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Time-dependent spin autocorrelation functions and their 
spectral densities for the semi-infinite one-dimensional 

1 XY and XXZ models at T=  oo are determined in 
part by rigorous calculations in the fermion representa- 
tion and in part by the recursion method in the spin 
representation. Boundary effects yield valuable new in- 
sight into the different dynamical processes which govern 
the transport of spin fluctuations in the two models. The 
results obtained for the X X X  model bear the unmistak- 
able signature of spin diffusion in the form of a square- 
root infrared divergence in the spectral density. 

1. Introduction 

Exact results for time-dependent correlation functions of 
interacting quantum spin systems are scarce. With few 
exceptions [1], such results pertain to the one-dimen- 
sional (1 D)s  = �89 X Y model, a system which can be trans- 
formed into a model of noninteracting fermions [2]. That 
model is the special case A = 0 of the more general 
1 D s = �89 X Y Z  model. The X Y Z  Hamiltonian for a semi- 
infinite chain reads 

H x v z  = - J  ~, {(l+y)SlxSl~-I  
l=O 

+(1 - 7 ) $ 7 S f +  , +AS/S~+l}. (1.1) 

The present study focuses on the boundary effects in 
the spin autocorrelation functions ( S f ( t ) S / ~ ) , p =  
x, y, z, at T = oo. 

What is the general behavior of spin autocorrelation 
functions at T =  ~ for systems with short-range inter- 
action? That depends on the symmetry of the spin cou- 
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pling. If the total spin component S~ = ~, S• is not con- 
/ 

served, the expectation is that the corresponding spin 
autocorrelation function is governed by a typical relax- 
ation process, characterized by an exponential decay law, 

( S f  (t) S f )  ~ e  - ' /~ . (1.2) 

If  S~ is a conserved quantity, on the other hand, we 
expect the corresponding spin autocorrelation function 
to exhibit a diffusive long-time tail, characterized by an 
algebraic decay law: 

<s? (t) s? ) ~ t-d~=, (1.3) 

where d is the dimensionality of the system. It is a fact 
that none of the exactly known functions ( S f  (t) S r  ) is 
consistent with these expectations. There are good rea- 
sons for non-generic dynamics in the X Y model, as will 
be discussed, but it has also remained unclear to what 
extent the T =  oo dynamical properties of the more 
general X Y Z  model might be generic. (The T =  oo spin 
correlation functions of Heisenberg chains were, for 
example, studied in [3] and [4] by means of short-time 
expansion techniques, mainly for spins far away from the 
chain ends. Further important progress in this direction 
was achieved recently by B6hm and Leschke [5]). As it 
turns out, the study of boundary effects is very useful for 
distinguishing and characterizing different dynamical 
processes for the transport of spin fluctuations. 

We present new exact results for the X X  and X Ymod- 
els, as determined in part by special methods and in part 
by a general method, and then we derive new results for 
the X X X  and X X Z  models by the same general method. 
That general method is the recursion method. 

2. The X X  model 

Consider a semi-infinite chain of localized spins $l, l = 0, 
1, 2 .... with nearest neighbors coupled as specified by 
the interaction Hamiltonian 
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H X X  = - - J  ~ ,  { S / x S / X + l - J v S l Y S I Y + I } .  ( 2 . 1 )  

1 = 0  

This is the XX model, the special case y = A = 0 of the 
more general X YZ model (1.1). For classical three-com- 
ponent spins, this is a model of nonlinear dynamics which 
is nonintegrable. There exists some evidence from simu- 
lation studies [6] that the spin autocorrelation functions 
exhibit generic behavior as outlined in Sect. 1, at least in 
the bulk limit (l-+ oo). That is manifestly not the case for 
quantum spins with s = 1. The bulk spin autocorrelation 
functions (S~ (t) S ~ )  at T =  0o and the associated spec- 
tral densities 

q-co 

(o.,) = j" 
--oo 

dte~~163  (2.2) 

have been determined exactly many years ago. The results 
f o r / l  ~ z, 

(t) = �88 [J0 (Jt)]  

:2.(15 - 7 7  

(2.3a) 

were first derived by Niemeijer [7] and by Katsura et al. 
[8]. (J0 denotes a Bessel function, K(k) a complete elliptic 
integral of the first kind.) In the fermion representation 
of the XX model, the evaluation of these quantities is 
straightforward e.g. in terms of a two-particle Green's 
function for noninteracting lattice fermions. Note that 
the square of the Bessel function decays more rapidly, 
~ t  -~, than (t.3) with d =  1, the prediction of spin dif- 
fusion phenomenology. Correspondingly, the complete 
elliptic integral in (2.3b) has only a logarithmic infrared 

divergence as opposed to the characteristic oJ Ldiver- 
gence of 1D spin diffusion. The fluctuations of S~ in this 
model are obviously not governed by a diffusive process 
despite the conservation law S~= const. This is further 
demonstrated by the fact that fluctuations of Sq also 

decay algebraically, ,-~ t -' with oscillations, rather than 
exponentially, ,~exp ( -  Dq 2 t), as is expected for a dif- 
fusive process at least for small q. 

The determination of the function (S  x (t) S x ) for that 
same model is far from straightforward despite its free- 
fermion nature. The exact result was, in fact, first con- 
jectured by Sur et al. [9] on the basis of a moment analysis 
for finite chains. Rigorous derivations, based on the anal- 
ysis of infinite Toeplitz determinants, were reported within 
one year by Brandt and Jacoby [10] and independently 
by Capel and Perk [ 11 ]. The result is a pure Gaussian as 
is then, of course, also its spectral density: 

(S~ (t) S~ ) = (S  y (t) S y )  = �88 e 

j2 t2 

4 (2.4a) 

2]/n ~ j 2  r (a)) = ~  e (2.4b) 

The Gaussian decay of (2.4a) is anomalous again. A nor- 
mal relaxation process would be characterized by expo- 
nential decay. The non-generic processes that govern the 
transport of spin fluctuations in this model are further 
indicated by the fact that all pair correlations 
(S~ (t) Sr~), l~: l '  are identically zero. 

