Tieftemperatur-Raman- und Struktur- Untersuchungen an Metallhydroxiden und Hydroxometallaten

Vom Fachbereich Chemie der Universität Dortmund zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Dissertation

von Anke Niemann aus Dortmund

Referent: Prof. Dr. H. Jacobs Korreferent: Prof. Dr. A. Geiger

Tag der mündlichen Prüfung: 02.03.2001

Universität Dortmund 2001 Darin besteht das Wesen der Wissenschaft. Zuerst denkt man etwas, das wahr sein könnte. Dann sieht man nach, ob es der Fall ist und im allgemeinen ist es nicht der Fall.

B. Russell

Der Blick des Forschers fand nicht selten mehr, als er zu finden wünschte.

G. E. Lessing

Die vorliegende Arbeit wurde in der Zeit von Juni 1995 bis Dezember 2000 im Fachbereich Chemie der Universität Dortmund unter der Leitung von Herrn Prof. Dr. H. Jacobs durchgeführt. Dank

Herrn Prof. Dr. H. Jacobs danke ich für die interessante Themenstellung, für die unermüdliche Unterstützung und Förderung dieser Arbeit und für seine große Geduld.

Für die Übernahme des Korreferats danke ich Herrn Prof. Dr. A. Geiger.

Für die Durchführung von Neutronenbeugungsexperimenten am Rotax / ISIS möchte ich Herrn Dr. W. Kockelmann (Universität Bonn) und meinen Kollegen Herrn Dr. A. Leineweber und Herrn Dipl.-Chem. F. Haarmann danken.

Für die Unterstützung bei Pulverdiffraktionsmessungen sei Herrn Dr. P. Müller (RWTH Aachen) gedankt.

Bei der Glasbläserei der Universität Dortmund möchte ich mich für die jederzeit freundliche Unterstützung meiner Arbeit bedanken.

Herrn Dr. P. Bohger und Frau W. Buß möchte ich für die freundschaftliche Zusammenarbeit und Unterstützung bei schwingungsspektroskopischen Messungen danken.

Frau S. Bartels und Frau A. Weiske danke ich für ihre stets motivierte Unterstützung dieser Arbeit.

Für die kritische Revision der vorliegenden Arbeit möchte ich Herrn Dr. D. Merten, Herrn Dr. R. Nymwegen und Herrn Dr. K. Vogelsang ganz herzlich danken.

Mein abschließender Dank gilt meinen Eltern.

1	Einleitung	1
2	Experimentelle Grundlagen	3
	2.1 Ausgangssubstanzen	3
	2.2 Präparative Arbeitsmethoden	4
	2.3 Impulsdispersive Analysen zur Strukturbestimmung	4
	2.3.1 Röntgenographische Untersuchungen an mikrokristallinen Pulvern	4
	2.3.1.1 Filmmethoden	4
	2.3.1.2 Temperaturabhängige Röntgendiffraktionsexperimente	5
	2.3.2 Röntgenographische Untersuchungen an Einkristallen	5
	2.3.3 Neutronendiffraktionsexperimente an mikrokristallinen Pulvern	5
	2.3.4 Verwendete Programme zur Strukturbestimmung und graphischen Darstellung	g6
	2.4 Schwingungsspektroskopische Untersuchungsmethoden	7
	2.4.1 Raman-Spektroskopie	7
	2.4.1.1 Tieftemperatur-Raman-Messungen	8
3	Schwingungsspektroskopische und strukturelle Untersuchungen an Metallhydroxide	en und
	Hydroxometallaten mit O-H···O-H-Bindungen	11
	3.1 Einführung	11
	3.2 β-Berylliumhydroxid und ε-Zinkhydroxid, β-Be(OH) ₂ und ε-Zn(OH) ₂	14
	3.2.1 Einführung	14
	3.2.2 Darstellung	15
	3.2.3 Tieftemperatur-Ramanspektroskopie	15
	3.2.3.1 Raman-Experimente an β-Be(OH) ₂	16
	3.2.3.2 Raman-Experimente an ε-Zn(OH) ₂	20
	3.2.4 Neutronen- und Röntgenbeugungsuntersuchungen	23
	3.2.4.1 Neutronen- und Röntgenbeugungsuntersuchungen an β -Be(OD) ₂	24
	3.2.4.3 Neutronenbeugungsuntersuchung an ϵ -Zn(OD) ₂	32
	3.2.5 Strukturbeschreibung	
	3.2.5.1 Wasserstoffbrückenbindungen in β -Be(OH) ₂	39
	3.2.5.2 Wasserstoffbrückenbindungen in ε-Zn(OH) ₂	43
	3.2.5.3 Veränderungen der Zellparameter und des Zellvolumens von β -Be(OD) ₂ mit	
	abnehmender Temperatur	44
	3.3 Lithiumtetrahydroxoborat, LiB(OH) ₄	47
	3.3.1 Einführung	47

	3.3.2 Darstellung	47
	3.3.3 Tieftemperatur-Ramanspektroskopie	
	3.3.4 Neutronen- und Röntgenbeugungsuntersuchungen	
	3.3.5 Strukturbeschreibung	
	3.4 Zusammenfassung und Diskussion	
4	Schwingungsspektroskopische Untersuchungen an Modellverbindungen mit	t Wassser-
	stoffbrückenbindungen	
	4.1 Einleitung	
	4.2 Hexagonales Eis, H ₂ O (s)	
	4.2.1 Einführung	69
	4.2.2 Tieftemperatur-Ramanspektroskopie	70
	4.3 Ortho-Borsäure, H ₃ BO ₃	72
	4.3.1 Einführung	72
	4.3.2 Tieftemperatur-Ramanspektroskopie	73
	4.4 Monokline meta-Borsäure, HBO ₂	74
	4.4.1 Einführung	74
	4.4.2 Darstellung	76
	4.4.3 Tieftemperatur-Ramanspektroskopie	76
	4.5 Kaliumhydrogendifluorid, KHF ₂	
	4.5.1 Einführung	78
	4.5.2 Tieftemperatur-Ramanspektroskopie	80
	4.6 Kaliumdihydrogenphosphat, KH ₂ PO ₄	
	4.6.1 Einführung	
	4.6.2 Tieftemperatur-Ramanspektroskopie	
	4.7 Zusammenfassung und Diskussion	
5	Strukturuntersuchungen an Li(H ₂ O) ₄ B(OH) ₄ ·2H ₂ O	
	5.1 Einführung	
	5.2 Neutronenbeugungsuntersuchungen	
	5.3 Zusammenfassung und Diskussion	
6	Zusammenfassung, Diskussion und Ausblick	
7	Literaturverzeichnis	
8	Tabellenanhang	

1 Einleitung

Die Strukturchemie kristalliner Hydroxide ist durch Ladungsasymmetrie der Molekülanionen, die im Vergleich zu Verbindungen mit kugelsymmetrischen Anionen, z. B. Halogenen, zu einer größeren Strukturvielfalt führt, geprägt. Darüber hinaus ist sie durch die Fähigkeit charakterisiert, gleichzeitig als Donor und Akzeptor von Wasserstoffbrückenbindungen fungieren zu können. Elektrostatische Wechselwirkungen zwischen der negativen Ladungsdichte der Hydroxidionen und der positiven Ladungsdichte der Kationen sind entscheidend für die Ausrichtung der Anionen, wenn keine Wasserstoffbrücken vorliegen. Sobald zusätzlich Wasserstoffbrückenbindungssysteme vorliegen, wird die Strukturvielfalt größer. Energetisch sind Wasserstoffbrückenbindungen weniger stabil als kovalente oder ionogene Bindungen, strukturchemisch spielen sie aber in vielen Verbindungen eine große Rolle, z. B. in den Tieftemperaturmodifikationen der schwereren Alkalimetallhydroxide KOH bis CsOH [1-4] und NaOD [5,6].

Für eine strukturchemische Analyse und eine Korrelation mit schwingungsspektroskopischen Ergebnissen ist für Metallhydroxide und Hydroxometallate, die Wasserstoffbrückenbindungen ausbilden, eine genaue Kenntnis der Geometrie der Wasserstoffbrückenbindungen und damit der Lage der Wasserstoffatome wichtig. Die genaue Lage von leichten Atomen, insbesondere von Wasserstoffatomen, ist mit röntgenographischen Methoden nur schwer zu bestimmen. Daher müssen zusätzlich verläßliche Strukturinformationen durch Neutronen-diffraktionsexperimente an deuterierten Verbindungen erhalten werden.

Eine detaillierte Strukturanalyse für β -Berylliumhydroxid unter Verwendung von Einkristallröntgen- und Neutronenpulverdaten wurde von *R. Stahl* durchgeführt [7,8]. Die gemeinsame Verfeinerung der Daten lieferte ein vollständiges Strukturmodell für β -Berylliumhydroxid bei 298 K einschließlich der genauen Bestimmung der Wasserstofflagen. Zusätzlich bei 5 K am Rotax / ISIS an β -Be(OD)₂ durchgeführte Neutronendiffraktionsexperimente konnten von ihm nicht mit dem Strukturmodell von β -Berylliumhydroxid bei Raumtemperatur verfeinert werden. Es bleibt zu klären, ob die Probleme bei der Verfeinerung auf eine Phasenumwandlung von β -Be(OD)₂ zurückzuführen sind, oder auf das Vorhandensein von Verunreinigungen, die erst beim Abkühlen der Probe auskristallisiert sind. Für das isotype ϵ -Zinkhydroxid liegen bisher sehr gute Strukturdaten aus der Verfeinerung von Einkristallröntgenbeugungsdaten vor [7-9], die durch Ergebnisse von Neutronendiffraktionsuntersuchungen ergänzt werden sollen. Schwingungsspektroskopische Methoden ermöglichen eine detaillierte energetische Untersuchung der Wechselwirkungen von Molekülen und Molekülionen und somit auch von Hydroxiden miteinander und mit dem Kristallverband. Die Ergebnisse solcher Untersuchungen erlauben somit zusammen mit kristallographischen Daten eine eingehende Analyse des Bindungsverhaltens. Aufgrund schwingungsspektroskopischer Untersuchungen wurden bereits Konzepte zur Beschreibung von kristallinen Hydroxiden [10,11] und von Hydraten anorganischer Salze [11,12] entwickelt. Die Ergebnisse neuerer schwingungsspektroskopischer Untersuchungen an β -Be(OH)₂ und ϵ -Zn(OH)₂ erweitern diese die besonderen Auswirkungen Konzepte, indem sie der Geometrie der Wasserstoffbrückenbindungen auf die Stärke dieser sowie die große Abhängigkeit der Wasserstoffbrückenbindungsstärke von der Akzeptorstärke der an den unterschiedlichen Metallkationen gebundenen Hydroxidionen berücksichtigen [13].

Ausgehend von diesen schwingungsspektroskopischen Untersuchungen sollen detaillierte Tieftemperatur-Raman-Experimente an β -Be(OH)₂ und ϵ -Zn(OH)₂ sowie an weiteren Verbindungen, die Wasserstoffbrückenbindungen enthalten, durchgeführt werden. Die Auswertung dieser Experimente soll eine genauere Analyse der temperaturabhängigen Veränderungen der Wasserstoffbrückenbindungen und die Abhängigkeit dieser Veränderungen von Wechselwirkungen mit dem Kristallverband, im speziellen Falle des β -Be(OH)₂ und ϵ -Zn(OH)₂ von Wechselwirkungen der Wasserstoffbrückenbindungen mit dem allseits eckenverknüpften MO₄-Tetraedernetzwerk, ermöglichen.

2 Experimentelle Grundlagen

2.1 Ausgangssubstanzen

Argon	Ar	Fa. Messer Griesheim, Krefeld Reinheit: 99,998 %
Berylliumsulfat-Tetrahydrat	BeSO ₄ ·4H ₂ O	Fa. Fluka AG, Buchs, Schweiz Reinheit: p. a.
Boroxid	$^{11}B_2O_3$	Fa. Sigma Aldrich, Deisenhagen
		99 Atom-% ¹¹ B
Ortho-Borsäure	H ₃ BO ₃	Fa. Merck, Darmstadt,
		Reinheit: 99,8 %
Deuterooxid	D_2O	Fa. Merck, Darmstadt,
		Deuterierungsgrad: 99,8 %
Helium	Не	Fa. Messer Griesheim, Krefeld Reinheit: 99,999 %
Kaliumdihydrogenphosphat	KH ₂ PO ₄	Fa. Merck, Darmstadt,
		Reinheit: 99 % p. a.
Kaliumhydrogendifluorid	KHF ₂	Fa. Sigma Aldrich, Deisenhagen
		Reinheit: 99 % p. a.
Lithium	Li	Firma Ventron, Karlsruhe
		Reinheit: 99,3 %
Lithiumhydroxid	LiOH	Fa. Sigma Aldrich, Deisenhagen
		Reinheit: 97 %
Schwefelsäure	H_2SO_4	Fa. Riedel de Haën AG, Hannover
		Reinheit: 95-97 % p. a.
Zink-Stangen	Zn	Fa. Aldrich, Steinheim
-		Reinheit: 99,99 %
Zinknitrat-Tetrahydrat	Zn(NO ₃) ₂ ·4H ₂ O	Fa. Merck, Darmstadt
-		Reinheit: p. a.

2.2 Präparative Arbeitsmethoden

Für den Großteil der für Neutronenbeugungs- und Ramanuntersuchungen hergestellten Proben war es wichtig, daß die Isotopenreinheit oder das Isotopenverhältnis nicht durch D zu H-Austausch beeinflußt wurde. Außerdem mußten die Proben für die schwingungsspektroskopischen Untersuchungen trocken sein. Daher erfolgte die Handhabung in einer Inertgasatmosphäre mit sehr geringen Partialdrücken an Wasserdampf und Sauerstoff in einem mit Argon befüllten Handschuhkasten mit einem Innenvolumen von ca. 801 [14,15].

Argon wurde in einem geschlossenem Kreislauf über eine ca. 1100 K heiße Titanschwammstrecke geführt. Durch dieses Verfahren erreichte man eine Konzentration an Sauerstoff und Wasserdampf von unter 1 Vpb bzw. 1,5 Vpm.

Die Beschickung des Kastens erfolgte über zwei evakuierbare Schleusen und die unter Inertgasatmosphäre durchzuführenden Arbeiten wurden mittels eines doppelten Paars Butylkautschukhandschuhen vorgenommen.

Der Wasserdampfgehalt des Argons wurde mittels eines Hygrometers der Firma Endress und Hauser GmbH, Maulberg, Panametrics Modell 2000 bestimmt.

2.3 Impulsdispersive Analysen zur Strukturbestimmung

2.3.1 Röntgenographische Untersuchungen an mikrokristallinen Pulvern

2.3.1.1 Filmmethoden

Zur Reinheitsüberprüfung der Edukte, sowie zur Phasenanalyse der Produkte wurden eine Flachpräparate-Vakuum-Guinier-Kamera FR 552, Firma Enraf-Nonius, Delft, NL mit CuK α_1 -Strahlung und eine Doppelradiuskamera PW 1024 der Firma Phillips, Eindhoven, NL nach Straumanis mit CuK α -Strahlung verwendet.

Die Lage der Reflexe auf den Guinierfilmen wurde mit einem Guinier-Viewer der Firma Enraf-Nonius, Delft, NL ermittelt. Die Bestimmung der Reflexlagen auf den Debye-Scherrer-Aufnahmen nach Straumanis wurde mit einem Koinzidenzmaßstab und einer Parallaxenausgleichslupe vorgenommen. Die Intensitäten der Reflexe wurden geschätzt.

Die Bestimmung der Zellparameter durch Ausgleichsrechnung nach der Methode der kleinsten Fehlerquadrate und die Intensitätsrechnung für Pulverdiagramme erfolgten mit dem Programmpaket LAZY-PULVERIX [16]

2.3.1.2 Temperaturabhängige Röntgendiffraktionsexperimente

Temperaturabhängige röntgenographische Untersuchungen an β -Be(OD)₂-Pulver wurden von Herrn *Dr. P. Müller* am Institut für Anorganische Chemie der RWTH Aachen an einem Guinierdiffraktometer G642 der Firma Huber, Rimsting mit Flachpräparatetechnik mit CuK α_1 -Strahlung durchgeführt. Der untersuchte Winkelbereich in 20 betrug 20 bis 90° mit einer Schrittweite von 0,02° (Instrumentauflösung beträgt 0,025°) und einer Meßzeit von 20 s pro Punkt. Temperiert wurde die Probe in einem ⁴He-Closed-Cycle-Cryostaten. Für die in Transmissionsgeometrie durchgeführten Messungen wurde die Probe mit Silicium als Standard zur Bestimmung der Gitterkonstanten vermengt und das Gemenge zwischen zwei mit getrockneter Vaseline bestrichenen Mylarfolien dünn aufgetragen. Die Mylarfolien, die als Transmissionsfenster dienen, wurden in einem speziellen Träger fixiert.

2.3.2 Röntgenographische Untersuchungen an Einkristallen

Geeignet erscheinende Kristalle wurden, falls erforderlich unter Argon, mit Hilfe eines Mikroskops isoliert und in Markröhrchen der Firma Glas Müller (Berlin) überführt und diese wurden abgeschmolzen. Zur Bestimmung der Qualität von Kristallen wurden Präzessionsaufnahmen mit einem Stoe-Buerger-Präzessions-Goniometer 200 der Firma Seifert (Ahrensburg) mit MoKα-Strahlung erstellt.

Zur Sammlung von Intensitätsdaten wurde ein automatisches Vierkreisdiffraktometer Mach3 der Firma Enraf-Nonius (Delft, NL) mit MoKα-Strahlung verwendet.

2.3.3 Neutronendiffraktionsexperimente an mikrokristallinen Pulvern

Für Neutronendiffraktionsexperimente an mikrokristallinen Pulvern wurden die volldeuterierten Präparate in Vanadium-Küvetten mit verschraubbaren Deckeln abgefüllt und mit Hilfe einer Goldquetschdichtung luftdicht verschlossen. Für die Messungen wurden Küvetten mit unterschiedlichen Innendurchmessern verwendet, eine 6 mm-Küvette für β -Be(OD)₂, eine 8 mm-Küvette für ϵ -Zn(OD)₂ und eine 13 mm-Küvette für Li¹¹B(OD)₄.

Winkeldispersive, elastische Neutronenbeugungsexperimente nach der Flugzeit-Methode (time of flight, kurz TOF) wurden an der Spallationsquelle ISIS des Rutherford-Appleton-Laboratory, Chilton, Oxford, GB mit weißer Strahlung am Pulverdiffraktometer Rotax [17-19] durchgeführt. Da der Neutronenpuls eine Geschwindigkeitsverteilung besitzt [20], ist anders als bei einer Messung bei konstanter Neutronenwellenlänge eine zeitaufgelöste Detektion notwendig. Unter Berücksichtigung der Geschwindigkeitsverteilung der Neutronenwellenlängen über die De Broglie-Beziehung ergibt sich die Flugzeit-d-Wert-Relation aus der Bragg-Gleichung zu:

$$t = 2 \frac{m_N}{h} L d \sin(\theta)$$

mit t = Flugzeit, L = Flugstrecke, h = Planck'sches Wirkungsquantum und m_N = Neutronenmasse.

Der Meßbereich in d-Werten ist abhängig von den Positionen der beiden winkeldispersiven Mehrkanalszintillationsdetektoren, kurz Bänke genannt. Die durch die Detektoren abgedeckten Winkelbereiche bei den durchgeführten Messungen waren 27-69° und 129-161° in 20 für β -Be(OD)₂, 27-63° und 105-139° in 20 für ϵ -Zn(OD)₂ und 10-46° und 105-139° in 20 für Li¹¹B(OD)₄.

Zur Kalibration der Positionen der Bänke, das heißt zur Ermittlung einer exakten Flugzeit-d-Wert-Relation, wurde eine Silicium-Probe vermessen und mit dem Programm GSAS [21] die erhaltenen Diagramme angepaßt. Die so erhaltenen Parameter für die Profilfunktionen wurden für die Verfeinerung der mit der eigenen Probe erhaltenen Daten als Startwerte eingesetzt.

Die Intensitätsverteilung des verwendeten Neutronenpulses wurde für die gewählten Detektorpositionen durch die Aufnahme eines Moderatorspektrums anhand der inkohärenten Streuung einer Vanadiumprobe gemessen, um die Flugzeitspektren entsprechend korrigieren zu können. Für die Tieftemperaturmessungen wurde ein Orange-Heliumbad-Cryostat verwendet.

2.3.4 Verwendete Programme zur Strukturbestimmung und graphischen Darstellung

Strukturlösungen und -verfeinerungen erfolgten durch die Auswertung der an dem Einkristalldiffraktometer Mach3 aufgenommenen Datensätze mit den Programmpaketen NRCVAX [22], SHELXS-86 [23], SHELXTL-Plus [24] und SHELXL-93 [25].

Zur Auswertung der Röntgen- und Neutronenpulverdiffraktionsexperimente wurde das Programmpaket GSAS [21], das auf der Rietveld-Methode basiert, benutzt. Eine genaue Beschreibung findet sich in [26]. Die graphische Darstellung der Strukturen erfolgte mit dem Programm Diamond [27].

2.4 Schwingungsspektroskopische Untersuchungsmethoden

2.4.1 Raman-Spektroskopie

Für die Raman-Experimente wurde ein Argon Laser Stabilite 2017 der Firma Spectra-Physics (Linienhalbwertsbreite 1 - 1,3 cm⁻¹ [28], Leistungsschwankung \pm 0,5 %) zur Erregung der Raman-Streuung verwendet. Die Ausgangslaserleistung wurde je nach Probe zwischen 200 und 1000 mW variiert. Ein Prismenmonochromator Laserspec III (Firma Spectra Physics) monochromatisiert die Erregerstrahlung, wobei es zu ca. 50 % Leistungsverlust im Vergleich zum Laserausgang kommt.

Zur Aufnahme der Raman-Spektren wurde ein Spektrometer T64000 der Firma Jobin-Yvon (Longjumeau, Frankreich) eingesetzt. Die Größe des auflösungsrelevanten Eingangsspalts betrug 200 μ m. Zur Unterdrückung des durch Rayleigh-Streuung hervorgerufenen Streulichts, das nahe der Erregerlinie etwa um vier Größenordnungen intensiver als die Raman-Streuung ist und bei nicht ausreichender Unterdrückung die Messungen der Librationen und Gitterschwingungen erheblich beeinträchtigen kann, wurde ein Monochromator mit zwei holographischen Gittern mit 1200 Linien / mm verwendet. Dieser erlaubt die Messung von Raman-Linien bis zu minimalen Wellenzahlen von unter 20 cm⁻¹, da er zu einer Streulichtunterdrückung mit einem Faktor der Intensitätsminderung von 10¹³ für subtraktive und von 10¹⁴ für additive Dispersion bei 20 cm⁻¹ für die 514,5 nm Ar-Linie führt.

Schlechte Kristallinität der Proben führt zu einer Verstärkung des Streulichts bei niedrigen Wellenzahlen, so daß an solchen Proben Gitterschwingungen nicht oder nur eingeschränkt gemessen werden können.

Ein zweidimensionaler CCD-Detektor mit $1024 \cdot 256$ Pixel Auflösung mit einer Fläche von je $27 \cdot 27 \ \mu\text{m}^2$ dient zur Aufnahme der Spektren. Der Detektor wird mit N₂(I) auf 140 K gekühlt, um das durch thermisch emittierte Elektronen hervorgerufene Rauschen zu unterdrücken. Dadurch erreicht man einen Dunkelstrom von < 1 Elektron pro Pixel und Stunde und ein Rauschen von < 6 Elektronen pro Pixel beim Auslesen. Hierdurch sind lange Akkumulationszeiten möglich. Bei der Detektion schwacher Signale sollte allerdings beachtet werden, daß die Höhe des Untergrunds nicht den Bereich der Sättigung des CCD-Detektors (65536 Counts) erreicht, da dies zu einer gleichmäßigen Modulation des Untergrundes führt, die bei der Addition mehrerer Spektren nicht herausgemittelt wird.

Das Signal, das über 256 Pixel aufsummiert wird, wird direkt als Spektrum wiedergegeben. Da durch die Detektion von kosmischer Strahlung Signale geringer Halbwertsbreite in zufälliger Lage auftreten, sogenannte "Spikes", werden alle Spektren mindestens zweimal aufgenommen und die "Spikes" von Hand entfernt. Danach werden die einzelnen Meßzyklen aufsummiert und das so entstandene Spektrum weder geglättet noch bezüglich des Untergrundes korrigiert.

Die absolute Lage des auf Linearität geeichten CCD-Detektors ($\pm 0,1$ cm⁻¹ Abweichung auf 1000 cm⁻¹) wird vor und nach jeder Messung über die Bestimmung der Lage einer Referenzlinie (Hg-Linie bei 546,074 nm [29], entspricht 1023,81 cm⁻¹ für die 514,5 nm-Linie) bestimmt und korrigiert.

Die Aufnahme der Spektren und die Entfernung der "Spikes" erfolgt mit dem Programm Spectramax von Jobin Yvon (Longjumeau, Frankreich).

2.4.1.1 Tieftemperatur-Raman-Messungen

Für Raman-Untersuchungen im Temperaturbereich von 10 K bis 300 K wurde ein Bad-Kryostat der Firma Konti-Spektro, CryoVac Gesellschaft für Tieftemperaturtechnik mbH & Co KG (Troisdorf) des Typs Spectro 4 verwendet. Die ursprünglich für die Messung von Preßlingen vorgesehene Probenhalterung wurde für die Messung von in Glasröhrchen eingeschmolzenen Proben umgebaut [30]. Den Aufbau des Kryostaten mit der modifizierten Probenhalterung gibt Abbildung 2.1 wieder.

Abb. 2.1: Für die Tieftemperatur-Raman-Messungen verwendeter Helium-Kryostat mit Probenhalter für Proben in Glasröhrchen (Längenangaben in mm) [30]

Die Tieftemperaturmessungen wurden am lateralen Eingang des Spektrometers durchgeführt, da ein Aufbau am axialen Eingang aufgrund des hohen Platzbedarfes des Kryostaten, des Pumpenstandes und der Heliumkanne nicht möglich ist. Gemessen wurde in 90°-Geometrie, wobei die Umlenkung und Justierung des Laserstrahls auf die Probe über zwei Spiegel der Firma Spindler & Hoyer GmbH & Co (Göttingen) erfolgte. Das Streulicht wird über ein Fotoobjektiv Nikor AF 85 mm der Firma Nikon mit einer Lichtstärke von 1:1,8 fokussiert. Das im Kryostat benötigte Isoliervakuum mit einem Druck $< 10^{-5}$ mbar wurde mit Hilfe eines Pumpenstandes der Firma Balzers (Liechtenstein) bestehend aus einer luftgekühlten Turbomolekular-Drag-Pumpe TMH/U 065 und einer Membranpumpe MZ 2T als Vorpumpe erzeugt. Die Druckmessung erfolgte mit einem Pirani-Meßkopf TPR 250 und einem Vakuummeßgerät TPG 251, die Steuerung der Pumpen über eine Antriebselektronik TCP 015 und ein Pumpenstandsteuergerät TCS 015.

Als Kontaktgas im Kryostaten dienten ca. 300 mbar Helium (Reinheit 99,999%, Messer-Griesheim, Krefeld). Als Kühlmittel wurde flüssiges Helium verwendet, welches in einem Kreislauf aus Entnahme aus Heliumkannen, Rückführung zur Rückgewinnung und Abfüllung in Heliumkannen möglichst kostengünstig genutzt wird. Die Entnahme des Heliums aus der Kanne erfolgte über einen Konti-Heber, der Kältemitteldurchfluß wurde über eine ölfreie Heliumförderpumpe S-9001 und einen Regelblock L 5010 mit einem Grob- und einem Feinventil der Firma Konti-Spectro, CryoVac (Troisdorf) eingestellt. Die Temperaturmessung erfolgte am Probenhalter und am Verdampfer mit geeichten Siliciumdioden mit einem maximalen Temperaturfehler < 0,04 K der Firma Lakeshore Cryotronics (Ohio, USA), die Temperatur wurde über ein elektronisches Meß- und Regelgerät TIC 304-M der Firma Konti-Spectro, CryoVac (Troisdorf) geregelt.

3 Schwingungsspektroskopische und strukturelle Untersuchungen an Metallhydroxiden und Hydroxometallaten mit O-H-···O-H-Bindungen

3.1 Einführung

Im Jahre 1922 führte *M. L. Huggins* den Begriff der Wasserstoffbrückenbindung ein [31,32] und es erfolgten danach eine Vielzahl von Untersuchungen an Verbindungen mit solchen Bindungen. Neben den Hydraten ist eine Verbindungsklasse, die besonders aufgrund von Aspekten der Wasserstoffbrückenbindungen untersucht worden ist, die der Hydroxide. Bereits im Jahre 1935 veröffentlichten *J. D. Bernal* und *H. D. Megaw* [33] eine Übersicht zur Strukturchemie fester Hydroxide, in der erstmals die Acidität der OH-Gruppe in Abhängigkeit von der Art der koordinierenden Kationen diskutiert wurde.

Aufgrund der mit Röntgenbeugungsmethoden nur unzureichend genauen Bestimmung der Positionen von Wasserstoffatomen in Festkörpern wurde versucht, durch Korrelation von Sauerstoff-Sauerstoffabständen mit O-H-Streckschwingungsfrequenzen Wasserstoffbrückenbindungsabstände zu ermitteln [34-36]. Dieses geschah unter der Voraussetzung, daß die Wasserstoffbrückenbindungen in allen Hydroxiden strukturchemisch dominant sind. Weitere Untersuchungen zeigten jedoch, daß die Bindung in vielen Hydroxiden nicht hauptsächlich von Wasserstoffbrückenbindungen, sondern von vielen weiteren Einflußfaktoren geprägt ist. Zu nennen sind hier die Art der Metall-Hydroxidbindung [37], die elektrostatischen Wechselwirkungen mit dem Kristallverband [38] und die unterschiedlichen Kationenanordnungen und -potentiale [39]. Inzwischen ist es durch die große Anzahl untersuchter Hydroxide gelungen, die Einflüsse der Bindungswechselwirkungen in diesen Verbindungen detaillierter zu beschreiben [10,40,41]. Dadurch lassen sich Aussagen über die Richtung der durch die unterschiedlichen Effekte hervorgerufenen Verschiebung der O-H-Streckschwingungsfrequenz im Vergleich zur O-H-Streckschwingungsfrequenz des freien Moleküls treffen [42]. Eine schematische Darstellung der Einflüsse auf die Verschiebung der O-H-Streckschwingungsfrequenzen in kristallinen Hydroxiden im Vergleich zur Gasphase gibt Abbildung 3.1.

O-H ⁻ als H-Brückendonor	Kationen-Proton-Repulsion			
O-H ⁻ als H-Brückenakzeptor	O-H ⁻ als H-Brückenakzeptor			
Kovalente Kation-Hydroxid-	Ionogene Kation-Hydoxid-			
sauerstoff-Bindung	sauerstoff-Wechselwirkung			
Schwächung der O-H-Bindung	Stärkung der O-H-Bindung			
Verschiebung zu niedrigen v(OH) v(OH	Verschiebung zu höheren v(OH)			

Abb. 3.1: Schematische Darstellung der Verschiebung der O-H-Streckschwingungsfrequenzen in Abhängigkeit von unterschiedlichen Bindungswechselwirkungen im Vergleich zur Gasphase

Auffällig ist, daß O-H⁻ als Brückenakzeptor sowohl zu einer Schwächung als auch zu einer Stärkung der O-H-Bindung führen kann. Der Normalfall ist, daß sich die Streckschwingungsfrequenzen von Hydroxidgruppen, die als Wasserstoffbrückenakzeptoren fungieren, erhöhen. Ausnahmen sind Hydroxidgruppen, die gleichzeitig als Akzeptoren und als Donoren von Wasserstoffbrücken fungieren. In diesem Falle führt eine große Akzeptorstärke, auch antikooperativer Effekt [43-45] genannt, zu einer Schwächung der O-H-Bindung und damit zu einer starken Verschiebung der O-H-Streckschwingungsmoden zu niedrigeren Frequenzen. Dieser Effekt kann stärker sein als der synergetische Effekt, das heißt als der Einfluß der Donorstärke [13].

Das Verhalten von Verbindungen mit Wasserstoffbrückenbindungen bei tiefen Temperaturen ist bisher nur selten schwingungsspektroskopisch untersucht worden. Man findet in der Literatur zwar häufig Berichte über Untersuchungen bei der Siedetemperatur des flüssigen Stickstoffs, beispielhaft seien [4,13-49] angeführt, aber nur selten bei tieferen Temperaturen [30,50-52]. Hauptsächlich werden Phasenumwandlungen und dynamische Effekte in Verbindungen mit Wasserstoffbrückenbindungen untersucht. Schwingungsspektroskopische Messungen bei tieferen Temperaturen als der Siedetemperatur des flüssigen Stickstoffs sind selten, da sie nur mit einem erheblich höheren apparativen Aufwand durchführbar sind. Außerdem sind die wichtigsten Effekte, die das temperaturabhängige Verhalten von Schwingungsfrequenzen beeinflussen, gut untersucht [10-12,53,54].

Für alle Schwingungsfrequenzen im kristallinen Festkörper kann man zwei entgegengesetzte Effekte beobachten [53]:

1. Die pseudo-harmonische Verschiebung, für diese gilt: dv/dT < 0.

Durch die Verringerung des Kristallvolumens und der damit verbundenen Verringerung der interatomaren Abstände beim Abkühlen erfolgt eine Stärkung der Bindung und damit eine Frequenzerhöhung [54]. Dieser Effekt ist normalerweise dominierend.

2. Die Eigenenergie-Verschiebung, für diese gilt: dv/dT > 0.

Dieser normalerweise geringer ausgeprägte Effekt beruht auf anharmonischen Kopplungen, die zu einer Frequenzerniedrigung beim Abkühlen führen. Starke anharmonische Kräfte, wie sie z. B. in Ferroelektrika vorliegen, können die Eigenenergie -Verschiebung verstärken [53].

Für die Librationen und Streckschwingungen wasserstoffhaltiger molekularer Gruppen, wie OH⁻ und H₂O gibt es weitere temperaturabhängige Effekte [10-12]:

1. Der Effekt der Kationen-Koordination, der zu einer Erhöhung der Schwingungsfrequenzen führt, wird beim Abkühlen durch die Zellkontraktion und die damit verbundene Verkürzung der Kation-Wasserstoff-Abstände verstärkt, es gilt: dv/dT < 0.

2. Anharmonische Kräfte durch Wasserstoffbrückenbindungen führen bei linearen Brücken, das heißt bei Bindungen zu nur einem Akzeptor, und bei gewinkelten Brücken, das heißt bei Bindungen zu mehreren Akzeptoren, zu unterschiedlichen Verschiebungen in Abhängigkeit von der Temperatur. Durch Temperaturerniedrigung werden die Librationsamplituden verkleinert und dadurch lineare Brücken gestärkt und damit die Bindung in der molekularen Gruppe geschwächt. Für lineare Wasserstoffbrückenbindungen gilt: dv/dT > 0.

Bei gewinkelten Wasserstoffbrücken führt die Verminderung der Librationsamplituden zu einer Schwächung der Brückenbindungen und damit zu einer Stärkung der Bindung in der molekularen Gruppe. Für gewinkelte Wasserstoffbrückenbindungen gilt: dv/dT < 0.

Für die in dieser Arbeit schwingungsspektroskopisch untersuchten Verbindungen sind insbesondere die für lineare Wasserstoffbrückenbindungen sowie die für die Abhängigkeit von der Temperatur dargestellten Effekte wichtig.

3.2 β -Berylliumhydroxid und ϵ -Zinkhydroxid, β -Be(OH)₂ und ϵ -Zn(OH)₂

3.2.1 Einführung

Bereits in den dreißiger Jahren wurden die ersten röntgenographischen Untersuchungen an ε -Zn(OH)₂ durchgeführt [55-60]. Der erste Strukturvorschlag für β -Be(OH)₂ wurde 1950 [61], der für ε -Zn(OH)₂ 1964 veröffentlicht [62]. Im Rahmen seiner Arbeiten über Hydroxide und Hydroxometallate gelang es *R. Stahl* [7,8] in unserer Arbeitsgruppe, für röntgenographische Untersuchungen geeignete Einkristalle von β -Be(OH)₂ und ε -Zn(OH)₂ herzustellen und die Strukturen beider Verbindungen einschließlich der Lagen der Wasserstoffatome zu bestimmen. Die Struktur von ε -Zn(OH)₂ wurde außerdem vollständig in der Arbeitsgruppe von *H. G. von Schnering* bestimmt [9]. Die Strukturen beider Verbindungen leiten sich von der des "idealisierten β -Cristobalits" [63] ab, vgl. Kapitel 3.2.5 (Seite 35).

In unserer Arbeitsgruppe wurden zusätzlich an β -Be(OD)₂ Neutronenbeugungsuntersuchungen am Flugzeitspektrometer Rotax / ISIS durchgeführt [7,8], durch die die Lagen der Wasserstoffatome genauer bestimmt wurden, als dies mit röntgenographischen Methoden möglich ist.

Schwingungsspektroskopische Untersuchungen, die in der Arbeitsgruppe von *H. D. Lutz* an teil- und volldeuterierten Proben von β -Be(OH)₂ und ϵ -Zn(OH)₂ bei Raumtemperatur und der Siedetemperatur des flüssigen Stickstoffs durchgeführt wurden, zeigten überraschenderweise, daß die Wasserstoffbrückenbindungen in ϵ -Zn(OH)₂ signifikant stärker als die in β -Be(OH)₂ sind [13,64]. Aufgrund der deutlich höheren Ladungsdichte von Be²⁺-Ionen, also ihrer stärkeren polarisierenden Wirkung im Vergleich zu Zn²⁺-Ionen war das gegenteilige Verhalten erwartet worden.

Es gibt hierfür zwei Erklärungsansätze [8,13]. Zum einen zeigt ein Vergleich der Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂, daß die Geometrie der Wasserstoffbrückenbindungen in ϵ -Zn(OH)₂ durch eine stärkere Verdrehung der M(OH)₄-Tetraeder im Vergleich zur Struktur des "idealisierten β -Cristobalits" günstiger als in β -Be(OH)₂ ist und dadurch stärkere Wasserstoffbrückenbindungen möglich sind.

Zum anderen ist im Falle von Hydroxidionen, die sowohl Donor als auch Akzeptor einer Wasserstoffbrückenbindung sind, neben der Größe des synergetischen Effekts die des antikooperativen Effekts, das heißt die Akzeptorstärke, wichtig. Dieser Effekt kann, wie bereits in Kapitel 3.1 (Seite 11) beschrieben, ebenfalls zu einer Verstärkung der Wasserstoff-

brückenbindung führen. Beim Vergleich von Be²⁺- und Zn²⁺-Ionen zeigt sich, daß die Akzeptorstärke von an Zn²⁺-Ionen gebundenen Hydroxidionen erheblich größer ist als die von an Be²⁺-Ionen gebundenen. Die Akzeptorstärke der an Zn²⁺-Ionen gebundenen Hydroxidionen ist in diesem speziellen Falle so groß, daß der Einfluß des antikooperativen Effekts den des synergetischen Effekts überwiegt.

3.2.2 Darstellung

Zur Darstellung der für Neutronenbeugungs- und Raman-Untersuchungen benötigten volldeuterierten Substanzmengen von β -Be(OD)₂ wurde eine 20% ige Lösung von NaOD in D₂O durch Auflösen von elementarem Na in D₂O hergestellt. Zu der 50 °C warmen Lösung wurde eine Lösung von BeSO₄ in D₂O gegeben, bis ein pH-Wert von neun unterschritten wurde. Die Lösung wurde zwei Tage bei 50 °C gerührt und anschließend das feinteilige Reaktionsprodukt abgesaugt und getrocknet. Alle Arbeiten wurden unter Schutzgasatmosphäre durchgeführt. Zur Darstellung teildeuterierter Proben für Ramanspektroskopische Untersuchungen wurde die Umsetzung in H₂O/D₂O-Gemischen durchgeführt. Wasserfreies BeSO₄ wurde durch Entwässerung von BeSO₄·4H₂O hergestellt. BeSO4·4H2O wurde dazu in einem großen Überschuß an kalter konzentrierter Schwefelsäure vollständig gelöst. In der Siedehitze kristallisierte wasserfreies BeSO₄ aus, welches abgesaugt, mit wasserfreiem Ethanol gewaschen und getrocknet wurde.

Die Darstellung von für Neutronenbeugungsuntersuchungen ausreichenden Mengen an ϵ -Zn(OD)₂ gelang entsprechend [7,8] durch elektrochemische Korrosion von Zink in zahlreichen Zink-Eisen-Lokalelementen in verdünnter ammoniakalischer Natronlauge über einen Zeitraum von einem Jahr. Das erhaltene grobkristalline Material wurde für die Pulveruntersuchungen gemörsert.

Teildeuterierte Proben wurden durch Umsetzung in verdünnter, ammoniakalischer Natronlauge mit entsprechendem H/D-Verhältnis erhalten.

3.2.3 Tieftemperatur-Ramanspektroskopie

Es wurden an voll- und teildeuterierten Proben von β -Be(OH)₂ und ϵ -Zn(OH)₂ Tieftemperatur-Raman-Experimente durchgeführt. Da die beiden Verbindungen isotyp sind, muß für die Schwingungszuordnung und -abzählung für beide Verbindungen nur eine Faktorgruppenanalyse durchgeführt werden. Die für die Faktorgruppenanalyse verwendeten Methoden sind umfassend in [65] beschrieben. In Tabelle 3.1 ist die Symmetrie und Aktivität der Phononen am Γ -Punkt für β -Be(OH)₂ und ϵ -Zn(OH)₂ in der Faktorgruppe (D₂) aufgelistet. Aus dem azentrischen Raumgruppentyp (P2₁2₁2₁, D⁴₂) und der zur Faktorgruppe isomorphen Punktgruppe (222, D₂) resultiert, daß das Alternativverbot nicht gilt. Wie aus der Tabelle 3.1 ersichtlich ist, sollten im Raman-Experiment alle Phononen beobachtet werden können.

