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The possible ground state spin configurations of an Ising model on a plane triangular 
lattice are investigated. The model incorporates competing interactions between spins at 
nearest and next-nearest neighbour sites as well as a coupling between three spins at the 
vertices of a nearest-neighbour triangle, and an external magnetic field. Models of this 
type are frequently used to describe the structures of adsorbate layers on hexagonal 
substrates. The analysis is based on linear inequalities involving the magnetization, two- 
and three-spin correlations, and on simple convexity arguments. Part of the inequalities 
needed are proved with the aid of a computer. For vanishing three-spin coupling the 
results of earlier studies are confirmed; in addition, the resulting seven topologically 
distinct structures are shown to be unique. Two of these structures are energetically 
degenerate; the degeneracy cannot be lifted by any further two-spin interaction. For  
nonzero three-spin coupling only an "almost complete" solution is given, involving four 
additional spin configurations. The "ground state phase diagrams" are discussed. 

I. Introduction 

The Ising model on a triangular lattice has attracted 
the interest of physicists for two main reasons. From 
the point of view of theoretical statistical mechanics 
it has provided an early example [1, 2] of a system 
exhibiting macroscopic ground state degeneracy 
(violation of Nernst's theorem) due to what is now- 
adays called "frustration". In the field of solid 
state physics, on the other hand, the lattice gas ver- 
sion of this system has been used to describe the 
behaviour of submonolayers of adsorbate particles 
on substrates of hexagonal symmetry, e.g. the basal 
planes of graphite (cf. e.g. [3, 4]), and of intercalant 
layers in graphite intercalation compounds [-5]. 

In the context of adsorbed layers, the influence of 
the crystalline substrate is reduced to the existence 
of a two-dimensional lattice of adsorption sites, and 
adsorbate-substrate interactions are summarized in a 
single binding energy. The interaction energy be- 
tween adsorbate atoms is assumed to vanish except 
when atoms are adsorbed at near-neighbour sites. 
There remain only a few parameters describing the 
system. These parameters, however, are very difficult 

to calculate due to the complex many-body nature 
of the original problem. Consequently, it is common 
practice to follow the alternative way of performing 
model calculations and comparing the results to ex- 
perimental findings in order to estimate effective in- 
teraction parameters. Due to effects of competition 
between different forces, interactions of relatively 
short range suffice to create surprisingly complex 
structures. (Cf. e.g. the large unit cell ground state 
structures shown to exist in the square lattice [6-8] 
or even the infinite sequence of ground state struc- 
tures reported for the honeycomb lattice [9], with 
pair interactions up to third neighbours in both 
cases.) One might thus try to achieve a rough phe- 
nomenological explanation of the rich variety [10] 
of ordered structures in adsorbate layers in terms of 
simple universal models. 

Lattice gas (or Ising) models on a triangular lat- 
tice have been studied very often and by various 
methods. Without attempting to be complete, we 
mention some of the relevant references. In [1, 2], 
thermodynamic functions of the m'odel with only 
nearest neighbour interactions (without external 
field) were calculated exactly, yielding a finite zero- 
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temperature entropy for antiferromagnetic coupling. 
Monte Carlo simulations were performed for the 
nearest-neighbour antiferromagnet in an external 
field [11] and also for the more complicated case 
involving an additional next-nearest neighbour in- 
teraction [12, 13]. This model (including interactions 
between nearest and next-nearest neighbours and an 
external magnetic field) was also treated by approxi- 
mations of the molecular field type [14, 15] and (for 
zero field) by the interface method [16]; see [17] for 
the method. A model without next-nearest neigh- 
bour coupling, but with a three-spin interaction on a 
nearest-neighbour triangle was treated by real space 
renormalization [18]; the model with only three-spin 
interactions is exactly solvable [19]. If the nearest- 
neighbour interaction is antiferromagnetic (or repul- 
sive, if we use the lattice gas language) and much 
stronger than the other interactions, as is the case 
for the adsorption of krypton and xenon on gra- 
phite, the lattice gas model may be mapped onto a 
three-state Potts model and treated by real space 
renormalization group methods [20] (see also [4] 
for further references on the use of Potts models in 
the context of rare gas submonolayers on graphite). 

The rigorous determination of possible ground 
states of models with competing interactions is im- 
portant as a complement to both mean field calcu- 
lations (which become notoriously difficult in the 
presence of competing interactions) and Monte Car- 
lo simulations (which become notoriously difficult 
at low temperatures). Furthermore a knowledge of 
possible ground states is helpful in guessing at the 
nature of phase transitions and in constructing reli- 
able mean field approximations or renormalization 
group transformations. 