The free-particle nature of the excitation spectrum 
governing the correlation function (SL (t) S~)  is readily 
recognizable by the bounded support of the spectral den- 
sity ~Lz(oJ) (2.3b). That same conclusion cannot be 
drawn from a mere inspection of the results (2.4a, b). 
Spectral densities with unbounded support are typical for 
the dynamics of interacting degrees of freedom. In order 
to detect the free-particle nature of the XX model in the 
xx-autocorrelation function, we must study boundary ef- 
fects. 

2.1. Boundary effects in (S/ ( t )  S / )  

The zz-autocorrelation function was determined in closed 
form for all sites on the semi-infinite chain [12], [4]: 

( S / ( t ) S / )  = �88  1)l+l J2(z+l)(Jt)]2. (2.5) 

In the bulk limit I--+ oo, only the first term in the square 
bracket survives, and the result (2.3a) is recovered. The 
Fourier transforms of the Bessel functions Jn (Jt) are non- 
zero only on the interval [ - J ,  J]. The spectral density 
~fz (co) associated with (2.5) is thus confined to the in- 
terval [ - 2 J ,  2J].  The singularity structure of q~i-'(a~) 
may be inferred from the long-time asymptotic expansion 
(LTAE) of the function (2.5), which has the following 
general structure: 

( S / ( t ) S / > ~  ~, a~t -~2n+3) 
n=O 

r t~O 

The conclusion is that ~b7 Z (oJ) has quadratic cusp sin- 
gularities at the endpoints (a) --= _ 2 J) and exhibits quad- 
ratic behavior close to 02 = 0, independent of l. The bulk 
limit is subtle: the quadratic cusps at the endpoints be- 
come steeper and steeper and, for l-+ oo, transform into 
the discontinuities displayed by (2.3a). Likewise, the 
maximum at co = 0 grows higher and narrower and, for 
l--+ 0% turns into a logarithmic divergence. 

These trends can be seen more clearly, when we note 
that the spectral density corresponding to the perfect 
square (2.5) may be written as the following self-convo- 
lution: 

5 1 
v - -  

•  - 

dv' ] / 1 - v  "2 UZ(v ") 
1 

( v - v ' )  2 U f ( v - v ' )  

(O<=o)/J=-v<=2; @~ ( -  co) = @7~ (co)). 

(2.7) 
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Fig. 1. Spectral density q~{ ~ (a~) for the 1D s = �89 XX model at T = oo 
as determined by the Fourier transform of expression (2.5). The 
four curves represent the cases l= 0 (boundary spin), l= 1, 5, and 
l= ~ (bulk spin) 

Here Uz is a Tchebycheff polynomial of the second kind. 
The evaluation of the integral in (2.7) leads to cumber- 
some expressions involving elliptic integrals, but some 
useful insight can be deduced from it, nevertheless. For 
increasing l, the Ut have more and more oscillations. Con- 
volution smears them out, but not entirely. For o9 close 
to 2 J, (2.7) yields 

2 
~i~f z ((.O) = j ( l  ~- 1 )4 (2 -- o9/j)2 (co <= 2 J). (2.8) 

The /-dependent amplitude confirms the qualitative re- 
marks made previously. The function q~y (o9) is singular 
at o9 = 0 for any l. For example, expression (2.7) evalu- 
ated for the simplest case, l =  0, yields 

128 
q ~  (o9) = 3n-nJ (1 -t-o9/2J) 

j m  o9 
•  

ogK 2J - -  o9)1 (2.9) 
- - j  ( ~ - o 9  

(E (k) and K(k) are complete elliptic integrals.) For small 
o9 the leading terms are 

(2.1o) 

The shape of the spectral density q,;~ (o9) for different 
values of l is shown in Fig. 1. In conclusion, the free- 
particle nature of the underlying dynamics is equally ob- 
vious in the spectral density ~07 ~ (o9) for sites near the 
boundary and in the bulk limit. That will no longer be 
the case when we investigate the spectral density 
q~fx (co) for the same model. 
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2.2. Boundary effects in ( $1 x ( t ) S;' ) 

Here we discuss new explicit analytic results for the xx- 
autocorrelation functions ( S t  (t) St x ) of the first few spins 
in a semi-infinite XX chain. A general determinantal ex- 
pression for ( S f  ( t ) S ; )  is derived in Appendix A. That 
derivation uses the Jordan-Wigner transformation from 
spin-l/2 operators to Fermi operators and Wick's the- 
orem, i.e. precisely the same techniques that were used 
to derive expression (2.5) for ( S f  ( t ) S f ) .  The more com- 
plex structure of (SlX(t)Sf) as compared to that of 
( S f ( t ) S f )  is best understood in the fermion represen- 
tation: the spin operator Sf  is simply mapped to a fer- 
mion number operator, but the operator St x turns into a 
product of Fermi operators involving all of the sites be- 
tween 0 and l. The function ( S f ( t ) S f )  may thus be 
evaluated as an expectation value of a product of four 
Fermi operators. The corresponding number of Fermi 
operators in (SiX (t) SiX) is 4 l + 2. Wick's theorem must 
be applied for the evaluation of that function (see Ap- 
pendix A for details about these well-known techniques 
and references to earlier work). 

