,74 8,28
3,96 14,20 801 | 621 1565 9,99
8 15| 6,59 17,58 11,31 | 6,20 14,05 11,34
5,65 15,65 10,63 | 6,58 16,87 11,01
8 20| 865 21,52 16,22 | 9,99 20,52 16,25
11,98 23,10 16,02 | 9,65 2251 15,83
10 24| 965 21,32 15,77 | 11,04 25,66 17,47
10,65 21,98 16,61 | 11,75 22,40 17,00

User 3 User 4 User 5
T T2 best worst average best worst average best worst average

2 4] 985 17,66 13,68 | 11,52 18,56 15,03 | 6,71 18,95 12,74
6,66 22,51 1457 | 9,21 18,10 12,87 | 7,85 18,78 12,23
2 6| 825 1684 13,70 | 5,66 21,47 15,14 | 7,16 19,83 13,77
4,88 21,65 1350 | 8,14 22,05 14,74 | 6,99 18,20 13,53
3 8| 622 2204 1256 | 791 1521 12,34 | 5,65 19,66 11,91
6,65 22,55 16,14 | 10,84 18,56 14,40 | 6,65 21,60 16,50
4 10| 1165 17,70 13,50 | 9,06 28,57 16,03 | 12,41 21,25 15,26
8,62 15,59 12,34 | 875 13,24 10,27 | 8,09 16,59 13,61
5 10| 358 21,80 12,77 | 5,00 16,95 10,94 | 5,84 22,56 14,22
4,66 17,08 11,14 | 3,25 18,84 10,74 | 5,88 18,88 12,27
6 12| 2,48 12,05 7,73 | 6,88 1384 10,15 | 4,58 16,48 9,17
2,84 14,20 9,21 | 8,77 14,50 11,45 | 555 12,21 10,41
8 15| 895 2144 12,90 | 9,66 14,73 12,33 | 6,17 19,66 12,48
6,07 16,80 11,11 | 7,84 20,49 14,45 | 6,72 12,40 10,23
8 20| 9,84 2042 16,74 | 1297 22,72 16,28 | 9,61 20,05 17,03
11,98 22,12 16,94 | 10,01 23,25 15,76 | 14,03 20,21 15,36
10 24| 9,00 22,00 16,30 | 12,87 25,00 18,23 | 10,21 22,14 17,39
12,42 21,94 17,41 | 12,71 21,87 17,14 | 7,59 22,68 16,41

Table 4.1: Usability of arm-based pointing and influence of the control parameters r; and r5. Tests have been
performed for several settings of the tolerances 1 and ro. Every row corresponds to a particular parameter
setting. For every setting 20 trials have been executed. The best, worst, and average times in seconds have
been determined for the first 10 trials and the second 10 trials of every sequence, which are displayed in two
lines on every row.
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User 1
T To best worst average

2 4| 949 17,87 13,49
6,92 21,34 13,26
2 6] 694 1922 13,40
5,58 20,44 12,73
3 8] 691 2012 12,38
7,84 19,65 14,63
4 10| 11,00 22,56 14,69
8,04 15,67 12,35
5 10| 521 20,64 12,03
4,74 12,15 11,07
6 12| 4,47 14,15 8,47
547 14,15 9,81
8 15| 751 17,47 12,07
6,57 16,44 11,49
8 201021 21,05 16,50
1153 22,23 15,98
10 24| 10,55 23,22 17,03
11,02 22,17 16,91

Table 4.2: Average over all users

User 3 User 4 User 5
T T2 best worst average best worst average best worst average

2 413,67 29.62 21.69 | 12.65 32.27 22,79 | 12.36 21.77 15.92
11.65 26.97 1793 | 9.65 35.66 2455 | 11.64 20.07 15.71
2 61697 2455 20.84 | 12.67 26.57 18.99 | 12.59 22.40 17.27
10.65 25.67 16.88 | 9.66 25.64 16.56 | 10.78 22.64 17.01
3 81166 2265 1808 | 806 29.11 16.88 | 8.64 23.45 16.03
10.37 22.65 17.62 | 10.64 22.37 19.24 | 9.67 22.63 18.90
4 10| 10.66 22.64 16.60 | 10.64 24.56 17.93 | 13.61 24.68 18.73
13.64 22.59 18.66 | 11.90 20.46 1590 | 8.65 22.97 16.85
5 10| 9.05 19.68 1352 | 9.67 21.67 1797 | 12.65 29.54 21.43
9.08 21.34 16.21 | 9.60 19.99 15.70 | 10.10 35.22 20.84
6 12 | 15.00 13.54 1996 | 9.67 16.37 13.26 | 9.36 29.64 16.59
12.64 16.97 1519 | 12.29 19.20 15.09 | 10.00 30.64 17.03
8 15| 13.67 19.06 16.26 | 11.67 31.04 21.36 | 9.68 22.65 15.17
11.19 19.99 15.06 | 6.66 22.67 15.87 | 11.55 16.92 15.03
8 20 |17.81 24.67 2124 | 826 2321 17.78 | 12.00 21.67 18.51
16.48 30.46 22,95 | 16.55 25.00 21.27 | 1465 21.54 17.35
10 24 | 13.00 2254 18.89 | 11.68 23.09 19.19 | 13.64 25.64 21.28
22.54 31.05 2492 | 16.43 21.90 19.51 | 11.67 21.67 18.85

Table 4.3: Results of the same test like in the preceding table, but without correction centroid weighting. As
could be expected, the location time is worse.
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Chapter 5

Projection-based Pointing

Projection-based pointing is based on the location of the hand relatively to the backprojection wall. The space
of interaction is given by the common region of observation of both cameras, cf. figure 5.1.

application

Yigion

Figure 5.1: The space of interaction of projection-based pointing which is defined by the region of space
observed by both observing cameras.

Problem: 3D Projection-based Pointing
Input. Data about the location of the user’s hand in space.

Output. The image h of a reference point h corresponding to the user’s hand, on the backprojection wall with
respect to a virtual projection which maps the interaction space onto the screen.

For example, a virtual projection center a could be chosen in front of the screen. Then the point h on the
projection wall determined by the position of the reference point h of the hand could be obtained by intersecting
the line through a and h with the projection wall. The projection has to be defined in a way that it maps the
interaction space so that its image approximately covers the projection wall.

Figure 5.2 shows the adaptation of the interaction space concept to the solution of the problem of 3D projection-
based pointing presented in this chapter. We briefly outline the steps in the following.
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Figure 5.2: Adaptation of the interaction space concept to projection-based pointing.

The segmentation unit is the same as in chapter 4 and yields the region of the current frame representing the
user.

The subsequent region filtering unit detects erros of contour of the region and corrects them, if possible. The
reason is that, like arm-based pointing, projection-based pointing suffers from the results of segmentation.
Detection is based on the observation is that the regions of the arm found in subsequent frames of a camera do
not deviate too much from each other. The 3D region filtering unit uses the observation that the regions of the
arm found by segmentation in corresponding frames of different cameras at the same time are related to each
other. Besides error detection by violation of expected relations based on epipolar correspondence, the unit
also performs a correction of contours, using the collected data. Section 5.4.2 and section 5.4.3 are devoted
to error detection based on space coherence and time coherence, respectively, while section 5.5 is concerned
with contour correction.

The behavior of the region filtering units is controlled by the paramater control unit. Dependent on combi-
nations of error features detected by the region filtering units, the parameter control unit adapts the values of
parameters defining the behavior of the region filtering units. The details are presented in section 5.5.4.

The next step in the data flow of figure 5.2 is performed by the 2D feature extraction unit. The 2D feature
extraction unit determines the point of the filtered user region which is closest to the projection wall. For a
straight hand, this point can be expected to correspond to a finger tip. For that reason we will call the point 2D
finger tip or 2D finger tip point in the following.
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The 2D finger tips are input of the 3D virtual interaction space. The 3D virtual interaction space uses the 2D
finger tips to calculate the desired pointing goal h of 3D projection-based pointing. We present two solutions
for the calculation of the screen point h. The first solution, called explicit projection (Section 5.2), reconstructs
a spatial finger tip point h in space explicitly. The required mapping information can be either obtained by
Euclidean calibration like in Section 4.3.1, or based on a different approach which uses so-called projective
calibration.

Projective calibration is also applied in our second solution, called implicit projection (Section 5.3). In that
case, the spatial finger tip point is not calculated explicitly. Rather, its image on the image plane of a virtual
reference camera, which defines the projection from the interaction space on the projection wall, is immediately
calculated from the finger tip points on the images of the two observing cameras.

Before forwarding the screen point h to the abstract interaction space or the application, the 3D virtual inter-
action space smooths the motion of the screen point. The goal of smoothing is to eliminate jittering resulting
from sensor noise and processing errors, in particular in phases of location pointing. Location pointing means
that the user tries to keep an item at some location on the screen by holding the arm still. Section 5.6 is
concerned with that topic.

Since projection-based pointing makes significant use of epipolar geometry, the following section briefly re-
calls the main definitions of this concept.

5.1 Epipolar Geometry

5.1.1 Fundamentals of Epipolar Geometry

The epipolar geometry is induced by two pinhole cameras C; and C'; with center points c; and c; (figure 5.3).
Let m be a point in space seen by both cameras. The three spatial points m, c; und c; span the so-called
epipolar plane F'. The line of intersection 1; ; of F" with the image plane I; of camera Cj; is called epipolar line
of camera C;;. The epipolar line of camera C; in the image plane of camera C; is defined analogously.

m

Figure 5.3: Epipolar geometry. Corresponding points appear on the epipolar line on the image plane of the
other camera.

Let m; und m; be the images of m on the image planes of C; and C}, respectively. Epipolar lines express
a particular epipolar relation between those points. The point m; is located on the epipolar line 1; ;, and the
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point m; on the epipolar line 1, ;. The reason is that for a given image point m ; the corresponding spatial point
m can be located everywhere on line c;m;. The projection of the spatial line c;m onto the image plane I; of
camera C;, however, is just the epipolar line 1; ;. This means that a search for the corresponding point m; of a
point m; on the image plane of camera C; can be restricted on the epipolar line 1; ;, and vice versa (figure 5.3).

All epipolar lines of the image plane I; intersect in the same point e; ; of the image plane, called epipol. The
epipole e; ; is the intersection point of line c;c; with plane I;. For any point m;, the epipolar line 1; ; is
given as intersection of the plane F defined by the points c;, c; and m; with the image plane ;. All epipolar
planes define a bundle of planes all containing c;c;. Hence all epipolar lines contain the intersection point e; ;.
Intuitively, the epipole e; ; maps the center c; of camera C; into the image plane I;.

5.1.2 Projective Space and Duality

Epipolar geometry can be mathematically expressed in a natural way in terms of projective geometry [Fau99].
The 2D projective space consists of all lines traversing the origin of the coordinate frame of the affine 3D space.
The lines define the 2D projective points. A mapping onto the 2D affine space is obtained by considering the
plane z = 1. A projective point is mapped to the affine point which results from intersection of its line with
the plane z = 1. Vice versa, an affine point is mapped to the projective point which corresponds to the line
connecting the origin with the affine point. A projective point is represented by a coordinate triple of one of
the points of its line. Often the triple whose third entry is equal to 1 is taken. This means that an affine point
m = (u,v)* is projectively represented by the projective coordinates m = (u, v, 1)*.

In the following we use two projective spaces, defined with respect to the camera-centered coordinate frame of
the cameras C; and C}, respectively. A point (z,y, z) in these coordinate frames gets the projective coordinates
i = (u,0,1)" = (5, 2,1)°

z Z
where m = (u,v)* are the coordinates of the image of (x,y, z)* on the image plane of the camera, up to a
scaling factor depending on the focal length of the camera.

Lines in 2D projective space correspond to planes through the origin of the defining 3D space. A projective
line is represented by a triple 1 = (g,b, ¢)* which is one of the normal vectors of the defining plane. The
projective points on a projective line 1 = (a, b, ¢)* are given by the solutions m of the equation m*1 = 0.

In this way, projective points as well as projective lines are represented by triples. Thus a triple can be under-
stood as a point or as a line. This observation leads to the principle of duality of projective geometry which
says that propositions on projective points and lines remain valid if both terms are exchanged.”

A projective line 1 = (Iz,1y,1,)* can be expressed as cross-product of the coordinate vectors of two of its
projective points m, = (ug, vq, 1)* and my = (up, vp, 1)*,

1=1h, x . (5.1)

Figure 5.4 shows that an image line is represented by a line in the projective space. The two image points
m, and m; lie on the image plane and define an image line. The points m, and my,; together with the origin
generate a plane L. The cross-product of m, and m;, generates a normal of L which represents the projective
line.

According to the principle of duality, a projective point can be represented as cross-product of two projective
lines, o
m =1, x 1, (5.2)

1, and 1, represent the two planes L, and L; and thus are normals of the planes. The corresponding affine lines
are generated as intersection of the two planes with the image plane. The intersection of the affine lines gives
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m,,

m,

Figure 5.4: The cross-product of the coordinate vectors m,, m, of two projective points yields a coefficient
vector 1 of the connecting projective lines.

a point whose projective representation is the intersection line of the planes L, and L;. Since the intersection
line is perpendicular to 1, and 1, m calculated according to (5.2) represents the projective intersection point.
Figure 5.5 gives a graphical description.

Figure 5.5: A point represented as an intersection of two lines.

5.1.3 Normalized Corresponding | mage Points

We now come to the epipolar relation of corresponding points. It tells that the corresponding point m; is
located on the epipolar line 1; ;, and vice versa, in the projective space. The derivation is as follows [XZ96].

Using the projective notation, the epipolar lines are projectively represented by the equations
ﬁ’l;ij,i =0 and Ii’l;kild = 0, (53)

where the equations refer to the projective space of camera C; and C';, respectively.
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In Euclidian space the corresponding points are transferred by a rotation R;; and a translation t;; from one
coordinate system into the other,

P; = Rijpi + t4.
Insertion of the normalized points results in

. 1 .
p; = —(ziRi;pi + tij).
Zj
The cross-product with t;; yields
tij X pj = Z—Z,(tz'j x Rijpi).
J

The scalar product with p; gives

Zi A x R

Z_Z'pj (tij X Rijpi) =0. (54)
J

In order to simplify the representation, the cross-product of two vectors is replaced with the multiplication of
a vector with a matrix, t x a = [t]a, where

0 —t. ty
[tij]x = tz 0 —tg;
—ty, tz 0

In this way we get
pj[ti;|xRi;pi = 0.
Putting all to together yields
p;E;jpi = 0. (5.9)
with E;; := [t;;]xR;;. Equation (5.5) is denoted as epipolar equation. E;; is called essential matrix. The
essential matrix has been introduced in [LH81].

5.1.4 TheFundamental Matrix of the Epipolar Relation

By adding the intrinsic parameters A; and A ; in equation (5.5), the corresponding image points are formally
related by
i Fyrh; =0, (5.6)

where F;; = A;f—lEijA;l is the so-called fundamental matrix.

The fundamental matrix F;; expresses the epipolar condition between two image points, m; = (u;,v;,1)* in
camera Cj and my; = (u;, v, 1)* in camera C;.

The epipolar line ij,z- on the image plane of camera C; is calculated by
ij,i = Fijﬁ’li, (57)
and the epipolar line LJ on the image plane of camera C; by

L;; = Fj;m;. (5.8)

Figure 5.4 illustrates that the points of the epipolar line can be obtained by solving the equation rh;fijvi = 0.
The epipoles €;; and &; ;, respectively, are given by

Fjiéj,i = 0, F;zéz,] = 0. (59)
The fundamental matrix between C';, C; and the fundamental matrix between C; and C; satisfy the relation

Fj; = F,. (5.10)
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5.2 Explicit Projection

Explicit projection works as follows.

Algorithm: Pointing by Explicit Projection

Input: The interaction space of figure 5.1 with two observing cameras C, Cs, calibrated by the Euclidean
method of section 4.3.1, and corresponding arm contours c¢; and ¢, in the images of C7 and Cs, respec-
tively.

Output: A pointing goal q on the projection wall.
Steps:

1. Determine the spatial location of the finger tip from the contours ¢; and c,.

2. Calculate the epipolar lines induced by the finger tip point. The segments of the epipolar lines
inside the boundary of the camera images define a quadrilateral region in space. Use a mapping f
of this region onto the projection wall in order to map the finger tip point onto the projection wall.

Step 1 is performed by finding finger tip points m; and ms on the contours ¢; and c,. For this purpose we use
the knowledge of the location of the projection wall. m; and ms are chosen as tangent points of the tangent
of ¢; and co, respectively, in parallel to the image edge on the side of the projection wall. If camera distortion
is relevant, the contours are de-warped in prior. By using the intrinsic and extrinsic parameters of the cameras
C and C, determined by the calibration routine of section 4.3.1, we calculate spatial lines from the center of
projection of C7 to m; and from the center of projection of Cs to ms. The approximate intersection point of
those two lines is reported as finger tip point p (figure 5.6). Formally,

ps = %(Sl + s2), (5.11)
where
St =c1+1t-a, sg=co +1y-b, (5.12)
with
t = nTCQﬂganfcl, to = nﬁclnngECQ’ (5.13)
and
n; =bx (bxa), ngp=ax (axb). (5.14)

Step 2 performs the mapping of the finger tip point p onto the projection wall. The epipolar plane of p as
well as the two epipolar lines on the image planes of the two cameras can immediately be calculated from the
camera parameters. The epipolar line has two intersection points with the boundary of the camera image. The
two lines between the intersection points and the camera center induce a wedge on the epipolar plane. The
intersection of the two wedges defines a quadrilateral region I(p) on the epipolar plane. I(p) defines that part
of the epipolar plane which is observed by both cameras and thus is relevant for interaction. Let p1, p2, P3,
and p4 be the vertices of I(p), indexed cyclically around the boundary.