It is to be expected that adding any further in- 
teraction (or an external field) to an antiferromag- 
netic nearest-neighbour interaction on the triangular 
lattice will destroy the infinite ground state degener- 
acy. However, the competition between nearest and 
next-nearest neighbour antiferromagnetic interac- 
tions might still lead to interesting effects, as each of 
these interactions leads to an infinitely degenerate 
ground state if taken by itself. (Note that the lattice 
may be decomposed into three triangular sublattices 
of next-nearest neighbour sites.) The first attempt at 
a complete determination of all ground state struc- 
tures of a triangular model with interactions up to 
next nearest neighbours and an external field was 
made by Metcalf [21] with the help of Monte Carlo 
simulation. This author in fact found all possible 
ground state configurations except one. Kaburagi 
and Kanamori  [22] used "geometrical inequalities" 
(to use their own terminology) to derive the com- 
plete set of ground states; their method is explained 

(and applied to one dimensional and simple cubic 
systems) in [23]. The work of Kaburagi and Ka- 
namori on the ground states of this and various 
other lattice gas models is reviewed in [24]. K u d o  
and Katsura [25] clearly pointed out the important 
role convexity plays in this method and treated 
three-dimensional hexagonal close-packed and hon- 
eycomb lattices (with interactions up to second and 
up to third neighbours, respectively). Tanaka and 
Uryfi [26] introduced bond variables indicating the 
relative orientation of two adjacent spins and de- 
termined the ground state configurations of the tri- 
angular model with interactions up to second neigh- 
bours (but without magnetic field). In [27] Kaburagi 
and Kanamori  extended the problem treated in [22] 
by adding an interaction between third neighbours 
and derived a large number of different structures. 
Some of these structuresl however, could not be 
rigorously confirmed as ground states. 

In the present paper, we study the ground state 
configurations of a model with an external magnetic 
field, two-spin interactions between nearest and next- 
nearest neighbours, and a three-spin interaction be- 
tween sites at the vertices of a nearest-neighbour 
triangle. We use the method developed in [7] (which 
is closely related to the one used in [22], as im- 
proved in [25]), characterizing a spin configuration 
by the values of a few macroscopic parameters, 
namely the magnetization and some near-neighbour 
correlations, and deriving linear inequalities between 
these quantities. These inequalities define a multi- 
dimensional convex polyhedron (a simplex) in the 
space of macroscopic parameters, and the corners of 
the simplex correspond to ground state configura- 
tions. 

In Sect. II we shall treat the case of vanishing 
three-spin interaction. We shall give very simple de- 
rivations for a set of inequalities which suffice to 
determine all possible ground state configurations 
for this case. Of course the resulting configurations 
(essentially there are seven different ones) are those 
already given in [22], however, we are able to show 
that these configurations are uniquely determined by 
the values of the macroscopic parameters mentioned 
above. We thus know that there are no degeneracies 
between structures of different superlattice cell sizes, 
except at "phase boundaries" in the "ground state 
phase diagram" and except for one region of cou- 
pling parameter space where two degenerate config- 
urations coexist. The degeneracy between these con- 
figurations cannot be lifted by any two-spin interac- 
tion. 

The case of nonvanishing three-spin coupling is 
treated in Sect. III; it turns out to be considerably 
more complicated than the problem treated in Sect. 
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II, so that we are not able to solve it completely. We 
prove some additional inequalities involving not 
only the magnetization and two-spin correlations, 
but also the three-spin correlation. Part of these 
inequalities are proved by a new method which we 
have developed and applied to an extended Hub- 
bard model in the atomic limit [28]. This method 
mainly relies on the inspection of all possible spin 
configurations of a small cluster of lattice sites, 
which is most conveniently done by computer. Not 
all corners of the resulting simplex could be matched 
by spin configurations; in some cases we had to 
resort to Monte Carlo simulation to find "corner- 
like" spin configurations. The result of these efforts 
is a collection of four different (apart from symmetry 
operations) additional configurations, of which just 
one certainly is a new ground state. We know, how- 
ever, that our solution is "almost complete" and we 
do not believe in the existence of additional ground 
states of spectacular shape or abundance. 

In Sect. IV we shall discuss the "ground state 
phase diagrams" resulting from the ground state 
configurations derived in the two preceding sections. 

II. The Model  without Three-Spin Interactions 
and its Configurations 

The model we study is defined by the Hamiltonian 

H = - - Z B Z a i - - 4 J 1  Z u i ~  2 (Yi~j  
i (NN) (NNN) 

= : - N ( B m + J 1  ci +J2 c2) (11.1) 

with cri= +1/2, magnetic field B and nearest- and 
next-nearest-neighbour couplings Ji and J2, respec- 
tively ( J > 0  corresponds to ferromagnetic coupling). 
The symbols ( N N )  and ( N N N )  denote summation 
over all distinct nearest- and next-nearest-neighbour 
pairs, respectively; the magnetization m is bounded 
by _1,  as are the correlations c i and c 2. N is the 
number of lattice sites. Obviously this model may be 
related to a lattice-gas model in which every lattice 
site may be either occupied or empty. Introducing 
the lattice site occupation variables n i=0,  1 we may 
write down the following "grand canonical lattice 
gas Hamiltonian" 