The general structure of the function (ST(t) Sff) is a 
sum of products of integer-order Bessel functions J, (Jt) 
with n = 0, 1 . . . . .  2 ( l+  1). Each term is the product of ex- 
actly 2 l + 1 such functions. Explicit expressions for l =  0, 
1, 2, corresponding to the first three sites of a semi-infinite 
chain, are the following 

(S~(t)S~)  =�88 + J2), (2.11) 

( s ( ( t ) s ;  ~) 

=�88 + J2) 

• [(Jo + J2) (J0 -- J4) + (J, + J3)2]}, (2.12) 

(Sa~ (t) $2 ~ ) 

= �88 [(Jo + &) (Jo - J4) + (J, + J3) 2] 

x {(Jo + J2) [(Jo- J4) (Jo + J6) + (Jl - Js) ~] 

+ ( J ,  + J3) [(J, +J3)(Jo+J6) 

"~- (J1 -J5)(J2~-J4)]  

~- (J2 ~- J4 )  [(J1 -~ J3 )  (J1 - -  J 5 )  ( 2 .13 )  

- -  (Jo - -  J4 )  (J2 q- J4) ]}  " 

Each Bessel function has the argument Jt. We have also 
evaluated explicit expressions for l =  3, 4, but they are 
too lengthy to be reproduced here. The Fourier transform 
of any factor (Ji-jq-Ji+j+2) is proportional to 

u,(o9 /J )  uj(o91J) 1/1 - o92/ j~  0 (1 - o9~lJ2). 

Therefore, the spectral density O7 x (o9) is a multiple con- 
volution of 2 l-t- 1 functions with compact support on the 
interval [ -  J, J] and square-root singularities at the end 
points. The spectrum O{x(o9) thus is restricted to the 
interval [ - (2 l + 1) J, (2 l + 1) J], and we can expect non- 
divergent power-law singularities in O;x (co) at frequen- 
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Fig. 2. Spectral density ~bj-"(~) for the 1D s=�89 XX model at 
T= oo. The three curves shown represent the cases l= 0, 1 as de- 
termined by the Fourier transform of expressions (2.11) and (2.12), 
respectively, and the case l= oo given by the function (2.4b). The 
spectral densities for l= 2 and l= oo coincide within line thickness 

cies that are multiples of J. The convolution of 2 l +  1 
square-root singularities yields endpoint singularities of 
the form ~ 109 - (2 l +  1) JI 3~+ ~/2. The actual endpoint 
singularity of qi[x(og), however, could be (and actually 
is) weaker due to cancellation effects. In order to obtain 
a more complete picture of the singularity structure of 
q5[~(o9), we have analyzed the LTAE of ( S T ( t )  S~>. It 
has a considerably more complex structure than the one 
of <s; (t) s?> 

l 

< S [ ( t ) S ? > ~  ~, Cmei(2m+1)Jt(it) -yg) 
m = O  

X ~,, ( I )  �9 - n  Cm~(tt ) +C.C. (2.14) 
n = 0  

with ? ~ ) = 3 + l ( l + 2 ) + m ( m + l ) .  The number of m- 
terms in (2.14) increases with l, the distance of the spin 
from the boundary. Each m-term in the LTAE (2.14) 
gives rise to a pair of (nondivergent) power-law singu- 
larities in q~[~ (o9) at frequencies ogre = --+ (2 m + 1)J. The 
associated singularity exponents, y,(~)- 1, increase mon- 
otonically with m and l; the exponent for the endpoint 
singularity is 212§ 3 l §  1/2, which indeed exceeds the 
value predicted by simple power-counting arguments. In 
the bulk limit, l ~  ~ ,  the support of that spectral density 
is no longer bounded and all singularities fade away com- 
pletely. The result is the Gaussian function (2.4b). In 
Fig. 2 we have plotted the exact results for l =  0, 1, oo. 
Convergence toward the bulk result (2.4b) is remarkably 
rapid. 

The fact that q~y~(og) has compact support for finite 
I is the unmistakable signature of the free-particle nature 
of the underlying dynamics. That nature was not obvi- 
ously recognizable in the bulk result q ~ ( o g )  alone. It is 
interesting to compare these results with those previously 
found for the function <So~ ( t )S~> of the same model at 
T =  0 [13], [14]. The LTAE consists of an infinite number 

of m-terms (see (2.9) of [14]) with leading exponents 
~, (oo) = 1 I - ( ~ 2  A_ m 2 t~ . . . .  1)/2], where [x] denotes the integer part 
of x. The associated spectral density has unbounded sup- 
port and an infinite sequence of singularities at frequen- 
cies ogm=mJ, re=O, 1, 2, . . . .  The first two singularities 
(m=0 ,  1) are divergent. Boundary effects on the xx ,  
correlation functions (both autocorrelations and pair cor- 
relations) of an X Y chain at T =  0 were studied by Pesch 
and Mikeska [ 15]. 

2.3. Predictions o f  the recursion method 

To what extent would it have been possible to predict 
the exact results presented in Sects. 2.1 and 2.2 by the 
recursion method, i.e. by a general calculational tech- 
nique that does not rely on the free-particle nature of the 
system? We investigate this question as a prelude to the 
study of the X X Z  model, for which we shall employ the 
same general method. No special methods have been 
found for that model by which dynamic correlation func- 
tions can be determined exactly. 

In the following we report a number of predictions 
for the spectral densities q~i = (09) and ~/,[x (o9) of the X X  
model that can be extracted directly from the sequences 
of continued-fraction coefficients A t produced by the re- 
cursion method. The formulation of the recursion method 
used here and outlined in Appendix B was developed by 
Lee [16] some ten years ago, but the analysis of the co- 
efficients A t presented in the following is of very recent 
origin [17], [18]. 

