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Abstract

The genetic causes for heterosis, i.e., the increased performance of a hybrid

plant compared to the parental mean, may be assessed via microarrays.

This thesis addresses design and analysis issues of cDNA-microarray ex-

periments with regard to the estimation of heterosis. Standard microarray

designs like the loop design or common reference design are not optimal

when estimating heterosis. An optimality criterion is devised and two ap-

proaches to obtain a suitable design are shown: a rather intuitive one and

an approach using simulated annealing. Data transformations are crucial

before analysing microarray data. However, transformations may conceal

interesting expression patterns. It is shown using a Box-Cox transforma-

tion that significance of a heterotic effect is largely influenced by the trans-

formation parameter. Transformation of the linear predictor in a general-

ized linear model has a similar effect and heterotic effects may—at least

partially—be removed by the transformation. For the estimation of linear

contrasts between genotypes, a linear mixed model for each gene is fitted

to the expression values. To improve variance estimates one may benefit

from other genes’ information. Therefore, an empirical Bayes approach is

developed that is capable of including more than one variance component

in the model.
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Zusammenfassung

Die genetischen Gründe für Heterosis, d.h. die erhöhte Leistung von Hy-

bridpflanzen gegenüber dem Elternmittel, können mit Hilfe von Microar-

rays untersucht werden. Diese Doktorarbeit befasst sich mit Aspekten

des Designs und der Analyse von cDNA-Microarrays im Hinblick auf

die Schätzung von Heterosis. Standard-Microarraydesigns wie Loop- und

Common-Reference-Design sind für die Schätzung von Heterosis nicht

optimal. Um für die Heterosisschätzung geeignete Designs zu finden,

wird ein Optimalitätskriterium entwickelt und zwei Ansätze zur Design-

suche werden gezeigt: ein eher intuitiver Ansatz und einer, der die Meth-

ode des Simulated Annealing nutzt. Vor der Analyse von Microarray-

Daten ist es meist notwendig, die Daten zu transformieren. Allerdings

können Transformationen interessante Expressionsmuster verschleiern.

Anhand der Box-Cox-Transformation wird gezeigt, dass die Signifikanz

heterotischer Effekte stark vom Transformationsparameter abhängt. Die

Transformation des linearen Prädiktors im Rahmen eines generalisier-

ten linearen Modells hat einen ähnlichen Effekt und heterotische Effekte

können, zumindest teilweise, durch die Transformation beseitigt werden.

Dies sollte bei der Analyse berücksichtigt werden. Für die Schätzung lin-

earer Kontraste von Genotypen wird ein gemischtes lineares Modell an die

Genexpressionswerte angepasst. Um Varianzschätzungen zu verbessern,

3
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kann die Information anderer Gene genutzt werden. Dazu wurde eine

Empirical Bayes Methode entwickelt, bei der Informationen aller Gene

genutzt werden und gleichzeitig die Einbeziehung mehrerer zufälliger Ef-

fekte ins Modell möglich ist.



Chapter 1

Introduction

For a long time people have known about heredity and that certain traits

pass from one generation to the next. Evidence may be found in an Assyr-

ian relief showing gardeners artificially pollinating date palms (see picture

at the beginning of the thesis), which dates from between 883 and 859 B.C.

Most of the crops we use today evolved after centuries of plant breeding.

In the course of time more and more mechanisms of heredity were dis-

covered, e.g., Mendel’s laws or the double helix. However, there are still

many mysteries left to solve. One of these is heterosis, the phenomenon

that the crosses of two genetically distinct inbred lines, so-called hybrids,

show better performance in many agronomic traits than their parents.

Many of the various facets of heterosis are highly appreciated in plant

breeding. Among the most important characteristics of hybrids are the

increased yield and higher resistance against drought or pathogens com-

pared to their parents. Furthermore, the performance of hybrids is more

stable. Heterozygous plants are less subject to genotype-environment in-

teractions and thus show improved reliability of yield (Léon, 1994; Becker,

1993). These advantages led to an increase in hybrid cultivation despite

5



6 CHAPTER 1. INTRODUCTION

the higher effort in breeding and seed production. Today, many species

such as maize, sugar-beet, and rye are cultivated wholly or predominantly

with hybrids.

Although the benefits of heterosis have been applied for quite a while,

the genetic and molecular causes are so far not fully understood. It was

not until the middle of the last century that Avery found the DNA to be

the bearer of genetic information. Since then, genetics evolved rapidly and

nowadays new technologies allow us further insights into the genome and

its functionality.

With the aid of microarrays, developed in the early 1990s, the expres-

sion of thousands of genes may be determined by a single experiment

(Schena, 2003). By applying DNA of hybrids and parents, the difference in

expression between the genotypes may be measured for each gene. Thus,

microarrays seem to be a valuable tool in the exploration of heterosis. Re-

search in this field seems to be worthwhile as these insights could be used

to develop new strategies for plant breeding. In 2003 a Priority Program

’Heterosis in plants’ (SPP 1149) was established, which is funded by the

DFG (Deutsche Forschungsgemeinschaft). The objective of the program

is the search for the molecular and genetic reasons of heterosis. For the

experiments described in this study maize is used, as it shows very in-

tense heterotic effects, e.g., for grain yield or plant height (Becker, 1993).

Maize plants are supposed to have model character, i.e., the results may

be carried forward to other species. This thesis emerged during my work

in the project group ’Bioinformatic Tools for Microarrays’ within the DFG

Priority Program.

The following sections of this introduction will explain the fundamen-

tals of both heterosis and microarray technology in greater detail.
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1.1 Heterosis and dominance

When crossed, two genetically different inbred lines result in a heterozy-

gous offspring, which is called hybrid or F1 hybrid. The F1 stands for ’first

filial generation’. The increase in performance of the hybrid over their

parental lines is called hybrid vigour or heterosis. It has been utilized in

plant breeding since the middle of the 18th century, but a theory has never

been formulated until the work of Shull (1908). The term heterosis was

first used by Shull in 1917 during a lecture he gave in Goettingen. Up to

now, underlying mechanisms of heterosis are not yet fully understood on

the genetic and molecular level. Several quantitative genetic explanations

that make the combination of a considerable number of genes responsible

for heterosis have been discussed (for review see: Lamkey and Edwards

(1998); Stuber (1999)) but little consensus has emerged. Most hypotheses

were formulated before the molecular concepts of genetics were discov-

ered and are not related to molecular principles (Birchler, Auger, & Riddle,

2003).

Heterosis may already be observed in early developmental stages as

Höcker, Keller, Piepho, and Hochholdinger (2006) showed with early

maize roots. However, the highest degree of heterosis is observed in agro-

nomic traits of fully grown plants. In some types of cereal like maize and

rye the heterosis-effect may double the yield of the hybrid compared to

the parental inbred lines. Accordingly, the use of hybrids in crop produc-

tion increased immensely during the last decades. Random mating of the

F1 in subsequent generations, i.e., crossing two hybrids from the same fil-

ial generation, usually leads to a reduced mean performance (Figure 1.1,

found in Graw (2006)). This so-called inbreeding depression was already

found by Darwin (1876). Since then, the genetic basis of heterosis has been
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Figure 1.1: Heterosis in maize. The hybrid (c) shows stronger growth compared

to the parents (a and b). Later inbreeding generations reveal clearly reduced yield

(d - j).

discussed (Shull, 1908; East, 1908). Which genes exactly are responsible

for heterotic effects and how they work together is yet unknown. With the

rise in molecular biology during the last decades, new opportunities for

the exploration of heterosis arise.

Let us turn towards the mathematical definition of heterosis. Let κA

denote the expected value of a characteristic of line A, such as height or

vigour; κB and κAB denote the same expectations for line B and hybrid

AB, respectively. Heterosis is defined as the difference in performance of

the hybrid compared to the mid-parent value, or, in mathematical terms

δ(AB) = κAB −
κA + κB

2
. (1.1)

δ(·) is also denoted ’mid-parent heterosis’ (MPH), contrary to the better-

parent heterosis (BPH), which is defined as

δ∗(AB) = κAB − max(κA, κB). (1.2)
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Of course, not all hybrids show an increase in performance for all pheno-

typic characteristics; some hybrids may show equal or even inferior per-

formance compared to the parents. In this study, however, a negative dif-

ference between the hybrid and the parental mean will also be denoted by

heterosis.

If we have a closer look at a plant, its genome consists of thousands of

genes, which are all composed of four nucleic acids. One may measure the

expression level of a certain gene, i.e., the amount of mRNA. If we carry

the definition of heterosis to the molecular level, ’heterosis’ occurs when

the expression level of a gene in a hybrid differs from the mean expression

level of the parents. This phenomenon we denote dominance. In (1.1) κ

then is the expression level of a defined gene. We use the term dominance

in place of heterosis because dominance commonly refers to gene effects,

while heterosis is usually defined in terms of phenotypic means for poly-

genic traits (Falconer & Mackay, 1996). Dominance may occur at various

intensities: the expression level of the hybrid may lie between the expres-

sion levels of the parents (partial dominance), or the expression level of

the hybrid may exceed that of both parents (overdominance). If the ex-

pression level of the hybrid is lower than the mid-parent level, we denote

this as negative dominance. It is supposed that analysis of genes showing

dominance in certain patterns will give a clue about how the phenomenon

heterosis works.

1.2 Microarray technology

In the 1990s a technique was established that allows the simultaneous

transcriptome-wide expression profiling of thousands of different genes
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in a single experiment. The so-called microarrays may be classified into

oligonucleotide-arrays and two-channel cDNA arrays. Oligonucleotide-

arrays were developed by the Affymetrix company. A gene is represented

by 20 to ∼ 80 oligonucleotides (oligos). They are designed in such a way

as to hybridise to different regions of RNA corresponding to an expressed

gene.

In this thesis we will consider only cDNA-arrays. These contain a

collection of cDNA spots, so called ’targets’, that are attached to a small

glass slide. To make sure that the spots adhere to the array, an electrically

charged substrate is applied on the glass slide before spotting (Figure 1.2,

found in Schena (2003)). The two test samples containing DNA of two

different tissue types are called ’probes’ and are marked with fluorescent

Figure 1.2: Microarray hybridisation
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dyes. Usually for this purpose Cy3 and Cy5 are used, two dyes that are

excited by a green and red laser, respectively. In a hybridisation reaction

the DNA of the test samples will bind to the cDNA on the array. Depend-

ing on the amount of corresponding DNA that is in a test sample, the spot

on the array will appear more or less bright. The signal intensity there-

fore provides a quantitative measure of gene expression. The position and

intensity of the spots are then detected by a laser scanner at two wave-

lengths, for the red and the green colours. Figure 1.3 shows the overlay of

the two scans. Spots which are red or green correspond to genes which are

mainly expressed in one of the two test samples. If a gene is expressed in

none of them, it appears as a dark spot on the array, whereas a gene that

is expressed in both samples appears yellow.

Figure 1.3: Extract of microarray with maize genotypes UH005×UH301 and

UH301. S. Scholten, University of Hamburg.

In a step called image analysis the image produced by the scanner is

converted into numerical information. There is a variety of different com-

puter algorithms for this purpose implemented in software packages. For
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further information see Stekel (2003).

With the help of microarrays, global patterns of gene expression can be

analysed at a defined developmental stage between different genotypes.

A number of studies aiming to locate differentially expressed genes be-

tween inbred lines and reciprocal hybrid have been published (Ni, Sun,

Liu, Wu, & Wang, 2000; Kollipara, Saab, Wych, Lauer, & Singletary, 2002;

Guo, Rupe, Danilevskaya, Yang, & Hu, 2003) and the phenomenon of het-

erosis in maize is discussed in Auger et al. (2005), yet without the aid of

microarrays.

Microarray data are highly noisy. This is partly due to the small size

of the microarray, which is often no bigger than 2×4 cm2, and the techni-

cally based inaccuracies resulting thereof. Often there are spatial effects

on the array, as it is impossible to apply the probe mixture in a totally

even manner. The targets are spotted by a robot onto the slides, and there

may be irregularities of the printtips, possibly affecting the uniformity of

the spots. The fluorescent dyes in general do not bind equally well to the

probes, therefore one probe results in higher signal values, which also has

to be accounted for. Due to the many sources of variation it is inevitable to

perform replicated experiments. Signal values from different arrays may

show considerable differences in both location and scale. All these sources

of error are accounted for in the normalization step (Schena, 2003; Y. H.

Yang, Dudoit, Luu, & Speed, 2001) described in Section 2.3.

The main purpose of most microarray experiments is the detection of dif-

ferentially expressed genes. In a simple case when only two tissue types

are investigated, the difference in expression of the tissues may be ana-

lysed with a t-test. With more sophisticated objectives and complex de-

signs involving multiple sources of error, it is advisable to apply a linear
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model, e.g., when estimating heterosis contrasts with gene expression data

from three genotypes. Other sources of variation than those resulting of

the tissue types can be taken into account. Kerr and Churchill (2001) have

noticed four main sources of variation: the tissue types, the fluorescent

dyes used to label tissues, the genes (according to the spots on the ar-

ray) and the different arrays used in the experiment. After performing

the tests, the resulting p-values are usually adjusted for the multiplicity

problem. As the arrays contain several thousand spots that are analysed

separately, there are presumably many false positives. For the adjustment

different methods are proposed, for example the control of the familywise

error rate, the false positive rate (Hsueh, Chen, & Kodell, 2003), or the false

discovery rate (Benjamini & Hochberg, 1995).

1.3 Outline

The thesis emerged out of practical problems, either when planning or

analysing experiments aiming at the exploration of heterosis. Therefore,

the following chapter is dedicated to the description of these experiments

and data sets.

Chapter 3 is concerned with the first out of three statistical fields of

interest related to heterosis covered by the thesis, namely the design of a

microarray experiment. When investigating the developments for optimal

microarray designs, the impression emerges that it was sometimes tried to

reinvent the wheel. Microarray designs, however, may be considered as

special cases of usual designs. A ’traditional’ procedure of finding optimal

designs when no analytical results are available is the numerical search.

This should not be ignored here, especially as the finding of heterosis-
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relevant genes is an objective that is, in terms of statistics, different from

the simple comparison of two genotypes. Therefore it cannot be handled

in an optimal way with the classical microarray designs. We present two

approaches that are distinguished from other microarray designs in the

following points: The optimality criterion is tailored precisely to the objec-

tive of the study. It may account for an arbitrary number of effects, among

those nuisance effects caused by technical reasons. Finally it is shown that

information of earlier experiments may be reasonably utilised.

Chapter 4 throws a light on data transformations used to assess het-

erosis or dominance. Phenotypic data as well as gene expression data for

heterosis estimation often lack validity of assumptions such as normality

or homogeneity of variance, as do gene expression data derived from mi-

croarrays. If the data is transformed, or if a transformation is performed

via a generalized linear model, these transformations have an impact on

the heterosis or dominance estimate, which is easily ignored.

Chapter 5 deals with the estimation of variance components in mi-

croarray analysis. Due to the high costs of microarray experiments the

number of replicates is usually quite low. However, as the analysis is done

per gene, information on variance components may be shared across genes

by specifying their distribution across genes. It is shown how pooled vari-

ance estimates may be determined using an empirical Bayes approach.

The advantage of the approach is that the analysis may be performed with

a model including more than one variance component, which is especially

worthy when investigating heterosis. As the distribution is fitted to the

sum of squares instead of the actual variance components, the problem of

fitting a distribution to zeros is avoided, as sum of squares will be posi-

tive with probability one, provided the data have a multivariate normal
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distribution. Application to real microarray data shows that the approach

supplies good results and is computationably feasible.

Finally, the last chapter contains an overview and a general discussion

of the findings.
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Chapter 2

Data, preprocessing and software

Trying to unravel the genetic causes for heterosis, the statistician is con-

fronted with problems that were often neglected in microarray literature.

Due to extensive cooperations within the DFG project ’Heterosis in plants’

with the Universities of Hamburg, Munich and Tübingen we were con-

fronted with various real life tasks and had several data sets at our dis-

posal. These served both as inspiration for research and as test data sets to

validate assumptions and ensure that methods work in real-world prob-

lems. The experiments are all related to maize and are either phenotypic

or microarray experiments. We now present the data sets that are referred

to in the following chapters. To get a quick overview the data sets and

corresponding chapters are indicated in Table 2.1.

Sections about data pre-processing and the applied software follow the

description of the data sets.

17
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Table 2.1: Overview of data sets and the chapter where they are analysed

data set chapter

2.1.1 Heterosis microarray experiment 3
2.1.2 Microarray experiment wild type vs. mutant 3

2.1.3 Primary root length 3
2.1.4 Lateral root length 4
2.2 Hamburg data 5

2.1 The data from Tübingen

The work group General Genetics of the Center for Plant Molecular Biol-

ogy, University of Tübingen (led by Frank Hochholdinger), is engaged in

the exploration of early maize root development. The roots of the plant

play an important role in water and nutrient supply. Figure 2.1 shows

different root types of a maize plant in the seedling stage.

Seedling stage

primary root

seminal roots

crown roots

lateral roots

Figure 2.1: Root types of maize, drawings by: Miwa Kojima, Schnable laboratory,

Iowa State University
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2.1.1 Heterosis microarray experiment

This is the sole experiment where our focus lies on the design of exper-

iment (although the data that arose has in the meantime been analysed

by us), while for the other experiments we focus on data analysis. The

planned experiment was performed in order to identify genes for which

the expression level of the hybrid significantly exceeds the mean expres-

sion level of the parents. These genes will then be subjected to a subse-

quent detailed analysis. The experiment comprises altogether 16 inbred

lines and F1 hybrids. The chosen parental inbred lines are denoted with A

(UH002), B (UH005), C (UH250) and D (UH301). All in all there are 12 hy-

brids, including reciprocal hybrids. The reciprocal of a hybrid is defined

as a cross of the same parents, where the male and female parents are ex-

changed. The resulting hybrids are denoted as AB, AC, AD, BC, BD, CD

and their reciprocals as BA, CA, DA, CB, DB, DC. For these hybrids and

reciprocal hybrids a design is searched for the estimation of dominance,

having a total of 72 arrays on-hand.

The objective of this microarray experiment was to find genes that

show dominance effects (see Section 1.1). Therefore, the lines UH002,

UH005, UH250, and UH301 as well as the hybrids and reciprocal hybrids

were chosen. Our task was the development of an experimental design

to determine dominance effects with high precision, using a total of 72

arrays.

2.1.2 Microarray experiment wild type vs. mutant

Usually, all maize seedlings develop a root system like that in Figure 2.1.