Let S be the region on the backprojection wall which has to be reached by pointing. We assume S to be of
guadrilateral shape, too, with vertices q1, q2, g3, and qq, so that the first two vertices define the left boundary
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Figure 5.6: Calculation of the 3D finger tip point as approximate intersection of two spatial lines.

of S, the second two the right boundary of .S, and q; corresponds canonically to p;, as shown in figure 5.7.
Then the image f(p) of p on the screen on the backprojection plane is calculated by

qi2:=v-q; + (1 —v) - qo,
Qa3 :=v-qs+ (1 —v) - qs,

f(p) :=wu-qi2+ (1 —u) - qu3,

where u and v are obtained as a solution of the system of equations

pi2 =v-p1+ (1 -v)-p,

P43 =v-ps+ (1 —v)-ps,

p=u-pi2+ (1 —u)- pas.
In the current implementation, q;, ¢ = 1,...,4, are determined by first removing the third coordinates from
the points p;, @ = 1,...,4. The resulting points are considered as points in the coordinate system of the
backprojection wall. The quadrilateral induced by them is scaled with respect to its center so that it contains

the desired projection area of the screen. The corner points of the resulting quadrilateral are used as p;,
i=1,...,4

5.3 Implicit Projection

Implicit projection takes into account the fact that the location of the hand needs not necessarily be determined
in order to get the final pointing position. This observation diminishes the calibration requirements against the
approach of arm-based pointing and explicit projection, which is one of its main advantages.

Implicit projection uses a result of Faugeras [FR96] which shows that in a configuration of three observing
cameras the location mg of a spatial point q in the image of the third camera can be calculated from the
locations m; and my of q in the images of the first and second camera, under the condition that the fundamental
matrices between each pair of cameras are known. We recall this result in section 5.3.1.

Section 5.3.2 presents the algorithm for calculation of the pointing goal from the 2D-locations of the hand
provided by the images of the two observing cameras. Section 5.3.3 is devoted to the procedure of calibration
in which the required fundamental matrices are determined.



5.3. IMPLICIT PROJECTION 73

Figure 5.7: A quadrilateral surface of interaction (grey) is determined from the location of the user’s hand.
Then a bilinear correspondence is established between the surface of interaction and the projection wall. The
bilinear mapping couples the hand and a corresponding point on the wall (indicated by the cursor) so that a
desired region of the wall is covered when moving the hand in the region of interaction.

5.3.1 Epipolar Geometry for Three Cameras

Faugeras [FR96] has presented possibilities for the calculation of points, lines, and curves from views by three
cameras.

Let F;;, and F;, be the fundamental matrices between the cameras C;, Cy, and the cameras C;, Cy, respec-
tively. If two corresponding points m; and m; of a spatial point in two camera images are known, then its
corresponding point my, in the third camera can be predicted by

Ii’lk = Fikﬁ’li X ijﬁlj. (515)

This can be seen as follows. Let ik,i and i,w- be the vectors of the two epipolar lines in the image of the third
camera C}, with respect to the other two cameras (figure 5.8.), calculated according to equation (5.7). Since
both epipolar lines have emerged from the corresponding points m; and 1, and thus from the same spatial
point m, the corresponding point m; must lie on both epipolar lines. By taking the cross-product, the desired
corresponding point is obtained by equation (5.2).

The corresponding point in the image of the third camera, my, is derived from m, by taking the first two
coordinates divided by the third coordinate. An observation interesting for the following is that m; can thus
be calculated without examination of the point in the taken image.

5.3.2 Calculation of the Pointing Goal by Fundamental Matrices

The key idea of the approach of implicit projection is to define the projection of the finger tip onto the projection
wall by a real camera. This so-called projection camera is placed in front of the projection wall so that it
covers the projection area and the interaction space well. In the calibration phase, a function g is determined
which maps the image of the projection camera onto the image of the backprojection plane. Furthermore,
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iy

Cy

Figure 5.8: Epipolar geometry of three cameras.

the fundamental matrices between the projection camera and every observing camera are determined in the
calibration phase. Using the method of Faugeras, we are able in the application phase to calculate the location
of the finger tip in the image of the projection camera, and from that location a location on the projection wall
by applying g. The projection camera can be removed after calibration since the location of the corresponding
point on its image plane is calculated by Faugeras’ method and needs not be detected from a real image.

The procedure to be performed in the application phase for calculation of the pointing goal works as follows.

Algorithm: Calculation of Pointing Goal by Implicit Projection

Input: The interaction space of figure 5.1 with two observing cameras C'y, C5, corresponding contours c¢;
and ¢, in the images of C'; and Cs, respectively, the fundamental matrices between the two observing
cameras and a third virtual projection camera Cy, a mapping g between the image of the virtual camera
and the wall.

Output: A pointing goal on the wall.
Steps:

1. Determine the finger tip points m; and ms from the contours ¢; and ¢, in the two camera images.

2. Calculate the corresponding finger tip point mg on the image of the virtual projection camera using
m; and my by equation (5.15).

3. Determine the pointing goal m,, = g(my) on the wall by using the given mapping g between the
image of the virtual camera and the wall.

For g, a linear function is used which is defined in the next section as part of the calibration procedure. The
finger tips m; and msy in step 1 can be determined by the approach described in section 5.2. The calibration
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of the overall configuration including the projection camera C, which is required in step 2, is described in the
following section.

5.3.3 Projective Calibration

Projective calibration of our interaction environment works as follows.

Algorithm: Projective Calibration of the Interaction Space

Input: The configuration of the interaction environment according to figure 5.9, consisting of two observing
cameras Cy and C5, a projection camera CYy, and the projection wall. The projection camera is placed in
front of the wall so that it covers the projection area and the interaction space well.

Output: The fundamental matrices F'1g, F2g, and, optionally, F'-, as specified below.
Steps:
1. Determine the wall intergration mapping g between the image plane of the projection camera and

the wall.

2. Determine the fundamental matrix F'1y between the first observing camera C; and the projection
camera Cj .

3. Determine the fundamental matrix F'oy between the second observing camera C and the projection
camera Cs.

4. Remove the projection camera.
5. Determine the fundamental matrix F, between the two observing cameras.

The last step is optional. It is only required if a correspondence analysis should be executed in the application
phase. The order of the steps is hot mandatory: the first step can also be performed later. For the mapping g of
step 1, a linear function

g(x) =S(x—b)

is used, where b is the center of the image of the projection camera Cy and x is an arbitrary point of the image,

Figure 5.9: Projective calibration. The projection camera is only required for calibration, not in the phase of
application.
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both given in the coordinate frame of the camera, with pixel units in the x- and y-coordinates, and

a, 0
S_<O ay>

a scaling matrix. The image g(x) is expressed in the coordinate frame of the projection wall, in pixel units,
too.

The parameters b and S are determined in the calibration phase of the overall system described in section 5.3.3,
as follows. A pattern of points, as shown in figure 5.9, is displayed on the projection wall. The parameters are
obtained by minimizing the sum of the squares of the distances between the points of the pattern and the image
of the corresponding points in the image of camera Cy with respect to g. This least squares problem is solved
by a standard method. Lens distortion of Cj is not be taken into account.

In the next section, the procedure of calibration of a pair of cameras required in step 2 and 3 is explained.

5.3.4 Calibration of a Pair of Cameras

In the following we present an approach to calibration of a pair of cameras which yields the fundamental
matrix of the two cameras. It takes into account our special situation of cameras with very different location
and orientation, in contrast to usual stereo camera configurations where the cameras are arranged closely
to each other, with very similar or even parallel viewing directions. The approach combines several known
methods. In [LH81, XZ96, Har97, FL96, Zha96] further methods for the calculation of the fundamental matrix
are presented which, however, are not immediately well suited for our camera configuration.

In the following subsection we discuss the requirements on a solution in our interaction environment in more
details. The subsequent subsection describes the solution we have chosen.

Observations

In a parallel stereo configuration the two cameras are arranged closely to each other, both showing into the
same direction. This configuration causes only small horizontal disparities, so that the corresponding points
are almost at the same location in both camera images. This implies that their distortions should almost be the
same. Experiments have shown that an improvement of the calibration error by just about 0.05 pixels can be
achieved if lens distortion is taken into account.

Because of our extremely different camera locations — the view directions of the camers are about perpendicular
to each other — lens distortion may have a strong influence. Corresponding points do not just differ by a small
disparity but may be located completely elsewhere. This observation implies that lens distortion may have a
different effect. The deviation is particularly high close to the boundary of the image because the biggest lens
distortion is given there. Experiments have shown that an improvement of the calibration error of about 1.9
pixels can be achieved by taking lens distortion into account. As figure 5.10 shows, epipolar lines become
curved under the influence of lens distortion.

For calibration, a set of calibration points is used. A difficulty arises if the image shows outliers in the re-
constructed calibration points. In order to eliminate outliers, Least-Median-of-Square algorithms have been
applied [Fau99]. These algorithms only use half of the given set of pairs of points which are most suited for
optimization. The second half does not have influence on the result of calibration. In this manner up to 50% of
the outliers can be eliminated. However, it has turned out that these algorithms, in the case that no outliers ex-
ist, just eliminate those points which are close to the image boundary and hence are important for correction of
lense distortion. Elimination of those points makes the calculation of the lens distortion coefficients in-precise
and more senitive to noise of the remaining points. Thus we do not apply a Least-Median-of-Square approach,
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Figure 5.10: Epipolar curve corresponding to the finger tip in the image of a second camera which is located
to the left.

and take particular care that outliers are avoided. Outliers are removed by first performing the calculation with
all points. Then the image is subdivided by a 4 x 4 grid, and in every grid cell the point with the largest
calibration error is removed. In this way the removed points are about equally distributed over the whole point
set.

In [Har97] a general improvement has been achieved by normalizing the point data resulting from segmenta-
tion. In the following we adopt that approach.

Normalization moves the origin of the image to the image center and scales the maximal coordinates to 1.0. Let
T; and T; be the matrices of camera 7 and camera j which perform normalization in homogeneous notation.
Then

m? = T, (5.16)

T

m? = T;m;, (5.17)

are the normalized homogeneous image coordinates of m; and m;. Insertion into the epipolar relation
m;F;;m,; yields the version of the equation used in the following,

m "Gy = ] *T; Fy;T; . (5.18)
The fundamental matrix of the non-normalized version can be extracted by F;; := T;sz-jTZ-. In the following

we assume that the given points are normalized.

The algorithm

The algorithm works as follows.

Algorithm: Projective Calibration of a Pair of Cameras

Input: The images m; ;, m; j, of calibration points my, k = 1,...,n, n > 8, taken by two cameras C'; and
Cj.

Output: A fundamental matrix F; ; and a vector k of camera distortion coefficients.
Steps:

1. Calculate an initial solution x of (5.21) under the assumption that there is no lens distortion.
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2. lterate
(@) Solve

miny Y ~ g(1m; g, m; 1,)° (5.19)
%

with F;; = const. from the preceding step.
(b) Solve

ming,, Y _ g(1h; x, m; ;) (5.20)
k
with k = const. from the preceding step.

We use the calibration ball of section 4.3 which is placed at several locations in the view of both cameras. An
image is taken by both cameras for each location. The 3D-coordinates of the m, are not needed.

The algorithm solves the calibration problem by finding a solution of the minimization problem

ming,, ik Y g(10; &, 10 ;) (5.21)
k

where K K
g(m; g, m; ) = h(m; ;) Fi;h(m, ;). (5.22)

m, ;. and m; ;, are the real observable distorted images of the ideal, non-observable distortion-free image points
m, , and m; ;, of cameras C; and C}, respectively. The function h(m,; ) corrects the distorted image points.
The parameters of the fundamental matrix F';; and of the vector k = (k1, k2)* of the lens distortion coefficients
define the vector of solution x.

The basic idea of the algorithm used for solving the optimization problem is to separate the calculation of the
coefficients of the fundamental matrix (step 2(b)) and those of lens distortion (step 2(a)). One of the group of
coefficients is alternatingly held constant and the other one is updated in order to approach an optimal solution

Xmin-

The algorithm works according to the principle of iterative descent. The group of coefficients whose values
are modified define the vector of descent. Using just one group of coefficients can be understood as a partial
optimization with repect to those coefficients. The partial optimization yields a new improved solution vector
x. By iteration, the solution vector converges towards the desired optimum x,;,. See [NM93] for details.

Like in [Zha96] we use the Levenberg-Marquardt algorithm for optimization of the part of the fundamental
matrix, and the simplex method of Nelder und Mead [NM65] for optimization of the part of the coefficients of
lens distortion.

The next subsection presents the calculation of the initial solution x of step 1. The subsequent two subsec-
tions describe the algorithms for the correction of distortion of the distorted coordinates (step 2a) and for the
calculation of the fundamental matrix (step 2b).

Step 1: Calculation of an initial solution

The initial solution xg is calculated analytically by the eight-point algorithm of Longuet-Higgins [LH81],
under the assumption that no lens distortion occurs. The eight-point algorithm optimizes

H Aok ~ 2
ming,; (mj,sz’jmi,k)
k
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Wlth l'i'l]’k, = (uj,k7 Uj,k’a 1)*, mj,k = (uj,k’v 'Uj7k), and l'i'li7k = (ui,kh Ui,ka 1)*, I’l’li7k = (ui,k’v vi,k’)' The I’epl’esen-
tation is transferred into the linear notation
ming||Uf]| 2. (5.23)

Here a vector f is defined from the variables of F';;, and a column u; of the matrix U = [uy, - - -, uy] from the
points m; ; and mmy ;,
f = (Fu1, Fio, Fig, Fon, oo, Fog, Fyy, Fio, Fi3)*

U = (Wi kW) ke, Vi kWj k> Ujoes Wi kUj ks Vi kVj s Vg ks Wi s Vs 1)
||.|| denotes the Euclidean norm.

Different methods of solution for this system of equations exist which are extensively described in [Fau99].

Step 2a: Correction of distortion of the points

Im contrast to [Zha96] we use a different function for correction of distortion. Because of our system archi-
tecture we have to assume that the cameras are adjusted with different levels of zoom in order to cover the
interaction space optimally. For that reason, it can be expected that the cameras have different properties of
distortion, in contrast to [Zha96]. Thus both cameras have their own coefficients k., ¢ € {3, j}, of distortion.

For correction of distortion we use the same model as before, however with just one coefficient per camera,
and with mg . = (0, 0)* by assumed normalization,

rhc =m,+m- (kcr2)a

where m. = (1., 0.)* are the real observable undistorted image points of the ideal non-observable undistorted
image points m. = (u,v)*, ¢ € {i,7}. The distortion is calculated from the normalized coordinates (u,v)*
by r := vu? 4+ v? . In this formula we do not consider the deviation from the center. The reason for that
approach, and for using only k.. is that the calculation becomes less accurate if more parameters are taken into
account, because of the noise in the given data.

Step 2b: Calculation of the fundamental matrix

[FL96] shows that the algorithm is unstable for noisy data. For that reason, the optimization problem (5.23)
is replaced with a slightly modified optimization problem in the iterative phase of the algorithm. The goal is
minimization of the epipolar distance by

ming,, > (d(m;, Fijm, p)* + d(m i, Fi; p)?), (5.24)
k
where the distance of an epipolar line 1 = (I,,1,,1.) to a point m = (u, v) is calculated, according to [Fau99],

by
lgutlyu

d(m,1) : \/m (5.25)
That yields the new optimization problem
ming,, Y _ e (i} Fyjmh; i)°, (5.26)
k
where . X 1
kT (lzz,k,g; + lzz,k',y i Z?kx + lik,y)5 &.27)

and 1; ; and 1; ;, are the epipolar lines induced by m;, on the images of the two cameras C; and C).
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5.3.5 Extension of Homogeneous Calibration to Euclidean Calibration

In the following we present an alternative approach to the algorithm of extrinsic calibration of a pair of cameras
used in the Euclidean calibration of the interaction space described in section 4.3.1. It consists in an extension
of homogeneous calibration of a pair of cameras. It allows an immediate extension of the procedure of projec-
tive calibration of the interaction space to a calibration procedure (section 5.3.3) which solves the same task as
the procedure of Euclidean calibration of the interaction space in section 4.3.1.

We assume that the intrinsic parameters A;, A ; of two cameras C; and C; are known, and that the fundamental
matrix F;; has been delivered by projective calibration. The goal is to calculate the transformation between
the camera coordinate system of C; and C';, composed of a vector of translation t;; and a matrix of rotation
R;;. The algorithm described in the following consists in four steps and works like in [Hor90].

Algorithm: Extension of Homogeneous Calibration to Euclidean Calibration

Input: The intrinsic parameters A;, A ; of two cameras C; and C;, and the fundamental matrix F';;.

Output: The transformation between the camera coordinate frame of C; and C;, composed of a vector of
translation t;; and a matrix of rotation R;;.

Steps:

1. Calculate the essential matrix
E;; = ATF A,
2. Extract candidates of translation t from E;;.
3. Extract candidates of rotation R from E;;.
4. Select t;; and R,;; from the candidates of steps 2 and 3.

The algorithm uses the orthogonality of the matrix of rotation in oder to extract translations and then rotations.
For selection of the right transformation, the distance of at least one corresponding pair of points is required,
which is provided by using a ball-shaped test object like in section 4.3.1. The details are described in the
following.

Step 2: Extraction of translation

According to [Hor90], the translation vector t can be extracted from the essential matrix as follows. Let be
R = (r; ry r3) the matrix of rotation. Then the essential matrix can be written as

E:(tXI'l t Xro tXI‘g).

Every column of the essential matrix is orthogonal to t, and t is in parallel to the cross-product of the other
two columns. Hence, with E = (e eq e3),

e; xey=(t xry) x (t xry) = (rjt)t (5.28)

and
ey X e3 = (rjt)t, es x e; = (rat)t. (5.29)

In order to minimize numerical errors, the one of highest amount among the three expressions, denoted by
e; X e;, is taken in order to represent the vector of translation. The scaling factor can be derived from the fact
that the sum of the squares of the entries of the essential matrix is equivalent to 2(t*t). This can be seen from

[t x r1]|*> 4 ||t x ra||? + ||t x r3||> = 3(t*t) — t*t.
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Then
t:im
|le: x ej]

1
§Trace(EE*) (5.30)

yields two possible solutions for t where Trace(.) denotes the sum of the squared diagonal elements of a
matrix.

Step 3: Extraction of rotation

Let
Cofactors(E) := (ex x e3 e3 X €] €] X eg)”

be the so-called cofactor matrix of E.
By (5.28) and (5.29), the cofactor matrix can also be written as
Cofactors(E) = ((rt)t (r3t)t (r3t)t)”.
This expression can be transformed into
Cofactors(E) = (t(R"t)*)* = ((tt")R)".
With [t]% := tt* — (t*t)I this leads to
[t]xE = [t]2R = (tt)R — (t*t)R.