Tab. 3.1: Symmetrie und Aktivität der Faktorgruppenmoden von β-Be(OH)2 und ε-Zn(OH)2am Γ-Punkt in der Faktorgruppe D2

Moden			А	B_1	B ₂	B ₃	Σ		
translatorische Gitter	translatorische Gitterschwingungen (mit inneren Schwingungen der MO ₄ -Tetraeder)								
$M^{2+}/OH^{-}(1)/OH^{-}(2)$	jeweils	4a C ₁	3	3	3	3	36		
rotatorische Gittersch	rotatorische Gitterschwingungen: Librationen der Hydroxidionen								
OH ⁻ (1)/OH ⁻ (2)	jeweils	4a C ₁	2	2	2	2	16		
innere Schwingunger	innere Schwingungen der Hydroxidionen								
OH ⁻ (1)/OH ⁻ (2)	jeweils	4a C ₁	1	1	1	1	8		
		Σ	15	15	15	15	60		
Aktivität			Ra	Ra, IR	Ra, IR	Ra, IR			

3.2.3.1 Raman-Experimente an β -Be(OH)₂

Erste Tieftemperatur-Raman-Untersuchungen wurden an einem Präparat von β -Be(OD)₂ vorgenommen, an dem bereits von *R. Stahl* [7,8] Neutronenbeugungsexperimente bei 298 K und bei 5 K durchgeführt wurden. Die Lageparameter der Deuteriumatome ließen sich mit den Daten der Raumtemperaturmessung problemlos auf der Grundlage des Modells aus der Einkristallstrukturbestimmung verfeinern [7,8]. Die Neutronenbeugungsmessung bei 5 K zeigte zusätzliche Reflexe, die entweder auf eine Phasenumwandlung des β -Be(OD)₂ oder auf eine Verunreinigung, die während des Abkühlens auskristallisiert war (zum Beispiel Wasser oder Diethylether), schließen ließen. Um dies näher zu untersuchen, wurden an dem Präparat Tieftemperatur-Raman-Untersuchungen durchgeführt. Die Spektren zeigen im Bereich der Gitterschwingungen und Librationen die zu erwartende Verschiebung der Schwingungsmoden zu höheren Frequenzen mit abnehmender Temperatur. Um die beobachteten O-D-Streckschwingungsfrequenzen im einzelnen betrachten zu können, ist eine Zuordnung der beobachteten Linien entsprechend den Ergebnissen der Faktorgruppenanalyse notwendig. Diese Zuordnung der im Raman-Experiment beobachteten Linien ist in diesem Falle schwierig, da nicht alle acht erlaubten Moden getrennt zu beobachten sind. Im Folgenden werden daher die Frequenzen der beiden intensitätsstärksten Linien betrachtet. Eine eindeutige Zuordnung zu den beiden unterschiedlichen O-D-Bindungen kann nur für die Betrachtung entkoppelter Moden und nicht für die hier betrachteten gekoppelten Moden getroffen werden. Eine genaue Analyse der Ramanspektren ergibt, daß der temperaturabhängige Verlauf der O-D-Streckschwingungsfrequenzen bei tiefen Temperaturen einen bisher unbekannten Effekt zeigt (siehe Abb. 3.2). Betrachtet man die temperaturabhängige Verschiebung der beiden intensitätsstärksten Linien, erkennt man, daß sich die O-D-Streckschwingungsmoden zuerst, wie für wasserstoffbrückengebundene Systeme mit linearen Brücken zu erwarten, siehe Kapitel 3.1, mit abnehmender Temperatur in Richtung niedriger Wellenzahlen verschieben. Durch die beim Abkühlen eintretende Abnahme der Librationsamplitude des Brücken-Wasserstoffatoms und der gleichzeitigen Abnahme des Zellvolumens, die zu einer Verkürzung des O…D-Brückenabstandes führt, wird die Wasserstoffbrückenbindung gestärkt und die O-D-Bindung geschwächt. Die Abnahme der Streckschwingungsfrequenz mit abnehmender Temperatur wird allerdings immer geringer, bis bei ca. 40 K eine Umkehr des beobachteten Verlaufs eintritt. Die Streckschwingungsmoden verschieben sich zwischen ca. 40 K und 10 K zu höheren Wellenzahlen. Die Verschiebung beträgt für die Linie bei niedrigeren Wellenzahlen 2,5 cm⁻¹ und für die bei höheren 1,8 cm⁻¹. Die Werte sind klein aber signifikant größer als der Meßfehler von ± 0.5 cm⁻¹ Außerdem korreliert die geringe Größe des Effektes der temperaturabhängigen Umkehr des Streckschwingungsfrequenzverlaufs bei Temperaturen kleiner 40 K gut mit der geringen temperaturabhängigen Verschiebung im Temperaturbereich größer 40 K. Wie man in Abbildung 3.2 erkennen kann, sind die Werte der Streckschwingungsfrequenzen bei ca. 10 K gleich denen bei ca. 100 K. In der Literatur konnte weder eine ähnliche Beobachtung noch eine Erklärung für diesen Effekt, der auf eine Schwächung der Wasserstoffbrückenbindungen hinweist, gefunden werden.

Abb. 3.2: O-D-Streckschwingungsbereich und v(OD) gegen T für β -Be(OD)₂

Eine mögliche Erklärung für diesen Effekt ist eine einsetzende Phasenumwandlung. Eine Phasenumwandlung würde außerdem die nicht hinreichend interpretierbare Neutronenbeugungsmessung bei 5 K von *R. Stahl* [7] erklären. Zur Überprüfung wurden an einer neu hergestellten β -Be(OD)₂-Probe Neutronendiffraktionsexperimente bei 245 K, 50 K und 5 K durchgeführt (siehe Kapitel 3.2.4). Auf der Grundlage der so erhaltenen Daten konnten die Strukturparameter von β -Be(OD)₂ vollständig mit dem Modell für die Raumtemperaturmodifikation interpretiert und verfeinert werden und so eine Phasenumwandlung bei tiefen Temperaturen ausgeschlossen werden. Die zunächst sinnvoll erscheinende Annahme zur Erklärung des beobachteten Tieftemperatur-Raman-Effektes war damit widerlegt.

Weitere an der neu hergestellten β -Be(OD)₂-Probe durchgeführte Tieftemperatur-Raman-Experimente bestätigten den oben beschriebenen Effekt, das heißt, es wurde derselbe temperaturabhängige Verlauf der O-D-Streckschwingungsfrequenzen gefunden wie bei den Messungen an der ersten Probe. An einer teildeuterierten β -Be(OH)₂-Probe durchgeführte Tieftemperatur-Raman-Untersuchungen zeigten, daß der erwähnte Effekt sowohl für die gekoppelten O-H-Streckschwingungsfrequenzen als auch für die entkoppelten O-D-Streckschwingungsfrequenzen zu beobachten ist (vgl. Abbildung 3.3 und 3.4, Seite 19).

Abb. 3.3 O-H-Streckschwingungsbereich und v(OH) gegen T für β -Be(OH)₂ + 7% D

Abb. 3.4: O-D-Streckschwingungsbereich und v(OD) gegen T für β -Be(OH)₂ + 7% D

Für die beiden, mit den zwei kristallographisch unterschiedlichen Protonen verknüpften, entkoppelten, lokalen Streckschwingungsmoden beträgt die Größe der Verschiebung zu höheren Wellenzahlen bei tiefen Temperaturen 2,5 cm⁻¹ (stärkere Brücke, O(2)-D(2)···O(1)) und 2,0 cm⁻¹ (schwächere Brücke, O(1)-D(1)···O(2)). Die Verschiebung der gekoppelten O-H-Streckschwingungsmoden ist, wie aufgrund der unterschiedlichen Massen von D und H zu erwarten, größer als die der gekoppelten O-D-Streckschwingungsmoden, sie beträgt 4,5 cm⁻¹ und 3,0 cm⁻¹.

Die Frequenzverschiebung bei Deuterierung, das heißt der Quotient der Wellenzahlen der protonierten und der deuterierten Gruppe, läßt sich für das zweiatomige Molekül in harmonischer Näherung folgendermaßen über die reduzierten Massen bestimmen:

$$\frac{\omega^{\text{OH}}}{\omega^{\text{OD}}} = \sqrt{\frac{\mu_{\text{OH}}}{\mu_{\text{OD}}}} = \sqrt{\frac{17}{9}} \cong 1,3744$$

Dabei steht ω für die harmonischen Frequenzen und μ für die reduzierten Massen.

Beim Vorliegen von Anharmonizitäten wie Wasserstoffbrückenbindungen weicht der experimentelle Wert von dem berechneten zu kleineren Werten hin ab. In diesem Falle beträgt die für die gekoppelten Moden bestimmte Frequenzverschiebung bei Deuterierung im Temperaturbereich zwischen 10 und 200 K für die Linie bei höheren Wellenzahlen 1,3526(2) und für die Linie bei niedrigeren Wellenzahlen 1,3513(2). Die Größe der Frequenzverschiebung vor und nach der Umkehr der temperaturabhängigen Verschiebung der Streckschwingungsfrequenzen ist unter Berücksichtigung der für jeden einzelnen Frequenzwert anzunehmenden Meßgenauigkeit von $\pm 0,5$ cm⁻¹ gleich. Das bedeutet, daß dieser Effekt sich auf D- und H-Spezies relativ zueinander in derselben Weise auswirkt wie die normale Temperaturabhängigkeit der Verschiebung der Streckschwingungsfrequenzen.

3.2.3.2 Raman-Experimente an ε -Zn(OH)₂

Um zu untersuchen, ob der für β -Be(OH)₂ im Tieftemperatur-Raman-Experiment gefundene Effekt substanzspezifisch ist oder auch bei anderen Verbindungen zu beobachten ist, wurden an voll- und teildeuterierten Proben von ϵ -Zn(OH)₂ Tieftemperatur-Raman-Untersuchungen durchgeführt. Weitergehende Untersuchungen mit Experimenten an ϵ -Zn(OH)₂ erschienen aufgrund der großen strukturellen Ähnlichkeit zu β -Be(OH)₂ vielversprechend. Die Untersuchungen zeigten, daß der für β -Be(OH)₂ gefundene Effekt in noch stärkerem Maße für ϵ -Zn(OH)₂ zu beobachten ist. Die Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen setzt bereits bei ca. 50 K ein und der Grad der Verschiebung zu höheren Wellenzahlen ist deutlich größer (19 cm⁻¹ und 15 cm⁻¹ für ϵ -Zn(OH)₂ im Vergleich zu 4,5 cm⁻¹ und 3 cm⁻¹ für β -Be(OH)₂, jeweils für die gekoppelten O-H-Streckschwingungsmoden). In den Abbildungen 3.5-3.7 (Seiten 21 und 22) sind der O-H- und O-D-Streckschwingungsbereich und die Verschiebung der Streckschwingungsfrequenzen in Abhängigkeit von der Temperatur dargestellt.

Der Wert der Frequenzverschiebung bei Deuterierung ist für ε -Zn(OH)₂ im Vergleich zu β -Be(OH)₂ kleiner, wie aufgrund der stärkeren Wasserstoffbrückenbindungen zu erwarten war. Die Frequenzverschiebung bei Deuterierung beträgt im Temperaturbereich zwischen 10 K und 240 K für die Linie bei höheren Wellenzahlen 1,3421(9) und für die Linie bei niedrigeren Wellenzahlen 1,3416(6). Die Standardabweichungen sind im Vergleich zu β -Be(OH)₂ größer, da die Linien der O-H- und O-D-Streckschwingungen in den Spektren von ε -Zn(OH)₂ deutlich breiter als die in den Spektren von β -Be(OH)₂ sind und dadurch die Werte der Streckschwingungsfrequenzen nicht so genau zu bestimmen waren.

Die Librationen und Gitterschwingungen zeigen sowohl für β -Be(OH)₂ als auch für ϵ -Zn(OH)₂ kein ungewöhnliches Verhalten mit abnehmender Temperatur. Beispielhaft für alle Messungen sind die für ϵ -Zn(OD)₂ erhaltenen Spektren im Bereich der Librationen und Gitterschwingungen in Abbildung 3.8 (Seite 23) gezeigt.

Abb. 3.5: O-D-Streckschwingungsbereich und ν(OD) gegen T für ε-Zn(OD)₂

Abb. 3.6: O-H-Streckschwingungsbereich und v(OH) gegen T für ϵ -Zn(OH)₂ + 7% D

Abb. 3.7: O-D-Streckschwingungsbereich und v(OD) gegen T für ε -Zn(OH)₂ + 7% D

Abb. 3.8: Temperaturabhängige Raman-Spektren der Librationen (links) und Gitterschwingungen (rechts) für ε -Zn(OD)₂ (mit v_{ZnO} ist die symmetrische ZnO-Gitterschwingung gekennzeichnet)

3.2.4 Neutronen- und Röntgenbeugungsuntersuchungen

Die Ergebnisse der Raman-Experimente erfordern zu ihrer Interpretation die genaue Kenntnis der Struktur der untersuchten Verbindungen einschließlich der genauen Lagen der Wasserstoffatome. Außerdem sind Veränderungen der Geometrie der Wasserstoffbrückenbindungen, der interatomaren Abstände und der Zellparameter mit abnehmender Temperatur interessant. Eine Schwächung der Wasserstoffbrückenbindungen bei tiefen Temperaturen kann durch Veränderungen der Wasserstoffbrückenbindungsgeometrie wie zum Beispiel eine Verkleinerung des Brückenbindungswinkels oder eine Vergrößerung des Brückenbindungsabstandes hervorgerufen werden. Um zu untersuchen, ob sich die Geometrie der Wasserstoffbrückenbindungen bei tiefen Temperaturen so verändert, daß die Brücken geschwächt werden, wurden Neutronen- und Röntgenbeugungsuntersuchungen durchgeführt. 3.2.4.1 Neutronen- und Röntgenbeugungsuntersuchungen an β -Be(OD)₂

Zur Untersuchung der Veränderungen in der Geometrie der Wasserstoffbrückenbindungen mit abnehmender Temperatur wurden an β -Be(OD)₂-Pulver Neutronenbeugungsuntersuchungen am Flugzeitspektrometer Rotax / ISIS bei 5 K, 50 K und 245 K durchgeführt.

Zur Untersuchung der Veränderungen der Zellparameter und der Struktur des BeO₄-Tetraeders mit abnehmender Temperatur wurden von der bereits in der Neutronenbeugungs-Untersuchung eingesetzten β -Be(OD)₂-Probe, vermengt mit Silicium-Pulver als Standard, bei 7 K, 50 K, 245 K und 298 K von *P. Müller* (Aachen) mit einer Huber-Guinier-Kamera Röntgenpulverdiffraktogramme aufgenommen.

Die alleinige Verfeinerung der Strukturparameter auf der Grundlage der Daten der Neutronenbeugungsexperimente ergab physikalisch unsinnige Parameter anisotroper thermischer Auslenkung. Bei der alleinigen Verfeinerung auf der Grundlage der Daten der Röntgenbeugungsuntersuchungen war keine freie Verfeinerung aller Variablen möglich. Daher wurde die Verfeinerung mit den Daten aus den Neutronenund Röntgenbeugungsuntersuchungen trotz der Problematik durchgeführt, daß man mit den Methoden unterschiedliche Beobachtungsgrößen betrachtet, bei dem einen die Kern- und bei dem anderen die Elektronendichte.

Die genaue Bestimmung der Zellparameter für β -Be(OD)₂ erfolgte für die unterschiedlichen Methoden getrennt, siehe Kapitel 3.2.5.3, Seite 44.

Die Verfeinerungen erfolgten mit dem Programmpaket GSAS [21]. Die meßtechnischen und kristallographischen Daten sind in Tabelle 3.2 (Seite 25) zusammengefaßt. Die Lageparameter, die Parameter isotroper thermischer Auslenkung und die Koeffizienten der Parameter anisotroper thermischer Auslenkung sind in den Tabellen 3.3 und 3.4 (Seiten 26 und 27) aufgeführt. Ausgewählte interatomare Abstände und Winkel sind in Tabelle 3.5 (Seite 28) aufgelistet.

Tab. 3.2: Meßtechnische und kristallographische Daten der gemeinsamen Struktur-
verfeinerungen von Röntgen- (Huber-Guinier, Aachen) und Neutronenbeugungs-
daten (Rotax / ISIS) von β -Be(OD)₂-Pulver bei 245 K, 50 K und 5 K

	245 K		50 K			5 K			
Raumgruppe P212121 (Nr. 19)		P2 ₁ 2 ₁ 2 ₁ (Nr. 19)		P2 ₁ 2 ₁ 2 ₁ (Nr. 19)					
Formeleinheiten Z		4			4		4		
Zellparameter / Å	a =	4,5356((2)	a =	4,5260((2)	a = 4,5259(2)		
	b =	4,6317((2)	b = 4,6318(2)			b = 4,6314(2)		
	c =	7,0379((3)	c = 7,0192(3)			c = 7,0193(3)		
Volumen der EZ / $Å^3$	V =	147,848	8(5)	V =	147,147	7(5)	V = 147,133(6)		
Modellvariablen		48			48			48	
Lageparameter		15			15		15		
Therm. Auslenkungs- parameter	30			30			30		
Zellparameter	3			3			3		
Methode	Röntgen	Neut	ronen	Röntgen	Neutronen		Röntgen Neutronen		
Bankposition		50°	145°		50°	145°		50°	145°
Meßbereich	1,0-	1,5-	0,8-	1,0-	1,5-	0,8-	1,0-	1,5-	0,8-
d / Å	3,97	5,12	2,68	3,97	5,12	2,68	3,97	5,12	2,68
Reflexanzahl	220	33	192	218	34	192	218	34	192
Meßvariablen	41	21	21	41	21	21	41	21	21
Profil	6	6	6	6	6	6	6	6	6
Gerät	3	3	3	3	3	3	3	3	3
Untergrund	32	12	12	32	12	12	32	12	12
Gütefaktoren									
R _p	0,085	0,011	0,017	0,086	0,011	0,019	0,077	0,015	0,025
wR _p	0,111	0,014	0,020	0,112	0,014	0,023	0,100	0,018	0,030
$R_{\rm B} (F_{\rm o}^2)$	0,111	0,026	0,025	0,082	0,025	0,026	0,078	0,031	0,033

Tab. 3.3: Lageparameter und Parameter isotroper thermischer Auslenkung f
ür β-Be(OD)₂ bei 245 K, 50 K und 5 K aus der gemeinsamen Verfeinerung von Röntgen- (Huber-Guinier, Aachen) und Neutronenbeugungsdaten (Rotax / ISIS)

Atom	Parameter	245 K	50 K	5 K
Be	Х	0,0309(8)	0,0327(8)	0,034(1)
	у	0,7070(5)	0,7056(5)	0,7046(7)
	Z	0,6284(6)	0,6270(6)	0,6274(8)
	$\mathrm{B}/\mathrm{\AA}^2$	1,2(2)	0,8(2)	1,0(2)
O(1)	X	0,1922(8)	0,1894(8)	0,1892(9)
	у	0,1083(8)	0,1063(8)	0,1081(9)
	Z	0,0427(5)	0,0454(5)	0,0450(5)
	$\mathrm{B}/\mathrm{\AA}^2$	1,4(2)	1,0(2)	1,5(3)
O(2)	X	0,1553(7)	0,1522(8)	0,1527(8)
	у	0,4157(9)	0,4145(9)	0,412(1)
	Z	0,7297(5)	0,7286(5)	0,7276(6)
	$\mathrm{B}/\mathrm{\AA}^2$	1,2(2)	1,0(2)	1,4(3)
D(1)	X	0,2713(8)	0,2734(8)	0,274(1)
	у	0,0973(9)	0,0949(9)	0,094(1)
	Z	0,5601(5)	0,5643(5)	0,5640(7)
	$\mathrm{B}/\mathrm{\AA}^2$	2,1(3)	1,7(3)	2,0(3)
D(2)	X	0,3525(9)	0,3528(9)	0,352(1)
	у	0,4327(9)	0,4303(9)	0,427(1)
	Z	0,7791(6)	0,7805(6)	0,7786(8)
	${\rm B}$ / ${\rm \AA}^2$	2,4(3)	1,9(3)	2,3(4)

Tab. 3.4: Koeffizienten der Parameter anisotroper thermischer Auslenkung $U_{ij} / 10^2 \text{ Å}^2$ für β -Be(OD)₂ bei 245 K, 50 K und 5 K aus der gemeinsamen Verfeinerung von Röntgen- (Huber-Guinier, Aachen) und Neutronenbeugungsdaten (Rotax / ISIS)

Meßtemperatur	Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
245 K	Be	1,5(2)	1,3(2)	1,6(2)	-0,6(2)	0,6(2)	-0,6(2)
	O(1)	1,7(3)	1,2(2)	2,6(3)	-0,7(2)	0,2(3)	0,0(2)
	O(2)	0,7(2)	2,6(3)	1,3(3)	0,4(2)	-0,6(2)	0,2(2)
	D(1)	2,6(3)	2,4(3)	2,7(2)	-0,1(3)	0,7(2)	0,0(2)
	D(2)	3,4(3)	3,6(3)	2,2(3)	-0,3(2)	-0,7(2)	0,2(3)
50 K	Be	0,9(2)	0,9(2)	1,3(2)	-0,2(2)	0,1(2)	-0,1(2)
	O(1)	1,6(3)	1,0(2)	1,3(2)	-0,1(2)	-0,1(2)	0,4(2)
	O(2)	0,7(2)	2,4(3)	0,8(3)	-0,1(2)	-0,3(2)	-0,4(2)
	D(1)	2,0(3)	2,2(3)	2,5(2)	0,0(2)	0,4(2)	-0,5(3)
	D(2)	2,8(3)	2,4(3)	2,1(3)	0,0(2)	-0,7(2)	0,4(3)
5 K	Be	0,9(3)	1,6(3)	1,4(2)	-0,2(2)	0,9(2)	-0,6(3)
	O(1)	2,6(3)	1,2(3)	1,8(3)	-0,5(3)	-0,3(3)	0,0(3)
	O(2)	0,9(2)	2,6(3)	1,8(3)	-0,7(2)	-0,6(2)	-0,4(3)
	D(1)	2,6(4)	2,3(3)	2,6(3)	0,2(3)	0,2(3)	-0,4(3)
	D(2)	3,0(4)	3,3(4)	2,5(4)	0,1(3)	-1,3(3)	-0,4(4)

Tab. 3.5: Ausgewählte Abstände und Winkel in β-Be(OD)₂ aus der gemeinsamen Verfeinerungen von Röntgen- (Huber-Guinier, Aachen) und Neutronenbeugungsdaten (Rotax / ISIS) bei 245 K, 50 K und 5 K

	245 K	Abstände / 50 K	Å 5 K		245 K	Winkel / ° 50 K	5 K
Be - O(1) Be - O(1) Be - O(2) Be - O(2)	1,639(4) 1,635(4) 1,627(5) 1,626(5)	1,639(4) 1,634(4) 1,618(5) 1,632(5)	1,637(5) 1,632(4) 1,617(5) 1,636(5)	$\begin{array}{c} O(1) - Be - O(1) \\ O(1) - Be - O(2) \\ O(2) - Be - O(2) \\ Be - O(1) - Be \\ Be - O(2) - Be \end{array}$	110,4(3) 107,7(2) 107,3(3) 109,2(3) 108,3(2) 113,8(3) 126,8(3) 125,6(2)	111,3(3)107,2(2)108,1(3)110,0(3)107,2(2)113,0(3)125,5(3)126,6(2)	$110,9(4) \\ 107,3(3) \\ 107,6(3) \\ 110,1(4) \\ 107,8(3) \\ 113,2(3) \\ 126,2(3) \\ 126,3(3)$
$\begin{array}{c} O(1) - D(1) \\ O(1) - D(2) \\ O(2) - D(2) \\ O(2) - D(1) \\ O(1) \cdots O(2) \\ O(2) \cdots O(1) \end{array}$	0,974(5) 1,995(5) 0,963(4) 1,969(5) 2,846(5) 2,917(5)	0,956(5) 1,960(5) 0,981(4) 1,955(5) 2,826(5) 2,905(5)	0,961(5) 1,968(5) 0,973(4) 1,948(5) 2,823(5) 2,904(5)	Be - O(1) - D(1) Be - O(1) - D(1) Be - O(2) - D(2) Be - O(2) - D(2) $O(1) - D(1) \cdots O(2)$ $O(2) - D(2) \cdots O(1)$	118,0(4) 109,6(4) 114,4(5) 108,0(4) 148,6(4) 159,5(5)	118,9(4) 109,6(4) 114,3(5) 106,7(5) 150,3(5) 160,8(5)	118,5(5) 109,4(5) 114,1(5) 107,0(54) 150,4(6) 160,4(6)

Die für die unterschiedlichen Temperaturen gemeinsam nach dem Rietveld-Verfahren angepaßten Diffraktogramme sind in den Abbildungen 3.9-3.11 (Seiten 29-31) dargestellt. Auffällig ist die schlechte Anpassung für das bei den Röntgenbeugungsmessungen zusätzlich als interner Standard verwendete Silicium. Die schlechte Anpassung läßt sich auf Probleme bei der Profilanpassung zurückführen, die durch die sehr scharfen Reflexe verursacht werden. Diese Problematik ist für die Ergebnisse der Verfeinerungen allerdings unerheblich, da Silicium nur als Standard für die Zellparameterbestimmung dient und diesen Zweck auch ohne gute Anpassung erfüllt. Die Zellparameter von Silicium wurden für die unterschiedlichen untersuchten Temperaturen aus [66] entnommen.

Abb. 3.9: Neutronen- und Röntgenbeugungsdiffraktogramme von β-Be(OD)₂ mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (im Röntgenbeugungsdiagramm: obere Markierung: β-Be(OD)₂, untere Markierung: Silicium); 245 K

.6

.7

.8

.9

X10E 2

1.0

.5

.3

2-Theta, deg

.4

Abb. 3.10: Neutronen- und Röntgenbeugungsdiffraktogramme von β-Be(OD)₂ mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (im Röntgenbeugungsdiagramm: obere Markierung: β-Be(OD)₂, untere Markierung: Silicium); 50 K

Abb. 3.11: Neutronen- und Röntgenbeugungsdiffraktogramme von β-Be(OD)₂ mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (im Röntgenbeugungsdiagramm: obere Markierung: β-Be(OD)₂, untere Markierung: Silicium); 5 K

3.2.4.3 Neutronenbeugungsuntersuchung an ϵ -Zn(OD)₂

Die Struktur von ε -Zn(OH)₂ wurde einschließlich der Lagen der Wasserstoffatome durch Röntgenbeugungsuntersuchungen am Einkristall geklärt [7-9]. Die Lagen der Wasserstoffatome lassen sich mit den Methoden der Röntgenbeugung nicht genau bestimmen, da mit dieser Methode ausschließlich die Elektronendichte und nicht die Kerndichte detektiert wird. Daher werden die Sauerstoff-Wasserstoff-Bindungsabstände systematisch zu kurz bestimmt. Aus diesem Grunde wurden an einer ε -Zn(OD)₂-Probe Neutronenbeugungsexperimente am Flugzeitspektrometer Rotax / ISIS bei 298 K durchgeführt und die Struktur von ε -Zn(OD)₂ einschließlich der genauen Lagen der Deuteriumatome bestimmt.

Die Verfeinerungen erfolgten mit dem Programmpaket GSAS [21]. Die meßtechnischen und kristallographischen Daten sind in Tabelle 3.6 zusammengefaßt. Die Lageparameter, die Parameter isotroper thermischer Auslenkung und die Koeffizienten der Parameter anisotroper thermischer Auslenkung sind in den Tabellen 3.7 und 3.8 (Seite 33) aufgeführt. Ausgewählte interatomare Abstände und Winkel sind in Tabelle 3.9 (Seite 33) aufgelistet. Die nach dem Rietveld-Verfahren angepaßten Diffraktogramme sind in der Abbildung 3.12 (Seite 34) dargestellt.

Raumgruppe	P2 ₁ 2 ₁ 2 ₁ (Nr. 19)	Bankposition	44,88°	125,5°
Formeleinheiten Z	4	Meßbereich d / Å	1,35-5,13	0,665-3,0
Zellparameter / Å	a = 4,9085(1)	Reflexanzahl	67	468
	b = 5,1462(1)	Meßvariablen	21	21
	c = 8,4834(1)	Profil	6	6
Volumen der EZ / Å ³	V = 214,294(4)	Gerät	3	3
Modellvariablen	48	Untergrund	12	12
Lageparameter	15	Gütefaktoren		
Therm. Auslenkungs-	20	R _p	0,020	0,017
parameter	50	wR _p	0,022	0,018
Zellparameter	3	$R_B (F_o^2)$	0,010	0,030

Tab. 3.6: Meßtechnische und kristallographische Daten der Strukturverfeinerung einer Neutronenpulvermessung am Rotax / ISIS an ε-Zn(OD)₂ bei 298 K

Atom	Punktlage	Х	У	Z	B / A^2
Zn	4a	$\begin{array}{c} 0,0689(4)\\ 0,1667(4)\\ 0,1147(3)\\ 0,2600(4)\\ 0,4735(3) \end{array}$	0,6485(4)	0,6328(2)	1,23(4)
O(1)	4a		0,3173(4)	0,7207(2)	1,28(4)
O(2)	4a		0,1269(4)	0,0785(2)	1,26(4)
D(1)	4a		0,8143(3)	0,1502(2)	2,23(4)
D(2)	4a		0,3586(4)	0,8413(2)	2,09(4)

Tab. 3.7: Lageparameter und Parameter isotroper thermischer Auslenkung für ε-Zn(OD)₂ bei 298 K aus der Verfeinerung von Neutronenpulverdaten (Rotax / ISIS)

Tab. 3.8: Koeffizienten der Parameter anisotroper thermischer Auslenkung $U_{ij} / 10^2 \text{ Å}^2$ für ϵ -Zn(OD)₂ bei 298 K aus der Verfeinerung von Neutronenpulverdaten (Rotax / ISIS)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Zn O(1) O(2) D(1) D(2)	2,0(1) 1,6(1) 2,1(1) 3,2(1) 3,2(1) 3,2(1)	1,5(1) 2,6(1) 1,4(1) 2,8(1) 3,3(1)	$1,8(1) \\ 1,4(1) \\ 1,8(1) \\ 2,6(1) \\ 2,2(1)$	$\begin{array}{c} -0,1(1) \\ 0,3(1) \\ 0,5(1) \\ 0,4(1) \\ 0,7(1) \end{array}$	-0,1(1) 0,0(1) 0,5(1) -0,6(1) -0,2(1)	$\begin{array}{c} 0,3(1) \\ 0,7(1) \\ -0,1(1) \\ 0,2(1) \\ -0,1(1) \end{array}$

Tab. 3.9: Ausgewählte Abstände und Winkel in ε-Zn(OD)₂ aus Strukturverfeinerungen von Neutronenpulverdaten (Rotax / ISIS) bei 298 K

	Abstände / Å		Winkel / °
Zn - O(1) Zn - O(1) Zn - O(2) Zn - O(2)	1,952(2) 1,958(2) 1,948(2) 1,973(2)	$\begin{array}{c} O(1) - Zn - O(1) \\ O(1) - Zn - O(2) \\ O(2) - Zn - O(2) \\ O(2) - Zn - O(2) \\ Zn - O(1) - Zn \\ Zn - O(2) - Zn \end{array}$	$104,4(1) \\109,6(1) \\113,6(1) \\110,3(1) \\115,9(1) \\103,1(1) \\121,7(1) \\120,2(1)$
$\begin{array}{c} O(1) - D(1) \\ O(1) - D(2) \\ O(2) - D(2) \\ O(2) - D(1) \\ O(1) \cdots O(2) \\ O(2) \cdots O(1) \end{array}$	0,973(2) 1,833(2) 0,974(2) 1,862(2) 2,793(2) 2,800(2)	$Zn - O(1) - D(1)$ $Zn - O(1) - D(1)$ $Zn - O(2) - D(2)$ $Zn - O(2) - D(2)$ $O(1) - D(1) \cdots O(2)$ $O(2) - D(2) \cdots O(1)$	$116,1(2) \\108,9(2) \\112,3(2) \\106,4(2) \\160,8(2) \\169,5(2)$

Abb. 3.12: Neutronenbeugungsdiffraktogramme von ε-Zn(OD)₂ mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe; 298 K

Die Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂ [7-9] leiten sich von demselben Aristotyp ab, dem "idealisierten" β -Cristobalit [63]. Die Sauerstoffatome bilden das Motiv einer kubisch dichten Packung, in der ein Viertel aller Tetraederlücken geordnet durch M²⁺-Ionen besetzt ist. Die Tetraeder sind allseitig über Ecken verknüpft. Dieses dreidimensionale Netzwerk wird zusätzlich durch die Ausbildung von Wasserstoffbrückenbindungen stabilisiert. In den Abbildungen 3.13-3.16 (Seiten 36 und 37) sind Ausschnitte aus den Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂ dargestellt, wobei die Wasserstoffbrückenbindungen in den Abbildungen 3.15 und 3.16 angedeutet sind. Ein Schema des Symmetrieabbaus zeigt Abbildung 3.17 (Seite 38) und ein Vergleich der Lageparameter wird in Tabelle 3.10 (Seite 39) durchgeführt. Auffällig ist, daß die Struktur des ϵ -Zn(OH)₂ deutlich stärker von der "idealisierten" β -Cristobalit-Struktur abweicht als die Struktur des β -Be(OH)₂.

Die Art der Verzerrung kann für beide Verbindungen hauptsächlich als eine Verdrehung der Tetraeder M(OH)₄ um die c-Achse beschrieben werden, die zum Großteil durch ein Einfrieren der dynamischen Fehlordnung im "idealisierten" β -Cristobalit [67-69] hervorgerufen wird [70]. Daher sind die größten Abweichungen von der β -Cristobalit-Struktur in den a,b-Ebenen der Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂ zu finden. Eine mögliche Erklärung für die Verdrehung der Tetraeder ist, daß dadurch die Ausbildung von Wasserstoffbrückenbindungen begünstigt wird.

Da allerdings Verbindungen, die keine Wasserstoffatome enthalten wie z. B. LiPN₂ [71] oder in denen keine Wasserstoffbrückenbindungen ausgebildet werden wie z. B. im Falle des HPN₂ [72], eine ähnliche Verzerrung zeigen, sind attraktive und abstoßende Wechselwirkungen zwischen allen Atomen als eine weitere Ursache für die Verzerrung anzunehmen.

Abb. 3.13: Ausschnitt aus der Struktur von β-Be(OD)₂: Projektion in Richtung [001]. Die Lage der Wasserstoffatome ist angedeutet

Abb. 3.14: Ausschnitt aus der Struktur von ε-Zn(OD)₂: Projektion in Richtung [001]. Die Lage der Wasserstoffatome ist angedeutet

Abb. 3.15: Ausschnitt aus der Struktur von β-Be(OD)₂: Projektion in Richtung [100]. Die Lage der Wasserstoffatome und der Wasserstoffbrückenbindungen ist angedeutet

Abb. 3.16: Ausschnitt aus der Struktur von ε-Zn(OD)₂: Projektion in Richtung [100]. Die Lage der Wasserstoffatome und der Wasserstoffbrückenbindungen ist angedeutet

Si	8a	43m.	1/8	1/8	1/8
O	96h	2	0	0,046	0,954
			↓		

Fd $\overline{3}$ m (Nr. 227) (Ursprung in $\overline{3}$ m)

idealisierte Lageparameter unter Vernachlässigung der Fehlordnung der Sauerstoffatome

		Si O	8a 16c	$\overline{4}$ 3m. . $\overline{3}$ m	0 1/8	0 1/8	0 1/8	8			
					↓ t2						
				F41	32 (Nr. 2	10)					
		Si O	8a 16c	23. .32	0 1/8	0 1/8	0 1/8	8			
			$ \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & -1 \end{pmatrix} $		↓ t3	a'	$= \mathbf{a} \cdot 1 / \sqrt{\mathbf{a}}$	2;b'	$= \mathbf{b} \cdot 1/\mathbf{b}$	$\sqrt{2}$	
	I4 ₁ 22 (Nr. 98)										
		Si O	4a 8f	2.22 .2.	0 1/8	0 1/4	0 1/8	8			
					↓ t2	U	rsprungs	verscl	hiebunş	g 0 1/4	1/8
				I2 ₁ 2	$2_1 2_1$ (Nr.	24)					
		Si O(1) O(2)	4c 4b 4c	2 .2. 2	0 1/4 0	1/4 1/4 0	1/8 0 1/2	8 4			
					↓ t2						
				P2 ₁ 2	$2_1 2_1$ (Nr.	19)					
Si O(1) O(2)	4a 4a 4a	1 1 1	$\begin{array}{ccc} 0 & 1/4 \\ 1/4 & 1/4 \\ 1/2 & 0 \end{array}$	5/8 1/2 1/4		Si O(1) O(2)	4a 4a 4a	1 1 1	0 1/4 0	3/4 1/4 1/2	5/8 0 1/4

 $Fd\overline{3}m$ (Nr. 227) (Ursprung in $\overline{4}3m$)

Enantiomorphe Aufstellungen

Abb. 3.17: Gruppentheoretischer Zusammenhang zwischen der Struktur des "idealisierten" β -Cristobalits und den Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂

Zell- / Lage- parameter	$\begin{array}{c} SiO_2\\ (P2_12_12_1)\end{array}$	β-Be(OH) ₂	Abweichung	ε-Zn(OH) ₂	Abweichung
b/a	$ \begin{array}{c} 1\\ \sqrt{2}\\ \sqrt{2} \end{array} $	1,020	-0,020	1,021	-0,021
c/a		1,556	-0,142	1,552	-0,137
c/b		1,525	-0,111	1,520	-0,105
x(M)	0	0,0304	-0,0304	0,0689	-0,0689
y(M)	3/4	0,7073	0,0427	0,6485	0,1015
z(M)	5/8	0,6259	-0,0009	0,6328	-0,0078
x(O(1))	0	0,1571	-0,1571	0,1667	-0,1667
y(O(1))	1/2	0,4218	0,0782	0,3173	0,1827
z(O(1))	3/4	0,7316	0,0184	0,7207	0,0293
x(O(2))	1/4	0,1915	0,0585	0,1147	0,1353
y(O(2))	1/4	0,1059	0,1441	0,1269	0,1231
z(O(2))	0	0,0426	-0,0426	0,0785	-0,0785

Tab. 3.10: Vergleich der Zell- und Lageparameter von β -Be(OH)₂ (Werte aus [8]) und ϵ -Zn(OD)₂ mit den Parametern von β -Cristobalit [63] (alle Werte für 298 K)

3.2.5.1 Wasserstoffbrückenbindungen in β -Be(OH)₂

Ausschlaggebend für die Untersuchung von β -Be(OD)₂-Pulver mit Neutronen- und Röntgendiffraktionsexperimenten bei tiefen Temperaturen war die Suche nach einer Erklärung für das in Kapitel 3.2.3.1 (Seite 16) beschriebene ungewöhnliche Verhalten der O-H- und O-D-Streckschwingungsfrequenzen im Tieftemperatur-Raman-Experiment. Nachdem das Auftreten einer Phasenumwandlung ausgeschlossen werden konnte, wurde anhand der Daten eine möglichst genaue Analyse der Veränderungen der Wasserstoffbrückenbindungsgeometrie durchgeführt, siehe Abbildung 3.18 (Seite 40).

Abb. 3.18: Koordinationspolyeder um Be²⁺ mit Schwingungsellipsoiden (70% Aufenthaltswahrscheinlichkeit) und Wasserstoffbrückenbindungsgeometrie. Daten für 245 K, 50 K und 5 K aus gemeinsamer Verfeinerung von Röntgen- (Huber-Guinier, Aachen) und Neutronenbeugungsdaten (Rotax / ISIS); Abstände in Å, Winkel in °

Zwischen 245 K und 50 K kann man die Verstärkung der Wasserstoffbrückenbindungen und die damit verbundene Schwächung der O-D-Bindung, die im Raman-Experiment zu einer Verschiebung der O-D-Streckschwingungsmoden um 20 cm⁻¹ und 14 cm⁻¹ zu niedrigeren Wellenzahlen geführt hat, an einer geringen aber signifikanten Vergrößerung der Wasserstoffbrückenbindungswinkel sehen. Zwischen 50 K und 5 K ändert sich die Geometrie innerhalb der Meßgenauigkeit nicht. Dieses Ergebnis läßt allerdings nicht den Schluß zu, daß eine Veränderung der Geometrie der Wasserstoffbrückenbindungen beim Abkühlen nicht der Grund für die im Raman-Experiment detektierte Schwächung der Wasserstoffbrückenbindungen ist. Diese Schwächung, die im Raman-Experiment zu einer Verschiebung der O-D-Streckschwingungsmoden von nur 2,5 cm⁻¹ und 2,0 cm⁻¹ zu höheren Wellenzahlen geführt hat, muß, da das Raman-Experiment empfindlicher als die Beugungsmethoden ist, nicht mit Hilfe von Beugungsexperimenten zu detektieren sein. Eine Erklärung des im Tieftemperatur-Raman-Experiment gefundenen Effekts kann somit mit den durchgeführten Neutronen- und Röntgenbeugungsmessungen nicht gegeben werden.

Nach der Analyse der Geometrie der Wasserstoffbrückenbindungen in β -Be(OD)₂ wurde eine Analyse der Kerndichteverteilung mittels Fourier-Schnitten durchgeführt.

Diese Analyse erfolgte, um aus den Beugungsexperimenten weitere Hinweise auf eine Veränderung der Wasserstoffbrückenbindungen zu finden, z. B. in Richtung eines Übergangs von einer linearen zu einer gewinkelten Brücke oder zu einer Fehlordnung der Deuteriumatome, die bei diesen relativ tiefen Temperaturen eventuell durch Tunnelprozesse hervorgerufen werden könnte. Im Beugungsexperiment sollte man in diesem Fall einen Übergang zu einer scheinbar symmetrischen O-D-O-Bindung oder zu einem Splitlagenmodell feststellen können.

Die Ergebnisse der Analyse der Kerndichteverteilung mittels Fourier-Schnitten sind in Abbildung 3.19 (Seite 42) dargestellt. Die Schnitte wurden durch die an den Wasserstoffbrückenbindungen beteiligten Sauerstoffatome gelegt. Die Konturlinien aller Abbildungen sind äquidistant und die analogen Temperaturreihen flächengleich.

Die durchgeführten Fourier-Analysen zeigen keine Hinweise auf eine Veränderung der Wasserstoffbrückenbindungen. Sie zeigen vielmehr stark abgegrenzte Kerndichtemaxima, die sich beim Abkühlen nur wenig verändern.

Abb. 3.19: Kerndichteverteilung aus Fourier-Synthesen von Daten für 245 K, 50 K und 5 K aus der Verfeinerung von Neutronenbeugungsdaten (Rotax / ISIS). Schnitte durch die Zentren der an der Brücke beteiligten Sauerstoffatome

Mit den Daten, die an E-Zn(OD)2-Pulver bei 298 K am Flugzeitspektrometer Rotax / ISIS erhalten wurden, ließen sich die Strukturparameter von ε -Zn(OD)₂ auf der Grundlage des Modells aus der Einkristallröntgenstrukturanalvse interpretieren und verfeinern. Die Ergebnisse der Röntgenstrukturanalyse wurden im wesentlichen bestätigt. In der Struktur von Hydroxidionen ϵ -Zn(OD)₂ liegen zwei mit unterschiedlich starken Wasserstoffbrückenbindungen vor, deren Geometrie in Abbildung 3.20 dargestellt ist. Die O-H-Bindungsabstände, die aus der Röntgenstrukturanalyse systematisch zu kurz bestimmt worden sind (0,79(1) und 0,74(1) Å) sind aus der Verfeinerung der Neutronenbeugungsdaten zu physikalisch sinnvollen Abständen von 0,973(2) und 0,974(2) Å ermittelt worden. Die Unterschiede zwischen den Winkeln der Wasserstoffbrückenbindungen sind mit 169,5(2) und 160.8(2)° deutlich größer als die entsprechenden Unterschiede der aus der Röntgenstrukturanalyse entnommenen Winkel (172(5) und 167(5)°). Die für ε -Zn(OD)₂ auf der Grundlage der Neutronenbeugungsdaten bestimmten Wasserstoffbrückenbindungswinkel sind gleichzeitig deutlich kleiner als die mit den Röntgenbeugungsdaten bestimmten, allerdings immer noch größer als die für β -Be(OD)₂ bestimmten (148,1(3) und 158,8(4)° [8]). Vergleicht die man aus der Neutronenbeugung erhaltenen Werte der Wasserstoffbrückenbindungswinkel für ε -Zn(OD)₂ mit denen von β -Be(OD)₂, erkennt man, daß Wasserstoffbrückenbindung in β -Be(OD)₂ und die schwache die starke Wasserstoffbrückenbindung in ε -Zn(OD)₂ eine sehr ähnliche Geometrie aufweisen. Die entkoppelten O-D-Streckschwingungsfrequenzen der beiden zugehörigen Hydroxidionen sind mit 2572 cm⁻¹ (298 K) für β -Be(OD)₂ und 2429 cm⁻¹ (298 K) für ϵ -Zn(OD)₂ allerdings sehr unterschiedlich. Das bedeutet, daß der größere antikooperative Effekt der an Zn²⁺-Ionen gebundenen Hydroxidionen im Vergleich zu dem der an Be2+-Ionen gebundenen Hydroxidionen einen deutlich Einfluß auf die Stärke größeren der Wasserstoffbrückenbindungen in diesen zwei Verbindungen hat als die unterschiedliche Geometrie der Wasserstoffbrückenbindungen.