Hlg -- # Nzg 

= - (e + #) ~, n~ + F~ ~ n i nj + r 2 2 nl nj (II.2) 
i (NN) (NNN) 

where Nt~= ~ ni, # is the chemical potential and F1,2 
i 

denote the interaction potentials between nearest 
and next-nearest neighbours, respectively, e is the 

binding energy of an adatom. Using the transfor- 
mation ni=a~+ 1/2, we obtain the following corres- 
pondences between the parameters of (II.1) and 
(II.2): 

- -  B +- - )~(F  1 + F2) - �89 + #), 
-J~,:~�88 

(II.3) 

Our analysis (cf. [7, 28] of the ground state configu- 
rations of (II.1) is based on the fact that the set of all 
points (m, Cl, c2) corresponding to different configu- 
rations of the system is convex in the thermody- 
namic limit, as Nm, Ncl ,  and Nc e are extensive 
quantities. In a first step we derive several linear 
inequalities between m, cl, and c 2. These inequalities 
define a convex polyhedron (or simplex) in (m, ci, 
c2)-space, which contains all possible configurations. 
In a second step we construct configurations corre- 
sponding to the corners of the simplex, thus showing 
that every point of the simplex represents a possible 
configuration. (It is amusing to note that Wannier in 
his 1950 classic [1] already used an argument of this 
type to calculate the ground state energy of the 
triangular nearest neighbour antiferromagnet.) We 
finally determine the ground state configurations by 
noting that the energy is a linear function of m, c~ 
and c e and thus assumes its extremal values at cor- 
ners of the simplex. 

Obviously every linear inequality between m, cl, 
and c 2 may be written in the form 

b<a 1 m + a  2 c i + a  3 c 2 . (II.4) 

In Tal-~.e 1 we give the coefficients b, a 1, as, a 3 of 
a set of h_zqualities which suffices to determine all 
ground state configurations. 

Table 1. Coefficients of the inequalities of the form (II.4) which 
are used to determine the ground states of the Ising model (II.1) 

Inequality b a 1 a 2 a 3 
No. 

1 0 1 0 0 
2 - 1  - 1  0 0 
3 - 1  0 - 1  0 
4 - 1  0 0 - 1  
5 - 1  0 3 0 
6 - 1  0 0 3 
7 - 1  - 2  1 0 
8 - 1  - 2  0 1 
9 - 1  --2 3/2 3/2 

to -1 -1 -3/2 3/2 
11 --1 0 - 2  1 
12 - 1  - 2  5/2 1/2 

Inequality 1 restricts our considerations to states 
of positive magnetization, inequalities 2-4 are trivial. 
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Inequality 5 is derived from 

1 
cl = ~  ~ 4(o.o o.1 + o.o a2 + o.1 a2) (II.5) 

where the sum runs over all lattice sites and where 
the spin at site i is denoted by a o and its nearest 
neighbours by a 1 ... o- 6 (in a definite sense of ro- 
tation). We now use the triangle inequality and the 
inequality 

Itll <=n 2 (rt i n t e g e r )  (II.6a) 

to obtain 

1c1[<3~ ~ 16(a~ o.1 +ao  o.2+o.~ 0-2) 2 

from which the desired inequality follows. Inequali- 
ties 5 and 6 are equivalent, because each of the three 
interpenetrating next nearest neighbour sublattices is 
equivalent to the original lattice; the same holds 
true for inequalities 7 and 8. Inequality 7 is derived 
by starting from 

2 
rn = ~ -  ~. (% + o- 1 + 0"2) (II.7) 

and using the triangle inequality and 

< ~ + ~  (n integer). (II.6b) 

Inequalities 9, 10, and 12 are derived from 

1 ~ (o.0+ 0-~ + o.3+ o.s), 'r') (II.8) 

1 
m = ~  ~ ( - 0"o + 61 + o-3 + as), (II.9) 

and 
1 

~ (o.O-q- 0-1 ~- O.2 + 0-3) , (II.10) m ~ -  

respectively, in an entirely analogous way. In order 
to derive inequality 11, we first decompose c I into 
three parts 

c 1 = l(ct(1, 3) + c1(3, 5) + c1(5, 1)) 

with 
1 

cl(1, m ) : = ~  ~. 2(0" 0 o.l + ~ o5,) 

and then proceed as above. 
In Table 2 we list the corners of the simplex 

defined by the inequalities of Table 1. 

U. Brandt and J. Stolze: Two-  and Three-Spin Interactions 

Table 2. G r o u n d  states of the Ising model  (ILl), as characterized 
by magnetization, two- and three-spin correlations, and super- 
lattice unit cells 

Corner  m c 1 c 2 ca Structure 
No. 