Consider first the spectral density q~[~ (09). For l =  0 
the recursion method yields the At-sequence shown in 
Fig. 3 (main plot). Two quantitative properties of the 
function ~b~z(o9) can be extracted directly from these 
computational data: (i) The A t tend to converge toward 
the value A~ = j 2 .  The implication is that the spectral 
weight is confined to the frequency interval Io9[ =< co o 
= 2 l / ~  = 2J. (ii) The convergence toward the asymp- 
totic value Am is uniform in character. This indicates that 
~b~ z (o9) has only endpoint singularities, ,-- (co 0 - o9) ~. The 
exponent B of that singularity determines the leading- 
order term of the large-k asymptotic expansion of the A k- 
sequence [ 19]" 

[ 1 - 4 f l 2 t -  1 (2.15) A~=Ao~ l q- 4 k  2 . . . .  

Uniform convergence from below means /~2> �88 In the 
inset to Fig. 3, we have plotted the square-root of the 
quantity 

versus 1/k. The sequence I Bk[ tends to converge to the 
value I fl I = 2 rather convincingly. The recursion method 
thus would have correctly predicted the quadratic cusps 
of the exact result (2.9) (see Fig. 1). 

For 1 =<l< o% the recursion method yields Ak-se- 
quences that tend to converge toward the same value 
A~----j2, but the approach is alternating in character for 
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Fig. 3. Continued-fraction coefficients A~ (in units of j2) vs. k, 
k =  1,..., 30, for the spectral density q~(eo) of the 1D s=�89 XX 
model at T= co. The inset shows the sequence Ifle] vs. 1/k for the 
same coefficients A k (now up to k = 50) 
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Fig. 4. Continued-fraction coefficients A~ (in units of j2) vs. k, 
k =  1,..., 20, for the spectral density @=(co) of the 1D s=�89 XX 
model at T= co. The inset shows the sequence ~z~ vs. 1/l/k- for the 
same coefficients (now up to k =  35) 

k up to l ( roughly)  and then crosses over  to uni form 
approach.  The emerging new pat tern  indicates the buildup 
of  an addi t ional  singularity at co = 0 in the spectral  den- 
sity for l--+ oo. The  A : s e q u e n c e  for  the bulk case ( l =  ~ )  
is shown in Fig. 4. F o r  spectral  densities that  have a 
power- law infrared singularity, ~ ]col ~, the singularity 
exponent  c~ is determined by the leading al ternat ing te rm 
of  the large-k asympto t ic  expansion o f  the A : s e q u e n c e  
[181, [19] 

] /~k  = IrA ~ I1 - ( -- 1)" 2 ~  §  ] . (2.17) 

In the inset to Fig. 4 we have plot ted the quant i ty  

a k = (  - 1 ) k 2 k [ 1 - - ~ A k / A ~ ]  (2.181 
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Fig. 5. Sequences 1/A~ :~ (in units of 3 -2) plotted vs. 1/k for the 
spectral densities q~[-~ ((o), l= 1, 2, 3, 4, of the 1D s=�89 XX model 
at T= co. The maximum value of k is 55, 28, 22, 20, for the four 
cases, respectively. The solid line represents the sequence for the 
bulk spin case (/=co). The arrows indicate the limiting values 
1/A~l for l= l, 2, 3, 4 

versus k -  1/2. Tha t  sequence tends to converge to a neg- 
ative value in the range between e = 0 and c~ = - 0.1, thus 
representing a weakly  divergent  singularity. This is con- 
sistent with the logar i thmic divergence of  the exact spec- 
tral  density (2.3b). 

N o w  we turn to the spectral  density q~i "-~ (co). Fo r  any 
finite I, the A : s e q u e n c e  tends to converge towards  a finite 
value as k ~ o o .  Our  computa t iona l  da ta  are shown in 
Fig. 5. The dashed curves interpolate the values 1/A~ :) 
plot ted vs. 1 /k  for  l =  1, 2, 3, 4. The  solid line represents 
the analytically known sequence, A(kCe)=�89 for  the 
bulk spin ( / =  oo) [10, 20]. N o t  shown is the horizontal  
line which corresponds  to the un i form sequence, 
A ~ 12 for  the bounda ry  spin ( l = 0 )  [21]. All dashed k 4 ~  ~ 
curves start  out super imposed on the solid curve up to k = l 
and then level of f  gradual ly  toward  a finite value, 
A(~)=�88 1) 2. This is consistent with the exactly 
known band  edge, co(0t~ = (2 l + l ) J, o f  the funct ion 
q~[x(co) (see Sect. 2.2). The uni form convergence of  the 
A~ t) toward  their limiting values A~ ) is consistent with 
the fact that  q,[x (co) does not  have any infrared singu- 
larity. 

The  exponents  f l")  o f  the endpoint  singularities, 
~(coo(t~ ,~'~ - c o )  , in the functions ~ [ ~ ( c o )  can be deter- 
mined directly f rom the Ak (t) via (2.16), i.e. by means  of  
extrapolat ion.  Fo r  l = 0, the square bracket  in (2.1 6) van-  
ishes identically, implying I/3(~189 in agreement  with 
the known square- root  cusp of  r  (see Fig. 2). A 
simple ex t rapola t ion  procedure  applied to the sequences 
z~ (1) and A~ 21 reproduces  the exact exponent  values 
B(I) = y~l)_  1 = ~  and /3 (27 = y(221- 1 = ~  to within one 
tenth of  a percent  and ond percent,  respectively. More  
substantial  deviat ions f rom the exact values are found for  
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l =  3, where fewer coefficients Aft ) are availabe for anal- 
ysis. There appears to be no practical means to extract 
any quantitative information on the interior singularities 
known to exist in the spectral densities ~["(~o) for 
0 < I <  oo. 