However, there exists a mutant which does not form any crown- and lat-
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eral roots. The mutant was originally found in line DK105 but was since

then crossed several times with B73. In order to find differences in gene

expression between the mutant and the wild type B73, a microarray ex-

periment was performed. On each of four replicates wild type and mutant

were hybridised and a dye-swap was included.

2.1.3 Primary root length

This experiment was conducted to see if maize plants grown in different

experimental units show phenotypic differences in their early root devel-

opment. Two maize seeds were cultivated on filter papers. 16 filter pa-

pers were put together in one beaker. The experiment was conducted on

two days, each day 7 beakers with maize plants were cultivated. Four

days after germination the primary root length was determined. To keep

genotype-environment interactions low, a hybrid (UH005 × UH301) was

chosen instead of an inbred line.

2.1.4 Lateral root length

To investigate if different genotypes show differing lengths of lateral roots,

maize seeds of the inbred lines UH005, UH250 and UH301 and the six re-

sulting hybrids were cultivated under laboratory conditions. Ten days af-

ter germination a root zone of length 2-3 cm was cut approximately 20 cm

distant from the root tip and the length of all lateral roots was measured.

Of each genotype, between 8 and 21 primary roots were available. The

number of lateral roots per primary root differed between 2 and 41. As we

have only phenotypic data, effects cannot be ascribed to individual genes.
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2.2 The data from Hamburg

A work group of the Department of Developmental Biology at the Biocen-

ter Klein Flottbek, University of Hamburg (led by Stefan Scholten), studies

the difference in gene expression between inbred lines and hybrids in early

developmental stages of maize. About six days after pollination mRNA

is extracted from embryo and endosperm, which are analysed in sepa-

rate microarray experiments. Experiments were conducted with different

genotypes. For this study, the genotypes UH250, UH301, UH250xUH301,

and UH301xUH250 were chosen. Arrays were hybridised with all hybrid-

parent combinations in three replicates, thus resulting in 12 arrays for em-

bryo and 12 arrays for endosperm.

2.3 Data pre-processing

To eliminate sources of variation due to technical reasons it is necessary

to perform a data normalization (Schena, 2003; Y. H. Yang et al., 2001).

This does not lie within the main focus of the thesis but is described here

shortly for completeness. The normalization procedure was performed

with the data of all microarray experiments mentioned in the previous

sections. The raw data comprises foreground and background expression

values for each channel (Cy3, Cy5) and each spot. The foreground value

is a measure of signal intensity of the actual spot, while the background

value gives the intensity of the spot’s surrounding. To account for unspe-

cific background noise, the background value is subtracted from the signal

value. A loess-normalizaton is then performed to log2 transformed data

of each array. The loess-normalization accounts for intensity-based dye

effects. As values from different arrays may differ considerably, median
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absolute deviations of each array’s channel are adjusted. Thereafter, a lin-

ear mixed model is fitted to normalized data which will be described in

the corresponding chapters (i.e., Chapter 3.2 and Chapter 5.3).

2.4 Software

The data analysis of this dissertation was performed using the packages

STAT, GRAPH and IML of SAS R© system software. For Chapter 3, Version 8

was applied, while the other chapters are based on Version 9 for Windows

(SAS Institute Inc., 1999/ 2002-2003).



Chapter 3

Microarray design for the

estimation of dominance effects

Many principles of experimental design were developed in the 1920s and

1930s by R. A. Fisher and F. Yates. The main applications were the life sci-

ences, but basic concepts like randomisation, blocking and replication can

be applied in various fields. Design of experiment is important whenever

variation comes into play. Microarray experiments are known to be ex-

tremely noisy. Thus it is not astonishing that soon after the technology was

established, the discussion about optimal microarray design started (Kerr

& Churchill, 2001; Dobbin & Simon, 2002; Speed & Yang, 2002). Some of

the specific microarray designs are described in the following section. As

they are of limited use if the design objective is the estimation of hetero-

sis, we will first consider some classical optimality criteria. The idea of a

criterion that is to be optimized will be adopted and customized to our

purpose. We take a closer look at the analysis of the data to determine a

suitable optimality criterion. Finally, an optimization algorithm is illus-

trated that helps us finding a tailor-made design for the detection of genes

23
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showing heterotic effects.

The second section is dedicated to the application of these results to

a real-life problem: An optimal design for a microarray experiment is

searched (Section 2.1.1). We pursue two strategies that allow the detection

of differential gene expression between hybrids and their parental inbred

lines in maize. Furthermore practical aspects are included: It is demon-

strated that results of other experiments may be used, e.g., to check if cer-

tain effects should be considered in the design, or to get information about

the variance components of the linear model underlying the design. The

results of our design investigations may also be found in Keller, Emrich,

Höcker, Hochholdinger, and Piepho (2005).

3.1 Design theory

3.1.1 Specific microarray designs

The design of microarray experiments has been the subject of various re-

cent articles. Specific types of designs, such as the common reference de-

sign and the loop design, have been proposed (Kerr & Churchill, 2001;

Kerr, 2003). As the name suggests, for the common reference design one

of the two probes hybridised on one array is a reference sample. This sam-

ple is not of primary interest for the experiment. The design is illustrated

in Figure 3.1a, where circles represent samples and arrows represent ar-

rays. The sample adjoining to an arrowhead is always labelled with the

same colour (e.g., red), the sample adjoining to the contrary end of the ar-

ray is labelled with the other colour (e.g., green). On each array, only one

of the probes contains a treatment that is to be analysed. As the reference

sample is always labelled with the same color, the effects of the dye and
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Figure 3.1: (a) Common Reference Design (b) Loop Design, each with four treat-

ments and four arrays

treatment are completely confounded. Contrasts of two treatments may

be estimated by comparing both probes in relation to the reference sam-

ple, e.g., τA − τB = (τA − τR)− (τB − τR), where τA and τB are the treatment

effects and τR is the effect of the reference sample. The fundamental hand-

icap of the common reference design is obvious: Half of the probes contain

information about a sample that is not of interest. As the hybridisation of

microarray experiments is extremely time and cost consuming, this design

today is hardly applied.

A popular alternative is the loop design (Figure 3.1b). The arrays are

hybridised in a way that each sample is labelled red on one array and

green on another array. Each sample is hybridised with two different sam-

ples. Contrasts may either be estimated directly from one array, e.g., by

τA − τB . Others must be estimated indirectly over several arrays, e.g., by

τA − τC = (τA − τB) + (τB − τC). This design is more efficient as with the

same number of arrays each treatment is replicated. However, if a hybridi-

sation fails (which occurs quite often), the accuracy of estimates decreases

substantially.
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Modifications of the loop design have been proposed, as the satu-

rated design, where arrays with all treatment combinations exist, or the

swapped loop design, where the loop design is hybridised twice with con-

trary labelling. However, the objectives of these designs differ in one major

aspect from the problem we address: In most previous work, solely con-

trasts between two mRNA populations are considered, whereas for dom-

inance estimation contrasts include more than two genotypes. This pro-

cedure complicates the problem since only two of the involved genotypes

can be hybridised with one array. This is because for economic reasons

most experiments are performed with the fluorochromes Cy3 and Cy5.

Classical microarray designs have been applied for problems concerning

expression between hybrids and parents, e.g., the loop design applied by

Gibson et al. (2004) to assess the degree of additivity in gene expression

in Drosophila melanogaster. While these designs work, they are usually not

optimal with respect to the specific contrasts of interest.

3.1.2 Optimality criteria

Considering the vast literature of specific microarray designs it should not

be forgotten that basic principles of design are well-established and can

be adopted. For example, a microarray design may be understood as a

special case of a row-column design with dyes and arrays corresponding

to rows and columns. For this kind of problem optimal designs may be

found by numerical search (John & Williams, 1995), e.g., by simulated an-

nealing (Kirkpatrick, Gelatt, & Vecchi, 1983) or tabu search (Glover & La-

guna, 1997). These algorithms search the space of possible designs until a

near-optimal design is found. In studies where pairs of treatments (geno-

types) are compared, one often assumes that all pairwise comparisons are
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of equal interest, as in Kerr and Churchill (2001). Then criteria such as A-

optimality or E-optimality can be applied (X. Yang, Ye, & Hoeschele, 2002;

John & Williams, 1995, p. 31).

Design optimality is measured in the estimates’ degree of accuracy that

will be achieved when analysing the experiment. Usually, this is done by

optimizing the ’largeness’ of the information matrix I. We consider two

criteria based on I (Pukelsheim, 1993, p. 135).

The D-criterion (determinant criterion) φD(I) is the s-th root of the de-

terminant of I:

φD(I) = (detI)1/s,

where I is a s × s matrix. Maximizing the D-criterion is the same as mini-

mizing the dispersion matrix since (detI)−1 = det(I−1). The determinant

of the inverse information matrix is also called generalized variance. In a

linear model setting, the determinant criterion may be visualized by con-

structing the confidence ellipsoid of the model parameters. The volume

of the ellipsoid is inversely proportional to φD(I). Thus, the ellipsoid is

smallest when φD(I) is maximized. The popularity of the determinant

criterion may at least partly be ascribed to its computational efficiency.

The A-optimality criterion φA(I) is also called average-variance crite-

rion, which already tells a lot about its form:

φA(I) =
1

tr(I−1)
.

Maximizing φA(I) is synonymous to minimizing the average variance of

the parameters to be estimated. The A-criterion is equally simple to com-

pute as the D-criterion because only the diagonal elements of the disper-

sion matrix need to be computed.
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When estimating dominance effects between inbred lines and hybrids,

the choice of design is not obvious. Applying classical design theory

(Pukelsheim, 1993), one can show whether a design is optimal with respect

to the optimality criteria described above. Although these criteria could be

applied for our purpose, they are general purpose measures that are more

appropriate, e.g., when all pairwise comparisons among treatments are

of equal interest. With nuisance parameters in the model (resulting, e.g.,

from the greenhouse design), these designs would not be optimal for our

purpose. Also, optimality of the designs refers to fixed effects models, as

usually no information about variance components is given. Luckily we

can use previous knowledge about variance components and will there-

fore consider some effects to be random in later analysis. A more spe-

cific optimality criterion is thus preferable (John & Williams, 1995, p. 34).

Pearce (1974) and Freeman (1976) propose to minimize the weighted mean

of either the efficiency factors of interest or the variance of the contrast

of interest. These approaches will be more convenient for our purposes.

Due to the relatively large number of factors and factor levels, however,

the number of possible designs is very high and checking them all for

the best would be computationally very intensive. Landgrebe, Bretz, and

Brunner (2006) therefore start with a group of initial designs. These are

combined to a set of composite designs, whereof the most efficient one

is selected. Another method of reasonably limiting the set of initial de-

signs is by regarding only cyclic designs. Among these optimal designs

(M,S)-optimal ones may be readily obtained (John & Williams, 1995). An-

other possible approach to an optimal design is by determining an upper

bound for the average efficiency factor and stop the design search when a

design is found that is reasonably close to the optimal design. Such an
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algorithm is implemented, e.g., in the design generation packages AL-

PHA+ (Williams & Talbot, 1993) and CycDesigN (Whitaker, Williams, &

John, 2002). The design problem we face has some features that make

the use of the above mentioned packages difficult or inappropriate: we

have several factors whereof only one is of interest, the contrasts of in-

terest imply three levels with unequal weights, and the analysis will be

performed by a linear model with fixed and random effects. We therefore

decided for a problem-specific optimality criterion and applied two dif-

ferent approaches: one is based on simplification of the design problem

and the second uses simulated annealing, a probabilistic optimization al-

gorithm. Like the approaches mentioned in the preceding section, both

strategies are trying to find acceptable designs without evaluating every

possible design. For the formulation of the optimality criterion adapted to

our problem it is helpful to consider the linear model analysis of the data

which will be gained by the experiment.

3.1.3 Linear models and linear mixed models

According to Mead (1988) the design of an experiment should be closely

linked to its analysis. Similar to the identification of differentially ex-

pressed genes (Dudoit, Yang, Speed, & Callow, 2002) the determination

of dominant genes is done by a linear model.

Microarray data are frequently analysed by a linear model, which is

described by

y = Xβ + e,

where y is a vector of observations with n elements, X is the design ma-

trix, which can either contain continuous or categorical variables, β is the
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parameter vector of fixed effects, and e is a vector of random error with

E[e] = 0 and Var[e] = Σ, where Σ = σ2I, i.e., the elements of the error

vector are i.i.d.

Especially in an experiment with more than two genotypes it is helpful

to regard the array effect as random, resulting in a linear mixed model,

which is described by

y = Xβ + Zu + e,

where Z denotes a known design matrix and u stands for the vector of

random effects (Searle, Casella, & McCulloch, 1992, p. 233). It is specified

by E[u] = 0 and Var[u] = D. Therefore, y is distributed with mean Xβ

and variance Var[y] = V = ZDZ ′ + Σ, where Σ now may be an arbitrary

variance-covariance matrix.

The random array effect is useful for the following reason: in an exper-

iment where more than two genotypes are to be compared, arrays may be

regarded as incomplete blocks. Contrary to a fixed effects model where

contrasts between genotypes are estimated using solely information on

comparisons within a block, with mixed models and incomplete blocks the

recovery of inter-block information is possible (John and Williams (1995,

p. 27) and Cochran and Cox (1957, p. 382)). When the variability between

blocks (or arrays) is low, including the inter-block analysis may achieve

a substantial gain in accuracy of estimates. By contrast, when the block

variance is high, contrast estimates will largely result from the intra-block

analysis.

Suppose we have r random effects which are mutually independent,

i.e., Dii′ = 0 for i 6= i′ where Dii′ is the covariance of the random effects

ui and u′
i. Then D is a diagonal matrix {dDi}

r
i=1 and the variance is V =

∑r
i=1 ZiDiZ

′
i + Σ.
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As the observations are assumed to be normally distributed, the log-

likelihood is characterized by

l = −
1

2
log |V | −

1

2
(y − Xβ)′ V −1 (y − Xβ) −

N

2
log(2π). (3.1)

If V is known, the fixed effects may be estimated by differentiating the

log-likelihood with respect to β. As the derivative of a quadratic form

x′Ax with respect to x is 2Ax for a symmetric matrix we have

∂l

∂β
= −

1

2
(−X ′) · 2V −1(y − Xβ)

= X ′V −1(y − Xβ).

Equating the derivation to zero gives the ML equation

(X ′V −1X)β = X ′V −1y. (3.2)

However, in practice V usually is unknown. Thus the log-likelihood is not

only differentiated with respect to β but also with respect to the variance

components σ2
i in V . Using ∂

∂σ2

i

V = ZiZ
′
i,

∂
∂σ2

i

log |V | = tr(V −1 ∂V
∂σ2

i

), and

∂
∂σ2

i

V −1 = −V −1 ∂V
∂σ2

i

V −1 we get:

∂l

∂σ2
i

= −
1

2
tr
(

V −1ZiZ
′
i

)

+
1

2
(y − Xβ)′V −1ZiZ

′
iV

−1(y − Xβ).

This expression is equated to zero for each variance component σ2
i , i =

1, ..., r, giving

tr(V −1ZiZ
′
i) = (y − Xβ)′V −1ZiZ

′
iV

−1(y − Xβ). (3.3)

Equation (3.2) and (3.3) usually must be solved numerically to obtain a

solution for β and σ2
i . We can reduce the problem and write it in a simpler

form. With (3.2) we have

V −1(y − Xβ) = V −1(y − X(X ′V −1X)−X ′V −1y), (3.4)
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where (X ′V −1X)− is a generalized inverse and (3.4) is invariant with re-

spect to the generalized inverse. We now define

P = V −1 − V −1X(X ′V −1X)−X ′V −1 (3.5)

and after some arithmetic we get

tr(V −1ZiZ
′
i) = y′PZiZ

′
iPy (3.6)

(Searle et al., 1992, p. 236). This equation has to be solved for β and σ2
i

numerically, giving the ML estimates β̂ and V̂ .

A drawback of Maximum Likelihood estimates is that the loss of de-

grees of freedom caused by the estimation of fixed effects is not taken into

account and hence variance components are underestimated (Searle et al.,

1992, p. 249). This problem may be addressed by the REML (restricted

maximum likelihood) approach. With REML-estimation, random effects

are estimated by maximizing the likelihood of linear contrasts of elements

of y. The linear combinations are chosen in a way that fixed effects are

eliminated, i.e. E(k′y) = 0 where k′ denotes a contrast vector. There are

n − rank(X) linearly independent vectors with this property, which are

all used for the estimation of variance components to yield optimal re-

sults. The matrix of contrast vectors is written K = [k1k2...kn−rank(X)]. As

K ′y ∼ N(0, K ′V K), the REML-likelihood is

lR = −
1

2
log |K ′V K| −

1

2
(K ′y)′ |K ′V K|

−1
K ′y −

n − rank(X)

2
log(2π).

This is known as the marginal likelihood and is not dependent on the fixed

effects β. The REML-estimates are obtained by maximizing lR. In accor-

dance to (3.1) they may be derived by replacing y by K ′y, Z by K ′Z, X by



3.1. DESIGN THEORY 33

K ′X = 0 and V by K ′V K in (3.6) leading to

tr((K ′V K)−1K ′ZiZ
′
iK) =

y′K(K ′V K)−1K ′ZiZ
′
iK(K ′V K)−1K ′y

for each i = 1, ..., r. According to Khatri (1966),

V −1 − V −1X(X ′V −1X)−X ′V −1 = K(K ′V K)−1K ′

and thus

tr(PZiZ
′
i) = y′PZiZ

′
iPy

for each i = 1, ..., r. To gain estimates for the variance components, the

REML-equations are to be solved numerically, leading to V̂R, the REML-

estimate of V . In SAS/ Proc Mixed this optimization is done by a ridge-

stabilized Newton-Raphson algorithm.

The REML-approach does not include a method to estimate fixed effects.

Usually the ML equation for the fixed effect is used with V̂R instead of the

ML estimate V̂ . Therefore

(Xβ̂)R = X(X ′V̂ −1
R X)−X ′V̂ −1

R y

may be used to estimate Xβ and

Var(Xβ̂)R = X(X ′V̂ −1
R X)−X ′

is the asymptotic variance-covariance matrix.

The REML-approach is sometimes preferred over the ML approach,

because of the above mentioned property to consider the degrees of free-

dom lost by estimating the fixed effects. This leads to estimates of V that
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are less biased compared to ML-estimates. Furthermore, as the REML-

likelihood does not depend on β, the values of the fixed effects do not

influence the estimates for the variance components. A third merit of the

REML-estimators is that REML-estimators seem to be less sensitive to out-

liers than ML estimators (McCulloch & Searle, 2001, p. 177-178).