Abb. 3.20: Koordinationspolyeder um Zn²⁺ mit Schwingungsellipsoiden (70% Aufenthaltswahrscheinlichkeit) und Wasserstoffbrückenbindungsgeometrie. Daten für 298 K aus der Verfeinerung von Neutronenpulverdaten (Rotax / ISIS); Abstände in Å, Winkel in °

3.2.5.3 Veränderungen der Zellparameter und des Zellvolumens von β -Be(OD)₂ mit abnehmender Temperatur

Eine mögliche Erklärung für den im Raman-Experiment festgestellten Effekt der Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen bei tiefen Temperaturen ist eine durch das Abkühlen und die damit verbundene Zellkontraktion erzwungene Veränderung der Geometrie der Wasserstoffbrückenbindungen (wie zum Beispiel eine Verkleinerung der Wasserstoffbrückenbindungswinkel), die zu einer Schwächung der Brücken führen würde. Für diesen Fall wird bei tiefen Temperaturen eine nennenswerte Verkleinerung der Zellparameter und damit des Zellvolumens erwartet. Die Auswertung der an einer β -Be(OD)₂-Probe durchgeführten Neutronen- und Röntgenbeugungsuntersuchungen zeigt allerdings in dem interessierenden Temperaturbereich zwischen 50 K und 5 K keine größeren Veränderungen der Zellparameter und des Zellvolumens (siehe Abb. 3.21 und 3.22, Seiten 45 und 46). β -Be(OD)₂ weist nur eine geringe Kontraktion von einem Prozent beim Abkühlen auf (von ca. 149 Å³ bei 298 K auf ca. 147,5 Å³ bei 5 K). Das bedeutet, daß die durchgeführten Bestimmungen der Zellparameter und des Zellvolumen keinen Hinweis auf durch die Verringerung des Zellvolumens erzwungene Veränderung eine der

Wasserstoffbrückenbindungsgeometrie geben. Eine solche Veränderung kann allerdings aufgrund der hohen Empfindlichkeit des Raman-Experiments im Vergleich zu den Beugungsmethoden auch nicht ausgeschlossen werden. Durch die durchgeführten Neutronenund Röntgenbeugungsuntersuchungen läßt sich die oben gegebene Erklärung für den Tieftemperatur-Raman-Effekt also weder bestätigen noch widerlegen.

Abb. 3.21: Zellparameter von β -Be(OD)₂ bei unterschiedlichen Temperaturen bestimmt aus Röntgendiffraktions- (Huber-Guinier, Aachen, links) und Neutronendiffraktionsdaten (Rotax / ISIS, rechts)

Abb. 3.22: Gegenüberstellung der aus Röntgendiffraktions- (Huber-Guinier, Aachen) und Neutronendiffraktionsdaten (Rotax / ISIS) bei unterschiedlichen Temperaturen bestimmten Zellvolumina von β -Be(OD)₂

3.3 Lithiumtetrahydroxoborat, LiB(OH)₄

3.3.1 Einführung

Die Struktur von LiB(OH)₄ wurde bereits in den sechziger Jahren durch Verfeinerung von Einkristallröntgenbeugungsdaten bestimmt [73-75]. Die zuerst ohne die Bestimmung der Wasserstofflagen durchgeführte Strukturbestimmung [73] wurde kurz darauf vervollständigt [74,75]. Die Struktur besteht aus isolierten B(OH)₄-Tetraedern, die mit LiO₄-Tetraedern über Sauerstoffatome allseits eckenverknüpft sind. Zusätzlich wird die Struktur durch vier unterschiedlich starke O-H-O-H-Brücken stabilisiert. Die Bestimmung der Wasserstofflagen führte zu für Röntgendaten ungewöhnlich großen O-H-Bindungsabständen zwischen 0,96 Å und 1,12 Å. Zur selben Zeit durchgeführte IR-spektroskopische Untersuchungen an LiB(OH)₄ [76] bestätigten das Vorliegen von sehr unterschiedlich starken Wasserstoffbrückenbindungen in LiB(OH)₄ (Absorptionen im Wellenzahlenbereich zwischen 3200 und 3630 cm⁻¹). Diese Untersuchungsergebnisse weisen darauf hin, daß weitergehende schwingungsspektroskopische und strukturchemische Untersuchungen an LiB(OH)₄ vielversprechend sind. Die vorliegende Tetraederstruktur zusammen mit den vorhandenen O-H···O-H-Brückenbindungen lassen vermuten, daß der an β -Be(OH)₂ und ϵ -Zn(OH)₂ beobachtete Tieftemperatur-Raman-Effekt auch bei LiB(OH)₄ beobachtet werden kann. Darüber hinaus ist es interessant, ein Wasserstoffbrückenbindungssystem mit sehr unterschiedlich starken Brücken zu untersuchen.

3.3.2 Darstellung

Für Neutronenbeugungsexperimente ist neben der Verwendung einer isotopenreinen D-Probe der Einsatz von isotopenreinem ¹¹B wichtig, da ¹⁰B einen sehr großen Neutroneneinfangquerschnitt aufweist und daher ein ungeeignetes Isotop für die Neutronendiffraktometrie ist. Zur Darstellung von Li¹¹B(OD)₄ wurde ¹¹B₂O₃ mit LiOD jeweils in D₂O gelöst im Verhältnis 1:2 umgesetzt und das entstandene grobkristalline Li(D₂O)₄¹¹B(OD)₄·2D₂O abgesaugt, mit wasserfreiem Ethanol gewaschen und getrocknet. Anschließend wurde das Präparat gemörsert und im Vakuum und unter Schutzgas zersetzt.

Die Darstellung von LiB(OH)₄-Einkristallen erfolgte durch sehr langsame Zersetzung von grobkristallinem Li(H₂O)₄B(OH)₄·2H₂O, welches durch Umsetzung von H₃BO₃ mit LiOH, jeweils in wäßriger Lösung, im Verhältnis 1:1 erhalten wurde. Die Zersetzung wurde in einem

fast vollständig gegenüber der Umgebungsluft abgeschlossenem Gefäß über einen Zeitraum von drei Monaten durchgeführt.

Die für die Raman-Untersuchungen benötigten teildeuterierten Proben wurden durch Umsetzung von ${}^{11}B_2O_3$ mit LiO(H/D) im Verhältnis 1:2 in wäßriger Lösung mit entsprechendem H/D-Verhältnis dargestellt.

Die Verwendung von isotopenreinen Proben, in diesem Fall von ¹¹B, hat im Raman-Experiment den Vorteil, daß man den Einfluß von Isotopieverschiebungen auf die B-O-H-Deformationsschwingungen und die B-O-Valenzschwingungen ausschließen kann, wodurch eine Zuordnung erleichtert wird.

3.3.3 Tieftemperatur-Ramanspektroskopie

T-L 211. 0

Es wurden an teildeuterierten Proben (8% und 92% D) von $Li^{11}B(OH)_4$ Tieftemperatur-Raman-Experimente durchgeführt. Die Schwingungszuordnung und -abzählung erfolgte durch eine Faktorgruppenanalyse. In Tabelle 3.11 ist die Symmetrie und Aktivität der Phononen am Γ -Punkt für LiB(OH)₄ in der Faktorgruppe (D_{2h}) aufgelistet. Aus der Zentrosymmetrie des Raumgruppentyps (Pbca, D_{2h}^{15}) und der zur Faktorgruppe isomorphen Raumgruppe (mmm, D_{2h}) resultiert das Alternativverbot: Alle Raman-aktiven Schwingungen in der primitiven Basiszelle sind über das Symmetriezentrum verknüpft, während alle IR-aktiven Moden dieses aufheben. Beide Methoden beobachten demnach, mit Ausnahme der lokalen, entkoppelten v_{OH}- und v_{OD}-Moden, unterschiedliche Phononen.

Tab. 5.11: 5	symmetrie	und Aktivität	der Faktor	rgruppenmode	en von Lie	$S(OH)_4$ am	I -Punkt I	n
d	ler Faktorg	ruppe D _{2h}						

Moden		A_{g}	A_{u}	$B_{1g} \\$	B_{1u}	B_{2g}	B_{2u}	B_{3g}	B_{3u}	Σ		
translatorische Gitterschwingungen (mit inneren Schwingungen der MO ₄ -Tetraeder)												
$Li^{+}/B^{3+}/OH^{-}(1)-(4)$	jeweils	8c	C_1	3	3	3	3	3	3	3	3	144
rotatorische Gitterschwingungen: Librationen der Hydroxidionen												
OH ⁻ (1)-(4)	jeweils	8c	C_1	2	2	2	2	2	2	2	2	64
innere Schwingunger	n der Hyd	roxi	dionen									
OH ⁻ (1)-(4)	jeweils	8c	C_1	1	1	1	1	1	1	1	1	32
			Σ	30	30	30	30	30	30	30	30	240
Aktivität				Ra	IR	Ra	IR	Ra	IR	Ra	IR	

Da in der Struktur von LiB(OH)₄ analog zu den Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂ allseits über Sauerstoffatome eckenverknüpfte M(OH)₄-Tetraeder und O-H···O-H-Brückenbindungen die bestimmenden Strukturelemente sind, sollte auch für diese Verbindung der in den Kapiteln 3.2.3.1 (Seite 16) und 3.2.3.2 (Seite 20) beschriebene Tieftemperatur-Raman-Effekt beobachtet werden können. Außerdem liegen in LiB(OH)₄ sehr unterschiedlich starke Wasserstoffbrückenbindungen vor, deren Untersuchung es ermöglichen sollte, ein detaillierteres Bild der Abhängigkeit des Effektes von der Stärke der Brücke zu erhalten. Aus diesen Gründen ist es vielversprechend, Tieftemperatur-Raman-Untersuchungen an LiB(OH)₄ durchzuführen.

Um die beobachteten O-H-Streckschwingungsfrequenzen im einzelnen betrachten zu können, ist eine Zuordnung der Linien entsprechend den Ergebnissen der Faktorgruppenanalyse notwendig. Diese Linienzuordnung ist in diesem Falle schwierig, da nicht alle 32 (8 pro Wasserstoffatom) erlaubten Moden zu beobachten sind. Im Folgenden wird daher die Verschiebung der Frequenzen der drei intensitätsstärksten Linien betrachtet. Eine eindeutige Zuordnung zu den vier unterschiedlichen O-H-Bindungen kann nur für die Betrachtung entkoppelter Moden und nicht für die hier vorliegenden gekoppelten Moden getroffen werden. Die Untersuchungen zeigen, daß der für β -Be(OH)₂ und ϵ -Zn(OH)₂ gefundene Effekt auch für LiB(OH)₄ zu beobachten ist. Die Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen setzt bei ca. 50 K ein und der Grad der Verschiebung zu höheren Wellenzahlen ist für die Ramanlinie bei niedrigen Wellenzahlen mit 22 cm⁻¹ noch größer als der entsprechende Wert für ε -Zn(OH)₂ von 19 cm⁻¹. In den Abbildungen 3.23-3.26 (Seiten 51 und 52) sind der O-H- und O-D-Streckschwingungsbereich und die Verschiebung der Streckschwingungsfrequenzen in Abhängigkeit von der Temperatur dargestellt. Dabei ist in den Abbildungen 3.23 und 3.25 jeweils der Verlauf der Frequenzen der drei stärksten Ramanlinien der gekoppelten Streckschwingungen gezeigt und in der Abbildung 3.24 der Verlauf der vier Streckschwingungsfrequenzen, die man den entkoppelten, lokalen Streckschwingungsmoden der vier kristallographisch unterschiedlichen Wasserstoffatome Die Zuordnung zu den vier kristallographisch unterschiedlichen zuordnen kann. Wasserstoffatomen erfolgt auf der Grundlage der Ergebnisse der Neutronenbeugungsuntersuchungen (siehe Kapitel 3.3.4, Tabelle 3.13, Seite 53). Dabei können die beiden an den stärksten Wasserstoffbrückenbindungen beteiligten Wasserstoffatome H(3) und H(4) mit den zugehörigen Hydroxidionen den beobachteten Streckschwingungsfrequenzen nicht getrennt zugeordnet werden, da die Unterschiede in der Bindungsstärke zu gering sind. In der

Abbildung 3.26 sind nur die Streckschwingungsfrequenzen der zwei an den schwächeren Wasserstoffbrückenbindungen beteiligten O-H-Gruppen aufgetragen, da die Lagen der beiden anderen Linien, v(O(3)-D(3)) und v(O(4)-D(4)), aufgrund des schlechten Signal zu Untergrund Verhältnisses nicht zu bestimmen waren.

Die Werte der Frequenzverschiebung bei Deuterierung sind für Li¹¹B(OH)₄ sehr unterschiedlich. Der für die Ramanlinie bei niedrigen Wellenzahlen für die gekoppelten Moden bestimmte Wert beträgt 1,3395(6), die Werte für die beiden anderen Linien betragen für die gekoppelten Moden 1,3477(4) und 1,3523(4). Für die entkoppelten Moden konnte die Frequenzverschiebung bei Deuterierung nur für die beiden entkoppelten Moden der schwächeren Wasserstoffbrückenbindungen bestimmt werden, sie betragen 1,3493(6) und 1,3532(5). Die sehr unterschiedlichen Werte der Frequenzverschiebung bei Deuterierung zeigen, daß, wie aufgrund der Kristallstruktur von LiB(OH)₄ zu erwarten war, sehr unterschiedlich starke Wasserstoffbrückenbindungen vorliegen. Eine genaue Zuordnung war allerdings auf der Grundlage der Ergebnisse der Röntgeneinkristallstrukturanalyse nicht möglich, da die Lagen der Wasserstoffatome aufgrund des geringen Streuanteils des Wasserstoffs in der Röntgenbeugung nicht mit ausreichender Genauigkeit bestimmt werden $Li^{11}B(OD)_4$ -Pulver Daher wurden Neutronenbeugungsuntersuchungen an können. durchgeführt, um die Lagen der Wasserstoffatome genauer zu bestimmen (vgl. Kapitel 3.3.4, Seite 53).

Abb. 3.23: O-H-Streckschwingungsbereich und v(OH) gegen T für $Li^{11}B(OH)_4 + 8\%$ D

Abb. 3.24: O-D-Streckschwingungsbereich und v(OD) gegen T für $Li^{11}B(OH)_4 + 8\% D$

Abb. 3.25: O-D-Streckschwingungsbereich und v(OD) gegen T für Li¹¹B(OD)₄ + 8% H

Abb. 3.26: O-H-Streckschwingungsbereich und v(OH) gegen T für Li¹¹B(OD)₄ + 8% H

3.3.4 Neutronen- und Röntgenbeugungsuntersuchungen

Um die Ergebnisse von schwingungsspektroskopischen Untersuchungen mit denen von Strukturuntersuchungen korrelieren zu können, ist die Bestimmung der genauen Lagen der Wasserstoffatome wichtig.

Die Struktur von LiB(OH)₄ wurde durch Röntgenbeugungsuntersuchungen am Einkristall geklärt [73-75]. Mit dieser Methode lassen sich allerdings die Lagen der Wasserstoffatome nicht genau bestimmen. Daher wurden an einer Li¹¹B(OD)₄-Probe Neutronenbeugungsuntersuchungen am Flugzeitspektrometer Rotax / ISIS bei 298 K durchgeführt und die Struktur von Li¹¹B(OD)₄ einschließlich der genauen Lagen der Deuteriumatome bestimmt. Diese Bestimmung wurde erschwert, da die Neutronenbeugungsprobe neben Li¹¹B(OD)₄ unzersetztes $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ enthielt. Dieses $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$, daß nach den Ergebnissen der Anpassung der Neutronenbeugungsmessung, siehe Kapitel 5, Abbildung 5.5 (Seite 94) in einem Anteil von 17 % in der Neutronenbeugungs-Probe enthalten ist, wurde in Voruntersuchungen mit Raman- und Guinierfilmmethoden nicht festgestellt. Diese wurden an kleinen Probenmengen, die ein weiteres Mal gemörsert wurden und sich daher und aufgrund des besseren Oberfläche zu Volumen Verhältnisses vollständig zersetzt hatten, durchgeführt. Die Verfeinerungen erfolgten mit dem Programmpaket GSAS [21]. Da die Kristallstruktur von Li(H₂O)₄B(OH)₄·2H₂O nicht schlüssig geklärt ist (vgl. Kap. 5, Seite 88) wurden die Neutronenbeugungsdaten für die zweite Phase (Li(D_2O)₄⁻¹B(OD)₄·2 D_2O) nicht frei verfeinert, sondern mit der "Le Bail"-Methode [21] zur Extraktion von beobachteten Strukturfaktoren angepaßt. Diese Methode benutzt die Auslöschungsbedingungen der Raumgruppe und die Zellparameter, benötigt aber kein Strukturmodell. Daher ist sie besonders für die Anpassung von Reflexen geeignet, die durch eine oder mehrere neben der in der Untersuchung interessierenden Verbindung vorliegende Substanzen oder durch das Probengefäß hervorgerufen wurden. Außerdem wurde gleichzeitig ein Einkristallröntgenbeugungsdatensatz von LiB(OH)₄ verfeinert, da sich die Parameter isotroper thermischer Auslenkung für Li und B mit den Neutronenbeugungsdaten allein nicht verfeinern ließen.

Die meßtechnischen und kristallographischen Daten sind in Tabelle 3.12 (Seite 54) zusammengefaßt. Die Lageparameter, die Parameter isotroper thermischer Auslenkung und die Koeffizienten der Parameter anisotroper thermischer Auslenkung sind in den Tabellen 3.13 und 3.14 (Seiten 54 und 55) aufgeführt. Ausgewählte interatomare Abstände und Winkel sind in Tabelle 3.15 (Seite 55) aufgelistet. Die nach dem Rietveld-Verfahren angepaßten Diffraktogramme sind in der Abbildung 3.27 (Seite 56) dargestellt.

Tab. 3.12: Meßtechnische und kristallographische Daten der gleichzeitigen Verfeinerung von Neutronenpulver- (Rotax / ISIS) und Röntgeneinkristalldaten (Mach3) von Li¹¹B(OD)₄ bei 298 K

Raumgruppe	Pbca (Nr. 61)	Methode:	Röntgen	Neut	ronen
Formeleinheiten Z	8	Bankposition		28°	122°
Zellparameter / Å	a = 7,9566(6)	Meßbereich	$2\theta = 3-66^{\circ}$	d = 1,0-	d = 1,0-
	b = 8,5301(4)			8,0 Å	3,14 Å
	c = 9,1708(5)	Reflexanzahl	1238	315	245
Volumen der EZ / $Å^3$	V = 622,44(4)	Meßvariablen		22	22
Modellvariablen	73	Profil		6	6
Lageparameter	30	Gerät		3	3
Therm. Auslenkungs-	40	Untergrund		13	13
parameter	40	Gütefaktoren	$R_{int} = 0,032$	$R_p = 0.038$	$R_p = 0.037$
Zellparameter	3		$R_{\rm B} (F_{\rm o}^{2}) =$	$wR_p =$	$wR_p =$
			0,059	0,047	0,048
			$wR_B(F_o^2) =$	$R_{\rm B}({\rm F_o}^2) =$	$R_{\rm B}({\rm F_o}^2) =$
			0,077	0,022	0,069

Tab. 3.13: Lageparameter und Parameter isotroper thermischer Auslenkung für Li¹¹B(OD)₄ bei 298 K aus der gemeinsamen Verfeinerung von Neutronenpulver- (Rotax / ISIS) und Röntgeneinkristalldaten (Mach3)

Atom	Punktlage	X	У	Z	B / A^2
Li	8c	0,3695(3)	0,1278(3)	0,3027(2)	0,95(6)
$^{11}\mathbf{B}$	8c	0,1706(2)	0,3346(2)	0,0926(2)	1,3(1)
O(1)	8c	0,0657(1)	0,1903(1)	0,0753(1)	1,12(5)
O(2)	8c	0,2050(1)	0,0855(1)	0,4531(1)	1,28(5)
O(3)	8c	0,0777(1)	0,4420(1)	0,1894(1)	1,03(5)
O(4)	8c	0,3362(1)	0,2905(1)	0,1537(1)	1,02(5)
D(1)	8c	0,1321(7)	0,1076(5)	0,0389(5)	3,6(2)
D(2)	8c	0,1063(5)	0,0387(5)	0,4155(7)	4,2(2)
D(3)	8c	0,4901(7)	0,3813(5)	0,2662(6)	3,9(2)
D(4)	8c	0,4176(9)	0,2864(6)	0,0744(7)	5,3(2)

(Roux / 1919) und Ronigenenikristunduten (Rudens)										
Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃				
Li ¹¹ B O(1) O(2) O(3) O(4)	1,7(1) 1,07(7) 1,19(5) 1,27(5) 1,39(5) 0,95(4)	1,7(2) 1,34(9) 1,20(6) 2,52(7) 1,12(6) 1,76(6)	1,5(2) 1,21(8) 1,88(7) 1,07(7) 1,39(6) 1,17(6)	0,2(1) -0,09(7) 0,26(5) 0,66(5) -0,09(5) -0,02(5)	$\begin{array}{c} -0,3(1) \\ 0,06(7) \\ -0,06(5) \\ -0,24(5) \\ 0,54(5) \\ -0,25(5) \end{array}$	$\begin{array}{c} 0,3(1) \\ -0,08(8) \\ 0,44(6) \\ -0,89(6) \\ 0,20(5) \\ -0,26(5) \end{array}$				

Tab. 3.14: Koeffizienten der Parameter anisotroper thermischer Auslenkung U_{ij} / 10^2 Å² für
Li¹¹B(OD)₄ bei 298 K aus der gemeinsamen Verfeinerung von Neutronenpulver-
(Rotax / ISIS) und Röntgeneinkristalldaten (Mach3)

Tab. 3.15: Ausgewählte Abstände und Winkel in Li¹¹B(OD)₄ aus der gemeinsamen Verfeinerung von Neutronenpulver- (Rotax / ISIS) und Röntgeneinkristalldaten (Mach3)

	Abstände / Å		Winkel / °
Li - O(1)	1,993(2)	O(1) - Li - O(2)	100,4(1)
Li - O(1)	1,935(2)	O(1) - Li - O(3)	110,4(1)
Li - O(2)	1,941(2)	O(1) - Li - O(4)	107,9(1)
Li - O(2)	1,966(2)	O(2) - Li - O(3)	112,1(1)
B - O(1)	1,495(2)	O(2) - Li - O(4)	122,4(1)
B - O(1)	1,476(2)	O(3) - Li - O(4)	103,5(1)
B - O(2)	1,474(2)	O(1) - B - O(2)	113,1(1)
B - O(2)	1,481(2)	O(1) - B - O(3)	107,2(1)
		O(1) - B - O(4)	109,1(1)
		O(2) - B - O(3)	109,2(1)
		O(2) - B - O(4)	106,3(1)
		O(3) - B - O(4)	112,1(1)
O(1) - D(1)	0,943(3)	Li - O(1) - B	126,7(1)
O(1) - D(4)	1,821(3)	Li - O(2) - B	131,1(1)
O(2) - D(2)	0,946(3)	Li - O(3) - B	136,2(1)
O(2) - D(1)	2,239(3)	Li - O(4) - B	124,2(1)
O(3) - D(3)	0,959(3)	Li - O(1) - D(1)	115,9(3)
O(3) - D(2)	1,936(4)	B - O(1) - D(1)	110,0(4)
O(4) - D(4)	0,974(3)	Li - O(1) - D(2)	112,4(4)
O(4) - D(3)	1,779(3)	B - O(1) - D(2)	110,9(4)
		Li - O(1) - D(3)	111,8(4)
		B - O(1) - D(3)	106,8(3)
		Li - O(1) - D(4)	113,9(4)
		B - O(1) - D(4)	108,6(6)
		O(1) - D(1) ··· O(2)	178,7(5)
		O(2) - D(2) ··· O(3)	171,3(6)
		O(3) - D(3) ··· O(4)	169,0(5)
		O(4) - D(4) ··· O(1)	171,6(5)

Abb. 3.27: Neutronenbeugungsdiffraktogramme von Li¹¹B(OD)₄ mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (untere Markierung: Li¹¹B(OD)₄, obere Markierung: Li(D₂O)₄¹¹B(OD)₄·2D₂O); 298 K

3.3.5 Strukturbeschreibung

Die Struktur von LiB(OH)₄ sollte sich ebenso wie die Strukturen von β -Be(OH)₂ und ϵ -Zn(OH)₂ von der Struktur einer SiO₂-Modifikation ableiten, da sie aus allseits eckenverknüpften MO₄-Tetraedern aufgebaut ist. Allerdings liegt hier eine Struktur mit zwei unterschiedlichen Metallatomen vor, die so angeordnet sind, daß ein dreidimensionales Netzwerk aus BO₄-Tetraedern, die mit LiO₄-Tetraedern über die Sauerstoffatome allseits eckenverknüpft sind, entsteht. Die naheliegende Vermutung, daß sich die Struktur von LiB(OH)₄ entweder von der des Tridymits [77,78] oder von der des β -Cristobalits [63] ableitet, führte zu dem Versuch, gruppentheoretische Zusammenhänge und damit verknüpfte Symmetriebeziehungen und Strukturverwandtschaften zwischen den Strukturen abzuleiten.

Ein Symmetrieabbau von der Raumgruppe der Struktur des Tridymits (P6₃/mmc) zur Raumgruppe der Struktur von LiB(OH)₄ (Pbca) ist in Abbildung 3.28 gezeigt. Betrachtet man die Beschreibung der Struktur des Tridymits in der Raumgruppe Pbca, erkennt man, daß keine direkte Verwandschaft zu der Struktur von LiB(OH)₄ besteht. Die Sauerstoffatome O(4) und O(5) haben die Symmetrie $\overline{1}$ und verknüpfen daher zwei kristallographisch gleiche Siliciumatome miteinander. Das heißt, daß ein Si(1) über ein Sauerstoffatom mit einem weiteren Si(1) und über drei Sauerstoffatome mit drei Si(2) verknüpft ist. Das strukturelle Merkmal von LiB(OH)₄, daß jedes Boratom über alle vier Tetraedersauerstoffatome mit je einem Lithiumatom verknüpft ist, kann also abgeleitet von der Struktur des Tridymits nicht beschrieben werden.

Si	4f	3m.	1/3	2/3	0,4375
O(1)	2c	$\overline{6}$ m2	1/3	2/3	1/4
O(2)	6g	.2/m.	1/2	0	1/2
			↓ t3	$b' = b \cdot \sqrt{3}$	
		Cmc	em (Nr. 63)		
Si	8f	m	0	0,3333	0,4375
O(1)	4c	m2m	0	0,3333	1/4
O(2)	4b	2/m	0	1/2	0
O(3)	8d	1	1/4	1/4	0
			↓k2	Ursprungsve	erschiebung -1/
		Pbc	m (Nr. 57)		
Si	8e	1	0,25	0,5833	0,4375
O(1)	4d	m	0,25	0,5833	1/4
O(2)	4c	2	0,25	3/4	0
O(3)	4b	$\overline{1}$	1/2	1/2	0
O(4)	4a	1	0	0	0
			\Downarrow k2	a' = 2a	
		Pbc	a (Nr. 61)		
Si(1)	8c	Pbc	0,125	0,5833	0,4375
Si(1) Si(2)	8c 8c	Pbc 1 1	0,125 0,125	0,5833 0,5833	0,4375 0,0625
Si(1) Si(2) O(1)	8c 8c 8c	1 1 1	0,125 0,125 0,125 0,125	0,5833 0,5833 0,5833	0,4375 0,0625 0,25
Si(1) Si(2) O(1) O(2)	8c 8c 8c 8c	1 1 1 1 1	0,125 0,125 0,125 0,125 0,125	0,5833 0,5833 0,5833 0,75	0,4375 0,0625 0,25 0,0
Si(1) Si(2) O(1) O(2) O(3)	8c 8c 8c 8c 8c	Pbc 1 1 1 1 1 1	0,125 0,125 0,125 0,125 0,125 0,125 0,25	0,5833 0,5833 0,5833 0,75 0,5	0,4375 0,0625 0,25 0,0 0,0
Si(1) Si(2) O(1) O(2) O(3) O(4)	8c 8c 8c 8c 8c 4b	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	0,125 0,125 0,125 0,125 0,125 0,25 1/2	0,5833 0,5833 0,5833 0,75 0,5 0	0,4375 0,0625 0,25 0,0 0,0 0

P6₃/mmc (Nr. 194)

Abb. 3.28: Symmetrieabbau der Struktur von Tridymit in P63/mmc (Nr. 194) nach Pbca (Nr. 61)

Von der Raumgruppe der Struktur von β -Cristobalit (Fd $\overline{3}$ m) kann man durch Symmetrieabbau nicht direkt zu der Raumgruppe der Struktur von LiB(OH)₄ (Pbca) gelangen. Allerdings kann man entsprechend der Abbildung 3.17 (Seite 38) von Fd $\overline{3}$ m bis zur Raumgruppe P2₁2₁2₁ abbauen und dann zur Raumgruppe Pbca aufbauen. Der Strukturaufbau sollte als translationengleicher Aufbau mit dem Index 2 unter Erzeugung eines Inversionszentrums und gleichzeitiger Vervierfachung des Elementarzellvolumens erfolgen. Dabei müssen aus einer in der Raumgruppe P2₁2₁2₁ vorliegenden vierzähligen Lage der Symmetrie 1 in der Raumgruppe Pbca zwei achtzählige Lagen der Symmetrie 1 entstehen.

Vergleicht man die Zellparameter des LiB(OH)₄ (a = 7,96 Å, b = 8,53 Å und c = 9,17 Å) mit denen des β -Cristobalits in P2₁2₁2₁ (a = 5,04 Å und c = 7,13 Å), erkennt man, daß für einen Aufbau die a- und die b-Achse verdoppelt werden müßten und danach eine Transformation der Zelle von a,b,c nach c,a,b vorgenommen werden müßte. Vergrößert man die Zelle von β -Cristobalit in P2₁2₁2₁ entsprechend und halbiert die x- und y-Parameter der vier symmetrieäquivalenten Lagen, müssen für einen erfolgreichen Aufbau der Struktur des β -Cristobalit von P2₁2₁2₁ nach Pbca bei Anwendung der Symmetrieoperationen von Pbca jeweils zwei der vier durch die Halbierung entstandenen Atomlagen gleich sein. Dies trifft nicht zu, siehe Abbildung 3.29. Das heißt, daß ein Aufbau der Struktur von β -Cristobalit in P2₁2₁2₁ nach Pbca durch Erzeugung eines Inversionszentrums und gleichzeitiger Vervierfachung des Elementarzellvolumens in eine der Struktur des LiB(OH)₄ vergleichbare nicht möglich ist.

 β -Cristobalit in P2₁2₁2₁ (Nr. 19) mit allen symmetrieäquivalenten Lageparametern

Si	4a	0	1/4	5/8	1/2	1/4	3/8	1/2	3/4	1/8	0	3/4	7/8
O(1)	4a	1/4	1/4	1/2	3/4	1/4	1/2	1/4	3/4	0	3/4	3/4	0
O(2)	4a	1/2	0	1/4	0	0	3/4	0	1/2	3/4	1/2	1/2	1/4

Aufbau nach Pbca: Vervierfachung der Zelle, für LiB(OH)₄ a' = 2a und b' = 2b, daraus folgt, daß x, y, $z \Rightarrow x/2$, y/2, z:

Si	0	1/8	5/8	1/4	1/8	3/8	1/4	3/8	1/8	1/2	3/8	7/8
O(1)	1/8	1/8	1/2	3/8	1/8	1/2	1/8	3/8	0	3/8	3/8	0
O(2)	1/4	0	1/4	0	1/2	3/4	1/2	1/4	3/4	1/4	1/4	1/4

Anwendung der Symmetrieoperationen von Pbca ergibt, daß sich keine zwei Lagen für ein Atom ineinander überführen lassen. Daraus folgt, daß die Struktur von β -Cristobalit nicht von P2₁2₁2₁ ausgehend für a' = 2a und b' = 2b nach Pbca aufgebaut werden kann.

Abb. 3.29: Darstellung des erfolglosen Versuchs eines Symmetrieaufbaus der Struktur von β -Cristobalit in P2₁2₁2₁ (Nr. 19) nach Pbca (Nr. 61) für a' = 2a und b' = 2b

Die Struktur des LiB(OH)₄ läßt sich somit weder von der des Tridymits noch von der des β -Cristobalits ableiten, eine Beschreibung der Struktur auf der Grundlage eines gruppentheoretischen Zusammenhanges und der damit zusammenhängenden Struktur-

verwandtschaft ist nicht möglich. Die Strukturbeschreibung erfolgt daher ausschließlich auf der Grundlage der Strukturlösung.

Die Struktur besteht aus einem dreidimensionalen Netzwerk von allseits eckenverknüpften Tetraedern, die so angeordnet sind, daß BO₄-Tetraeder allseits über Sauerstoffatome mit LiO₄-Tetraedern eckenverknüpft sind, und somit ein $[B(OH)_{4/2}Li(OH)_{4/2}]_{\infty}$ -Netzwerk bilden. Dieses dreidimensionale Netzwerk wird zusätzlich durch die Ausbildung sehr unterschiedlich starker Wasserstoffbrückenbindungen stabilisiert.

Die entstehende Tetraederstruktur ist stark durch die unterschiedlich großen Tetraeder um die beiden Kationen (\overline{d} (B-O) = 1,482 Å und \overline{d} (Li-O) = 1,959 Å) beeinflußt. Das führt dazu, daß die Tetraeder sehr stark gegeneinander verdreht sind (siehe Abb. 3.30 und 3.31). Die Ausbildung möglichst stabiler Wasserstoffbrückenbindungen ist ein weiterer Faktor, der zu einer Verdrehung der Tetraeder führt. Der Einfluß der elektrostatischen Abstoßung der sehr unterschiedlich großen LiO₄- und BO₄-Tetraeder ist allerdings für den Grad der Verdrehung der Tetraeder entscheidender als der Einfluß der Wasserstoffbrückenbindungen, da sonst die Ausbildung so unterschiedlicher Wasserstoffbrückenbindungen nicht zu erklären wäre.

Abb. 3.30: Ausschnitt aus der Struktur von LiB(OH)₄: Projektion in Richtung [001]. Die BO₄-Tetraeder sind grau, die LiO₄-Tetraeder weiß dargestellt. Die Lage der Wasserstoffatome ist angedeutet

Abb. 3.31: Ausschnitt aus der Struktur von LiB(OH)₄: Projektion in Richtung [100]. Die BO₄-Tetraeder sind grau, die LiO₄-Tetraeder weiß dargestellt. Die Lage der Wasserstoffatome ist angedeutet

Die kleinsten geschlossenen Ringe in der Struktur von LiB(OH)₄ bestehen aus jeweils drei BO_4 - und drei LiO₄-Tetraedern. In Abbildung 3.32 sind die sechs unterschiedlichen Sechsringe, die von einer [O₃B-O-LiO₃]-Einheit ausgehen, dargestellt. Vier dieser Tetraeder-Sechsringe enthalten sowohl den BO₄- als auch den LiO₄-Tetraeder, zwei entweder den BO₄- oder den LiO₄-Tetraeder.

Abb. 3.32: Darstellung der von einer [O₃-B-O-Li-O₃]-Einheit ausgehenden Sechsringe (LiOBO)₃ aus drei BO₄- und drei LiO₄-Tetraedern ohne Darstellung der nach außen verbrückenden Sauerstoffatome

Daß in der Struktur von LiB(OH)₄ die kleinsten geschlossenen Tetraedereinheiten Sechsringe sind, erinnert an die Strukturen von β-Cristobalit und Tridymit. Diese beiden SiO₂-Modifikationen enthalten ebenfalls Sechsringe aus allseits eckenverknüpften Tetraedern. Daß zwischen der Struktur von LiB(OH)₄ und denen von β-Cristobalit und Tridymit kein direkter kristallographischer Zusammenhang besteht, ist im Rahmen dieser Arbeit bereits gezeigt worden. Da allerdings LiB(OH)₄ die gleichen Strukturelemente wie β -Cristobalit und Tridymit aufweist, und zwar allseits eckenverknüpfte MO₄-Tetraeder, die Schichten aus Tetraeder-Sechsringen bilden, sind strukturchemische Unterschiede zwischen den Verbindungen interessant. Neben der durch die unterschiedllich großen Kationen hervorgerufenen starken Verzerrung der Tetraederstruktur in LiB(OH)₄ gibt es Unterschiede in der Art der Verknüpfung der Sechsring-Schichten. In der nach Pbca abgebauten Struktur von Tridymit liegen die aus Sechsringen gebildeten Schichten direkt übereinander in der b, c-Ebene. Die Verknüpfung zwischen den Schichten erfolgt innerhalb eines Ringes immer abwechselnd über ein Sauerstoffatom einmal zur darüberliegenden und einmal zur darunterliegenden Schicht. In der nach Pbca abgebauten Struktur von ß-Cristobalit liegen die aus Sechsringen gebildeten Schichten gegeneinander verschoben in der a, b-Ebene. Die Verknüpfung zwischen den Schichten erfolgt ebenfalls innerhalb eines Ringes immer abwechselnd über ein Sauerstoffatom einmal zur darüberliegenden und einmal zur darunterliegenden Schicht. In LiB(OH)₄ liegen die aus deutlich stärker verzerrten Sechsringen gebildeten Schichten gegeneinander verschoben in der a, b-Ebene. Die Art der Verknüpfung zwischen den Sechsringen der Schichten ist allerdings anders. Sie erfolgt entlang eines Sechsringes über einzelne Sauerstoffatome zweimal zur darüberliegenden, zweimal zu darunterliegenden, einmal zur darüberliegenden und einmal zur darunterliegenden Schicht, siehe Abbildung 3.33 (Seite 64).

Abb. 3.33: Darstellung der zwischen den in der a, b-Ebene liegenden Schichten aus Tetraeder-Sechsringen realisierten Verknüpfung ohne Darstellung der innerhalb der Schichten nach außen verknüpfenden Sauerstoffatome

Die in der Struktur von LiB(OH)₄ realisierte Verknüpfung zwischen den aus Tetraeder-Sechsringen bestehenden Schichten weicht somit von der in den SiO₂-Modifikationen β -Cristobalit und Tridymit realisierten ab. Dieses beruht wahrscheinlich auf den zusätzlichen Anforderungen an die Struktur des LiB(OH)₄. Diese resultieren zum einen aus der Tatsache, daß die BO₄-Tetraeder ausschließlich mit LiO₄-Tetraedern eckenverknüpft sind und zum anderen aus der sehr unterschiedlichen Größe der Tetraeder.

Die schwingungsspektroskopischen Untersuchungen an LiB(OH)₄ (siehe Kap. 3.3.3, Seite 48) haben gezeigt, daß in der Struktur von LiB(OH)₄ vier Hydroxidionen mit sehr unterschiedlich starken Wasserstoffbrückenbindungen vorliegen, deren Umgebungsgeometrie in Abbildung 3.34 dargestellt ist. Die Brückenbindungsabstände variieren dabei sehr stark. Die schwächste Wasserstoffbrücke hat einen sehr langen Brückenbindungsabstand d(H···O) von 2,239(3) Å, die zweitschwächste einen von 1,936(4) Å und die beiden stärksten sehr kurze Abstände d(H···O) von 1,779(3) Å und 1,821(3) Å. Die Wasserstoffbrückenbindungswinkel liegen mit Werten zwischen 169,0(5) und 178,7(5)° nahe am Idealwinkel von 180°. Die O-H-Bindungs-

abstände sind durch die gemeinsame Verfeinerung der Neutronenpulver- und Röntgeneinkristallbeugungsdaten sinnvoll mit Werten d(O-H) zwischen 0,943(3) und 0,974(3) Å bestimmt worden und nicht mehr wie in den Ergebnissen der Einkristallröntgenbeugungsuntersuchungen [73-75] mit Werten bis zu 1,12 Å zu lang.

Abb. 3.34: Darstellung der vier Wasserstoffbrückenbindungen in LiB(OH)₄ mit Schwingungsellipsoiden (70% Aufenthaltswahrscheinlichkeit) und Wasserstoffbrückenbindungsgeometrie. Daten für 298 K aus der gemeinsamen Verfeinerung von Neutronenpulverdaten (Rotax / ISIS) und Röntgeneinkristalldaten (Mach3); Abstände in Å, Winkel in °

3.4 Zusammenfassung und Diskussion

Für ε-Zn(OD)₂ und LiB(OD)₄ wurden durch Neutronenbeugungsuntersuchungen am Pulver die Lagen der Wasserstoffatome bestimmt und dadurch die bereits vorhandenen Strukturlösungen aus Röntgenbeugungsuntersuchungen am Einkristall vervollständigt.

Eine Korrelation der bereits für β -Be(OD)₂ vorliegenden [7,8,13] und der neu für ϵ -Zn(OD)₂ hinzugekommenen Ergebnisse der Strukturuntersuchungen mit denen des Raman-Experimentes zeigt, daß die unterschiedliche Wasserstoffbrückenbindungsstärke hauptsächlich auf den stärkeren antikooperativen Effekt der an Zn²⁺-Ionen gebundenen Hydroxidionen im Vergleich zu den an Be²⁺-Ionen gebundenen beruht. Die unterschiedliche Geometrie der Wasserstoffbrückenbindungen in diesen beiden Verbindungen spielt nur eine untergeordnete Rolle.

Die Untersuchungen an LiB(OH)₄ haben gezeigt, daß die Struktur sich weder von der Struktur des Tridymits noch von der des β -Cristobalits ableiten läßt. Sie besteht aus BO₄-Tetraedern, die allseits über Sauerstoffatome mit LiO₄-Tetraedern eckenverknüpft sind. Diese eckenverknüpften Tetraeder bilden Sechsringe, die in der a, b-Ebene zu Schichten verknüpft sind. Die Verknüpfung zwischen den Schichten erfolgt dabei anders als in der Struktur des Tridymits und der des β -Cristobalits.