2.4. The functions (S~ (t) S~) and (S~ (t) S~) 
for the X Y model 

Consider a semi-infinite X Y chain, specified by Hamil- 
tonian (1.1) with A = 0  and y tO.  This model can be 
mapped on to a free-fermion system with a gap at the 
Fermi surface. The gap disappears for the special case 
~, = 0 (XX model). Dynamic spin correlation functions 
can be determined exactly, at least in principle. No such 
functions have ever been evaluated in closed form for 
T =  oo to the best of our knowledge. (Pesch and Mikeska 
[15] obtained general determinantal expressions for 
T =  0). Interestingly, the recursion method produces the 
exact results for the spectral densities ~ ( o 9 )  and 
�9 YY (co) at T =  oo with little calculational effort. The 5~- 
sequences found for these two functions happen to exhibit 
a very simple pattern: 

x x  __Ayy__l__  1 2 [ 1  
A Z k _ l - - ~ 2 k - - 4 . .  ~ x - -  ~.') 2 (2.19a) 

YY - - A X X - - l  l 2 ( l " } - y ) 2  (2.19b) 
A 2 k -  I - -  ~ 2 k  - -  4 ~" 

For the exact determination of the associated spectral 
densities, consider a sequence of continued-fraction 
coefficients that is periodic with period two: 
A 2k-- 1 : A o, A 2k = A e' The continued-fraction represen- 
tation of the relaxation function c o (z) specified by those 
coefficients can be terminated by the function itself at 
level two [22]: 

1 
c o (z) = (2.20) 

Ao 
z+ 

Z Jr- A e Co (Z)  

(This had also been recognized by Sen [23], who used 
this information for a numerical analysis of the short- 
time behavior of the functions (S~(t)S~) and 
(SY(t)SY).) The solution of this quadratic equation 
yields, via (B.11), the following closed-form expression 
for the associated spectral density: 

_!  

'[ 1: ~ o ( m ) = ~  2(Ao+Ae) - m 2  (Ao--Ae)2(.,o 2 

x e ( l ~ t -  r (r 
7~ 

+ ~  [IAo--Ael --(A,,--Ae)]a(co ) (2.21) 

with 

O.)min = I ~ o  - -  ] / /~e  I, OJmax : 1/~oo -t- ] / ~ .  (2.22) 

Applying this result to the sequences (2.19) for y > 0, 
we find that both spectral densities ~gX(o)) and 
~YY (o)) have a continuum part confined to the frequency 

i n t e r v a l s  (.Omi n < I(D I < ('Omax a n d  w i t h  square-root c u s p  
singularities at each endpoint. The spectral density 
~/,~,x (e)) has also a a-function contribution at co = 0. 

The implication is that the boundary-spin autocorre- 
lation function ($6 ~ (t)So ~) decays algebraically to a non- 
zero constant asymptotically for t--* oo. (This is indeed 
visible but not commented on in the numerical results 
presented in [23].) Such behavior is highly anomalous for 
a many-body system at T-- oo, attributable to the free- 
particle nature of the s=�89 model. For T = 0  Pesch 
and Mikeska [15] observed that (Si t (t)S~) does not de- 
cay to zero as t--* oo for any l,m, because the system has 
long-range order at T =  0. Returning to T =  m and setting 
y = 0 (XX model), we have A o = A e = A ; expression (2.21) 
reduces to 

~0(w) =141/4A - rn2 ; (2.23) 

the gap and the a-function have disappeared. 

3. The X X Z  model  

The X X Z  Hamiltonian 

Hxxz = - J  ~. {SffST+I+S/'ST+~+AS[S[+,} (3.1) 
/=0  

is obtained by adding a coupling between the z-compo- 
nents of neighboring spins to the X X  system (2.1). This 
amounts to introducing a density-density interaction in 
the fermion representation. Not surprisingly, the fermion 
interaction increases the complexity in the structure of 
dynamic correlation functions dramatically. That mani- 
fests itself perhaps most strikingly in the boundary-spin 
autocorrelation function (S~(t)S~) and the associated 
spectral density q~x (o9). A rigorous analysis is no longer 
within reach, and a perturbation calculation for weak 
fermion interaction, I A I "~ 1, is highly impractical for this 
dynamical quantity. However, the application of the re- 
cursion method (in the spin representation) to that task 
is straightforward and requires only a modest amount of 
computational power. 

We begin with the analysis of the case A = 1 (XXX 
model). The sequence A~ ~ of continued-fraction coeffi- 
cients produced by the recursion method for the bound- 
ary-spin spectral density q~x(o)) is plotted in the inset 
to Fig. 6. Notice the dramatic change from the sequence 
A k(0) = 41_ j z =  const, which characterizes the same spectral 
density for the X X  model (A = 0, free fermions). 

Ak-sequences as produced by the recursion method 
have been categorized quite generally according to their 
growth rate [3, 24]. The growth rate 2 is defined as the 
power of k with which a given Ak-sequence grows on 
average: 

A~ ,,~k ~ . (3.2) 

That quantity is known to determine the decay law of 
the associated spectral density at high frequencies [19], 
[251: 
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Fig. 6. Spectral density ~~"(~o) (in units of J ~) for the 1D s-5- 
XXX model (A = 1) at T=oo. The result shown is derived 
from the continued-fraction representation of eo(e-ioo ) (with 
e = 0.001 J) terminated at level n = 12 by means of a Gaussian ter- 
minator with parameter value co 0 = 0.76 J. The A~ that have been 
used are shown (in units of j2) in the inset together with the re- 
gression line �89 which determines the parameter value co o 
and is used for the determination of the singularity exponent c~ 

q~o ( c o ) "  exp ( - co 2/~ ). (3.3) 

In the case of  the X X Z  model, the sequence crosses over 
from 2 = 0 for A = 0 to 2 --~ 1 for A :4: 0. The effect of  the 
fermion interaction on the one-particle Green's  function 
is a transformation of  its spectral density from a function 
with bounded support  to one with unbounded support  
and (roughly) Gaussian decay at high frequencies. 