From this expression we get
(t"t)R = Cofactors(E)* — [t] < E. (5.31)

Since equation (5.30) has two solutions +t and —t, this equation yields two possible matrices of rotation, a
matrix R for +t, and a matrix R_ for —t.

Step 4: Selection of the solution

A negative sign in equation (5.4), resulting in p;(—E)p; = 0, generates two new combinations of solutions
from the two combinations. By the decomposition —E = —([t]«R) = (—[t]x)R this is coupled with the
translation, resulting in the following combinations of solution,

e +t with R for an essential matrix E
e —t with R_ for an essential matrix E
e —t with R for an essential matrix —E

e 1+t with R_ for an essential matrix —E

Furthermore, the epipolar equation (5.4) can be multiplied with an arbitrary scalar factor. Thus the real length
of the translation vector is unknown, and 3D reconstruction is just possible up to a scaling factor. If, however,
for at least one pair of corresponding points p;, p; the distance between those points is known, the scaling
factor can be calculated. For that purpose, the method of depth calculation of the ball, used in the Euclidean
calibration procedure, is applied. The corresponding points fulfill the relation

p; = Rip; + st.
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In order to choose the right one of the possible combinations, the two relations R, and R._ have to be tested.
The combination with +t and —t automatically result in the sign of s. The matrix of rotation with the smallest
variance of s over all points p; 1, p; . used is the desired one. The choice is performed as follows. We set

Sk - Lo
Pjk=RiPik+ | Sky-tly
Sk,z "tz
and resolve the three equations for sy, ,, si 4, and sy, ., respectively. The originally one scalar value s, is re-

placed with three values sy, .., 51 4, Sk, SINCe it cannot be expected that they are identical for all three equations
because of rounding errors. Then we set

al 1
Z >S5kt Sk,y + §Sk,z)2a

N
s 1
of "= NZ < Ska T Sk,y+ ’sz ut)?.

For R_ we proceed analogously for the calculation of the average 1.5 and of the variance 032.

Based on the variances, R;; and t;; are chosen as

R, — R4+ if 0j2 <oy
J R_ otherwise,

o futt it <o
+ W5 -t otherwise.

5.3.6 Evaluation of Calibration

In this section we investigate the accuracy of the approaches of calibration.

For the experimental analysis, points whose positions are provided in 3D space have to be determined by the
calibrated camera configuration. The points are delivered by the four corners of a test plate which is placed at
different locations in space. Figure 5.11 shows views on the test plate taken by the ceiling and side cameras of
our interaction environment. The positions of the corners in the images can be well determined. However, in

N . TR
\ it M

Figure 5.11: The corners of a rectangular plate are used as test points for investigation of accuracy of calibra-
tion. The left image shows a view from the ceiling camera, the right image a view from the side camera of our
interaction environment.
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order to avoid additional sources of error, we have preferred manual extraction of the corners by mouse clicks
against automatic segmentation.

A first idea was to determine the absolute position of the plate in space by conventional manual measurements.
However, it has turned out that manual measurement is too inaccurate — the results have varied up to 4 cm. For
that reason we have decided to investigate only the relative precision of the camera pair. We investigate how
far the images of the same point on the two camera images correspond.

One approach is to take the ray from the camera center to a reconstructed test point, for both cameras. Ideally,
both rays should intersect. However, because of calibration errors, they usually will not. We measure the error
by the minimum distance of the two rays. Since this error measure requires reconstruction of the 3D test point
we call it Euclidean error.

A second approach is to consider the epipolar line which is induced by the image of a spatial point on the
image of the first camera on the image of the second camera. The distance between the epipolar line and the
image of the point on the image of the second camera is taken as error value. A second error value is obtained
by exchanging the role of the two cameras. For this measure the knowledge of the fundamental matrices is
sufficient, a complete reconstruction of the 3D test point is not required. For that reason we call this error
measure projective error.

In the following we analyze the error of the methods of Euclidean and of projective calibration of a pairs of
camera, and compare both methods using the two types of error measure.

Projective error analysis

Projective error analysis is based on the projective error.

Experiment: Projective error analysis

Approach: The two-camera-configuration of figure 5.1 is used. The plate is placed at several locations in
space, as shown in figure 5.11, so that the interaction space is well covered. The corner points visible in
both cameras are manually extracted from the two camera images. The projective error for the extracted
corner points is determined for the case that the system is calibrated by projective calibration, and for
the case that the system has been calibrated by Euclidean calibration.

Parameters: None.

Measured quantities:

Two projective error pairs for every test point, one for the projectively calibrated camera pair and one
for the Euclidean-calibrated camera pair. The projective error pairs can be immediately calculated for
projective calibration since the fundamental matrices are available. For Euclidean calibration the funda-
mental matrices can be derived from the calibration data.

Observation:

Table 5.1 shows the results. The coordinates of the images of the test points in the images of camera C;
and camera C';, as well as the projective errors listed in the right columns of the table are given in pixel
units of the 196 x 144 camera images.

In the average, the projective error of Euclidean calibration is between 0.71 and 0.77 pixels. For pro-
jective calibration the average projective error is about 0.81 to 0.95 pixels. This means that projective
calibration is slightly worse. The reason could be that, for Euclidean calibration, calibration objects in
3D are used, while for projective calibration just the 2D positions in the camera images are used.
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Figure 5.12 visualizes the projective error by discs centered at the images of the test points on the images
of the two cameras. It can be noticed that both calibration methods show lower errors close to the center
of the images than at the borders. Projective calibration is slightly worse at the border than projective
calibration. The reason could be that for projective calibration just one instead of two lens distortion
coefficients is used.

Sometimes it may happen that even by the manual approach the test points cannot be located precisely
in the images. The position of a test point can vary by +1 pixels. In order to get a feeling of the resulting
error, table 5.2 shows the effect of slight variations on the projective error for the test point 15-bl. It
can be noticed that a deviation by 1 pixel can already cause a difference of the projective error by 1.19
pixels. If the deviation occurs in the x- and y-axis simultaneously, the difference is 1.64 pixels. For a
deviation by one pixel in both camera images, the difference is even 2.79 pixels. Taking this accuracy
of measurement into account, it can be concluded that both calibration methods are very accurate.

i {)7
1
100

08
60
112

01
il
.
120
198

-
100
60

< 184

0

BN D'
| g S SN

0 50 100 180 0 0 100 150

140

Figure 5.12: Visualization of the projective error by discs centered at the images of the test points on the images
of the two cameras. The radius of a disc is proportional to the projective error at this point. The upper row
shows the errors in the two camera images for Euclidean calibration, the lower row the errors for projective
calibration.

Euclidean error analysis

The following experiment analyzes the Euclidean error by the experiment of analysis of the projective error in
the preceding subsection analogously.

Experiment: Euclidean error analysis
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Approach: The two-camera-configuration of figure 5.1 is used. The plate is placed at several locations in
space, as shown in figure 5.11, so that the interaction space is well covered. The corner points visible on
both cameras are manually extracted from the two camera images. The Euclidean error for the extracted
corner points is determined for the case that the system is calibrated by projective calibration, and for
the case that the system is calibrated by Euclidean calibration.

Parameters: None.

Measured quantities:

Two Euclidean error values for every test point, one for the projectively calibrated camera pair and
one for the Euclidean-calibrated camera pair. The Euclidean error can be immediately calculated for
Euclidean calibration. For projective calibration, the extension of homogeneous calibration to Euclidean
calibration of section 5.3.5 is used.

Observations:

The results are compiled in table 5.3. In order to get a feeling for the accuracy, we again investigate the
effect of variation of the images of a test point by +1 pixel. Starting with the center (192/2,144/2,1)*
of the image of one of the cameras in homogeneous coordinates, we calculate the relation of the depth
to the variation by 1 pixel. Let m; = (95.5,72,1)* and my = (96.5,72,1)* be two image points in
homogeneous pixel coordinates which differ by 1 pixel. With the calibrated intrinsic camera parameters

222.299 —0.947957 97.5193
A= 0 221.228  68.6043
0 0 1

and with the spatial points p; in the camera coordinate system corresponding to m;, we get
s;m; = Ap = A_lsimi = Pq, 1= 1,2

We consider the case that p;, i = 1, 2, have equal distance from the camera center, that is s := s; = ss.
For this case we get

1
p1 —p2 = sA  (miy —mip) =sA7L [ 0
0
or
Plae — P2 0.004498
P1,z — P22 0
Hence
Tdiff ‘= Plx — P22 = S 0.004498.
sm = Ap implies s = p,. Both together yields the dependency
Taiff = Pz - 0.004498 (5.32)

between the x-difference of two points of equal distance and the distance.

The center of the interaction space is at about 200 cm from the cameras. According to (5.32), one pixel
difference on the image implies a x-difference of 0.8996 cm in space. If a deviation of one pixel is
assumed in both camera images, the x-difference is 1.7992 cm. Based on this observation, it can be
concluded that both methods of calibration are very accurate.



86 CHAPTER 5. PROJECTION-BASED POINTING

5.4 Error Detection by Coherence Analysis

Our configuration with two observing cameras opens the possibility to cross-check the results of segmenta-
tion performed on the two frames taken by the two cameras on the same time for consistency. The reason
for usefulness of this approach is a spatial coherence between the two images which could be disturbed by
erroneous segmentation. Another possibility is to cross-check the results of segmentation performed on con-
secutive frames delivered by the same camera. In that case the time coherence existing between the frames
could also be disturbed by erroneous segmentation.

In the following we use both types of coherence to define error features, in section 5.4.2 for the case of spatial
coherence and in section 5.4.3 for the case of time coherence. Then we present an approach to error correction
which uses the error features. It turns out that for certain combinations of error events, it is possible to construct
a satisfiable approximation of the true, but because of errors not available, result of segmentation. Section 5.5
is devoted to that issue.

541 Reated Work

Our approach of error detection and correction has been inspired by several existing methods, which, however,
cannot be applied in a straightforward way to our configuration because of our camera arrangement and the
requirements of online processing.

In [HPOO], Han and Park introduce a contour matching algorithm using epipolar geometry. They use one
moving camera to track one object contour. The goal is to detect corresponding contour parts between both
frames. The approach matches the contours part by part using the fact that both contours have almost the same
shape. In our interaction environment, in contrast to the stereo configuration used by Han and Park, the two
cameras have a wide baseline, so that an object may appear quite differently in both camera views and the
method by Han and Park cannot be applied.

Similar work has been performed in the area of structure-from-motion. Based on contour segmentation, the
publications [Zha95, TK95] use epipolar geometry, as we will do, too.

Other approaches like [AP96] go the inverse direction. The 3D interaction space is virtually covered by a
regular 3D grid of cells. By epipolar geometry, the grid is projected onto the camera images. Every projected
grid cell is checked for whether it is occupied by the object in both images. The union of the occupied 3D
cells defines an approximation of the object in space. Matching errors are recognized by grid cells occupied
in just one image. This observation could be used for error correction, but it is less precise because of the
discretization by the grid.

In [Buv] a stereo vision grouping and matching algorithm is used to improve segmentation results if edge
detection yields unsatisfactory results, like edge junctions which are not completely detected, or edges which
are split in parts. The algorithm groups edge segments in the gradient image by their connections with other
edge segments and by their relative positions. The connected segments in one of the stereo images are matched
with corresponding segments in the other image using epipolar geometry. The segmentation is improved by
modifying the matched components by considering the geometric properties existing in only one of the two
images. For example, if two segments belonging to the same connected component are linked in one image,
but not in the other one, then the two segments are linked together. A similar approach has been described
in [SH87], which needs six minutes to repair one pair of frames. Thus both methods are too slow for online
correction of segmentation, as required. Furthermore, they are based on stereo camera pairs, in contrast to our
camera configuration with quite different views.
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5.4.2 Error Detection by Spatially Corresponding Contours

We use error features derived from properties of epipolar geometry. The advantage of this approach is that
the necessary mutual epipolar lines on the images of the two cameras are available from both calibration
procedures used, in particular for projective calibration which requires relatively moderate calibration efforts.
In the architecture of figure 5.2, the task is performed by a processing unit which gets data from every image
stream, denoted 3D region filtering unit in the figure.

The basic idea of error feature detection is to sweep the interaction space in front of both cameras with the
epipolar planes of the two cameras. The epipolar planes are the planes containing the centers of both cameras
C; and C;. The sweep is intuitively performed by rotating a plane around the line through the camera centers.
The sweep starts with a plane below the object of interest, that is in our case the pointing arm, and rotates
until it is completely above the object of interest. The sweeping plane induces a sweeping epipolar line on the
image planes of camera C; and camera C';, respectively. The sweeping epipolar line rotates around the epipole
of its image which can be calculated by formula (5.9). Hence the space sweep can be implemented by two
synchronized plane sweeps. Synchronization is achieved by calculating corresponding contour lines on both
images according to the formulas (5.7) and (5.8). If an epipolar line on the image of C'; is given, one of its
points is used as ; in (5.7) in order to get the corresponding epipolar line on the image of C';. Analogously,
if an epipolar line on the image of C; is given, one of its points is used as m; in (5.8) in order to get the
corresponding epipolar line on the image of C;.

In the ideal case, the object of interest is represented by single contours c; and ¢; in both images, and the
sweeping epipolar plane induces sweeping epipolar lines on both images which simultaneously enter and
leave the corresponding contours, as depicted in figure 5.13. If the corresponding sweeping lines do not
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Figure 5.13: An object of interest represented by single closed corresponding contours c; and c¢; in the images
of cameras C; (left) and C; (right). In the ideal case depicted here, the sweeping epipolar plane induces
sweeping epipolar lines on both images which simultaneously enter and leave the corresponding contours.

enter or leave the contours simultaneously, the segmentation is erroneous. This observation leads to the error
features used for error detection based on spatially corresponding contours defined in the following. An error
feature consists of an interval between consecutive entry or exit points of the corresponding epipolar lines of an
epipolar sweep, which represents a contradicting behavior on the two images. Figure 5.14 gives an example.
Segmentation of the image of camera C; has found a contour larger than the one of the object of interest. The
sweep finds the interval between the lines 1;; 1 and g; 1, expressed in the notation of the image of C;, or g; 1
and 1; ; 1, expressed in the notation of the image of C’;, where 1;; ; is the corresponding epipolar line of g; 1,
and 1; ;1 is the corresponding epipolar line of g; ;. This interval, however, is not feasible since it violates the
condition that either both corresponding epipolar lines contain object points, or none of them does.

The following algorithm generalizes this observation and extends it to the case of the occurrence of several
non-connected contours.
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Figure 5.14: The segmentation of the image of C; has delivered a contour larger than the correct one (left). In
this case, the space sweep finds an interval [1;; 1, g; 1], expressed in the notation of the image of C; (right), or
[gi.1,1i 1], expressed in the notation of the image of C; (left) which is not feasible.

Algorithm: Error Feature Detection from Spatially Corresponding Contours

Input: One or more contours of the object of interest in the images of two cameras C; and C}, delivered by
segmentation, and the fundamental matrix F; between C; and C).

Output: Error features, expressed by classified intervals of an epipolar sweep.
Parameter: A threshold iy > 0.

Steps: Scan both images with the epipolar plane, and report those intervals where one scan line intersects
a contour but the other does not, and report those intervals and corresponding type which fulfill the
appropriate condition of one of the following types:

S1.i/j: The interval is the first interval of the sequence of reported intervals. Its entry plane enters a
contour of the image of camera C;/C}. Its exit plane enters a contour of the image of camera C;/C;.
The interval length exceeds a given threshold /.

S2.i/j: The interval is the last interval of the sequence of reported intervals. Its exit plane leaves a
contour of the image of camera C;/C;. Its entry plane leaves a contour of the image of camera
C;1C; The interval length exceeds a given threshold /.

S3.i/j: The interval is neither the first nor the last interval of the sequence of reported intervals. Its
entry plane leaves a contour of the image of camera C';/C;; and is inside of a contour of the image
of camera C;/C;. Its exit plane enters a contour of the image of camera C;/C}; and is inside of a
contour of the image of camera C;/C;.

S4.i/j: The interval neither intersects a contour of the image of camera C,;/C; nor a contour of the
image of camera C;/C;.

Each of the main canonical cases Sk, k = 1,...,4, has two symmetric versions, Sk.i and Sk.j.

S1 covers the case of a non-feasible globally first interval. The example just discussed and illustrated in
figure 5.14 is of case S1. Another example for case S1 is that the contour found by segmentation is smaller
than the correct contour. Figure 5.15 depicts this situation. The problematic interval [g; 1,1;;1] (W.r.t. the left
image) and [1; ; 1, g;,1] (W.r.t. the right image), respectively, contains pairs of corresponding epipolar lines one
of which contains a contour point and one of which does not, thus indicating an erroneous situation.

The case S2 is the corresponding case to S1 of a non-feasible globally last interval.

The threshold [ is required since even for the case of correct segmentation it cannot be expected that the
corresponding epipolar lines enter or leave the contours in exactly the same moment. If the distance between
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Figure 5.15: The segmentation of the image of C; has delivered a contour smaller than the correct one (left),
with epipolarly extremal points m;; and m; . In this case, the space sweep finds an interval [g;1,1;1],
expressed in the notation of the image of C; (right), or [1; ; 1, g:.1], expressed in the notation of the image of
C; (left) which is not feasible.

the entry/exit point in one image and the epipolar line induced in that image by the entry/exit point of the
other image does not exceed the threshold, a simultaneous occurrence of both events is assumed, and no error
interval is reported.

A particular interest in the cases S1 and S2 results from the observation that, according to the arrangement
of the cameras in our scenario of interaction with a backprojection wall, the finger tip is an extremal point of
the epipolar sweep in both images, cf. e.g. figure 5.23. The thin lines traversing the top right image from left
to right, and the lines traversing the bottom left image from top to bottom are epipolar lines corresponding to
events of particular interest in the configuration depicted in the figure, as explained later. Thus the algorithm
can detect segmentation errors at the finger tip which are particular critical for projection-based pointing. As
we will see later, with additional information it will even be possible to propose a reasonable correction of the
error.