1 1 1 1 1 l x l  
2 1/2 0 0 - 1/2 2 x 2 
3 1/3 - 1/3 1 - 1 ] / 3  x 1/5 
4a, b 1/3 1/9 - 1/3 1/3, 1/9 1 x 3, 3 x 3 
5 0 1/3 - 1/3 0 1 x 4 
6 0 - 1/3 - 1/3 0 1 x 2 
7 0 - 1/3 1 - - 
8 0 1 1 - - 

A little reflection reveals that the corners 7 and 8 
are only artifacts of the restriction m>_0, i.e. each of 
them corresponds to a mixture of two configurations 
with m=  +lrnl, whereas 1 . . . . .  6 are "real corners". 
The entries in the columns named "c j '  and "Struc- 
ture" will be explained below. 

The construction of spin configurations corre- 
sponding to corners 1, . . . ,6 proceeds as follows. A 
corner is defined by the fact that (at least) three of 
the inequalities of Table 1 are simultaneously ful- 
filled as equalities. Retracing the derivations of the 
inequalities, we see that this puts constraints on the 
local configurations used in the derivations. For ex- 
ample, for inequality 7 (of Table 1) to be fulfilled as 
an equality, both the appropriate form of the tri- 
angle inequality and (II.6b) must be fulfilled as 
equalities. This is possible if ]o.o + al + ~ 1/2 (see 
(II.7)) for every nearest-neighbour triangle of the sys- 
tem and if a o + o . l + 6  2 does not change sign. Thus 
configurations of positive magnetization fulfilling 
this inequality as an equality consist entirely of near- 
est neighbour triangles with exactly one down spin. 

This fixes the 1/3 x V/3 configurations uniquely (up 
to symmetry operations, of course). Other examples 
are c 2 = 1, implying that the whole configuration is a 
combination of three fully polarized next nearest 
neighbour sublattices, and c 1 = -1 /3 ,  prohibiting the 
existence of any "fully polarized" nearest-neighbour 
triangle. Taking into account these constraints, we 
may build up the various configurations starting, 
say, from a single "up"  spin. This procedure is 
unique except for corner no. 4, where two distinct 
configurations of equal energy exist (see Fig. 1). This 
degeneracy reflects the fact that there are essentially 
two ways to combine three next nearest neighbour 
sublattices in which every triangle contains exactly 
one down spin. In the last column of Table 2 we 
have characterized the various structures by their 
unit cells. We wish to stress once more that these 
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Fig. 1. Lattice configurations corresponding to the states listed in 
Table 2. Big dots represent "up"  spins (or sites occupied by ad- 
sorbate atoms), small dots represent "down" spins (or empty lat- 
tice sites). The unit cells corresponding to the "structure" entries 
in Table 2 are shown. The additional hexagonal unit cells dis- 
played for the (1 x 3) and (3 x 3) configurations may be used to 
prove the equality of all two-spin correlation functions for these 
structures (see text) 

configurations are well-known (see references quoted 
in the introduction), but the question of uniqueness 
was not definitely settled up to now. 

For the two configurations 4a and 4b all two- 
spin correlation functions are equal. This is most 
easily seen by choosing hexagonal unit cells for both 
configurations (see Fig. 1). Then, by translation in- 
variance, c 1 and c 2 turn out to be the only inde- 
pendent two-spin correlation functions. This argu- 
ment does not hold for three-spin correlation func- 
tions, and indeed, the correlation function corre- 
sponding to the corners of a nearest-neighbour tri- 
angle yields different values for the two configura- 
tions. (The values of this correlation function are the 
entries in the "CA" column of Table 2. ca is bounded 
by + 1, as are c, and c2.) It should be noted that a 
"fine-grained mixture" of the two configurations 
does not correspond to re= l /3 ,  c1=1/9 and c2= 
-1 /3 ,  because these values imply that every next- 
nearest-neighbour triangle contains exactly one 
"down" spin and this condition would be violated at 
any interface between different domains. Thus, these 
two degenerate configurations are not arbitrarily 
miscible. Due to the equality of all two-spin cor- 
relation functions the degeneracy of the two configu- 

rations cannot be removed by any (isotropic) two- 
spin interaction. (An additional two-spin interaction 
may, however, lead to the appearance of totally new 
ground state configurations.) The degeneracy can be 
removed, e.g. by an interaction between the three spins 
at the corners of a nearest-neighbour triangle, as the 
appropriate correlation function yields different val- 
ues for the two configurations. 

