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Hubbard models extended by attractive interactions between nearest neighbours have 
recently been discussed as models for heavy fermion superconductivity. Here, a compar- 
ison is carried through between mean field calculations at finite band width and exact 
results on ground state properties in the atomic limit (i.e. at zero band width). It turns 
out that the mean field approximation does not provide an appropriate description of 
the ground state of the system. This holds true for arbitrary band filling. For  half-filled 
band, an extended mean field approximation is studied, allowing for both antifer- 
romagnetism and (singlet) superconductivity. It is found that these two types of order 
do not coexist within mean field theory. 

I. Introduction 

Heavy fermion superconductivity has attracted con- 
siderable interest since its discovery some years ago. 
The large body of literature on the subject is re- 
viewed in several recent articles or collections [1-3]. 
At the present time there seems to be no general 
consensus on the theoretical description of supercon- 
ducting heavy fermion systems, and thus several 
model hamiltonians of varying complexity have been 
discussed. One of the simplest conceivable models is 
an extended Hubbard model, describing electrons 
moving in a (narrow) band and interacting by an 
on-site repulsion and a near-neighbour attraction. 
The attractive interaction may be introduced as a 
purely phenomenological parameter whose physical 
origin has to be clarified by considering a more 
detailed microscopic model. In two recent publi- 
cations [4, 5], mean field approximations were de- 
veloped for models of this type. In both cases an 
attractive interaction between electrons at nearest 
neighbour sites was introduced. In [5] the interac- 
tion was supposed to act only between electrons of 
opposite spin directions, whereas in [-4] a spin-inde- 
pendent density-density interaction was assumed. 
The discovery of gapless or nearly gapless supercon- 
ducting states was reported and nuclear spin relax- 
ation experiments were interpreted. The aim of this 

paper is to compare these mean field results for 
narrow band extended Hubbard systems to recent 
exact results [6] on zero band width extended Hub- 
bard systems. 

To this end the ground state energy will be stud- 
ied. For  reasons of symmetry and convexity the 
ground state energy of a finite band width system 
(on a suitable lattice) should always be lower than 
that of the corresponding zero band width system. 
This property offers a simple way of judging the 
quality of mean field approximations. As mean field 
theories may be derived from variational principles 
for the energy or the free energy, they should pro- 
vide reasonable values for these quantities, even if 
they fail to describe all details of the state of the 
system. Conversely, a failure of mean field theory to 
determine the energy correctly would cast serious 
doubts on mean field results for other quantities. 

In Sect. II, the mean field theory of (singlet) 
superconductivity for the models of [4, 5] is devel- 
oped from the variational principle. Systems of arbi- 
trary particle density between zero and two electrons 
per site are discussed. The resulting "gap equations" 
for the system with spin-independent interaction dif- 
fer slightly from those derived in [4]. However, it is 
found that the superconducting states found in mean 
field theory always have a higher ground state en- 
ergy than the zero band width ground state. 
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The zero band width ground state of the system 
with attractive interaction between opposite spins 
shows antiferromagnetic order. Thus one may think 
of improving the mean field theory of this model by 
additionally allowing for antiferromagnetic order. 
This is done in Sect. III, where only the case of one 
electron per lattice site will be treated for simplicity. 
It turns out that within the framework of mean field 
theory there is no coexistence of antiferromagne- 
tism and superconductivity in this model. 

In view of the negative results obtained in Sects. 
II and III it is hard to imagine how a (singlet) 
superconducting ground state might arise in an ex- 
tended Hubbard model. Thus this model is probably 
not suitable for the description of heavy fermion 
superconductivity. 