The error feature S3 treats the case that a gap between two contours occurs in one of the camera images, but no
gap is observed in the other image. Figure 5.16 gives an example. The image of camera C; (left image) shows
two contours resulting from segmentation, whereas the image of camera C'; shows just one contour. The gap
corresponds to the S3-type sweeping interval [g; 3, g; 4] on the image of camera C; and in the interval bounded
by the corresponding epipolar lines, [1;; 3,1, 4].

There can be at least two reasons which could have caused the case S3. The first reason is that the process of
segmentation has wrongly produced the gap between the contours (left image). The second reason is that seg-
mentation has wrongly merged two separated contours into one contour (right image). Under the assumption
that the object induces exactly one contour in both images, only the second case is irrelevant.

The error feature S4 is relevant if the boundary of the region covered by the object of interest in the images
consists of just one connected contour. S4 describes an interval of epipolar pairs of sweeping lines which
do not intersect any contour in both camera images. Since the sequence of sweeping intervals starts with a
globally first entry point and a globally last exit point, the interval separates at least two contours in not less
than of the images. Thus the single-contour-assumption is violated and an error is reported in form of that
interval labeled with S4.

5.4.3 Error Detection by Image Sequence Analysis

Error detection by image sequence analysis is based on matching of the contours of the object of interest in two
consecutive frames delivered by the same camera. This means that the operation is performed on the image
stream of camera C; and on the image stream of camera C; separately. In the architecture of figure 5.2, the
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Figure 5.16: Occurrence of a sweeping interval of type S3, [g; 3, g 4] in the left image, and the epipolarly
corresponding interval [1;; 3,1;; 4] in the right image.

task is performed by a separate processing unit for every stream, denoted in the figure by time-based 2D region
filtering unit.

Our approach to contour matching uses the assumption that the relevant contours on consecutive frames are
very similar, and that they are almost rigid. In fact, in the case of pointing in our interaction environment,
the relevant contour usually envelopes the arm and possibly a comparatively small part of the torso. The
arm contour and the torso contour are approximately rigid, but they could move one against the other. We
consider the motion of the arm by applying the Karhunen-Loéve transformation (KLT) or Principal Component
Analysis (PCA) [GWO02]. The KLT, applied to the contours of two consecutive frames, yields a transform into
a coordinate frame with its origin at the average of the input points, and coordinate axes oriented in direction
of the extremal extensions of the contour. By the characteristics of the contours of interest in our application it
can be expected that the arm contours of two consecutive frames match well after applying the KLT to both, if
they have been properly segmented.

A possibility to measure the similarity between contours is to investigate the distance of every vertex of one
polygonal contour to the other contour, after application of the KLT to both contours,

h(p", c5) = min{||p* — d*|| | o* € o5}, (5.33)

h(d®, cf) .= min{||q* — p*|| | p* € }}, (5.34)

where ¥, c& denote the KLT-transformed sets of contour vertices on two given images, respectively, and p*
and g are vertices on ¢} and c5, respectively.

Another possibility is to measure similarity on the original contours in the same way,
h(p,c2) :==min{|lp —ql| [ g € c2}, (5.35)

h(q, e1) := min{|[p —qf[ | p € c1}, (5.36)

where ¢1, ¢co denote the set of contour vertices on the two given image, respectively, and p and g are vertices
on ¢; and ¢, respectively.

As explained, our contours could contain different parts, for which either the one or the other measure makes
sense. For that reason we use the following measure formulated with respect to the original data,

h*(p, cz) == min{h(p, c2), h(p¥, ch)}, (5.37)
h*(q, c1) == min{h(q, c1), h(a", )} (5.38)

A straightforward error measure based on error detection by image sequence analysis is the maximum deviation
between the two contours, measured in both direction, in this sense.
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Figure 5.17: Visualization of the distance ~* between two contours in subsequent frames, in both directions.
Contour segments consisting of vertices on one contour which has got a nearest neighbor on the second contour
at a distance of less than 3.5 pixels are displayed in green, the others in red.

Algorithm: Error Feature Detection by Image Sequence Analysis

Input: The contour c;, of the segmented region in a frame of a camera k, the contour ¢, of the segmented
region in the preceding frame.

Output: An error feature e(cy,c; ) which is 1 if the distance between the two contours exceeds an error
threshold hg, and 0 else.

Parameter: An error threshold hg > 0.
Steps:

L ,U(Ck’C];) = max{h*(p?cg)?h*(qack) ‘ Pec, qe CI:}’
2. Ifv(ck,cp ) > ho, then e(cy, ¢ ) == 1else e(cy, ¢, ) :=0;
3. Report e(cy, ¢, ).

v(ck, ¢, ) is the so-called Hausdorff-distance of the two point sets ¢; and ¢;. It can be calculated by the

O(nlogn)-algorithm of [ABG*01], n the number of involved vertices.

This measure is particularly useful in the important case of location pointing when the user holds the hand still.
In that case an error can be reported if the value delivered by the algorithm exceeds a given threshold kg, as
done by the algorithm.

Figure 5.17 visualizes the distances ~2* between two contours in subsequent frames, in both directions. Contour
segments consisting of vertices which have a nearest neighbor on the second contour at a distance of less than
3.5 pixels are displayed in green, the others in red.

5.5 Contour Correction by Coherence Analysis

In section 5.4.2 we have described error features based on images taken at the same time by the two cameras
observing the interaction space, while in section 5.4.3 error features based on consecutive frames of the same
camera have been proposed. Now we combine both concepts in order to try to correct erroneous contours.
In the architecture outlined in the diagram of figure 5.2, this task is distributed among the processing units
responsible for error detection based on spatial coherence (3D region filtering unit) and those responsible for
error detection based on time coherence (time-based 2D region filtering). For that purpose, data have to be
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transferred. The time-based region filtering units supply the 3D region filtering unit with contour and distance
data. The 3D region filtering unit sends data related to the epipolar sweeping intervals to the time-based region
filtering units. The decision whether a correction, and if so, which type is executed, needs a global view. It is
taken over by the 3D region filtering unit.

The following subsections present heuristics of correction for several configurations of contours which have
shown to be useful: correction by contour shrinking, by contour expansion, and by gap closing. The heuristics
are applied if a certain combination of error features and configurations of contours, listed with each of the
heuristics, occurs. For reasons of efficiency, they do not cover all possibilities, but many relevant ones.

55.1 Correction by Contour Shrinking

Correction by contour shrinking works as follows.

Algorithm: Correction by Contour Shrinking

Parameters: [y > 0 of spatial error feature detection, hy > 0 of time-based error feature detection, a threshold
h1 > 0.

Spatial error feature: S1,: (analogously S1, 7, 52,1, S2, j).

Time-based error feature: e(c;,c; ) = 1 where ¢; is the contour of interest on the current frame of camera
C;, and ¢, is contour of interest on the preceding frame of camera C';.

Configuration:

1. ¢; consists of one contour loop.
2. ¢; consists of one contour loop.

3. h*(m;1,c; ) > hi where m, ; is the entry/exit point of the S1,i-interval of the epipolar sweep,
and the nearest neigboring vertex of m; ; on ¢; is on the same side of the tangential epipolar line
of m; ; as the vertices adjacent to m; ; on ¢;.

Correction:
It is tried to construct a new contour ¢; by replacing a segment ¢; ¢ of the contour ¢; which contains m, ;,
with a segment c; , which is obtained from a corresponding segment ¢; o of the contour ¢;” by rotation,
translation, and scaling. Figure 5.18 depicts the contour ¢; ; in black and the contour Cin in blue and
green. The green part represents the segment c, . It is constructed by the following steps.

Steps:

1. Walk along ¢; in both directions, starting at m; ;, until vertices p; and p,. with ~*(p;, ¢; ) < hy and
h*(pr,c; ) < hy are found. Let p; and p,- be the corresponding nearest neighboring vertices of
p; and p,, respectively, on ¢;". The red line segments in figure 5.18 indicate the nearest-neighbor-
relation between vertices on ¢; and c; .

2. If p; and p,. exist, then

(a) Define a segment of ¢, , take that segment as c; , and rotate, translate, and scale it so that it
fits as segment ¢; o between p; and p,;

(b) Report the new contour and return.
3. Otherwise return without correction.
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Figure 5.18: Contour correction by shrinking. The contour ¢; ; of the current frame is drawn in black, the
contour of the preceding frame ¢; ; in blue and green. The green part between the two blue vertices represents
the segment c; , which is used to replace the erroneous segment between the two black vertices who correspond
to the blue vertices. The red line segments indicate the nearest-neighbor-relation between vertices on ¢; and

C; -

Figure 5.19 shows an example taken from our case study. The first row shows the given configuration. In
the left image, the contour at the hand found by segmentation is too large, in the right image it is correct. The
second row shows the preceding frames of both images. In both frames, the contours have been found correctly.
The third row shows a color coding of the distances of vertices of the contour in the preceding frame to the
contour of the current frame. Vertices of a distance > 3.5 pixels are drawn in red, the others in green. The
images of row 4 show the epipolar lines bounding the S1-error interval, the constructed new contour segment
in the left image (green), the replaced contour segment (blue), and the contour of the region of the preceding
frame (cyan).

The choice of hy is subject of the later section 5.5.4.

5.5.2 Correction by Contour Expansion

Correction by contour expansion is quite similar to correction by contour shrinking, and works as follows.

Algorithm: Correction by Contour Expansion

Parameters: [y > 0 of spatial error feature detection, o > 0 of time-based error feature detection, a threshold
hi1 > 0.

Spatial error feature: S1,i (analogous S1, 7, 52,14, 52, 7).
Time-based error feature: e(c;,c; ) = 1, where ¢;, ¢; are defined as before.
Configuration:

1. ¢; consists of one contour loop.
2. ¢; consists of one contour loop.

3. h*(m;a,¢; ~1) > hy where m,; ; is the entry/exit point of the S1, i-interval of the epipolar sweep,
and the nearest neigboring vertex of m;; on ¢, and the vertices adjacent to m; ; on ¢; are on
different sides of the tangential epipolar line of m; ;.

Correction:
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Figure 5.19: Contour correction by shrinking. First row: The given configuration: In the left image the contour
at the hand found by segmentation is too large, in the right image it is correct. Second row: The preceding
frames of both images where the contours have been found correctly in both images. Third row: Color coding
of the distances of vertices of the contour in the preceding frame to the contour of the current frame. Vertices
of a distance > 3.5 pixels are drawn in red, the others in green. Fourth row: The epipolar lines bounding the
S1-error interval, the constructed new contour segment in the left image (green), the replaced contour segment
(blue), and the contour of the region of the preceding frame (cyan).
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Figure 5.20: The contour c; ; of the current frame is drawn in black, the contour of the preceding frame c;
in blue and green. The green part between the two blue vertices represents the segment c; , which is used to
replace the erroneous segment between the two black vertices which correspond to the blue vertices. The red
line segments indicate the nearest-neighbor-relation between vertices on ¢; and ¢; .

Figure 5.21: Contour correction by expansion. First row: Segmentation has delivered a contour which does
not include the hand. Second row: The epipolar lines bounding the S1-error interval, and the constructed new
contour segment in the right image (green).

It is tried to construct a new contour ¢ by replacing a segment c; o of the contour ¢; which contains m,; 1,
with a segment c;’o which is obtained from a corresponding segment c; , of the contour ¢;” by rotation,

translation, and scaling. Figure 5.20 depicts the contour ¢; ; in black and the contour ¢;; in blue and
green. The green part represents the segment c; . It is constructed by steps analogously to those of the
contour shrinking.

Figure 5.21 shows an example of contour expansion. The first row shows an image for which segmentation
has delivered a contour which does not include the hand. The two images of the row show the epipolar lines
bounding the S1-error interval. The constructed new contour segment is depicted in the right image (green).

In our implementation we have set hy = hg, ho the parameter used in section 5.5.1.

5.5.3 Correction by Gap Closing

Correction by gap closing works as follows.

Algorithm: Correction by Gap Closing

Parameters: [y > 0 of spatial error feature detection, o > 0 of time-based error feature detection, a threshold
ho > 0.
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Spatial error feature: S3,4 (analogous S3, 5)
Time-based error feature: e(c;,c; ) = 1, where ¢;, ¢; are defined as before.

Configuration:
¢; consists of two contour loops ¢; 1 and ¢; 2, ¢; consists of one contour loop.

Correction:
It is tried to construct a new contour ¢} which consists of four segments ¢/ |, ¢, ¢} 3, ¢} 4. ¢;; and
c; 5 are segments of ¢; ; and ¢; 2, respectively, and c; , and c; , are obtained by rotating, translating, and
scaling two segments of the contour ¢; . Figure 5.22, right, shows the resulting contour c;. The segments
CQ,Q and 0274 are drawn in green. The left part of the figure shows the two contours ¢; ; and ¢; 2, drawn in
black, and the contour ¢; , drawn in blue. Correction is performed by the following steps.

Steps:

1. Calculate the sets V; and V; of all vertices p~ on ¢; with A*(p~,ci1) < h*(P7,ci2),
h*(p~,ci1) < hgand h*(p~,ci2) < h*(p~,cin), h*(p~,ci2) < hg, respectively. The red
line segments in figure 5.22, left, indicate pairs between the vertices p~ and their nearest neighbor
vertices on ¢;.

2. Search for two pairs of vertices (p;,p, ), (4; .4, ) With p;,q; € Vi, p5,q;, € Vs, so that
disjoint segments c; , and ¢; , of ¢;” between p;, p; and q; , q; , respectively, exist which do not
contain vertices in V; or Va. p,, q,., k = 1,2, are represented by blue dots in figure 5.22, left.

3. If such pairs exist, then

(a) Let py, qi be the nearest neighboring vertices of p,, q, on ¢;, k = 1, 2. Rotate, translate and
scale ¢; , and c; 4 so that segments c;,Q and c;A connect p1,p2 and qi1,q2, respectively. pg, qx,
k = 1,2, are represented by black dots in figure 5.22, left.
(b) Consider the four contours which result by splitting c; » at px, qx, £ = 1, 2. Select those two
of them, called ¢; ; and ¢ ,, which approximate c;" best.
(c) Report c;l, cg,Q, 6273, 0274.
4. Otherwise return without correction.

vy
¥

Figure 5.22: The image on the right shows the resulting contour c;. The segments c; , and c; 4 are drawn in

green. The left image shows the two contours c; ; and ¢; 2, drawn in black, and the contour ¢;, drawn in blue.
The red line segments indicate pairs between the vertices p~ and their nearest neighbor vertices on c;.

Figure 5.23 shows an example of correction by gap closing. The left image of the first row shows an erroneous
segmentation which has delivered two contours. The result of error correction is presented in the right image of
the first row. The new contour is drawn in green. The images of the second row show the epipolar lines which
bound the S3-error interval, and the first and last epipolar line of the complete sweeping process, indicated in
both camera views.
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Figure 5.23: Contour correction by gap closing. First row, left image: Segmentation has delivered two con-
tours. First row, right image: The result of error correction. The new contour is drawn in green. Second
row: The epipolar lines which bound the S3-error interval, and the first and last epipolar line of the complete
sweeping process, indicated in both camera images.

In our implementation we have set ho = hyg, ho the parameter used in section 5.5.1.

An analogous case to gap filling is bridge opening. A bridge occurs if two separate regions are false merged
by segmentation. Since in our application the regular case is one contour, bridge opening is not relevant and
thus not treated here.

554 Parameter Control

The time-based analysis and the space-based error analysis use threshold parameters in order to distinguish
between faulty discontinuously deformed regions and regions deformed due correctly to motion. If the thresh-
olds are too high, incorrectly deformed regions are recognized as correct regions. If the thresholds are to low,
regions representing a correct deformation by movement are detected as erroneous. This problem is reduced
by parameter control. In the system architecture of figure 5.2, parameter control is performed by the parameter
control unit. The parameter control unit increases or decreases the parameter values depending on the detected
case in every frame, according to given rules.

We apply parameter control to the parameters Iy and hy (= hg = hs in our implementation) od the preceding
sections. It works as follows.

Algorithm: Parameter Control of Error Correction

Input:

o the S1/52 error features detected by the algorithm of error feature detection from spatially corre-
sponding contours

o the error feature detected by the algorithm of error feature detection by image sequence analysis
for the two observing cameras C; and C);.
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Output: The threshold values subject of control are

e [y > 0 which influences the sensitivity of S1- and S2-intervals

e hy > 0 which influences the sensitivity of difference between the contour of the current frame and
the contour of the preceding frame, measured by the distance of an epipolar tangent point of the
current contour to the preceding contour.

Algorithm:

Parameter control is performed by processing the error features frame by frame. Dependent on the given
configuration of the values of error features of the currently processed frames, the threshold values are
increased or decreased. The cases of configurations causing updating, and the corresponding updates
to be performed, are compiled in figure 5.24. Since the possibility of correction is checked for in the
contours of the image streams of camera C; and C; simultaneously, the table contains columns for both
cameras.

| | 51/52 error feature | contour distance C; | contour distance C; |

case 1: no error low/no error low/no error
parameter

update: decrease [, decrease h; decrease h;

case 2: no error low/no error high/error
parameter

update: - - increase h

case 3: no error high/error low/no error
parameter

update: - increase hy -

case 4: no error high/error high/error
parameter

update: - increase hy increase h

case 5: outlier ¢/inlier j low/no error low/no error
parameter

update: increase [ - -

case 6: outlier ¢/inlier j low/no error high/error
parameter

update: - - -

case 7: outlier ¢/inlier j high/error low/no error
parameter

update: - - -

case 8: outlier ¢/inlier j high/error high/error
parameter

update: increase [ increase h; increase h

Figure 5.24: Parameter control: The threshold values Iy and h; are adapted dependent on error features of the
current frame.

There are different types of cases. The cases 1, 6, and 7 are consistent cases. In these cases, no parameter
update is necessary (although one is performed in case 1, which will be explained later). All other cases
show contradictory error features, indicating that error features are possibly not correctly determined, probably
because of a non-adequate threshold value. In these cases, correction is performed.

For example, in case 2, the distance between the subsequent contours delivered by camera C'; leads to an error,
but the epipolar analysis does not. In this situation it is reasonable to increase k1, as done in the table, since a
higher threshold would have transferred case 2 into the feasible case 1.
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At a first glance it might look strange that the values are decreased in the ideal case 1. The reason, however,
is that case 1 could have happened because the values are too large and not sufficiently sensitive, although an
error might have occurred. By keeping the threshold values in a critical region, it is intended to avoid this
effect, although in this manner in the ideal, error-free case, a certain number of errors might be evoked.