An β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ wurden Tieftemperatur-Raman-Experimente durchgeführt, die einen bisher unbekannten Effekt zeigen. Die Verschiebung der O-H- und O-D-Streckschwingungsmoden erfolgt mit abnehmender Temperatur zuerst, wie für wasserstoffbrückengebundene Systeme zu erwarten, zu niedrigeren Wellenzahlen. Bei niedrigen Temperaturen (bei ca. 40 K für β -Be(OH)₂ und ca. 50 K für ϵ -Zn(OH)₂ und LiB(OH)₄) erfolgt eine Umkehr der Verschiebungsrichtung zu höheren Wellenzahlen hin (maximal 4,5 cm⁻¹ für β -Be(OH)₂, 19 cm⁻¹ für ϵ -Zn(OH)₂ und 22 cm⁻¹ für LiB(OH)₄). Dieser Effekt deutet auf eine Schwächung der Wasserstoffbrückenbindungen hin und ist bisher in der Literatur noch nicht beschrieben worden.

Um diesen Effekt zu erklären, wurden bei 5 K, 50 K und 245 K Neutronen- und Röntgenbeugungsmessungen an β -Be(OD)₂-Pulver durchgeführt, um zu untersuchen, ob Änderungen in der Struktur der Verbindungen, wie zum Beispiel eine Phasenumwandlung oder Änderungen in der Geometrie der Wasserstoffbrückenbindungen, festzustellen sind, die eine Schwächung der Wasserstoffbrückenbindungen erklären können. Durch die durchgeführten Beugungsexperimente konnten strukturelle Änderungen als Ursachen nicht nachgewiesen
werden. Da das Raman-Experiment viel empfindlicher als das Beugungsexperiment ist, ist ein Ausschluß struktureller Änderungen als Ursache für den Effekt nicht möglich. Eine Phasenumwandlung konnte als Ursache ausgeschlossen werden. Ein Übergang von einer linearen zu einer gewinkelten Wasserstoffbrückenbindung und dem damit verbundenen We cheel von dv/dT > 0 nach dv/dT < 0 ist ebenfalls als Erklärung des Effektes auszuschließen, da zum einen kein Hinweis auf einen solchen Übergang im Beugungsexperiment zu finden ist und zum anderen bei niedrigen Temperaturen die Librationsamplituden der Atome klein sind und daher eine lineare Wasserstoffbrückenbindung bei niedrigen Temperaturen günstiger als eine gewinkelte ist. Ein weiterer temperaturabhängiger Einfluß, der zu einer Verschiebung der O-H- und O-D-Streckschwingungsmoden zu höheren Wellenzahlen führen kann, ist die Kationenkoordination. Da im Beugungsexperiment allerdings keine ungewöhnlich großen Veränderungen in den Metall-Wasserstoffabständen festgestellt wurden und der Einfluß der Kationenkoordination auf die Größe der Streckschwingungsfrequenz generell klein ist, ist er als alleinige Erklärung für den im Tieftemperatur-Raman-Experiment für β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ gefundenen Effekt nicht ausreichend.

Eine durch geometrische Zwänge hervorgerufene Änderung der Brückenbindungsgeometrie, die zu einer Schwächung der Wasserstoffbrückenbindungen führt, ist bisher die wahrscheinlichste Erklärung für den im Tieftemperatur-Raman-Experiment gefundenen Effekt. Da Veränderungen der Bindungsstärke und die eventuell damit verbundenen Veränderungen der Bindungsgeometrie im Raman-Experiment sehr viel genauer und empfindlicher detektiert werden als im Beugungsexperiment die Veränderungen der Bindungsgeometrie, kann allerdings keine Aussage darüber gemacht werden, ob bei tiefen Temperaturen eine Änderung der Brückenbindungsgeometrie die beobachtete Änderung der Bindungsstärke hervorruft.

4 Schwingungsspektroskopische Untersuchungen an Modellverbindungen mit Wassserstoffbrückenbindungen

4.1 Einleitung

Aufgrund der Ergebnisse der in Kapitel 3 beschriebenen Tieftemperatur-Raman-Messungen stellt sich die Frage, ob der Effekt der Umkehr des Verlaufs der O-H-Streckschwingungsfrequenzen auch bei anderen Verbindungen, in denen Wasserstoffbrückenbindungen vorliegen, zu beobachten ist. Zu einigen wenigen Verbindungen mit Wasserstoffbrückenbindungen existieren im interessierenden Temperaturbereich detaillierte Untersuchungen. Für Ethanol, CsHS und unterschiedliche Hexaaquometall(II)-hexafluorosilikate [50-52] zeigt der Verlauf der O-H-, bzw. S-H-Streckschwingungsfrequenzen keine ungewöhnliche Temperaturabhängigkeit. Diese wenigen Messungen ermöglichen allerdings keine klare Abgrenzung zwischen Verbindungen mit Wasserstoffbrückenbindungen, die den in Kapitel 3 beschriebenen ungewöhnlichen Effekt zeigen, und Substanzen mit Wasserstoffbrückenbindungen, die das übliche temperaturabhängige Verhalten zeigen.

Um eine klarere Abgrenzung zu ermöglichen, mußten Kriterien zur Auswahl von Verbindungen für Vergleichsmessungen aufgestellt werden. Idealerweise sollte mit einer minimalen Anzahl an Tieftemperatur-Raman-Messungen ein maximaler Informationsgewinn erreicht werden. Die untersuchten Verbindungen sollten daher möglichst einfach aufgebaut sein und eindeutig interpretierbare Raman-Spektren liefern. Ein weiteres Kriterium stellte eine gute Verfügbarkeit oder eine einfache Herstellungsmöglichkeit dieser Verbindungen in phasenreiner Form dar.

Es wurden Tieftemperatur-Raman-Untersuchungen an hexagonalem Eis H₂O (s), welches aus einem dreidimensionalem Netzwerk aus über Wasserstoffbrückenbindungen verknüpften, statistisch fehlgeordneten OH_{4/2}-Tetraedern besteht, an kristalliner Borsäure H₃BO₃, welche aus über Wasserstoffbrückenbindungen zweidimensional verknüpften, annähernd trigonal planaren B(OH)₃-Einheiten besteht, und an Kaliumhydrogendifluorid KHF₂, in dem symmetrische [F-H-F]⁻-Anionen vorliegen, durchgeführt. Außerdem wurden Proben von Kaliumdihydrogenphosphat KH₂PO₄, einer bei tiefen Temperaturen ferroelektrischen Substanz, und von meta-Borsäure HBO₂, die im untersuchten Temperaturbereich monoklin kristallisiert und sich am besten als [B₃O₄(OH)(OH₂)]_∞ beschreiben läßt, untersucht.

4.2 Hexagonales Eis, H₂O (s)

4.2.1 Einführung

Wasser ist für unsere Welt eine der wichtigsten natürlichen Substanzen. Ohne Wasser mit seinen besonderen Eigenschaften ist Leben in der auf der Erde existierenden Form nicht denkbar. Eine besondere Rolle spielt dabei die Ausbildung von Wasserstoffbrückenbindungen im flüssigen und festen Zustand. Die zwei bei Normaldruck stabilen kristallinen Modifikationen des Wassers Eis-I_H (gewöhnliches oder hexagonales Eis oder Tridymit-Eis) und Eis-I_C (kubisches Eis oder Cristobalit-Eis) lassen sich als nahezu perfektes dreidimensionales Netzwerk von Wasserstoffbrückenbindungen beschreiben [79]. In beiden Modifikationen sind die Wasserstoffatome fehlgeordnet. Bei den durchgeführten Tieftemperatur-Raman-Experimenten wurde die beim Abkühlen von Wasser unter Normaldruck entstehende Eismodifikation Eis I_H untersucht. Ergebnisse von Strukturuntersuchungen an Eis I_H mit Einkristallneutronenbeugung aus dem Jahre 1957 zeigen, daß sich die Struktur nur mit Hilfe eines Splitlagenmodells beschreiben läßt [80]. Die Struktur von hexagonalem Eis leitet sich von der des Trydimits ab. Die Sauerstoffatome besetzen die Positionen der Siliciumatome und die Wasserstoffatome befinden sich annähernd auf der Verbindungslinie zwischen zwei Sauerstoffatomen und besetzen jeweils eine der zwei möglichen Positionen im Bindungsabstand zu einem der beiden Sauerstoffatome so, daß jedes Sauerstoffatom Donor und Akzeptor von je zwei Wasserstoffbrückenbindungen ist. In Abbildung 4.1 ist ein von Sauerstoffatomen gebildetes Tetraeder um ein Sauerstoffatom mit den Wasserstoffatomen auf den halbbesetzten Splitpositionen dargestellt. Abbildung 4.2 zeigt nur die Sauerstoffteilstruktur, die der Struktur des hexagonalen Diamants entspricht.

Um die Art der Fehlordnung der Wasserstoffatome besser als durch das Splitlagenmodell zu beschreiben, wurden an hexagonalem Eis bereits eine Vielzahl schwingungsspektroskopischer Untersuchungen durchgeführt [81-83]. Diese sind allerdings im Tieftemperaturbereich für nur wenige unterschiedliche Temperaturen erfolgt und daher nicht detailliert genug, um Aussagen darüber zu treffen, ob der Effekt der temperaturabhängigen Umkehr der O-H- und O-D-Streckschwingungsfrequenzen für diese Verbindung zu beobachten ist oder nicht.

Abb. 4.1: Koordinationspolyeder um O²⁻ in **Abb. 4.2:** Sauerstoffteilstruktur in hexagohexagonalem Eis mit Darstellung der fehlgeordneten Wasserstoffatome auf halbbesetzten Splitlagen

nalem Eis, entspricht der Struktur des hexagonalen Diamants

Da hexagonales Eis ein Standardbeispiel für eine Sauerstoffverbindung mit Wasserstoffbrückenbindungen ist, die außer H⁺ keine weiteren Kationen enthält und in denen jedes Sauerstoffatom sowohl Donor als auch Akzeptor von Wasserstoffbrücken ist, ist es eine für vergleichende Tieftemperatur-Ramanuntersuchungen gut geeignete Verbindung.

4.2.2 Tieftemperatur-Ramanspektroskopie

Es wurden an einer teildeuterierten H₂O-Probe Tieftemperatur-Raman-Experimente durchgeführt. Eine Schwingungszuordnung und -abzählung durch eine Faktorgruppenanalyse kann für Eis I_H nicht wie üblich auf der Grundlage der Strukturlösung durchgeführt werden, da diese aufgrund der vorliegenden Fehlordnung der Wasserstoffatome in einer zu hoch symmetrischen Raumgruppe (P6₃/mmc) auf der Grundlage eines Splitlagenmodells erfolgt ist. Betrachtet man für eine kleine Einheit von vier Wassermolekülen pro Elementarzelle die möglichen geordneten Anordnungen und die sich daraus ergebenen Symmetrien, kommt man zu zwei möglichen Lösungen, einer C2v-Struktur in der Raumgruppe Pmc21 und einer C1-Struktur in der Raumgruppe P1 [81]. Die Ermittlung der Anzahl der in diesen Untersuchungen maximal beobachtbaren O-H-Streckschwingungen ergibt für beide Strukturmöglichkeiten acht Schwingungen für das Raman-Experiment, vier symmetrische $v_s(OH_2)$ - und vier antisymmetrische $v_{as}(OH_2)$ -Streckschwingungen. Diese acht Schwingungen sind allerdings nicht alle getrennt zu beobachten (vgl. Abbildung 4.3, Seite 71). Daher wird nur der temperaturabhängige Verlauf der beiden intensitätsstärksten Raman-Linien betrachtet. Die Linie bei höheren Wellenzahlen entspricht den v_{as} -Schwingungen, die bei niedrigeren Wellenzahlen den v_s -Schwingungen.

Sowohl die Verschiebung der antisymmetrischen als auch die der symmetrischen OH2-Streckschwingungsfrequenzen zeigt den für Verbindungen mit Wasserstoffbrückenbindungen erwarteten temperaturabhängigen Verlauf. Das heißt, über den gesamten untersuchten Temperaturbereich verschieben sich die Streckschwingungsmoden zu niedrigeren Wellenzahlen mit abnehmender Temperatur, siehe Abb. 4.3. Die für die mit den kristallographisch unterschiedlichen Protonen verknüpften entkoppelten, lokalen Streckschwingungsmoden erwarteten zwei Raman-Linien fallen zu einer zusammen, da die beiden Protonen energetisch annähernd gleich sind. Die temperaturabhängige Verschiebung der entkoppelten O-D-Streckschwingungsmode verhält sich genauso wie die der OH2-Streckschwingungen (siehe Abb. 4.3), das heißt, sie verschiebt sich über den gesamten untersuchten Temperaturbereich zu niedrigeren Wellenzahlen mit abnehmender Temperatur.

Abb. 4.3: OH_2 - und O-D-Streckschwingungsbereich und $\nu(OH_2)$ und $\nu(OD)$ gegen T für hexagonales Eis $H_2O(s) + 7\% D$

Zusammenfassend läßt sich somit feststellen, daß hexagonales Eis I_H den für β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ gefundenen Effekt der Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen nicht zeigt.

4.3 Ortho-Borsäure, H₃BO₃

4.3.1 Einführung

Erste Strukturuntersuchungen zur Bestimmung der Lagen der Bor- und Sauerstoffatome an ortho-Borsäure wurden bereits im Jahre 1934 auf der Grundlage von Röntgeneinkristalldaten von Zachariasen [84] durchgeführt. Seither ist diese Verbindung mit ihrer zweidimensional unendlich wasserstoffbrückengebundenen Molekülstruktur ein Lehrbuchbeispiel. Die Positionen der Wasserstoffatome wurden in späteren Untersuchungen an H₃BO₃ und D₃BO₃ bestimmt [85-87]. Ortho-Borsäure kristallisiert triklin in der Raumgruppe $P\overline{1}$ mit vier Formeleinheiten pro Elementarzelle. Die Struktur besteht aus nahezu planaren Borsäuremolekülen, die über sechs unterschiedliche Wasserstoffbrückenbindungen (siehe Abb. 4.4) zweidimensional unendlich zu Schichten verknüpft sind (siehe Abb. 4.5). Die Schichten untereinander sind vergleichsweise weit voneinander entfernt mit einem Abstand von 3,18 Å. Zwischen den Schichten wirken van-der-Waals Kräfte.

Wasserstoffbrückenbindungsgeometrie der sechs H-Brückenbindungen; Abstände in Å, Winkel in °, aus [87]

Abb. 4.4: Koordinationspolyeder um B^{3+} mit Abb. 4.5: Ausschnitt aus einer Schicht von H-Brückenbindungen über verknüpften H₃BO₃-Molekülen

Ortho-Borsäure wurde für Vergleichsuntersuchungen ausgewählt, da diese Verbindung zum einen ein hartes Kation und zum anderen Sauerstoffatome enthält, die sowohl Donor als auch Akzeptor je einer Wasserstoffbrücke sind. Gleichzeitig ist ortho-Borsäure allerdings eine typische Molekülverbindung, die einzelnen Moleküle sind nur über Wasserstoffbrückenbindungen und nicht wie die in Kapitel 3 beschriebenen Verbindungen über Sauerstoffatome verknüpft.

4.3.2 Tieftemperatur-Ramanspektroskopie

wurden kristallinen H₃BO₃-Probe Tieftemperatur-Raman-Experimente Es an einer durchgeführt. Eine Schwingungszuordnung und -abzählung durch eine Faktorgruppenanalyse kann für ortho-Borsäure nicht wie üblich auf der Grundlage der Strukturlösung durchgeführt werden, da diese die ideale hexagonale Symmetrie der H₃BO₃-Moleküle nicht wiedergibt, die im Festkörper gering verzerrt ist. Eine Interpretation der Ergebnisse zahlreicher schwingungsspektroskopischer Untersuchungen [88-90] an ortho-Borsäure wurde daher unter Berücksichtigung der ideal hexagonalen Lagesymmetrie der Moleküle durchgeführt [91]. Dabei ist es unerheblich, ob man das schwingungsspektroskopische Verhalten von ortho-Borsäure durch die Betrachtung als einzelne B(OH)₃-Moleküle mit C_{3h}-Symmetrie [88] oder als isolierte BO₃-Gruppe und ein Sechseck von sechs OH-Gruppen mit C_{6h}-Symmetrie [89] oder als zwei B(OH)₃-Moleküle in einer "Schichtelementarzelle" mit C_{6h}-Symmetrie [90] beschreibt, die Zahl der internen Normalschwingungen, die im Raman-Experiment zu beobachten sein sollten, ist in allen drei Fällen gleich acht. Diese acht Schwingungen unterteilen sich in zwei O-H-Streckschwingungen (Rasse E2g und Ag), zwei B-O-Streckschwingungen (Rasse E2g und Ag), zwei B-O-H-Deformationsschwingungen (Rasse E2g und A_g), eine BO₃-Deformationsschwingung (Rasse E_{2g}) und eine O-H-Deformationsschwingung (Rasse E1g). Für die Auswertung der in dieser Arbeit durchgeführten Experimente sind ausschließlich die beiden O-H-Streckschwingungen v_{as} (Rasse E_{2g}) und v_s (Rasse A_g) interessant. In Abbildung 4.6 ist der O-H-Streckschwingungsbereich und der Frequenzverlauf der beiden O-H-Streckschwingungen dargestellt. Auffällig ist die Aufspaltung der Ramanlinie der antisymmetrischen O-H-Streckschwingung, die auf Kristallfeldeinflüsse zurückzuführen ist [92].

Genau wie bei den Untersuchungen von hexagonalem Eis zeigen die Experimente an ortho-Borsäure den für Verbindungen mit Wasserstoffbrückenbindungen erwarteten Verlauf der O-H-Streckschwingungsfrequenzen, das heißt, über den gesamten untersuchten Temperaturbereich verschieben sich die O-H-Streckschwingungsmoden zu niedrigeren Wellenzahlen mit abnehmender Temperatur (siehe Abb. 4.6, Seite 74).

Abb. 4.6: OH-Streckschwingungsbereich und v(OH) gegen T für ortho-Borsäure H₃BO₃

Ortho-Borsäure zeigt den für β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ gefundenen Effekt der Umkehr des temperaturabhängigen Verlaufs der O-H-Streckschwingungsfrequenzen also ebenfalls nicht.

4.4 Monokline meta-Borsäure, HBO₂

4.4.1 Einführung

Meta-Borsäure HBO2 kann in drei kristallinen Modifikationen dargestellt werden. Die Strukturen der orthorhombischen α -Form [93], der monoklinen β -Form [94] und der kubischen γ-Form [95] wurden bereits in den 50er und 60er Jahren vollständig geklärt. In dem für die in dieser Arbeit durchgeführten Raman-Experimente interessierenden Temperaturbereich zwischen 298 K und 10 K ist die monokline Modifikation von meta-Borsäure stabil. Die Struktur von monokliner HBO2 besteht aus endlosen Zickzack-Ketten der Zusammensetzung [B₃O₄(OH)(H₂O)]_∞, die parallel zur b-Achse verlaufen, siehe Abbildung Wasserstoffbrückenbindungen 4.8, und über miteinander verknüpft sind. Eine [B₃O₄(OH)(H₂O)]-Einheit besteht aus zwei trigonal planaren [BO₃]-Einheiten und einer tetraedrischen [BO₄]-Einheit. Das Sauerstoffatom des Wassers bildet eine endständige Ecke [BO₄]-Tetraeders und ist Donor zweier Wasserstoffbrückenbindungen. des Das Sauerstoffatom der Hydroxidgruppe bildet eine endständige Ecke einer trigonal planaren [BO₃]-Einheit und ist Donor und Akzeptor je einer Wasserstoffbrückenbindung. In Abbildung 4.7 ist eine [B₃O₄(OH)(H₂O)]-Einheit mit den zugehörigen Wasserstoffbrückenbindungen dargestellt.

Abb. 4.7: [B₃O₄(OH)(H₂O)]-Einheit in β-HBO₂ **Abb. 4.8:** Zickzack-Ketten der Zusammenmit den zugehörigen Wasserstoffbrückenbindungen

setzung $[B_3O_4(OH)(H_2O)]_{\infty}$, die parallel zur b-Achse verlaufen

Die Struktur von monokliner meta-Borsäure ist also keine typische Molekülstruktur wie die von ortho-Borsäure, sondern eine eindimensional unendlich über Sauerstoffatome verknüpfte Kettenstruktur, die dreidimensional über Wasserstoffbrückenbindungen verknüpft ist. Diese strukturellen Besonderheiten machen β -HBO₂ für vergleichende Ramanuntersuchungen interessant. Außerdem enthält monokline meta-Borsäure Hydroxidsauerstoffatome, die sowohl Donor als auch Akzeptor je einer Wasserstoffbrücke sind. In diesem Falle ist das Hydroxidsauerstoffatom Akzeptor einer Brücke, die von einem Hydratmolekül ausgeht, und Donor einer Brücke zu einem verbrückenden Sauerstoffatom, das ausschließlich Akzeptor einer Wasserstoffbrückenbindung ist.

4.4.2 Darstellung

Meta-Borsäure wurde durch Zersetzung von ortho-Borsäure bei 120°C und reduziertem Druck dargestellt. Durch Röntgenbeugungsuntersuchungen am Pulver wurde das Zersetzungsprodukt als röntgenographisch phasenreine monokline meta-Borsäure β -HBO₂ charakterisiert.

4.4.3 Tieftemperatur-Ramanspektroskopie

Es wurden an einer Probe von monokliner HBO_2 Tieftemperatur-Raman-Experimente durchgeführt. Die Schwingungszuordnung und -abzählung erfolgte durch eine Faktorgruppenanalyse. In Tabelle 4.1 ist die Symmetrie und Aktivität der Phononen am Γ -Punkt für β -HBO₂ in der Faktorgruppe (C_{2h}) aufgelistet. Aus der Zentrosymmetrie des Raumgruppentyps (P2₁/b, C⁵_{2h}) und der zur Faktorgruppe isomorphen Raumgruppe (2/m, C_{2h}) resultiert das Alternativverbot. Alle Raman-aktiven Schwingungen in der primitiven Basiszelle sind über das Symmetriezentrum verknüpft, während alle IR-aktiven Moden dieses aufheben. Beide Methoden beobachten demnach unterschiedliche Phononen.

Tab. 4.1: Symmetrie und Aktivität der Faktorgruppenmoden von monokliner HBO_2 am
 Γ -Punkt in der Faktorgruppe C_{2h}

Moden				A_{g}	A_u	$\mathbf{B}_{\mathbf{g}}$	$\mathbf{B}_{\mathbf{u}}$	Σ		
translatorische Gitterschwingungen (m $B^{3+}(1)-(3)/O^{2-}(1)-(4)/OH^{-}(5)/OH_{2}(6)$	nit inneren ieweils	n Scl 4e	nwing C1	ungen 3	der BO ₃ 3	-/BO ₄ -E 3	Einheite 3	n) 108		
rotatorische Gitterschwingungen: Librationen des Hydroxidions und des Hydrates										
OH ⁻ (5) OH ₂ (6)	jeweils	4e	C_1	2 1	2 2	2 2	2 1	8 12		
innere Schwingungen des Hydroxidio	ns und de	s Hy	drates	5						
OH ⁻ (5)	iowoila	40	C.	1	1	1	1	4		
OH ₂ (6)	Jeweils	40	C_1	2	1	1	2	12		
Aktivität			Σ	36 Ra	36 IR	36 Ra	36 IR	144		

Die Ergebnisse der Korrelation der Faktorgruppenmoden der inneren Schwingungen des Hydrates mit denen des freien Moleküls (C_{2v} -/mm2-Symmetrie) sind in Tabelle 4.2 (Seite 77) aufgeführt.

Tab. 4.2:	Korrelation	der	Faktorgruppenmoden	der	inneren	Schwingungen	des
	Hydrates mi	t den	en des freien Moleküls	für	monoklir	e HBO ₂	

	Innere Schwingungen	
Freies Wassermolekül	Lagegruppe	Faktorgruppe
C_{2v} / mm2	C ₁ / 1	C_{2h} / 2/m
$(2v_{s}, 2\delta) 4A_{1} $	4 A	$2A (v_s, \delta) Raman$ $A_u (v_{as}) IR$
$(2v_{as})$ $2B_2$ —	2 A	$B_{g}(v_{as}) Raman$ $2B_{u}(v_{s}, \delta) IR$

Die Korrelation der Faktorgruppenmoden der inneren Schwingungen des Hydrates mit denen des freien Moleküls (C_{2v}-/mm2-Symmetrie) ergibt, daß im IR- und im Raman-Spektrum je eine symmetrische und eine antisymmetrische Streckschwingung sowie je eine Deformationsschwingung des Hydratmoleküls zu sehen sein sollten. Außerdem sollten zwei Streckschwingungen des Hydroxidions zu sehen sein.

Die Spektren der Raman-Experimente an β -HBO₂ sind, da die Probe sehr stark fluoresziert, allerdings nur schwierig auszuwerten. In Abbildung 4.9 ist der Streckschwingungsbereich der Raman-Spektren von monokliner meta-Borsäure dargestellt. Es ist eine sehr breite Raman-Linie zu erkennen, die dem Hydroxidion zugeordnet wird, da die Linien der O-H-Streckschwingungen von Hydroxidionen im Raman-Experiment erfahrungsgemäß deutlich schmaler und intensitätsstärker als die von Hydraten sind [41,49]. Betrachtet man den Frequenzverlauf der angesprochenen Ramanlinie mit abnehmender Temperatur (vgl. Abbildung 4.9), erkennt man, daß bei ca. 40 K der Effekt der Umkehr der temperaturabhängigen Verschiebung der Streckschwingungsmode zu höheren Wellenzahlen eintritt. Dieser Effekt ist mit einer Verschiebung von 3,0 cm⁻¹ für O-H-Streckschwingungsmoden sehr klein, aber bei einer Meßgenauigkeit von ± 0.5 cm⁻¹ signifikant.

geringe Effektes Die Größe des der temperaturabhängigen Umkehr des Streckschwingungsfrequenzverlaufs bei Temperaturen kleiner 40 K korreliert mit der geringen temperaturabhängigen Verschiebung im Temperaturbereich größer 40 K. Wie man in Abbildung 4.9 erkennen kann, ist der Wert der Streckschwingungsfrequenz bei ca. 10 K gleich dem bei ca. 110 K.

Abb. 4.9: O-H-Streckschwingungsbereich und v(OH) gegen T für monokline HBO₂

Mit den Tieftemperatur-Raman-Experimenten an monokliner meta-Borsäure ist es gelungen, eine Verbindung zu untersuchen, die genau wie β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ den Effekt der temperaturabhängigen Umkehr der Verschiebung der O-H-Streckschwingungsfrequenzen bei niedrigen Temperaturen zeigt. An diesem Beispiel konnte gezeigt werden, daß der Effekt nicht nur von Verbindungen gezeigt wird, deren Strukturen dreidimensional unendlich über Sauerstoffatome verknüpfte Gerüste aufweisen, sondern auch für eine Verbindung auftritt, in deren Struktur eindimensional unendlich über Sauerstoffatome verknüpfte Ketten vorliegen.

4.5 Kaliumhydrogendifluorid, KHF₂

4.5.1 Einführung

Das Interesse, die Art der Wasserstoffbrückenbindung im Bifluoridanion aufzuklären, hat in der Vergangenheit zu einer Vielzahl von Untersuchungen an Kaliumhydrogendifluorid geführt. Neben Einkristallröntgen- [96-98] und Einkristallneutronenbeugungsexperimenten [99,100] wurden thermodynamische [101] und schwingungsspektroskopische Untersuchungen [102-104] durchgeführt. Es wurden zwei Modelle für die Lage des Wasserstoffatoms

diskutiert, zum einen eine lineare und symmetrische F-H-F-Anordnung in einem einzelnen Potentialminimum und zum anderen eine unsymmetrische F-H···F-Anordnung in einem Doppelpotentialminimum. Die erste schwingungsspektroskopische Untersuchung [102] an KHF₂ wurde mit Hilfe des Doppelpotentialminimums erklärt, wogegen thermodynamische und weitere schwingungspektroskopische Untersuchungen ebenso wie die Daten einiger Beugungsexperimente mit Hilfe der symmetrischen F-H-F-Anordnung interpretiert wurden [98-100,103,104]. Die Ergebnisse der übrigen Untersuchungen [96,97] ermöglichten keine Entscheidung zwischen den beiden Modellen.

Übereinstimmendes Ergebnis aller Strukturuntersuchungen ist, daß KHF₂ tetragonal in der Raumgruppe I4/mcm mit vier Formeleinheiten pro Elementarzelle kristallisiert. Das HF₂⁻-Ion ist tetragonal prismatisch von acht Kaliumatomen umgeben und bildet zusammen mit weiteren HF₂⁻-Ionen ein zweidimensional unendliches Wasserstoffbrückenbindungssystem bestehend aus einer Abfolge aus starken Wasserstoffbrückenbindungen mit einem Abstand d(H-F) = 1,14 Å und schwachen Wasserstoffbrückenbindungen mit einem Abstand d(H-F) = 2,87 Å, siehe Abbildung 4.10 und 4.11.

Abb. 4.10: Lineare und symmetrische F-H-F-Abb. 4.11: Darstellung der Abfolge aus
starken und schwachen Wasser-
stoffbrückenbindungen in KHF2,
Abstände in Å, aus [100]Abb. 4.10: Lineare und symmetrische F-H-F-Abb. 4.11: Darstellung der Abfolge aus
starken und schwachen Wasser-
stoffbrückenbindungen in KHF2,
Abstände in Å, aus [100]

Übereinstimmendes Ergebnis der meisten Untersuchungen ist außerdem, daß Kaliumhydrogendifluorid zu den wenigen Verbindungen gehört, in denen eine völlig symmetrische Wasserstoffbrückenbindung vorliegt, das heißt, daß nicht zwischen dem Akzeptor- und dem Donoratom der Brücke unterschieden werden kann. Dadurch ist KHF₂

eine Modellsubstanz für die Untersuchung symmetrischer Wasserstoffbrückenbindungen und daher eine für vergleichende Tieftemperatur-Raman-Experimente sehr interessante Verbindung.

4.5.2 Tieftemperatur-Ramanspektroskopie

Es wurden an einer Probe von KHF₂ Tieftemperatur-Raman-Experimente durchgeführt. Die Schwingungszuordnung und -abzählung erfolgte durch eine Faktorgruppenanalyse. In Tabelle 4.3 ist die Symmetrie und Aktivität der Phononen am Γ -Punkt für KHF₂ in der Faktorgruppe (D_{4h}) aufgelistet. Aus der Zentrosymmetrie des Raumgruppentyps (I4/mcm, D¹⁸_{4h}) und der zur Faktorgruppe isomorphen Raumgruppe (4/mmm, D_{4h}) resultiert das Alternativverbot: Alle Raman-aktiven Schwingungen in der primitiven Basiszelle sind über das Symmetriezentrum verknüpft, während alle IR-aktiven Moden dieses aufheben. Beide Methoden beobachten demnach unterschiedliche Phononen.

Die innenzentrierte Zelle enthält vier Formeleinheiten, die primitive nur zwei.

Moden			A_{1g}	A_{2g}	A_{2u}	B_{1g}	B_{1u}	B_{2g}	E_g	Eu	Σ
translatorische Gitterschwingungen											
K^+	4a	D_4		1	1				1	1	4
HF_2^-	4d	D_{2h}			1		1			2	4
rotatorische	Gitt	erschwi	ngunge	en: Librati	onen d	es HF ₂	-Ions				
HF_2^-	4d	$D_{2h} \\$		1		1			1		3
innere Schwingungen des HF2 ⁻ -Ions											
HF_{2}^{-}	4d	D_{2h}	1		1		1	1		2	6
		Σ	1	2	3	1	2	1	2	5	17
Aktivität			Ra	inaktiv	IR	Ra	inaktiv	Ra	Ra	IR	

Tab. 4.3: Symmetrie und Aktivität der Faktorgruppenmoden von KHF_2 am Γ -Punkt in der Faktorgruppe D_{4h}

Die Korrelation der Faktorgruppenmoden der inneren Schwingungen des HF₂⁻-Ions mit denen des freien Moleküls ($D_{\infty h}$ - / $\overline{\infty}$ -Symmetrie) ergibt, daß im IR-Spektrum eine antisymmetrische Streck- und drei Deformationsschwingungen und im Raman-Spektrum zwei symmetrische Streckschwingungen des HF₂⁻-Ions zu sehen sein sollten, siehe Tabelle 4.4 (Seite 81).

Tab.	4.4:	Korrelation	der	Faktorgruppenmoden	der	inneren	Schwingungen	des
		HF ₂ -Ions m	it de	nen des freien Molekül	s für	KHF ₂		

Im speziellen Falle des linearen HF_2^- -Ions kommt es zu sehr starken Kopplungen zwischen den Frequenzen der inneren Schwingungen [92], da zum einen alle Atome die gleiche Bewegungsrichtung haben und zum anderen das mittlere Atom eine sehr geringe Masse im Vergleich zu den äußeren Atomen der Einheit hat. Dies führt dazu, daß in diesem Fall die Deformationsschwingungen bei höherer Frequenz als die symmetrischen Streckschwingungen liegen (v_{as} 1450 cm⁻¹; v_s 601 und 610 cm⁻¹; δ 1222 cm⁻¹, IR-Daten aus [102]).

Beide Linien der symmetrischen Streckschwingungen sind im Raman-Spektrum zu sehen, außerdem eine Linie im Bereich der Librationsschwingungen und eine im Gitterschwingungsbereich, siehe Abbildung 4.12 (Seite 82).

Abb. 4.12: Symmetrische Streck- ($\nu_s(HF_2)$), Librations- (R(HF₂)) und Gitterschwingungen (ν_{GS}) und ihr Frequenzverlauf gegen T für KHF₂

Die temperaturabhängige Verschiebung der symmetrischen Streckschwingungsmoden verläuft zwischen 298 K und ca. 40 K wie für eine symmetrische Wasserstoffbrückenbindung zu erwarten zu höheren Wellenzahlen, da bei einer symmetrischen Bücke nicht zwischen Donorund Akzeptoratom unterschieden werden kann, das heißt, daß in diesem Falle die H-F-Bindung und die Brückenbindung gleich sind. Bei 40 K erfolgt eine Umkehr des temperaturabhängigen Verlaufs der Streckschwingungsmoden zu niedrigeren Wellenzahlen. Der Effekt ist ebenfalls in geringerem Maße für die Gitterschwingung und in noch größerem Maße für die Librationsschwingung zu beobachten, siehe Abbildung 4.12. Diese Beobachtung deutet auf eine Schwächung aller Bindungen in KHF₂ im Temperaturbereich unterhalb von 40 K hin. Dieser hier für eine Verbindung mit symmetrischen Wasserstoffbrückenbindungen gefundene Effekt ist nicht direkt mit dem in Kapitel 3 beschriebenen Effekt vergleichbar, da hier beim Abkühlen nicht nur die Wasserstoffbrückenbindungen sondern alle Bindungen geschwächt werden. Diese interessante Beobachtung erfordert weitergehende Untersuchungen.

4.6 Kaliumdihydrogenphosphat, KH₂PO₄

4.6.1 Einführung

Einige Verbindungen, die O-H…O-Brückenbindungen enthalten, zeigen beim Abkühlen einen Unordnungs-Ordnungs-Phasenübergang, der gleichzeitig mit einem Übergang von paraelektrischem zu ferroelektrischem oder antiferroelektrischem Verhalten verbunden ist [105]. Kaliumdihydrogenphosphat ist ein Standardbeispiel für diese Substanzklasse, es ist bei Temperaturen < 123 K ferroelektrisch, bei Temperaturen > 123 K paraelektrisch.

In KH₂PO₄ bildet jedes PO₄-Tetraeder vier Wasserstoffbrückenbindungen mit benachbarten PO₄-Tetraedern, wobei zwei Sauerstoffatome Donor und zwei Sauerstoffatome Akzeptor von Wasserstoffbrückenbindungen sind.

In der paraelektrischen Hochtemperaturform (tetragonal, $I\overline{4}2d$) sind die Donor- und Akzeptorsauerstoffatome statistisch auf das Tetraeder verteilt, das heißt, die Lagen der Wasserstoffatome sind ähnlich wie in hexagonalem und kubischem Eis fehlgeordnet (siehe Abb. 4.13) [106]. In der ferroelektrischen Tieftemperaturmodifikation von KH₂PO₄ (orthorhombisch, Fdd2) sind die Wasserstoffatome so angeordnet, daß beide Wasserstoffatome an den Sauerstoffatomen, die die parallel zur c-Achse liegende obere Tetraederkante aufspannen, gebunden sind, vergleiche Abbildung 4.14 [107,108]. Durch die elektrostatische Abstoßung verschieben sich die Phosphoratome daraufhin von den Wasserstoffatomen weg aus den Zentren der PO₄-Tetraeder heraus. Dies führt zur Ausbildung von Dipolen parallel zur kristallographischen c-Achse (siehe Abb 4.14).

Abb. 4.13: PO₄-Tetraeder mit fehlgeord- Abb. 4.14: PO₄-Tetraeder mit H-Brückenbindungen neten H-Brückenbindungen zu benachbarten Tetraedern in der HT-Form von KH₂PO₄

zu benachbarten Tetraedern in der TT-Form von KH₂PO₄. Verschiebung der P-Atome parallel zu c ist angedeutet

Tieftemperatur-Raman-Experimente an KH_2PO_4 wurden zur Untersuchung der Auswirkungen des Unordnungs-Ordnungs-Phasenüberganges auf die Raman-Spektren durchgeführt. Diese sollen mit den Tieftemperatur-Raman-Spektren von β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ verglichen werden.

4.6.2 Tieftemperatur-Ramanspektroskopie

An einer Probe von KH₂PO₄ wurden Tieftemperatur-Raman-Experimente durchgeführt. Wie in Abbildung 4.15 (Seite 85) zu erkennen, ist in den Raman-Spektren im Bereich der O-H-Streckschwingungen sowohl für die Hoch- als auch für die Tieftemperaturmodifikation keine erkennen. Linie einer Schwingung zu Erwartet wurden sehr breite O-H-Streckschwingungslinien geringer Intensität bei 2750 cm⁻¹ und 2350 cm⁻¹ und eine ebenfalls sehr breite Linie geringer Intensität der Deformationsschwingung bei 1700 cm⁻¹, die sich während des Abkühlens und des Phasenüberganges nur wenig verändern [109-111]. Die gemessenen Spektren zeigen in den interessierenden Bereichen nur zufällige Modulationen, die durch die Fluoreszenz der Probe hervorgerufen werden. Durch den Einfluß der Fluoreszenz ließen sich die erwarteten breiten und intensitätsschwachen Linien im Bereich der O-H-Streckschwingungen und der Deformationsschwingung nicht beobachten.

Deutlich zu erkennen sind dagegen die Auswirkungen des Phasenüberganges auf die Gitterund Librationsschwingungen von KH₂PO₄. Der Phasenübergang zur Tieftemperaturphase mit niedrigerer Symmetrie führt dazu, daß deutlich mehr Schwingungsmoden in den Ramanspektren der Tieftemperaturphase im Vergleich zu denen der Hochtemperaturphase zu sehen sind (vgl. Abb. 4.15, Seite 85).

Abb. 4.15: Raman-Spektren der tetragonalen Hochtemperatur- und der orthorhombischen Tieftemperaturmodifikation von Kaliumdihydrogenphosphat

Der Vergleich der Raman-Spektren von KH₂PO₄ mit denen von β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ zeigt keine Erklärungsansätze für den in Kapitel 3 beschriebenen Effekt der Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen. Wie bereits in Kapitel 3 diskutiert, kann ein Phasenübergang für β -Be(OH)₂ sicher ausgeschlossen werden und für ϵ -Zn(OH)₂ und LiB(OH)₄ gibt es keinerlei Hinweis auf das Vorliegen eines Phasenüberganges. Außerdem liegen in KH₂PO₄ sowohl Sauerstoffatome vor, die ausschließlich Donor einer Wasserstoffbrücke sind, als auch Sauerstoffatome, die ausschließlich Akzeptor sind. Diese Ungleichverteilung ist Voraussetzung für das Zustandekommen der spontanen Polarisierung und damit für das ferroelektrische Verhalten der Tieftemperaturmodifikation. In β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ liegen nur Sauerstoffatome vor, die sowohl Donor als auch Akzeptor je einer Wasserstoffbrücke sind, das heißt, in diesen Verbindungen sind alle Tetraederecken, -kanten und -flächen elektrostatisch annähernd gleichwertig.

4.7 Zusammenfassung und Diskussion

Um festzustellen, ob der in Kapitel 3 beschriebene Effekt der Umkehr des temperaturabhängigen Verlaufs der O-H- und O-D-Streckschwingungsfrequenzen auch bei anderen Verbindungen, in denen Wasserstoffbrückenbindungen vorliegen, zu beobachten ist, wurden an hexagonalem Eis, ortho-Borsäure, monokliner meta-Borsäure, Kaliumhydrogendifluorid und Kaliumdihydrogenphosphat Tieftemperatur-Raman-Untersuchungen durch-geführt.

Hexagonales Eis zeigt den beschriebenen Effekt nicht. Das bedeutet, daß das Vorliegen von O-H···O-H-Brückenbindungen in der Verbindung nicht allein ausschlaggebend für die bei tiefen Temperaturen beobachtete Umkehr der Verschiebung der O-H- und O-D-Streck-schwingungsmoden zu höheren Wellenzahlen ist. Für ortho-Borsäure wird der Effekt ebenfalls nicht beobachtet. Das bedeutet, daß das Vorhandensein von O-H···O-H-Brückenbindungen und harten Kationen in der Verbindung ebenfalls nicht zwangsläufig zu einer Umkehr der Verschiebung der O-H- und O-D-Streckschwingungsmoden zu höheren Wellenzahlen ist.

Monokline meta-Borsäure dagegen zeigt den in Kapitel 3 beschriebenen Effekt in geringem Maße mit einer Verschiebung der O-H-Streckschwingungsmode von 3,0 cm⁻¹ zu höheren Wellenzahlen im Temperaturbereich zwischen ca. 40 K und 10 K (im Vergleich zu maximal 4,5 cm⁻¹ für β -Be(OH)₂, 19 cm⁻¹ für ϵ -Zn(OH)₂ und 22 cm⁻¹ für LiB(OH)₄). Das bedeutet, daß die Art der Verbindungen, die den Effekt zeigen, in Richtung von Verbindungen, die nur eindimensional unendlich und nicht wie β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ dreidimensional unendlich über Sauerstoffatome verknüpft sind, erweitert wird.