II. Mean Field Theory of  Superconductivity 

The Hubbard model is defined by the Hamiltonian 

HH=--t Z Z (C~Cyo+C+Ci~)+UZni~ni* �9 (II.1) 
~=  1, ,~ ( i , j )  i 

For definiteness, we consider a simple cubic lattice 
of N sites; however, our treatment may be general- 
ized to other "loose-packed" or "AB" lattices (i.e. 
lattices consisting of two interpenetrating sublattices 
with each point of one sublattice surrounded by 
points of the other sublattice as nearest neighbours). 
On each lattice site i there act two pairs of fermion 
operators c. +,~, c~o (a = T, $), furthermore 

_ _  + 

Hia : - -  Cla Cia. 

denotes summation over all nearest-neighbour 
<i,j) 

pairs, where each pair is counted once. The first 
term in H H describes two degenerate tight binding 
bands with dispersion relation 

o _ -2t(cosk~+cosky+cosk~)=: - t f ( k ) .  (11.2) 

(We set the volume of the elementary cube to unity.) 
U describes the intra-atomic Coulomb repulsion 
(c>0). 

In order to obtain electron pairing, an attractive 
interaction must be added to (ILl). In [5] an in- 
teraction of the form 

J 
Ha- 2 ~ (ni*ngs+ni+nj*) (J>0)  

( i , j )  
(II.3) 

was introduced, describing an attraction between 
two electrons of opposite spin directions at neigh- 
bouring sites; a spin-independent interaction was 

used in [4]: 

J 
H1 = - 2  ~ 2 ninny" (II.4) 

a,a' (i,j> 

(The model described by H = H ~  + H 1 with H 1 given 
by (II.4) is usually called "extended Hubbard mod- 
el".) 

Mean field theories of interacting systems are 
most conveniently formulated using variational prin- 
ciples [7]. As we shall only discuss ground state 
properties, we may employ the Rayleigh-Ritz type 
inequality 

E(n N) <= (H>0. (II.5) 

Here E(nN) is the ground state energy of the ex- 
tended Hubbard model Hamiltonian H with n elec- 
trons per lattice site. ( ) o  denotes the expectation 
value in the "ground state" of H o - # N ,  where H o is 
a simple effective Hamiltonian containing variation- 
al parameters and # is the chemical potential which 
has to be adjusted according to the condition 

( / V) o = n N (II.6) 

on the expectation value of the total particle number 
operator N. Variation with respect to a parameter 2 
under the condition (II.6) then yields the stationarity 
condition 

0_~?(U)o ~?(N)o 8 (H)o  8(N)o  (II.7) 
32 3# 3# 32 

~Gg)~ ; if ( N )  o does not depend on #, (for non-zero O ~ -  

the condition (II.6) remains fulfilled anyway if 2 is 
varied). 

In order to describe superconducting pairing in 
the Hamiltonian H, the effective Hamiltonian H 0 
should allow for the existence of nonvanishing 
anomalous expectation values (c~ c/~) o and 
(c~cf;)o. We therefore introduce the following ef- 
fective Hamiltonian: 

H o - # N = - t Z  Z (c+Cjo+C+,Ci,)--#Znia 
( i , j )  i~ 

+ ~,(Aoci+ cit + h.c.) 
i 

+�89 ~ [Al(ci+cj,+cj+ciT)+h.c.]. (II.8) 
( i , j )  

A 0 and A a are variational parameters. It is more 
convenient to write (II.8) in k-representation, using 

c + = N -  112 Z-. • e -  ikR,. Cko.+. (II.9) 
k 

One then obtains 

k ~ (II.10) 
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where 

ek: = -- tf(k) -- #, (II.11) 

A1 
gk:= A o + ~ -  f(k) ,  (II.12) 

and f(k) is defined by (II.2). The diagonalization of 
H o - / ~ N  is performed by means of the standard 
Bogolyubov transformation to new fermion oper- 
ators bk,, bk +, 

Ck~ = U k b k a + sign (a) v k b + k- ~, (11.13) 

with 

sign(a): = ~ +  1 for o-='~ (11.14) 
/ 1 for a = $ .  