5.6 Point Motion Filtering

When implementing the approach as described up to now, a significant jitter effect of the calculated pointing
goal can be noticed. Reasons for jittering might be the image noise caused by the cameras and inaccurate
segmentation. The errors in the image are additionally intensified by the scaling from the image space into
interaction space.

Another effect are non-continuous jumps of the pointing goal. The reason is the relative low frame rate which
is significantly below the at least 16 frames per second required to give the impression of a continuous motion.

Evidently, filtering is required in order to eliminate that effect. In the architecture of figure 5.2, filtering is
performed by the feature extraction unit. Two filters are applied, a smoothing filter for noise reduction (sub-
section 5.6.1), and an interpolation filter which eliminates the effect of discontinuous motion (subsection 5.6.2).

5.6.1 Smoothing of Point Motion

A sequence of points in space is smoothed by estimating the noise in a given input sequence of points. In our
case, the input sequence is given by the calculated finger tip points in space. From the noise, a tolerance value
is calculated which defines the size of an axes-parallel box around a finger tip point. As long as a finger tip lies
inside the preceding box, the center of the box is reported as the filtered position of the finger tip. Otherwise,
the current finger tip point is forwarded without modification. The details are as follows.

Algorithm: Smoothing of Point Motion

Input: A sequence of points q;, 7 =0, ..., in 3D space

Output: A filtered sequence of points q;, ¢ = 0, ..., of probably less variance than the input sequence.
Paramters: A scaling factor s > 0 and a weight « > 0.

Steps:
7:=0;
Fori=1,2,....

1. If q; is in a static interval of the input sequence, that is
ik > 0N Ggim1k <0)V (gik <OAgi—1x >0),

where g; ., k € {z,y, 2}, denotes a coordinate component of

- 0 ifi =0,
87 ai—aqiy ifi>0,
then
(@ p; = q;.
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(b) Calculate

ha) 2 0 if j =0,
J h(a)?_, +a-((3g — 38j-1)* —h(a)7_y) ifj >0,

7j—1
where
0 if j =0,
& = { Pj

—Pj-1 if 7 > 0.

(c) Update the extension of the boxto 2 - s - h(a)jQ.

(d) If the current point p; is inside the box then report the current center of the box as q;.
Otherwise move the box so that its orginally closest corner to p; lies on p;, and report the
center of the box as q;.

(e) Increment j by 1.
2. Otherwise report g; as q;, and reset j = 0;

The square of vector to be taken in step b denotes component-wise squaring of the vector.

In step 1, the algorithm estimates the noise of the input sequence in static phases, when the user is in the
location pointing mode. A static phase means that the difference sequence g; is close to 0 in all coordinates,
here defined by a change of sign of two consecutive values,

(Gik >0NGgi—1k <0)V (gi <OAgi—11 > 0),

where gy, ;, k € {z,y, 2z}, denotes a coordinate component of g;.

h(a) ; denotes a modification of the average squared local variance of the difference sequence g; of the input
sequence in a static phase. The average squared local variance is defined by

h.2

_{% loi(ge—g)? i1
2=

0 else,

where g,. is a local average like e.g.

g, = t(egr+gr1) ifk>1
" gk else.

It can be rewritten recursively as

With respect to the original input sequence, the local variance can be rewritten as

1 N J 1
= Z(gkz -8 = - Z(gk - §(gk +gr1))?
J = =1

B I

141 1
== Z(_gk - _gszl)Q
Jig 2 2

1~ 1 1 )
== Z(§pkz ~ P-1+ 5Pr-2)
J k=
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Thus the local variance can be understood as the average of the squared discrete second derivatives of the input
sequence.

A disadvantage of the local variance is that it equally considers the whole history of the sequence. The modified
value h(«), allows to prefer the more recent values of the input sequence by an appropriate choice of « > 0,
for instance o« = 0.2 instead of the original %

The estimated noise determines the size of the filtering rectangle used by the algorithm. The scaling factor
s > 0 can be used to control the sensitivity of the filter. With s = 2, we could observe experimentally that
about 98% of the noise can be eliminated, that is in 98% of all points of a test sequence the box has remained
unchanged.

Experiment: Smoothing of Point Motion

Approach: The user performs a prescribed pointing motion. It consists of four phases of pointing at a fixed
goal at different locations. The last location is just a slight modification of the preceding one in order to
show that the filter is not too inaccurate.

Data: The sequence of coordinates of the calculated finger tip points, of the x-, y- and z-extensions of the
corresponding bounding boxes, and the resulting smoothed sequence of finger tip points for an image
sequence of 64 frames.

Observation: The approach adapts well to the given conditions. The size of the bounding box correlates with
the amount of noise. Figure 5.25 shows the x-coordinate of the finger tip (blue), the center of the box
(red), the x-extension of the box indicated by line segments, and the sequence difference of the resulting
filtered finger tip points. Up to frame 22, the noise level is low. Thus the resulting bounding box is
small. Noise increases between frames 22 and 28, turning the extension of the box. With frame 35,
noise becomes less, and the size of the corresponding box is reduced continuously.

The box can also be used to remove outliers from the given sequence. An outlier is a point whose position
deviates significantly from the positions of its predecessor and successor which should be approximately the
same in a static phase. We define an outlier as a point p; for which

(95,6 > h(ﬂ)?q,k NGj-1k < —h(a)il,k) V(gik < —h(a)gq,k NGi-1k > h(a)il,k)v
for one of the coordinates &, k € {x,y, z}. For example, let be
Pz,o0 = 10, Pz1 = 10, Pz2 = 30, Pz3 = 10, Pz4 = 10.

This implies
8x.0 = 07 gx1 = 07 8x2 = 207 8x.3 = _207 x4 = 0.

The outlier p, 2 = 30 can be clearly noticed by consecutive positive and negative outliers in the sequence of
differences which can be recognized by the criterion formulated above. In contrast,

Pzo0 = 107 Pz1 = 107 Pz2 = 307 Pz3 = 307 Pz4 = 30

gx,0 = 07 8x1 = 07 gr2 = 207 gx,3 = 07 8rd4 = 0

is recgognized as legal by the criterion.
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Figure 5.25: Smoothing of the motion of a finger tip. The user performs a prescribed pointing motion. It
consists in four phases of pointing at a fixed goal at different locations. The last location deviates just slightly
from the preceding one in order to show that the filter is not too inaccurate. The curves show the x-coordinates
of the given point sequence, of the sequence of center points of the calculated box, the x-extension of the
boxes, and the differences of the x-coordinates of consecutive points of the resulting filtered point sequence.

5.6.2 Interpolation of Point M otion

In order to generate a continuous sequence of points, additional points are inserted between the points calcu-
lated from the input image. We use linear interpolation for that purpose. The current point p; is connected to
the preceding point p;_1 by a line segment. The line segment is divided by & points in equal distance, and
these points, followed by p;, are reported by the responsible feature extraction unit for further processing. The
appearance of continuity increases with k.

5.7 Experimental Evaluation

In the following we present the results of an experimental investigation of an implementation of projection-
based pointing. We have implemented the approach in Visual C++ on a Dual Pentium PC 1100 MHz equipped
with two Matrox Meteor 2 framegrabbers. Like in section 4.5, performance evaluation concerns the computa-
tional performance and the usability.

Concerning computational performance, the system has delivered about 10 locations and pointing directions
per second on this hardware.

The following subsections are devoted to the evaluation of performance aspects of usability, to the analysis of
the effect of point motion filtering, and to the evaluation of coherence-based error correction.
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5.7.1 Evaluation of Usability and the Effect of Point Motion Filtering

The evaluation of the usability of the system again focusses on the task of localization. The following two
experiments are analogous to the experiments of arm-based pointing in section 4.5.

Experiment: Usability of projection-based pointing and influence of control parameters

Approach: The experiment takes place in the interaction environment shown in figure 5.1. A cursor linked to
the user’s hand as described in the preceding sections is displayed on the backprojection wall. A button
of size 170mm x 50mm (width x height) is shown in the center of the screen. The user has to move
the cursor, initially placed at an arbitrary location on the screen, onto the button. This task has to be
repeated several times.

Parameters: As we know, the system has several control parameters whose values could influence the usabil-
ity. In this experiment, we analyze the influence of

e the box size factor s which controls the size of the rectangle used for smoothing of point motion in
the algorithm of section 5.6.1,

e the number k& of cursor positions interpolated between two positions originally delivered by the
system, in order to smooth the cursor trajectory visually, cf. section 5.6.2.

Further, an additional scaling factor m is introduced. It controls the sensitivity of cursor motion with
respect to hand motion, similar like the sensitivity of the mouse of a classical desktop system can be set.
m scales the mapping functions f of section 5.2 or g of section 5.3, respectively.

The quantities are modifed during the experiment.

Measured quantities: The experiment has been performed in two sessions. The two sessions have taken
place at different times. This means that the environment has not been identical with e.g. lighting. At
the beginning of the sessions, the system has been calibrated. In the first session, the experiment has
been performed by two different user, called user 1 and user 2 in the following. In the second session,
three users have been involved, called user 3, 4, and 5. User 1 and user 3 have been the same person. He
has been experienced with the system. Users 2, 4, and 5 have been novices, without knowledge of the
system. User 2 has been female, the others male.

Every user had to perform the task of cursor locations 20 times in sequence with the same set of pa-
rameter values. This action is repeated for several parameter settings. In every round, the data values
measured for the first 10 times have been analyzed separately from those of the next 10 times. The
reason is to analyze a possible learning effect during the experiment.

Timing has been performed using a stop-watch. The user enters an interaction phase by saying ”start”
and leaves it by saying ”stop” when the cursor is on the button.

Observations: Table 5.4 compiles the best, worst and average times of the trial sequences for different pa-
rameter settings.

The influence of the parameters can be qualitatively described as follows. If the scaling factor is too
high, the user can interact over the whole area of the projection wall, but the cursor jumps too much on
the wall. If the scaling factor is too small, the user cannot interact with the whole area of projection. If
the box for noise reduction is too large, the cursor follows a motion of the arm too late. If the box is too
small the cursor jumps too much in order that a goal can be selected. If too many cursor positions are
inserted by interpolation, the cursor lags considerably. If the number of inserted positions is small, the
cursor motion appears unharmoniously.
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A parameter setting of m = 2.5 for scaling, s = 0.5 for box size, and k£ = 1 for the number of inserted
interpolated points is an optimal choice in the used test environment. It could be noticed that the system
becomes too sluggish if the number of interpolated points increases. Subjective observations have shown
that in this case the user moves the hand too far, so that the cursor suddenly moves far beyond the button
to be selected. If the box is larger than 2.0, the user has to perform large arm motions in order to move the
cursor. A scaling less than 1.5 makes this part of interaction easier (see case 1.5 in table 5.4). However,
in this case just objects close to the center of the projection wall can be easily selected while objects at
the border of the display area can be selected hardly or even not.

The results are similar to those of arm-based pointing in section 4. This means that the experience of
the user has practically no influence on the performance of the user. The strong difference between the
best-case time, the worst-case time, and the average time in seconds (see figue 5.4) shows that the user
must have some luck to reach the goal. Reasons again are image segmentation errors, the initial location
of the cursor, and how the user starts with the interaction.

The time required for selection of a button certainly depends on the size of the button. In the following we
investigate the dependency in a quantitative way. Table 5.5 shows the best, worst and average times over
sequences of ten trials dependent on the horizontal and vertical extension of a button.

Experiment: Influence of the button size on selection time

Approach: The user performs actions of selection of a button like in the preceding experiment, for different
horizontal and vertical extensions.

Parameter:
The horizontal and vertical extensions of the button in mm.

Measured quantities: The test persons have been the same like in the preceding experiment. For each ex-
tension of the button, every user executes ten actions of selection. For every action, the required time is
measured as before. For every series, the best, worse, and average times are determined.

Observations: In table 5.5 it can be observed that the experienced user 1 shows a better performance than the
unexperienced user 2. With a few exceptions, it can be recognized that the times are worse for smaller
buttons. The vertical extension has more influence than the horizontal extension. This can be recognized
from the particular high times required by user 1 (9.38 sec) as well as user 2 (12.45 sec) for an extension
of 230 mm x 60 mm. For both users, 80 mm seems to be an acceptable vertical extension. More narrow
buttons lead to worse results.

5.7.2 Evaluation of Coherence-based Error Correction

We will now analyze experimentally the performance of coherence-based error correction.

In the following experiment, the effect of the distance threshold /o which influences the tolerance of correction
of segmentation is investigated. The goal of the experiment is to find an optimal parameter setting and to
compare it with the setting generated by automatic parameter control.

Experiment: Analysis of segmentation error correction

Approach: The experiment analyzes the effect of the approach of error correction. For that purpose, different
parameter settings are investigated. The error correction process is provided with eight sequences of
contours extracted from usual interaction sequences. Each of the eight sequences is characterized by
an error type and the number of occurring erroneous segmentations of this type, which is found out
manually. The following error types are distinguished:
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type 1: outlier, the segment found is too large

type 2: clipped, the segment found is too small

type 3: gap, two segments instead of one

type 4: merged, one segment instead of two.

Figure 5.6 shows the error type occurring in every sequence, the number of its occurrence, and the
maximum error value in pixel units. The error correction process is applied to the sequence of contours

and the number of erroneous segmentations which can be corrected by the error correction process, and
the recognized error type are reported.

Parameters: The distance threshold /y. It controls the sensitivity of error correction by coherence analysis.
Sensitivity is proportional to the amount of /. [y has been selected since it is crucial for the performance
of error correction.

Measured quantities:

e the number of corrected erroneous segmentations.
¢ the maximum distance error occurring in the output sequence after correction,
¢ the minimum distance error of the input sequence which could be corrected.

The distance error is measured like in step 1 of the algorithm of section 5.4.3, but with the original and
the corrected contours as parameters.

Observations: Table 5.7 shows the results of measurements. The success of error correction is presented
by the number (# corr) and percentage (% corr) of corrected errors. Further, the maximum distance
error (err-max, in pixel units) after correction, and the minimum distance error which could be corrected
(err-min, in pixel units) are displayed. oo indicates that no correction as been possible.

Most of the errors are reduced for [, = 3. A smaller value of [; = 2 can reduce the number of existing
errors, but it could happen that correct results are now recognized as erroneous and are falsely corrected.

The following experiment analyzes the effect of coherence-based error correction with parameter control.

Experiment: Analysis of adaptive parameter control

Approach: The experiment analyzes the effect of parameter control on the result of segmentation (sec-
tion 5.5.4). The image sequences of the preceding experiment are used again, and the same error types
are distinguished, in order to compare adaptive parameter control with the results of fixed parameter
settings.

Measured quantities: The measured quantities are the same as in the preceding experiment:

e the number of corrected erroneous segmentations.
¢ the maximum distance error occurring in the output sequence after correction,
¢ the minimum distance error of the input sequence which could be corrected.
Observations: Figue 5.8 shows the results of the experiment. [, = 3 has been used as initial value of adaptive

parameter control, as the best choice of the preceding experiment. Adaptive parameter control yields
better results than a fixed setting.

Experiment: Analysis of cursor stability
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Approach: The experiment uses the scenario of interaction of figure 5.1. The user has performed a hand
motion consisting of phases of rapid motion, slow motion, and location pointing, i.e. no motion. Two
sessions of interaction have been recorded, one lasting 15 seconds (150 frames) and the other about
1.5 minutes (1076 frames).

Case 1.

Measured quantities: Number of frames on which the system yields the desired cursor position in the
phase of location pointing, i.e. still arm, if the raw segmented region data are fed in without further
filtering. The desired cursor position is achieved if the cursor is within a given 6 cm x 6 cm square on
the screen.

Observation: It has turned out that the system yields the desired cursor position in about 92% of the
frames for the raw segmented region data. In 8% of the frames the cursor has not been at the desired
position.

Case 2.

Measured quantities: Number of frames on which the system vyields the desired cursor position, if
coherence-based correction and parameter control are activated, but point motion smoothing is not.

Observation: 97.3% of the cursor positions have been determined correctly by coherence-based correc-
tion.

The preceding experiment investigates the effect of coherence-based error correction with parameter control
on the final point position on the screen. The following experiment is concerned with the interior behavior of
the process.

Experiment: Analysis of coherence-based error correction with parameter control

Approach: The experiment uses the scenario of interaction of figure 5.1. The user has performed a hand
motion consisting of phases of rapid, slow, and no motion. Five sessions of interaction have been
recorded, each yielding an image sequence of 150 to 200 frames.

Case 1. Measured quantities: The percentage of errors corrected by coherence-based filtering, dependent
on the length of the interval (i.e. the number) of consecutive erroneous frames preceding the corrected
frame. Figure 5.26 displays the acquired data. Two cases of interaction are represented in the figure,
one with relatively fast hand motion, and one with relatively slow motion. Furthermore, the analysis has
been performed without and with parameter control. Both curves are shown in the figure.

Observation: The possibility of correcting wrong results of segmentation depends on the number of
subsequent erroneous frames. As it could be expected, the possibility of correction decreases with
increasing intervals. For slow motion, the success of correction was higher. An explanation is that the
regions seen regions, which are used for correction, are more similar to the current one in the slow-
moving case than in the fast-moving case, because of less deformations.

Case 2:

Measured quantities: The development of the percentage of errors corrected by coherence-based con-
tour correction with parameter control over time. For every frame, the percentage of occurrence of
cases 1, 6 or 7, according to the definition of figure 5.24 is plotted for the first 42 frames (figure 5.27),
which are just those cases with consistent contours.

Observation: At the beginning of the interaction, with unfavorable preset parameters, the system detects
many non-matching contours. From frame 35 on, the system behaves better. 80% of the cases are
now recognized as favorable cases. A detection rate of 100% is not possible because of the described
approach of decreasing parameter values in the favorable case 1.
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Figure 5.26: The percentage of errors that could be corrected by coherence-based filtering, dependent on the
length of the erroneous interval of frames. The left figure represents data for a fast-moving hand, the right
figure for a slow-moving hand. The upper curves include parameter control.
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Figure 5.27: The effect of the parameter control loop. The curve shows the development of the percentage of
favorable cases over time, over five image sequences.
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test point C; C;j Euclidean cal. projective cal.