Für KHF₂ wurde in den Tieftemperatur-Raman-Untersuchungen eine weitere, neue und interessante Beobachtung gemacht. Die temperaturabhängige Verschiebung der symmetrischen Streckschwingungsmode verläuft zwischen 298 K und ca. 40 K, wie für eine symmetrische Brücke, bei der nicht zwischen Donor- und Akzeptoratom unterschieden werden kann, zu erwarten, zu höheren Wellenzahlen. Die temperaturabhängige Verschiebung der Frequenzen der Librations- und Gitterschwingungen verhält sich in der gleichen Weise. Bei 40 K erfolgt eine Umkehr des temperaturabhängigen Verlaufs der Streckschwingungsmoden zu niedrigeren Wellenzahlen. Der Effekt ist ebenfalls in geringerem Maße für die Gitterschwingung und in noch größerem Maße für die Librationsschwingung zu beobachten. Eine Verschiebung aller beobachteten Schwingungsmoden zu niedrigeren Wellenzahlen weist Die Tieftemperatur-Untersuchungen an Kaliumdihydrogenphosphat haben keinerlei Erklärungsansätze für den Tieftemperatur-Raman-Effekt ergeben, da in den Ramanspektren von KH₂PO₄ im Bereich der O-H-Streckschwingungen keine Linien zu beobachten waren.

Da in KH₂PO₄ sowohl Sauerstoffatome vorliegen, die ausschließlich Donor einer Wasserstoffbrücke sind, als auch Sauerstoffatome, die ausschließlich Akzeptor sind, kommt es in Folge eines Unordnungs-Ordnungs-Phasenüberganges zu einer spontanen Polarisierung und zu dem damit verbundenen ferroelektrischen Verhalten von Kaliumhydrogenphosphat. In β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ liegen nur Sauerstoffatome vor, die sowohl Donor als auch Akzeptor je einer Wasserstoffbrücke sind, das heißt, in diesen Verbindungen sind alle Tetraederecken, -kanten und -flächen elektrostatisch annähernd gleichwertig. Das bedeutet, daß für das temperaturabhängige Verhalten von KH₂PO₄ völlig andere Effekte wichtig sind als für das von β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄.

5 Strukturuntersuchungen an Li(H₂O)₄B(OH)₄·2H₂O

5.1 Einführung

Die Verbindung Li(H₂O)₄B(OH)₄·2H₂O ist eine schon sehr lange bekannte Substanz, sie wurde bereits im Jahre 1897 von Le Chatelier als ein B2O3·Li2O·16H2O erstmals erwähnt [112]. Li(H₂O)₄B(OH)₄·2H₂O bildet sich im System Li₂O-B₂O₃-H₂O bei Temperaturen unter 56 °C und Normaldruck [113,114]. Nach röntgenographischen Untersuchungen veröffentlichte W. H. Zachariasen im Jahre 1964 einen ersten Strukturvorschlag. Danach kristallisiert Li(H₂O)₄B(OH)₄·2H₂O in der Raumgruppe P3 und die Struktur besteht aus $[B(OH)_4]^-$ -Komplexionen, die über Wasserstoffbrückenbindungen mit $[Li(H_2O)_4]^+$ -Komplexionen verknüpft sind [115]. Eine vollständige Strukturbestimmung einschließlich der Positionen der Wasserstoffatome Ermittlung der auf der Grundlage von Einkristallröntgenbeugungsdaten erfolgte im Jahre 1995 von M. Touboul [116] und etwa zur selben Zeit unabhängig davon in unserer Arbeitsgruppe von J. Apelhorst [117]. Diese bestätigte den von *W*. Н. Zachariasen vorausgesagten Aufbau aus über Wasserstoffbrückenbindungen verbrückten Komplexionen (siehe Abb. 5.1).

Abb. 5.1: Ausschnitt aus der Struktur von Li(H₂O)₄B(OH)₄·2H₂O [116]: Darstellung der über Wasserstoffbrückenbindungen verknüpften B(OH)₄- und Li(H₂O)₄-Tetraeder, Atombezeichnungen aus [116]

Ein Teil der Wasserstoffatome liegt auf Splitpositionen mit einem Besetzungsfaktor von 1/3 oder 2/3. Eine detaillierte Analyse der Struktur zeigt, daß zwischen Wasserstoffatomen von Hydratmolekülen und Wasserstoffatomen von Hydroxidionen, von denen jeweils eine Art eine Splitlagenposition besetzt, geringe Abstände mit d(H(4)-H(7)) = 1,19(8) Å und d(H(2)-H(5)) = 1,45(7) Å vorliegen [116] (vgl. Abb. 5.2 und 5.3).

Abb. 5.2: Koordination um ein fehlgeordnetes Hydroxidwasserstoffatom des B(OH)₄-Tetraeders, das mit d(H(4)-H(7))=1,19(8) Å einen sehr kurzen Abstand zu einem Hydratwasserstoffatom des Li(H₂O)₄-Tetraeders aufweist, Abstandswert und Atombezeichnungen aus [116]

Abb. 5.3: Koordination um ein fehlgeordnetes Hydratwasserstoffatom, das mit d(H(2)-H(5))=1,45(7) Å einen kurzen Abstand zu einem Hydroxidwasserstoffatom des B(OH)₄-Tetraeders aufweist, Abstandswert und Atombezeichnungen aus [116]

Das bedeutet, daß entweder die Strukturlösung falsch ist oder daß in dieser Verbindung eine dynamische oder statische Fehlordnung der Wasserstoffatome vorhanden sein muß.

Ein mögliches Strukturmotiv einer bezüglich des Wasserstoffs fehlgeordneten Struktur ist das "zweidimensionale Eis". Eine solches Strukturmotiv liegt in der Hochtemperaturform von CsOH·H₂O vor, welche [H₃O₂⁻]-Polyanionen enthält und in der strukturell nicht zwischen Hydroxid- und Wassermolekülen unterschieden werden kann [118,119]. Die Protonen sind in einem Doppel-Potentialminimum zwischen benachbarten Sauerstoffatomen dynamisch fehlgeordnet, wobei die Dynamik durch ein Zwei-Platz-Sprungmodell beschrieben werden kann [120-123]. Im Falle des CsOH·H₂O friert diese Dynamik bei 340 K ein.

An einer Li(H₂O)₄B(OH)₄·2H₂O-Probe durchgeführte Tieftemperatur-DSC-Untersuchungen im Temperaturbereich von 298 K bis 93 K zeigen keinen Hinweis auf eine Phasenumwandlung. Die Beobachtung einer Phasenumwandlung wäre ein deutlicher Hinweis auf einen Unordnungs-Ordnungs-Übergang gewesen.

Um die Lagen der Wasserstoffatome in der Struktur von Li(H₂O)₄B(OH)₄·2H₂O besser zu bestimmen und um die Art der Fehlordnung näher zu untersuchen oder zu einer Strukturlösung mit geordneten Wasserstoffpositionen zu gelangen, wurden in unserer Arbeitsgruppe Neutronenbeugungsuntersuchungen Rotax / ISIS am an einer $Li(D_2O)_4^{-11}B(OD)_4 \cdot 2D_2O$ -Probe durchgeführt [117]. Die so erhaltenen Neutronendiffraktionsdaten konnten allerdings nicht sinnvoll verfeinert werden, da in der Probe eine starke Vorzugsorientierung der plättchenförmigen Kristallite mit hexagonalem Habitus vorlag, die zu einer starken Verfälschung der Beugungsintensitäten führte. Dieses Problem ergab sich aus der Tatsache, daß sich Li(H₂O)₄B(OH)₄·2H₂O beim Mörsern unter Wasserabgabe langsam zu LiB(OH)₄ zersetzt. Da die für die Neutronenbeugungsmessung hergestellte Probe aus möglichst phasenreinem und unzersetztem $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ bestehen sollte, wurde die Probe nicht gemörsert, sondern versucht, durch möglichst schnelle Fällung von Li(D₂O)₄¹¹B(OD)₄·2D₂O aus D₂O ein mikrokristallines Pulver herzustellen [117]. Allerdings entstand trotz schneller Fällung eine Probe mit starker Vorzugsorientierung der Kristallite.

Im Rahmen der vorliegenden Arbeit, vgl. Kapitel 3.3.4 (Seite 53), wurden Neutronenbeugungsuntersuchungen am Flugzeitspektrometer Rotax / ISIS bei 298 K an einer $Li^{11}B(OD)_4$ -Probe, die einen Anteil von ca. einem Sechstel unzersetztes $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ enthielt, durchgeführt. Da diese Probe gemörsert wurde, gibt es bei der Verfeinerung der Messdaten keine Probleme durch eine Vorzugsorientierung der Kristallite. Allerdings treten einige Probleme durch das Vorhandensein der Hauptkomponente $Li^{11}B(OD)_4$ auf, da es im Diffraktogramm zu einer Vielzahl von Reflexüberlappungen kommt. Daher sollte in dieser Arbeit versucht werden, durch einen Vergleich der von *J. Apelhorst* [117] durchgeführten Messungen mit den in dieser Arbeit durchgeführten zu einem Modell für die Vorzugsorientierung zu kommen und danach auf der Grundlage der an der phasenreinen $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ -Probe erhaltenen Meßdaten die Strukturparameter von $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ mit Hilfe dieses Modells sinnvoll zu verfeinern.

5.2 Neutronenbeugungsuntersuchungen

Grundlage der im Folgenden beschriebenen Verfeinerungen von Neutronenbeugungsdaten sind zum einen Neutronenbeugungsuntersuchungen bei 298 K, die am Flugzeitspektrometer Rotax / ISIS an einer grobkristallinen $\text{Li}(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ -Probe [117] erfolgten und zum anderen Neutronenbeugungsuntersuchungen bei 298 K, die am Flugzeitspektrometer Rotax / ISIS an einer $\text{Li}^{11}B(OD)_4$ -Probe, die unzersetztes $\text{Li}(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ enthielt, durchgeführt wurden. Die Verfeinerungen erfolgten mit dem Programmpaket GSAS [21].

In Abbildung 5.4 sind die mit Bank 1 (10-46° Theta) gemessenen Neutronenbeugungsdiffraktogramme dargestellt. Im Bereich hoher d-Werte liegen in dem Diffraktogramm, das die Beugungsmuster von $Li^{11}B(OD)_4$ und $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ zeigt, Reflexe von Li(D₂O)₄¹¹B(OD)₄·2D₂O, die keine oder nur geringe Überlappungen mit Reflexen von Li¹¹B(OD)₄ aufweisen. Diese sind mit den zugehörigen h,k,l-Werten gekennzeichnet. Ein Vergleich der relativen Intensitäten dieser Reflexe mit den entsprechenden Reflexen in dem $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ -Probe Diffraktogramm, das an der phasenreinen mit Vorzugsorientierung gemessen wurde, zeigt, daß die größten Intensitätsveränderungen bei den 0,0,1-Reflexen in Relation zu den h,k,0- und h,0,0-Reflexen zu sehen sind. Durch die Vorzugsorientierung ist zum Beispiel das Intensitätsverhältnis des [100]-Reflexes zum [001]-Reflex ca. doppelt so groß wie für die Messung ohne Vorzugsorientierung.

Abb. 5.4: Vergleich der Neutronenbeugungsdiffraktogramme von Li(D₂O)₄¹¹B(OD)₄·2D₂O: Oberes Diffraktogramm zeigt Messung an mit Li(D₂O)₄¹¹B(OD)₄·2D₂O (untere Markierung) verunreinigter Li¹¹B(OD)₄-Probe (obere Markierung), unteres Diffraktogramm zeigt Messung an Li(D₂O)₄¹¹B(OD)₄·2D₂O mit Vorzugsorientierung der Kristallite [117]

Ausgehend von den Daten der Röntgeneinkristallanalyse von *M. Touboul* [116] wurde mit Hilfe von Festlegungen von vernünftigen Bindungslängenbereichen für die O-D-Bindungen, sogenannten "soft-constraints" im Programm GSAS [21] eine Verfeinerung der an der mit $Li(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ verunreinigten $Li^{11}B(OD)_4$ -Probe erhaltenen Meßdaten in der Raumgruppe P3 mit den durch die Röntgeneinkristallanalyse vorgegebenen Teilbesetzungen einiger Wasserstoffatomlagen durchgeführt, siehe Abbildung 5.5 (Seite 94). Die so erhaltenen Strukturdaten wurden daraufhin, ohne daß sie weiter verfeinert wurden, als Grundlage für die Anpassung der von *J. Apelhorst* [117] erhaltenen Meßdaten verwendet. Dazu wurde versucht, mit Hilfe einer im Programm GSAS implementierten Funktion zur Berücksichtigung von Vorzugsorientierungen von Kristalliten eine vergleichbare Anpassung der Diffraktogramme der unterschiedlichen Messungen zu erhalten. Die verwendete "Dollase and March"-Funktion [21] ist eine Korrekturfunktion für Vorzugsorientierungen von Kristalliten, die sowohl für Messungen an nadel- als auch an plättchenförmigen Kristalliten geeignet ist. Sie berücksichtigt die beiden gebräuchlichen Diffraktometermeßanordnungen, die Debye-Scherrer- und die Bragg-Bretano-Geometrie. Besonders leistungsfähig ist diese Korrektur, wenn die Probe während der Messung zusätzlich gedreht wird, was für diesem Fall allerdings nicht zutrifft.

Die "Dollase and March"-Funktion lautet:

$$O_{p,h} = \sum_{j=1}^{n} \left(\left(R_0^2 \cos^2 A_j + \frac{\sin^2 A_j}{R_0} \right)^{-\frac{3}{2}} / M_p \right)$$

Dabei ist A_j der Winkel zwischen der Achse der Vorzugsorientierung und dem Reflexionsvektor h_p und M_p der Flächenhäufigkeitsfaktor. Der Koeffizient, der verfeinert werden kann, ist R_0 . Er gibt die durch die Vorzugsorientierung hervorgerufene effektive Probenkomprimierung oder -ausdehnung entlang der Probenachse an. Wenn keine Vorzugsorientierung der Kristallite vorliegt, ist $R_0 = 0$. Neben der Verfeinerung nur einer Art der Vorzugsorientierung ist auch die Verfeinerung mehrerer Arten der Vorzugsorientierung entsprechend der Anteile (f_0) möglich. In einem solchen Falle werden für jede Art der Vorzugsorientierung zwei Koeffizienten verfeinert, R_0 und f_0 . Die Summe aller f_0 muß dabei den Wert 1 ergeben. Eine Anpassung der von *J. Apelhorst* [117] erhaltenen Meßdaten wurde zum einen unter Berücksichtigung nur einer Art der Vorzugsorientierung entlang [001] und zum anderen unter Berücksichtigung von Vorzugsorientierungen entlang [001] und [110] versucht. Die Anpassung der Meßdaten wurde dabei durch die Vorgabe von unterschiedlichen Werten einschließlich von Extremwerten für R_0 und eventuell f_0 oder soweit möglich durch freie

Verfeinerung der Werte versucht. Abbildung 5.6 (Seite 95) zeigt das beste Ergebnis dieser Versuche. Ein Vergleich der in dieser Abbildung dargestellten Diffaktogramme mit den in Abbildung 5.5 dargestellten zeigt, daß die Anwendung der "Dollase and March"-Funktion auf

die von *J. Apelhorst* [117] für Li(D₂O)₄¹¹B(OD)₄·2D₂O erhaltenen Meßdaten zu keinem verwertbaren Ergebnis geführt hat. Eine Verfeinerung der Strukturparameter von $\text{Li}(D_2O)_4^{11}B(OD)_4\cdot2D_2O$ ist auf der Grundlage dieser Meßdaten also nicht möglich, da die Vorzugsorientierung der Kristallite nicht hinreichend berücksichtigt werden kann.

Abb. 5.5: Anpassung der Neutronenbeugungsdiffraktogramme von Messungen an mit Li(D₂O)₄¹¹B(OD)₄·2D₂O verunreinigter Li¹¹B(OD)₄-Probe auf der Grundlage der Ergebnisse für Li(H₂O)₄B(OH)₄·2H₂O aus [116] in der Raumgruppe P3. Mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (untere Markierung: Li¹¹B(OD)₄, obere Markierung: Li(D₂O)₄¹¹B(OD)₄·2D₂O); 298 K

Abb. 5.6: Anpassung der Neutronenbeugungsdiffraktogramme von Messungen an Li(D₂O)₄¹¹B(OD)₄·2D₂O mit Verfeinerung eines Modells für die vorliegende Vorzugsorientierung auf der Grundlage der für die mit Li(D₂O)₄¹¹B(OD)₄·2D₂O verunreinigte Li¹¹B(OD)₄-Probe erhaltenen Ergebnisse in der Raumgruppe P3 (siehe Abb. 5.5, Seite 94). Mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe; 298 K

Da die Meßdaten von *J. Apelhorst* [117] aufgrund des fehlenden Modells für die Vorzugsorientierung nicht sinnvoll weiter ausgewertet werden konnten, wurde versucht, anhand der an der mit $\text{Li}(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ verunreinigten $\text{Li}^{11}B(OD)_4$ -Probe erhaltenen

Meßdaten ein sinnvolles Strukturmodell für Li(D2O)411B(OD)4·2D2O zu entwickeln und verfeinern. Dazu sollte zu Beginn zwischen einem Strukturmodell mit geordneten Wasserstoffatompositionen in der Raumgruppe P1 und einem mit fehlgeordneten Wasserstoffatompositionen in der Raumgruppe P3 entschieden werden. Dazu wurde die Struktur von Li(H₂O)₄B(OH)₄·2H₂O [116] aus P3 nach P1 abgebaut, das bedeutet, daß aus 16 Atomlagen in P3 28 Atomlagen in P1 erzeugt wurden. Gleichzeitig ergaben sich aus den vier Splitlagen der Wasserstoffatome jeweils drei Möglichkeiten der Beschreibung der geordneten Struktur in P1. Es wurden mit den Neutronenbeugungsdaten auf der Grundlage eines Strukturmodells Besetzung der fraglichen Wasserstoffatomlagen Differenz-Fourier-Analysen ohne durchgeführt, mit denen die Kerndichtemaxima der entsprechenden Atome lokalisiert werden sollten. Da diese immer die dreizählige Symmetrie zeigten und dadurch eine Entscheidung zwischen den aus den Splitlagen entstehenden Wasserstoffatomlagen nicht möglich war, wurde versucht, die Strukturparameter unterschiedlicher Modelle in P1 zu verfeinern. Aufgrund der großen Zahl zu verfeinernder Parameter mußten hierbei für alle Bindungen Bindungslängenbereiche durch "soft-constraints" festgelegt werden. Auf der Grundlage der Ergebnisse dieser Verfeinerungen war allerdings weder eine Entscheidung für ein spezielles Strukturmodell in P1 möglich noch eine Entscheidung zwischen einer Strukturlösung in P1 mit vollständiger Ordnung oder einer in P3 mit Fehlordnung der Wasserstoffatome. Exemplarisch für alle Verfeinerungsversuche in P1 sind in Abbildung 5.7 (Seite 97) für einen dieser die angepaßten Diffraktogramme dargestellt. Die Ergebnisse dieser Anpassung sind denen für das fehlgeordnete Strukturmodell in P3 erhaltenen (vgl. Abb. 5.5, Seite 94) sehr ähnlich.

Die Qualität der bisher für $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ zur Verfügung stehenden Meßdaten ist nicht ausreichend, um Aussagen zu treffen, die über die der Ergebnisse von Röntgenbeugungsuntersuchungen am Einkristall [116,117] hinausgehen.

Abb. 5.7: Anpassung der Neutronenbeugungsdiffraktogramme von Messungen an mit Li(D₂O)₄¹¹B(OD)₄·2D₂O verunreinigter Li¹¹B(OD)₄-Probe auf der Grundlage der Ergebnisse für Li(H₂O)₄B(OH)₄·2H₂O aus [116] in der Raumgruppe P1. Mit Differenzkurve und Markierungen der symmetrieerlaubten Reflexe (untere Markierung: Li¹¹B(OD)₄, obere Markierung: Li(D₂O)₄¹¹B(OD)₄·2D₂O); 298 K

5.3 Zusammenfassung und Diskussion

Auf der Neutronenbeugungsexperimenten der Grundlage durch zwei an Li(D₂O)₄¹¹B(OD)₄·2D₂O erhaltenen Meßdaten wurde versucht, die Strukturparameter dieser Verbindung ausgehend von den Ergebnissen von Röntgenbeugungsuntersuchungen am Einkristall [116,117] zu entwickeln und zu verfeinern. Bei den Neutronenbeugungsexperimenten handelte es sich zum einen um eine Messung an einer phasenreinen Li(D₂O)₄¹¹B(OD)₄·2D₂O-Probe mit starker Vorzugsorientierung der Kristallite und zum anderen um eine Messung an einer $Li^{11}B(OD)_4$ -Probe, die zu einem Sechstel $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$ enthielt. Diese Verfeinerungen sollten Aufschluß darüber geben, ob in dieser Verbindung eine dynamische oder statische Fehlordnung der Wasserstoffatome vorliegt oder die aus den Einkristallröntgenbeugungsuntersuchungen entwickelte Strukturlösung falsch ist. Dazu wurde zuerst versucht, mit Hilfe der im Programm GSAS [21] implementierten "March and Dollase"-Funktion ein Modell für die in der phasenreinen $Li(D_2O)_4^{-11}B(OD)_4 \cdot 2D_2O$ -Probe vorliegende Vorzugsorientierung zu entwickeln. Diese Versuche führten zu keinem verwertbaren Ergebnis. Daraufhin wurde versucht, auf der Grundlage der an der mit Li(D₂O)₄¹¹B(OD)₄·2D₂O verunreinigten Li¹¹B(OD)₄-Probe erhaltenen Meßdaten zwischen einem geordneten Strukturmodell in der Raumgruppe P1 und einem fehlgeordneten in der Raumgruppe P3 zu entscheiden. Aufgrund der nicht ausreichenden für $Li(D_2O)_4^{11}B(OD)_4 \cdot 2D_2O$, die auf eine Vielzahl Oualität der Daten von Reflexüberlappungen mit den Reflexen von Li¹¹B(OD)₄ zurückzuführen ist, konnte keine Entscheidung zwischen den beiden Alternativen getroffen werden.

Auf der Grundlage der vorliegenden zwei Neutronenbeugungsuntersuchungen konnten somit keine Aussagen zur Struktur von $\text{Li}(D_2O)_4^{11}\text{B}(OD)_4\cdot 2D_2O$ gemacht werden, die über die Ergebnisse der Röntgenbeugungsuntersuchungen am Einkristall hinausgehen [116,117].

Aufgrund der bei der Präparation eines $Li(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ -Pulvers auftretenden Probleme ist eine Strukturlösung für $Li(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ wahrscheinlich nur durch Neutronenbeugungsuntersuchungen an einem $Li(D_2O)_4^{11}B(OD)_4\cdot 2D_2O$ -Einkristall ausreichender Größe möglich.

6 Zusammenfassung, Diskussion und Ausblick

Durch Neutronenbeugungsuntersuchungen am Pulver wurden für ϵ -Zn(OD)₂ und LiB(OD)₄ die Lagen der Wasserstoffatome bestimmt und dadurch die bereits vorhandenen Strukturlösungen aus Röntgenbeugungsuntersuchungen am Einkristall vervollständigt.

An β -HBO₂, β -Be(OH)₂, ϵ -Zn(OH)₂ und LiB(OH)₄ wurden Tieftemperatur-Raman-Experimente bis 10 K durchgeführt, die einen Effekt zeigen, der bisher in der Literatur noch nicht beschrieben worden ist. Die Verschiebung der O-H- und O-D-Streckschwingungsmoden erfolgt mit abnehmender Temperatur zuerst, wie für wasserstoffbrückengebundene Systeme zu erwarten, zu niedrigeren Wellenzahlen. Bei niedrigen Temperaturen (bei ca. 40 K für β-HBO₂ und β -Be(OH)₂ und bei ca. 50 K für ϵ -Zn(OH)₂ und LiB(OH)₄) erfolgt eine Umkehr der Verschiebungsrichtung zu höheren Wellenzahlen. Dieser Effekt ist stark ausgeprägt für LiB(OH)₄ mit einer maximalen Verschiebung O-H-Streckschwingungsmoden von 22 cm⁻¹ und für ϵ -Zn(OH)₂ mit einer von 19 cm⁻¹. In deutlich geringerem Maße läßt er sich für β -Be(OH)₂ mit einer Verschiebung von 4,5 cm⁻¹ und für β -HBO₂ mit einer von 3,0 cm⁻¹ O-H-Diese temperaturabhängige Verschiebung der beobachten. und O-D-Streckschwingungsmoden zu höheren Wellenzahlen deutet auf eine Schwächung der Wasserstoffbrückenbindungen hin.

Um zu untersuchen, ob Änderungen in der Struktur der Verbindungen, wie zum Beispiel eine Phasenumwandlung oder Änderungen in der Geometrie der Wasserstoffbrückenbindungen, festzustellen sind, die eine Schwächung der Wasserstoffbrückenbindungen erklären können, wurden bei 5 K, 50 K und 245 K Neutronen- und Röntgenbeugungsmessungen an β-Be(OD)₂-Pulver durchgeführt. Eine Phasenumwandlung konnte ebenso wie ein Übergang von einer linearen zu einer gewinkelten Wasserstoffbrückenbindung als Ursache ausgeschlossen werden. Der Einfluß der Kationenkoordination auf die Streckschwingungsfrequenzen ist generell klein und daher als alleinige Erklärung für den Tieftemperatur-Raman-Effekt ungeeignet. Die durchgeführten Beugungsexperimente konnten strukturelle Änderungen als Ursachen nicht nachweisen. Da mit dem Raman-Experiment Veränderungen der Bindungsstärke, die eventuell durch Veränderungen der Bindungsgeometrie hervorgerufen wurden, viel empfindlicher und genauer als mit Beugungsexperimenten eine Geometrieänderung beobachtet werden kann, ist ein Ausschluß struktureller Änderungen als Ursache für den Effekt allerdings nicht möglich.

Eine durch geometrische Zwänge hervorgerufene Änderung der Brückenbindungsgeometrie, die zu einer Schwächung der Wasserstoffbrückenbindungen führt, bleibt daher die bisher wahrscheinlichste Erklärung für den im Tieftemperatur-Raman-Experiment gefundenen Effekt.

An weiteren Verbindungen wurden vergleichende Tieftemperatur-Ramanexperimente durchgeführt. Vergleichsmessungen an hexagonalem Eis und ortho-Borsäure ergaben, daß diese beiden Verbindungen den Effekt bis zu einer Temperatur von minimal 10 K nicht zeigen. Das bedeutet, daß das Vorliegen von O-H···O-H-Brückenbindungen oder von O-H···O-H-Brückenbindungen und harten Kationen in einer Verbindung nicht allein ausschlaggebend für die bei tiefen Temperaturen beobachtete Umkehr der Verschiebung der O-H- und O-D-Streckschwingungsmoden zu höheren Wellenzahlen ist.

Für KHF₂, eine Verbindung mit symmetrischen Wasserstoffbrückenbindungen, wurde in den Tieftemperatur-Raman-Untersuchungen eine weitere Beobachtung gemacht. Die temperaturabhängige Verschiebung der symmetrischen Streck-, Librationsund Gitterschwingungsmoden verläuft zwischen 298 K und ca. 40 K zu höheren Wellenzahlen. Bei 40 K erfolgt eine Umkehr des temperaturabhängigen Verlaufs aller Schwingungsmoden zu niedrigeren Wellenzahlen, was auf eine Schwächung aller Bindungen in KHF₂ im Temperaturbereich unterhalb von 40 K hinweist. Dieser für KHF₂ beobachtete Effekt ist, da zum einen alle Schwingungen davon betroffen sind und zum anderen die Umkehr der Verschiebung der Frequenzen in die andere Richtung erfolgt, nicht mit dem im Kapitel 3 für β-Be(OH)₂, ε-Zn(OH)₂ und LiB(OH)₄ beschriebenen Effekt vergleichbar und erfordert zu seiner Erklärung weitergehende Untersuchungen.

Tabelle 6.1 gibt eine Übersicht über alle im Rahmen dieser Arbeit mit der Tieftemperatur-Raman-Spektroskopie untersuchten Verbindungen, die in diesen Verbindungen vorliegenden Strukturelemente und darüber, ob sie den Tieftemperatur-Raman-Effekt zeigen oder nicht.

Tab. 6.1:Übersicht über die mit der Tieftemperatur-Raman-Spektroskopie
untersuchten Verbindungen, die enthaltenen Strukturelemente und
das Auftreten des Tieftemperatur-Raman-Effekts

TT-Raman- Effekt		Ja	Ja	Ja	Nein	Nein	Ja	ė	i
üpfung -Atome	Kette						Х		
Verkni über O	Gerüst	Х	Х	X					
MO ₄ - Tetraeder - enthalten		X	X	x			X		X
Kationen (außer H) enthalten		Х	Х	х		х	Х	Х	Х
Symmetrische H-Brücken	Donor gleich Akzeptor							X	
Brücken:	nur Akzeptor						X		X
etrische H-l Atome sind	nur Donor						Х		Х
Nicht symm O- <i>i</i>	gleichzeitig Donor und Akzeptor	Х	Х	Х	Х	Х	Х		
		β-Be(OH) ₂	ε-Zn(OH) ₂	LiB(OH)4	$H_2O(s)$	H_3BO_3	β-HBO ₂	KHF ₂	$\rm KH_2PO_4$

Eine Erklärung, warum die hier untersuchten Verbindungen, die in ihrer Struktur eine Verknüpfung über Sauerstoffatome zu Ketten oder Gerüsten aufweisen, bei tiefen Temperaturen die oben beschriebene Umkehr des temperaturabhängigen Verlaufs der O-Hund O-D-Streckschwingungsfrequenzen zeigen, konnte in dieser Arbeit nicht gegeben werden. Da allerdings die in der Struktur vorliegende Verknüpfung über Sauerstoffatome eine Voraussetzung für die Beobachtung dieses Effekts zu sein scheint, ist eine beim Abkühlen erzwungene Schwächung der Wasserstoffbrückenbindungen durch Änderungen ihrer Geometrie, die auf den Einfluß der Ketten- oder Gerüststruktur zurückzuführen sind, der wahrscheinlichste Ansatz zur Erklärung des Effekts.

Eine Überprüfung dieses Erklärungsansatzes ist allerdings nur mit Hilfe weiterer Untersuchungen möglich. Da ε -Zn(OD)₂ den Effekt in viel stärkerem Maße als β -Be(OD)₂ zeigt, ist zum Beispiel die Durchführung von Neutronenbeugungsexperimenten an ε -Zn(OD)₂ bei 10 K, 50 K und 120 K vielversprechend. Die vorgeschlagenen Temperaturen wurden auf der Grundlage der Ergebnisse der Tieftemperatur-Raman-Experimente gewählt, da die Differenz der Werte der O-H- und O-D-Streckschwingungsfrequenzen zwischen 120 K und 50 K ungefähr genauso groß ist wie die der zwischen 10 K und 50 K. Für den Fall, daß eine Änderung der Geometrie zwischen 120 K und 50 K feststellt werden kann, ist eine klare Aussage unabhängig von Überlegungen zur Empfindlichkeit der einzelnen Methoden möglich, da dann auch zwischen 50 K und 10 K eine vergleichbar große geometrische Änderung im Beugungsexperiment zu sehen sein muß, falls der oben genannte Erklärungsansatz zutrifft.

Sollte dies nicht der Fall sein, dürfte eine umfassende Erklärung des beobachteten Effekts mit Hilfe von quantenmechanischen Berechnungen, die temperaturabhängige Effekte berücksichtigen, möglich sein. Untersuchungen an einer Vielzahl weiterer Verbindungen mit der Tieftemperatur-Raman-Spektroskopie sollten eine weitere Eingrenzung und damit verbunden, ein besseres Verständnis des Effektes ermöglichen.
7 Literaturverzeichnis

- H. Jacobs, B. Mach und W. Schäfer, "Bindungsverhältnisse in kristallinen Phasen von Kaliumdeuterohydroxid, KOD", Z. Anorg. Allg. Chem., 553 (1987) 187.
- H. Jacobs, B. Mach, H.-D. Lutz und J. Henning, "Bindungsverhältnisse in kristallinen Phasen von Rubidiumhydroxid und -deuterohydroxid, RbOH und RbOD", Z. Anorg. Allg. Chem., 544 (1987) 28.
- [3] H. Jacobs, B. Mach, B. Harbrecht, H.-D. Lutz und J. Henning, "Bindungsverhältnisse in kristallinen Phasen von Caesiumhydroxid und -deuterohydroxid, CsOH und CsOD", Z. Anorg. Allg. Chem., 544 (1987) 55.
- [4] H. D. Lutz, J. Henning, H. Jacobs and B. Mach, "Hydrogen bonds and dynamic disorder in solid hydroxides, infrared and raman studies on polymorphic RbOH and CsOH", J. Mol. Struct., 145 (1986) 277.
- [5] T. J. Bastow, M. M. Elcombe and C. J. Howard, "Low Temperature Phase Transition in NaOD", Solid State Comm., 57 (1986) 339.
- [6] P. W. R. Bessonette and M. A. White, "Why is there no low-temperature phase transition in NaOH?", J. Chem. Phys., **110** (1999) 3919.
- [7] R. Stahl, "Untersuchungen an Hydroxiden und Hydroxometallaten" Dissertation, Universität Dortmund (1997).
- [8] R. Stahl, C. Jung, H. D. Lutz, W. Kockelmann und H. Jacobs, "Kristallstrukturen und Wasserstoffbrückenbindungen bei β-Be(OH)₂ und ε-Zn(OH)₂", Z. Anorg. Allg. Chem., 624 (1998) 1130.
- [9] D. Thiery,

"Beiträge zur Strukturbestimmung bei tiefen Temperaturen am Beispiel der ferroelektrischen Phase TlGaSe₂ und der supraleitenden Phasen MBa₂Cu₃O_{7- δ} (M = Y, Gd, Er), der Clusterverbindungen (Pph₄)₂[B₆X₆](CH₃CN)₂ (X = Cl, Br) und B₄Cl₄ sowie am H-Brückensystem ϵ -Zn(OH)₂", Dissertation, Max-Planck-Institut für Festkörperforschung, Stuttgart (1992).

- [10] H. D. Lutz, "Hydroxide Ions in Condensed Materials - Correlation of Spectroscopic and Structural Data", Struct. Bond., 87 (1995) 85.
- [11] H. D. Lutz and C. Jung, "Water molecules and hydroxide ions in condensed materials; correlation of spectroscopic and structural data", J. Mol. Struct., 404 (1997) 63.
- H. D. Lutz, "Bonding and Structure of Water Molecules in Solid Hydrates. Correlation of Spectroscopic and Structural Data", Struct. Bond., 69 (1988) 97.
- [13] H. D. Lutz, C. Jung, R. Mörtel, H. Jacobs and R. Stahl, "Hydrogen bonding in solid hydroxides with strongly polarising metal ions, β-Be(OH)₂ and ε-Zn(OH)₂", Spectrochim. Acta, 54A (1998) 893.
- [14] E. v. Osten, "Untersuchungen an Kalium-, Rubidium- und Cäsiumamid sowie an den Systemen Natrium / Samarium / Ammoniak", Dissertation, RWTH Aachen (1978).
- [15] H. Jacobs and D. Schmidt, "High-Pressure Ammonolysis in Solid-State Chemistry", Curr. Top. Mater. Sci., 8 (1982) 379, Ed.: E. Kaldis, North Holland Publ. Comp..
- K. Yvon, J. Jeitschko and E. Parthé, "LAZY-PULVERIX, a computerprogram for calculating X-ray and neutron diffraction powder patterns", J. Appl. Cryst., **10** (1977) 73.
- [17] ISIS Facility, CLRC Rutherford Appleton Laboratory (GB).
- [18] W. Schäfer, E. Jansen and G. Will, "Angle-Dispersive Time-of-Flight Diffraction in a Pulsed Beam: an Efficient Technology to Exploit the Thermal-Neutron Spectrum - Design of a JULIOS Diffractometer and Experimental Tests", J. Appl Cryst., 26 (1993) 660.

- [19] W. Schäfer, E. Jansen, R. Skowronek, G. Will, W. Kockelmann, W. Schmidt and H. Tietze-Jaensch,
 "Setup and use of the ROT/DIFF instrument at ISIS as angle-dispersive neutron powder and texture diffractometer",
 Nucl. Instr. and Meth. in Phys. Res., A 364 (1995) 179.
- [20] W. Schäfer, E. Jansen and G. Will, "Comparative neutron powder diffraction experiment under reactor and spallation source conditions", Mater. Sci. Forum, 133 (1993) 385.
- [21] A. C. Larson, R. B. von Dreele nd, M. Lujan Jr., "General Structure Analysis System (GSAS)", Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, University of California, USA (1994).
- [22] E. J. Gabe, Y. Le Page, J.-P. Charland, F. L. Lee and P. S. White, "NRCVAX - An Interactive Program System for Structure Analysis", J. Appl. Cryst., 22 (1989) 384.
- [23] G. M. Sheldrick, G. Krüger and R. Goddard, "SHELXS-86", Crystallographic Computing, Oxford University Press, Oxford (1985).
- [24] G. M. Sheldrick, "SHELXTL -PLUS, release 3.43 - An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data", Siemens Analytical X-Ray Instruments, Inc. (1988).
- [25] G. M. Sheldrick, "SHELXL-93 - Crystal Structure Refinement - MS DOS 32-Bit Version", Institut für Anorganische Chemie der Universität Göttingen (1993).
- [26] J. Senker, "Untersuchungen zum Reorientierungsverhalten von Molekülanionen in Alkali- und Erdalkalimetallamiden mit Festkörper-NMR-Spektroskopie und Neutronendiffraktion" Dissertation, Universität Dortmund (1996).
- [27] K. Brandenburg, "Diamond, Visuelles Informationssystem f
 ür Kristallstrukturen", Version 2.0 (1997).
- [28] Technischer Kundendienst der Laser-Abteilung der Firma Spectra-Physics, persönliche Mitteilung.
- [29] A. R. Striganov and N. S. Sventitskii, "Tables of Spectral Lines of Neutral and Ionized Atoms", Plenum, New York (1968).

[30]	JP. O. Bohger, "Amidolithiate des Rubidiums und schwingungsspektroskopische Untersuchungen zum Bindungsverhaltens des Amidions in Alkalimetallamiden", Dissertation, Universität Dortmund (1997).
[31]	M. L. Huggins, "Electronic Structures of Atoms", J. Phys. Chem., 26 (1922) 601.
[32]	M. L. Huggins, "Atomic Radii. I." Phys. Rev., 19 (1922) 346.
[33]	J. D. Bernal and H. D. Megaw, "The Function of Hydrogen in Intermolecular Forces", Proc. Russ. Soc., 151A (1935) 834.
[34]	E. Hartert und O. Glemser,"Ultrarotspektroskopische Bestimmung der Metall-Sauerstoff Abstände inHydroxiden, basischen Salzen und Salzhydraten",Z. Electrochem., 60 (1956) 746.
[35]	 E. Schwarzmann, "Zusammenhang zwischen OH-Valenzfrequenzen und OH…OH- bzw. OH…O-Abständen in festen Hydroxiden", Z. Anorg. Allg. Chem., 317 (1962) 176.
[36]	L. J. Bellamy and A. J. Owen, "A simple relationship between the infrared stretching frequencies and the hydrogen bond distances in crystals", Spectrochim. Acta, 25A (1969) 329.
[37]	M. Maltese and W. J. Orville-Thomas, "The infrared spectra and structure of some complex hydroxosalts", J. Inorg. Nucl. Chem., 29 (1967) 2533.
[38]	G. P. Stavitskaya and Y. I. Ryskin, "Structure and Vibrational Spectrum of OH Ion in Crystals of Basic and Amphoteric Hydroxides", Inorg. Mat., 23 (1987), 775.
[39]	E. Schwarzmann, "Zur Bindung des Wasserstoffs im Gitter kristalliner Aquoxide", Z. Naturforsch., 24b (1969) 1104.

 [40] K. Beckenkamp and H. D. Lutz, "Lattice vibration spectra Part LXXII. OH stretching frequencies of solid hydroxides correlation with structural and bonding data", J. Mol. Struct., 270 (1992) 393.

[41] K. Beckenkamp,

"Schwingungsspektroskopische Untersuchungen der Bindungsverhältnisse in kristallinen Hydroxiden, Hydraten und Hydrogensulfiden", Dissertation, Universität-Gesamthochschule Siegen (1991).

- [42] H. D. Lutz, C. Jung, M. Trömel and J. Lösel, "Brown's bond valences, a measure of the strength of hydrogen bonds", J. Mol. Struct., 351 (1995) 205.
- [43] H. D. Lutz, K. Beckenkamp and H. Möller, "Weak hydrogen bonds in solid hydroxides and hydrates"
 J. Mol. Struct., 322 (1994) 263.
- [44] G. S. Denisov and L. A. Kuzina, "The weakening of the intramolecular hydrogen bond NH…O in complexes of orthosubstituted anilines with proton acceptors"
 J. Mol. Struct., 271 (1992) 9.
- [45] C. H. Gorbitz, "Variable hydrogen bond lengths in hydrated complexes of formate and methylammonium ions"
 J. Chem. Soc. Perkin Trans., 2 (1996) 2213.
- [46] W. Mikenda,
 "Stretching frequency versus bond distance correlation of O-D(H)…Y (Y = N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates",
 J. Mol. Struct., 147 (1986) 1.

[47] B. Weckler and H. D. Lutz, "Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ)", Eur. J. Solid State Inorg. Chem., 35 (1998), 531.

- [48] H. D. Lutz, "Studies on Raman and infrared intensity features of the vibrational modes of asymmetrically bonded HDO molecules in solid hydrates", Spectrochim. Acta, **38A** (1982) 921.
- [49] H. D. Lutz, W. Eckers, G. Schneider and H. Haeuseler, "Raman and infrared spectra of barium and strontium hydroxides and hydroxide hydrates", Spectrochim. Acta, **37A** (1981) 561.

[50]	T. E. Jenkins and J. Lewis, "The Anomalous Temperature Variation of the Symmetric Stretching Vibration $v_s(H_2O)$ in Hexa-aquo Metal (II) Hexafluorosilicate (IV)", J. Raman Spectrosc., 11 (1981) 1.
[51]	M. Rozenberg, A. Loewenschuss and Y. Marcus, "IR spectra and hydrogen bonding in ethanol crystals at 18-150 K", Spectrochim. Acta, 53A (1997) 1969.
[52]	H. D. Lutz, K. Beckenkamp, H. Jacobs and R. Kirchgässner, "Caesium Hydrogensulphide CsS(H,D): Hydrogen Bonds and Disorder of the Hydrogensulphide Ions", J. Raman Spectrosc., 25 (1994) 395.
[53]	G. Turrell, "Infrared and Raman Spectra of Crystals", Academic Press, London und New York (1972).
[54]	D. A. Kleinmann, "Anharmonic Forces in the GaP Crystal", Phys. Rev., 118 (1960) 118.
[55]	C. Gottfried und H. Mark, "Die Bestimmung der Struktur von Zn(OH) ₂ ", Z. Kristallogr., 65 (1927) 416.
[56]	N. Feitknecht, "Die Struktur des α-Zinkhydroxyds", Z. Kristallogr., 84 (1932) 173.
[57]	R. B. Corey and R. W. G. Wyckoff, "The Crystal Structure of Zinc Hydroxyde", Z. Kristallogr., 86 (1933) 8.
[58]	H. D. Megaw, "Structure of Crystalline Zinc Hydroxyde Zn(OH) ₂ ", Z. Kristallogr., 90 (1935) 82.
[59]	W. Lotmar und W. Feitknecht, "Über Änderungen der Ionenabstände in Hydroxyd-Schichtengittern" Z. Kristallogr., 93 (1936) 368.
[60]	W. Feitknecht, "Über die α-Form der Hydroxyde zweiwertiger Metalle", Helv. Chim. Acta, 21 (1938) 766.