III .  E f f e c t s  o f  a T h r e e - S p i n - I n t e r a c t i o n  

We now supplement the Hamiltonian (II.1) by a 
term 

H a = - 4 Ja ~ ai aj % = - N 4 c a (III.1) 
a 

representing an interaction between three spins at 
the vertices i, j ,  k of an "elementary triangle" of 
nearest-neighbour bonds. The summation is per- 
formed over all 2N elementary triangles of an N-site 
lattice, c a denotes the corresponding three-spin cor- 
relation bounded by _ 1, as already mentioned in 
the preceding section. Note that c a changes sign 
under spin reversal, as does m. The model described 
by the Hamiltonian (I l ia)  alone was solved exactly 
by Baxter and Wu [-19]. 

In the lattice gas model, a three-particle interac- 
tion may be described by adding the term 

Ha, ;g = F~ ~ n i nj n k (III.2) 
a 

to the grand canonical lattice gas Hamiltonian (II.2). 
In this case, the correspondences between coupling 
parameters of Ising and lattice gas Hamiltonians are 
given by the following generalization of (11.3): 

a + #  3 
B ~  +r2)- -  3r~, 2 2 (F1 

j l + _  + 3 1 p  1 3 F A  ' (III.3) 

J2~+-�88 4~+-�88 

(Note that the n-particle interactions of the lattice 
gas influence "lower-order" interactions of the Ising 
model.) 

In analogy to Sect. II we shall now try to de- 
termine the four-dimensional convex set of all points 
(m, cl, ca, ca) corresponding to possible spin configu- 
rations of the system. We observe that the ground 
state configurations for J a=0  derived in the preced- 
ing section form a subset of the possible ground 
state configurations of the system for nonvanishing 
Ja, as they are already uniquely determined by the 
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constraints on m, cl ,  and c2. Thus the vectors (m, cp  
c 2, ca) corresponding to these states span a four- 
dimensional simplex which is certainly s,raller than 
(and included in) the desired set; furthermore all 
corners of the smaller set are also corners of the 
larger set. On the other hand, the inequalities col- 
lected in Table 1 do not restrict the values of c a and 
thus define a four-dimensional simplex which is cer- 
tainly larger than the desired set (and includes it). In 
the following, we shall approach the desired set by 
expanding the simplex spanned by the known con- 
figurations as well as by proving more restrictive 
inequalities. 

In order to estimate the influence of a three-spin 
interaction on the number of possible ground state 
configurations, one may study a simpler system, for 
example the case J2 =0. It turns out that in this case 
the introduction of a three-spin interaction does not 
bring about any new configurations. The same holds 
true also for the case J1 = 0 and - mutatis mutandis 
- for a one-dimensional system. This makes us hope 
that the additional term (IIl.1) will not make the 
number of possible ground states intractably large. 
(It is, however, not certain that the number of 
ground state configurations remains finite; Ka- 
namori [9] has reported an infinite sequence of pos- 
sible ground state structures for an Ising model on a 
honeycomb lattice with interactions up to third 
neighbours.) 

Some inequalities involving the triangle corre- 
lation c a may be derived by the methods introduced 
in the preceding section. Considering, for example, 
four spins a 1 .. . .  ,a4 situated at the vertices of a 
rhomb formed by two elementary triangles, such 
that ~2 and cr 3 are nearest neighbours and 0-1 and a 4 
are next-nearest neighbours, one may define 

1 
c A = ~  ~ (4o- 1 a 2 a 3 + 4 %  a 3 ~4), (III.4a) 

4 o 1 q_ 0"2 ..l_ o" a _~_ 2 o_ 1 0.2 0.3 , 3 m + c a = ~ ( 2  2 2 ) (III.4b) 

2 
( a , - 4 a  I a 2 %). (III,4c) m - c ~ =  N 

(i denotes the position of one of the spins, say of %.) 
Then, using the triangle inequality and (II.6a), one 
obtains the inequalities 

--1 ~C2--2]CAI, 

- l  < -_ -13m+ca[+  3c ~, 

-- l < - - Im--ca l  - c  1. 

(III.5 a) 

(III.5b) 

(III.5c) 

It is obvious from these examples that there are 
many possibilities of constructing inequalities, most 
of which however, turn out to be useless. 

In order to avoid a tedious trial and error pro- 
cedure, a computer algorithm was developed which 
generates a set of inequalities from the set of all 
possible configurations of a cluster containing only a 
few spins. For  such a cluster, one may define quan- 
tities analogous to m, c~, c 2, and c a by assigning 
arbitrary (but fixed) weights to the points, bonds, 
and triangles of the cluster. The finite set of points 
in four-dimensional space which is generated by cal- 
culating the above-mentioned quantities for all possi- 
ble spin configurations of the cluster then spans a 
simplex representing a set of true inequalitites. The 
shape of the cluster and the weights may be varied 
in order to optimize the inequalities. A more de- 
tailed account of this method may be found in [28]. 