The b operators fulfill fermion commutation re- 
lations if the parameters u k and v k fulfill the con- 
ditions 

The origin of the various terms of (II.20) may be 
easily determined by observing that 

< cG Ck ~) o = I vkl 2 (II.21) 

and 

c + + - " u* * (II.22) ( koC-k-,>o--Slgn(~r) kVk' 

Thus the first term of (II,20) obviously is the expec- 
tation value of the band term in HH, and the second 
term arises from the "normal decoupling" of the 
interaction terms as products of particle density ex- 
pectation values. The third and fourth terms contain 
anomalous expectation values; the fourth term may 
be simplified using the properties of the function 
f (k) : 

V*U*Vk, Uk, f ( k + k ' ) = z  -1 ]~ VkUkf(k)[ 2. (II.23) 
k, k' k 

l~k =U_k , Uk: ~)__k (II.15) 

and 

[Uk[ 2 + tVk[ 2 = 1. (ti.16) 

If u t and v k are chosen according to 

Uk=2 -1/2 [lq- gk ]1/2 

(II.17) 
Vk=--2 -2/2 g ~  [1 gk ],/2 

Igu[ 1//e 2 + [gkl--~-J ' 

H o-#~7  assumes diagonal form: 

H o - ~ N  = ~ + 2 [Ekbk,~bk~+gklVkl + Re(ukvtgk)], 

with (I1.18) 

Ek= +(ek z + Igkl2) ~/2. (II.19) 

As the excitation energies (II.19) are positive by 
construction, the ground state o f / - / o - # N  simply is 
the b-vacuum. 

Let us now sketch the zero temperature mean 
field theory of the Hamiltonian H = H u + H , ,  with 
H,  given (II.3). Evaluating the expectation value 
(H>o leads to the expression 

(H>~ =2  ~'k e~ iVk] 2 +~1 (U - - ~ ) ( ~  IvklZ) e 

U 2 J 
Vk Uk vt, uk, f (k + k ). + ~ 1  ~Ukf --~-~ Y~ * * 

k,k' 
(II.20) 

(z is the coordination number of the lattice, i.e. z 
=6.) 

We now observe that the specific form (II.12) of gk 
has not been used up to now. One may thus imagine 
a more general form of the effective Hamiltonian 
H 0, containing a completely arbitrary function gk" 
Variation with respect to this function then shows 
that gk in fact has to assume the form (II.12) with A 0 
and A a determined by 

A U , , U _  
o = ~  ~ v t u t =  ~ ~ (c~ci+;>o (II.24) 

and 
a 

A , -  Nz  ~ f ( k ) v ~ u *  

J 
- N z  Z (<c ,~ i>o+%+~c?+>o)  �9 (II.25) 

(i,J> 

These two equations, together with the equation 

n = 2 ~  Irk' 2 (II.26) 

for the particle density determine the values of 
A o, A 1, and g. In order to discuss these equations it 
is convenient to rewrite them in integral form. To 
this end we introduce the dimensionless parameters 

v: = -t~/2t 

~3o:=Ao/2t 6a:=A1/2t (II.27) 

u :=  U/4t j:=J/12t.  

The dimensionless density of states 

n(x)=ml~_~a~d3ka(x-�89 ~ dueiUXja(u) 

(ii.28) 
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(Jo is a Bessel function) is normalized according to 

3 

d x  n(x)= l . 
- 3  

Using furthermore the abbreviation 

E." = [(x + v) 2 + 160 + 61 xl 2] 1/2, (II.29) 

the "gap equations" (II.24-26) may be written as 

3 

6 o = - u  ~ d x n ( x ) ( 6 o + 6 1 x ) / E  (II.30) 
- 3  

3 

61= j ~ d x n ( x ) X ( 6 o + 6 1 x ) / E  (I1.31) 
--3 

3 

n = 1 + ~ d x  n(x)(x  + v)/E. (II.32) 
- 3  

In the same notation the mean field energy (II.20) 
may be rewritten as 

( H ) o  3 
- - - - 2  ~ d x n ( x ) x ( x + v ) / E + ( u - 9 j ) n  2 

N t  -3 

+u  ) 3 d x n ( x ) ( 6 0 + 6 1 x ) / E  2 

x)/E 2 - j  d x n ( x ) X ( g o + 6 1  . (11.33) 
3 

Obviously (II.30) and (II.31) always allow for the 
trivial solution 6 0 = 6 1 = 0 ,  with v determined by 
(11.32). In this case the energy reduces to 