- [61] A. Seitz. U. Rösler und K. Schubert, "Kristallstruktur von β-Be(OH)₂",
 Z. Anorg. Allg. Chem, 261 (1950) 94.
- [62] H. G. von Schnering, "Zur Konstitution des ε-Zn(OH)₂", Z. Anorg. Allg. Chem, **330** (1964) 170.
- [63] A. F. Wright and A. J. Leadbetter, "The structure of the β-cristobalite phases of SiO₂ and AlPO₄", The Phil. Mag. Ser. 8, **31** (1975) 1391.
- [64] C. Jung,
 "Neue Konzepte zum Bindungsverhalten von Hydroxiden und Hydraten: Brown'sche Bindungsvalenzen und Raman-Hochdruckuntersuchungen"
 Dissertation, Universität Gesamthochschule Siegen (1996).
- [65] D. L. Rousseau, R. P. Bauman and S. P. S. Porto, "Normal Mode Determination in Crystals"
 J. Raman Spectrosc., 10 (1981) 253.
- [66] J. S. Shah and M. E. Straumanis, "Thermal Expansion Behaviour of Silicon at Low Temperatures", Solid State Comm., **10** (1972) 159.
- [67] G. L. Hua, T. R. Welberry and R. L. Withers, "Lattice Dynamics of α- and β-Cristobalite, SiO₂", J. Phys. Chem. Solids, **50** (1989) 207.
- [68] T. R. Welberry, G. L. Hua and R. L. Withers, "An Optical Transform and Monte Carlo Study of the Disorder in β-Cristobalite, SiO₂",
 J. Appl. Cryst., 22 (1989) 87.
- [69] G. L. Hua, T. R. Welberry, R. L. Withers and J. G. Thompson, "An Electron Diffraction and Lattice-Dynamical Study of the Diffuse Scattering in β-Cristobalite, SiO₂", J. Appl. Cryst., **21** (1988) 458.
- [70] M. O'Keeffe and B. G. Hyde, "Cristobalites and Topologically-Related Structures", Acta Cryst., 22 (1989) 87.
- [71] S. Schnick und J. Lücke, "Zur Kenntnis von Lithium-phosphor(V)-nitrid. Reindarstellung und Verfeinerung der Kristallstruktur von LiPN₂",
 Z. Anorg. Allg. Chem., 588 (1990) 19.

[72]	H. Jacobs, R. Nymwegen, S. Doyle, T. Wroblewski und W. Kockelmann,
	"Kristallines Phosphor(V)-nitrid-imid, HPN2 bzw. DPN2 - Strukturbestimmung mit
	Röntgen-, Synchrotron- und Neutronenstrahlung",
	Z. Anorg. Allg. Chem., 623 (1997) 1467.

- [73] E. Höhne, "Die Kristallstruktur des LiB(OH)₄", Z. Chem., 4 (1964) 431.
- [74] L. Kutschabsky and E. Höhne, "Application of a System of Linear Structure-Factor Equations to the Structure Determination of LiB(OH)₄", Acta Cryst., **19** (1965) 747.
- [75] E. Höhne, "Lokalisierung der H-Atome in der Kristallstruktur des LiB(OH)₄", Z. Anorg. Allg. Chem., **342** (1966) 188.
- [76] G. Kessler,
 "Besondere Merkmale der IR-Spektren einiger kristalliner Tetrahydroxoborate",
 Z. Anorg. Allg. Chem., 343 (1966) 25.
- [77] M. Sato, "X-ray study of tridymite", Mineral. J. Jap., 4 (1964) 115.
- [78] K. Kihara,
 "Thermal change in unit-cell dimensions, and a hexagonal structure of tridymite",
 Z. Kristallogr., 148 (1978) 237.
- [79] P. V. Hobbs, "Ice Physics", Clarendon, Oxford (1974).
- [80] S. W. Peterson and H. A. Levy, "A Single-Crystal Neutron Diffraction Study of Heavy Ice", Acta Cryst., **10** (1957) 70.
- [81] E. Whalley, "A detailed assignment of the O-H stretching bands of ice I", Can. J. Chem., 55 (1977) 3429.
- [82] P. T. T. Wong and E. Whalley, "Optical spectra of orientationally disordered crystal. V. Raman spectrum of ice Ih in the range 4000-350 cm⁻¹", J. Chem. Phys., 62 (1975) 2418.

- [83] J. E. Bertie and E. Whalley, "Infrared Spectra of Ices Ih and Ic in the Range 4000 to 350 cm⁻¹", J. Chem. Phys., 40 (1964) 1637.
- [84] W. H. Zachariasen, "The Structure of Orthoboric Acid", Z. Kristallogr., 88 (1934) 150.
- [85] W. H. Zachariasen, "The Precise Structure of Orthoboric Acid", Acta Cryst., 7 (1954) 305.
- [86] J. M. Cowley, "Structure Analysis of Single Crystals by Electron Diffraction. II. Disordered Boric Acid Structure", Acta Cryst., 6 (1953) 522.
- [87] B. M. Craven and T. M. Sabine, "A Neutron Diffraction Study of Orthoboric Acid D₃¹¹BO₃", Acta Cryst., **20** (1966) 305
- [88] R. R. Servoss and H. M. Clark, "Vibrational Spectra of Normal and Isotopically Labeled Boric Acid", J. Chem. Phys., 26 (1957) 1175.
- [89] D. E. Hornig and R. C. Plumb, "Vibrational Spectra of Molecules and Complex Ions in Crystals. IX. Boric Acid", J. Chem. Phys., 26 (1957) 637.
- [90] D. E. Bethell and N. Sheppard, "The infrared spectrum and structure of boric acid", Trans. Faraday Soc., **51** (1955) 9.
- [91] J. R. Durig, W. H. Green and A. L. Marston, "The low-frequency vibrations of molecular crystals. IV. Boric acid", J. Mol. Struct., 2 (1968) 19.
- [92] J. Weidlein, U. Müller und K. Dehnicke, "Schwingungsspektroskopie. Eine Einführung", Georg Thieme Verlag, Stuttgart und New York (1982).
- [93] C. R. Peters and M. E. Milberg, "The Refined Structure of Orthorhombic Metaboric Acid", Acta Cryst., 17 (1964) 229.

- [94] W. H. Zachariasen, "The Crystal Structure of Monoclinic Metaboric Acid" Acta Cryst., 16 (1963) 385.
- [95] W. H. Zachariasen, "The Crystal Structure of Cubic Metaboric Acid", Acta Cryst., 16 (1963) 380.
- [96] R. M. Bozorth,"The Crystal Structure of Potassium Hydrogen Fluoride",J. Am. Chem. Soc., 45 (1923) 2128.
- [97] L. Helmholz and M. T. Rogers, "A Redetermination of the Fluorine-Fluorine Distance in Potassium Bifluoride", J. Am. Chem. Soc., 61 (1939) 2590.
- [98] D. Baukenkrodt,
 "Wasserstoffbrückenbindungen in Hydraten von Alkalimetallfluoriden und -hydroxiden sowie in Alkalimetallbifluoriden",
 Dissertation, Universität Dortmund (1992).
- [99] S. W. Peterson and H. A. Levy, "A Single-Crystal Neutron Diffraction Determination of the Hydrogen position in Potassium Bifluoride", J. Chem. Phys., 20 (1952) 704.
- [100] J. A. Ibers, "Refinement of Peterson and Levy's Neutron Diffraction Data on KHF₂", J. Chem. Phys., **40** (1963) 402.
- [101] E. F. Westrum and K. S. Pitzer, "Thermodynamics of the System KHF₂-KF-HF, Including Heat Capacities and Entropies of KHF₂ and KF. The Nature of the Hydrogen Bond in KHF₂" J. Am. Chem. Soc., **71** (1949) 1940.
- [102] J. A. A. Ketelaar,
 "The Infra-Red Absorption and Reflection Spectra of KHF₂ and of KDF₂",
 J. Chem. Phys., 9 (1941) 775.
- [103] J. A. A. Ketelaar and W. Vedder, "The Infrared Spectrum of KHF₂", J. Chem. Phys., **19** (1951) 654.
- [104] R. Newman and R. M. Badger, "The Polarized Infrared Spectrum of Potassium Bifluoride at -185°C", J. Chem. Phys., **19** (1951) 1207.

- [105] A. R. West, "Grundlagen der Festkörperchemie", VCH Verlag, Weinheim (1992).
- [106] R. J. Nelmes, G. M. Meyer and J. E. Tibballs, "The crystal structure of tetragonal KH₂PO₄ and KD₂PO₄ as a function of temperature", Solid State Phys., **15** (1982) 59.
- [107] S. W. Peterson, S. H. Simonsen and H. A. Levy, "Neutron Diffraction Study of the Ferroelectric Modification of Potassium Dihydrogen Phosphate", Phys. Rev., 93 (1954) 1120.
- [108] G. E. Bacon and R. S. Pease, "A neutron-diffraction study of the ferroelectric transition of potassium dihydrogen phosphate", Proc. Roy. Soc., 230A (1955) 359.
- [109] C. A. Cody and R. K. Khanna, "A New Interpretation of the O-H Stretching Region of Some Hydrogen Bonded Ferroelectrics", Ferroelectrics, 9 (1975) 251.
- [110] R. M. Hill and S. K. Ichiki, "Infrared Absorption by Hydrogen Bonds in Single Crystal KH₂PO₄, KD₂PO₄, and KH₂AsO₄", J. Chem. Phys., **48** (1968) 838.
- [111] E. Wiener, S. Levin and I. Pelar, "Proton Dynamics in KH₂PO₄ Type Ferroelectrics Studied by Infrared Absorption", J. Chem. Phys., **52** (1970) 2881.
- [112] H. Le Chatelier, "Sur le borate de lithium", C. R. Acad. Sci. Paris, 124 (1897) 1092.
- [113] M. Dukelski,"Über Borate. 4. Lithiumborate bei 30°",Z. Anorg. Allg. Chem., 54 (1907) 45.
- [114] W. T. Reburn and W. A. Gale, "The system lithium oxide-boric oxide-water", J. Phys. Chem., **59** (1955) 19.

- [115] W. H. Zachariasen, "The Crystal Structure of Lithium Metaborate", Acta Cryst., **17** (1964) 749.
- [116] M. Touboul, E. Bétourné and G. Nowogrocki, "Crystal Structure and Dehydration Process of Li(H₂O)₄B(OH)₄·2H₂O", J. Solid State Chem., **115** (1995) 549.
- [117] J. Apelhorst, persönliche Mitteilung.
- [118] B. Harbrecht,"Über Amide und Hydroxide der Alkalimetalle",Dissertation, RWTH Aachen (1981).
- [119] H. Jacobs, B. Harbrecht, P. Müller und W. Bronger, "Struktur und Eigenschaften von Caesiumhydroxidmonohydrat - einer Verbindung, die in ihrer Hochtemperaturform schichtenförmige [H₃O₂⁻]-Polyanionen enthält", Z. Anorg. Allg. Chem., **491** (1982) 154.
- [120] M. Stahn, R. E. Lechner, H. Dachs and H. Jacobs, "Dynamics of the hydrogen bond in CsH₃O₂ from quasielastic neutron scattering", J. Phys. C: Solid State Phys., **16** (1983) 5073.
- [121] R. Marx, H. Dachs and R. M. Ibberson, "Time-of-flight neutron diffraction studies on the different phases of CsOH, H₂O", J. Chem. Phys, **93** (1990) 5972.
- [122] J. Gallier, B. Toudic, M. Stahn, R. E. Lechner and H. Dachs, "Two-dimensional protonic diffusion in a hydrogen-bonded compound CsOH·H₂O, studied by solid state NMR", J. Phys. France, 49 (1988) 949.
- [123] H. D. Lutz, J. Henning, H. Jacobs, B. Harbrecht, "Hydrogen Bonding and Phase Transitions of RbOH·H₂O and CsOH·H₂O. Studied by IR and Raman Spectroscopy", Ber. Bunsenges. Phys. Chem., **92** (1988) 1557.

8 Tabellenanhang

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,869	98	98	0	1	3	2,093	91	81	0	0	4	1,759	83	87
1	0	1	3,812	55	55	1	0	3	2,084	35	31	0	2	3	1,648	462	466
0	0	2	3,519	22	21	1	2	0	2,063	97	90	0	1	4	1,645	189	190
1	1	1	2,944	120	121	2	1	0	2,037	3	2	1	0	4	1,640	399	396
0	1	2	2,802	80	79	1	2	1	1,979	114	117	2	0	3	1,631	349	341
1	0	2	2,780	220	223	2	1	1	1,956	112	112	2	2	0	1,620	451	435
1	1	2	2,384	1000	996	0	2	2	1,935	47	45	2	2	1	1,579	73	76
0	2	0	2,316	39	44	2	0	2	1,906	75	72	1	2	3	1,549	74	74
2	0	0	2,268	160	183	1	1	3	1,900	84	81	1	1	4	1,546	57	57
0	2	1	2,200	115	111	1	2	2	1,779	3	4	2	1	3	1,538	145	136
2	0	1	2,159	7	8	2	1	2	1,763	159	168	0	3	1	1,508	34	49

Tab. 8.1a:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (44,8°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 245 K

Tab. 8.1b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungsdaten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)₂ bei 245 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2]	h	k	1	d / Å	F_o^2	F_c^2
1	1	2	2,384	1000	997	2	0	4	1,390	731	729		4	0	1	1,119	492	503
0	2	0	2,316	45	45	3	0	2	1,389	7	7		1	3	4	1,124	86	86
2	0	0	2,268	181	194	0	1	5	1,347	40	39		3	2	3	1,114	75	79
0	2	1	2,200	118	122	1	0	5	1,344	313	308		3	1	4	1,113	49	51
2	0	1	2,159	22	9	1	3	2	1,350	303	291		1	4	1	1,108	24	24
0	1	3	2,093	115	95	1	2	4	1,339	142	140		1	1	6	1,103	538	544
1	0	3	2,084	35	36	2	2	3	1,333	30	30		4	1	0	1,101	322	327
1	2	0	2,063	102	107	2	1	4	1,331	364	359		0	4	2	1,100	98	101
2	1	0	2,037	1	3	3	1	2	1,331	379	376		4	1	1	1,088	39	38
1	2	1	1,979	140	144	1	1	5	1,291	144	143		3	3	0	1,080	165	161
2	1	1	1,956	140	140	0	3	3	1,290	87	89		4	0	2	1,079	802	785
0	2	2	1,935	51	56	2	3	0	1,276	73	72		1	4	2	1,069	163	151
1	1	3	1,900	102	104	3	0	3	1,271	656	649		3	3	1	1,068	72	66
2	0	2	1,906	89	92	3	2	0	1,266	13	13		2	2	5	1,063	201	171
1	2	2	1,779	6	5	2	3	1	1,256	129	116		4	1	2	1,051	11	8
2	1	2	1,763	241	231	3	2	1	1,246	50	50		0	2	6	1,046	162	140
0	0	4	1,759	121	120	1	3	3	1,240	191	196		2	0	6	1,042	165	151
0	2	3	1,648	705	680	3	1	3	1,226	162	157		0	3	5	1,040	271	253
0	1	4	1,645	285	278	0	2	5	1,203	486	484		0	4	3	1,038	130	123
1	0	4	1,640	585	581	2	3	2	1,200	229	234		2	3	4	1,033	37	36
2	0	3	1,631	508	503	2	0	5	1,196	184	189		3	3	2	1,033	12	12
2	2	0	1,620	633	644	2	2	4	1,192	248	255		2	4	0	1,031	734	733
2	2	1	1,579	119	115	3	2	2	1,191	243	252		3	0	5	1,030	2	2
1	2	3	1,549	109	114	0	0	6	1,173	476	475		4	0	3	1,021	71	72
1	1	4	1,546	84	87	1	2	5	1,163	132	132		2	4	1	1,020	134	135
2	1	3	1,538	198	210	0	3	4	1,160	180	180		3	2	4	1,028	79	79
0	3	1	1,508	66	77	2	1	5	1,158	218	220		1	2	6	1,020	57	58
2	2	2	1,472	0	0	0	4	0	1,158	426	429		4	2	0	1,018	244	247
3	0	1	1,478	191	178	3	0	4	1,147	278	285		2	1	6	1,016	91	92
1	3	0	1,462	83	82	0	4	1	1,143	865	874		1	3	5	1,014	203	206
3	1	0	1,437	582	574	0	1	6	1,137	536	556		1	4	3	1,012	161	164
1	3	1	1,431	596	601	1	0	6	1,136	213	222		4	2	1	1,008	476	489
0	3	2	1,414	79	80	4	0	0	1,134	18	19		3	1	5	1,006	322	335
3	1	1	1,408	196	196	1	4	0	1,122	189	190		4	1	3	0,997	132	142
0	2	4	1,401	793	785	2	3	3	1,121	64	65		2	4	2	0,990	276	299

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	7	0,983	258	275	1	5	1	0,900	140	137	1	5	3	0,846	173	179
1	0	7	0,982	223	236	5	0	1	0,900	13	12	5	0	3	0,846	86	89
3	3	3	0,981	205	217	0	5	2	0,896	865	848	5	2	0	0,845	34	36
4	2	2	0,978	232	247	0	4	5	0,894	1	1	0	3	7	0,843	5	5
0	4	4	0,967	424	385	5	1	0	0,890	449	434	5	2	1	0,839	244	246
1	1	7	0,960	113	103	2	4	4	0,890	126	122	3	0	7	0,837	28	28
4	0	4	0,953	721	698	3	4	2	0,889	111	108	2	5	2	0,833	18	17
2	2	6	0,950	155	152	4	3	2	0,885	27	27	5	1	3	0,832	62	60
1	4	4	0,946	472	460	5	1	1	0,883	529	539	2	4	5	0,832	169	164
2	3	5	0,945	18	17	4	0	5	0,883	323	329	1	3	7	0,828	232	226
2	4	3	0,944	350	342	4	2	4	0,881	190	192	4	2	5	0,825	205	201
3	2	5	0,941	102	100	0	0	8	0,880	61	61	0	4	6	0,824	62	61
4	2	3	0,934	217	210	1	5	2	0,879	699	707	3	1	7	0,824	594	585
0	3	6	0,934	235	228	5	0	2	0,878	267	271	0	2	8	0,822	176	175
4	1	4	0,934	131	127	1	4	5	0,877	4	4	5	2	2	0,821	113	113
3	0	6	0,927	539	535	4	1	5	0,867	388	390	2	0	8	0,820	672	677
0	2	7	0,922	1	1	0	1	8	0,864	17	17	0	5	4	0,820	359	363
3	3	4	0,921	116	117	1	0	8	0,864	88	89	4	0	6	0,815	47	47
3	4	0	0,919	127	127	2	3	6	0,864	37	37	3	4	4	0,815	252	251
2	0	7	0,919	79	79	5	1	2	0,863	269	271	4	3	4	0,811	267	259
0	5	1	0,918	0	0	0	5	3	0,862	40	40	1	4	6	0,811	329	319
1	3	6	0,915	18	17	2	2	7	0,854	169	176	4	4	0	0,810	40	39
4	3	0	0,914	8	7	3	2	6	0,860	43	44	1	2	8	0,809	27	26
3	4	1	0,912	97	94	4	3	3	0,852	12	13	2	1	8	0,808	70	69
3	1	6	0,909	91	90	2	5	1	0,851	28	30	1	5	4	0,807	74	74
1	5	0	0,908	252	250	2	5	0	0,858	32	33	5	0	4	0,806	17	17
4	3	1	0,906	187	186	3	3	5	0,857	23	24	2	5	3	0,805	0	0
1	2	7	0,904	62	62	3	4	3	0,856	96	99	4	4	1	0,805	146	149
2	1	7	0,902	43	43	1	1	8	0,849	300	315	4	1	6	0,803	72	73

Tab. 8.1b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 245 K (Fortsetzung)

Tab. 8.1c:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgenbeugungs-
daten (Huber-Guinier, Aachen) für β-Be(OD)2 bei 245 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,869	463	444	1	1	3	1,900	190	213	3	1	1	1,408	96	82
1	0	1	3,812	358	356	1	2	2	1,779	187	148	0	2	4	1,401	167	139
0	0	2	3,519	1	2	2	1	2	1,763	36	33	2	0	4	1,390	204	173
1	1	0	3,241	2	0	0	0	4	1,759	282	271	3	0	2	1,389	0	0
1	1	1	2,944	132	140	0	2	3	1,648	22	26	1	3	2	1,350	72	69
0	1	2	2,802	23	17	0	1	4	1,645	253	279	0	1	5	1,347	25	27
1	0	2	2,780	420	373	1	0	4	1,640	43	44	1	0	5	1,344	6	6
1	1	2	2,384	1000	989	2	0	3	1,631	211	212	1	2	4	1,339	32	31
0	2	0	2,316	111	95	2	2	0	1,620	148	134	2	2	3	1,333	16	16
2	0	0	2,268	441	358	2	2	1	1,579	129	89	2	1	4	1,331	160	149
0	2	1	2,200	363	406	1	2	3	1,549	80	80	3	1	2	1,331	97	89
2	0	1	2,159	45	75	1	1	4	1,546	20	20	1	1	5	1,291	14	10
0	1	3	2,093	34	36	2	1	3	1,538	100	106	0	3	3	1,290	217	161
1	0	3	2,084	109	95	0	3	1	1,508	34	46	2	3	0	1,276	281	268
1	2	0	2,063	8	3	3	0	1	1,478	47	42	3	0	3	1,271	422	395
2	1	0	2,037	258	197	2	2	2	1,472	9	7	3	2	0	1,266	4	4
1	2	1	1,979	265	261	1	3	0	1,462	36	25	2	3	1	1,256	59	82
2	1	1	1,956	278	289	1	3	1	1,431	111	94	3	2	1	1,246	78	78
0	2	2	1,935	18	30	3	1	0	1,437	85	82	1	3	3	1,240	189	175
2	0	2	1,906	29	30	0	3	2	1,414	2	2	3	1	3	1,226	7	5

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	2	5	1,203	337	303	2	3	3	1,121	19	18	0	3	5	1,040	0	0
2	3	2	1,200	39	36	4	0	1	1,119	97	90	0	4	3	1,038	0	1
2	0	5	1,196	13	12	3	2	3	1,114	8	8	2	3	4	1,033	48	53
2	2	4	1,192	91	81	3	1	4	1,113	9	8	3	3	2	1,033	5	5
3	2	2	1,191	279	244	1	4	1	1,108	22	20	2	4	0	1,031	77	75
0	0	6	1,173	4	53	4	1	0	1,101	147	132	3	0	5	1,030	11	10
0	3	4	1,160	23	23	0	4	2	1,100	12	11	3	2	4	1,028	1	1
2	1	5	1,158	121	103	1	1	6	1,103	89	79	4	0	3	1,021	31	29
0	4	0	1,158	145	123	4	1	1	1,088	57	51	2	4	1	1,020	26	23
1	2	5	1,163	51	59	3	3	0	1,080	11	15	1	2	6	1,020	33	28
3	0	4	1,147	29	23	4	0	2	1,079	54	64	1	3	5	1,014	3	3
0	4	1	1,143	139	125	1	4	2	1,069	60	37	4	2	0	1,018	27	21
0	1	6	1,137	7	6	3	3	1	1,068	26	18	1	4	3	1,012	29	29
1	0	6	1,136	168	143	2	2	5	1,063	39	32	2	1	6	1,016	14	11
4	0	0	1,134	10	9	4	1	2	1,051	0	2	4	2	1	1,008	39	40
1	3	4	1,124	8	7	0	2	6	1,046	3	12	3	1	5	1,006	64	57
1	4	0	1,122	50	45	2	0	6	1,042	7	7						

Tab. 8.1c:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgenbeugungs-
daten (Huber-Guinier, Aachen) für β-Be(OD)2 bei 245 K (Fortsetzung)

Tab. 8.2a: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungsdaten (44,8°-Bank, Rotax/ISIS) für β-Be(OD)₂ bei 50 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,866	105	104	0	1	3	2,088	92	83	0	2	3	1,646	524	532
1	0	1	3,804	54	54	1	0	3	2,078	30	28	0	1	4	1,641	217	219
0	0	2	3,510	23	23	1	2	0	2,062	114	105	1	0	4	1,636	474	472
1	1	0	3,237	1	1	2	1	0	2,033	6	6	2	0	3	1,627	396	388
1	1	1	2,940	140	141	1	2	1	1,978	122	124	2	2	0	1,619	455	440
0	1	2	2,797	97	95	2	1	1	1,953	119	120	2	2	1	1,577	87	90
1	0	2	2,773	259	260	0	2	2	1,933	44	41	1	2	3	1,547	88	92
1	1	2	2,379	1000	999	2	0	2	1,902	70	71	1	1	4	1,543	73	74
0	2	0	2,316	41	54	1	1	3	1,896	103	105	2	1	3	1,535	174	162
2	0	0	2,263	157	170	1	2	2	1,778	5	5	0	3	1	1,508	35	46
0	2	1	2,199	138	130	2	1	2	1,759	198	201						
2	0	1	2,154	7	8	0	0	4	1,755	59	58						

Tab. 8.2b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 50 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
1	1	2	2,379	906	900	2	0	2	1,902	82	80	1	1	4	1,543	94	100
0	2	0	2,316	48	50	1	1	3	1,896	118	119	2	1	3	1,535	212	220
2	0	0	2,263	149	162	1	2	2	1,778	7	6	0	3	1	1,508	71	63
0	2	1	2,199	125	127	2	1	2	1,759	259	245	3	0	1	1,475	210	207
2	0	1	2,154	19	8	0	0	4	1,755	74	71	2	2	2	1,470	1	1
0	1	3	2,088	107	86	0	2	3	1,646	707	684	1	3	0	1,461	56	52
1	0	3	2,078	29	29	0	1	4	1,641	285	282	3	1	0	1,434	565	574
1	2	0	2,062	107	111	1	0	4	1,636	610	610	1	3	1	1,431	617	626
2	1	0	2,033	3	7	2	0	3	1,627	504	504	0	3	2	1,413	87	86
1	2	1	1,978	130	136	2	2	0	1,619	566	574	0	2	4	1,399	676	670
2	1	1	1,953	131	133	2	2	1	1,577	120	120	3	1	1	1,405	211	209
0	2	2	1,933	42	46	1	2	3	1,547	112	124	2	0	4	1,387	597	600

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	2	1,386	3	3	3	0	5	1,028	0	0	1	4	5	0,876	5	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	2	1,349	304	295	2	3	4	1,032	41	41	5	1	1	0,881	590	589
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	5	1,343	45	44	3	3	2	1,031	21	20	4	0	5	0,881	437	437
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	5	1,341	303	297	2	4	0	1,031	719	711	4	2	4	0,880	156	156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	4	1,336	148	145	3	2	4	1,026	91	93	1	5	2	0,879	775	784
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	3	1,331	34	33	2	4	1	1,020	164	169	0	0	8	0,877	22	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	4	1,328	369	358	4	0	3	1,019	56	58	5	0	2	0,877	326	341
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	2	1,328	368	359	1	2	6	1,017	45	46	4	1	5	0,865	391	383
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	3	1,289	99	99	4	2	0	1,017	293	299	2	3	6	0,862	42	41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	5	1,288	117	119	2	1	6	1,014	79	80	0	1	8	0,862	33	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	0	1,275	66	67	1	3	5	1,012	212	214	1	0	8	0,861	47	45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	3	1,268	670	677	1	4	3	1,012	139	140	0	5	3	0,861	28	28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	0	1,264	15	15	4	2	1	1,006	545	567	5	1	2	0,861	325	316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	1	1,255	113	100	3	1	5	1,003	317	340	3	2	6	0,859	50	51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	1	1,244	38	36	4	1	3	0,995	142	157	2	5	0	0,857	44	46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	3	1,239	192	182	2	4	2	0,989	264	272	3	3	5	0,856	20	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	3	1,223	193	187	0	1	7	0,980	215	220	3	4	3	0,855	122	131
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	5	1,201	542	547	3	3	3	0,980	236	242	2	2	7	0,852	187	201
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3	2	1,199	247	252	1	0	7	0,979	284	293	2	5	1	0,851	21	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	5	1,193	197	202	4	2	2	0,977	247	259	4	3	3	0,850	19	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	4	1,190	326	335	0	4	4	0,966	434	387	1	1	8	0,847	316	339
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	2	1,189	228	236	I	l	1	0,958	164	152	l	5	3	0,846	158	169
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	6	1,170	557	585	4	0	4	0,951	804	764	5	0	3	0,844	91	99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	5	1,160	123	124	2	2	6	0,948	160	152	5	2	0	0,843	32	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	4	1,159	127	127		4	4	0,945	583	561	0	3	1	0,841	8	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	0	1,158	446	446	2	3	2	0,944	202	205	5	2	1	0,837	292	298
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	2	1,155	258	261	2	4	5	0,943	393	385	3	0	/	0,835	43	43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	4	1,144	245	249	3	2	2	0,939	130	131	2	2	2	0,833	20	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	4	1,123	/0	/1	0	3	0	0,932	294	288	2	4	2	0,831	101	150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	0	1,122	162	105	4	1	3	0,932	129	125	3	1	3 7	0,831	217	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4	5	3	1,120	04 576	03 570	4	1	4	0,932	128	123	1	3 2	5	0,827	317 201	304 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2	1	1,117	58	58	5	2	7	0,924	490	492	4	2 1	5	0,823	176	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2 1	3 1	1,112 1 1 1 1		38 40	2	2	/	0,920	122	121	2	4	7	0,823	710	712
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	4	1,111	20	40 20	2	2 1	4	0,919	225	220	5	2	/ Q	0,822	246	245
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	6	1,100	544	29 547	0	5	1	0,919	233	230	5	2	2	0,820	132	132
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	2	1,100	69	70	2	0	7	0,910	76	74	0	5	2 4	0,820	409	411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0	1,100	319	323	1	3	6	0,917	13	13	2	0	4 8	0,819	+09 777	783
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	1	1,099	28	28	1 4	3	0	0,913	2	2	3	4	4	0.814	205	204
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3	0	1,000	133	129	1	2	7	0,913	52	53	4	0	6	0.813	203 45	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	2	1,077	752	740	1	5	1	0,902	153	156	2	5	3	0,815	43	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4	2	1,077	133	131	2	1	7	0,900	52	53	5	0	4	0,805	17	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	5	1,009	240	209	5	0	1	0,898	5	5	4	4	1	0,804	162	164
4 1 2 1,049 8 7 0 4 5 0,893 0 0 4 3 4 0,810 284 277 0 2 6 1,044 125 116 4 3 2 0,883 50 49 4 4 0 0,809 24 23 2 0 6 1,039 191 180 2 4 4 0,889 175 167 4 1 6 0,801 62 62 62 0 3 5 1,039 310 292 3 4 2 0,889 134 128 1 2 8 0,807 17 17 0 4 3 1,038 131 124 5 1 0 0,888 415 396 1 5 4 0,806 107 107	3	3	1	1,001	89	86	0	5	2	0,896	1000	985	1	4	6	0.810	339	330
0 2 6 1,044 125 116 4 3 2 0,883 50 49 4 4 0 0,809 24 23 2 0 6 1,039 191 180 2 4 4 0,889 175 167 4 1 6 0,801 62 62 0 3 5 1,039 310 292 3 4 2 0,889 134 128 1 2 8 0,807 17 17 0 4 3 1,038 131 124 5 1 0 0,888 415 396 1 5 4 0,806 107 107	4	1	2	1.049	8	7	Ő	4	5	0.893	0	0	4	3	4	0.810	284	277
2 0 6 1,039 191 180 2 4 4 0,889 175 167 4 1 6 0,801 62 62 0 3 5 1,039 310 292 3 4 2 0,889 134 128 1 2 8 0,807 17 17 0 4 3 1,038 131 124 5 1 0 0,888 415 396 1 5 4 0,806 107 107	0	2	6	1,044	125	116	4	3	2	0.883	50	49	4	4	0	0,809	24	23
0 3 5 1,039 310 292 3 4 2 0,889 134 128 1 2 8 0,807 17 17 17 0 4 3 1,038 131 124 5 1 0 0,888 415 396 1 5 4 0,806 107 107	2	0	6	1,039	191	180	2	4	4	0.889	175	167	4	1	6	0,801	62	62
0 4 3 1,038 131 124 5 1 0 0,888 415 396 1 5 4 0,806 107 107	0	3	5	1,039	310	292	3	4	2	0,889	134	128	1	2	8	0,807	17	17
	0	4	3	1,038	131	124	5	1	0	0,888	415	396	1	5	4	0,806	107	107

Tab. 8.2b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 50 K (Fortsetzung)

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,866	464	447	3	1	0	1,434	85	89	4	0	0	1,132	16	15
1	0	1	3,804	371	361	1	3	1	1,431	110	93	1	3	4	1,123	3	2
0	0	2	3,510	16	21	0	3	2	1,413	1	1	1	4	0	1,122	51	46
1	1	0	3,237	5	0	3	1	1	1,405	105	92	2	3	3	1,120	16	17
1	1	1	2,940	158	162	0	2	4	1,399	174	145	4	0	1	1,117	95	105
0	1	2	2,797	25	20	2	0	4	1,387	213	168	3	2	3	1,112	8	8
1	0	2	2,773	448	421	3	0	2	1,386	1	1	3	1	4	1,111	11	11
1	1	2	2,379	1000	983	1	3	2	1,349	76	81	1	4	1	1,108	30	26
0	2	0	2,316	158	105	0	1	5	1,343	39	39	1	1	6	1,100	90	87
2	0	0	2,263	309	313	1	0	5	1,341	10	10	0	4	2	1,100	9	9
0	2	1	2,199	410	442	1	2	4	1,336	39	40	4	1	0	1,099	143	145
2	0	1	2,154	90	77	2	2	3	1,331	26	25	4	1	1	1,086	59	45
0	1	3	2,088	45	33	2	1	4	1,328	167	156	3	3	0	1,079	14	14
1	0	3	2,078	144	117	3	1	2	1,328	104	97	4	0	2	1,077	80	66
1	2	0	2,062	7	4	0	3	3	1,289	220	183	1	4	2	1,069	55	44
2	1	0	2,033	201	194	1	1	5	1,288	15	13	3	3	1	1,067	25	21
1	2	1	1,978	245	261	2	3	0	1,275	352	313	2	2	5	1,061	48	45
2	1	1	1,953	310	312	3	2	0	1,264	4	5	4	1	2	1,049	0	2
0	2	2	1,933	18	22	3	0	3	1,268	467	441	0	2	6	1,044	10	7
2	0	2	1,902	39	33	2	3	1	1,255	58	81	2	0	6	1,039	9	9
1	1	3	1,896	251	251	3	2	1	1,244	69	70	0	3	5	1,039	1	1
1	2	2	1,778	184	163	1	3	3	1,239	220	191	0	4	3	1,038	0	0
2	1	2	1,759	42	40	3	1	3	1,223	17	7	2	3	4	1,032	54	57
0	0	4	1,755	246	258	0	2	5	1,201	396	369	3	3	2	1,031	9	9
0	1	4	1,641	376	342	2	3	2	1,199	46	41	2	4	0	1,031	84	83
1	0	4	1,636	60	61	2	0	5	1,193	22	20	3	0	5	1,028	5	5
0	2	3	1,646	26	23	2	2	4	1,190	114	111	3	2	4	1,026	2	3
2	0	3	1,627	228	233	3	2	2	1,189	252	248	2	4	1	1,020	34	26
2	2	0	1,619	105	114	0	0	6	1,170	63	78	4	0	3	1,019	31	25
2	2	1	1,577	129	96	1	2	5	1,160	57	54	1	2	6	1,017	39	33
1	2	3	1,547	91	87	0	3	4	1,159	20	19	4	2	0	1,017	41	36
1	1	4	1,543	20	21	0	4	0	1,158	147	135	2	1	6	1,014	17	16
2	1	3	1,535	91	97	2	1	5	1,155	152	128	1	3	5	1,012	10	10
0	3	1	1,508	53	52	3	0	4	1,144	30	25	1	4	3	1,012	34	32
3	0	1	1,475	45	33	0	4	1	1,143	154	134	4	2	1	1,006	54	49
2	2	2	1,470	10	10	0	1	6	1,134	10	9						
1	3	0	1,461	17	18	1	0	6	1,133	200	184						

Tab. 8.2c:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgenbeugungs-
daten (Huber-Guinier, Aachen) für β-Be(OD)2 bei 50 K

Tab. 8.3a:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (44,8°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 5 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,866	104	105	0	1	3	2,088	95	84	0	2	3	1,646	518	531
1	0	1	3,804	53	53	1	0	3	2,078	35	31	0	1	4	1,641	249	254
0	0	2	3,510	23	23	1	2	0	2,062	116	109	1	0	4	1,636	438	440
1	1	0	3,237	0	1	2	1	0	2,033	9	8	2	0	3	1,627	421	412
1	1	1	2,939	138	140	1	2	1	1,978	116	114	2	2	0	1,618	442	419
0	1	2	2,797	87	85	2	1	1	1,953	123	124	2	2	1	1,577	96	97
1	0	2	2,773	271	269	0	2	2	1,933	37	37	1	2	3	1,547	95	94
1	1	2	2,379	1000	1003	1	1	3	1,896	102	99	1	1	4	1,543	71	70
0	2	0	2,316	37	46	2	0	2	1,902	65	65	2	1	3	1,535	177	165
2	0	0	2,263	151	166	1	2	2	1,778	4	5	0	3	1	1,508	36	51
0	2	1	2,199	141	133	0	0	4	1,755	54	56						
2	0	1	2,154	7	9	2	1	2	1,759	196	207						

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2		h	k	1	d / Å	F_o^2	F_c^2
1	1	2	2,379	980	971	2	2	4	1,190	341	345		2	3	5	0,944	10	10
0	2	0	2,316	30	46	3	2	2	1,189	243	247		4	0	4	0,951	875	847
2	0	0	2,263	162	170	0	0	6	1,170	577	593		2	4	3	0,943	396	378
0	2	1	2,199	145	141	1	2	5	1,160	116	114		2	2	6	0,948	178	171
2	0	1	2,154	18	9	0	3	4	1,159	119	117		3	2	5	0,939	149	145
0	1	3	2,088	115	94	0	4	0	1,158	617	612		4	2	3	0,932	249	245
1	0	3	2,078	39	35	2	1	5	1,155	272	277		0	3	6	0,932	363	358
1	2	0	2,062	116	124	3	0	4	1,144	315	322		4	1	4	0,932	118	117
2	1	0	2,033	5	10	0	4	I	1,142	842	861		3	0	6	0,924	492	500
1	2	1	1,978	129	135	0	l	6	1,134	536	561		0	2	1	0,920	13	13
2	1	1	1,953	150	149		0	6	1,133	204	216		3	3	4	0,919	195	193
0	2	2	1,933	5/ 77	45 70	4	2	0	1,131	4	4		3 0	4	0	0,919	1/0	1/4
2 1	1	2	1,902	121	122	1	3 1	4	1,123	000	200		0	5	1	0,918	8 20	20
1	1 2	2 2	1,090	121	6	2	4	2	1,122	195 61	200 62		2 1	2	6	0,917	12	12
1	0	2 1	1,775	21 21	74		5	5 1	1,120 1 1 1 7	548	563		1	2	0	0,913	12	12
2	1	4 2	1,755	208	274	4	2	1	1,117 1 1 1 2	248 82	01		4	3 1	1	0,913	122	125
0	2	2	1,759	298 760	2/4 7/3	3	1	1	1,112 1 1 1 1	45	50		1	-+ -5	1	0,911	10/	205
0	1	3 4	1,040	356	355	1	1 4	4	1,111	4 <i>3</i> 26	29		3	1	6	0,907	194	132
1	0	4	1,041	612	618	1	1	6	1,100	582	592		4	3	1	0,907	120	196
2	0	3	1,030	586	581	0	4	2	1,100	55	56		1	2	7	0,903	99	99
$\frac{2}{2}$	2	0	1,618	587	594	4	1	0	1,100	358	366		1	5	1	0,902	110	109
2	2	1	1,510	145	140	4	1	1	1,099	24	22		2	1	7	0,900	57	57
1	2	3	1,547	122	138	3	3	0	1,000	100	99		5	0	1	0,898	5	5
1	1	4	1,543	95	102	4	0	2	1,077	815	822		0	5	2	0,896	1000	979
2	1	3	1,535	239	243	1	4	2	1 068	132	125		0	4	5	0.893	3	3
0	3	1	1.508	61	76	3	3	1	1.066	92	85		2	4	4	0.889	165	158
3	0	1	1,475	255	221	2	2	5	1,061	239	195		3	4	2	0,889	126	122
2	2	2	1,470	5	5	4	1	2	1,049	10	8		5	1	0	0,888	408	393
1	3	0	1,461	40	37	0	2	6	1,044	167	143		4	3	2	0,883	73	75
3	1	0	1,434	613	618	2	0	6	1,039	147	134		5	1	1	0,881	629	646
1	3	1	1,430	693	698	2	3	4	1,032	29	28		4	0	5	0,881	446	457
0	3	2	1,413	75	75	3	3	2	1,031	14	14		4	2	4	0,880	207	212
3	1	1	1,405	232	229	0	3	5	1,039	324	298		1	5	2	0,879	796	821
0	2	4	1,399	708	697	2	4	0	1,031	792	768		0	0	8	0,877	24	25
2	0	4	1,387	648	646	0	4	3	1,038	142	132		5	0	2	0,877	358	381
3	0	2	1,386	0	0	3	0	5	1,028	3	3		1	4	5	0,876	4	4
1	3	2	1,349	321	313	3	2	4	1,026	98	99		2	3	6	0,862	62	58
0	1	5	1,343	38	38	2	4	1	1,020	178	188		0	1	8	0,862	14	13
1	0	5	1,341	383	385	4	0	3	1,019	45	47		1	0	8	0,861	89	84
1	2	4	1,336	157	155	1	2	6	1,017	57	59		0	5	3	0,861	15	14
2	2	3	1,331	28	27	4	2	0	1,017	276	284		5	1	2	0,861	322	305
2	1	4	1,328	374	367	2	1	6	1,014	94	95		4	1	5	0,865	418	405
3	1	2	1,328	401	396	1	3	5	1,012	179	178		3	2	6	0,859	62	62
0	3	3	1,289	95	95		4	3	1,011	164	163		2	5	0	0,857	36	38
1	1	5	1,288	126	128	4	2	I	1,006	593	603		3	3	5	0,855	46	49
2	3	0	1,275	74	75	3	1	2	1,003	369	389		3	4	3	0,855	164	1//
3	0	3	1,268	/34	/21	4	1	3	0,995	124	136		2	2	/	0,852	168	188
3	2	0	1,264	24	23	2	4	2	0,989	251	258		2	2	1	0,851	23	26
2	3	1	1,255	110	105		1	2	0,980	238	245		4	5	3	0,850	18	20
1	י ר	3 1	1,239	203	192	1	с С	3 7	0,980	242 254	249 261		1	1	ð 2	0,04/	303 100	520 127
2	2 1	1	1,244	27 211	5/ 108		0 2	' 2	0,979	230 312	204		1 5	5 0	2 2	0,040	120	13/
) 0	2	5 5	1,223	∠11 570	581	4	∠ ∕\	∠ ∧	0,970	12 12	380		5	2	5 0	0,044	+/	12
2	∠ 3	5 2	1 1 0 0	236	243	1	4 1	+ 7	0,900	132	126		0	∠ 3	7	0,045	1 Z A	13
2	0	∠ 5	1 103	230 212	2 1 5 216	1	1 1	΄ Δ	0.938	604	575		5	2	1	0.837	-+ 287	294
4	U	5	1,175	414	210	1	7	4	0,745	004	515	_	5	4	1	0,057	207	<u></u> ∠/ 1