Suppose the variance of a contrast l′β̂ is to be estimated. As

Var(Xβ̂) = X(X ′V −1X)−X ′ where β̂ is the ML estimator of β, Var(l′β̂) =

l′(X ′V −1X)−l. For unknown V , V may be replaced by V̂ .

If we choose l′β as the heterosis contrast of (1.1), then this is exactly

what we want to estimate by a suitably chosen design. We take the stan-

dard error of the heterosis contrast as optimality criterion for the design:

SE(l′β̂) ∼

√

(

l′(X ′V̂ −1X)−l
)

, (3.7)

A design is considered optimal, when the standard error of contrast (1.1)

is lowest.

Proceeding with the analysis, one certainly wishes to make inference

about the heterosis contrast by testing the hypothesis l′β = 0 against the

alternative l′β 6= 0 with the test statistic

t =
l′β̂

√

l′(X ′V̂ −1X)−l
.

According to McLean and Sanders (1988) t is approximately t-distributed.

The degrees of freedom may be approximated by the methods of Sat-

terthwaite or of Kenward-Roger. The Satterthwaite-option implemented

in SAS/Proc Mixed is a generalization of the methods described in Gies-

brecht and Burns (1985), McLean and Sanders (1988) and Fai and Cor-

nelius (1996). The Satterthwaite method is sometimes unsatisfactory as

the dispersion matrix of estimated fixed effects is underestimated (Kackar

& Harville, 1984). The method of Kenward and Roger (Kenward & Roger,
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1997) improves the Satterthwaite method with a correction of the disper-

sion matrix, which is especially valuable for small samples. Spilke, Hu,

and Piepho (2005) found through a simulation study that the underesti-

mation of the dispersion matrix is substantially reduced when applying

this correction. Furthermore, the method of Kenward and Roger (1997)

showed the best control of the Type I error compared to other approxima-

tions of the degrees of freedom, being competitive in terms of power. It is

therefore recommended to use the approximation of Kenward and Roger.

Besides the ML- and REML-approach, the analysis of variance

(ANOVA) method is a third method of analysing linear models. The total

sum of squares of the data is split into sum of squares for the factors and

the residual sum of squares. Expected sum of squares are equated to ob-

served sum of squares and the resulting system of equations is solved for

the variance components. In Chapter 5 the sum of squares concept is used

for an empirical Bayes approach to variance component estimation.

3.1.4 Simulated annealing

As we defined an optimality criterion, we need a strategy to find the de-

sign with the best value of the criterion. One could perform a complete

search of all possible designs. With larger problems, however, this is not

feasible. In these cases numerical search methods such as the simulated

annealing algorithm (SA) may be applied (Kirkpatrick et al., 1983). SA is

an algorithm for the global optimization of a function. It originates from

metallurgy: If a piece of metal is annealed slowly, its atoms arrange in a

way that the emerging crystal structure has minimum energy. If the metal

is cooled down too fast, the atoms do not have enough time to arrange in

a low-energy crystal lattice. In this case the atoms are stuck in a local opti-
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mum. If the atoms are arranged in a crystal structure with lowest energy,

the metal piece is very stable.

How may this procedure be carried forward to function optimization?

Firstly, the objective function to be optimized must be chosen. In case of

design optimality, the optimality criterion of the design is regarded as ob-

jective function. We use the design to estimate dominance effects with mi-

croarray data and assume the signal intensities to be influenced by certain

effects via a mixed model. Therefore, it is reasonable to use the standard

error of dominance contrasts as objective function.

We evaluate the optimality criterion for a random start design. Then

a random change in the design matrix is performed, i.e., the effect to be

altered as well as the new level of this effect is chosen randomly. If the

design has improved or, in other words, the optimality criterion has de-

creased, the new design is accepted and another random change is per-

formed. Otherwise, if the new design is worse, it is not discarded in every

case, but accepted with a certain probability p. In the next step, either the

new design, or, in case of rejection, the old design is altered, and so on.

Accepting a design in some cases even if it is worse allows moving away

from a local minimum. The acceptance probability is dependent on the

difference between the optimality criteria of the design before and after

the variation:

p = exp{−[f(Dnew) − f(D)]/T}, (3.8)

where T is a variable analogous to the temperature in the annealing pro-

cess explained below and f(D) and f(Dnew) are the values of the objective

function of the present design and the altered design, respectively. If the

worsening of the design is serious, the probability of rejection of the new

design is higher than with an only slightly inferior design. The temper-
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ature T decreases in successive iterations. Thus, with respect to the tem-

perature, the acceptance probability is close to one at the beginning of the

process when the temperature is high. Hence, the new design will very of-

ten be accepted. When the temperature approaches zero, the exponent of

(3.8) will draw near minus infinity and the acceptance of an inferior design

is unlikely. When the design has not changed for a certain number of tries,

the algorithm stops. Details of the simulated annealing algorithm may be

found in Kirkpatrick et al. (1983) and an application to design search in-

cluding the algorithm in pseudocode is given in Angelis, Bora-Senta, and

Moyssiadis (2001). Independently of our work (Keller et al., 2005), simu-

lated annealing has been applied to microarray design problems by Wit,

Nobile, and Khanin (2005).

3.2 Application

Material and methods

This section will illustrate how a microarray design may be developed for

a real-life problem. The task was to determine an optimal design for a

microarray experiment to estimate differential gene expression between

hybrids and their parental inbred lines of maize, as described in Section

2.1.1. The precise definition of the objectives of the study leads us to a

definition of design optimality within the given context. The main steps

of the planned experiment are described in detail to account for all effects

that might influence hybridisation signals. These effects are included in

the model used for the design search. To determine the significance of

these effects, we used data from a pre-experiment (Section 2.1.3). Informa-

tion on the variance components was derived by analysing a microarray
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experiment that had previously been conducted in the same laboratory

(Section 2.1.2). Finally, we explain two methods to find designs with the

defined optimality properties. Without a doubt, other microarray studies

are carried out in a different manner, and some of the effects we account

for will not emerge. It should be stressed, however, that with the mixed-

model approach other effects can easily be included in the model.

The design problem has two characteristics: Contrary to the main ap-

plication of microarray analysis where two genotypes or treatments of

equal interest are compared, here the contrasts of interest contain more

than two genotypes. This makes necessary a newly defined optimality cri-

terion and a tailor-made strategy to search the design space. We employ

the mean standard error of dominance contrasts (3.7), calculated by the

restricted maximum likelihood method, as optimality criterion. Two ap-

proaches were used to find an optimal design: the first one simplifies the

problem by dividing it into several subproblems, whereas the second is

more sophisticated and uses a simulated annealing algorithm. The second

characteristic is that the procedure may be customized to other microar-

ray experiments where different effects may influence hybridisation sig-

nals. A mixed model was used to include all important effects. Impacts

during growth of plant material were taken into consideration as well as

those occurring during hybridisation. By means of a preliminary exper-

iment it was decided which effects are to be included in the model and

data from another microarray experiment were used to estimate variance

components.
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Planned experiment

To account for all of the effects that might influence cDNA samples, a

knowledge of their origin is of utmost significance. In the planned ex-

periment, 20 maize seeds germinate together in a role of filter paper (see

2.1.1). Several of these filter paper roles with seedlings are placed in a

water filled beaker. In order to harvest all seedlings at approximately the

same time of day and thus avoid circadian effects, the number of paper

rolls in one beaker is limited to 16. After 84 hours, mRNA is extracted

from the roots of the germinated seedlings and transcribed into cDNA.

The cDNA is hybridised onto the microarrays and the array is scanned

to get information about the signal intensity. We assume that there is a

roughly log-linear relationship between the amount of expression product

and the signal detected by the scanner. The experiment was planned for a

total of 72 microarray chips. Effects that occur during this procedure and

which might influence hybridisation signals are included in the following

linear mixed model:

yijkl = µ + gi + dj + (gd)ij + bk + cl + eijkl. (3.9)

Here, for i = 1, ..., ni, j = 1, 2, k = 1, ..., nk and l = 1, ..., nl, yijkl is the

log signal intensity for genotype i on array l, marked with dye j. Plant

material for this sample was cultivated in beaker k. Further definitions

are:

µ, the overall mean;

gi, the fixed effect of genotype i;

dj, the fixed effect of dye j;

(gd)ij, the interaction between genotype i and dye j;

bk, the fixed effect of beaker k;
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cl, the random effect of array l;

eijkl, the random residual error associated with yijkl;

ni, nk and nl, the numbers of levels of the corresponding effect.

An effect of filter paper can be taken into account as well, but we found

in the root length experiment described in section 2.1.3 that this effect is

not significant. When the array effect is treated as random, the recovery

of inter-array information becomes possible. This may result in more ac-

curate estimates of contrasts between inbred lines and hybrids, depend-

ing on the magnitude of the variance component involved and the asso-

ciated degrees of freedom. Contrary to the present study, the recovery

of inter-array information (analogous to inter-block information in incom-

plete block designs; see John and Williams (1995, p. 27)) is not an issue in

experiments studying only two treatments, where arrays constitute com-

plete blocks.

In the preceding sections we developed the standard error of the domi-

nance contrast (3.7) as a suitable optimality criterion for our design. As we

have more than one hybrid, we computed the mean of the standard errors

over the 12 hybrids for each potential design. The array variance/residual

variance-ratio was provided by an earlier microarray experiment, which

will be reported in a following section (experiment 3). Here it is not pos-

sible to perform the experiment with biological replicates in the sense that

each sample consists of RNA of one single maize plant. As field design is

not known, we only have RNA from a pool of plants with a certain geno-

type. However, biological replicates allow the investigator to make an in-

ference on the population from which the replicates derive and should be

used whenever possible. One would then include a replicate effect in the

model to account for variance between individual biological replicates.



3.2. APPLICATION 41

Pre-Experiment for significance testing of possible effects

A pre-experiment was performed to assay the influence of filter paper and

beaker, which may arise during the germination of the seedlings (Section

2.1.3). Effects of filter paper and beaker were incorporated in a mixed

model. We assume that results from the pre-experiment, which are based

on phenotypic data, also apply to the gene expression level. As reported in

the results section, the pre-experiment revealed no significant effect of the

filter paper, whereas the influence of the beakers was confirmed in the pre-

experiment. Therefore, regarding the experimental design for the planned

microarray experiment, we did not account for a filter paper effect.

Estimating variance components from an earlier microarray

experiment

To collect information about the variances between and within arrays, we

analysed data from a microarray experiment where two maize genotypes

(wild type and the mutant rtcs (Hetz, Hochholdinger, Schwall, & Feix,

1996)) were examined for differentially expressed genes (see 2.1.2). The ex-

periment was carried out according to the same protocol and in the same

laboratory as will be Experiment 2.1.1. Then, analysis was performed for

every gene according to a mixed model including effects for genotype,

dye, array and genotype-by-dye interaction, the array being the only ran-

dom effect. We thus obtained estimates for array variance as well as for

residual (within-array) variance. Medians of both estimates were used for

later design considerations where we used the so determined ratio of vari-

ance components.
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Finding optimal designs

In Experiment 2.1.3 we showed that the filter papers, in which the maize

seeds were germinated, have no major influence on root length. Thus, it

is reasonable to germinate only one genotype per filter paper, instead of

using filter paper as a blocking variable. This simplifies the experimental

design considerably. With the filter paper having no significant influence,

the design problem is the following: How should genotypes be allocated

to the cDNA-samples, how should the two dyes be allocated to genotypes,

and how should the filter papers be assigned to the beakers to achieve low

standard errors for the contrasts?

We addressed the design problem in two steps. As we have six pairs

of hybrids and reciprocal hybrids, we formed six groups containing hy-

brid, reciprocal hybrid and parents. For example, the first group would

comprise A, B, AB and BA, the second A, C, AC and CA and so on. The

groups were denoted as ’A-B’, ’A-C’, etc. For estimating the dominance

contrasts of a certain hybrid and its reciprocal one group is sufficient. For

example, to estimate δ(AB) and δ(BA), only the first group is necessary.

Also, each hybridisation of two genotypes can be uniquely allocated to a

certain group, e.g., an array with genotypes A and AC is said to be in the

second group.

With a total of 72 arrays we have 12 arrays available for every hybrid-

reciprocal group. To have similar experimental conditions for all samples

it would be preferable to germinate all seeds in the same beaker. However,

for lack of space the number of filter papers per beaker is limited and two

beakers per group are needed.

To find a good design one approach is to search for an optimal design

for one group, i.e. indicate the optimal number of replicates of the six com-
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binations of the four genotypes (A-AB, B-AB, A-BA, B-BA, AB-BA, A-B) as

well as the optimal allocation to beakers and dyes. To reduce the number

of possibilities we imposed a restriction: One half of the replicates with

a certain genotype pair, e.g., A-AB, should be grown in each beaker and,

accordingly, with half of the replicates of a certain genotype pair the dyes

should be swapped. This restriction excludes highly unbalanced designs,

which are expected to be inferior regarding the optimality criterion, and

the number of possible designs to evaluate is computationally feasible.

We generated and evaluated all possible designs in this restricted set and

picked the best. Then this optimal design was adapted to the other groups

by inserting the appropriate genotype identifiers. Finally, all generated

design matrices were composed to a matrix including all genotypes. The

resulting design will further be denoted as ’compound design’.

The compound design neglects the fact that a parent does not only

occur in one group, but in three. Combining information of groups will

increase the information about the parents and therefore the dominance

contrast. Hence, the compound design might not be optimal for the whole

problem. As computing and evaluating of all possible full designs (72 mi-

croarrays, four effects) is very time-consuming, we performed the search

with a simulated annealing algorithm (Section 3.1.4). Providing a start de-

sign, the algorithm performs a random change in the design matrix, i.e.

an array and an effect (of either genotype, dye or beaker) to be changed

is randomly chosen. If the beaker effect is chosen, then a second array

currently allocated to the other beaker is picked and swapped with the

first array. This ensures the same number of filter papers in both beakers.

The idea of forming groups of hybrid, reciprocal and parents is kept in the

sense that, when altering the genotypes hybridised to an array, the ’new’
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genotypes must be of the same group as the former genotypes. But, unlike

the first approach, optimisation is done for all genotypes simultaneously.

The ’start temperature’ was chosen T0 = 1 and annealing was conducted

by multiplying the current temperature with 0.95 in each iteration.

To analyse the usefulness of the chosen optimality criterion we com-

pared the design satisfying this criterion with an A- and D-optimal design

for genotype effects. We included the three effects of genotype, array and

dye and searched for the optimal design for one group (i.e. for 12 arrays)

in each case. Both the cases of fixed and random error effects were evalu-

ated. Furthermore we varied model (2.1.1) underlying both SA- and com-

pound design and considered the consequences for the complete design.

We assumed the array effect to be fixed or random with different variance

components and omitted the beaker effect.

Analysis of the experiment

Our project partners (Frank Hochholdinger, University of Tübingen) de-

cided to use the compound design for their microarray experiment. Each

microarray slide was scanned six times to obtain optimum information

about weakly expressed spots as well as about spots with high signal

values. To combine data from different slides a nonlinear regression

model was applied Piepho, Keller, Höcker, and Hochholdinger (2006)

(Section 6.3). After normalization of the data (Section 2.3), the analysis

was performed for each spot according to model (3.9). We computed t-

tests for the hypotheses H0: ’Gene expression differs between hybrid and

parental mean’ and the alternative HA: ’Gene expression does not differ

significantly between hybrid and parental mean’. The resulting p-values

were adjusted for multiplicity with the false discovery rate (Benjamini &
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Hochberg, 1995).

3.2.1 Results

Analysis of pre-experiment 2.1.3 data showed significance of the fixed ef-

fect for beaker (p-value 0.0218). Evaluating the random effect for filter

paper we found no significance. This had the important consequence that

we could choose the simplest way of cultivating plants for one sample, i.e.,

cultivate plants on the same piece of filter paper. If the filter paper effect

had been significant, it would have been worthwhile to use the filter paper

as a blocking variable.

We obtained estimates for array and residual variance. After comput-

ing medians for both variance components, we took the relation array vari-

ance ≈ 0.48×residual variance for further calculations.

The results of these preliminary analyses were used to parameterise

the model with which the design was optimised. The first solution is a

design generated by optimising the sub-design for each group and then

piecing together sub-designs. Therefore, designs for every group have

the same number of replicates of hybrid-parent, reciprocal-parent, hybrid-

reciprocal and parent-parent hybridisations. The second solution, opti-

mised for the full design, was obtained by an SA-algorithm. Again, the

design has the same number of replicates for every group, although here

it is not pre-determined as in the first solution.

We first note that with both approaches, the selected design has no

parent-parent arrays (Figure 3.2). The reason is that this pair does not pro-

vide any information on the dominance contrast. Yet, the parent-parent

contrast can be estimated with good accuracy, because the designs provide
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P1 H P1 H P1H

P2 H H P2 P2H

R P1 P1RP1 R

P2 R P2RP2 R

R P1 P1RP1 R

P2 R P2RP2 R

P1 H H P1

P2 H H P2

HRH R

Compound design SA-Design

Figure 3.2: Diagram indicating hybridisations and labelling directions for the

compound-approach and SA-approach for one group (white =̂Cy3, grey =̂ Cy5)

many indirect comparisons among the parents via the hybrids. For exam-

ple the contrast A-B can be estimated from the difference of the contrasts

A-AB and B-AB or from contrasts A-AC, C-AC, B-BC, and C-BC. Similarly,

Piepho (2005) found that when estimating heterosis, parent-parent pairs

or hybrid-reciprocal pairs should be used sparely or not at all to obtain

accurate heterosis estimates.

It is striking that with the compound design we do not have any

hybrid-reciprocal hybridisations while in the SA-design there are two per

group. The explanation is that in the SA-approach we also exploit infor-

mation about the parents available from other groups, where the same

parents occur. Thus, fewer parents need to be hybridised and hybrids are

used instead. As a certain hybrid only appears in one group, it makes

sense to increase the number of hybrid hybridisations. A closer look at

one group of the SA-design (Table 3.1) reveals that there is a dye swap

across beakers except in the third row where the parent changes. Due to

this change the number of both parents is balanced.
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Table 3.1: Allocation of genotypes§, beakers and dyes exemplified for one group of

the SA-design.

Beaker 1 Beaker 2

Cy3 Cy5 Cy3 Cy5

P1 H H P1
P2 H H P2

H P1 P2 H
R P1 P1 R
R P2 P2 R

H R R H

§ P1, P2: parents; H, R: hybrid and reciprocal cross.