There is a slight similarity between the present 
algorithm and the "linear programming" procedure 
suggested by Allen and Cahn [-29] to determine the 
ground state structures of bcc and fcc ordered bi- 
nary alloys. The method of Allen and Cahn, how- 
ever, is more ambitious than ours, as these authors 
directly determine the ground state configurations of 
an infinite lattice from the configurations of a clus- 
ter, whereas our method is more flexible. We note in 
passing that we have tested our method for the 
square lattice Ising model with interactions up to 
third-nearest neighbours. It turned out to be quite 
easy to derive the full set of inequalities necessary to 
determine the ground states, a task which is rather 
arduous to perform analytically [6-8]. 

Using the method sketched above, we were able 
to derive two more useful inequalities (among sever- 
al others), namely 

- 1  < - - Im--cAI  + 2Cl + C > (III.6a) 

-- 1 < --�89 _+ 3ca[ _+3c 1 +~c 2. (III.6 b) 

(Where the double " + "  is to be interpreted as " + ,  
+ or - ,  - " . )  A cluster of seven spins (a central spin 
and its nearest neighbours) was used in both cases. 
To derive (III.6a), the central spin was not taken 
into account for the magnetization; all other spins, 
bonds, and triangles were given equal weights. To 
derive (III.6b), only the central spin was counted for 
the magnetization and only the bonds between the 
outer spins were used to calculate cl. 

The inequalities (III.5) and (III.6) serve to reduce 
the size of the "outer  simplex" defined by the known 
inequalities. In order to enlarge the "inner simplex" 
spanned by the configurations of Sect. II we per- 
formed small-scale Monte Carlo simulations giving 
useful hints for the construction of candidate ground 
state configurations. We found four new configura- 
tions which are listed in Table 3 and depicted in Fig. 
2. 
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Fig. 2. Lattice configurations corresponding to the states listed in 
Table 3. Big dots correspond to "up" spins (occupied sites). Unit 
cells are shown 

T a b l e  3. Additional ground states of the Ising model (III.1), as 
characterized by magnetization, two- and three-spin correlat ions,  
and superlattice unit cells. 10-12 are only tentative 

Corner m c, C 2 C A Structure 
No. 

9 1/5 - 1 / 1 5  - 1 / 3  - 1/3 5 x 3  
10 0 - 1 / 6  0 1/2 ] f 7 x ] / 7  
11 l/8 - 1 / 4  1/4 - 5/8 4 •  
12 1/9 - 5 / 2 7  - 1 / 2 7  13/27 ] ~ x ] f ~  

Due to the method of construction, we do not 
know whether there is a unique correspondence be- 
tween the parameter  values of Table 3 and the struc- 
tures of Fig. 2. We do not even know whether cor- 
ners 10, 11, and 12 are genuine ground states, as 
there is still a difference between the outer and inner 
simplices which we were not able to remove. 

The "outer  simplex" is described by inequalities 
3, 6, 8, 9, 10 from Table 1 (together with their spin- 
reversed counterparts), and inequalities (III.5) and 
(lII.6). This simplex possesses the corners 1 through 
6, 9, (cf. Tables 2 and 3) and an additional corner 
with the parameter  �9 values 

(m, cl, c 2, CA)=~(1, -- 3, 1, -- 7) (III.7) 

(plus the spin-reversed counterparts of the points 
mentioned). We could not find a configuration cor- 
responding to (III.7). (The numerical values suggest 

that a suitable configuration might have a 1 ~  

•  structure, however, there is no ] f ~ •  
configuration fulfilling (III.7).) 

The "inner simplex", on the other hand, com- 
prises the corners 1 through 6 and 9 through 12. It is 
described by the same set of inequalities as the "ou- 
ter simplex", plus the additional inequality 

l < - ~ [ m + 3 c  A 21 12 - I + ~ c  1 (III.8) = -{- ~ -  C 2 . 

which we could not prove. We were able, however, 
to prove (III.8) with the left hand side replaced by 
-151/143,  using the same "hexagon" cluster as for 
the proof of (III.6), with optimized weights. Inciden- 
tally, -151/143 is the number  which results if the 
values (III.7) are inserted into (III.8). 

The inequality (III.8) (with (m + 3c)<0)  is fulfilled 
as an equality by the points 6, 10, 11, and 12. (The 
overbar denotes inversion of all spins, as compared 
to the configurations listed in the tables and dis- 
played in the figures.) These points, together with 
(III.7), obviously span a four-dimensional "pentahed- 
ron"  which makes up half of the difference between 
the inner and outer simplices. (The other half is 
spanned by the spin-reversed versions of these 
points.) The four-volume of one such pentahedron is 
approximately 1.3.10 -s ,  compared to a total vol- 
ume of 0.9433 of the whole simplex, so we may con- 
clude that there is not much room for additional 
ground state configurations to hide in. 