Tab. 8.3b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)2 bei 5 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
3	0	7	0,835	9	9	0	2	8	0,820	259	249	4	4	0	0,809	32	31
2	5	2	0,833	9	9	5	2	2	0,820	161	157	1	2	8	0,807	26	25
2	4	5	0,831	159	144	0	5	4	0,819	403	396	1	5	4	0,806	110	109
5	1	3	0,831	44	39	2	0	8	0,818	904	904	2	1	8	0,806	59	59
1	3	7	0,827	279	256	3	4	4	0,814	179	181	2	5	3	0,805	6	6
4	2	5	0,823	233	220	4	0	6	0,813	34	34	5	0	4	0,804	3	3
0	4	6	0,823	90	85	1	4	6	0,810	319	307	4	4	1	0,804	155	162
3	1	7	0,822	729	692	4	3	4	0,810	265	255	4	1	6	0,801	66	74

Tab. 8.3b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungsdaten (180,7°-Bank, Rotax/ISIS) für β-Be(OD)₂ bei 5 K (Fortsetzung)

Tab. 8.3c: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgenbeugungsdaten (Huber-Guinier, Aachen) für β -Be(OD)₂ bei 5 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	1	1	3,866	495	473	3	1	0	1,434	99	86	4	0	0	1,131	21	17
1	0	1	3,804	376	369	1	3	1	1,430	118	97	1	3	4	1,123	3	3
0	0	2	3,510	0	19	0	3	2	1,413	2	1	1	4	0	1,122	55	48
1	1	0	3,237	8	0	3	1	1	1,405	88	82	2	3	3	1,120	19	18
1	1	1	2,939	168	170	0	2	4	1,399	121	117	4	0	1	1,117	84	84
0	1	2	2,797	21	18	2	0	4	1,387	159	162	3	2	3	1,112	3	3
1	0	2	2,773	453	439	3	0	2	1,386	2	2	3	1	4	1,111	11	11
1	1	2	2,379	1000	974	1	3	2	1,349	101	88	1	4	1	1,108	21	22
0	2	0	2,316	127	91	0	1	5	1,343	39	34	1	1	6	1,100	65	78
2	0	0	2,263	283	303	1	0	5	1,341	15	13	0	4	2	1,100	6	7
0	2	1	2,199	448	460	1	2	4	1,336	41	37	4	1	0	1,099	114	142
2	0	1	2,154	86	75	2	2	3	1,331	18	16	4	1	1	1,086	59	36
0	1	3	2,088	45	39	2	1	4	1,328	155	149	3	3	0	1,079	12	6
1	0	3	2,078	123	114	3	1	2	1,328	97	95	4	0	2	1,077	116	63
1	2	0	2,062	6	5	0	3	3	1,289	194	170	1	4	2	1,068	28	40
2	1	0	2,033	204	202	1	1	5	1,288	11	10	3	3	1	1,066	16	21
1	2	1	1,978	266	269	2	3	0	1,275	307	300	2	2	5	1,061	27	37
2	1	1	1,953	306	315	3	0	3	1,268	418	411	0	2	6	1,044	6	6
0	2	2	1,933	15	23	3	2	0	1,264	7	8	4	1	2	1,049	1	0
2	0	2	1,902	33	29	2	3	1	1,255	66	75	2	0	6	1,039	0	4
1	1	3	1,896	245	246	3	2	1	1,244	61	59	0	3	5	1,039	0	1
1	2	2	1,778	182	163	1	3	3	1,239	200	179	0	4	3	1,038	0	0
2	1	2	1,759	39	35	3	1	3	1,223	6	5	2	3	4	1,032	46	45
0	0	4	1,755	226	236	0	2	5	1,200	378	343	3	3	2	1,031	10	10
0	2	3	1,646	19	22	2	3	2	1,199	39	36	2	4	0	1,031	85	82
0	1	4	1,641	348	344	2	0	5	1,193	22	21	3	0	5	1,028	3	3
1	0	4	1,636	49	51	2	2	4	1,190	110	103	3	2	4	1,026	2	2
2	0	3	1,627	243	238	3	2	2	1,189	249	238	2	4	1	1,020	33	27
2	2	0	1,618	95	99	0	0	6	1,170	41	57	4	0	3	1,019	21	18
2	2	1	1,577	133	97	1	2	5	1,160	62	53	1	2	6	1,017	30	27
1	2	3	1,547	98	84	0	3	4	1,159	24	21	4	2	0	1,017	34	31
1	1	4	1,543	17	17	0	4	0	1,158	171	155	2	1	6	1,014	17	16
2	1	3	1,535	85	98	2	1	5	1,155	104	105	1	3	5	1,012	9	9
0	3	1	1,508	28	49	0	4	1	1,142	130	124	1	4	3	1,011	31	32
3	0	1	1,475	42	36	3	0	4	1,144	22	21	4	2	1	1,006	54	47
2	2	2	1,470	14	11	0	1	6	1,134	12	10						
1	3	0	1,461	21	14	1	0	6	1,133	196	162						

h	Ŀ	1	۸ / ۸	E ²	E ²	h	Ŀ	1	Å / Å	E ²	E ²	h	ե	1	۸ / ۸	E ²	E ²
- 11	K	1	u / A	Г	Гc	п	К	1	u / A	Го	Гc		К	1	u / A	Го	г _с
0	1	1	4,400	147	146	2	1	2	1,964	11	12	2	1	4	1,532	152	154
1	0	1	4,249	3	3	0	1	4	1,961	2	3	1	1	5	1,531	108	109
0	0	2	4,242	263	266	1	0	4	1,947	35	36	3	0	2	1,527	9	9
1	1	0	3,552	4	6	0	2	3	1,903	30	30	1	3	2	1,513	131	130
1	1	1	3,276	601	598	2	0	3	1,854	393	401	2	2	3	1,504	80	80
0	1	2	3,273	159	158	1	1	4	1,821	77	77	0	3	3	1,467	171	179
1	0	2	3,209	877	885	2	2	0	1,776	78	77	3	1	2	1,464	69	72
1	1	2	2,723	151	150	1	2	3	1,774	139	139	0	2	5	1,416	326	328
0	2	0	2,573	722	725	2	1	3	1,744	933	937	3	0	3	1,416	274	276
0	1	3	2,478	2	2	2	2	1	1,738	100	99	0	0	6	1,414	24	24
0	2	1	2,462	114	117	0	3	1	1,681	307	304	2	3	0	1,406	0	0
2	0	0	2,454	8	8	2	2	2	1,638	237	229	1	3	3	1,405	438	440
1	0	3	2,450	77	81	0	2	4	1,637	61	59	2	0	5	1,396	143	142
2	0	1	2,358	2	2	1	3	0	1,619	0	0	2	3	1	1,387	261	258
1	2	0	2,279	1000	987	0	1	5	1,611	442	445	3	2	0	1,381	197	191
2	1	0	2,215	99	98	3	0	1	1,607	322	328	3	1	3	1,365	304	308
1	1	3	2,212	410	405	2	0	4	1,605	126	128	0	1	6	1,363	1	1
1	2	1	2,201	27	27	1	0	5	1,604	5	5	3	2	1	1,363	94	95
0	2	2	2,200	167	167	1	3	1	1,591	509	509	2	2	4	1,362	363	366
2	1	1	2,143	519	516	0	3	2	1,590	190	190	1	2	5	1,361	14	15
2	0	2	2,124	38	38	3	1	0	1,559	62	62	1	0	6	1,359	1	1
0	0	4	2,121	934	926	1	2	4	1,553	821	823				,		
1	2	2	2,008	198	199	3	1	1	1,534	232	235						

Tab. 8.4a:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (44,9°-Bank, Rotax/ISIS) für ε-Zn(OD)2 bei 298 K

Tab. 8.4b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungsdaten (125,5°-Bank, Rotax/ISIS) für ε-Zn(OD)₂ bei 298 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
1	1	2	2,723	120	117	0	3	1	1,681	273	271	3	2	0	1,381	180	176
0	2	0	2,573	592	578	2	2	2	1,638	207	205	3	1	3	1,365	288	285
0	1	3	2,478	1	1	0	2	4	1,637	54	53	0	1	6	1,363	1	1
0	2	1	2,462	95	94	1	3	0	1,619	0	0	3	2	1	1,363	88	88
2	0	0	2,454	7	7	0	1	5	1,611	404	400	2	2	4	1,362	338	338
1	0	3	2,450	64	66	2	0	4	1,605	115	115	1	2	5	1,361	13	13
2	0	1	2,358	5	1	1	0	5	1,604	5	5	1	0	6	1,359	1	1
1	2	0	2,279	806	817	3	0	1	1,607	292	294	2	1	5	1,347	49	55
2	1	0	2,215	81	82	1	3	1	1,591	455	458	2	3	2	1,335	96	95
1	1	3	2,212	336	338	0	3	2	1,590	170	171	0	3	4	1,334	0	0
1	2	1	2,201	23	23	3	1	0	1,559	56	56	1	1	6	1,314	113	109
0	2	2	2,200	137	140	1	2	4	1,553	747	744	3	2	2	1,313	268	262
2	1	1	2,143	436	434	3	1	1	1,534	213	213	3	0	4	1,295	394	393
2	0	2	2,124	32	32	2	1	4	1,532	140	140	1	3	4	1,287	164	168
0	0	4	2,121	776	781	1	1	5	1,531	99	98	0	4	0	1,287	1000	1027
1	2	2	2,008	171	170	3	0	2	1,527	8	8	0	4	1	1,272	2	3
2	1	2	1,964	10	10	1	3	2	1,513	119	118	2	3	3	1,259	24	23
0	1	4	1,961	2	2	2	2	3	1,504	72	73	3	1	4	1,256	103	103
1	0	4	1,947	33	31	0	3	3	1,467	159	164	1	4	0	1,245	25	25
0	2	3	1,903	26	26	0	2	5	1,416	305	301	3	2	3	1,241	69	68
2	0	3	1,854	350	349	3	0	3	1,416	256	253	0	2	6	1,239	26	25
1	1	4	1,821	72	67	0	0	6	1,414	22	22	1	4	1	1,231	78	75
2	2	0	1,776	70	68	2	3	0	1,406	0	0	0	4	2	1,231	0	0
1	2	3	1,774	126	123	1	3	3	1,405	408	405	4	0	0	1,227	0	0
2	1	3	1,744	819	827	2	0	5	1,396	132	131	2	2	5	1,227	262	265
2	2	1	1,738	87	88	2	3	1	1,387	239	238	2	0	6	1,225	7	7

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2]	1	k	1	d / Å	F_o^2	F_c^2
4	0	1	1.214	30	27	1	5	0	1.007	8	9		1	5	4	0.910	142	142
0	3	5	1.206	23	21	3	4	1	1.004	16	16		3	3	6	0.908	274	271
1	2	6	1,201	16	15	2	4	4	1,004	189	197	4	1	3	4	0,903	342	341
1	4	2	1,194	97	96	1	4	5	1,004	59	61	()	3	8	0,902	389	386
4	1	0	1,194	506	503	2	2	7	1,001	201	209		2	5	3	0,900	451	436
2	1	6	1,192	239	241	1	5	1	1,000	43	44		5	2	2	0,896	29	25
3	3	0	1,184	323	321	0	5	2	1,000	2	2		5	0	4	0,891	2	1
4	1	1	1,182	80	80	4	3	0	0,998	0	0	4	1	4	0	0,888	11	11
0	1	7	1,180	25	25	2	3	6	0,997	206	205		2	4	6	0,887	210	205
4	0	2	1,179	65	66	4	0	5	0,994	82	81		1	3	8	0,887	37	36
3	0	5	1,178	46	47	4	3	1	0,991	21	22	()	2	9	0,885	293	285
1	0	7	1,177	180	184	0	3	7	0,990	1	1	4	1	4	1	0,883	114	112
3	3	1	1,173	5	6	3	2	6	0,988	91	94	()	4	7	0,882	2	2
2	3	4	1,172	12	12	3	4	2	0,984	215	228)	5	5	0,880	227	226
1	3	5	1,171	20	21	4	2	4	0,982	57	60		2	0	9	0,880	174	173
0	4	3	1,171	252	263	0	2	8	0,980	38	40		5	1	4	0,878	188	184
3	2	4	1,157	23	24	1	5	2	0,980	19	21	-	3	1	8	0,877	365	354
4	1	2	1,149	139	140	4	1	5	0,976	145	155	:	5	2	3	0,872	325	318
3	1	5	1,148	43	43	5	0	1	0,975	6	6	4	1	2	6	0,872	47	46
1	1	7	1,147	38	38	3	0	7	0,974	37	39		3	5	0	0,871	141	140
3	3	2	1,140	61	63	2	0	8	0,973	0	0		1	2	9	0,871	46	45
2	4	0	1,139	194	201	4	3	2	0,972	97	101	4	1	4	2	0,869	69	69
1	4	3	1,139	63	66	3	3	5	0,971	68	70	-	3	4	5	0,869	73	72
2	4	1	1,129	10	12	1	3	7	0,970	9	9		l	4	7	0,868	390	386
4	0	3	1,126	37	48	0	5	3	0,967	67	68	-	2	1	9	0,867	49	48
4	2	0	1,108	10	10	5	1	0	0,964	26	26		3	5	1	0,867	90	88
2	2	6	1,106	143	142	1	2	8	0,961	4	4		2	5	4	0,866	72	70
2	4	2	1,100	3	3	5	1	l	0,958	40	41		1	5	5	0,866	47	46
0	4	4	1,100	325	332	3	1	7	0,957	247	249	4	1	0	7	0,862	310	295
4	1	3	1,100	92	94 42	2	1	8	0,956	82	83	4	+	5	2	0,860	69 729	6/
4	2	1	1,098	42	43	2	0	2	0,956	6	6 51)	6	0	0,858	/38	084
	2	2	1,096	40	40	3	4	3	0,952	49	51		5	5	2	0,853	12	
3	3	5	1,092	80	// 52	0	4	6	0,952	3	3) .	0	1	0,853	2	0
0	3	0	1,091	22	55 121	2	5	0	0,949	105	100		1	5	0	0,852	3	27
2	2	1	1,087	138	131	1	5 4	5	0,949	105	109		+	1	1	0,850	20	$\frac{27}{204}$
1	5 1	5	1,065	220	214	2	4	5 1	0,940	1/5	1/9))	0	10	0,830	199	204
1	4	4	1,075	40	214 18		2	1	0,945	250	260		5	2	10	0,040	115	117
4	2	2 5	1,072	49	48	5	1	2 2	0,941	239 52	200) 1	5 1	3	0,848	49 52	49 53
1	2	7	1,071	634	626	1	1	6	0,940	34	30		T Z	т 3	7	0,847	410	412
3	0	6	1,070	0.0	020	1 4	2	5	0,934	102	102	2	,	3	8	0,847	90	91
1	3	6	1,070	35	34	5	0	3	0,927	4	4		-	6	0	0,845	370	373
2	1	7	1,003	238	234	0	1	9	0,927	46	46		5	2	4	0.842	2	2
4	0	4	1,005	103	101	4	0	6	0,927	636	627		3	2	8	0.841	67	70
0	Ő	8	1,060	27	26	2	5	2	0.926	79	77		Í	- 6	1	0.841	45	46
2	4	3	1,000	116	109	0	5	4	0.926	4	4)	6	2	0.841	124	128
3	1	6	1.047	215	199	1	0	9	0.926	83	80		5	1	5	0.838	165	166
4	1	4	1 040	250	243	2	3	7	0.918	144	131)	1	10	0.837	342	345
0	1	8	1,039	106	105	5	2	0	0,917	107	99		1	0	1	0,836	26	26
1	0	8	1,037	44	44	3	4	4	0,913	156	156		5	3	2	0,835	66	68
3	3	4	1,034	362	365	5	1	3	0,913	67	67		2	2	9	0,833	31	31
4	2	3	1,031	48	50	4	1	6	0,912	21	21		3	5	3	0,833	135	134
0	4	5	1,025	251	265	5	2	1	0,912	264	265)	5	6	0,832	183	181
0	5	1	1,022	203	210	1	1	9	0,911	96	96		2	4	7	0,830	235	234
1	1	8	1,016	30	30	3	2	7	0,911	122	122		1	6	2	0,829	110	114
3	4	0	1,011	156	155	2	2	8	0,910	16	16		2	5	5	0,828	1	1

Tab. 8.4b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (125,5°-Bank, Rotax/ISIS) für ε-Zn(OD)2 bei 298 K (Fortsetzung)

h	k	1	d / Å	F_o^2	F_{c}^{2}	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	3	9	0,826	5	6	1	5	7	0,775	36	33	6	3	2	0,727	10	11
1	1	10	0,825	109	117	4	3	7	0,770	173	171	1	7	0	0,727	4	4
3	4	6	0,823	32	34	5	2	6	0,769	298	294	4	3	8	0,727	104	114
0	6	3	0,821	94	98	5	4	2	0,768	13	13	2	3	10	0,726	14	16
1	5	6	0,820	187	193	6	2	2	0,767	40	39	2	4	9	0,726	33	37
4	4	4	0,819	11	12	4	2	8	0,766	159	158	1	6	6	0,725	6	6
0	4	8	0,818	0	0	2	2	10	0,765	51	51	1	7	1	0,724	239	261
6	0	0	0,818	22	23	0	6	5	0,765	22	22	0	7	2	0,724	1	1
4	2	7	0,818	45	48	6	0	4	0,763	225	229	3	2	10	0,723	14	18
3	0	9	0,817	54	58	5	0	7	0,763	22	23	5	0	8	0,720	69	91
5	3	3	0,816	5	6	0	1	11	0,763	114	115	4	2	9	0,718	70	85
4	3	6	0,815	20	22	1	0	11	0,762	417	413	1	7	2	0,717	6	7
1	3	9	0,815	7	8	5	3	5	0,761	169	166	4	4	7	0,716	70	76
6	0	l	0,814	195	217		3	10	0,760	622	601	3	6	4	0,715	55	56
2	6	0	0,810	4	4		4	9	0,760	86	83	4	2	5	0,715	83	86
	0	3	0,810	122	120	3	6	0	0,760	8 19	8	6	5	3	0,/14	26	26
0	1	1	0,808	123	139	4	5	3 1	0,760	18	1/	2	1	8 2	0,713	24 52	23 54
0	1	1	0,804	23 50	25 64	2	0	1	0,757	81 52	70 50	5	/	5	0,712	52 140	54 154
6	4	0 2	0,807	39 73	04 78	1	6	4	0,756	30	28	5	5 1	5	0,710	149	104
5	2	5	0,803	6	6	6	1	3 4	0,755	20 46	20 44	6	2	5	0,709	80	80
3	1	9	0,807	40	43	5	1	7	0,755	+0 77	74	0	2 4	10	0,708	5	5
5	0	6	0,806	220	235	1	1	11	0,754	7	7	6	0	6	0,708	1	1
2	6	1	0,806	36	38	3	0	10	0 753	2	2	5	5	1	0 708	8	8
4	0	8	0.802	37	40	5	4	3	0.752	227	215	2	2	11	0.707	266	269
3	5	4	0.806	41	44	4	4	6	0.752	165	158	3	5	7	0.707	84	85
0	2	10	0,806	17	18	6	2	3	0.752	14	13	2	5	8	0,707	151	154
2	0	10	0,802	1	1	1	3	10	0,751	136	132	0	0	12	0,707	20	21
5	1	6	0,797	17	19	1	4	9	0,751	186	180	2	7	0	0,704	5	6
2	6	2	0,795	115	126	3	6	2	0,748	1	1	1	7	3	0,704	76	82
0	6	4	0,795	76	83	4	0	9	0,748	18	17	0	3	11	0,703	4	4
1	2	10	0,795	67	73	2	5	7	0,747	55	52	4	6	0	0,703	2	2
6	1	2	0,794	3	4	3	1	10	0,745	106	91	2	6	6	0,703	5	5
4	1	8	0,793	163	177	3	5	6	0,742	8	8	2	7	1	0,702	22	22
2	1	10	0,792	40	43	4	1	9	0,740	15	15	6	1	6	0,701	38	39
5	3	4	0,791	161	169	4	5	4	0,739	57	57	1	4	10	0,701	9	9
3	3	8	0,790	125	128	0	2	11	0,739	164	162	5	5	2	0,701	59	62
4	5	0	0,789	288	290	0	5	8	0,739	160	158	4	6	1	0,701	59	62
2	5	6	0,788	116	117	6	3	0	0,738	44	44	0	I	2	0,700	27	29
4	4	2	0,787	26 70	25 77	3	3	9	0, /3/	145	143	0	6	12	0,700	49	52 124
0	5	3 1	0,780	/9 50	56	0	0	5 11	0,737	270	79	1	0	12	0,700	129	134
4	5	1	0,785	30 116	30 112	6	2	11	0,730	219	2/4	/	0	10	0,099	32 191	32 190
0	5	47	0,785	56	53	3	5	3	0,730	142	139	4	0	11	0,098	101	100
2	3	9	0,783	40	38	0	6	6	0,734	142	12	6	3	11 	0,098	36	36
5	4	Ó	0,780	12	13	0	7	1	0,732	52	50	5	3	7	0,097	2	2
6	2	0	0,780	0	0	5	4	4	0,732	7	6	1	3	11	0,696	18	18
3	2	9	0 778	70	69	3	4	8	0,732	55	54	0	5	9	0,695	2	2
2	6	3	0.778	96	95	6	2	4	0,732	87	84	7	1	0	0.695	158	145
5	4	1	0,777	96	90	5	2	7	0,731	12	12	2	7	2	0,695	77	71
6	1	3	0,777	32	30	2	6	5	0,731	21	21	0	7	4	0,695	0	0
3	4	7	0,776	49	45	1	2	11	0,731	25	25	5	2	8	0,694	56	50
6	2	1	0,776	233	214	1	5	8	0,730	17	18	4	6	2	0,694	14	12
2	4	8	0,776	41	37	5	3	6	0,730	12	12	1	1	12	0,693	119	105
4	5	2	0,775	127	116	6	1	5	0,729	2	2	3	6	5	0,693	7	6
3	5	5	0,775	84	77	2	1	11	0,728	72	78	1	6	7	0,693	28	24

Tab. 8.4b:Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (125,5°-Bank, Rotax/ISIS) für ε-Zn(OD)2 bei 298 K (Fortsetzung)

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
7	1	1	0,692	49	43	0	2	12	0,682	4	4	2	1	12	0,673	23	23
7	0	2	0,692	148	131	6	4	2	0,681	15	14	3	2	11	0,673	48	49
4	1	10	0,691	40	35	4	4	8	0,681	89	83	2	6	7	0,673	9	9
3	1	11	0,691	6	5	7	0	3	0,681	114	107	3	5	8	0,673	100	102
6	4	0	0,690	17	15	2	4	10	0,680	18	17	6	1	7	0,672	90	95
3	3	10	0,690	91	79	6	3	5	0,677	24	29	6	4	3	0,671	33	36
3	4	9	0,690	37	32	5	0	9	0,680	58	56	3	7	0	0,671	7	8
5	5	3	0,689	8	7	7	2	0	0,677	21	26	3	6	6	0,669	84	89
4	5	6	0,689	21	18	2	3	11	0,676	25	30	2	5	9	0,669	8	8
1	5	9	0,688	54	47	2	0	12	0,679	2	2	3	7	1	0,669	12	13
6	4	1	0,688	298	261	1	2	12	0,675	72	79	2	7	4	0,668	49	53
1	7	4	0,688	50	44	6	0	7	0,678	1	1	1	7	5	0,668	51	55
7	1	2	0,686	59	54	7	1	3	0,675	0	0	7	2	2	0,668	10	11
4	3	9	0,685	20	18	0	7	5	0,675	26	27	4	6	4	0,667	30	34
2	7	3	0,683	153	144	7	2	1	0,674	39	40	0	6	8	0,667	48	57
5	4	6	0,683	33	31	5	1	9	0,674	1	1	7	0	4	0,666	14	18
6	2	6	0,683	46	44	5	5	4	0,674	62	62						
4	6	3	0,682	42	39	4	2	10	0,673	125	126						

Tab. 8.4b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungsdaten (125,5°-Bank, Rotax/ISIS) für ε-Zn(OD)₂ bei 298 K (Fortsetzung)

Tab. 8.5a: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (28,1°-Bank, Rotax/ISIS) für Li¹¹B(OD)₄ bei 298 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
1	1	1	4,913	14	14	2	2	3	2,107	121	121	1	3	4	1,742	88	88
0	0	2	4,585	268	268	1	1	4	2,133	10	10	2	4	2	1,739	190	188
0	2	0	4,265	18	21	0	4	0	2,133	46	45	3	0	4	1,734	44	43
2	0	0	3,978	79	75	0	4	1	2,077	37	36	1	4	3	1,708	29	31
1	0	2	3,973	304	292	2	3	2	2,065	44	44	3	1	4	1,700	133	144
0	2	1	3,867	260	273	3	2	2	2,022	84	83	0	2	5	1,685	200	210
2	1	0	3,605	125	129	0	2	4	2,019	145	142	4	2	2	1,678	0	0
1	1	2	3,601	1	1	1	3	3	2,014	1	1	1	2	5	1,648	73	76
1	2	1	3,478	99	97	1	4	1	2,010	0	0	1	5	1	1,641	68	68
2	1	1	3,355	25	22	4	0	0	1,989	278	262	3	3	3	1,638	3	3
0	2	2	3,123	16	14	2	0	4	1,986	48	45	4	1	3	1,636	52	51
2	0	2	3,005	138	142	1	2	4	1,957	163	158	3	4	1	1,635	16	16
2	2	0	2,909	0	0	3	1	3	1,950	4	4	2	1	5	1,635	192	189
1	2	2	2,907	307	301	4	1	0	1,937	4	4	4	3	0	1,630	30	29
2	1	2	2,834	81	81	2	1	4	1,935	11	11	2	3	4	1,628	2	2
2	2	1	2,773	49	56	0	4	2	1,934	11	11	3	2	4	1,607	293	293
1	1	3	2,706	127	127	3	3	1	1,897	7	7	4	3	1	1,605	64	63
1	3	1	2,570	203	205	4	1	1	1,895	8	8	2	4	3	1,601	61	60
0	2	3	2,485	405	383	2	4	0	1,880	1	1	2	5	0	1,568	4	4
2	2	2	2,457	102	96	1	4	2	1,879	4	4	1	5	2	1,568	71	70
3	1	1	2,441	38	35	2	3	3	1,845	10	11	3	4	2	1,562	7	7
1	2	3	2,372	28	26	2	4	1	1,841	152	154	0	4	4	1,561	170	167
2	1	3	2,332	249	245	4	0	2	1,825	260	261	4	3	2	1,536	48	50
2	3	0	2,313	1000	1000	3	2	3	1,813	88	88	1	4	4	1,532	15	15
1	3	2	2,312	46	46	4	2	0	1,803	4	4	4	2	3	1,553	10	10
3	0	2	2,296	300	302	2	2	4	1,801	14	14	2	2	5	1,552	104	103
0	0	4	2,293	43	44	3	3	2	1,786	2	2	0	0	6	1,528	512	521
2	3	1	2,243	59	59	4	1	2	1,784	67	65	2	5	1	1,546	29	30
3	1	2	2,217	22	23	4	2	1	1,769	1	1	5	1	1	1,542	36	37
1	0	4	2,203	16	18	1	1	5	1,749	22	22	1	3	5	1,513	27	26
3	2	1	2,187	45	49	0	4	3	1,749	550	554	5	0	2	1,503	37	36

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
4	0	4	1,502	192	187	6	1	0	1,310	8	8	5	1	5	1,190	10	10
1	0	6	1,501	4	4	3	1	6	1,309	11	11	5	3	4	1,188	44	40
3	1	5	1,486	100	100	5	0	4	1,307	3	3	2	4	6	1,186	8	7
2	5	2	1,484	23	23	3	5	3	1,299	42	42	5	4	3	1,177	68	61
3	3	4	1,481	2	2	6	1	1	1,297	6	6	1	3	7	1,177	14	13
5	1	2	1,481	0	0	4	5	0	1,295	165	167	6	2	3	1,170	56	56
4	1	4	1,480	14	14	2	5	4	1,294	25	25	4	2	6	1,166	2	3
1	1	6	1,478	35	34	5	1	4	1,292	2	2	2	7	0	1,165	78	81
5	2	1	1,472	8	8	0	6	3	1,289	7	7	1	7	2	1,165	28	30
1	5	3	1,464	59	59	4	2	5	1,286	99	99	3	1	7	1,164	50	52
3	4	3	1,460	112	114	2	6	2	1,285	61	61	6	3	2	1,163	2	3
4	4	0	1,455	91	93	4	5	1	1,282	27	27	3	6	3	1,159	39	41
2	4	4	1,454	34	35	1	1	7	1,278	85	85	5	2	5	1,157	196	205
0	2	6	1,439	33	32	2	3	6	1,275	17	17	4	6	0	1,157	9	10
4	3	3	1,438	150	145	6	0	2	1,274	19	19	2	6	4	1,156	9	9
2	3	5	1,437	1	1	1	6	3	1,273	60	61	2	7	1	1,156	13	13
4	4	1	1,437	37	36	6	2	0	1,266	101	105	5	5	1	1,154	12	12
2	0	6	1,427	73	70	3	2	6	1,265	23	23	6	0	4	1,148	7	7
3	2	5	1,422	1	1	5	3	3	1,264	0	0	4	6	1	1,148	53	52
0	6	0	1,422	17	17	5	4	1	1,263	275	285	0	0	8	1,146	360	355
5	2	2	1,418	33	33	6	1	2	1,260	22	22	2	3	7	1,140	212	207
3	5	1	1,418	7	7	6	2	1	1,254	90	91	4	4	5	1,140	0	0
4	2	4	1,417	5	6	0	2	7	1,252	133	133	6	1	4	1,138	20	20
1	2	6	1,416	5	5	5	2	4	1,250	155	154	1	0	8	1,135	17	17
2	1	6	1,407	132	134	4	5	2	1,246	47	46	3	2	7	1,132	12	12
0	6	1	1,405	2	2	0	4	6	1,242	80	80	3	5	5	1,130	23	23
2	5	3	1,395	10	10	3	6	1	1,241	77	77	2	7	2	1,129	0	0
5	3	1	1,373	235	228	6	2	2	1,221	62	63	5	5	2	1,128	27	28
5	1	3	1,393	131	132	4	3	5	1,218	100	102	4	5	4	1,128	37	38
1	4	5	1,370	39	37	1	2	7	1,237	13	13	1	5	6	1,127	17	18
3	5	2	1,369	131	127	3	5	4	1,216	97	98	6	4	0	1,126	129	134
0	4	5	1,391	31	31	1	5	5	1,234	0	0	3	4	6	1,125	19	20
4	4	2	1,387	125	126	4	0	6	1,212	1	1	1	1	8	1,125	75	78
1	6	1	1,384	130	130	3	4	5	1,232	0	0	0	6	5	1,124	143	147
0	6	2	1,358	3	3	2	1	7	1,231	15	15	4	6	2	1,122	3	3
2	2	6	1,353	51	51	3	6	2	1,209	17	17	1	7	3	1,121	0	0
1	5	4	1,349	301	299	5	4	2	1,229	36	36	6	3	3	1,118	14	15
3	4	4	1,346	14	14	0	6	4	1,208	176	175	7	1	1	1,118	50	51
5	2	3	1,340	18	17	4	4	4	1,228	1	1	6	4	1	1,118	239	241
2	6	0	1,339	0	0	1	4	6	1,227	1	1	0	4	7	1,116	4	4
1	6	2	1,339	80	77	2	6	3	1,226	1	1	4	3	6	1,115	2	2
3	3	5	1,333	111	107	6	1	3	1,204	0	1	5	4	4	1,115	51	51
4	1	5	1,332	7	7	6	3	0	1,202	18	19	1	6	5	1,113	30	29
5	3	2	1,329	11	10	3	3	6	1,200	60	61	6	2	4	1,108	51	50
4	3	4	1,328	2	2	4	1	6	1,200	128	131	5	3	5	1,107	83	82
1	3	6	1,327	40	38	2	2	7	1,195	52	51	0	2	8	1,107	12	12
6	0	0	1,326	6	6	1	6	4	1,195	151	149	1	4	7	1,105	61	61
2	6	l	1,325	45	43	1	7	1	1,194	49	48	7	0	2	1,103	142	142
3	0	6	1,324	382	367	4	5	3	1,192	354	340	5	0	6	1,102	10	10
4	4	3	1,313	90	87	2	5	5	1,192	92	88	2	0	8	1,102	4	4
2	4	5	1,313	18	18	6	3	1	1,192	3	3						

Tab. 8.5a: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (28,1°-Bank, Rotax/ISIS) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
0	2	2	3,123	14	14	3	1	4	1,700	102	130	4	4	2	1,387	116	111
2	0	2	3,005	133	144	0	2	5	1,685	124	189	1	6	1	1,384	116	114
2	2	0	2,909	0	0	4	2	2	1,678	0	0	5	3	1	1,373	227	200
1	2	2	2,907	284	303	1	2	5	1,648	69	68	1	4	5	1,370	35	33
2	1	2	2,834	81	81	1	5	1	1,641	62	62	3	5	2	1,369	119	111
2	2	1	2,773	58	56	3	3	3	1,638	3	3	0	6	2	1,358	3	3
1	1	3	2,706	120	125	4	1	3	1,636	46	46	2	2	6	1,353	47	45
1	3	1	2,570	195	200	3	4	1	1,635	14	14	1	5	4	1,349	292	262
0	2	3	2,485	376	371	2	1	5	1,635	168	170	3	4	4	1,346	12	12
2	2	2	2,457	99	93	4	3	0	1,630	25	26	5	2	3	1,340	12	15
5	1	1	2,441	30	34 25	2	3	4	1,628	201	$\frac{2}{2}$	2	6	0	1,339	0 52	0
1	2	3 2	2,372	246	25		2	4	1,007	294	202	1	0	2	1,339	55 91	0/
2	1	3 0	2,332	240	254	4	3 1	1	1,003	02 40	57		3 1	5	1,333	81 5	94
2 1	2	2	2,313	1000	934	2	4	5	1,001	49	54 1	4	1	2 2	1,352	5	0
1	0	2	2,312	288	287	1	5	2	1,508	71	62	1	3	2 1	1,329	2	2
0	0	$\frac{2}{4}$	2,290	200 41	207 41	3	3 4	2	1,508	/1 8	6	1	3	- -	1,328	35	$3\frac{2}{4}$
2	3	1	2,273 2 243	54	56	0	4	$\frac{2}{4}$	1,561	194	149	6	0	0	1 326	5	5
3	1	2	2,245	15	22	4	2	3	1,501	13	9	2	6	1	1,320	40	38
1	0	4	2,203	12	17	2	$\frac{2}{2}$	5	1,552	130	92	3	0	6	1 324	334	321
3	2	1	2,187	34	46	2	5	1	1.546	30	26	4	4	3	1.313	63	76
1	1	4	2.133	11	9	5	1	1	1.542	33	33	2	4	5	1.313	13	16
0	4	0	2.133	51	42	4	3	2	1.536	45	45	6	1	0	1.310	5	7
2	2	3	2,107	127	114	1	4	4	1,532	15	14	3	1	6	1,309	7	10
0	4	1	2,077	30	34	0	0	6	1,528	511	464	5	0	4	1,307	2	3
2	3	2	2,065	50	41	1	3	5	1,513	19	23	3	5	3	1,299	37	37
3	2	2	2,022	80	77	5	0	2	1,503	35	32	6	1	1	1,297	6	6
0	2	4	2,019	139	132	4	0	4	1,502	184	166	4	5	0	1,295	144	145
1	3	3	2,014	1	1	1	0	6	1,501	4	3	2	5	4	1,294	22	22
1	4	1	2,010	0	0	3	1	5	1,486	89	88	5	1	4	1,292	2	2
4	0	0	1,989	290	242	2	5	2	1,484	20	21	0	6	3	1,289	6	6
2	0	4	1,986	50	42	3	3	4	1,481	1	1	4	2	5	1,286	92	86
1	2	4	1,957	151	146	5	1	2	1,481	0	0	2	6	2	1,285	57	53
3	1	3	1,950	3	4	4	1	4	1,480	9	12	4	5	1	1,282	24	23
4	1	0	1,937	4	4	1	1	6	1,478	18	30	1	1	7	1,278	73	74
2	1	4	1,935	10	10	5	2	1	1,472	3	7	2	3	6	1,275	15	15
0	4	2	1,934	10	10	1	5	3	1,464	40	53	6	0	2	1,274	17	17
3	3	1	1,897	5	7	3	4	3	1,460	96	100	1	6	3	1,273	51	53
4	1	1	1,895	6	7	4	4	0	1,455	90	82	6	2	0	1,266	85	91
2	4	0	1,880	0	1	2	4	4	1,454	34	31	3	2	6	1,265	19	20
1	4	2	1,8/9	0	3	0	2	6	1,439	31	28	5	3	5	1,264	226	249
2	3	3	1,845	120	10	4	3	5	1,438	139	128	5	4	1	1,263	236	248
2 4	4	1	1,841	139	141		3 1) 1	1,437	24	22	0	1	2	1,200	19	19
4	2	2	1,023	504 80	238	4	4	1	1,457	24 91	52 62	0	2	1	1,234	00 116	/9 116
5	2	5	1,015	09 2	00 2	2	2	5	1,427	01	02	5	2	/	1,232	124	124
4	2	1	1,805	5	3 12	3 0	6	5	1,422	17	15		2 5	4	1,230	134	154
2	2	4 2	1,001	2	2	5	2	2	1,422	27	29	0	3 4	2 6	1,240	42 76	40 69
5 4	1	2	1,784	74	60	3	5	1	1,418	6	2) 7	3	т 6	1	1,2+2 1 241	70	66
4	2	1	1 769	1	1	4	2	4	1 417	4	5	1	2	7	1,237	11	11
1	1	5	1.749	22	20	1	$\frac{1}{2}$	6	1.416	3	4	1	5	5	1.234	0	0
0	4	3	1.749	560	503	2	1	6	1.407	99	118	3	4	5	1.232	ŏ	ŏ
ĩ	3	4	1,742	80	79	0	6	1	1,405	2	2	2	1	7	1,231	14	13
2	4	2	1,739	173	170	2	5	3	1,395	9	9	5	4	2	1,229	36	31
3	0	4	1,734	41	39	5	1	3	1,393	116	116	4	4	4	1,228	1	1
1	4	3	1,708	20	28	0	4	5	1,391	28	27	1	4	6	1,227	1	1

Tab. 8.5b:	Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
	daten (125,5°-Bank, Rotax/ISIS) für Li ¹¹ B(OD) ₄ bei 298 K

h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2	h	k	1	d / Å	F_o^2	F_c^2
2	6	3	1,226	1	1	1	1	8	1,125	68	67	4	4	6	1,054	4	4
6	2	2	1,221	60	55	0	6	5	1,124	126	126	5	6	1	1,053	56	62
4	3	5	1,218	94	88	4	6	2	1,122	3	3	1	8	1	1,050	1	1
3	5	4	1,216	88	85	1	7	3	1,121	0	0	7	3	1	1,049	46	56
4	0	6	1,212	1	1	6	3	3	1,118	12	13	5	4	5	1,047	7	8
3	6	2	1,209	15	14	7	1	1	1,118	43	43	6	5	0	1,047	7	9
0	6	4	1,208	155	152	6	4	1	1,118	204	207	3	5	6	1,046	8	9
6	1	3	1.204	0	0	0	4	7	1.116	3	3	3	1	8	1.044	75	81
6	3	0	1.202	16	16	4	3	6	1.115	2	2	6	2	5	1.042	8	8
3	3	6	1.200	53	52	5	4	4	1.115	42	43	3	7	3	1.041	110	109
4	1	6	1.200	113	113	1	6	5	1.113	23	25	0	6	6	1.041	142	141
2	2	7	1,195	44	44	6	2	4	1.108	42	43	6	5	1	1.040	0	0
1	6	4	1,195	129	129	5	3	5	1.107	69	70	4	7	0	1.039	124	118
1	7	1	1 194	42	42	0	2	8	1 107	10	11	2	7	4	1 039	81	77
4	5	3	1 192	301	293	1	4	7	1 105	51	52	0	8	2	1 0 3 9	4	4
2	5	5	1 192	78	76	7	0	2	1 103	120	122	5	5	4	1 038	53	51
6	3	1	1 192	3	3	5	Ő	6	1 102	8	8	3	6	5	1,035	24	27
5	1	5	1 190	9	8	2	Ő	8	1 102	3	3 3	7	2	3	1 034	0	- 1
5	3	4	1 188	33	34	3	6	4	1 100	1	1	5	6	2	1 033	7	8
2	4	6	1,100	6	6	3	7	1	1,100	8	9	4	6	4	1,033	3	4
5	4	3	1,100	51	52	1	2	8	1,097	0	Ó	4	7	1	1,033	82	92
1	3	7	1,177	10	11	2	5	6	1,094	25	29	1	6	6	1,032	1	1
6	2	''	1,170	46	48	7	1	2	1,094	11	12	1	5	7	1,032	45	48
4	$\frac{2}{2}$	6	1,176	2	2	6	4	$\frac{2}{2}$	1,094	6	7	2	8	Ó	1,030	0	0
2	7	0	1,100	69	70	5	1	6	1,093	17	18	1	8	2	1,030	32	34
1	7	2	1,105	25	25	2	1	8	1,092	76	81	3	4	7	1,030	58	60
3	1	7	1,105	43	25 45	7	2	1	1,092	65	64	7	3	2	1,029	17	18
6	3	2	1,104	2		2	7	3	1,091	247	229	5	3	6	1,029	110	109
3	6	3	1,105	34	35	5	5	3	1,089	247	22) 7	2	3	8	1,020	110	105
5	2	5	1,157	176	177	3	3	7	1,000	02	83	2	8	1	1,027	7	6
4	6	0	1,157	170	8	4	1	7	1,000	287	263	2	2	8	1,023	64	57
2	6	4	1,157	8	8		6	3	1,005	207	205	Д	2	7	1,022	47	$\frac{37}{42}$
$\frac{2}{2}$	7	1	1,156	11	11	2	6	5	1,002	15	17	6	5	2	1,021	3	3
5	5	1	1,150	10	10	2	7	2	1,001	8	8	7	0	2 1	1,021	18	18
6	0	1	1,134	6	6	2	1	2	1,070	22	22	/	7	7 2	1,013	10	10
1	6	4	1,140	45	15		4	2	1,075	32 42	52 12	4	1	2 1	1,013	66	65
0	0	8	1,140	305	305	5	2	6	1,008	72	+2 23	6	1		1,011	6	6
2	3	7	1,140	102	178	2	2	8	1,007	23 7	23 7	0		4 8	1,011	8	8
1	1	5	1,140	192	0	1	2	0 1	1,007	1	1	2	4	6	1,010	0	0
6	1	1	1,140	18	17	0	8	0	1,000	360	371	1	7	5	1,007	57	55
1	1	4	1,130	10	1/	6	0	5	1,000	10	10	1	0	2	1,007	16	15
1	2	0 7	1,133	14	14	6	1	1	1,000	19	19	2	0 5	7	1,007	40	43
2	2 5	5	1,132	20	20		2 2	4	1,004	11	11	6	2	5	1,005	/ 8	8
2	5 7	2	1,130	20	20	4	2 0	1	1,000	11	11	2	0	2	1,005	0	0
2 5	7	2 2	1,129	25	24		05	1	1,039	201	1 297	2 5	0	2 7	1,003	4	4
5	5	2 ۸	1,120	23	24 22	47	5 1	2	1,050	271 1	∠0/ 1	5 1	1	/ 0	1,004	J 11	10
4	5 5	4	1,120 1 1 2 7	34 16	55 15	6	1	2 2	1,037	1	1	1	1	9 0	1,004	11 52	10
1	5 1	0	1,127	10	15	2	4 0	2 Q	1,057	49	49 11	1	4	0 2	1,002	32 2	30 2
2	+ 1	6	1,120	119	115	1	2	0	1,054	12	14	5	0	5 6	1,002	ے 1	∠ 1
3	4	U	1,123	10	1 /	1	3	0	1,034	9	9	0	U	0	1,002	1	1