We also see that in the SA-approach, we have unequal numbers of

replicates for hybrid-parent and reciprocal-parent hybridisations. Con-

sequently, with this design the dominance contrast for a hybrid cannot

be estimated with the same accuracy as the dominance contrast for the

reciprocal. Of course, hybrid and reciprocal hybrid are interchangeable.

Therefore, it is possible to estimate the favoured dominance contrast with

greater accuracy. Parental contrasts are estimated with varying accuracy

depending on the genotypes. The variations may be caused by different

dye- and beaker-allocations. These allocations do not show any systematic

pattern as can be seen from the allocation of genotypes to the arrays. Stan-

dard errors for hybrid-reciprocal contrasts are the same for every group,

as we always have within each group one hybrid hybridised six times and

one hybridised four times.

In Tables 3.2 standard errors of different contrasts are given for the

two designs. As an unequal number of hybrids and reciprocal hybrids

was hybridized in the SA-design, the standard errors of the dominance

contrast for hybrid and reciprocal hybrid are different. The optimality
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criterion was calculated as the mean of standard errors of the dominance

contrast for hybrids and reciprocal hybrids. It is not astonishing that

the value of the optimality criterion is worse with the compound-design

approach, because the design was optimised for only one group and not

the problem as a whole. As the optimality is worse, standard errors for

dominance contrasts are higher than the mean of standard errors for the

SA-approach. Only parental contrasts are estimated better in the first

approach, which seems plausible as parents are hybridised more often.

Table 3.2: Effectiveness of the two approaches (complete design)

Standard errors

Compound
design SA-design

Dominance contrast
Mean (optimality criterion) 0.5268 0.5256

Range 0.5268 0.4979 or 0.5534
Parental contrasts (range) 0.4802 between 0.5308 and 0.5814
Hybrid-reciprocal contrasts 0.6658 0.5948

The increase in accuracy of estimation when joining information of

several groups can be seen when comparing standard errors of a reduced

design containing genotypes of only one group with standard errors of

the complete SA-solution (Table 3.3). By combining all groups the gain

in accuracy of estimation for the dominance contrasts is rather small.

Especially the parental contrasts are estimated more accurately when

taking the complete design, as we have altogether three groups which

provide information about a parent. The accuracy of contrasts between

hybrid and reciprocal differs only slightly between designs because no

other hybridisations are of interest than those with the parents of the
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according group.

Table 3.3: Comparison of one-group- and complete SA-design

Standard errors

One group Complete
of SA-design SA-design

Dominance contrast 0.5027 or 0.5555 0.4979 or 0.5534
Parental contrast 0.7478 0.5469

Hybrid-reciprocal contrast 0.5952 0.5948

The increase in accuracy achieved with the simulated annealing (SA)

approach is relatively small (Table 3.2). Also, not all contrasts are esti-

mated with the same accuracy. Therefore, the gain from using the SA-

algorithm was not dramatic for this experiment. Generally, the gain from

the SA-method strongly depends on the factors and their levels included

in the model and can hardly be evaluated in advance.

For the evaluation of our optimality criterion we developed an A- and

D-optimal design, which has two replicates of each genotype-combination

(A-B, A-AB, A-BA, B-AB, B-BA, AB-BA) with the dyes swapped. The de-

sign optimal for the heterosis contrasts contains two additional hybrid-

parent-replicates instead of the parent-parent replicates. Standard errors

for the dominance contrast are 0.5276 (heterosis-optimal) and 0.5466 (A-

/D- optimal). This means the variance of the heterosis-optimal design is

about 93% of the variance of the A-/D-optimal design. Taking the chip ef-

fect as fixed the design optimised for heterosis performs even better com-

pared to the A-/D- optimal design: its variance then is only 87% of the

A-/D-optimal design for the heterosis contrast.

Considering the complete design assuming the array effect as fixed
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changes the compound design (Figure 3.3) but not the design obtained

by simulated annealing. A fixed array effect corresponds to a random

array effect with infinite variance. Therefore, if the array variance is high

compared to the residual variance this makes a difference only for the

compound design but not the SA-design. The extreme case of fixed chip

effects suggests that with other variance ratios a change in the optimal

design is more likely with the compound design than with the SA design.

If the beaker effect is omitted, the compound design is not affected, but

the SA-approach results in an increased number of hybrid-reciprocal

arrays at the cost of hybrid-parent arrays (Figure 3.3). It thus seems

justified to account for this effect.

P1 H P1H

P2 H P2H

P1RP1 R

P2RP2 R

HRH R

SA-Design without beaker effect

HRH R

R P1 P1RP1 R

P2RP2 R

P1 H H P1

P2 H H P2

HRH R

H P2

Compound design with

fixed array effect

Figure 3.3: Diagram indicating hybridisations for variations of model (3.9)

(white=̂Cy3, grey=̂Cy5)

The microarray experiment was performed according to the compound

design, whereof a simplified version is displayed in Figure 3.2. Analy-

sis of the data revealed that the hybrids differed largely in the number
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a b

Figure 3.4: Histogram of p-values for (a) maize hybrid UH250xUH002 and (b)

maize hybrid UH250x301

of genes that show a significant effect for dominance. In seven hybrids

no gene with significant dominance contrast (after fdr-adjustment) was

found. Among these hybrids there are four intra pool hybrids, i.e., the

parental lines are genetically similar and thus a dominance effect is less

likely to occur. All of the five hybrids where differences between hybrid

and parental mean could be determined are inter-pool hybrids, meaning

that the genetic diversity between the parental lines is higher than with

intra-pool hybrids. Histograms of unadjusted p-values for two hybrids

are shown in Figure 3.4. Hybrid UH250xUH002 is an inter-pool hybrid

where—after fdr-adjustment—24 genes had a significant dominance con-

trast. Hybrid UH250xUH301 is an intra-pool hybrid where no significant

dominance contrast was found.

Only for hybrid UH250xUH002 a deviation from the uniform distribu-

tion can be seen, resulting in differential contrasts. In Table 3.4 genes with

a significant difference in gene expression between UH250xUH002 and the

parental mean are indicated together with the estimate of the dominance

contrast and the fdr-adjusted p-values.
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Table 3.4: Genes with a significant dominance contrast for hybrid

UH250xUH002

Dominance
Clone ID estimate p-value

605012F10.x1 1.240 0.017
MEST36-E03 1.050 0.014
606013F12.x2 0.898 0.017
605014A07.x1 0.860 0.026
MEST36-E07 0.842 0.026
603019B04.x1 0.831 0.025
606014H01.x1 0.821 0.030
614095B03.x1 0.774 0.014
605012A06.x1 0.771 0.030
MEST34-H12 0.760 0.018
614018D07.y1 0.757 0.025
606005C03.x1 0.757 0.025
606013G02.x2 0.731 0.017
MEST11-A10 0.731 0.029
605002F03.x1 0.702 0.018

MEST9-F02 0.686 0.043
486066A07.x1 0.658 0.025
606013E04.x2 0.622 0.029
707081C10.x1 0.594 0.022
MEST113-E01 -0.506 0.025
MEST66-A07 -0.640 0.025
606014C11.x1 -0.647 0.048
MEST67-E11 -0.838 0.019

603040C09.x1 -0.907 0.025



3.2. APPLICATION 53

Höcker et al. (2007) classified genes with a significant dominance con-

trast according to their function and found that differentially expressed

genes fell in all functional categories. They therefore suppose that not a

specific function is required during heterosis manifestation in maize pri-

mary roots but rather the interplay of genes related to diverse functions.

3.2.2 Discussion

We sought for a microarray design with minimum standard errors for the

desired contrasts. As a first method a solution for a simplified version of

the problem was computed. A simulated annealing algorithm was used

for optimisation in the second method and a design adapted to the specific

problem was provided.

As optimality criterion the mean standard errors of all dominance con-

trasts was chosen. Other criteria would be possible, according to research

objectives. John and Williams (1995, p. 34) propose to choose a criterion

weighting the contrasts according to their importance. In our case, zero

weight was given to all contrasts except the dominance contrasts, because

this conformed to the main objective of the planned experiment. Other

weighting schemes comprising standard errors for other contrasts, for ex-

ample parental contrasts, are imaginable. For example, in order to study

the dominance and the over-dominance hypotheses, it is useful to con-

sider the comparison of a hybrid with one of its parents. These contrasts

were not of primary interest for the planned experiment since the main

objective was to identify genes showing dominance effects.

The optimality criterion evaluated during the design search is an ap-

proximation to the mean standard errors of dominance contrasts, as the

true variance components in the model are unknown. According to
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Kackar and Harville (1984) the variance of a linear contrast of β may be

approximated by

Var(l′β̂)
.
= l′(X ′V −1X)−l + tr

[

C{mh′ZiZ
′
iPZjZ

′
jh}

r
i,j=0

]

, (3.10)

with h′ = l′(X ′V −1X)−X ′V −1, P as in (3.5) and C = {mcij}
r r

i=0,j=0 is the

asymptotic variance-covariance matrix of the vector of estimated variance

components. This approximation accounts for uncertainty in the variance

estimates. Instead of (3.10), however, we used

Var(l′β̂)
.
= l′(X ′V −1X)−l, (3.11)

with V replaced by V̂R, the REML-estimate of V , as described in Section

3.1.3. The reason for approximating (3.10) by (3.11) is that this expression

is computed directly by SAS/ Proc Mixed.

The discussion shows that choice of an optimal design depends on a

number of factors. In addition, the common optimality criteria (D- and

A-optimality, average pairwise variance) are not generally helpful. Thus,

standard packages for experimental design do not usually give the most

useful answer, and a tailor-made approach is needed. Further details re-

garding this aspect can be found in Pearce (1974) and Freeman (1976).

With the analysis of a pre-experiment as well as a further microarray

experiment, we gained knowledge about the significance and magnitude

of error effects. Because a significant effect of filter paper could not be

proved for phenotypic data, this effect was neglected. Yet it is not clear

if this is satisfactory proof that this effect does not show up in mRNA. If

so, the filter paper effect will be confounded with the residual intra-array

variance and then will increase the error term. Analysis of microarray data

showed that array variance is about half of the residual variance. This,
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however, is an estimate based on another experiment and in the planned

experiment the variance ratio may possibly change.

In this study some basic principles, which can generally be used when

designing microarray experiments, were applied. First of all, a mixed

model underlies all design considerations. Effects for array, dye, and geno-

type will probably be incorporated in every microarray design. Depend-

ing on the way in which plant material is obtained, the inclusion of other

effects will be necessary. If one is doubtful which of them are significant,

a separate experiment can be performed to check these factors. If infor-

mation about variance components of the random effects is available from

other sources, this can be utilised. Then, after defining an appropriate op-

timality criterion, the search for the optimal design can be carried out. One

approach is to simplify the design problem and choose the best among all

designs that satisfy some reasonable restrictions. This simple strategy pro-

vides fairly good results compared to a more complex design solution.

This work is the outcome of collaborative efforts within a research net-

work ’Heterosis in Plants’ addressing the microarray analysis of young

seedling roots in maize. Naturally, other research groups will face differ-

ent design problems, mainly in the early stages of their projects (e.g., dur-

ing cultivation of plant material used for hybridisation), but some of the

concepts elaborated here still hold, and, with some modifications, results

can be applied to similar problems.
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Chapter 4

Transformations

Data for the estimation of heterosis often show heterogeneity of variance,

as we shall later see in an example with phenotypic data. Dominance may

be estimated by microarray data, which are also known to be extremely

heterogeneous concerning variance. Therefore it is frequently necessary

to transform either the data or, within the context of generalized linear

models, the linear predictor, to satisfy certain assumptions. For microar-

rays the log-transformation is probably the most common transformation.

Other transformations are possible like the so-called generalized loga-

rithm, which was independently introduced for microarrays by Durbin,

Hardin, Hawkins, and Rocke (2002), Huber, Von Heydebreck, Sültmann,

Poustka, and Vingron (2002) and Munson (2001). This transformation con-

verges to the natural logarithm for high intensities and stabilizes the vari-

ance to the first order, meaning that the first order Taylor expansion has

constant variance.

In this chapter it will be argued that the amount of heterosis is scale-

dependent varying with the kind of transformation. The same applies

for the examination of dominance in quantitative genetics. The varying

heterotic effect is exemplified using the Box-Cox transformation with phe-

57
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notypic data of maize roots. Either a data transformation or a generalized

linear mixed model with appropriately chosen link function is applied to

the data. It is concluded that care should be exercised when transforming

data in phenotypic as well as quantitative-genetic studies because partial

dominance or heterosis may be removed by a suitably chosen transfor-

mation. With data transformations, even overdominance or better parent

heterosis may disappear. When a data transformation is needed to meet

the usual statistical assumptions such as normality and homogeneity of

variance, a back-transformation to the original scale may be necessary, de-

pending on what is deemed the appropriate scale for assessing genetic

effects. The findings described in this chapter are also depicted in Keller

and Piepho (2005).

4.1 Theory of transformations

Quite often some or all of the assumptions underlying a linear model are

not satisfied. While non-normality does not seem to be a major problem

with large samples as a result of the central limit theorem, independence

and homogeneity of variance are far more important. Transforming the

data may be a solution. We consider the Box-Cox transformation as given

by Box and Cox (1964):

t(yi; φ) =







yφ

i
−1

φ
if φ 6= 0

ln(yi) if φ = 0
, (4.1)

where t(yi; φ) is the transformed value and φ is a transformation parame-

ter. In order to better meet the usual assumptions, the transformation pa-

rameter may be estimated by the Maximum Likelihood (ML) method, as-

suming normality and homogeneity of variance on the transformed scale

(Atkinson, 1985, p. 85). Recently, Gurka, Edwards, and Nylander-French
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(2007) developed inference tools for testing the transformation parameter

in mixed models against a hypothesized value. This is useful in applied

settings, where one is not interested in the exact transformation parame-

ter, but wants to apply a certain preferred value, as, e.g., applying φ = 0

in the case of the Box-Cox transformation. The Box-Cox transformation

often gives good results regarding normality. Gurka, Edwards, Muller,

and Kupper (2006) showed that when an extended version of the Box-Cox

transformation of the response in a mixed model results in near normality

of the total error term, the random effects and the residual error will each

have approximate normal distributions.

Transformations in general, however, have the disadvantage that a

transformation providing normality will not always protect from variance

heterogeneity. Therefore, a generalized linear model (GLM) is often pre-

ferred. Within this context a wide variety of data may be modeled. The

data yi consists of measurements from a distribution of the exponential

family, which is characterized by

fYi
(yi) = exp{

a(yi)γi − b(γi)

τ 2
− c(yi, τ)}, (4.2)

for some specific functions a(·), b(·) and c(·). The Yi are assumed to be

independent and have expectation µi: E[yi] = µi, which is connected to the

linear part of the model by a link function g(·). The linear part is denoted

linear predictor ηi:

ηi = x′
iβ, (4.3)

where xi is the i-th row vector in the design matrix X . Therefore the linear

predictor and the expectation of the data are connected by

µi = g−1(ηi). (4.4)
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Let’s go back to (4.2). Suppose we parametrize the distribution function in

a way that a(yi) = yi, then the parametrization is called canonical and γi

is sometimes called the natural parameter. According to McCulloch and

Searle (2001, p. 140)

µi =
∂b(γi)

∂γi
(4.5)

and

Var(yi) = τ 2 ∂2b(γi)

∂γ2
i

= τ 2v(µi),

where v(µi) = ∂2b(γi)
∂γ2

i

. With (4.5) and (4.4) we see that g−1(ηi) = ∂b(γi)
∂γi

, that

is, the derivative of b(γi) can be the inverse link function for the model.

This natural link function is called the canonical link of the distribution.

To simplify matters we will use only canonical parametrizations hereafter,

but not necessarily canonical link functions. The exponential family in-

cludes both continuous and discrete distribution functions as, for exam-

ple, the Gaussian, Gamma, Poisson and Binomial distribution. These dis-

tributions all have a canonical link function. In case of Gaussian data the

canonical link function is the identity link µ = η.

We consider random variables Yi, i = 1, ...n that follow the assumptions

of a generalized linear model with canonical parametrization, i.e. the Yi

have the following distribution:

fYi
(yi) = exp{

yiγi − b(γi)

τ 2
− c(yi, τ)}.

In case of a generalized linear mixed model (GLMM) with random effects

u, it is not the yi, but the yi|ui, i.e. the observations conditional on the

random effects, which are distributed with a density from the exponential

family:

fYi|u(yi|ui) = exp{
yiγi − b(γi)

τ 2
− c(yi, τ)}.
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The random effects are assumed to have a certain distribution u ∼ fU(u).

The expectation of yi is now conditional on the random effects: E[yi|u] = µi

and the connection between µi and the linear predictor is g(µi) = x′
iβ+z′iu,

where zi is the i-th row vector of the design matrix Z of the random effects.

The likelihood of the Yi is obtained by integrating over the random effects:

L = fY1
(y1) · ... · fYn

(yn)

=
∫

∏

i

fYi,u(yi, u)du

=
∫

∏

i

fYi|u(yi|u)fU(u)du

=
∫

fY |u(y|u)fU(u)du.

Estimation can be performed by maximizing the log-likelihood l. For the

random effects, this is given by

∂l

∂ϕ
=

∂

∂ϕ
log

∫

fY |u(y|u)fU(u)du

=
1

∫

fY |u(y|u)fU(u)du

∂

∂ϕ

∫

fY |u(y|u)fU(u)du

=
1

∫

fY,U(y, u)du

∫ ∂

∂ϕ
fY |u(y|u)fU(u)du

=
1

fY (y)

∫

(

1

fY |u(y|u)fU(u)

∂fY |u(y|u)fU(u)

∂ϕ

)

fY |u(y|u)fU(u)du

=
1

fY (y)

∫ ∂ log
[

fY |u(y|u)fU(u)
]

∂ϕ
fY |u(y|u)fU(u)du

=
∫ ∂ log

[

fY |u(y|u)fU(u)
]

∂ϕ

fY,u(y, u)

fY (y)
du

=
∫

∂ log fY,U(y, u)

∂ϕ
fu|y(u|y)du

= E

[

∂ log fU(u)

∂ϕ
|y

]

.

This equation can be simplified when the distribution of the random ef-

fects is known. Similarly to the computations above, the log-likelihood



62 CHAPTER 4. TRANSFORMATIONS

Table 4.1: Genotypes and their genotypic values.

Expected Dummy for Dummy for
genotypic additivity heterotic

Genotype value (µ) effect α(x) effect δ(z) i
aa γ 0 0 1
Aa γ + α + δ 1 1 2
AA γ + 2α 2 0 3

may be differentiated with respect to the fixed effects β resulting in

∂l

∂β
=
∫ ∂ log fY |u(y|u)

∂β
fU |y(u|y)du.