It must be mentioned at this point that the sequences 
Aft ~ (plotted in Fig. 5) that characterize the spectral den- 
sities ~b[x(co) for the noninteracting case (A = 0 )  also 
change from )~ = 0 for finite I to 2 = 1 in the bulk limit 
( / =  oo). In that case, however, the transformation of the 
spectral density f rom bounded to unbounded support is 
attributable to the nonlocality of  the spin operator S [  in 
the fermion representation. 

Switching from A = 0 to A = 1 also changes the ro- 
tatioal symmetry of  H x x  z in spin space in a way that has 
a drastic effect on the correlation function under inves- 
tigation. Since the total spin component  S~ is conserved 
for A = 1, we can expect that the spin autocorrelation 
function ( S ~ ( t ) S ~ )  is governed by a diffusive long-time 
tail of  the form (1.3) with d =  1. As a consequence of that 
property, the corresponding spectral density is expected 

to exhibit a strong infrared singularity, ~gx (co),,~ co 
Infrared singularities in spectral densities with un- 

bounded support have their reflection in the Ak-sequences 
too. For  a prototype case with 2 = 1 consider the model 
spectral density [18] 

e0(co) ex ( (3.4) 

and the associated Ak-sequence 

A2k-1 --gcoo--1 2(2 k _  1 + e )  , A2~=�89 ) . (3.5) 

For  this prototype case, the singularity exponent ~ is 
determined by the displacement of  the A2k_ 1 f rom the 
line A2k = cog k. Under more general circumstances, i.e. 
for a spectral density with a more complicated structure, 
the exponent a of  its infrared singularity could be deter- 
mined, for example, f rom the average distance in vertical 
displacement of  the A2k and the A2k_ 1 f rom the linear 
regression line that was derived for the entire sequence. 

Looking at the graph A~ (~ vs. k in Fig. 6 we can tell 
that the A2~(~ are displaced upwardly on average with 
respect to the A (o~ This indicates that ~ is negative, ~ 2 k - - 1 "  

i.e. the infrared singularity is divergent. The most  we can 
hope to extract f rom the 12 known coefficients A~ (~ is a 
reasonable estimate for the singularity exponent. Our re- 
sult, 

-- - 0.5 ___ 0.4 (3.6) 

strongly suggests that q~gx (o)) has a divergence at co = 0, 
and the strength of  the singularity is consistent with that 
predicted by spin diffusion phenomenology. 

The 12 explicitly known continued-fraction coeffi- 
cients A~ (~ can also be used for the direct reconstruction 
of the spectral density ~gx(co) by means of a technique 
that was developed in [17]. The main idea at the basis of  
that technique is that the incomplete continued fraction 
(B. 10) must be terminated by a termination function that 
is consistent with some general properties (growth rate, 
limiting value, etc.) of  the explicitly known (finite) A k- 
sequence. 

For  applications to Ag-sequences with roughly linear 
growth rate (2 = 1), the Gaussian terminator is the least 
biased choice. In that case the reconstruction of the de- 
sired spectral density starts out from a Gaussian model 
spectral density according to a well defined procedure. A 
detailed description of  that procedure can be found in 
[ 17], [ 18] for two applications to zero-temperature spin 
dynamics. In the present application, the coefficients 
Ak (~ shown in the inset to Fig. 6 yield the reconstructed 
spectral density q~x(co) shown in the main plot of  that 
same figure. Its only distinctive feature is the character- 
istic spin-diffusive peak at o ) =  0. 

Our interpretion of the spectral density shown in Fig. 6 
in terms of a simple 1 D spin diffusion process will be 
more convincing if we can demonstrate that the sharp 
central peak disappears upon removal of  the conservation 
law on which that process hinges" S~-= const. Therefore 
let us analyze the anis0tropic case A = 0.5 of  Hamiltonian 
(3.1), which violates that conservation law. 

We have calculated the continued-fraction coefficients 
A~ ~ for that case up to k = 11 by means of  the recursion 
method. It  turns out that the growth rate determined for 
that (finite) sequence is significantly larger than ) t - -1 ,  
namely )~ = 1.18 __ 0.04. This modification calls for a gen- 
eralization of both our methods (i)  for estimating the 
singularity exponent c~ and (ii) for reconstructing the 
spectral density ~gx (co). Both tasks require a fair amount  
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Fig. 7. Spectral density ,Pb ~-~ (w)  ~ (in units of  J - 1 )  for the I D s = �89 
X X Z  model (A =0 .5)  at T =  ~ .  The result shown is derived 
f rom the continued-fraction representation of  c 0 ( e - i o ) )  (with 
e = 0.001 J )  terminated at level n = 10 by means of  a Gaussian ter- 
minator  with parameter  value co 0 = 0.65 J. The rescaled coefficients 
A~* that have been used are shown (in appropriately rescaled units) 

~: ~o 5 k + c, which de- in the inset together with the regression line ~ 
termines the parameter co 0 and is used for the determination of the 
singularity exponent 

of developmental work, which is worthwhile to be in- 
vested. For  this one application, however, we wish to 
take a shorter route. 