( H ) o  _ 3 
2 ~ d x  n(x) x sign(x + v) +(u - 9 j ) n  2. (II.34) 

N t  -3 

For n = l ,  (II.30) and (II.32) are solved by 6o=V=0,  
and (II.31) yields 

1611 = (ja y= _ 1)1/2 (II.35) 

(the phase of 61 is obviously arbitrary), where 

3 

y :=  ~ dx n(x)Ixl-~ 1.002. (I1.36) 
- 3  

(The numerical value was calculated using an ap- 
proximation [8] to n(x) in terms of elementary func- 
tions.) This solution, which was also found in [5], 
may be called gapless, as in this case the energy 
spectrum E k starts at zero energy. The mean field 
energy is then given by 

<H>o _ 1 
F- u - (9 + 72)j. (II.37) 

N t  j 

A solution resembling standard BCS superconduc- 
tivity may also be found: for negative u and v = 0  
one may solve the gap equations with 61=0,  60+0.  
This "non-gapless" solution already occurs for in- 
finitesimally negative u, whereas the gapless phase 
discussed above requires a finite j. We shall not 
further discuss the BCS-like solution, as we are only 
interested in the case of positive u. 

For  general values of n, j ,  and u, the equations 
(II.30-32) may be studied numerically; in this case 
both 6 o and 61 will assume non-zero values. The 
mean field ground state energies obtained in this 
way may be compared to the ground state energy of 
the system in the exactly solvable limiting case of 
vanishing band width, which we shall now discuss. 

The ground state energy of the system at t = 0  is 
an upper bound to the (unknown) ground state en- 
ergy at t # 0. This follows from two observations: 

i) The ground state energy is a symmetric func- 
tion of t for an A B  lattice: a change of sign in t may 
be cancelled by a change of sign of all fermion 
operators of one sublattice. 

ii) The ground state energy is a concave function 
of t, as t occurs in the Hamiltonian linearly [9], 

This property of the ground state energy pro- 
vides a valuable test for approximate theories of the 
t4=0 case: the ground state energy obtained by such 
an approximate treatment should at all events be 
lower than the atomic limit ( t=0)  ground state en- 
ergy. This applies in particular to theories like the 
mean field approximation, which are themselves 
based on energy minimum principles. 

The possible ground states of rather general ex- 
tended Hubbard model in the atomic limit were 
rigorously determined in [6]. Both models discussed 
in this paper (i.e. H = H n + H  1 with H 1 given by 
(II.3) or (II.4)) belong to the class treated in [-6] and 
thus the possible ground state configurations are 
known completely. Given the possible configurations 
it is easy to construct a ground state phase diagram 
showing which configuration is the ground state at a 
given point in parameter space. 

The ground state phase diagram of the model 
given by (II.1) and (II.3) is depicted in Fig. 1 for t - -0  
and U >0.  For  positive J the possible ground states 
are the completely empty and completely filled lat- 
tices, and a state with exactly one electron per lat- 
tice site and antiferromagnetic spin order. For values 
of n different from 0, 1, or 2, two of these phases 
coexist. The phases do not mix with each other but 
form spatially well-separated domains [6]. For  nega- 
tive J (which we shall not further discuss) the anti- 
ferromagnetic order is replaced by ferromagnetic or- 
der, and the ferromagnetic phase is allowed to mix 
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Fig. 1. Ground state phase diagram of the model defined by (II.1) 
and (II.3) in the atomic limit, for positive U. The abbreviations 
"CDW" and "(A)FM" mean "charge density wave" and "(anti-) 
ferromagnetism", respectively; n denotes the average number of 
electrons per site and z is the coordination number of the under- 
lying AB lattice 
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Fig. 2. Energy (per site, in units of t) for n = i  and u=0 .  Dashed 
lines represent the energy of the gapless solution, (II.37), (for 
j >  ~ 1) and of the trivial solution (II.34) (upper curve). The upper 
solid line is the atomic limit ground state energy, the lower solid 
line is the energy of the antiferromagnetic solution from Sect. III 