I V .  G r o u n d  S t a t e  P h a s e  D i a g r a m s  

From the ground state configurations derived in the 
two preceding sections one may easily construct 
"ground state phase diagrams" by determining 
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which one of these states yields the lowest energy for 
given values of the coupling parameters. The set of 
points in coupling parameter space for which a 
given configuration is the ground state may be called 
the stability region of this phase. As discussed in 
Sect. II, the parameter vectors (m, cl,  c2, CA) of the 
ground states are corners of the simplex of possible 
values of this vector. Therefore the stability regions 
in the "dual space" of (B, Jr, J2, JA) vectors are con- 
vex. The faces of the simplex, which are defined by 
the inequalities, obviously correspond to points of 
multi-phase coexistence in coupling parameter space. 
If, for instance, some configurations fulfill the in- 
equality 

- 1 <=alm+aac 1 q-a3c2-t-a4c A (IV.I) 

as an equality, then at the point 

(B, JA,Jz,Ja) = - l e l (a l ,a2 ,a3 ,a4 )  Ov.2) 

in coupling parameter space all these configurations 
have the energy -1el (per spin) and no other con- 
figuration has a lower energy. This property is help- 
ful in locating interesting regions in coupling param- 
eter space. 

For the model (ILl) (without three-spin coupling) 
we have the coupling parameters B, J1, and J2. Ob- 
viously it suffices to consider the parameters J1/IB[ 
and Jz/IBI; the sign of B only distinguishes between 
the configurations of Fig. 1 and their "spin-inverted" 
counterparts. The situation studied by Wannier [-1], 
i.e. J1 < 0 ,  B = J 2 = 0 ,  corresponds to a point at nega- 
tive infinity on the Ja/[B[ axis of Fig. 3, where the 
configurations 3, 3, and 6 (the c 1 = - 1 / 3  configura- 
tions) coexist. (The overbar again denotes spin in- 
version.) For J i = 0  and B ~ 0  we observe either 
coexistence of all structures with % =  1 (for positive 
J2) or of all structures with c 2 = -  1/3 (for negative 
J2). The configurations with nontrivial unit cells are 
of course all degenerate due to symmetry, for exam- 

ple the V ~ x V ~ configuration has a threefold degen- 
eracy. Thus the stability region of this phase really is 
a region of coexistence between three degenerate 
phases with domain walls separating the phases in 

space. (Domain walls in 1//3 x l /~  phases have been 
frequently discussed in connection with ordering 
phenomena in layers of krypton and xenon adsorbed 
on graphite; see [-4] and references cited there.) 
From Fig. 3 one may derive the corresponding phase 
diagram of the lattice gas model (II.2). As the re- 
versal of the field B in the Ising model corresponds 
to a more complicated operation in terms of the lat- 
tice gas parameters (e+/l), F1, and F 2 (cf. (II.3)), it is 
useful to draw two "phase diagrams" for the lattice 

.Iz/iBI 

1 -  1 

Fig. 3. "Ground state phase diagram" of the Ising model (II.1). 
The numbers in the different regions denote either the configura- 
tions of Fig. 1 or their "spin-inverted versions", according to the 
sign of the external field B 

gas model, distinguishing the cases F 1 >0  and F 1 <0  
(Figs. 4a and 4b). 

In an adsorption experiment, the chemical poten- 
tial # may be varied by changing the adsorbate gas 
pressure. Thus one may study a section of the lattice 
gas phase diagram along a line parallel to the (e + #)- 
axis. It is important to note in this context that the 
lattice gas model allows for two kinds of transition, 
one of which simply consists in adding (or removing) 
adsorbate particles (e.g. the transition from an empty 
lattice to any other configuration), whereas the other 
sort of transition involves a complete reordering of 
the structure, enforced by a change in superlattice 
symmetry (e.g. the transition between states 2 and 4). 
The nature of the transitions occurring at finite tem- 
perature may be studied by real or Monte Carlo ex-. 
periments; for example a pronounced hysteresis ef- 
fect vanishing above a certain temperature has been 
observed [13] in a Monte Carlo simulation studying 
the transition between phases 3 and 3. The actual 
behaviour in a real adsorption experiment of course 
depends on details which have not been considered 
here. 

We wish to stress that the method described 
above yields all possible ground state configurations, 
assuming interactions between nearest and next- 
nearest neighbours only. The occurrence of any 
other adsorbate superlattice on a substrate with a 
triangular lattice of adsorption sites must be consid- 
ered an indication of more complicated (e.g. long 
range, anisotropic, or many-body) interactions. 
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nq i 

T 1 

~ > 0  

/ J~t  

Z 

I I I I I I I I 

5 
(e + IX) 

Fig. 4a and b. "Ground state phase diagrams" for the lattice gas 
model (II.2) with repulsive (a) or attractive (h) nearest-neighbour 
interactions. The numbers refer to the configurations of Fig. I, the 
overbar denotes the replacement of occupied sites by empty sites 
and vice versa. Thin lines denote transitions without reordering, 
heavy lines denote reordering transitions 