X y X y | Cami Camj min | Cami Camj min
1-blo 172 99 (122 90| 026 0.19 0.19 1.39 097 0.97
1-tr 174 139 | 150 91 039 027 0.27 2.37 159 1.59
1-br 138 137 | 151 114 1.80 151 151 1.80 151 151
1-lu 138 101 | 120 111 1.01 089 0.89 1.16 1.00 1.00
2-blo 169 55| 88 89 116 0.86 0.86 2.09 0.79 0.79
2-tr 173 92 | 117 89 022 015 0.15 1.06 0.74 0.74
2-br 139 96 | 115 112 1.43 127 127 | 0.63 0.55 0.55
2-lu 137 62| 84 111 1.14 1.04 104 | 0.27 024 0.24
3-blo 158 18 | 57 89 0.85 0.66 0.66 0.77 0.60 0.60
3-tr 173 49| 8 88 005 0.04 004 | 014 0.10 0.10
3-br 143 66 | 89 109 1.04 092 0.92 0.30 0.26 0.26
3-lu 130 36| 58 110 1.23 115 1.15 0.11 0.10 0.10
4-tl 113 65| 89 96 046 043 043 0.58 0.52 0.52
4-tr 116 104 | 124 96 1.63 145 145 0.07 0.06 0.06
4-lu 85 72| 85 124 068 0.79 0.68 1.53 1.74 153
5-tl 118 93 | 115 96 068 0.61 0.61 0.76 0.65 0.65
5-tr 121 133 | 150 95 044 037 0.37 2.27 185 1.85
6-tl 21 72| 76 117 0.74 111 0.74 1.73 260 1.73
6-tr 39 103 | 123 111 0.86 1.12 0.86 1.44 184 144
7-tl 25 32| 16 113 0.74 1.08 0.74 1.93 198 1.93
7-tr 32 64| 69 112 029 041 029 1.30 150 1.30
8-br 22 115|145 10 1.06 079 0.79 0.13 0.09 0.09
8-lu 27 63| 99 21 1.57 131 131 1.75 1.30 1.30
10-br 103 125 | 146 21 0.57 0.32 0.32 1.26 0.69 0.69
10-lu 86 72111 30| 018 012 0.12 1.98 132 132
11-tl 129 35| 81 54 0.02 0.02 0.02 1.57 1.08 1.08
11-tr 127 81 |114 54| 019 0.13 0.13 0.89 0.59 0.59
12-tl 121 36| 82 50 020 014 0.14 1.84 127 1.27
12-tr 123 84 | 117 52 113 0.77 0.77 0.05 0.03 0.03
13-tr 16 94 | 121 48 086 0.89 0.86 0.33 0.34 0.33
13-br 14 112 | 137 96 1.16 157 116 | 094 1.25 0.94
14-tl 162 36| 87 54 1.06 0.66 0.66 1.20 0.74 0.74
14-tr 167 84 | 118 53 1.03 062 0.62 0.62 0.36 0.36
15-tl 131 52| 8 80 0.01 0.01 0.01 0.00 0.00 0.00

Table 5.1: Projective error analysis of Euclidean and projective calibration. i-tl,i-tr,i-br,i-bl denote the top left,
top right, bottom right, bottom left corner of the i-th used location of the test plate. The coordinates of the
images of the test points in the images of camera C; and camera C';, as well as the projective errors listed in
the right columns of the table, are given in pixel units of the 196 x 144 camera images.

test point Cami Camj Euclidean cal. projective cal.

X y| x yl|Cam0 Caml min | Cam0 Caml min
15-bl 131 52|85 80 0.01 0.01 0.01 0.00 0.00 0.00
15-bl 132 52|85 80 0.16 0.13 0.13 0.17 0.14 0.00
15-bl 131 51|85 80 0.99 0.78 0.78 0.97 0.78 0.00
15-bl 131 52|86 80 1.19 0.94 0.94 1.17 0.93 0.00
15-bl 131 52|85 381 0.45 0.35 0.35 0.37 0.30 0.00
15-bl 132 53|85 80 1.15 0.90 0.90 1.23 0.90 0.00
15-bl 131 52|85 80 1.64 1.29 156 1.25 0.90 0.00
15-bl 131 53|85 381 2.79 220 2.20 2,69 2.17 0.00

Table 5.2: Effect of the variation of a test point on the projective error for Euclidean and projective calibration.
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test point C; C; err. Euclidean cal. | err. projective cal.

X y X y cm cm
1-tl 172 99 | 122 90 0.72 1.30
1-tr 174 139 | 150 91 1.14 0.69
1-br 138 137 | 151 114 0.97 0.97
1-lu 138 101 | 120 111 0.67 1.41
2-tl 169 55| 88 89 0.61 3.63
2-tr 173 92 | 117 89 0.55 1.56
2-br 139 96 | 115 112 0.37 1.93
2-lu 137 62| 84 111 0.17 2.77
3-tl 158 18 | 57 89 0.45 4.35
3-tr 173 49| 85 88 0.08 3.20
3-br 143 66 | 89 109 0.18 2.76
3-lu 130 36| 58 110 0.07 3.43
4l 113 65| 89 96 0.32 0.83
4-tr 116 104 | 124 96 0.03 0.74
4-br 86 107 | 125 123 0.78 0.18
4-lu 85 72| 8 124 0.95 0.03
5-tl 118 93 | 115 96 0.41 0.44
5-tr 121 133 | 150 95 1.11 0.45
6-tl 21 72| 76 117 1.00 2.70
6-tr 39 103 | 123 111 0.78 2.10
7-tl 25 32| 16 113 1.47 2.01
7-tr 32 64| 69 112 1.19 2.48
8-br 22 115|145 10 0.04 3.45
8-lu 27 63| 9 21 1.00 2.22
10-tl 125 35100 10 1.01 1.09
10-tr 149 95| 132 4 1.03 1.52
11-tl 129 35| 81 54 0.71 1.03
11-tr 127 81| 114 54 0.38 0.18
12-tl 121 36| 82 50 0.81 0.76
12-tr 123 84 | 117 52 0.02 0.86
13-tr 16 94| 121 48 0.14 2.92
13-br 14 112 | 137 96 0.47 2.63
14-tl 162 36| 87 54 0.53 1.41
14-tr 167 84| 118 53 0.25 0.33
15-1u 131 53| 8 81 0.00 1.26
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Table 5.3: Euclidean error analysis of Euclidean and projective calibration. i-tl,i-tr,i-br,i-bl denote the top left,
top right, bottom right, and bottom left corner of the 4-th used location of the test plate. The coordinates of the
images of the test points in the images of camera C; and camera C}, are given in pixel units of the 196 x 144

camera images. The unit of Euclidean error values listed in the right columns of the table is cm.
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User 1 User 2

motion scale  box size  #interp. best worst average best worst average
2,50 1,00 1| 436 19,39 10,53 | 9,02 24,43 16,38
574 16,83 999 | 9,65 22,65 16,23

2,50 1,00 5| 7,19 1747 12,73 | 3,65 13,50 9,05
436 24,71 12,70 | 3,54 13,554 8,80

2,50 1,00 10 | 545 23,39 13,46 | 8,24 12,42 10,37
10,76 17,34 14,60 554 14,05 9,44

2,50 2,00 1| 387 21,65 1262 | 8,06 17,15 12,57
3,65 21,25 13,20 | 6,54 14,54 11,06

2,50 0,50 1| 323 11,41 6,73 | 254 519 3,49
424 734 581 | 658 854 7,59

2,50 0,25 1| 574 16,83 11,39 | 8,18 12,36 9,60
3,87 12,76 9,30 7,52 14,54 10,47

2,50 0,25 5| 5,74 16,83 11,39 | 9,52 1351 11,63
598 12,76 9,73 | 8,18 12,36 9,95

3,50 0,50 1| 930 23,87 16,29 | 6,54 15,22 10,33
9,54 19,90 13,43 | 7,58 12,87 10,04

1,50 0,50 1| 280 11,54 7,90 | 1,03 33,08 14,69
3,60 11,65 7,41 | 11,54 16,25 14,48

User 3 User 4 User 5
scaling box #interp. | best worst average best worst average best worst average
250 1.00 1613 19.62 11.50 | 11.65 20.02 16.22 | 10.07 22.28 17.08
9.24 16.73 12.97 | 11.10 26.92 16.37 | 13.89 25.24 17.53
250 1.00 51522 1717 12.81 | 12.02 19.68 15.95 | 12.64 20.99 17.01
484 27.77 13.64 | 10.99 32.99 18.73 | 10.56 33.28 19.84
250 1.00 10 | 9.50 14.97 10.71 | 12.15 25.49 17.30 | 12.30 25.67 17.46
8.56 21.85 15.90 | 12.71 20.31 17.33 | 11.31 20.30 17.23
250 2.00 1654 1755 1234 | 825 2791 18.81 | 4.67 24.85 14.56
9.19 20.31 14,72 | 11.04 30.24 20.00 | 10.83 32.86 20.78
250 0.50 1502 12.88 8.18 | 6.50 16.81 11.61 | 9.28 17.29 12.17
6.64 12.65 9.02 | 5.01 1364 992 | 6.61 16.64 12.41
250 0.25 1552 1574 9.82 | 13.72 26.20 18.80 | 15.51 28.33 20.82
7.50 14.05 12.03 | 951 2185 13.80 | 4.67 2294 14.06
250 0.25 51970 1456 12.17 | 13.21 23.62 17.80 | 12.90 25.59 18.96
9.26 16.93 13.15 | 12.39 18.90 16.06 | 13.01 21.23 16.75
3.50 0.50 1795 28.83 18.00 | 12.65 25.92 19.91 | 15.36 2751 21.25
8.18 20.14 12.20 | 17.27 27.06 20.35 | 17.07 29.07 20.84
150 0.50 1967 17.98 13.58 | 12.68 15.99 14.42 | 11.97 17.49 14.90
7.56 16.88 12.08 | 12.07 16.02 1434 | 10.49 17.33 14.21

Table 5.4: Usability of projection-based pointing and influence of control parameters. Tests have been per-
formed for different settings of the scale factor, the noise reducing box, and the number of interpolated cursor
positions. Every row corresponds to a particular parameter setting. For every setting 20 trials have been exe-
cuted. The best, worst, and average times in seconds have been determined for the first 10 trials and the second
10 trials of every sequence, which are displayed in two lines on every row.
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user || X y | max min average
mm mm | sec sec sec
1 300 130 | 6.52 254 4.28
1 250 100 | 7.52 3.1 5.05
1 230 60 |1052 851 9.38
1 200 80 | 752 4.56 5.59
1 165 45 | 10.26 4.56 8.64
1 145 40 | 1952 954 12.07
1 125 30 | 2226 1055 13.60
2 300 130 | 6.85 3.72 5.53
2 250 100 | 8.34 3.83 5.04
2 230 60 | 2456 6.48 12.45
2 200 80 |1222 4.99 7.73
2 165 45 | 13.32 3.07 7.45
2 145 40 | 1952 954 11.96
2 125 30 | 16.88 4.96 9.64
3 300 130 | 10.28 5.87 7.96
3 250 100 | 9.11  3.89 6.06
3 230 60 |14.36 1159 13.40
3 200 80 | 9.01 4.67 6.29
3 165 45 | 11.76 6.83 9.31
3 145 40 | 1941 8.90 12.55
3 125 30 | 20.17 6.53 10.58
4 300 130 | 11.35 6.32 8.99
4 250 100 | 11.05 2.84 6.78
4 230 60 | 2252 4.16 15.53
4 200 80 | 1469 6.98 9.73
4 165 45 | 998 5.16 8.14
4 145 40 | 21.34 6.42 12.27
4 125 30 | 2141 9.10 14.39
5 300 130 | 1140 6.11 9.09
5 250 100 | 10.81 2.93 6.82
5 230 60 |25.86 8.49 15.64
5 200 80 |17.11 2.98 10.26
5 165 45 | 1554 3.86 8.78
5 145 40 | 2157 8.46 14.13
5 125 30 | 2140 9.67 15.69
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Table 5.5: Influence of the button size on selection time. The table compiles the best, worst and average times

over sequences of ten trials dependent on the horizontal and vertical extension of a button.
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| | errortype  #errors  err-max |

sequence 1 1 6 6.00
seguence 2 1 12 6.00
sequence 3 1 1 5.00
sequence 4 2 4 3.00
seguence 5 2 6 6.00
seguence 6 3 1 15.00
sequence 7 3 3 12.00
sequence 8 4 2 8.00

Table 5.6: The table lists the error type, the number of its occurrence, and the maximum error value in pixel
units for eight test sequences which are used to analyze the distance threshold ;.

| | errortype  #errors o | err-max_ err-min | #corr  %corr  #new errors

sequence 1 1 6 200 0.00 3.00 6.00 100.00 4.00
sequence 2 1 12 2.00 2.00 3.00 8.00  66.67 3.00
sequence 3 1 1 200 0.00 5.00 1.00 100.00 6.00
sequence 4 2 4 200 2.00 3.00 1.00 25.00 3.00
sequence 5 2 6 200 1.00 3.00 500 8333 0.00
sequence 6 3 1 200 0.00 15.00 1.00 100.00 0.00
sequence 7 3 3 200 0.00 11.00 3.00 100.00 1.00
sequence 8 4 2 200 0.00 7.00 2.00 100.00 0.00
sequence 1 1 6 3.00 3.00 4.00 3.00 50.00 1.00
sequence 2 1 12 3.00 3.00 4.00 6.00 50.00 1.00
sequence 3 1 1 3.00 0.00 5.00 1.00 100.00 0.00
sequence 4 2 4 3.00 3.00 00 0.00 0.00 3.00
sequence 5 2 6 3.00 3.00 4.00 400  66.67 0.00
sequence 6 3 1 3.00 0.00 15.00 1.00 100.00 0.00
sequence 7 3 3 3.00 0.00 11.00 3.00 100.00 1.00
sequence 8 4 2 300 0.00 7.00 2.00 100.00 0.00
sequence 1 1 6 4.00 4.00 6.00 200 3333 0.00
sequence 2 1 12 4.00 4.00 5.00 500 4167 1.00
sequence 3 1 1 4.00 0.00 5.00 1.00 100.00 0.00
sequence 4 2 4 4.00 3.00 00 0.00 0.00 3.00
sequence 5 2 6 4.00 4.00 6.00 100 16.67 0.00
sequence 6 3 1 4.00 0.00 15.00 1.00 100.00 0.00
sequence 7 3 3 4.00 0.00 11.00 3.00 100.00 0.00
sequence 8 4 2 4.00 0.00 7.00 2.00 100.00 0.00
sequence 1 1 6 5.00 4.00 6.00 200 3333 0.00
sequence 2 1 12 5.00 5.00 6.00 200 16.67 0.00
sequence 3 1 1 500 0.00 5.00 1.00 100.00 0.00
sequence 4 2 4 5.00 3.00 00 0.00 0.00 0.00
sequence 5 2 6 5.00 4.00 6.00 100 16.67 0.00
sequence 6 3 1 5.00 0.00 15.00 1.00 100.00 0.00
sequence 7 3 3 5.00 0.00 11.00 3.00 100.00 0.00
sequence 8 4 2 500 0.00 7.00 2.00 100.00 0.00

Table 5.7: Analysis of the distance threshold /. The test sequences contain a certain number of errors (#errors).
The errors have been treated for different values of the parameter [ (column [y). The success of error correction
is measured by the number (# corr) and percentage (% corr) of corrected errors, and the number of newly
introduced errors (# new errors). Further, the maximum distance error (err-max, in pixel units) after correction,
and the minimum distance error which could be corrected (err-min, in pixel units) are presented. oo indicates
that no correction as been possible.
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| | er-type  #errors | err-max_ err-min | #corr  %corr  #new errors |

sequence 1 1 6 3.00 3.00 400  66.67 0.00
sequence 2 1 12 2.00 3.00 9.00 75.00 1.00
sequence 3 1 1 0.00 5.00 1.00 100.00 1.00
sequence 4 2 4 2.00 2.00 200 50.00 2.00
sequence 5 2 6 1.00 3.00 500 8333 0.00
sequence 6 3 1 0.00 15.00 1.00 100.00 0.00
sequence 7 3 3 0.00 11.00 3.00 100.00 0.00
sequence 8 4 2 0.00 7.00 2.00 100.00 0.00

Table 5.8: Analysis of effect of automatic control of the parameter /5. The test sequences contain a certain
number of errors (# errors.). The success of error correction is presented by the number (# corr) and per-
centage (% corr) of corrected errors, and the number of newly introduced errors (# new errors). Further, the
maximum distance error (err-max, in pixel units) after correction, and the minimum distance error which could
be corrected (err-min, in pixel units) are presented.
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Chapter 6

Hand-posture-based Gesturesin a Global
Environment

In this chapter we extend the interaction by pointing by a further gesture type, hand-posture-based gestures. A
hand-posture is given by a specific deformation of the hand and the fingers, cf. chapter 3.3. A hand-posture-
based gesture is a hand-posture with an assigned meaning.

A typical example of including hand-posture-based gestures in our scenario of interaction with a backprojec-
tion wall is to move the cursor onto a menu item and then to execute a specific hand gesture in order to activate
an application assigned to the menu item. Inclusion of hand-posture-based gestures opens the possibility to
implement different types of multi-gesture type interaction (chapter 3.3), like e.g. the one just mentioned, in
this environment.

A particular difficulty of recognizing hand-posture-based gestures in a computer-vision-based interaction en-
vironment is that the hand has to appear sufficiently large in the grabbed images in order to distinguish the
different hand postures. In contrast to systems using hand postures in a desktop environment, where the hand
motion is restricted to a small area, in our scenario the hand can be moved around significantly. This fact
makes it impossible to arrange the given cameras so that the constraint on the hand size can be fulfilled ev-
erywhere in the interaction space. In order to cope with this problem, we augment the hardware configuration
of our scenario with an additional camera, as indicated in figure 6.1. The additional camera is a computer-

Figure 6.1: Configuration of a computer-vision-based interactive backprojection wall with an additional active
camera in order to allow hand-posture-based gesture interaction.
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controlled active camera whose pan, tilt, and zoom can be controlled by the computer vision system. In our
implementation, we have used a Sony EVI-D31 camera [M0oe97] which is connected to the computer by a
serial interface.