with the n = 0  and n = 2  phases due to the presence 
of additional "charge density wave" phases present 
at the boundaries in the phase diagram. These 
charge density wave phases consist of singly oc- 
cupied and empty sites (or singly and doubly oc- 
cupied sites) in an alternating fashion. Coexisting 
phases which are completely miscible may be easily 
affected by turning on the t term in (II.1), whereas 
non-miscible phases should be more stable with re- 
spect to this perturbation [6]. Hence for sufficiently 
small band width (sufficiently heavy fermions) the 
atomic limit ground state should be a better approx- 
imation to the true ground state than the mean field 

ground state which allows only for superconducting 
order, but not for antiferromagnetic order. The 
atomic limit ground state energy thus should be- 
come lower than the mean field ground state energy 
for small enough t. (We note in passing that the 
atomic limit ground state energy is equal to the 
expectation value of the t=t=0 Hamiltonian in the 
atomic limit ground state up to negligible interface 
contributions.) 

The atomic limit ground state energy is easily 
determined (by collecting the contributions of all 
sites and bonds) once the ground state configura- 
tions are known. For  a general AB lattice with 
coordination number z one obtains for the ground 
state energy per lattice site (with positive U) 

E~ [ (n-1)(U-z~-~)O(n-1)zJ for J < 0  

---4-n+U(n-1)O(n-1, for J > 0 .  

(II.38) 
(0 denotes the unit step function.) 

Comparing (II.38) for n = l  and J > 0  to the 
ground state energy of the gapless mean field so- 
lution and taking into account the restriction j > 7-1 
implied by (11.35) we see that the mean field ground 
state energy is never lower than the atomic limit 
ground state energy. Thus the mean field approxi- 
mation fails to describe properly the situation at 
n = 1 (see Fig. 2 as an example). 

For  n=t=l numerical solutions of (II.30-32) for 
various values of u and j did not yield a mean field 
ground state energy lower than the atomic limit 
ground state energy, thus indicating an inadequacy 
of the mean field approximation for all particle den- 
sities. 

The reason for this failure might be sought in the 
neglect of magnetic order in the mean field approxi- 
mation. The most easily visible (and probably quan- 
titatively most important) effect of this neglect is the 
appearance of a term -gin 2 in (II.34) as compared 
to a term -18in in Eo(t=O)/Nt (II.38). For n = 0  
and n = 2  these terms are equal (as they should), 
whereas for n = 1 they differ most drastically. 

Two possible ways out of this conflict between 
mean field approximation for t=4=0 and exact calcu- 
lation at t = 0  may be imagined: one may either take 
the spin dependence of the interaction seriously and 
try to develop a mean field approximation taking 
into account both antiferromagnetism and supercon- 
ductivity (which we shall do in the next section), or 
one may use a spin-independent attractive interac- 
tion like (II.4) in order to avoid a magnetically or- 
dered ground state in the atomic limit (which we 
shall do now). 
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The mean field theory of the Hamiltonian H or 
=HH+H 1 with H 1 given by (II.4) was discussed in 
I-4]; the mean field self-consistency equations, how- 
ever, were not obtained by a variational procedure 
but by ad hoc identification of the gap parameters 
with certain anomalous expectation values. It will 
turn out below that the variational procedure leads 
to self-consistency equations slightly different from 
the ones presented in [-4]. 