Equating both derivatives to zero leads to the ML-equations. However, in

most cases they cannot be solved analytically and numerical quadrature

methods are used. In this thesis these computations are performed by

adaptive Gaussian quadrature as described by Pinheiro and Bates (1995).

4.2 A model for heterosis and dominance

At the phenotypic level, mid-parent heterosis (MPH) is defined in (1.1)

as the superiority of a hybrid compared to the parental mean, whereas

better-parent heterosis (BPH, (1.2)) indicates the superiority of a hybrid

compared to the better parent. Let us introduce a model for the expected

phenotypic value of a certain genotype. Consider the genotypes given in

Table 4.1, which may stem, e.g., from a cross Aa of two maize inbred lines

with genotypes aa and AA. The linear model for phenotypic values can

be stated as

µi = γ + αxi + δzi, (4.6)

where µi is the expected phenotypic value of i-th genotype and γ, α, xi, δ

and zi are, respectively, the expected phenotypic characteristic of genotype
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aa Aa AA

g + a

g

g + 2a

0 1 2

m

d

f(m'+a'x)

x

Figure 4.1: Plot of genotypic value (µ) versus dose (x) of allele A.

aa, an additive effect (i.e. half the difference of the two parent means), the

dose of A for the i-th genotype, the mid-parent heterosis, and the dummy

variable for the heterozygote. In this case, α and δ cannot usually be as-

cribed to the action of a single gene, except when the parents are near-

isogenic lines differing in but one locus. Model 4.6 can be visualized by

plotting the phenotypic or genotypic value against the dose of A (Figure

4.1). When no mid-parent heterosis is present, i.e., when δ = 0, the model

simplifies to

µi = γ + αxi.

In the context of quantitative genetics a and A may be considered as

alleles from a diallelic locus with segregating genotypes AA, Aa and aa

in the F1-population. Assuming that a closely linked marker is available,

segregation at the locus can be studied directly by comparing marker class

means for phenotypic data (Boiteux et al., 2004). Alternatively, the gene
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expression may be studied by using cDNA microarrays, as described in

the previous chapter. In this case, the response variable is a measure of

the quantity of expression products in the plant tissue considered. When

analysing marker data, the terms µi, γ, α, xi, δ and zi in model (4.6) stand

for the expected value of the gene expression of the i-th genotype, the ex-

pected value of the gene expression of genotype aa, the additive effect of

allele A, the dose of allele A for the i-th genotype, the dominance effect,

and the dummy variable for the heterozygote. We can distinguish differ-

ent degrees of dominance such as overdominance, partial dominance and

complete dominance. Overdominance is present when |δ| > |α|. When

|δ| < |α|, there is only partial dominance, while complete dominance oc-

curs when |δ| = |α| (Falconer & Mackay, 1996, p. 26). Equivalently, the

degree of dominance may be characterized by the dominance ratio ρ = δ
|α|

(Table 4.2). Simultaneous confidence intervals for ρ, α and δ may be calcu-

lated according to Piepho and Emrich (2005).

The idea of different degrees of dominance can be carried forward to

the heterosis context. Considering the whole genome, one can build the

sum of effects over all loci. Some of them might cancel out while others

sum up (Mather & Jinks, 1977), and the resulting degree of heterosis can

be classified in different groups. If we confine attention to the agronom-

ically interesting cases where MPH > 0, three types of heterosis can be

distinguished, according to whether the hybrid performance is less than,

equal to or is greater than the performance of the better parent, i.e. BPH

> 0, BPH = 0 and BPH < 0, respectively. Thus, the modelling of dom-

inance and heterosis data are perfectly congruent (Table 4.2). To sustain

the analogy between dominance and heterosis, an additive effect has been

included in model (4.6), although it is not commonly used explicitly in
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Table 4.2: Characterization (Ch.) of different degrees of dominance and corre-

sponding degrees of heterosis

Ch. Ch.
Degree of Corresponding in terms of in terms of
dominance (d.) degree of heterosis§ δ and α ρ = δ/|α|

Overd. BPH> 0, MPH> 0 δ > |α| ρ > 1
Complete d. BPH= 0, MPH> 0 δ = |α| ρ = 1
Partial d. BPH< 0, MPH> 0 δ < |α| 0 < ρ < 1
Lack of d. BPH< 0, MPH= 0 δ = 0 ρ = 0
§ MPH = mid-parent heterosis; BPH = better-parent heterosis. Without loss

of generality we assume that MPH≥0, so that δ ≥ 0.

phenotypic analysis of heterosis. The effect δ, however, is common in both

contexts and can be interpreted either as mid-parent heterosis, when look-

ing at a phenotypic trait, or dominance, when looking at one locus. The re-

lationship between heterosis at a single locus and dominance is also shown

in Bernardo (2002, p. 243).

4.3 Influence of transformations on heterosis es-

timates

The analysis of the linear model (4.6) by standard procedures may be

based on the usual assumptions such as additivity, homogeneity of vari-

ance, and normality. When at least one of these assumptions is violated,

one may avail oneself of the methods proposed in Section 4.1. The most

common reaction is to search for a data transformation, which will meet

all assumptions simultaneously, at least approximately. This approach has

been used frequently in studies of heterosis and dominance (Boiteux et

al., 2004; Baker et al., 2003; Tefera & Peat, 1997; Roumen, 1994). Alterna-
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tively, one may take recourse to a generalized linear model analysis (Mc-

Cullagh & Nelder, 1989), which transforms the linear predictor rather than

the data. In the GLM context, this transformation is also known as the link

function. In either case, the transformation will not leave the heterotic

or dominance effect unaffected. Specifically, one can always find a data

transformation or a link function that makes this effect disappear, provid-

ing the BPH on the original scale is smaller than zero. In case of a data

transformation, even positive BPH may disappear. These important facts

will be demonstrated by examples using phenotypic data. However, due

to the above-mentioned analogy between heterosis and dominance, the

same problem exists for dominance on the original scale. The implications

are twofold. Firstly, in quantitative-genetic studies care should be exer-

cised when transforming data or linking a linear predictor. It should be

critically checked, whether the transformed scale is useful or natural for

studying heterotic (dominance) effects. Secondly, if a transformation is

needed only to better meet the statistical assumptions, one should back-

transform parameter estimates to the original scale for inference on genetic

effects. It will be shown that the generalized linear mixed model frame-

work offers flexibility to account for non-normality and variance hetero-

geneity, so that analysis can focus on a transformation (link function) that

is deemed optimal for the study of genetic effects.

4.3.1 Theoretical approach

In this section it will be shown that partial dominance or heterosis may be

removed by a generalized linear model with a suitably chosen transfor-
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mation parameter. In analogy to (4.1) we use the link function

ηi = g(µi; φ) =







µφ

i
−1

φ
if φ 6= 0

ln(µi) if φ = 0
.

With the indices from Table 4.1 mid-parent heterosis on the transformed

scale can be described as δ(φ) = η2 −
1
2
(η1 + η3). In case of negative BPH of

the hybrid it can be assumed without loss of generality that on the original

scale 0 < µ1 < µ2 < µ3 and means can be re-expressed as

µ1 = θ

µ2 = θλ1

µ3 = θλ1λ2

with θ > 0, λ1 > 1, and λ2 > 1.

Heterosis on the transformed scale is given by

δ(φ) =







θφ

φ

(

λφ
1 −

1+λφ
1
λφ
2

2

)

if φ 6= 0
1
2
[ln(λ1) − ln(λ2)] if φ = 0

. (4.7)

In the following we confine attention to cases where MPH is present for

untransformed data, i.e., where θλ1 −
1
2
(θ + θλ1λ2) > 0. This is equivalent

to

2 −
1

λ1
> λ2. (4.8)

As −(λ1−1)2 ≤ 0 holds true for all λ1, simple calculus leads to 2− 1
λ1

≤ λ1.

Together with (4.8) we come to the result that for positive MPH λ1 > λ2.

MPH disappears when δ(φ) = 0. For φ = 0 this is not possible, as we

confined ourselves to cases where λ1 > λ2. If φ 6= 0, for MPH to disappear

the following condition must be fulfilled:

λφ
1 −

1 + λφ
1λ

φ
2

2
= 0 ⇐⇒ 2 − λφ

2 = λ−φ
1 .

Solutions for this equation other than the trivial case φ = 0 (which is not

a solution to δ(φ) = 0) can only be determined numerically, e.g., by New-

ton’s method. We now show that there is always exactly one such solution.
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Let g1(φ) = λ−φ
1 and g2(φ) = 2 − λφ

2 . The first two derivatives with respect

to φ are found to be

g′
1(φ) = −λ−φ

1 ln(λ1)

g′′
1(φ) = λ−φ

1 [ln(λ1)]
2

g′
2(φ) = −λφ

2 ln(λ2)

g′′
2(φ) = −λφ

2 [ln(λ2)]
2

The first derivative of both functions is negative for all φ, so the functions

are monotonically decreasing in φ. The second derivative of both func-

tions has the same sign for all φ. A function f(φ) is said to be convex

(concave) if its second derivative is positive (negative) for any value of φ.

It is found that g1 is convex and g2 is concave. This is sketched in Figure

4.2. Moreover,

lim
φ→ −∞

g1(φ) = ∞ and lim
φ→∞

g1(φ) = 0

lim
φ→ −∞

g2(φ) = 2 and lim
φ→∞

g2(φ) = −∞.

Considering these facts it can be said that the two functions may have

one of three possible joint patterns: (i) the curves do not intersect; (ii) the

curves touch in one point; (iii) the curves intersect at two points. We al-

ready found that the functions always meet at φ = 0 (a trivial case), so

pattern (i) can be ruled out. Gradients of g1(φ) and g2(φ) at φ = 0 are dif-

ferent as λ1 > λ2, so that pattern (iii) must apply, while pattern (ii) can

be ruled out as well. Hence, there must always be a second (non-trivial)

point of intersection, which we denote by φ0. From λ1 > λ2 follows that

− ln(λ1) < − ln(λ2), i.e., the gradient of g1 in φ = 0, the convex curve, is

smaller than the gradient of g2, the concave curve, which means that the

non-trivial point of intersection between the two is for φ0 > 0.
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Figure 4.2: g1(φ) and g2(φ) for λ1 = 5 and λ2 = 1.4

To sum up, for a hybrid with positive MPH in the raw data there is

exactly one parameter value φ that removes the heterotic effect. It is, how-

ever, not only possible to reduce or even eliminate the heterotic effect, it

can also be enlarged.

Generally, we are not only interested in the absolute value of δ, but also

in the dominance ratio ρ = δ
|α|

, which sets the dominance effect in relation

to the additivity effect. With the parametrization above, additivity on the

transformed scale is given by

α(φ) =

{

θφ

2φ
(λφ

1λ
φ
2 − 1) if φ 6= 0

1
2
[ln(λ1) + ln(λ2)] if φ = 0

.

As α(φ) > 0 for all φ, we have αφ = |αφ| and with (4.7) the dominance ratio

on the transformed scale is

ρ(φ) =
δ(φ)

α(φ)
=











2λφ
1
−1−λφ

1
λφ
2

λφ
1
λφ
2
−1

if φ 6= 0
ln(λ1)−ln(λ2)
ln(λ1)+ln(λ2)

if φ = 0
. (4.9)

Using l’Hospital’s rule we have limφ→0 ρ(φ) = ln(λ1)−ln(λ2)
ln(λ1)+ln(λ2)

, and thus (4.9) is

a continuous function. We determine the limits of ρφ for φ → ±∞:

lim
φ→−∞

ρ(φ) = lim
φ→−∞

2λφ
1 − 1 − (λ1λ2)

φ

(λ1λ2)φ − 1
= 1
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Figure 4.3: ρ(φ) for λ1 = 5 and λ2 = 1.4

and

lim
φ→∞

ρ(φ) = lim
φ→∞

2λφ
1 − 1 − (λ1λ2)

φ

(λ1λ2)φ − 1
= lim

φ→∞

2λ−φ
2 − (λ1λ2)

−φ − 1

1 − (λ1λ2)−φ
= −1.

In Figure 4.3 ρ(φ) is plotted against φ for λ1 = 5 and λ2 = 1.4. It can

be shown that ρ(φ) is monotonically decreasing (Appendix A). Together

with the consideration of the limits, this has the following interpretation:

for untransformed data ρ(φ = 1) must be positive as we assume that MPH

is present and that the parents are different. Performing a Box-Cox trans-

formation with φ > 1 the dominance ratio is reduced. It may become zero

or even negative with lower bound minus one. Transforming with a pa-

rameter value φ < 1, the dominance ratio is enlarged, but it will not reach

one.

We showed that mid-parent heterosis and the dominance ratio can al-

ways be turned to zero by a suitably chosen transformation of the linear

predictor. For the dominance ratio we showed that it may also be enlarged

by a transformation. Contrary to transformations when MPH is present,

positive BPH cannot be removed by a monotone transformation of the lin-
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ear predictor, and the distinction among positive BPH and other forms of

heterosis (Table 4.2) will not be affected by a monotone transformation of

the linear predictor. To see this, consider the contrasts δ − α and δ + α. It

is easily verified that |δ| > |α| only if both of these contrasts have equal

sign. Observing that δ + α = η2 − η1 and δ − α = η2 − η3, it is clear that a

monotone transformation of ηi will have no effect on the decision whether

or not |δ| > |α| holds true, since ranking of ηi is not altered by a monotone

transformation.

4.3.2 Practical approach using experimental data

The effects of transformations are demonstrated by means of phenotypic

data from early maize seedlings as described in Section 2.1.4. To illustrate

the effects of transforming either the original data or the linear predictor,

the hybrid UH005×UH301 was chosen. The hybrids performance lies be-

tween the parental mean and the better parent (i.e. MPH> 0, BPH< 0)

on the original scale. Hybrid UH250×UH005 was selected to illustrate

that even positive BPH may be removed by data transformations in some

cases.

The data are analysed based on an extension of model (4.6), which has

the form

t(yijk) = γ + αxi + δzi + pij + eijk,

where t(·) is a transformation, yijk the length of the k-th lateral root of the

i-th genotype class and j-th primary root, pij is the random effect of the

j-th primary root in genotype class i and eijk is an error term. Both pij

and eijk are assumed to follow a normal distribution with zero mean and

homogeneous variance.
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Figure 4.4: Plot of residuals vs. the predicted values show that neither normality

nor variance homogeneity are satisfied.

Plots of the predicted values vs. the residuals of the untransformed

data yijk show an increase of variance with the prediction (Figure 4.4).

Therefore, the assumption of homogeneous variance is violated for the

original data yijk, and transformation of either the data or the linear pre-

dictor is necessary.

Transforming the data

The data are transformed with the Box-Cox transformation (4.1) where

the transformation parameter φ is estimated by the Maximum Likelihood

method. However, if a value for φ is chosen that differs from the ML es-

timate, estimates for δ and other effects are different. For example, for a

hybrid with negative BPH on the original scale, one can find a parameter

value for φ that removes MPH on the transformed scale. Therefore, the

ML estimate was determined as well as the parameter value that min-

imizes the F-statistic for the effect for δ and the resulting estimates for

α, δ and ρ were calculated. In addition, estimates for the often-used log-



4.3. INFLUENCE OF TRANSFORMATIONS 73

transformation were determined, as well as estimates of untransformed

data, although these are not reliable as the assumptions of normality and

variance homogeneity are not satisfied.

If the objective of the data transformation is merely to meet certain

assumptions, results should be backtransformed to the original scale. The

delta method, which is based on a first-order Taylor-series expansion, may

be used to compute an approximation for the expectation on the original

scale (Lynch & Walsh, 1998). However, this is only a good approxima-

tion if the variance in the original data is low. We therefore prefer to de-

termine the median on the original scale. As we act on the assumption

of normality on the transformed scale, the mean on this scale is an esti-

mate of the median. Due to the monotony of the transformations the data

are ordered the same way on the original and on the transformed scale.

Hence it is straightforward to compute the median on the original scale by

applying the inverse transformation to the mean of the transformed data

(Connolly & Wachendorf, 2001). Apart from computational simplicity, the

median is preferable to the mean as a location measure in case of skewedly

distributed data. Estimates for logarithmized data and ML-estimates are

backtransformed to medians on the original scale, while for the estimates

minimizing the F-statistic for dominance (see below) no backtransforma-

tion is done as this transformation was only conducted to show the disap-

pearance of δ and will not be used in practice.

Transforming the linear predictor

In the preceding section it has been pointed out that heterosis can often be

removed by a data transformation. In the present section, we will show

that, within the framework of generalized linear mixed models (Section
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4.1), one can always find a monotone transformation g(µ) of the expecta-

tion µ of the vector of observations that removes heterosis when BPH< 0

and MPH> 0.

For the estimation of heterotic effects the linear predictor η from (4.3)

may be expressed as

ηi = g(µi) = γ + αxi + δzi,

with γ, α, δ, xi and zi defined as in model (4.6). We let the random effect of

the primary roots and the residual error enter the model as follows:

yijk = g−1(ηi) + pij + eijk. (4.10)

This is known as a population-averaged model, as opposed to a subject-

specific model, where pij would enter the model via the linear predictor

(Vonesh & Chinchilli, 1997; Schabenberger & Pierce, 2002, p. 416). The

claim here is that with heterosis such that MPH> 0 and BPH< 0 on some

original scale, one can always find a monotone transformation g(µi) in-

volving a transformation parameter φ so that heterosis vanishes, i.e.,

g′(µi) = γ′ + α′xi

on the transformed scale, where α′ is the additive genetic effect for A and

γ′ the genotypic value for genotype aa. Thus, one can always find a link

function that removes heterosis when MPH> 0 and BPH< 0 (4.3.1) and

the presence and magnitude of negative BPH is entirely scale-dependent.

This is illustrated calculating estimates by means of the GLMM framework

with different link functions: identity link, log-link and Box-Cox link. The

parameter of the latter is chosen in a way that minimizes the Wald-type

F-statistic for the effect δ. The Box-Cox link is just an example of a link

function removing heterosis. This link function involves the parameter
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φ, which requires special attention when fitting a GLMM (McCullagh &

Nelder, 1989, p. 375). For all three models, i.e. identity, log- and Box-Cox

link, the error eijk is assumed to be gamma distributed, while pij follows a

normal distribution. The gamma distribution includes a scale parameter

allowing the modelling of a variance that increases with the expectation,

which is in agreement with the variance pattern we observed for the root

data (Figure 4.4).