For growth rates sufficiently close to )t = 1, it can safely 
be argued that if one replaces the Ak-sequence by the 

- A  ~/~ and then proceeds with the analysis sequence A ~ - ~ k  
as in the previous application, the distortions resulting 
from unmatched growth rates are minimal. The rescaled 
sequence A'vs .  k up to k = 11 is shown in the inset of 
Fig. 7. Notice that the alternating character of the de- 
viations from the linear regression line has virtually dis- 
appeared. A quantitative analysis of the singularity ex- 
ponent u from those deviations yields the following re- 
sult: 

c~ =0.0-t-0.3.  (3.7) 

Although this estimate has only limited predictive power, 
it is consistent with the disappearance of the spin-diffu- 

I 

sive co 2-divergence. That conclusion is confirmed by the 
spectral density ~gx (o9) reconstructed from the first 11 
coefficients A *~ and a Gaussian terminator as outlined 
previously. That  function is shown in the main plot of  
Fig. 7 and is to be compared with the result shown in 
Fig. 6. Note that the sharp central peak conspicuously 
present for A = 1 has completely disappeared in the an- 
isotropic case, A = 0.5. This is precisely what is expected 
if the transport of spin fluctuations is governed by spin 
diffusion. 
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Appendix A. Analytical results for ( S [ ( t ) S { )  

Here we derive analytical results for the xx-autocorre- 
lation of an arbitrary spin l in the semi-infinite-spin-1/2 
X X  chain at infinite temperature. As already stated in 
[4], the calculation involves determinants of increasing 
size as l grows. We derive a general determinant expres- 
sion from which the explicit results for l =  0, 1, 2 quoted 
in Sect. 2.2 may be obtained. (The determinant structure 
of (S/~(t)ST) was mentioned by Gonqalves and Cruz 
[12], but we are unaware of any explicit results for 
0 < / <  oo.) 

The spin ladder operators 

St + = ( S[  + iS [) (A.1) 

fulfill fermion-like anticommutator relations "on site", 
however, two operators acting on different sites com- 
mute. This cumbersome algebraic structure is simplified 
by the well-known Jordan-Wigner transformation [26] 

/ - - I  

$l + = ( - 1)~:Z~ a: a~ aT. (A.2) 

The a t and a[ are fermion operators, a[  creates a particle 
at site l from the vacuum: 

I l )  = aT I0 ) . (A.3) 

In terms of fermion operators, the X X  Hamiltonian (2.1) 
of an N-site chain ( /=  0, . . . ,  N -  1) reads 

j N - 2  

H x x -  2 ~' (a?al+l+aL~at)" (1.4) 
t=0 

The normalized one-particle eigenstates [ v )  of Hxx are 
given by 

I 

(ll v ) =  ~ s i n k  N-+]  / (v = 1 , . . . ,N)  

(A.5) 
and the corresponding energy eigenvalues are 

~TZ. 
 v=_ cos 

Consequently, the Hamiltonian now reads 

N 

Hxx= ~ e v a~a~ (1.7)  
V = I  

where the operator av* creates a fermion in the state Iv) .  
Next we user the simple identity (valid for fermion op- 



erators) 

• 
( -  1) " i " '=  1 - 2 a j a r =  ( a T + a t ) ( a ] - a t ) = : A , B t  (1.8)  

to rewrite the spin autocorrelation function as a corre- 
lation function involving the fermionic operators Al and 
B l defined by (A.8): 

(,S~ x (t) Sz x (0)) = �88 o (t) B o (t) A, (t) B t ( t) . . .  

x A z ( t ) A o B o A i B l . . . A l ) .  (A.9) 

This looks like a complicated representation of the sign 
generated by the Jordan-Wigner transformation (A.2) but 
it possesses an essential advantage: as A~ and B t are linear 
combinations of Fermi operators, Wick's theorem may 
be applied to evaluate the expectation value. At first sight, 
the task looks cumbersome, because the right-hand side 
of  (A.9) contains a product of 4 l + 2 operators. However, 
if we write Wick's theorem in terms of  Pfaffians [27], it 
is possible to keep track of  the various terms: 

( ,C  1 C2 . . .  C N >  

(,Ct C2)(C1 C3).,. (,C 1 CN} 
( , C  2 C 3 } . . .  ( , C  2 C N )  

t 
= _+ (det (Cu)) 2 . 

( , C N - 1  C N )  

(A.10) 

Here, C~ . . . . .  C N are linear combinations of fermion cre- 
ation and annihilation operators, and the brackets denote 
equilibrium expectation values with respect to a bilinear 
fermion Hamiltonian. The triangular array in (A.10) is 
the usual way to write the Pfaffian, which is equal to the 
square root of the determinant of an antisymmetric ma- 
trix (Cu) with an even number of  rows and columns, 
defined by 

(11) 
C u = ( , C ,  C i )  (1 =<i< j )  

Cj ,  = - C u . 