The only difference between (II.3) and (II.4) is an 
attractive interaction term between electrons of 
equal spins at nearest neighbour sites. Evaluating 
the expectation value of this interaction in the 
ground state of the effective Hamiltonian (II.8), we 
obtain the two terms 

J (zl~v2lz-l-I~f(k) v20. (11.39) 
2N  z 

The first of these terms is equal to one already 
present in (11.20); it is a product of density expec- 
tation values. The second term arises from decou- 
piing the expectation value of the interaction in the 
form 

<c~ cj~> o (cfo %5 o. (11.40) 

(Anomalous decoupling of the additional interaction 
term is not taken into account, as this would lead to 
triplet pairing which was explicitly excluded.) The 
presence of terms of the type (II.40) might suggest <H)o 
the introduction of an additional variational param- N t 
eter in the effective Hamiltonian, which would ob- 
viously represent an effective band width. However, 
as long as we are only interested in ground state 
properties, we only need the ground state of H o 
- # N  and thus the band width of H o as an inde- 
pendent parameter may be "scaled away". Working 
at finite temperature would introduce another en- 
ergy scale; in this case an effective band width of the 
effective Hamiltonian should be employed to get a 
consistent approximation. 

Assuming gk to be of the form (II.12) and vary- 
ing A 0 and A1 leads to two stationarity conditions 
which are consistently solved by ( H ) o  

Nt J 
Z Hk/)k f (k)  N Z 

A ~ -  d (II.41) 
k 

2tNz~V~f(k)  -1 

and either of the two values 

U k~ Uk/) k 

d o -  j 

1 2tNz~V2f(k)  
(11.42) 

A o =#A 1/2 t. (I1.43) 

(Note that A o and A 1 are now supposed to be real.) 
The condition (II.26) on the particle density of 

course has to be obeyed in addition. The denomi- 
nator, by which (I1.41, 42) differ from the gap equa- 
tions of [4] (and from (II.24, 25)) may be interpreted 
as a band width renormalization of the type dis- 
cussed above. The solution described by (I1.43) leads 
to a proportionality between gk and e k and thus to a 
gapless excitation spectrum (II.19). In dimensionless 
form, equations (II.41, 42) read 

3 / 
61=J j dxn(x)X(bo+alx)/E 

- 3  ] 

1 --j ~ dx n(x) x(x + v)/E 
- 3  

,o= u i 
-3 / 

3 
( l - j 5  dxn(x)x(x+v)/E). 

- 3  

(II.44) 

(II.45) 

The mean field energy now reads 

3 
=--2 ~ dxn(x)x(x+v)/E+(u--18j)n z 

- - 3  

+u dxn(x)(6o+61x)/E 
- 3  

- j  [ ~3 dx rt(x) x((~ o + (~ l x)/E] 2 

+ , [ i  2 
- - 3  

(II.46) 

As before there is the trivial solution 6 o = 6 1 = 0 ,  
leading to 

3 
2 S dxn(x)xsign(x+v)+(u-18j) nz 

- 3  

+j dx n(x) x sign (x + v) 
3 

(II.47) 

The gapless solution defined by (II.43) leads to 

I•11 = [-4j292 --111/2 

with 

3 
9 ..= 5 dxn(x)xsign(x+v). 

--3 

(11.48) 

(11.49) 
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Using (II.48) and (II.32), one obtains for the energy 

( H ) o  1 ~- (u - 18j) n 2 
N t 2j 

+ u(n - 1) 2 (4j 2 ~2 _ 1) _j~2.  (II.50) 

For n = 1 this gapless solution coincides with the one 
given by (II.44, 45); for arbitrary n, numerical meth- 
ods may again be used. Let us now discuss the 
atomic limit for comparison. The ground state phase 
diagram is given in Fig. 5a of [6]. For  U and J 
positive, the possible ground states are the n = 0  and 
n = 2  states, and a paramagnetic state with one elec- 
tron at each site; these states do not mix with each 
other. The ground state energy per site is given by 

E o (t  = O) 

N 

( U - z  J) for z J > 2 U  

- ~ z J +  U -  (n -1 )O(n -1 )  

for zJ<=2U. 