From the algorithmic and system view, the system architecture of pointing in figure 6.2 is extended against fig-
ure 5.2 by two major components, a sensor control unit and the static hand gesture recognition unit ZY KLOP.
Figure 6.2 depicts the extended system architecture.

| motion camera camera camera
sensor control image image image
unit sequence sequence sequence
hand tracking ¥ L i ¥ 3
nsor dat
t i sevmgrdatn r?)?:esszin u?ﬁt
processing unit PRI
; projection-based
hand location S
Zyklop pointing
static hand
hand |location gesture
X recognition 1
virtual interaction virtual interaction
space space
hand |location gesture |code 3D finger | tip
L 4  J

3D virtual interaction space

screen| point 3D

finger ti
gesture |code 9erfip

L 4
abstract interaction space/
application

Figure 6.2: The system architecture of combined pointing and hand-posture-based gesture processing. The
major additional components to the pointing unit are the sensor control unit for hand tracking by the active
camera using the hand location in the image of the active camera, and the unit ZY KLOP for static hand-gesture
recognition.

For hand-posture-based gesture processing we use the existing system ZYKLOP [Koh99]. ZYKLOP takes
as input a stream of camera images, in our case provided by the active camera, and returns for every frame
a code of a gesture, if any is recognized, for further processing. ZYKLOP is teached in a training phase by
images of the different hand postures serving as gestures. Image segmentation by ZYKLOP is based on the
hand color so that ZYKLOP can be used for a varying background, as required because of camera motions
in our interaction environment, as long as the background colors are sufficiently different from the hand color.
For a detailed description of ZYKLOP we refer to [Koh99].

The emphasis of this chapter lies on hand tracking.

Problem: Hand Tracking

Input: Image sequences provided by the two observation cameras C; and C;, and the active camera C,.
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Output: A sequence of pan-, tilt-, and zoom-control-commands so that the active camera C',, shows an image
of the user’s pointing hand completely and with sufficient size.

In the solution of the hand tracking problem presented in the following, we use two sources of data to find
the hand in space. The first source are the frames delivered by the active camera C,,,. Dependent on whether
and how the hand is shown in the images, the camera parameters are adapted in order to achieve the desired
view. The data on hand location are delivered by the sensor data processing unit hand segmentation of the
architecture of figure 6.2.

The second source is data about the location of the finger tip in space calculated from the images of the
observation cameras C; and C; by the method of explicit projection-based pointing of section 5.2, represented
by the sensor data processing unit projection-based pointing of figure 6.2. The data help to adapt the parameters
of the active camera so that its view is directed towards the finger tip.

A particular feature of this approach is the combination of two data sources for tracking which are usually used
separately. The advantage is an increased reliability due to fusing of the data from both sources. For example,
a problem with active camera tracking is that other body parts with skin color could be tracked instead of
the hand, like e.g. the head. This is a typical experience with the built-in auto-tracking function of the Sony
camera. On the other hand, tracking by the observing cameras does not deliver the necessary data to achieve a
suitable zoom of the active camera onto the hand.

The approach requires the calibration of the active camera and its integration with the observation cameras.
Section 6.1 is concerned with this issue. The two tracking modes and their usage in camera control are de-
scribed in section 6.2.

6.1 Calibration

6.1.1 Zoom Calibration of the Motion Camera

The goal of zoom calibration is to establish a function

V= fzoom(d)

between the distance d of the hand from the camera and the zoom parameter ~ of the active camera so that the
hand at distance d is shown in the desired size in the image of the active camera if the zoom is v := f,0om (d).
The range of feasible values of the zoom parameter ~ of the Sony EVI-D31 camera used in our implementation
is the interval of integers between 0 and 1000.

The function f,.om Can be determined by the following procedure.

Procedure: Acquisition of the distance-zoom function f,,om
Output: A look-up table representing f,oom-

Procedure:
A rectangular calibration plate of an extension slightly larger than a typical hand is used. The aspect
ratio of the plate is that of the camera images. The size of the plate is so that if the hand is placed in
the center of the plate, it covers the plane in the same manner as the hand should cover the image of the
active camera in an ideal view.

A finite set of equidistant sample values covering the range of zoom values is chosen. For every value
~, the plate is placed in front of the camera so that it covers the image exactly. The distance d between
camera and plate is measured and registered as value of f,oom, fzoom(7Y) := d. fzoom 1S represented by
a look-up-table of these data points for further usage.
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Figure 6.3 shows data points of f,..m resulting from an application of this procedure to the active camera Sony
EVI-D31. Since f,oom iS @ One-to-one function, it can be inverted. The inverse function ! can be used
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Figure 6.3: The distance-zoom function of the active camera EVI-D31.

to estimate the distance of the hand from the camera. Given a ~ for which the hand covers the camera image
in the desired manner, the corresponding d = f,;.  (v) is an estimation of the distance of the hand from the
camera.

6.1.2 Integration of the Motion Camera

We define a motion-independent coordinate frame of the active camera by the coordinate frame of the active
camera at a suitable orientation. The image coordinate frame of the active camera in an arbitrary location has
its origin in the center of the camera, its x-coordinate axis in parallel to the horizontal edge of the image, and
its y-coordinate in parallel to the vertical edge of the image.

The configuration of the three cameras is calibrated either with the method of Euclidean calibration of sec-
tion 4.3.1 or with the method of homogeneous calibration extended to Euclidean calibration as described in
section 5.3.5. The active camera is fixed at a suitable position, and the camera frame of this position is used
as motion-independent camera frame. Euclidean calibration allows to re-calculate the coordinates of spatial
points from the camera coordinate frame of one of the involved cameras into the camera coordinate frame of
any other involved camera, in particular from one of the observing cameras to the active camera.

Alternatively to the Euclidean camera coordinate frame of the active camera just described we also use a
polar camera frame. The origin of the polar frame is the same as of the Euclidean frame. A point in space is
represented by a coordinate triple (o, oy, d) Where o, and «, are angles of rotation about the y- and the z-axis
of the Euclidean camera coordinate frame of the camera, and d is the distance of the point from the origin. The
transformation between both coordinate frames is straightforward. Further, the angular coordinates (o, ay)
of a point of the image taken by the active camera in an arbitrary orientation can be calculated immediately.
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6.2 TheTracking and Control Algorithm

Basically, the behavior of the active camera is controlled by rules consisting of a condition and an assigned
action which is executed if the condition is satisfied. The conditions use a set of Boolean variables whose
values are set by test procedures checking the current state of the system. The actions concern updating of the
orientation of the active camera and of certain global control variables. Updating of active camera orientation is
performed by tracking the hand in image sequences taken by the observing cameras and by the active camera,
respectively. Both tracking processes are performed step by step. Every step yields updated pan-, tilt-, and
zoom-values which should set the active camera so that the hand is ideally located within its image. The
decision from which of the two tracking processes the values are taken, is met by the control algorithm.

The following two subsections present the algorithms of a tracking step of hand tracking by data from the active
camera and by data from the observing cameras. The third subsection is devoted to the control algorithm.

6.2.1 Tracking by the Motion Camera

Hand tracking by the active camera C',, uses the location of the hand in the images provided by C',,. The region
covered by the hand is delivered by the sensor data processing unit hand location, cf. figure 6.2, which uses
the hand color as main criterion [Afo02]. The hand segmentation module yields an axes-parallel bounding box
of the hand region. Dependent on the location of the bounding box relative to the image, the parameters of the
active camera are updated in order to keep the hand bounding box well within the image.

Algorithm: Tracking by the Motion Camera
Input: The current pan value «, tilt value o, and zoom value ~ of C,.

Output: Updated pan-, tilt-, and zoom-values o, o, and v, respectively, which should keep the hand in
the desired way in the image.

Parameters:

e An upper and a lower threshold rectangle hp.x and hmin, respectively, between which the actual
hand bounding box & should be located.

e A tolerance value a which specifies the distance between the boundary of a hand bounding box A
and the boundary of an extended hand bounding box, cf. figure 6.4.

e The edge lengths ¢, and ¢, of the rectangular zoom calibration plane,
e The x- and y-resolution b, and b,, respectively, of the image of C',, in number of pixels.

Steps:

1. Determine the bounding rectangle h of the hand by calling the hand segmentation algorithm of the
system.
If no bounding box is delivered then exit.

2. Calculate the pixel coordinates of a reference point m = (m,, m,) of the hand in the image of the
active camera C,,, as center of the hand bounding box .

3. Calculate the relative pan- and tilt-values of m by
My + Cy
fzz)tlml (7) - b
my . Cy
fz?)ém(V) : by

Aa, = tan™!(

)7

Aa, = tan™!(

).
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. Calculate the new pan- and tilt-values o} and .} as the absolute pan- and tilt-values of m by

af = o, + Aoy, a; = oy + Aayy,.

. Move the camera to the new location given by « and a;, and report the new values.

6. Determine the hand bounding box A in the next frame by calling the hand segmentation procedure

provided by the system.

If no bounding box is provided then exit

else if AT is inside hpyax and Aoy IS inside AT then
report v := ~ and exit.

. Calculate a new zoom value by

fz?)(l)m (’775) ) by

+
v= fzoom( (hgj_ i a)

),

where A} is the height of the hand bounding box h*.
Set the zoom value of the camera on v* and return with .

f,
by fhta

Figure 6.4: The bounding box of a hand indicated by the ellipse, and the correspond extended bounding box.

The formula for the relative pan- and tilt-values of m in step 3 can be derived as follows. We assume that
the hand is ideally located in the image. Under this assumption its distance can be estimated from the current

zoom value ~ by

dcm = fz_otl)m(fy)'

The unit of d.,, is "centimeter”. Using the relation

cf. figure 6.5, the distance is converted into pixel units,

dcm : bz

Cx

dpixel =

As depicted in figure 6.5, the relative tilt-value of m fulfils the relation

tan(Aay) = M

pixel
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Figure 6.5: Caluclation of the relative tilt-value of the hand reference point m.

By substituting dpixel in this formula and inverting the tangent, we get the formula used in step 3. The formula
of Aa,, can be derived analogously.

In step 6, the threshold bounding boxes hpax and hnin are used to smooth the motion of the camera. This is
important in phases in which the user keeps the hand in a fixed position in order to execute a gesture. In this
case, it is desirable for ZYKLOP to keep the active camera in a fixed position.

The formula for the new zoom value in step 7 is derived as follows. For the calculation, the height of the hand
bounding box is used. The reason is that due to the arrangement of the active camera, the hand is approximately
horizontal in the image. Since segmentation might have troubles with separating the hand from the lower arm,
the x-extension of the hand bounding box is less reliable than the y-extension used in the algorithm.

Let
dcm = fz?xl)m (7)

where ~ is the curred zoom value.

According to figure 6.6, the corresponding value in pixel units is obtained from the relation

by/2 . b_y _ dpixel

cy/2 ¢y dem

as

demby

d ixel —
pixel ¢y
The desired opening angle satisfies the relation
(hf +a) - ¢,
tan(aw/2) = (b +a)/2)/dpigel = —2rF———.
(@0/2) = (b +0)/2)/dins = 3~

According to figure 6.6, the new distance fulfils the relation

2
tan(ay,/2) = C;één,
which leads, together with (6.2.1), to
b2 ey fabm() by

M tan(ao/2)  (hy +a) -,
From this formula, the new zoom value is obtained by

fz?)(l)m(’y) ) by)

+ + ) —
’Y - fzoom(dcm) - fzoom( (h;— + a)
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Figure 6.6: Calculation of the new zoom value for tracking by the active camera. The zoom value changes, but
the edge length and the resolution remain unchanged.

6.2.2 Tracking by the Observing Cameras

Tracking by the observing cameras uses the reconstructed position of the finger tip delivered by the pointing
system by the method of explicit projection-based pointing of section 5.2. Dependent on the preceding and the
current position, a next location of the finger tip is estimated, and the pan-, tilt-, and zoom-values of the active
camera are changed so that it should find the hand when it reaches the new view.

Algorithm: Tracking by the Observing Cameras
Input:

e The current and the preceding reconstructed finger tip location in space, p, p—, in motion-
independent active camera coordinates, and the capturing times ¢ and ¢~ of the corresponding
images.

e The current and the preceding pan- and tilt-values of the active camera C',, o, ay and a;, o
respectively.

Yy
Output:  The new pan- and tilt-values of, o) of Cp,.

Parameters:

e An estimated time interval At between two frame grabbings, and, implicitly, the motion by the
camera.

Steps:
1. Calculate the estimated speed of the hand by
v=(p—-p )/At

where At =t — ¢~

2. Calculate the estimated new position of the camera by

p+ =p+ Atstepv-
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3. Transform p™ into the polar coordinate frame of C,,, by

ot tan~" (p;f /pT)
~1(pF Jpt

of | =| tan” (p,/pl)
2 2 2

d* Vot o4 pt

4. Calculate a new zoom value by v = f,0om(d™).
5. Set the parameters of the active camera to o}, o, and 4 and return with these values.

The estimated time interval Atge, between two frame grabbings is the sum of the time required for the cal-
culation of the new parameter values of the camera and the time required by the camera to execute a motion
command. For the cameras used in the implementation, the latter dominates by far.

6.2.3 Control of the Motion Camera

As already outlined, the behavior of the active camera is controlled by rules consisting of a condition and an
assigned action which is executed if the condition is satisfied.

The conditions use a set of Boolean variables whose values are set by test procedures checking the current
state of the system. The tests for example analyze the location of the hand in the images of the active camera,
the current location of the hand in comparison to the preceding one, and the values of global control variables
which should be used to decide which tracking data are used to update the orientation of the active camera.

The actions concern updating of the orientation of the active camera and of certain global control variables.
One possibility of updating of the active camera orientation is to use the pan-, tilt-, and zoom-values delivered
by the two hand tracking processes. If the hand has been lost in the image of the active camera, a search
process is started which tries to capture the hand again. A further possible action is to do nothing which in
particular happens if the hand is recognized to be held at a fixed position.

The heart of the control algorithm is the table shown in figure 6.7. The parameters used and their definitions
are precisely specified in the following description of the control algorithm.

Algorithm: Motion Camera control
Input:

e The current pan-, tilt-, and zoom-values of the active camera C',, o, oy, and o, a,, respectively.
e The current position (o 4, oy 1, dp,) OF the hand as estimated by active camera image processing.

e The preceding position (c, ., . d;,) of the hand as estimated by active camera image process-
ing.

e The current position (ay.c, oy, d.) of the hand as estimated by observation camera image pro-
cessing.

e The preceding position (., a, ., d. ) of the hand as estimated by observation camera image
processing.

e The hand bounding box A in the current image of C,,,, provided by active camera hand segmenta-
tion.

e The hand bounding box A~ in the preceding image of C,,, provided by active camera hand seg-
mentation.



124 CHAPTER 6. HAND-POSTURE-BASED GESTURESIN A GLOBAL ENVIRONMENT

Parameters:

e Bounds n, and n, for the variable ngearch-

e Bounds b max, bz,miny Dy,max: by,min, Used for detection of the state LocalMoveTest. Values of
reasonable behavior are b, yax = 0.76, by min = 0.14, by max = 0.76, by min = 0.14.

e A bound ¢ used for detection of the state GlobalMoveTest. A value of reasonable behavior is
g=0.9.

o Intial values Piocal init aNd Pylobal,init O the tracking priority variables. Values of reasonable choice
are ]Dlocal,init =4and Pglobal,init = 0.

e A bound vy, which characterizes the closeness of hand centers for detection of the state NearByIn-
ImageTest. A suitable value is d;, = 5 pixel units.

e Bounds i, 1, fy,n, An Which characterize the closeness of hand centers for detection of the state
NearByInWorldTest. Suitable values are ji; 5, = 10°, 1, p, = 10°, A, = 20 cm.

e Bounds v, j, v, , Which characterize the closeness of hand centers for detection of the state Ob-
jectTheSameTest. Suitable values are v, ;, = 10°, v, 5, = 5°.

e Pcal: A constant of tracking by the active camera C',, with a positive value. Suitable values are 3
or 4.

Global variables:
Paionar: A priority counter of tracking by the observing cameras C;, C, initialized to 0.
nsearch: A counter for the action SearchMove, initialized to 0.

Conditions:

LocalMoveTest: Characterizes the location of the bounding box A of the hand delivered by the hand seg-
mentation module of the active camera relative to the image of the active camera. If the hand bounding
box comes close to the image boundary, the Boolean variable LocalMoveTest becomes true:

true if T h,max > ba:,max * L], max
\ Yh,max > by,max * YI,max
LocalMoveTest = V Zh,min < bz min * T1,min
\% Yh,min < by,min * YI,min
false else.

GlobalMoveTest: Characterizes the location (a , oy 1, dp,) Of the hand delivered by the pointing mod-
ule relative to the current pan- and tilt-values of the active camera, o, . and oy, .. The Boolean variable
LocalMoveTest becomes true if the deviation is high:

true if |z, — el > g-7/2
GlobalMoveTest = V |ay,h — CYy,c| >9-7/2
false else.

NearBylInlmageTest: This condition happens if the hand in the current image of C,,, is close to the hand
in its preceding image. This is the case if the hand bounding boxes h and A~ overlap and the centers c;,
and c;, of the boxes are close to each other,

true if hNh™ #0
IsNearByInImageTest : = Vd(cn,c,) <
false else.
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where d(., .) is some metric, like e.g. the Manhattan metric.

NearByInWorldTest: This condition occurs if the position (o 4, ay p, dp,) Of the hand determined from
the images of the observing cameras is close to the preceding hand position (v, j,, v, 1,, d}, ),

true if | — oyl < fian
A oy, — O‘;h| < Hy,h
A |dh — d}:| < A
false else.

NearByInWorldTest =

The coordinates are measured with respect to the polar coordinate frame of C,,.

ObjectTheSameTest: This condition happens if the angular position (o p, oy, ) determined by ac-
tive camara image processing and the angular positition (o ., oy, ) determined from the images of the
observing cameras are not far from each other,

true if |age — 0z pl < Vgn
ObjectTheSameTest = Aoy, —ayn| < vyn
false else.

The coordinates are measured with respect to the polar coordinate frame of C,,.

ObjectFoundTest: The Boolean variable ObjectFoundTest is true if the segmentation module of the
active camera images has delivered a bounding box of the hand.