4.4 Results and discussion

In Section 4.3.1 it was shown that partial heterosis or dominance may

be enlarged or reduced by a suitably chosen transformation of the lin-

ear predictor in a generalized linear model. In particular partial hetero-

sis or dominance may be completely removed, i.e., the effect for hetero-

sis or dominance becomes zero. For our practical approach the hybrid

UH005×UH301 and the parents were considered. Root length of the hy-

brid showed negative BPH on the original scale. Estimates of genotype

effects, additive effect (α), heterotic effect (δ) and heterosis-additivity ra-

tio ρ for different data transformations as well as for untransformed data

(Table 4.3) were determined.

With untransformed data, the MPH δ is very low. However, these esti-

mates are not reliable as the untransformed data have heterogeneous vari-

ance and residuals are not normally distributed. When we assume the

response variable to be lognormally distributed, the heterosis-additivity

ratio ρ is higher. Performing a Box-Cox transformation the log-likelihood

has a clear maximum (Figure 4.5a) at the ML estimate.
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Table 4.3: Estimates for maize hybrid UH005×UH301 and parental inbred lines on original scale and on transformed

scales for different data transformations

Data analysed

Untransformed§ log Box-Cox†
ML Box-Cox‡

Fmin

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

Genotype mean
P1 (UH301) 2.78 0.66 0.78 0.11 0.73 0.10 1.85 0.72
F1

(UH005×UH301)

4.94 0.68 1.35 0.11 1.25 0.11 4.15 0.75

P2 (UH005) 7.01 0.81 1.55 0.13 1.41 0.13 6.44 0.89

Genetic effects
α 2.11 0.52 0.39 0.08 0.34 0.08 2.29 0.57
δ 0.04 0.86 0.19 0.14 0.18 0.12 0.00 .
ρ 0.02 0.41 0.48 0.39 0.52 0.39 0.00 .

§ Lateral root length [mm].
† Estimated by Maximum Likelihood, φ̂ML = −0.10.
‡ Estimated by minimizing the F-statistic for δ, φ̂Fmin = 1.04.
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f

ff

Figure 4.5: (a) Profile likelihood of f for the data transformation to normality and

(b) profile of f for the F-statistic for the dominance effect.

Transformation with this parameter value gives again a different result.

Furthermore, with a Box-Cox transformation parameter close to unity, the

F-statistic for the heterotic effect is minimum and heterosis disappears al-

most completely. This can be visualized by plotting the value of the F-

statistic against the transformation parameter φ (Figure 4.5b). Of course,

one would not choose this parameter value in practice, as a Box-Cox pa-

rameter of unity corresponds to untransformed data, for which the model

assumptions are not met. However, it can be seen clearly (Figure 4.6) that

the heterosis-additivity ratio ρ is influenced by the choice of value for the

transformation parameter.

Backtransformation shows that with the log-transformation as well as

the Box-Cox-transformation estimates of α and δ are smaller, whereas the

estimates of the heterosis-additivity ratio are higher (Table 4.4).
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f

r

Figure 4.6: Different values of Box-Cox transformation parameter φ result in

different estimates of dominance ratio ρ.

Table 4.4: Backtransformed estimates for maize hybrid UH005×UH301 and

parental inbred lines for log- and Box-Cox transformed data

Data analysed

log Box-CoxML

Estimate S.E. Estimate S.E.

Genotype mean
P1 (UH301) 2.17 0.23 2.12 0.22
F1 (UH005×UH301) 3.86 0.43 4.56 0.62
P2 (UH005) 4.71 0.62 3.77 0.42

Genetic effects
α 1.27 0.33 1.22 0.33
δ 0.41 0.54 0.43 0.53
ρ 0.33 0.47 0.35 0.49



4.4. RESULTS AND DISCUSSION 79

The fact that heterotic effects can be removed by a data transformation

may also show up with hybrids where the hybrid’s performance exceeds

the better parent (positive BPH). The reason for this is that means are com-

puted across transformed data. As an example, we analysed transforma-

tions for hybrid UH250×UH005. When estimating effects for genotypes,

means are computed over the transformed data. Thus it was possible to

find a Box-Cox parameter so that the value of the F-statistic for δ becomes

negligible. In Figure 4.7 this result is shown for genotype effects. The least-

squares mean of the hybrid lies noticeably higher than the least squares

means of both parents when analyzing raw data. If the Box-Cox trans-

formation with transformation parameter value φFmin is performed before

the analysis, the least-squares mean of the hybrid lies in between the least-

squares means of the parents. Estimates and standard errors of the three

genotypes are indicated in Table 4.5. It should be noticed that standard

errors for the Box-Cox transformed data are extremely high.

The second approach was to fit generalized linear models with differ-

ent link functions to the data. Depending on the link function the esti-

mates are quite different (Table 4.6). Again one can find a parameter of

the Box-Cox transformation of the linear predictor that removes the het-

erotic effect. This agrees with our findings from the theoretical approach

in Section 4.3.1.
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transformeduntransformed

parent 1 parent 2 parent 1 parent 2

hybrid hybrid

Figure 4.7: Even overdominance may be removed by a data transforma-

tion (least-squares means for parent 1: UH250; parent 2: UH005; hybrid:

UH250×UH005). Data were transformed using the Box-Cox-transformation

with φ̂F min = 2.58 (see Table 4.3).

Table 4.5: Estimates for maize hybrid UH250×UH005 and parental inbred lines

on original scale and Box-Cox transformed data

Data analysed

Untransformed§ Box-Cox†
F min

Estimate S.E. Estimate S.E.

Genotype mean
P1 (UH250) 5.48 1.17 61.74 137.52
F1 (UH250×UH005) 8.58 1.13 213.47 143.40
P2 (UH005) 7.01 1.02 365.17 139.25

Genetic effects
α 0.77 0.78 151.72 97.86
δ 2.34 1.37 0.01 .
ρ 3.04 3.42 0.00 .

§ Lateral root length [mm].

† Estimated by minimizing the F-statistic for δ, φ̂F min = 2.58.
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Table 4.6: Estimates for maize hybrid UH005×UH301 and parental inbred lines on original scale and on transformed

scale based on generalized linear model

Link function ηi = g(µi)

µi log(µi) Box-Cox§

Estimate S.E. Estimate S.E. Estimate S.E.

Genotype mean
P1 (UH301) 2.82 0.46 1.04 0.16 4.07 1.65
F1

(UH005×UH301)

5.00 0.52 1.61 0.10 15.79 3.76

P2 (UH005) 6.37 0.64 1.85 0.10 27.52 6.30

Genetic effects
α 1.78 0.39 0.41 0.10 11.72 3.25
δ 0.40 0.65 0.16 0.14 0.00 .
ρ 0.23 0.38 0.40 0.33 0.00 .

§ Estimated by minimizing the F-statistic for δ, φ̂F min = 2.23.
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This work has shown that heterosis is dependent on the choice of scale.

Heterotic effects with MPH> 0 and BPH< 0 may be removed by a data

transformation as well as a transformation of the linear predictor in the

GLM context. Besides the reduction of the heterotic effects, they may

also be enlarged by a transformation. If positive better-parent heterosis

is present, in many cases a data transformation can also remove this effect,

however, with a transformation of the linear predictor this is not possi-

ble. To show this theoretically is relatively easy for the transformation of

the linear predictor (as seen in Section 4.3.1). In case of data transforma-

tions giving a theoretical condition when heterotic effects can be removed

is more challenging and has not been examined in this study. As a re-

sult of the analogy between estimation of heterosis and dominance sim-

ilar conclusions can be made for dominance: partial dominance may be

removed and enlarged by both a data transformation and a transforma-

tion of the linear predictor. Overdominance may sometimes be removed

by a data transformation. When a population-averaged GLMM or a GLM

with a single error term is used, this will not be possible. A subject-specific

GLMM to some extent behaves like a data transformation, because ran-

dom effects enter the linear predictor, so occasionally it may be possible to

remove overdominance.

The disappearance of heterosis is shown by means of phenotypic maize

root data. In order to discern the processes underlying the phenomenon

of heterosis, one may study the mode of dominance at the gene level. Mi-

croarrays may be used to determine the expression level of different geno-

types for a great number of genes. Data from expression studies are often

logarithmically transformed (Dudoit et al., 2002). This raises the question

if the logarithmic scale is a natural scale to study heterosis or dominance
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at the expression level. We think that the answer to this question is ’yes’,

when the complex quantitative trait under study is related to simpler com-

ponent traits in a multiplicative fashion. For example, agronomic yield,

perhaps the most important trait for which heterosis is exploited, is the

product of yield components, and heterosis in yield has often been found

to occur due to multiplicative effects of the component traits (Sparnaaij &

Bos, 1993; Melchinger, Singh, Link, Utz, & Kittlitz, 1994; Piepho, 1995; Sant

et al., 1999). Conversely, if gene effects on the complex trait are deemed

additive rather than multiplicative on the original scale, it may be useful

to back-transform mean estimates of expression level using, e.g., the meth-

ods proposed in this chapter. The Box-Cox transformation was chosen as

an example of transformations influencing heterosis estimates. Applying

the generalised logarithm (Durbin et al., 2002) or other transformations

the same problem will occur.

The results presented in this paper suggest that generally great care

should be exercised when using transformations in phenotypic as well

as quantitative-genetic studies. Specifically, due consideration should be

given to the question of what constitutes a natural scale on which to as-

sess heterosis or dominance. With count data of the Poisson-type, it seems

rather natural to use a log transformation, while with percentage data,

it is more natural to use a logit or probit transformation (McCullagh &

Nelder, 1989, p. 32). Generally, one may either transform the data or the

fitted values, leading to a generalized linear model. A disadvantage of

data transformations is that the transformed data need to meet the usual

assumptions of normality and homogeneity of variance. It is not gener-

ally the case that the natural scale on which to study dominance effects is

also the best scale to achieve normality and homogeneity of variance. By
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contrast, a GLM framework allows one to chose the transformation solely

based on the natural scale for studying dominance effects, while distribu-

tional assumptions can be relaxed (McCullagh & Nelder, 1989).



Chapter 5

Estimating variance components

A microarray slide contains several thousand spots, which correspond to

genes. Usually the data is analysed separately for each gene. As the sci-

entist is seeking information about as many genes as possible, quite often

there are no technical replicates on the array, i.e. each gene is spotted only

once. Due to financial constraints the number of slides in an experiment

is typically low. This means we have a comparatively small number of

observations that can be used to estimate genetic effects. It can therefore

be difficult to provide evidence that a gene is differentially expressed in

different genotypes or tissue types.

What can we do to increase the power of the tests? One possibility is to

improve the accuracy of variance components estimates. As a high num-

ber of genes is available, the spotwise analysis might not be optimal. In-

formation about the variance components could be lent from other spots,

i.e. the variance components could be determined in a joint analysis for all

spots (Lönnstedt & Speed, 2002; Smyth, 2004; Gottardo, Raftery, Yeung, &

Bumgarner, 2006).

A simple approach is to compute variance components estimates for

all spots separately and calculate the mean of the components over spots.

85
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This pooled estimate may be plugged into the gene-specific model. Ac-

cording to Wright and Simon (2003), however, tests based on these vari-

ance estimates show a high false positive rate in simulations. This can

be ascribed to the fact that highly variable genes may appear as differ-

entially expressed when using a too small variance estimate. Wright and

Simon (2003) propose a so-called random variance model, which consti-

tutes a two-stage hierarchical model. Individual variances are assumed

to follow an inverse Gamma distribution, while conditionally on the true

variances, their estimates have a scaled χ2-distribution. The estimates

are obtained as empirical Bayes estimates according to the estimated hi-

erarchical model. It is shown that tests based on the adjusted variance

estimates have higher power than tests based on conventional spotwise

variance estimates. However, the approach only works with one variance

component. The method used by Cui, Hwang, and Qiu (2005) follows the

James-Stein-concept, where individual estimates are shrunken towards a

common mean. However, their approach suffers from the same deficiency

as the model in Wright and Simon (2003): it cannot be applied to models

with more than one variance component. Gottardo et al. (2006) present a

fully Bayesian approach to find differential genes between two samples.

They assume a multiplicative relation between the array and residual er-

ror term. The residual errors of the two samples are supposed to follow a

bivariate normal distribution, while the array effect is Gamma distributed.

The effect of a sample on a specific gene is modeled as a mixture of two

normal distributions, one corresponding to genes that are not differen-

tially expressed, while the other corresponds to differentially expressed

genes. Another Bayesian approach proposed by Lewin, Richardson, Mar-

shall, Glazier, and Aitman (2006) assumes the expression values of each
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sample to be distributed according to an ANOVA model with effects for

the overall expression level of the gene, the array effect and an effect for the

differential expression between two samples. The expression values are

normally distributed with different variances for the two samples. These

variances are assumed to follow a lognormal distribution.

In cDNA microarray analysis it is useful to consider the array effect as

random when the number of treatments or genotypes is larger than two

(Chapter 3). With arrays considered as incomplete blocks, the recovery of

inter-block information becomes possible (John & Williams, 1995, p. 27).

This may lead to more precise estimates of genetic effects, thus increas-

ing the power of significance tests. Also, when estimating heterotic effects

at least three genotypes are involved (the hybrid and both parental lines)

and it is often worthwhile to use the inter-array information (Chapter 3).

Therefore, we seek for an alternative approach, where at least two vari-

ance components, for array and residual variance, are estimated by utiliz-

ing all spots on the array. In complex settings, it may be necessary to add

further variance components for other random sources of error (Piepho,

Büchse, & Emrich, 2003). Here, the focus will be on the case of two vari-

ance components, but extension to more than two variance components is

straightforward.

5.1 Theory

We introduce a method that provides estimates of array and residual vari-

ation that are based on information of all spots on the arrays. We call

them ’pooled’ variance estimates. For this purpose spotwise estimates

of the variance components could be determined and a distribution fit
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across spots. Common REML-estimates of the array variance may be es-

timated as zero, however, which makes the fitting of a distribution diffi-

cult. We thus employ ANOVA sum of squares of both array and residual

effects. This avoids the problem of estimates of zero when fitting a hyper-

distribution for the variance components. The distribution of the sum of

squares is used to obtain the pooled variance estimates via an empirical

Bayes approach, as described below.

A mixed model for each gene is given by

y = Xβ + Zu + e, (5.1)

where y is the vector of observed signal values on the log scale, β is a

vector of fixed effects, u is a vector of random effects, and e is a vector of

residual error. We assume here for simplicity that only one random effect

exists, besides the residual variation. X and Z are known design matrices

for the fixed and random effects, respectively. The components of u and e

are independent and follow the normal distribution with mean zero and

variances θ1 and θ0, respectively. The covariance between elements of u

and e is zero. We indicate the variance components for a specific gene j

with an index, the true variance components for e, u being θj = (θ0j , θ1j),

for j = 1, ...J .

We assume the variance components θj to follow a bivariate lognormal

distribution with mean vector µ and covariance matrix Σ on the log-scale.

This is a strong assumption and other distributions are possible, like the

inverse Gamma (Wright & Simon, 2003) or the bivariate Johnson System

of transformations (Johnson, 1949) with the lognormal as a special case.

However, as a lognormal variable is positive by definition, the lognormal

distribution seems to be a natural choice and has been applied success-

fully in other studies (Cui et al., 2005; Lewin et al., 2006). Also, our former
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analyses of microarray data within the priority program support the as-

sumption of a lognormal distribution (results not shown). The parameters

µ and Σ constitute the hyperparameters of the prior for the variance com-

ponents. The lognormal prior is denoted by g(θj|µ, Σ).

Let SSij and MSij denote the sum of squares and mean squares of vari-

ance component i and spot j, using Henderson’s method III for the cal-

culation of sum of squares where random effects are fit after fixed effects

(Searle et al., 1992, p. 202). This is a classical ANOVA-method, as opposed

to the ML- and REML-approaches presented in Chapter 3. Our empiri-

cal Bayes approach assumes a χ2- distribution for the sum of squares of

variance components given the true variance components, divided by the

expected mean squares:

SSij |θj

E(MSij)
∼ χ2

νij
, (5.2)

where θj are the true variance components and νij is the number of degrees

of freedom associated with SSij . It is further assumed that SS0j and SS1j are

stochastically independent for given variance components θj . It must be

stated, however, that in the case of more than two variance components

the sum of squares are no longer necessarily independent (Milliken &

Johnson, 1992, p. 252), so extension to more than two variance components

requires some form of approximation or fitting a multivariate distribution.

The expected mean squares are E(MS0j) = θ0j and E(MS1j) = θ0j + cθ1j .

The coefficient c is dependent on the spot’s design and may be determined

by

c =
tr(Z ′MZ)

r[X Z] − r[X]
,

where M = I − X(X ′X)−X ′ (Searle et al., 1992, p. 204). The likelihood

of the observed sum of squares given the unknown variance components
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specified in (5.2) is denoted by f(SSij|θj , µ, Σ). Let η = (µ, Σ) denote the

set of hyperparameters of the prior. The posterior distribution of the true

variance components is thus given by

π(θj|SSij, η) =
f(SSij |θj , η)g(θj|η)

∫

f(SSij |θj, η)g(θj|η)dθj
. (5.3)

Estimates η̂ of the hyperparameters may be derived using Maximum Like-

lihood on the marginal distribution m(SSi|η)

m(SSi|η) =
∫ J
∏

j=1

f(SSij |θj, η)g(θj|η)dθj. (5.4)

For the computation of (5.3) and (5.4), integrals over the random effects

have to be evaluated. The Gaussian quadrature approximates an integral

by a weighted sum of function values at so-called quadrature points on

the abscissa, which are centered around zero. A slightly different approx-

imation method is the adaptive Gaussian quadrature, where quadrature

points are not centered around zero, but around the modes of the random

effects. It is recommended to use the adaptive Gaussian quadrature as it

produces more accurate results and is computationally more efficient (Pin-

heiro & Bates, 1995; SAS Institute Inc., 1999).

Empirical Bayes (EB) estimates of θj are obtained by substituting η̂ for

η in E(θj |SSij , η) to give θ̂j = E(θj |SSij , η̂). The estimated variance of the EB

estimates is computed as the inverse Hessian matrix. The easiest way to

obtain the estimated covariances of array and residual variance using the

NLMIXED procedure of the SAS system, is by determining

Cov(θ̂0j , θ̂1j) = 1/2
[

Var(θ̂0j + θ̂1j) − Var(θ̂0j) − Var(θ̂1j)
]

, (5.5)

where Var(θ0j+θ1j) is approximated with the delta method. We thus deter-

mined estimates of covariance parameters (θ̂0j , θ̂1j) as well as their asymp-

totic variance-covariance matrix Cov(θ̂0j , θ̂1j).
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The empirical Bayes estimates of the variance components are plugged

into a mixed model analysis so that the contrasts of fixed effects are esti-

mated based on θ̂j . Linear contrasts of treatments or genotypes may be

examined by means of a Wald test with the null hypothesis H0: L
(

β
u

)

= 0

, where L is a contrast vector. Note that contrary to the contrast vector

in (3.10), the contrast vector in this chapter refers to fixed and random ef-

fects, which is indicated by a capital letter. If solely contrasts among fixed

effects are considered, the part of L referring to the random effects is zero.