(II.51) 

Again it is possible analytically to compare this 
result to the mean field ground state energy for n = 1 
and again the mean field ground state energy is 
higher than (II.51) whenever a nontrivial solution to 
the mean field equations exists. As before, numerical 
evaluations for n4:1 and various values of the cou- 
pling constants show that the atomic limit ground 
state is a better approximation to the true ground 
state than the mean field ground state. 

The reason for this failure of the mean field 
approximation is again revealed by a closer look at 
the energy values for n = l .  In this case the mean 
field ground state energy (II.50) contains a term (u 
- 1 8 j )  arising from the density-density decoupling of 

the interaction terms. The corresponding terms in 
(II.51) (divided by t) are 2 ( u - 1 8 j )  for 9 j>u  and 
- 1 8 j  for 9j<u.  We thus see that the atomic limit 
ground state lowers its energy by breaking trans- 
lational invariance: for the case 9 j>u  of weak Cou- 
lomb repulsion, a phase separation into n = 0  and n 
=2  phases takes place, making full use of the net 
attractive interaction. For  9 j > u  the atomic limit 
ground state avoids the strong Coulomb repulsion 
by having each site occupied by exactly one electron 
of definite spin. (The antiferromagnetic ground state 
discussed earlier of course may be viewed as another 
example of this phenomenon.) 

The fact that the mean field theories developed 
in [4, 5] fail to approximate the ground state energy 
of course casts some doubts upon evaluations of 
more complicated physical quantities in the frame- 
work of these theories. 

I lL Superconductivity and Antiferromagnetism 

In this section we are going to discuss the model 
Hamiltonian H = H H + H  1 with H 1 given by (II.3) in 
a mean field approximation taking into account 
antiferromagnetism as well as superconductivity as 
possible types of order. For simplicity we shall re- 
strict ourselves to the case n-- l ,  where the atomic 
limit yields pure antiferromagnetism and where the 
simple mean field theory of the preceding section 
yields gapless superconductivity. Accordingly we de- 
fine the following effective Hamiltonian 

+ A1 
H 0 :  - t  2 f ( k )  CkaCka+ ~ -  ~kf(k)(Ck~ C_k ~ + h . c . )  

k, o- 

- m  ~ e IQR'(nit - his ) (III.1) 
i 

with Q.'=0z, n,~). The "staggered molecular field" 
term in (IliA) may be rewritten as 

e iQl~' (n i, - n,,) = ~ c + + (III.2) ( k]" Ck--Q~ - -Ck l ,  Ck-QJ~)-  
i k 

The diagonalization of this effective Hamiltonian is 
most conveniently performed in two steps. In a first 
step we eliminate the terms which do not conserve 
particle number by introduction of new fermion 
operators b k a  ~ bk+~. This leads to 

H o : ~.~ (Ekbs --m sign (a)b~.bk_Q. ) (III.3) 
k, o- 

with 

Ek: 7--- - f ( k )  ] / t  2 + A 2/4. (III.4) 

A second transformation to fermion operators 
a + leads to ak~, ka 

__ + H o --2Akakaak~ (III.5) 
k~r 

where 

Ak: = -- sign ( f  (k)) 1 / ~  + m 2 . (III.6) 

Equation (III.6) represents an effective quasiparticle 
band which is split up due to the antiferromagnetic 
superstructure imposed. The ground state of (III.5) 
has the lower subband filled and the upper subband 
empty. This state corresponds to n = l  by particle- 
hole symmetry. 

The complete transformation between the orig- 
inal c operators and the new a operators may be 
written as follows: 

Ck, o = A k ( + ,  + )  ak.a 

- sign (a) sign ( f  (k)) Ak(+, --) a k_ Q, 

--sign(a)Ak(--, +)  a_k, _o 

+s ign ( f (k ) )Ak( - ,  - )  a k Q, _o (III.7) 
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where 

Ak(p, J : =  �89 [1 + p t/(t 2 + A)/4)1/2] 1/2 

�9 [1 +~E~JAk] I/2 (III.8) 

(and where " + 1 "  has been abbreviated "_+" in 
(lILY)). 