LocalTrackingPreferredTest: This condition tells which of the two tracking modes — tracking by the
active camera or tracking by the observing cameras — should have priority. It uses the priority counter
Pio1a1 Which can be modified by the actions. The condition is determined by

true if Pocal > P, global

LocalTrackingPreferredTest = { false else.

Actions:

LocalMove: Update the control parameters of C',, by executing the algorithm of tracking by the active
camera of section 6.2.1.

GlobalMove: Update the control parameters of C,,, by executing the algorithm of tracking by the ob-
serving cameras of section 6.2.2.

NoMove: Do nothing.
SearchMove: The active camera tries to find the hand according to the following strategy:

1. If ngearch < nq then do nothing.
2. If ng < Ngearen < 1y then open the zoom of C,,, by a further step.

3. If ngearcn = nyp then reset €, to its home position.

CheckObjectPosition: Among the two different hand positions delivered by motion tracking by the
observing cameras and motion tracking by the active camera, the one closer to the backprojection wall is
preferred, as follows. If the hand position of the observing cameras is closer to the wall, then the priority
variable Pyoba1 is incremented by one. Otherwise, nothing is done.

The intention is to avoid that tracking by the active cameras tracks an object different from the hand, like
e.g. the head of the user.

Updating of global variables: Several updates of local variables have to be performed. The details are
given in the rules of control.
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Rules of control: The rules of control are specified by the table of figure 6.7. We have eight rules which are
arranged in the rows of the table. Every row is split in three parts, the number of the rule, the conditions
of the rule and the corresponding actions to be executed if the rule holds. An entry 1 for a condition
means that the condition holds, 0 means that it does not hold, and * means that it is not relevant for the
rule. An entry 1 for an action means that the action is executed, 0 means that the action is not executed.
The increment, decrement and assignment operations of the variables are expressed in C-notation.

Steps: The algorithm checks the conditions whenever the current actions have been executed, and initializes
the execution of the next set of actions which belong to rules whose conditions are satisfied.

Rule Conditions Actions
O|L|G|IN|N|O|L|JL|G|N|]S|C \Y/
FIM|{M|B/ M|T|T|{M|M|{M|M|O A
T|T|T|I1I|W|S|P P R

T| T|T|T
1 111 ol B 1] * 1 0 0 010 Ngearch = 0
2 1|0 L1171 00| 1|00 Paobat+
Ngearch = 0
3 101 |*|*|12]00[2]0|0]0/| Paobart+-+
Ngearch = 0

4 100 |*|*|*|*|0|0|12|0]0 Ngearch = 0
5 0|0 o | *|* 1| * 0 0 0 1110 Ngearch + +
mod (np + 1)
6 0| * o]0 * 0 0 0 0]1 Nsearch = 0
7 1 * * * 1 *o 0 0 0 0 0 Pglobal + 4+

Tlsearch = 0
8 1> *|11|*|*|*)J0]0]0]|]0]O0 Paiobal — —
Ngearch = 0

Figure 6.7: Rules of active camera control. Conditions: ObjectFoundTest (OFT), LocalMoveTest (LMT),
GlobalMoveTest (GMT), NearBylmageTest (NBI), NearByWorldTest (NBWT), ObjectTheSameTest (OTST),
LocalTrackingPreferredTest (LTPT). Actions: LocalMove (LM), GlobalMove (GM), NoMove (NM), Search-
Mode (SM), CheckObjectPosition (COP), and updating of variables (VAR). An entry 1 for a condition means
that the condition holds, 0 means that it does not hold, and * means that it is not relevant for the rule. An entry
1 for an action means that the action is executed, 0 means that the action is not executed.

6.3 Experimental Evaluation

The experimental evaluation has been performed on an implementation of the architecture of the type oulined
in section 3.4.3. Two communicating PCs have been used. The first PC hosts the global tracking system with
the fixed cameras which are attached to it. The second PC holds ZY KLOP and the local hand tracking system
with the active camera.

The most important aspect of performance evaluation is the performance of the system in the static hand gesture
mode, that is, if the user holds the hand at a fixed location and performs a gesture. Results of experimental
investigations are presented in the first subsection.

Another aspect is the performance of the system for a typical complete interaction task. In the second subsec-
tion we have chosen the task selection and activation” and will present results of investigations of the user
behavior for that task.
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6.3.1 Evaluation of the Static Hand Gesture Mode

In the following, the evaluation of the static hand gesture mode is split in several parts, performance of hand
image segmentation, performance of gesture recognition by ZYKLOP, and hand tracking performance.

Experiment: Analysis of segmentation of active camera images

Approach: First, the behavior of the segmentation algorithm has been analyzed as a stand-alone process
independent from the system, using image sequences at a fixed orientation of the active camera. Second,
the behavior of the camera motion process has been analyzed as part of the overall system.

Measured quantities:

¢ Reliability of hand segmentation on the frames of the active camera.
e Frame rate of stand-alone hand segmentation on the frames of the active camera.
e Frame rate of the camera motion process within the framework of the system.
Observation: Local image processing achieves a correct segmentation of the hand with 97,3%, at a frame rate
of about 10 to 20 frames per second, dependent on the size of the hand region in the scene.

Within the framework of the system the framerate is dependent on the amount of camera motion. In the
worst case that the zoom has been adapted from very close to quite far, 2 to 4 frames per second are
achieved. In less extreme situations, the camera control achieves 6 to 8 processed frames per second.

The behavior of ZYKLOP is subject of the following experiment.

Experiment: Analysis of gesture recognition by ZYKLOP

Approach: First, the behavior of the ZYKLOP has been analyzed as a stand-alone process independent from
the system, using image sequences at a fixed orientation of the active camera. Second, the behavior of
ZY KLOP has been analyzed as part of the overall system

Measured quantities:

¢ Reliability of gesture recognition by ZYKLOP.
e Rate of stand-alone gesture recognition by ZY KLOP.
e Rate of gesture recognition by ZYKLOP within the framework of the system.

Observation: For four different hand gestures, about 92% of the gesture recognition results are correct.
Static hand gesture recognition by ZY KLOP achieves a processing rate of about 14 gestures per second.

Within the framework of the system, the user has to wait for 0.5-2.5 s until a new gesture is recognized
by the system. The reason is the high updating time of the camera, as explained below.

While the frame rates achieved for image segmentation and gesture recognition prove satisfactory, it has turned
out that behavior of the active camera is a bottleneck of the system, as shown in the following experiment.

Experiment: Analysis of the update speed of the active camera

Approach: Two tasks described below have been performed by the user, one which in particular concerns the
zoom operation of the camera, and one which concerns the pan- and tilt-operations. The actions of the
user have been processed by the system.
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Measured quantities: Timing of updating the zoom and the orientation of the active camera. Measurement is
performed by setting time stamps before and after the relevant operations, e.g. before sending a control
command to the camera and after receiving the confirmation of execution of the command, in the camera
control thread.

Observation: The first task has been changing the distance of the hand to the camera without horizontal or
vertical shift. It turned out that the camera needs 0.4-2 s for a zoom operation. For slow motions, the
zoom adapts in a stop-and-go manner which is slower than re-zooming for fast hand motions where
about 1 s is necessary in order show the hand again with reasonable size in the image of the active
camera.

The second task consisted in horizontal and vertical motions at a fixed distance from the active camera.
For fast hand motions the camera did need about 1.4 s in order to reach a new location. For slow hand
motions, the camera followed the hand by stop-and-go, and found the hand again after about 0.6 s.

6.3.2 Usability of Hand-posture-based Gesture I nteraction

In order to analyze the usability of the system, we investigate the user behavior for a central task of interaction,
”selection and activation”.

Experiment: Analysis of the action ’selection and activation”

Approach: The time required to perform the action selection and activation” is analyzed. The action consists
of three phases:

1. The user enters the interaction space, and stretches out the arm in order to bind the cursor to the
hand.

2. The user places the cursor on a specific button by hand motion. The size of the button is 165 mm x
45 mm.

3. The user activates the button (”left mouse click™) by a specific static hand gesture which is recog-
nized by ZYKLOP.

Parameters: none

Measured quantities: Two users have been investigated. User 1 is experienced with the system, while user 2
did not know the system in advance. Both users have executed the “selection and activation” action 20
times.

For every action, the overall time required is measured by a stop-watch. At the beginning of the interac-
tion, the user says “start”, and at the end ”stop”. The 20 measured values (unit: seconds) are split into
four subsequences of five values each, and the best, worst and average times are determined for every
subsequence. The reason is to investigate a possible learning effect of the users.

Furthermore, the number of required corrections of the cursor position is counted. The reason for cor-
rection is that execution of a static hand gesture may change the detected pointing direction, with the
effect that the cursor could leave the button area.

Observations: The results are compiled in table 6.1. Every row shows the times achieved to perform the
action five times, the best, worse, and average times over the sequence, and the number of corrections
required until the button has been activated. Every star indicates one correction.

The experienced user 1 has achieved better results than the inexperienced user 2. The times scatter
significantly. The sometimes high differences let conclude that some luck is necessary.
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A learning effect cannot be noticed.
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The unfavorable times in the last subsequence of user 2 can be explained by the strong dependence
of color-based segmentation of ZYKLOP on lighting. Lighting has changed before taking the last

subsequence.

\ | 1 2 3 4 5| best worst ave. #corr
user 1 || 17,55 79 327 348 636 | 327 1755 7,71 1
seq. 1 * 1
userl || 3,88 784 201 109 419 | 2,01 1096 5,78 0
seq. 2 * 1
user 1 || 14,82 1487 3,09 754 12,12 | 3,09 14,87 10,49 1
seq. 3 * 1
userl || 9,65 1454 6,68 587 658 | 587 1454 8,66 0
seq. 4 1
user 2 || 27,70 11,73 11,12 12,26 20,15 | 11,12 27,70 16,59 0
seq. 1 1
user 2 || 18,65 665 584 965 1225 | 584 1865 10,61 0
seq. 2 1
user2 || 1565 *1454 1165 1751 784 | 7,84 1751 1344 2
seqg. 3 * 1
user 2 || 16,54 17,84 16,54 20,24 25,19 | 16,54 25,19 19,27 4
seq. 4 * bl * 1

Table 6.1: Analysis of the action “selection and activation”. Every row shows the times (in seconds) required
to perform the action five times, the best, worse, and average times over the sequence, and the number of

corrections required until the button has been activated. Every star indicates one correction.
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Chapter 7

Conclusions

This chapter summarizes the contents of the thesis, outlines possibilities of future work, and describes the
contributions of the author to publications on topics of the thesis.

7.1 Summary

In this thesis we have tackled several problems existing in today’s implementations of the idea of marker-
free computer vision-based human-computer interaction. We have implemented the proposed solutions within
the framework of a case study, camera-based interaction of a speaker with a computer-based presentation
video-projected onto a wall. For the case study, two hardware environments have been used which allow for
interaction of different complexity. The more comprehensive one contains at least two static observing cameras
and one active camera whose pan, tilt, and zoom can be controlled by the computer vision system (Figure 1.1).
The purpose of the two observing cameras mainly is to capture data for recognizing the arm pointing direction,
whereas the active camera is used to focus on the user’s hand in order to allow for recognition of hand postures
performed in order to issue commands to the system.

The major difficulty is coping with natural environments, in particular with the fluctuating illumination of
the area of interaction. We have proposed approaches to compensate errors generated in the phase of image
segmentation in the later phases of the processing chain: error detection and contour correction based on
assumptions on coherence in image sequences and different views, situation-dependent signal processing,
automatic parameter control, and fusion of partly redundant data from different sources. The latter has been
exemplified in the case study by combining a module of global observation (using the two static cameras) and
a module of local observation (using the active camera) into a system which fuses data from both sources. The
advantage of data fusion is that the global system may help the local system in particular in the critical case
that the hand is lost by the active camera.

Another difficulty is distinguishing gestures from arbitrary postures or motions. For that purpose, we have
introduced a concept of multi-type gesture interaction, which combines several gestures with spatial and tem-
poral constraints. The case study allows for demonstration of the multi-type gesture concept by using static
hand gestures based on hand postures, and pointing gestures based on hand or arm location, as gesture types.
The gesture types can be used in parallel or sequentially. In the case study, for example, a cursor might be
moved to a certain item on the screen in the pointing gesture mode, and then an action associated with the item
might be activated by a static hand gesture. Static hand gestures might also be used for entering or leaving the
pointing mode, that is, a pointing phase is embedded into a starting and a terminating static hand gesture.

A further issue addressed in the thesis is that existing marker-free computer vision-based human-computer
interaction systems usually are monolithic prototypes which integrate the interactive application and processing
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of interaction in a hard-wired way. On the other hand, decoupling of the application from the interaction is
standard in the field of human-computer interaction. We have developed a new comprehensive concept, the so-
called interaction space architecture, for this purpose, which takes into consideration in its internal structure
the particular requirements of computer vision-based human-computer interaction. The main idea is using a
sequence of interaction spaces mapped on each other: a physical interaction space, a virtual interaction space,
an abstract interaction space, and the application. The virtual interaction space is a model of the physical
interaction space which may help to overcome troubles with the sensor system. The abstract interaction is a
placeholder for the real application. It may decouple the application from the possibly still problematic input
data. The application interface offers parameters which control the application.

We have analyzed the performance of our approaches experimentally based on the case study. By documenting
the experiments in a somewhat formalized way, we hope to bring some accuracy into this critical issue of
publications in the field.

7.2 Future Work

There are several possibilities to extend the work of this thesis which are outlined in the following.

We have used a special application scenario, the interaction of a user with a backprojection wall. A particular
feature has been the inclusion of an active camera in order to allow for the recognition of hand gestures.
The interaction via the active camera resembles the interaction with mobile robots equipped with cameras as
sensors. Another related field is automatic surveillance of people in an environment by cameras. A third field
is interactive 3D-video where people and environments are captured by multiple cameras so that the scene can
be replayed with different, interactively chosen views. It could be worthwhile to gain a comprehensive image
of applications and methods of solution across the fields in order to avoid parallel development and to identify
classes of applications which can be treated with the same methods.

Our general architectural framework offers possibilities which go beyond those we have been able to use within
the restricted time resources available for a thesis. One way could be the extension of the model basis. Models
of the environment and the user could lead to an improved behavior of the system. On the other hand, using a
model may cause higher efforts to adapt the system to new environments.

One example where model-based approaches are frequently used is object tracking. Well-known concepts are
the Kalman filter [Bro83] and the more recent approach of particle filtering, see e.g. [IB98]. Particle filtering
in particular is a general approach with the advantage of being able to track individual objects even if they
move in substantial clutter. Reasons for its application can be speeding-up image segmentation by restriction
on a window around the predicted location of the tracked object, and distinguishing an object of interest among
several other active objects by its motion characteristics.

By using knowledge from the scenario of interaction about the location of the object of interest, here the hand,
we do not necessarily need a sophisticated estimation of the motion paths which might require additional time
of computation. Furthermore, for speeding up segmentation, a simple prediction or segmentation without pre-
diction is sufficient in the almost static phases which are of particular interest in our interaction scenario, while
in phases of rapid motion exact data are not required and also might cause troubles for prediction. Neverthe-
less, integrating particle filtering into our framework is an interesting issue for future work, in particular since
not only object motion, but also motion and control of the active camera have to be taken into consideration.

Our architectural framework follows the classical computer-vision approach in the sense that it reconstructs
aspects of the spatial geometry. A different approach could be to learn system reaction immediately from the
captured images, possibly by storing an extensive data base of images from different scenarios. Image-based
approaches seem feasible in not too general environments, like indoor environments. The advantage is that
the critical step of segmentation does not occur in separate. Our approach has been to cope with the deficit of
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segmentation in later steps of the processing chain explicitly. In an image-based approach mutual correction
can happen implicitly. Disadvantages of image-based approaches are the possibly required high computational
resources, and little knowledge why they work or not.

7.3 Publications

Parts of the thesis are subject of three publications co-authored by the author of the thesis:

1. C. Leubner, C. Brockmann, H. Miiller, Computer-vision-based human-computer interaction with a
back projection wall using arm gestures, in: Proceedings of 27th Euromicro Conference, IEEE Press,
2001 [LBMO1].

The paper presents the scenario of interaction with a backprojection wall without active camera, which
is due to the third co-author. An approach to image segmentation taking into account the natural envi-
ronment, and the calculation of a 2D arm pointing direction based on it, are outlined (due to the first
co-author). Further, an approach to calculation of the 3D pointing direction based on calibration by a
simple lookup table based on measurements by hand is described (due to the author of the thesis). It is
a predecessor of the approaches presented in the sections 4.3 and 5.3 of the thesis. Finally, the paper
describes the basic idea of compensation of disturbed information (due to the author of the thesis). This
has been considerably extended in the sections 5.4 and 5.5.

2. C. Brockmann, H. Miiller, An architecture for vision-based human-computer interaction, in: Proceed-
ings of the 3rd IASTED International Conference on Visualization, Imaging and Image Processing,
ACTA Press, 2003 [BMO03a].

The publication describes an architectural framework which is almost the same presented in chapter 3 of
the thesis. Furthermore, it outlines the approaches of error detection and correction by coherence analy-
sis of the sections 5.4 and 5.5, and presents an experimental evaluation of them which is a preliminary
version of the experiments of section 5.7. Finally, the implementation of the architecture for the case
study is described, analogously to chapter 3.4.3.

The contents of the paper are due to the author of the thesis. The contributions of the co-author has been
structuring of the material and rigorous improvements concerning its presentation.

3. C. Brockmann, H. Miller, Remote vision-based multi-type gesture interaction, in: Proceedings 5th In-
ternational Workshop on Gesture and Sign Language Based in Human-Computer Interaction, LNCS,
Springer-Verlag, 2003 [BMO03b].

The publication has its emphasis on the material of chapter 6 of the thesis, i.e. the tracking concept based
on the observing cameras and the active camera. Besides that, it mentions the general framework of
interaction spaces of chapter 3.2, introduces the concept of multi-type gesture interaction of section 3.3,
and presents six gesture types on which the concept can be based. It also includes recognition of dynamic
gestures which has been excluded from the thesis.

The contents of the paper are due to the author of the thesis. The contributions of the co-author has been
structuring of the material and rigorous improvements concerning its presentation.
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