Tab. 8.5b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Neutronenbeugungs-
daten (125,5°-Bank, Rotax/ISIS) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

1	1	1	n 2	т ²		1	1		n 2	n ²					n ²	n ²	
h	k	l	F _o ²	F _c ²	σ	h	k	l	F _o ²	F _c ²	σ	h	k	l	F _o ²	F_c^2	σ
2	0	0	45	25	1	8	9	0	30	25	1	5	4	1	339	338	2
4	0	0	454	424	2	0	10	0	15	12	1	6	4	1	310	317	1
6	0	0	0	0	1	2	10	0	4	4	1	7	4	1	10	8	0
8	Ő	Õ	317	330	4	4	10	Ő	0	2	2	8	4	1	7	6	Õ
10	Õ	Õ	6	5	1	6	10	Ő	6	6	2	ğ	4	1	43	48	1
12	0	0	40	37	1	8	10	0	3	3	1	10	4	1	1	1	1
2	1	0	204	101	1	2	11	0	60	61	2	11		1	2	2	1
4	1	0	420	267	1	4	11	0	20	204	2	11	4	1	204	267	2
4	1	0	430	245	2	4	11	0	29	20	2	1	5	1	294	207	2
0	1	0	248	245	2	0	11	0	1	1	2	2	5	1	251	225	2
8	1	0	84	81	2	0	12	0	1	3	2	3	2	1	44	32	1
10	l	0	25	22	1	2	12	0	10	12	1	4	5	I	13	12	0
12	1	0	1	2	1	4	12	0	8	6	1	5	5	1	15	15	0
0	2	0	258	253	1	2	13	0	10	9	2	6	5	1	4	5	0
2	2	0	2	1	0	1	1	1	43	39	0	7	5	1	85	86	1
4	2	0	90	65	1	2	1	1	166	135	1	8	5	1	12	9	0
6	2	0	140	144	1	3	1	1	181	159	1	9	5	1	9	9	1
8	2	0	11	10	0	4	1	1	199	177	1	10	5	1	12	13	1
10	2	0	55	63	1	5	1	1	115	107	1	11	5	1	0	0	1
12	2	0	21	19	1	6	1	1	11	13	0	0	6	1	292	291	2
2	3	0	812	894	9	7	1	1	47	48	1	1	6	1	5	8	0
4	3	0	200	191	1	8	1	1	2	5	1	2	6	1	10	9	0
6	3	0	80	69	1	9	1	1	6	5	0	3	6	1	8	5	0
8	3	Õ	18	20	0	10	1	1	7	7	Õ	4	6	1	81	86	1
10	3	Ő	18	21	1	11	1	1	4	3	1	5	6	1	28	37	1
12	3	Ő	1	1	1	12	1	1	0	0	1	6	6	1	20	5	0
0	4	Ő	85	65	1	0	2	1	155	158	1	7	6	1	_1	0	1
2	4	0	57	49	1	1	$\frac{2}{2}$	1	827	916	3	8	6	1	2	1	1
1	1	0	1	1	1	2	2	1	12	12	0	0	6	1	2	0	1
4	4	0	1	2	1	2	2	1	238	214	1	10	6	1	2	1	1
Q Q	4	0	0	2	1	1	2	1	12	214	0	10	6	1	0	0	1
10	4	0	07	11	1	4	2	1	114	9	1	11	7	1	07	0	1
10	4	0	22	11	1	5	2	1	114	97	1	1	7	1	26	20	1
4	5	0	52 00	30 70	1	7	2	1	20	22	1	2	7	1	50	30	1
4	5	0	00	/0	ے 1	/	2	1	39 10	52 19	1	5	7	1	110	115	1
0	5	0			1	8	2	1	18	18	0	4	7	1	118	115	1
ð 10	5	0	03	03	2	10	2	1	8	9	0	5	7	1	0	1	1
10	5	0	10	/	3	10	2	1	1	1	1	0	7	1	-1	17	1
0	6	0	28	19	1	11	2	l	5	5	1	7	7	1	19	17	1
2	6	0	25	32	l	12	2	l	30	35	l	8	7	l	35	39	1
4	6	0	16	16	1	1	3	1	439	460	1	9	7	1	43	42	2
6	6	0	17	13	1	2	3	1	216	182	1	10	7	1	1	0	1
8	6	0	1	0	1	3	3	1	14	9	0	0	8	1	-1	0	1
10	6	0	26	30	1	4	3	1	67	67	1	1	8	1	17	16	0
2	7	0	106	131	2	5	3	1	80	74	1	2	8	1	0	1	1
4	7	0	103	123	2	6	3	1	20	24	0	3	8	1	15	16	0
6	7	0	0	0	1	7	3	1	30	33	1	4	8	1	2	5	1
8	7	0	1	0	1	8	3	1	2	1	0	5	8	1	0	0	1
10	7	0	29	38	1	9	3	1	3	7	1	6	8	1	6	7	1
0	8	0	339	364	5	10	3	1	20	21	0	7	8	1	1	0	1
2	8	0	18	18	1	11	3	1	4	3	1	8	8	1	1	3	1
4	8	0	2	4	2	12	3	1	5	6	1	9	8	1	0	2	1
6	8	0	35	31	1	0	4	1	19	13	0	1	9	1	17	19	0
8	8	0	94	112	3	1	4	1	97	81	1	2	9	1	54	59	1
2	9	0	29	33	1	2	4	1	518	491	2	3	9	1	27	28	1
4	9	0	25	22	1	3	4	1	95	85	1	4	9	1	1	0	1
6	9	0	32	26	3	4	4	1	1	0	0	 5	9	1	0	2	1

Tab. 8.5b:	Gemessene und	berechnete	quadrierte	Strukturfaktoren	aus der	Verfeinerung	von Röntge	neinkristall-
	daten (Mach3, M	lokα-Strahl	ung) für Li	¹¹ B(OD) ₄ bei 298	K (Fort	setzung)		

h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ
6	9	1	4	3	1	3	2	2	0	0	0	1	7	2	71	77	1
7	9	1	4	3	1	4	2	2	17	10	0	2	7	2	2	2	1
8	9	1	2	1	1	5	2	2	69	61	1	3	7	2	0	0	1
9	9	1	9	13	1	6	2	2	100	107	1	4	7	2	4	3	1
0	10	1	5	2	1	7	2	2	81	91	1	5	7	2	-1	0	1
1	10	1	8	6	0	8	2	2	12	12	0	6	7	2	-1	0	1
2	10	1	1	1	1	9	2	2	1	0	1	7	7	2	48	48	1
3	10	1	15	16	1	10	2	2	1	2	1	8	7	2	6	8	1
4	10	1	7	5	1	11	2	2	16	15	0	9	7	2	17	17	1
5	10	1	0	1	1	12	2	2	5	6	1	10	7	2	3	5	1
6	10	1	1	1	1	1	3	2	121	113	1	0	8	2	8	11	1
7	10	1	3	3	1	2	3	2	19	11	0	1	8	2	73	75	1
8	10	1	-1	1	1	3	3	2	45	43	1	2	8	2	4	2	1
1	11	1	2	5	1	4	3	2	322	285	1	3	8	2	112	118	1
2	11	1	10	12	1	5	3	2	42	46	1	4	8	2	1	1	1
3	11	1	25	24	1	6	3	2	5	6	0	5	8	2	3	4	1
4	11	1	13	19	1	7	3	2	31	32	1	6	8	2	1	2	1
5	11	1	26	26	1	8	3	2	4	4	0	7	8	2	6	4	1
6	11	1	2	2	1	9	3	2	18	18	0	8	8	2	0	0	1
0	12	1	32	32	1	10	3	2	37	38	1	9	8	2	9	8	1
1	12	1	4	5	1	11	3	2	3	5	1	1	9	2	1	2	1
2	12	1	7	8	1	0	4	2	44	42	1	2	9	2	9	11	0
3	12	1	16	22	1	1	4	2	123	112	1	3	9	2	54	51	1
4	12	1	2	2	1	2	4	2	70	68	1	4	9	2	3	1	1
5	12	1	8	9	1	3	4	2	2	1	0	5	9	2	25	25	1
1	13	1	15	16	1	4	4	2	6	5	0	6	9	2	23	28	1
2	13	1	4	2	1	5	4	2	6	4	0	7	9	2	16	15	1
0	0	2	109	127	1	6	4	2	5	3	0	8	9	2	2	1	1
1	0	2	773	943	17	7	4	2	1	1	0	0	10	2	25	34	1
2	0	2	252	241	1	8	4	2	20	17	0	1	10	2	-1	0	1
3	0	2	1000	1056	8	9	4	2	0	0	1	2	10	2	9	9	1
4	0	2	166	137	l	10	4	2	4	2	l	3	10	2	2	2	l
5	0	2	1	0	1	11	4	2	0	0	l	4	10	2	-1	0	1
6	0	2	0	0	1	1	5	2	5	7	0	5	10	2	0	1	1
/	0	2	85	103	1	2	5	2	103	9/	1	6	10	2	24	27	1
8	0	2	36	39	1	3	5	2	123	126	1	/	10	2	10	10	1
10	0	2	20	19	1	4	5	2	/3	89	1	8 1	10	2	10	10	1
10	0	2	0 174	190	1	5	5	2	40	41	1	1	11	2	9	12	1
11	0	2	1/4	169	2 1	7	5	2	18	10	1	2	11	2	13	12 20	1
12	1	∠ 2	213	200	1	/ Q	5	∠ 2	10	19	1	э Л	11 11	2 2	52 16	50 17	1 1
1 2	1	∠ 2	213 577	200 510	і Д	0	5	∠ ว	I Q	0 7	1 1	4	11 11	∠ 2	10	1/ 2	1
2	1	∠ ?	322	280	+ 2	10	5	∠ 2	0 17	/ 1/	1 1	5	11 11	∠ 2	1 _1	∠ ∩	1 1
5 4	1	∠ 2	922	200 72	∠ 1	11	5	∠ 2	17	14	1	0	12	∠ 2	-1 28	29	1 1
-+	1	∠ ?	156	14A	1	0	6	2	7	5	ı ۱	1	12	∠ ?	20 2	∠າ ົ	1 1
6	1	∠ 2	20	144	0	1	6	∠ 2	, 80	70	2	2	12	∠ 2	∠ 10	∠ 7	1 1
7	1	∠ 2	20 54	19 /10	1	2	6	2	99	03	2 1	2	12	∠ 2	10	, 0	1
8	1	2	54	ر به	0	2	6	2	10	95 7	0	5 4	12	∠ ?	1	2	1 1
9	1	2	6	5	0		6	2	23	22	1		12	$\frac{2}{2}$	1	2	2
10	1	2	5	3	0	5	6	2	25	1	1	1	12	2	1	2 0	∠ 1
11	1	$\frac{2}{2}$	1	0	1	6	6	$\frac{2}{2}$	9	12	1	2	13	$\frac{2}{2}$	3	4	1
12	1	2	2	2	1	7	6	$\frac{1}{2}$	30	28	1	1	1	3	108	104	1
0	2	2	75	63	1	8	6	2	3	20	1	2	1	3	419	414	2
1	$\frac{2}{2}$	$\frac{2}{2}$	652	693	6	9	6	$\frac{1}{2}$	5	6	1	3	1	3	230	197	1
2	$\overline{2}$	$\overline{2}$	460	429	1	10	6	$\overline{2}$	10	8	1	4	1	3	15	15	0
_	-	-		=-			÷	-		-			-	-			~

Tab. 8.5b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristalldaten (Mach3, Mokα-Strahlung) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ
5	1	3	176	162	1	0	6	3	85	87	4	2	12	3	2	1	1
6	1	3	31	31	1	1	6	3	82	80	2	3	12	3	8	7	1
7	1	3	24	24	1	2	6	3	53	55	1	4	12	3	-1	0	1
8	1	3	38	45	1	3	6	3	32	33	1	0	0	4	290	233	2
9	1	3	7	8	0	4	6	3	5	7	1	1	0	4	358	311	1
10	1	3	0	0	1	5	6	3	0	0	1	2	0	4	0	1	0
11	1	3	5	5	1	6	6	3	46	44	1	3	0	4	103	109	1
12	1	3	3	2	1	7	6	3	20	19	1	4	0	4	79	68	1
0	2	3	479	468	3	8	6	3	8	10	2	5	0	4	-1	0	1
1	2	3	99	94	1	9	6	3	13	11	1	6	0	4	45	50	1
2	2	3	48	43	0	10	6	3	2	2	1	/	0	4	2	25	1
3	2	3	390	3/6	1	1	7	3	07	02	0	8	0	4	23	25	1
4	2	2	49	48	1	2	7	2	97	92 75	1 1	10	0	4	30 27	40	1
5	2	2	120	122	0	3	7	2	/0	/5	1	10	0	4	21	51	1
7	2	2	139	155	1	4	7	2	-1	06	1	11	1	4	120	106	1
8	2	3	32	32	1	6	7	3	32	34	2	2	1	4	22	23	0
9	2	3	2	1	1	7	7	3	13	13	1	3	1	4	8	23 7	0
10	2	3	11	10	0	8	7	3	2	15	1	4	1	4	88	85	1
11	$\frac{2}{2}$	3	36	35	1	9	7	3	0	1	1	5	1	4	0	0	0
12	$\frac{2}{2}$	3	50 7	33 7	1	10	7	3	15	16	1	6	1	4	1	1	0
1	3	3	143	120	1	0	8	3	54	46	3	7	1	4	1	4	Ő
2	3	3	55	41	1	1	8	3	1	0	1	8	1	4	1	2	1
3	3	3	113	100	1	2	8	3	18	19	0	9	1	4	104	115	1
4	3	3	132	123	1	3	8	3	2	1	1	10	1	4	0	0	1
5	3	3	0	2	0	4	8	3	2	1	1	11	1	4	4	2	1
6	3	3	6	5	0	5	8	3	13	18	1	0	2	4	498	451	6
7	3	3	4	4	0	6	8	3	9	9	1	1	2	4	161	152	1
8	3	3	5	5	0	7	8	3	3	3	1	2	2	4	46	36	1
9	3	3	8	7	0	8	8	3	14	9	1	3	2	4	242	235	1
10	3	3	0	0	1	9	8	3	6	5	1	4	2	4	20	20	0
11	3	3	1	0	1	1	9	3	55	57	1	5	2	4	205	214	1
0	4	3	134	144	1	2	9	3	8	4	1	6	2	4	25	30	1
1	4	3	178	158	1	3	9	3	21	18	1	7	2	4	2	1	0
2	4	3	275	259	1	4	9	3	59	55	1	8	2	4	15	18	0
3	4	3	180	161	1	5	9	3	4	4	1	9	2	4	51	56	1
4	4	3	3	6	0	6	9	3	0	0	1	10	2	4	4	3	1
5	4	3	107	110	1	7	9	3	1	2	1	11	2	4	2	2	1
6	4	3	74	71	1	8	9	3	17	17	1	1	3	4	675	662	2
7	4	3	54	61	1	0	10	3	22	20	1	2	3	4	12	8	0
8	4	3	-1	0	1	1	10	3	11	11	1	3	3	4	1/0	156	1
10	4	3) 11	4	0	2	10	3	3	3	1	4	3	4	2	6	0
10	4	2	11	14	0	3 4	10	2	8 1	0	1 1	5	3 2	4	10	1 14	0
11	4	2	12	10	1	4	10	2	-1	11	1		2	4	19	02	1
2	5	3	12	10	1	5	10	3	9 10	10	1	8	3	4	07 26	95 25	1
2	5	3	11	14	0	7	10	3	19	3	1	0	3	-	20	23 5	0
4	5	3	191	193	2	1	11	3	1	1	1	10	3	4	, 1	3	1
5	5	3	2	1	1	2	11	3	1	1	1	11	3	4	3	2	1
6	5	3	0	0	1	3	11	3	0	2	1	0	4	4	56	58	1
7	5	3	18	22	1	4	11	3	2	3	1	1	4	4	12	16	0
8	5	3	0	4	1	5	11	3	0	0	1	2	4	4	5	3	0
9	5	3	25	26	1	6	11	3	10	11	1	3	4	4	33	47	1
10	5	3	7	10	1	0	12	3	8	10	1	4	4	4	2	2	0
11	5	3	3	4	1	1	12	3	0	3	1	5	4	4	54	57	1

Tab. 8.5b:	Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristall-
	daten (Mach3, Mokα-Strahlung) für Li ¹¹ B(OD) ₄ bei 298 K (Fortsetzung)

h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ
6	4	4	3	3	0	1	10	4	5	3	1	3	4	5	2	2	1
7	4	4	-1	0	0	2	10	4	1	0	1	4	4	5	34	33	1
8	4	4	0	0	1	3	10	4	68	71	1	5	4	5	4	4	1
9	4	4	9	7	0	4	10	4	2	2	1	6	4	5	10	7	0
10	4	4	0	0	1	5	10	4	59	61	1	7	4	5	1	0	1
11	4	4	10	12	0	6	10	4	-1	0	1	8	4	5	1	0	1
1	5	4	140	142	1	7	10	4	13	7	1	9	4	5	9	11	1
2	5	4	58	59	1	1	11	4	21	22	1	10	4	5	32	35	1
3	5	4	-1	1	1	2	11	4	8	7	1	11	4	5	1	0	1
4	5	4	24	22	1	3	11	4	2	1	1	1	5	5	14	13	1
5	5	4	4	4	0	4	11	4	11	11	1	2	5	5	76	71	2
6	5	4	2	1	1	5	11	4	4	4	1	3	5	5	8	11	1
7	5	4	83	92	1	6	11	4	0	1	1	4	5	5	251	262	3
8	5	4	2	2	1	0	12	4	2	1	1	5	5	5	18	14	1
9	5	4	4	8	1	1	12	4	0	1	1	6	5	5	4	3	1
10	5	4	6	6	1	2	12	4	0	1	1	7	5	5	0	4	1
0	6	4	90	75	2	3	12	4	0	1	1	8	5	5	4	3	1
1	6	4	218	227	2	4	12	4	2	0	1	9	5	5	1	0	1
2	6	4	9	8	0	1	1	5	118	106	1	10	5	5	-2	0	2
3	6	4	16	19	0	2	1	5	94	99	1	0	6	5	178	193	3
4	6	4	0	0	1	3	1	5	62	59	1	1	6	5	10	12	1
5	6	4	15	11	0	4	1	5	1	0	1	2	6	5	0	2	1
6	6	4	2	2	1	5	1	5	42	35	1	3	6	5	38	41	1
7	6	4	16	14	1	6	1	5	60	66	2	4	6	5	13	17	1
8	6	4	11	11	1	7	1	5	104	94	1	5	6	5	46	48	2
9	6	4	45	45	1	8	1	5	38	39	1	6	6	5	0	4	2
10	6	4	-1	0	1	9	1	5	1	0	1	7	6	5	1	3	1
1	7	4	37	31	1	10	1	5	0	0	1	8	6	5	16	21	2
2	7	4	9	9	0	11	1	5	1	2	1	9	6	5	24	22	1
3	7	4	42	33	1	0	2	5	734	705	17	10	6	5	13	15	1
4	7	4	1	0	1	1	2	5	47	38	1	1	7	5	87	86	3
5	7	4	17	14	1	2	2	5	50	48	1	2	7	5	0	0	1
6	7	4	7	5	1	3	2	5	203	199	1	3	7	5	7	6	1
7	7	4	2	2	1	4	2	5	1	0	1	4	7	5	17	17	1
8	7	4	1	0	1	5	2	5	54	49	1	5	7	5	9	10	1
9	7	4	10	6	1	6	2	5	0	1	1	6	7	5	30	33	1
0	8	4	25	22	1	7	2	5	20	22	1	7	7	5	10	13	1
1	8	4	23	20	1	8	2	5	47	49	1	8	7	5	36	33	1
2	8	4	0	1	1	9	2	5	4	5	1	9	7	5	5	5	1
3	8	4	I		1	10	2	2	0	1	1	0	8	5	105	106	5
4	ð	4	0	כ ד	1	11	2	5	נ ד	I C	1	1	ð	5	12	9	1
5	8	4	4	2	1	1	3	5	15	0	0	2	8	5	35	36	1
07	ð	4	נ ד	5	1	2	2 2	5	15	114	0	3	ð	5	1	2	1
0	0	4	/	2	1	3	2	5	07	114	2 1	4	0	5	2	1	1
8	ð	4	4	2	1	4	2 2	5	9/	104	1) (ð	5	8 21	22	2 1
9	0	4	10	25	1	5	2	5	0	3 7	1	07	0	5	21 12	23 10	1
2	9 0	4 ∕I	10 Q	23 6	1	07	2	5 5	10	/ 1 Q	1	/ Q	o Q	5 5	12	10	1 1
2	7 0	4 1	0	2	1	/ &	2	5	19	10 20	1	0	0	5	13	12 20	1 1
1	2 0	+ ∕	22	∠ 21	1	0	2	5	10 2	20	1	2	2 0	5	10	20 12	1 1
4	7 0	4 1	22 18	∠1 19	1	10	2	5	ے 1	∠ າ	1	2	9 0	5	10	12	1 2
6	9	- -	_1	10	1	11	3	5	6	2 6	1	2 2	9	5	, 0	0	2 1
7	9	4	3	1	1	0	4	5	7	5	1	- - -	9	5	30	31	1
8	9	4	2	1	1	1	4	5	41	33	1	6	9	5	-1	0	1
0	10	4	4	4	1	2	4	5	33	35	1	7	9	5	18	21	1
v	1.5	•	•	•	-	-	•	2	55	55	-	,	/	2	10	- 1	

Tab. 8.5b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristalldaten (Mach3, Mokα-Strahlung) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

ſab	. 8.51	b: G d	emesser aten (M	ne und ach3, N	berechne Iokα-Stra	ete quao ahlung)	driert für l	te Str Li ¹¹ B	ukturfal (OD)4 b	ktoren a bei 298	aus dei K (Foi	r V rtse	erfein tzung	erung)	g vor	ı Röntge	eneinkri	stall
h	k	1	F. ²	E ²	<u>σ</u>	h	k	1	F. ²	E ²	<u>ر</u>	T	h	k	1	F. ²	F. ²	G
0	0	5	2	1	1	1	2	6	21	20	1		0	0	6	10	1	1
8	10	5	-5	1	1	4	2	6	21 126	20	1		8 1	8 0	6	0	1	1
1	10	5	5	5	1	5	2	6	150	132	2 1		2	9	6	17	18	1
2	10	5	1	1	1	7	2	6	5	4	1		2	<i>2</i>	6	17	10	1
2	10	5	8	8	1	8	3	6	3	J 1	1		5 1	9	6	2	2	2
3 4	10	5	5	3	1	9	3	6	0		1		5	9	6	12	9	1
5	10	5	32	27	1	10	3	6	27	30	1		6	9	6	5	8	1
6	10	5	12	14	1	0	4	6	50	47	3		7	9	6	2	1	1
1	11	5	2	0	1	1	4	6	41	37	1		Ó	10	6	3	5	2
2	11	5	5	8	1	2	4	6	18	18	0		1	10	6	10	9	1
3	11	5	1	0	2	3	4	6	0	0	1		2	10	6	25	25	1
4	11	5	5	2	1	4	4	6	2	1	1		3	10	6	-2	0	1
5	11	5	2	0	1	5	4	6	0	0	1		4	10	6	1	3	2
0	12	5	0	2	2	6	4	6	23	21	1		5	10	6	-3	0	1
1	12	5	3	1	1	7	4	6	0	0	1		6	10	6	54	48	2
2	12	5	0	0	2	8	4	6	10	9	1		1	11	6	2	0	2
3	12	5	1	0	1	9	4	6	3	2	1		2	11	6	12	13	1
0	0	6	1	1	1	10	4	6	1	0	1		3	11	6	11	9	2
1	0	6	265	224	2	1	5	6	13	11	1		4	11	6	9	8	1
2	0	6	13	14	0	2	5	6	66	63	4		0	12	6	29	28	2
3	0	6	217	234	2	3	5	6	2	3	1		1	12	6	4	2	1
4	0	6	21	32	1	4	5	6	13	14	1		1	1	7	5	7	0
5	0	6	130	121	2	5	5	6	13	14	1		2	1	7	3	3	1
6	0	6	6	9	1	6	5	6	4	4	1		3	1	7	28	30	1
7	0	6	35	39	3	7	5	6	1	2	1		4	1	7	201	205	2
8	0	6	13	14	1	8	5	6	-3	1	1		5	1	7	12	13	0
9	0	6	4	2	1	9	5	6	12	9	1		6	1	7	18	18	0

Tab. 8.5b:	Gemessene und berechnete	quadrierte Strukturfaktoren	aus der	Verfeinerung	von Röntgeneinkristall-
	daten (Mach3, Mokα-Strahl	lung) für Li ¹¹ B(OD) ₄ bei 298	K (For	tsetzung)	

-					_	-	-			-	-	-		-	-	_	-
4	0	6	21	32	1	4	5	6	13	14	1	1	1	7	5	7	0
5	0	6	130	121	2	5	5	6	13	14	1	2	1	7	3	3	1
6	0	6	6	9	1	6	5	6	4	4	1	3	1	7	28	30	1
7	0	6	35	39	3	7	5	6	1	2	1	4	1	7	201	205	2
8	0	6	13	14	1	8	5	6	-3	1	1	5	1	7	12	13	0
9	0	6	4	2	1	9	5	6	12	9	1	6	1	7	18	18	0
10	0	6	2	1	1	10	5	6	19	18	1	7	1	7	3	3	1
11	0	6	11	16	1	0	6	6	92	103	3	8	1	7	2	1	1
1	1	6	71	72	1	1	6	6	10	11	1	9	1	7	1	0	1
2	1	6	360	353	3	2	6	6	5	7	1	10	1	7	3	4	1
3	1	6	0	0	1	3	6	6	34	33	1	0	2	7	26	33	1
4	1	6	41	38	1	4	6	6	7	12	1	1	2	7	16	17	0
5	1	6	50	49	1	5	6	6	0	2	1	2	2	7	113	107	1
6	1	6	8	8	0	6	6	6	1	1	1	3	2	7	10	11	0
7	1	6	7	7	1	7	6	6	-1	2	1	4	2	7	3	2	1
8	1	6	41	40	1	8	6	6	25	24	2	5	2	7	12	9	0
9	1	6	9	9	1	9	6	6	2	2	1	6	2	7	42	41	1
10	1	6	49	41	1	1	7	6	5	8	1	7	2	7	0	2	1
11	1	6	0	0	1	2	7	6	20	19	1	8	2	7	-1	0	1
0	2	6	50	38	2	3	7	6	2	0	1	9	2	7	0	1	1
1	2	6	5	4	0	4	7	6	0	0	1	10	2	7	7	6	1
2	2	6	121	120	1	5	7	6	-1	0	1	1	3	7	25	29	1
3	2	6	42	43	1	6	7	6	2	2	1	2	3	7	39	36	1
4	2	6	1	1	1	7	7	6	20	25	1	3	3	7	71	71	1
5	2	6	11	11	0	8	7	6	8	7	1	4	3	7	16	12	1
6	2	6	99	91	1	9	7	6	3	0	1	5	3	7	67	72	1
7	2	6	-1	0	1	0	8	6	1	2	2	6	3	7	4	2	1
8	2	6	20	23	1	1	8	6	0	0	1	7	3	7	37	42	1
9	2	6	0	0	1	2	8	6	2	2	1	8	3	7	7	5	1
10	2	6	0	0	1	3	8	6	50	53	2	9	3	7	5	3	1
11	2	6	14	15	1	4	8	6	-1	0	1	10	3	7	22	19	1
1	3	6	5	7	0	5	8	6	1	8	1	0	4	7	1	0	1
2	3	6	108	98	1	6	8	6	0	1	1	1	4	7	101	101	1
3	3	6	56	58	2	7	8	6	1	8	3	2	4	7	50	54	1

h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ
3	4	7	61	65	2	1	11	7	3	7	2	2	5	8	39	37	1
4	4	7	17	14	0	2	11	7	9	9	1	3	5	8	1	0	1
5	4	7	13	16	0	3	11	7	5	3	1	4	5	8	6	6	1
6	4	7	11	14	0	0	0	8	461	526	5	5	5	8	-1	1	2
7	4	7	3	3	1	1	0	8	13	14	1	6	5	8	1	0	2
8	4	7	1	1	1	2	0	8	12	12	1	7	5	8	3	2	1
9	4	7	12	16	1	3	0	8	2	1	1	8	5	8	5	5	2
10	4	7	2	2	1	4	0	8	11	11	1	9	5	8	10	7	1
1	5	7	7	9	1	5	0	8	50	47	2	0	6	8	20	16	1
2	5	7	8	8	1	6	0	8	55	65	2	1	6	8	0	0	1
3	5	7	59	54	3	7	0	8	1	1	1	2	6	8	6	7	1
4	5	7	0	0	1	8	0	8	50	45	2	3	6	8	12	12	1
5	5	7	5	5	1	9	0	8	33	35	1	4	6	8	1	1	1
6	5	7	19	20	1	10	0	8	3	2	1	5	6	8	1	3	1
7	5	7	91	85	2	1	1	8	132	130	1	6	6	8	3	1	1
8	5	7	21	18	1	2	1	8	49	44	1	7	6	8	6	6	1
9	5	7	2	3	1	3	l	8	163	153	2	8	6	8	3	2	2
0	6	7	107	109	3	4	1	8	15	13	0	1	7	8	11	13	1
1	6	/	59	53	2	5	1	8	25	23	1	2	/	8	16	21	1
2	6	7	1	5	1	6 7	1	8	28	34	1	3	7	8) 11	4	1
3 4	6	7	0 19	3 17	1	/ 0	1	0	0	5	1	4	7	0	41	44	1
4 5	6	7	10	17	1	0	1	8	4	17	1	5	7	0	1	0	1
5	6	7	2	1	1	10	1	8	47	13	1	7	7	8	-4	0	2
7	6	7	$2\frac{2}{3}$	21	1	10	2	8	22	20	1	0	8	8	- 4 40	46	$\frac{2}{2}$
8	6	7	23 7	6	1	1	$\frac{2}{2}$	8	25	30	1	1	8	8	9	10	1
9	6	7	2	1	1	2	$\frac{1}{2}$	8	3	4	1	2	8	8	15	19	1
1	7	, 7	4	5	1	3	2	8	17	13	0	3	8	8	15	4	1
2	7	, 7	0	0	1	4	2	8	0	1	1	4	8	8	0	0	1
3	7	7	33	38	1	5	2	8	21	25	1	5	8	8	6	4	1
4	7	7	47	48	2	6	2	8	1	1	1	6	8	8	31	32	1
5	7	7	0	1	2	7	2	8	4	2	1	7	8	8	-1	0	2
6	7	7	1	1	1	8	2	8	0	1	1	1	9	8	13	11	1
7	7	7	3	3	3	9	2	8	0	0	1	2	9	8	23	24	1
8	7	7	0	0	1	10	2	8	4	5	1	3	9	8	9	7	1
0	8	7	2	0	2	1	3	8	3	3	1	4	9	8	3	1	1
1	8	7	9	12	1	2	3	8	13	17	0	5	9	8	3	4	1
2	8	7	-2	0	1	3	3	8	0	0	1	0	10	8	-1	0	2
3	8	7	3	6	1	4	3	8	0	0	1	1	10	8	5	5	2
4	8	7	3	8	1	5	3	8	4	3	1	2	10	8	3	2	1
5	8	7	12	13	1	6	3	8	18	19	1	3	10	8	2	0	1
6	8	/	1/	1/	1	/	3	8	12	15	1	4	10	8	4	3	2
1	8	7	0	11	2	8	3	8	23	26	1	1	1	9	3 01	1	1
1	9	7	1	1	ے 1	9	3 1	0	20 19	21	1	2	1	9	01	83 2	2 1
23	9	7	0	4	1	1	4	8	32	35	1	5 4	1	9	5	2 4	1
	9	7	25	23	1	2		8	14	16	0	5	1	9	5 4	7	1
5	9	7	2 <i>3</i> 5	23 4	2	3	4	8	5	5	0	6	1	9		1	1
6	9	7	Ő	1	3	4	4	8	$\frac{3}{2}$	2	1	7	1	9	18	20	1
Ő	10	, 7	1	3	2	5	4	8	7	10	1	8	1	9	4	2	1
1	10	7	6	5	1	6	4	8	5	3	1	9	1	9	5	5	1
2	10	7	23	21	1	7	4	8	21	18	1	0	2	9	2	2	1
3	10	7	3	4	3	8	4	8	-1	0	1	1	2	9	20	24	1
4	10	7	2	1	2	9	4	8	5	2	1	2	2	9	10	9	0
5	10	7	5	8	1	1	5	8	3	3	1	3	2	9	10	13	0

Tab. 8.5b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristalldaten (Mach3, Mokα-Strahlung) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

h	k	1	F_0^2	F_c^2	σ	h	k	1	F_0^2	F_c^2	σ	h	k	1	F_0^2	F_c^2	σ
4	2	9	3	3	1	2	9	9	3	5	3	7	5	10	7	6	1
5	2	9	0	0	1	3	9	9	4	0	2	0	6	10	33	33	2
6	2	9	-1	0	1	4	9	9	1	1	1	1	6	10	-2	1	1
8	2	9	3 7	2 7	1	1	10	9	32 -2	25 0	2	23	6	10	-3	33 2	1
9	$\frac{2}{2}$	9	5	3	1	2	10	9	9	8	1	4	6	10	0	1	2
1	3	9	25	27	1	0	0	10	-1	2	2	5	6	10	-2	0	2
2	3	9	4	3	1	1	0	10	53	50	2	6	6	10	18	19	2
3	3	9	14	12	0	2	0	10	50	59	2	1	7	10	18	20	1
4	3	9	122	125	2	3 4	0	10	40 19	43 19	1	23	7	10	41	38 0	1
6	3	9	12	14	1	5	0	10	17	16	1	4	7	10	11	7	3
7	3	9	2	0	1	6	0	10	21	27	1	5	7	10	4	1	2
8	3	9	34	32	2	7	0	10	8	11	1	6	7	10	1	3	2
9	3	9	19	22 173	1	8	0	10	1 20	2	2	0	8	10	3	0 18	2
1	4	9	15	175	1	2	1	10	31	29	1	2	8	10	8	18	1
2	4	9	14	14	1	3	1	10	1	1	1	3	8	10	16	20	1
3	4	9	1	0	1	4	1	10	8	7	1	4	8	10	1	0	3
4	4	9	1	3	1	5	1	10	5	3	1	1	9	10	7	8	3
5	4 4	9 9	24 43	24 38	1	6 7	1	10 10	0 17	1 17	2	2	9	10	1	1	2
7	4	9	43	1	1	8	1	10	27	28	1	2	1	11	31	29	1
8	4	9	24	30	1	0	2	10	11	14	1	3	1	11	1	3	1
1	5	9	33	34	1	1	2	10	1	2	1	4	1	11	0	2	1
2	5	9	4	5	1	2	2	10	6	7	1	5	1	11	18	19	1
3 1	2 5	9	48 45	45 46	2	3 1	2	10 10	2 14	3 16	1	6 7	1	11	1	0	1
5	5	9	18	17	1	5	2	10	14	0	1	0	2	11	2	1	2
6	5	9	8	7	1	6	2	10	1	0	1	1	2	11	0	1	1
7	5	9	4	7	1	7	2	10	3	3	1	2	2	11	8	7	2
8	5	9	25	22	1	8	2	10	-1	0	1	3	2	11	15	19	1
1	0 6	9	2 7	6	2 1	1	3 3	10	1 19	2 18	1	4	2	11	2 5	2 4	1
2	6	9	1	1	2	3	3	10	2	4	1	6	2	11	17	20	1
3	6	9	0	0	2	4	3	10	98	102	2	7	2	11	0	0	1
4	6	9	0	0	1	5	3	10	0	0	1	1	3	11	2	2	1
5	6	9	10	12	1	6 7	3	10	3	6	1	2	3	11	35	32	1
7	6	9	2	3	3	8	3	10	4	3	1	3 4	3	11	23	22	1
1	7	9	1	0	1	0	4	10	10	9	1	5	3	11	17	17	1
2	7	9	5	7	1	1	4	10	1	0	1	6	3	11	1	1	1
3	7	9	1	0	3	2	4	10	-1	0	1	7	3	11	15	14	1
4	/ 7	9	1	1	1	3 1	4	10 10	2 18	1 20	1	0	4	11	5 7	5 6	1
6	7	9	2	2	3	5	4	10	10	20	1	2	4	11	6	7	1
7	7	9	9	10	2	6	4	10	10	13	1	3	4	11	64	60	2
0	8	9	18	18	1	7	4	10	1	0	1	4	4	11	8	7	1
1	8	9	33	36	1	8	4	10	1	0	1	5	4	11	15	15	1
23	8 8	9 9	U Q	0	1	1	5 5	10 10	-1 2	і 4	1	6 7	4 4	11 11	10	8 5	1 1
4	8	9	6	5	1	3	5	10	$\frac{2}{3}$	2	1	1	5	11	-2	0	1
5	8	9	12	11	2	4	5	10	24	27	2	2	5	11	14	16	1
6	8	9	10	8	2	5	5	10	0	0	2	3	5	11	38	38	1
1	9	9	-2	1	2	6	5	10	7	7	2	4	5	11	-1	0	1

Tab. 8.5b: Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristalldaten (Mach3, Mokα-Strahlung) für Li¹¹B(OD)₄ bei 298 K (Fortsetzung)

h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ	h	k	1	F_o^2	F_c^2	σ
0	6	11	-1	0	2	1	2	12	16	19	1	1	1	13	17	18	1
1	6	11	2	1	1	2	2	12	6	4	1	2	1	13	8	6	1
2	6	11	20	21	1	3	2	12	18	17	1	3	1	13	1	2	1
3	6	11	0	1	1	4	2	12	1	2	1	4	1	13	4	4	1
4	6	11	0	0	2	5	2	12	1	1	1	5	1	13	0	0	1
5	6	11	4	6	3	6	2	12	2	1	1	0	2	13	38	35	1
1	7	11	2	2	3	1	3	12	12	12	1	1	2	13	7	9	1
2	7	11	15	17	1	2	3	12	0	2	1	2	2	13	9	7	1
3	7	11	5	4	2	3	3	12	1	2	1	3	2	13	7	8	1
4	7	11	0	0	2	4	3	12	0	0	1	4	2	13	2	0	1
0	8	11	2	4	2	5	3	12	7	6	1	1	3	13	3	2	1
1	8	11	33	31	1	6	3	12	13	14	1	2	3	13	5	4	1
2	8	11	2	1	2	0	4	12	7	8	1	3	3	13	0	0	1
0	0	12	4	4	2	1	4	12	9	8	1	4	3	13	9	7	1
1	0	12	0	0	1	2	4	12	2	2	1	0	4	13	0	0	1
2	0	12	9	9	1	3	4	12	1	2	1	1	4	13	33	35	1
3	0	12	0	0	1	4	4	12	0	0	1	2	4	13	0	0	1
4	0	12	6	6	1	5	4	12	1	2	1	3	4	13	1	1	1
5	0	12	8	11	1	1	5	12	5	7	2	1	5	13	7	9	2
6	0	12	5	5	1	2	5	12	19	23	2	2	5	13	2	0	2
1	1	12	10	10	1	3	5	12	4	3	2	0	0	14	0	0	2
2	1	12	1	1	1	4	5	12	6	6	1	1	0	14	55	52	2
3	1	12	49	47	1	0	6	12	50	47	3	2	0	14	4	2	3
4	1	12	14	15	1	1	6	12	0	1	1	1	1	14	-1	0	1
5	1	12	6	6	2	2	6	12	8	6	1	2	1	14	4	3	1
6	1	12	0	0	2	3	6	12	6	4	2	0	2	14	31	32	1
0	2	12	53	61	2	1	7	12	2	0	2	1	2	14	9	9	1

Tab. 8.5b:	Gemessene und berechnete quadrierte Strukturfaktoren aus der Verfeinerung von Röntgeneinkristall-
	daten (Mach3, Mokα-Strahlung) für Li ¹¹ B(OD) ₄ bei 298 K (Fortsetzung)

Lebenslauf

Name	Anke Niemann
Adresse	Brändströmstr. 4
	07749 Jena
geboren am	25. September 1970 in Dortmund
Familienstand	ledig

Schulbildung

08/77 - 07/81	Hellweg-Grundschule in Dortmund
08/81 - 06/90	Stadtgymnasium in Dortmund
06/90	Allgemeine Hochschulreife

Studium

10/90-10/92	Grundstudium der Chemie an der Universität Dortmund						
10/92	Diplomvorprüfung						
10/92-10/94	Hauptstudium der Chemie an der Universität Dortmund						
10/94-11/94	Diplomhauptprüfung						
12/94-05/95	Diplomarbeit am Lehrstuhl Anorganische Chemie I an der Universität						
	Dortmund bei Herrn Prof. Dr. H. Jacobs mit dem Thema:						
	"Strukturuntersuchungen an Amiden und Amminen des Chroms"						
05/95	Abschluß: DiplChem.						

Promotion

06/95 - 03/01 Promotion am Lehrstuhl Anorganische Chemie I an der Universität Dortmund bei Herrn Prof. Dr. H. Jacobs mit dem Thema: "Tieftemperatur-Raman- und Struktur-Untersuchungen an Metallhydroxiden und Hydroxometallaten"

Berufstätigkeit

Fachhochschule Erfurt

07/95 - 12/98 Wissenschaftliche Hilfskraft / Angestellte am Lehrstuhl für Anorganische Chemie I an der Universität Dortmund
 seit 03/00 Wissenschaftliche Angestellte im Fachbereich Bauingenieurwesen der