To evaluate (H)o  one may use the following 
expectation values 

+ 1 
(Ck~ Ck, ,)0 = ~  6~o, {6k, W (1-t- [~--k] ~ .  t f (k ) ,  

+msign(a)6k. k, ot/(t2+A2/4)l/2lAk[}, (III.9) 

+ + _ Als ignf(k)  
<CRT Ok' ~)0 -- 4~ff ~_ ~ 2  6k, _k, (III.10) 

to obtain 

<H>o 
N 

t 2 N -1 ~ fZ(k)/lAkl +~ (U--zd/2) 
k 

1 rrl2t 2 
4 ( U + z J/2) t2 + a ~/~4 (N-1 ~ ]Ak{- 1)2 

d A~/4 
8z tZ+A~/4(N- l~  If(k)l)2" (III.11) 

Employing the notation introduced in (II.27) and the 
abbreviations 

r~: = m/t (III. 12) 

and 

A (x): = [(1 + 62 ) 4 x 2 + rfi2] 1/z, (III. 13) 

the following stationarity conditions (with respect to 
61 and r~) are obtained for (H)o :  

3 
1 = (2 u + 18j) y dx n(x)/A (x) (III.14 a) 

- 3  
or  

t~i =0  (III.14b) 

and 
3 

2J72 = 5 dx n(x)A(x) (III.15a) 
- 3  

or  

6, =0  (III.15b) 

or  

61--+oo. (III.15c) 

The condition (III.14b) immediately leads to the old 
gapless solution 01.35) which was already discussed; 
(III.15c) is possible only if t--+0, but for this case the 

0,1 ] 

-3 

" . . ' . . .  
" . . ~ - .  

I I I 

Nt 

Fig. 3. Comparison of the atomic limit ground state energy (solid 
line), the trivial mean field solution (dashed lines) and the antifer- 
romagnetic mean field solution from Sect. III (dotted lines) for n 
=1 and u=0 or 1. The higher mean field energies correspond to 
u=l .  Note that the energy of the trivial mean field solution is 
rigidly shifted by u. (The same holds true for the energy of the 
gapless mean field solution for j > 7-1.) 

exact solution is known. A "purely antiferromagnet- 
ic" solution is implied by (III.15b). In this case 
(III.14b) has a solution for every positive value of (u 
+9j). The energy of this state (per site, in units of t) 
is always lower than the atomic limit ground state 
energy; for t ~ 0  the two energies become asymptoti- 
cally equal, as they should. In Figs. 2 and 3 the 
energies of the gapless, antiferromagnetic, and trivial 
mean field solutions are compared to the atomic 
limit ground state energy. 

A solution fulfilling (III.14a) and (III.15a) would 
describe coexistence of superconductivity and anti- 
ferromagnetism. Such a solution, however, does not 
exist. This may be shown by writing (III.15a) in the 
form 

2j? 2 =/1, (III.16) 

where the bar denotes an averaging procedure of 
obvious definition. Employing Jensen's inequality 
[10] on averages of convex functions, one obtains 
from (III.14a) 

u 9 
l=(2u+lSj)(A-1)>(2u+18j)(A) -1 - j y2  ~y2 

(m.17) 

which is obviously impossible since 7 is close to 
unity. 

To conclude, let us stress that the demonstrated 
failures of mean field theory of course do not prove 
the nonexistence of superconductivity in extended 
Hubbard models of the type discussed here. How- 
ever, it is quite unclear how superconductive order 
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might be described in such models, if not by some 
kind of mean field theory. Therefore other models 
should be (and are, of course, cf. e.g. the reviews [2, 
3]) considered for the theoretical description of the 
phenomena observed in heavy-fermion superconduc- 
tors. 

I am grateful to Gerd Czycholl for drawing my attention to the 
articles [4, 5] and for some helpful discussions. 

This work has considerably benefited from numerous clarify- 
ing discussions with Uwe Brandt, to whom I wish to express my 
sincere thanks. 
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