To illustrate the behaviour of the system for non- 
vanishing three-spin coupling we display two phase 
diagrams for different values of Ja/B in Figs. 5 and 6. 
Due to the incompleteness of our solution (see Sect. 
II) there is some uncertainty in these phase dia- 
grams. However, this concerns only the configura- 
tions fulfilling the "uncertain inequality" (III.8) as an 
equality, i.e., configurations 6, 10, 11, and 12 (plus 
their spin-reversed counterparts). The stability re- 
gions of these configurations are the only ones 
which might be affected if a configuration violating 
(III.8) were found. In this case the stability regions 
of the abovementioned points would shrink (or even 
vanish), while the stability regions of the new con- 
figuration would appear. The stability regions of all 
other configurations are completely determined and 
would not be affected by the appearance of a new 
corner of the simplex. 

In Fig. 6 a point of coexistence between five dif- 
ferent ground state phases (namely 1, 3, 4a, 10, i i )  is 
visible. The coordinates of this point (which are only 
defined up to a factor) may be fixed to (B, J1, J2, Ja) 

J A / B = - 0 . 6  J2/B 

3 1 

L i i i r i i t 

- 1 

I I ] l I I I 

. 4b 15 

JI/B 

Fig. 5. Section through the "ground state phase diagram" of the 
Ising model (III.1) at JjB= - 0 . 6  (B>0). The numbers in the var- 
ious regions correspond to those used in Figs. 1 and 2 

JAIl3=| J2/B 

Fig. 6. Section through the "ground state phase diagram" of the 
Ising model (III.1) at Ja/B= 1 (B>0). The numbers in the various 
regions correspond to those used in Figs. i and 2; the overbar 
denotes inversion of all spins, as compared to Figs. 1 and 2. The 
point of coexistence between five phases occurring here actually is 
only one point of a whole line on which these phases coexist. The 
stability region of phase 5, which is visible on the lower right of 
Figs. 3 and 5, lies outside the frame of this figure 

= 1/2 (3, - 3 ,  - 1 ,  3). This point of coexistence does 
not correspond to one face of the four-dimensional 
simplex of configurations, but to an edge between 
two faces. These two faces correspond to the points 

(B,J,,J2,Ja)=(O,O, 1 , - 2  ) and ( - 3 , 3 , 0 , - 1 )  

(see inequalities (III.5a, b)). In addition to the five 
ground state phases mentioned above, we find at the 
first of these points the configurations 2, 9, and 12, 
and at the second one the configurations 2, 3 and 6. 

For the case J 2 = 0  our ground state phase dia- 
grams agree with those derived in [18] by real space 
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renormalization group methods (see Figs. 13 and 18 
of [18]), showing the configurations 1, i ,  3, and 3, 
separated by first-order and higher-order boundaries. 
The higher-order boundaries of [18] turn out to be 
lines of coexistence of three phases, with one of the 
phases 2, 2, or 6 also present. At the "triple points" 
in the case of negative J1, ground states of the types 
4a, 10, and 11 show up too. These "zero-measure 
stability regions" will either vanish completely or 
become finite in case of slight deviations from Jz  = O. 

Ground state phase diagrams in the lattice gas 
variables (e+#), F l, F 2, and F~ may be easily ob- 
tained by means of the transformation (III.3); how- 
ever, we shall not present any further phase dia- 
grams for reasons of space. For  comparison to ex- 
periments on adsorbed layers, it would be interesting 
to replace (e + #) by its thermodynamically conjugate 
variable, the surface density (coverage). In order to 
perform this transformation, it is essential to know 
whether the transitions between different "phases" 
are of "first order" or "continuous". This question 
may be attacked by studying the energy of an in- 
terface between the two phases in question: if the 
interface energy is positive, the system will try to 
minimize interface length by forming spatially well- 
separated domains and the transition will be one of 
"first order";  if the interface energy happens to van- 
ish, the two phases may mix up freely and a "con- 
tinuous" transition may take place. (For finite tem- 
perature, interface entropy of course becomes impor- 
tant.) 

To determine the energy of an interface between 
two given phases, one may check whether all those 
local constraints on the spin configuration are satis- 
fied which are implied by the inequalities fulfilled as 
equalities at coexistence. If it is possible to build up 
an interface while satisfying all these constraints, the 
interface energy vanishes. This method of determin- 
ing the nature of transitions between different 
ground state configurations was used successfully for 
an extended Hubbard model in the atomic limit 
[28]. However, due to the relatively large number of 
different ground state configurations of the present 
model, and due to the rather complicated nature of 
the inequalities by which they are determined, we re- 
frain from carrying through a similar discussion 
here. 

We are grateful to Johannes Pollmann for some helpful dis- 
cussions. 
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