The t-statistic is calculated by dividing the estimate of the linear contrast

by the asymptotic variance of the estimate, which follows an approximate

t-distribution:

L

(

β̂

û

)

√

LĈL′

∼ tν . (5.6)

Ĉ denotes the approximate variance-covariance matrix of
(

β̂
û

)

as obtained

from the mixed model equations. As the variance estimates were com-

puted using data of all spots, the degrees of freedom of a conventional

mixed model are no longer valid. We therefore calculate the degrees of

freedom ν of the t distribution with the Satterthwaite approximation ac-

cording to McLean and Sanders (1988):

ν ≃ 2(L′CL)2/Var(L′CL). (5.7)

The degrees of freedom are calculated for each gene. In (5.7) and the fol-

lowing we omitted the index j to simplify notation and C is the approxi-

mate variance-covariance matrix of (β̂ − β, û − u)′, given by the following
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equations:

C11 = (X ′V −1X)+

C12 = −C11X
′V −1ZG

C21 = C ′
12

C22 = (Z ′R−1Z + G−1)−1 + GZ ′V −1XC11X
′V −1ZG,

where G = θ1I and R = θ0I are the variance-covariance matrices of the

random effects and residual error, respectively, and V = Var(y) = ZGZ ′ +

R. By using a first-order Taylor series expansion we get

L′CL ≃ (θ̂0 − θ0)
∂L′CL

∂θ̂0

+ (θ̂1 − θ1)
∂L′CL

∂θ̂1

and

Var(L′CL) ≃ Var(θ̂0)

(

∂L′CL

∂θ̂0

)2

+ 2Cov(θ̂0, θ̂1)
∂L′CL

∂θ̂0

∂L′CL

∂θ̂1

+Var(θ̂1)

(

∂L′CL

∂θ̂1

)2

.

As we consider contrasts among fixed effects, the derivatives reduce to

∂L′CL

∂θ0
= K ′C11X

′V −1V −1XC11K

and

∂L′CL

∂θ1
= K ′C11X

′V −1ZZ ′V −1XC11K,

where K is the part of L that refers to the fixed effects. At this point,

McLean and Sanders (1988) input the asymptotic covariance matrix for θ̂0

and θ̂1 (Giesbrecht, 1986) that is obtained through a restricted maximum

likelihood analysis. However, we use the asymptotic variance-covariance

matrix obtained by the empirical Bayes analysis.
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5.2 Simulation study

The procedure described above was evaluated in a simulation study. We

simulated 1000 datasets with 6000 spots each. The simulation model for

a gene follows (5.1). For simplicity we assumed that only one fixed ef-

fect for genotype and one random effect for array exist. The illustrated

method is useful when the arrays constitute incomplete blocks, i.e. when

the number of treatments or genotypes to be compared exceeds two. Then

we can benefit from the recovery of inter-array information. We therefore

simulated 3 genotypes (gk, k = 1, 2, 3) and investigated the new procedure

for 3 different numbers of slides, namely 6, 9 and 12. Considering only

array numbers that are multiples of three has the advantage that balanced

incomplete block (BIB) designs are obtained. We thus have in each dataset

6000 × 3 = 18000 pairwise comparisons (g1 − g2, g2 − g3, g1 − g3). Data for

1500 spots was simulated with g1 = g2 = g3, while the remaining 4500

spots were simulated so that g1 = g2 6= g3. As a result half of the compar-

isons followed the null hypothesis and the other half the alternative. The

9000 comparisons under the alternative were split into 10 groups; within

each group the difference of genotype effects is the same. The 10 genotype

differences were equally spaced, with the range depending on the number

of arrays that were simulated. The random effects were taken from a bi-

variate lognormal distribution with mean µ and variance Σ, respectively.

These were computed by exponentiating bivariate normal random vari-

ables with mean µ =
(

−1.67
−0.47

)

and dispersion matrix Σ =
(

1.35
0.47

0.47
1.09

)

. These

values were found when analysing the microarray experiment with maize

endosperm described in Section 2.2 .

Within each simulated data set we determined pooled estimates for ar-

ray and error variance. For each pairwise comparison we performed a
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t-test for differential expression between two genotypes. For comparison

to the described procedure we performed an analysis by spot and calcu-

lated two kinds of t-tests. For the first test, the degrees of freedom were

calculated according to the so-called containment method and for the sec-

ond test they were approximated with the Satterthwaite method of ? (?).

Both methods are implemented in the MIXED procedure of the SAS sys-

tem (SAS Institute Inc., 1999). Power was assessed at nominal comparison-

wise type I error rate of α = 0.05.

Details for Implementation in SAS

The ’true’ variance components for each spot were simulated using the

MVN-macro (SAS Institute Inc., 2007). This macro creates multivariate

normal random variables. Bivariate lognormal random variables were cre-

ated by exponentiating a bivariate normal random variable.

The sums of squares were calculated using the GLM procedure. The

Henderson type III sum of squares correspond to the type I sum of squares

in SAS, when fixed effects are fit before random effects. Type I sum of

squares were invoked via the ’SS1’-option in the MODEL statement. The

coefficients of expected mean squares were read out of the ExpectedMean-

Squares table using the SUBSTR-function. Degrees of freedom for array

and error were given in the ModelANOVA- and OverallANOVA-tables,

respectively.

The posterior distribution was modelled with the NLMIXED proce-

dure. The distribution of the true variance components was indicated by

the random statement. As the lognormal distribution is not supported,

the logarithm of the variance components was specified as normally dis-

tributed. The scaled χ2
k-distribution of the sum of squares was expressed
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in the MODEL statement using general(ll), where any log-likelihood func-

tion may be specified. We exploited the fact that the χ2-distribution is a

Gamma distribution with shape parameter n = k/2 and scale parameter

two (Johnson, Kotz, & Balakrishnan, 1994, p. 450). To obtain the empirical

Bayes estimates of the variance components, the PREDICT statement was

used. The covariance between the variance components, which is needed

to determine the Satterthwaite degrees of freedom, was calculated using

a second PREDICT statement where the sum of the variance components

was estimated.

The Satterthwaite degrees of freedom were calculated with IML. The

rather cumbersome formula in McLean and Sanders (1988) reduces con-

siderably when the contrast to be tested does not contain any random ef-

fects.

The data was then analysed in a spotwise manner with the MIXED pro-

cedure. The estimated variance components were fixed via the PARMS

statement and the degrees of freedom calculated in IML were input

through the ’DDF’-option in the MODEL statement.

5.3 Experimental data

As our variance estimating procedure performed well in simulations, we

tested it with real data from the microarray described in Section 2.2. A

linear mixed model according to (5.1) was assumed with fixed effects for

genotype and dye and a random effect for slide. Empirical Bayes estimates

of variance components were determined according to Section 5.1. Based

on the model, dominance contrasts (i.e. hybrid minus parental mean) were

tested, the null hypothesis being that the hybrid’s expression equals that of
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the parental mean. The degrees of freedom were calculated with the Sat-

terthwaite approximation. For comparative purposes, the same contrasts

were tested with the same model and spotwise estimated variance com-

ponents. The degrees of freedom were determined with the containment

method and in another analysis with the method of Kenward and Roger.

To adjust for multiplicity, the false discovery rate (Benjamini & Hochberg,

1995) was used and p-values below a cut-off of 0.05 were declared signifi-

cant.

5.4 Results

Simulation Study

Table 5.1 shows the mean of the proportion of false positives over the 1000

simulated data sets, i.e. the proportion of non-differential contrasts that

were declared to be significant. Contrary to the analysis of real data, for

the simulation no multiplicity adjustment was performed for the simu-

lation data, because methods for multiplicity adjustment such as proce-

dures controlling the false discovery rate (FDR) require valid tests on a

comparison-wise basis. For three and six arrays the test conducted with

the pooled variance estimates was the only one that lay below the level α.

For 12 arrays, the pooled variance test kept the level only for α = 0.001.

Here, the spotwise variance estimates with the degrees of freedom calcu-

lated by the containment method seem to perform a little better.

In Figure 5.1 the power of detecting true differences with the different

tests is illustrated. The tests are demonstrated for designs with 6, 9 and

12 arrays and level α = 0.001. On the abscissa we have the true differ-

ences d between genotypes and on the ordinate the proportion of signifi-
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Table 5.1: Observed comparison-wise type I error and standard error for different

tests and array numbers

number p < 0.01 p < 0.005 p < 0.001

of slides method p.f.p. S.D. p.f.p. S.D. p.f.p. S.D.

pooled 0.00719 0.00099 0.00312 0.00063 0.00040 0.00023
6 sS 0.01160 0.00126 0.00578 0.00090 0.00115 0.00042

sC 0.01006 0.00117 0.00504 0.00083 0.00104 0.00040

pooled 0.00957 0.00110 0.00459 0.00077 0.00079 0.00032
9 sS 0.01140 0.00121 0.00578 0.00085 0.00120 0.00040

sC 0.01012 0.00114 0.00508 0.00079 0.00105 0.00039

pooled 0.01024 0.00114 0.00507 0.00078 0.00097 0.00033
12 sS 0.01115 0.00118 0.00566 0.00084 0.00117 0.00039

sC 0.01010 0.00113 0.00503 0.00078 0.00100 0.00036

p.f.p.=proportion of false positives; pooled=pooled variance estimates; sS=spotwise,
dfs Satterthwaite; sC=spotwise, dfs Containment

cant tests among all tests performed for differences with true value d. For

small differences between genotypes the detection power of the pooled

variance test was lower than with the two spotwise methods. This may be

explained by the fact that for the pooled variance test the level α is con-

trolled in most cases, whereas it is exceeded with the other tests. For larger

genotype differences, however, the detection power is considerably higher

for the pooled variance test than with the two reference tests. This effect is

most explicit for small array numbers.

Similar results were found by Wright and Simon (2003) when evaluat-

ing their random variance model. The superiority of the pooled residual

variance estimates over spotwise estimates was smaller in experiments

with higher array numbers. This confirms our assumption that pooled

variance estimates are especially effective in experiments with a low num-

ber of replicates. The simulation showed that the procedure for the esti-

mation of variance components proposed in Section 5.1 works well and is

superior compared to spotwise estimation methods.
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a

b c

Figure 5.1: Detection power for p < 0.001 level test by true mean difference d,

(a) 6 arrays, (b) 9 arrays, (c) 12 arrays

Experimental data

The log-transforms of the variance components are assumed to follow a

normal distribution. The analysis gave parameter estimates for the mean

µ̂ =
(

−2.30
−0.32

)

and dispersion matrix Σ̂ =
(

1.30
0.41

0.41
0.67

)

. To assess the valid-

ity of this assumption we simulated true variance components for each of

the 6205 spots with these parameters. Based on these true variance com-

ponents, sum of squares were simulated and order statistics of sum of

squares were determined. This was repeated 100 times and the mean of
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the order statistics was plotted against the real sum of squares (Figure 5.2,

top), with observed sum of squares as well as order statistics of simulated

sum of squares log-transformed. At the upper and lower end the spots

depart slightly from the bisecting line. Histograms of the observed sum of

squares (Figure 5.2, bottom), however, reveal that only a minor proportion

of the data lies in the tails of the distribution.

The subsequent analysis revealed that there was no great difference in

Figure 5.2: Top: plots of order statistics for simulated sum of squares vs real sum

of squares for slide and error. Bottom: histograms of real sum of squares for slide

and error. Sum of squares in all graphs have been log-transformed
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the number of significant genes between different estimation methods re-

garding the contrast hybrid vs. parental mean. For one hybrid the pooled

analysis gave slightly more significant contrasts than the other methods.

For the second hybrid using pooled variance estimates resulted in slightly

more significant genes than with spotwise estimates and degrees of free-

dom calculated with the containment method, but fewer significant genes

than with the Satterthwaite method.

Table 5.2: number of significant genes among a total of 6205 genes

pooled spotwise spotwise
Satterthwaite containment

UH250x301 174 170 136
UH301x250 194 232 185

5.5 Discussion

As microarray experiments are very cost-intensive, quite often the number

of hybridisations is rather low and estimating variance components be-

comes a delicate task. Obviously, variance components may vary between

genes and thus models with gene-specific variance components seem ad-

visable. When using only data from one gene, however, the number of

replicates may be low, resulting in imprecise estimates. We prepared an

approach where the distribution of sum of squares given the true variance

components is modeled. Based on this conditional distribution we calcu-

lated empirical Bayes estimates for the variance components of each spot.

The method has the advantage that not only the residual array may be con-

sidered as random, but also the array variance. This may be of particular
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interest when contrasts between more than two genotypes are considered,

e.g., when estimating dominance effects.

It was shown that the detection power of tests based on these pooled

variance estimates is higher than the detection power of comparable tests,

except for very small differences between genotypes. As scientists are

more interested in noticeable differences than in marginal deviations, the

lower power of the pooled variance test for small differences may be ac-

ceptable. Compared to the reference tests, the test based on pooled vari-

ance estimates in most cases keeps the level of the test, whereas the other

tests rarely do.

In this study we focus on models with at least one further variance

component beyond the residual variance, namely the array variance. The

crucial feature of our methods is that it models the marginal distribution

of ANOVA sums of squares rather than that of standard estimates of vari-

ance components (REML, ANOVA or other). This strategy was chosen

to circumvent problems with non-positive variance estimates. ANOVA-

estimates may become negative, and a prior distribution that includes

negatives is undesirable. REML-estimates and ML-estimates have the de-

ficiency that they may become zero, which complicates the fitting of a

distribution for the true variance components. While distribution models

with zeros exist (Aitchison, 1955), the conditional distribution of estimated

variance components given the true variances is harder to derive. One

possibility is to determine the conditional density of the REML-estimates

given the true variance components for each of the following cases: (i)

the REML-estimate of the array variance is larger than zero (ii) the REML-

estimate of the array variance equals zero. The first two moments and

other properties of the conditional distribution in each case may be deter-
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mined by simulation. Furthermore a dummy variable is introduced that

indicates whether case (i) or case (ii) holds true for each spot. The dummy

variable follows the Bernoulli distribution with the parameter dependent

on the true variance component. The likelihood for the REML-estimates

of the variance components is obtained by integrating the conditional den-

sity multiplied with the corresponding parameter of the Bernoulli distri-

bution. The conditional distribution of the REML-estimates, however, de-

pends on the design of the experiment. Thus for each new experimen-

tal design the first and second moments of both distributions (array and

residual variance) have to be simulated anew.

We chose the lognormal distribution as a prior for the variances. As

shown in the previous section, the lognormal distribution fits quite well.

Likewise, Lewin et al. (2006) and Cui et al. (2005) applied the lognormal

distribution with good results Other distributions as a prior for the vari-

ances, however, are possible and seem to be worth future research. One

possibility is the Johnson family of distributions (Johnson et al., 1994, p.

34), which contains the log-normal distribution as a special case. One of

the transformations of a random variable X is Z = γ + δ log(X − ξ), X ≥ ξ,

the distribution of Z being unit normal. In Johnson (1949) the bivariate

transformation family is described, which is particularly suited for mod-

elling the joint distribution of array and residual variance components.

Analysis of the experimental data (Section 5.4) is completed by ad-

justing the p-values with the linear step-up procedure of Benjamini and

Hochberg (1995). This procedure controls the false discovery rate under

the assumption of independent test statistics. For the simulation study

independence holds, but with real data this will be hardly the case due to

co-expressing genes or spatial effects on the array. Benjamini and Yekutieli
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(2001) show that the FDR is controlled for positively correlated one-sided

test statistics. When estimating heterotic effects it is not only relevant to

find genes that have an elevated expression level compared to the parents,

but also to find genes where the hybrid is underexpressed with regard to

the parents. Reiner-Benaim (2007) investigated the FDR with two-sided

tests and different degrees of correlation and found the FDR to increase

with increasing correlation. However, she could show that using the lin-

ear step-up procedure of Benjamini and Hochberg controls the FDR re-

gardless of the proportion of true null hypotheses and dependence. Liu

and Hwang (2007) propose a method to calculate the sample size while

controlling the false discovery rate.

In this chapter models with two variance components were investi-

gated. Sometimes, in addition to the effects related to hybridisation, ef-

fects regarding the design used to gain the biological material need to

be taken into account (Chapter 3). If some of these are regarded as ran-

dom, the described procedure may be extended. However, with more

than two random effects and unbalanced models, the sums of squares for

a mixed model are no longer necessarily independent and the exact form

of the conditional joint distribution is more difficult to derive (Khatri, Kr-

ishnaiah, & Sen, 1977; Kotz, Balakrishnan, & Johnson, 2000). The type

of approximation involved is similar to that for ANOVA F-tests under a

mixed model, when the Satterthwaite method is used. According to Mil-

liken and Johnson (1992, p. 252), the degrees of freedom for the tests may

be approximated by the Satterthwaite method (notice that in Section 5.1

an extension by McLean and Sanders (1988) of the original Satterthwaite-

approximation was used). The approximation in this case is twofold: the

degrees of freedom are approximated and the linear combination of mean
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squares are not necessarily independently distributed as required by the

approximation.

The problems caused by several random effects in the model does not

occur with a fully Bayesian model as proposed by Gottardo et al. (2006).

Their model detects differences in gene expression between two samples

or genotypes. In the two-sample case, the effect of a sample on a specific

gene is modeled as a random effect with a mixture of two singular nor-

mal distributions: the first corresponds to genes that are not differentially

expressed, while the second component corresponds to differentially ex-

pressed genes. With more than two genotypes the model may also distin-

guish between different patterns of gene expression. When the number of

samples grows larger, however, the model gets cumbersome and the num-

ber of parameters increases sharply, e.g., with three genotypes a mixture

of five distributions is needed for the ability to distinguish the different

expression patterns. This may be a problem when analysing large exper-

iments as in Chapter 3. The Bayesian hierarchical model presented by

Lewin et al. (2006) includes a differential effect between genotypes. To es-

timate heterosis contrasts, a suitable parametrization of the model would

be necessary, e.g. by including effects for additivity and dominance.

The use of the Empirical Bayes estimates in a linear mixed model seems

to be a competitive method when exploring heterosis. A further advantage

is that with our approach the integrals may be approximated by Gaussian

quadrature, as the logarithm of the random effects is assumed to be nor-

mal, whereas with the Bayes approaches posterior probabilities are calcu-

lated by Markov Chain Monte Carlo (MCMC) which is also comparatively

time-consuming.



Chapter 6

General discussion

6.1 Importance and reliability of microarray data

The number of studies using microarrays to detect differentially expressed

genes has exploded within the last ten years (Marshall, 2004). Microarrays

provide a tool to gain information about a vast amount of genes by an ex-

periment that is rather simple to conduct. The technology is popular not

only in biology, but in medicine, too. In 2005 the Food and Drug Admin-

istration (FDA), the authority that is responsible for the admission of new

pharmaceuticals in the U.S., approved the first microarray test, which is

supposed to provide physicians with genetic information on their patients.

This is assumed to further accelerate the rising tendency of microarray

technology.

During the last years, concern emerged about the validity of microar-

ray results. Performing the experiment there are lots of sources of vari-

ation, for example spatial effects on an array caused by dust particles or

the dye effect. Regarding only the latter, already two sources of varia-

tion come into play: The two dyes, Cy3 and Cy5, are supposed to have

different binding abilities. Furthermore, Cy5 is especially sensitive to at-

105
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mospheric ozone levels, resulting in different experimental conditions for

nice or dirty weather. Also there are technical differences between ar-

rays of the different manufacturers. Tan et al. (2003) found that the set

of genes differentially expressed in all of three investigated platforms is

very low. Even when all these factors are neglected and only the raw data

is regarded, slight changes in the statistical analyses may lead to largely

contrasting results: Dave et al. (2004) found a correlation between sur-

vival length among patients with follicular lymphoma and molecular fea-

tures of nonmalignant immune cells. During the analysis gene expression

data was divided at random into training and test sets. Tibshirani (2005)

performed the same analysis swapping training and test set, resulting

in a non-significant correlation. Using Significance Analysis of Microar-

rays (SAM), a standard tool for the analysis of microarray data, Tibshirani

(2005) likewise found no statistical evidence for a correlation between sur-

vival time and genetic features.

Otherwise, recent publications exist that paint a different picture:

Irizarry, Warren, and Spencer (2004) report on a study where three plat-

forms (spotted cDNA microarrays as well as oligonucleotide arrays) were

tested in a total of ten laboratories. The precision of a platform in a labo-

ratory was quantified by calculating correlations between different repli-

cates. To assess accuracy, gene expression values of control genes were

compared with the results of RT-PCR for the same genes. The authors

found that the disagreement observed by other studies may be partly due

to suboptimal statistical analysis. For instance, Kuo, Jenssen, Butte, Ohno-

Machado, and Kohane (2002) and Tan et al. (2003) did not account for

variability between laboratories in their studies. This laboratory effect is

crucial and neglecting it may give poor results concerning reproducibility
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of results in different laboratories. Apart from the relatively large differ-

ences between laboratories using the same platform, Irizarry et al. (2004)

found that the results from the best performing labs agreed rather well

and that performance can be greatly improved when using alternative pre-

processing and suitable statistical methods. An even more optimistic con-

clusion is drawn by the MicroArray Quality Control (MAQC) Consortium

(Reid & Shi, 2006; Patterson et al., 2006). The MAQC project is initiated

by FDA scientists to assess reproducibility, specificity, sensitivity and ac-

curacy of microarray experiments. Seven microarray platforms and three

alternative expression methodologies were investigated in different lab-

oratories, showing intra platform consistency across test sites as well as

a high level of inter platform concordance in terms of genes identified

as differentially expressed. Within the SPP ’Heterosis in Plants’ we also

performed an evaluation of microarray reliability, which is described in

Section 6.3.

6.2 The contribution of this thesis to methodol-

ogy for microarray analyses and heterosis es-

timation

As stated by Irizarry et al. (2004) the use of adequate statistical methods

is of utmost importance to obtain reliable information out of microarray

data. This holds true for the standard case when two different tissue types

are compared with regard to differential expression. When tackling more

complex problems, even more emphasis should be placed on a proper

analysis. In this thesis it was therefore attempted to improve statistical

methods with regard to the investigation of the heterosis concept.
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The estimation of heterosis differs from standard problems in that the

expression of one genotype (the hybrid) is to be compared with the ex-

pression of the mean of two other genotypes (the parents). This may be

adequately considered in the design of the experiment. If contrasts be-

tween any levels of factors are equally important, then it might be advis-

able to use a loop design. However, if the objective of the study concen-

trates on some specific contrasts that are far more important than others,

this should be considered already in the design of the study. In this study,

the contrast between a hybrid and the parental mean is regarded far more

important as, e.g., the comparison between the two parents. As cDNA-

microarrays may be hybridised with only two genotypes, more hybridi-

sations should be performed with slides of hybrid-parent comparisons,

as e.g., with parent-parent arrays. These arrays will be more informative

with respect to heterosis. Likewise it is not very informative to hybridise

two genotypes from different hybrid-parent pools together on one array,

for instance hybrid UH002x301 with parent UH250. When keeping that

in mind, an interesting contrast may be estimated with far more accuracy

with an adapted design than with a standard microarray design.

Usually, microarray data show heterogeneous variance and data trans-

formations are necessary before applying a linear model. The transforma-

tion the most commonly used is probably the log transformation, though

other transformations are imaginable. One should be aware that transfor-

mations may have an impact on the results of a following statistical analy-

sis. It was shown theoretically that a transformation of the linear predictor

in a generalized linear model may remove partial heterosis, i.e. the hy-

brid is better than the parental mean, but not better than the better parent.

Better parent heterosis cannot, however, be removed by transforming the
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linear predictor. It is shown exemplarily on phenotypic data that mid par-

ent heterosis as well as better parent heterosis are not robust in terms of

data transformations. This conclusion, although not entirely surprising,

is all the more important as it can be not only transferred to microarray

data, but is a general result concerning data transformations that may be

important in other fields.

When analysing data aiming at the estimation of heterosis at least three

genotypes are involved. With microarray data this means that arrays con-

stitute incomplete blocks. It is therefore valuable to regard the array ef-

fect as random to benefit from the recovery of inter-array information.

Analysing microarray data it is a common procedure to analyse data from

each gene separately. Due to the relatively high costs of microarray hy-

bridisations, few replicates are made and estimates of variance compo-

nents are not too precise. Alternatively, variance components may be es-

timated across genes, having a large number of individual variance esti-

mates disposable. Yet, with at least two random effects in the model, the

procedure for the joint estimation of the variance components is not evi-

dent. When fitting a distribution to the sum of squares one avoids to fit a

distribution to zeros, as could be the case when fitting the distribution to

the variance component estimates. Assuming a bivariate lognormal dis-

tribution for the true variance components and fitting a distribution to

the sum of squares, conditional on the variance components, results in

estimates of variance components that are supposed to be more accurate

compared to estimates based on the data of only one gene. When hav-

ing more than two variance components in the model, the sum of squares

might not be independent and the procedure given in Chapter 5 has to be

expanded. As there are cases when a model with more than two variance
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components is reasonable, this is worthy of future research.

6.3 General results and experiences during my

work within the SPP ’Heterosis in plants’

The statistical methods summarised in the preceding section wil hope-

fully increase the explanatory power and ameliorate the reproducibility

of the results. Besides the development of statistical methods, my day-

to-day business consisted to a large extent in the analysis of microarray

and phenotypic data aiming at the exploration of the heterosis concept.

Some results, experiences and findings of the collaborative work within

the priority program ’Heterosis in plants’ are summed up in the following

paragraphs.

Our project partners from the University of Tübingen made the discov-

ery that after scanning the microarray slides some highly expressed spots

were saturated, because the scanner can only distinguish signals up to a

certain intensity. When scanning the same slide at a lower intensity, dis-

satisfactory results were provided for lowly expressed spots (Figure 6.1 a).

To get the best information for all spots, the array has to be scanned at

different intensities.

We therefore developed a nonlinear latent regression model1 (Piepho et

al., 2006) that combines signals from multiple scans of one cDNA channel.

The amount of effective expression product, which cannot be observed, is

assumed to be the sum of an overall spot effect and an effect related to the

scanning intensity: ηij = gi + αj , where ηij is the latent value for the i-th

1Formulation of the model was done mainly by H.P. Piepho while my contribution is

the implementation of the model in SAS software
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Figure 6.1: (a) Plot of signals at six different scanning intensities vs. spot mean.

Maize genotype UH005xUH301, University of Tübingen. (Piepho et al., 2006)

(b) Plot of estimates of µij vs. µ̄i. for different intensities

spot at the j-th scanning intensity, gi is the main effect of the i-th spot and

αj is the main effect of the j-th intensity. Below a certain threshold φ, the

expected signal equals the effective expression product, while the model

implies a nonlinear relationship between both variables when the effective

expression product lies above φ:

µij =

{

ηij if ηij < φ

θ − β exp(−γηij) if ηij ≥ φ.

Here, µij is the expected signal for the i-th spot at the j-th scanning inten-

sity, θ is the saturation limit, and β and γ are regression parameters (Figure

6.2). The observed signal yij is modelled as the expected signal plus an er-

ror term: yij = µij + eij . As scanning intensities seem to be more variable

with low intensities, weights are computed for each spot as the inverse of

the variance within a spot, which is predicted via loess regression. Inten-

sity and spot effects as well as the parameters of the nonlinear function
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f

mij = hij
mij =

q - b exp(-ghij)

+ b1gi

Latent variable hij = aj + gi

Expected signal mij

Figure 6.2: Sketch of segmented model

are estimated through an iterative algorithm: intensity effects and non-

linear function parameters are estimated alternately with the spot effects

until the change in parameter estimates is smaller than some pre-defined

limit. Spot effects are estimated separately for each spot by nonlinear least

squares, while for the estimation of intensity effects and nonlinear func-

tion parameters by weighted nonlinear least squares the whole data set is

used. This leads to a combined intensity value for each channel of a spot,

where spots at the high end as well as spots at the low end of the intensity

scale have reliable expression values. Figure 6.1 b, a plot of the expected

signals for the different intensities vs. the mean of expected signals over

all intensities, shows that the model fits very good.

The results of Irizarry et al. (2004) concerning reliability of microarray

data coincide quite well with our findings. Within the priority program

’Heterosis in plants’ several laboratories are performing microarray exper-

iments and the wish to assess the reliability of the data emerged. A round

robin experiment was conducted with three laboratories (University of
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Tübingen, University of Hamburg, and University of Munich). Each lab-

oratory performed four hybridisations of two maize genotypes (UH005,

UH301xUH005), including two biological replicates and a dye swap. The

analysis showed that the laboratory-effect was substantial. Despite this

fact, two laboratories showed rather similar results. The data basis for the

round robin experiment was considered not stable enough for further in-

vestigations, among other things due to failure of one hybridisation in one

laboratory.

When analysing microarray data one is often asked to calculate fold

changes, i.e. the ratio of estimated signal values between two samples.

The foldchange may be a convenient and easily interpretable measure. It

should not be forgotten, however, that it does not give any clue about the

significance of a test result. Ranking of genes according to their interest

for the biologist should therefore never be performed solely on the basis

of fold changes. p-values of test statistics provide a much more reliable

criteria. If only substantial differences between genotypes are of interest,

then a cutoff for the foldchange may be used. Another widespread mis-

conception is that the number of significant genes found in an analysis is

an indicator for the quality thereof. This may easily be disproved by citing

Klebanov, Qiu, Welle, and Yakovlev (2006):’...a given method is of limited

utility if it consistently makes the same false discoveries from sample to

sample.’

Some of the results obtained in my collaborative work (of a breeder’s

point of view) have already been published and will be described briefly.

A comprehensive phenotypic investigation of heterosis in early maize

roots was performed by our colleagues from the University of Tübingen
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(Höcker et al., 2006)2. Several variables defining the root system (root

length, root width, cortical cell length, number of seminal roots, lateral

root density) of four inbred lines and twelve hybrids were collected. Mid-

parent heterosis in the different traits was quantified via a linear model.

The largest heterotic effects were found in the lateral root density, whereas

root length between five to seven days after germination showed to be the

most consistent heterotic trait. The analysis showed that heterosis is al-

ready manifesting during the very early stages of root development. The

young maize root system was therefore subjected to a detailed molecular

analysis of gene expression. A subsequent microarray analysis provided

evidence that heterotic effects are also manifest on the gene level of young

maize roots (results of microarray experiment are not yet published).

At the microarray experiment performed at the University of Munich

(Uzarowska et al., 2006)3 cDNA of meristem (tissue found in parts of the

plant where growth takes place) of different maize inbred lines and hy-

brids was analysed. The data was normalized according to Section 2.3 and

a mixed model was fitted. Besides the fixed effects for genotype, dye, and

replicate and a random array effect, a seasonal effect for plant cultivation

and an interaction between season and genotype was included, as some

of the plants were cultivated in summer and some in winter. We tested for

differential expression between the hybrids and the parental mean. A sub-

stantial part (38.1%) of the differentially expressed genes we found that

have a known function, are associated with catalytic activities, whereas

33.3% are associated with binding activities. Furthermore, finding a high

number of genes where the hybrid’s expression level is higher than that of

both parents supports the overdominance hypothesis, whereafter hetero-

2My contribution to the paper is the statistical analysis of the data.
3My contribution to the paper lies in the analysis of the microarray data
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sis is due to an increased level of the heterozygote in certain responsible

genes.

6.4 Concluding remark

The thesis has its field of application in plant breeding. Plant breeding

has been practiced for centuries and the objectives are manifold. Dur-

ing the last century, agricultural focus lay mainly on the increase in yield.

This was achieved e.g. by creating varieties that show high grain yields,

that are more adapted to automated cultivation or that can better utilise

fertilization. In effect, between 1961 and 1993 the worldwide cereal pro-

duction rose from 877 million tons to 1894 million tons (Reeves, Pinstrup-

Andersen, & Pandya-Lorch, 1999). According to Pingali (1999), as a result

of the rapid population growth the global demand for rice, wheat and

maize is expected to rise by 36, 40, and 47% between 1997 and 2020. Be-

yond the mere supply of food, agriculture today has to meet other chal-

lenges. Sustainable and environmentally friendly forms of agriculture are

needed, and varieties that are more resistant against drought stress or bet-

ter adapted to increased CO2 levels could cope with future climate condi-

tions.

A good understanding of the molecular basis of heterosis is vital for the

breeding of such plants. This dissertation has made a contribution to the

elucidation of the heterosis concept in improving statistical methods for

microarray experiments. The issues addressed in this work were inspired

by the idea of estimating heterosis, the methods presented might as well be

useful when confronted with different objectives. Results may be referred

to other areas and thus it is hoped that the dissertation will attract interest



116 CHAPTER 6. GENERAL DISCUSSION

beyond the community of statisticians interested in plant breeding.



Appendix A

Monotonicity of the dominance

ratio

The dominance ratio on the transformed scale is given by
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We show that ρ(φ) is monotonically decreasing for all φ.

PROOF.
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λφ
1
λφ
2
−1

= ln λ1−lnλ2

ln λ1+lnλ2

, ρ(φ) is a

continuous function.

The first derivative of ρ(φ) with respect to φ is given by

ρ′(φ) =
[2λφ

1 ln λ1 − λφ
1λ

φ
2 ln(λ1λ2)](λ

φ
1λ

φ
2 − 1)

(λφ
1λ

φ
2 − 1)2

−
[2λφ

1 − 1 − λφ
1λ

φ
2 ]λ

φ
1λ

φ
2 ln(λ1λ2)

(λφ
1λ

φ
2 − 1)2

=
2λ2φ

1 λφ
2 ln λ1 − 2λφ

1 ln λ1 − λ2φ
1 λ2φ

2 ln(λ1λ2) + λφ
1λ

φ
2 ln(λ1λ2)

(λφ
1λ

φ
2 − 1)2

−
2λ2φ

1 λφ
2 ln(λ1λ2) − λφ

1λ
φ
2 ln(λ1λ2) − λ2φ

1 λ2φ
2 ln(λ1λ2)

(λφ
1λ

φ
2 − 1)2
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=
2[−λ2φ

1 λφ
2 ln λ2 − λφ

1 lnλ1 + λφ
1λ

φ
2 ln(λ1λ2)]

(λφ
1λ

φ
2 − 1)2

=
2

(λφ
1λ

φ
2 − 1)2

(

−λ2φ
1 λφ

2 ln λ2 − λφ
1 ln λ1 + λφ

1λ
φ
2 ln λ1 + λφ

1λ
φ
2 ln λ2

)

=
2

(λφ
1λ

φ
2 − 1)2

[

λφ
1λ

φ
2(1 − λφ

1) lnλ2 + λφ
1λ

φ
2(1 − λ−φ

2 ) ln λ1

]

=
2λφ

1λ
φ
2

(λφ
1λ

φ
2 − 1)2

[

(1 − λφ
1) lnλ2 +

(

1 − λ−φ
2

)

ln λ1

]

.

As the fraction on the left is positive for all φ, we show that

(1 − λφ
1) ln λ2 + (1 − λ−φ

2 ) ln λ1 < 0 ∀ φ 6= 0. (A.1)

This is equivalent to

−(λφ
1 − 1) lnλ2 + (1 − λ−φ

2 ) lnλ1 < 0

⇐⇒ (1 − λ−φ
2 ) lnλ1 < (λφ

1 − 1) ln λ2

⇐⇒
1−λ−φ

2

ln λ2

<
λφ
1
−1

lnλ1

∀ φ 6= 0. We define

h1(φ) =
λφ

1 − 1

ln λ1

and h2(φ) =
1 − λ−φ

2

ln λ2

.

The first and second derivatives of h1(φ) and h2(φ) are

h′
1(φ) = λφ

1 , h′′
1(φ) = λφ

1 ln λ1,

and

h′
2(φ) = λ−φ

2 , h′′
2(φ) = −λ−φ

2 ln λ2.

Then h1(0) = 0 = h2(0) and h′
1(0) = 1 = h′

2(0), i.e., the two functions touch

in φ = 0. Furthermore h1(φ) is convex and h2(φ) is concave as h′′
1(φ) > 0

and h′′
2(φ) < 0 for all φ. Therefore h2(φ) < h1(φ) for all φ 6= 0 and (A.1)

holds true.

As ρ′(φ) < 0 for all φ 6= 0 and ρ(φ) is continuous for all φ, ρ(φ) is

monotonically decreasing for all φ.
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