Like a determinant, a Pfaffian can be expanded with re- 
spect to the elements of any of its lines, where "line i" is 
the set of all elements carrying the index i, either as the 
first or second index. A minor of a Pfaffian is again a 
Pfaffian, generated by deleting two lines (i and j, say), 
and the adjoint of  element (i, j )  is the corresponding mi- 
nor, with sign ( - 1 )  ;+j+~. For  example: 

(,el C2 C3 C4) 

(,C l C2~) <C 1 C3> (,CI C4> 
= (,C2C3)(,C2C4) 

(,C3 C4} 
(A.12) 

= (,C 1 C2) (,C3 C4) - (,C l C3) (,C2 C4) 

+ (,c, c4) (,c~ c3). 
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For  the determination of the time-dependent correlation 
function (A.9) we thus have to evaluate the following 
Pfaffian: 

4 (S  7 (t) S? (0)) 

(Ao(t) Bo(t)) (Ao(t)A t ( t ) )  ... (Ao(t) Ao) (Ao(t) Bo) ... (Ao(t) A,) 

(B o (t) A, (t )) ... (B o (t ) Ao) (B o (t ) Bo) ... (B o (t ) Al) 

z 

(B,  , A , )  

(A.13) 

For  the evaluation of  the elements of this Pfaffian at 
T =  oo we use 

A,(t)  = ~, sin 
v=l N + I  

t ievt (A.14) •  +ave- i "v~) ,  

and 

( a J a u )  = (av atu) --~fi,v--I . (1.15) 

The result is 

( A , ( t ) A m ( t ' ) )  

- N +  1 cos ~ ( l - - m )  
V=I 

v. ) 
- c o s  N ~  ( / + r n + 2 )  cose~ ( t -  t ' ) .  (A.16) 

For  N--* oo the sum becomes an integral which is readily 
evaluated to yield 

( A , ( t ) A m ( t " ) )  

I 0 for l -  m odd 
= l-m (A.17) 

( - 1 )  2 f lm( t - - t '  ) for /--  m even . 

Here we have introduced the shorthand notation 

f t m ( t ) : = J ~ _ m ( J t ) - - (  - 1)("+ ~) J~+m +2 (J t )  , (A.18) 

and the J .  are Bessel functions. It is important to note 
that fZm vanishes for t = 0, except for l = m. The following 
relations hold: 

(.A, (t)  A m ( t ' ) )  = (,A m (t)  A z ( t ' ) )  

= -- (,B, (t)  Bm ( t ' )> .  (19) 

In an analogous manner we obtain 

( ,A, ( t )Bm(t"  )> 

l--m-- 1 
= ~ ' i ( - - 1 )  2 f z m ( t - t ' )  f o r / - m o d d  

(A.20) (0 for l - m  even. 
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and 

(A,(t)Bm(t '  )) = - (B l ( t )A , , ( t "  ))  

= ( A  m ( t )  e l ( t " ) ) .  (A .21 )  

Hence, all elements of (A.13) with two equal time ar- 
guments vanish, which is a majority. All nonzero elements 
are located in the "upper right quadrant" of the Pfaffian. 
They form a (2 l + 1) • (2 l + 1 ) square matrix which may 
be conveniently written in terms of 2 • 2 blocks: 

foot~Z fOl ~y --fo2~2T z --f03 O'y " ' ' )  

fo lo  y f l , o  ~ f12oY - f ,3o  ~ 

-- fo2 a~ f12 aY fEZ a :  f23 a* (A.22) 

- f03 au - f,3 0": f23 O'y f33 o': 

In this expression we have omitted the common time 
argument t from the functions ftm; try and a :  are Pauli 
matrices. Considering the relation (A.10) between the 
Pfaffian and the determinant of an antisymmetric 
(4 l + 2) • (41 + 2) matrix, it is easy to see that a Pfaffian 
of the type described above is (apart from the sign) equal 
to the determinant of the (2 l +  1) • (2 l +  1) matrix (A.22). 

Appendix B. Formulation of the reeursion method 
for quantum spin dynamics 

For a given quantum spin Hamiltonian H(S1 . . . . .  SN),  

the time evolution of any dynamical variable 
A ($1..., .... SN), here assumed to be a Hermitian oper- 
ator, is determined by the Heisenberg equation of motion 
(with h = 1) 

dA 
- i [ H ,  A I = i L A ,  (B.1) 

dt  

where L =  [H], is the quantum Liouville operator ex- 
pressed as a commutator. That commutator is well de- 
fined in terms of the fundamental commutators of the 
spin algebra: 

[S~, St(] = ia u, ~, e~pr S{.  (B.2) 
Y 

The recursion method for the calculation of the auto- 
correlation function (A (t)A (0)) is based on an orthog- 
onal expansion of the associated dynamical variable: 

A ( t ) =  k C~(t)f~. (B.3) 
k=O 

The orthogonal vectors f~ (Hermitian operators) are gen- 
erated recursively via the Gram-Schmidt orthogonaliza- 
tion procedure with L as the generator of new directions: 

f ~ + l = i L f k + A k f k _ l ,  k = l , 2  .... (B.4) 

& = ( L , L ) / ( L - , , L  ,) (B.5) 

with initial condition f0 = A, f _  1 -- 0. The scalar product 
in (B.5) is defined as the symmetrized canonical average, 

( A , B ) = I ( A B + B A )  

1 
= - -  Tr [e -aH(AB + BA)]. (B.6) 

Z 

The sequence of non-negative numbers A~ thus deter- 
mined contains all the information necessary for the re- 
construction of the function (.4 (t) A (0) 7. Upon insertion 
of the orthogonal expansion (B.3) into the equation of 
motion (B. 1) we obtain a set of linear differential equa- 
tions for the functions C~ (t): 

Ck( t )=Ck- , ( t ) - -Ak+,  Ck+,(t), 

k =0,  1,2, . . . .  (B.7) 

with C_ 1 (t) = 0, C k (0) = 0k. o, and where 

(A (t), A (0)) 
Co( t ) -  (A (0), A (0)) 

__1 (A (t)A (0)) +(A  (O)A (t)) 
- ~ ( A  (0) A (0)> 

(B.8) 

is the symmetrized and normalized autocorrelation 
function we wish to determine. It is the real part of 
(A (t)A (0 ) ) / (A2) ;  the imaginary part contains no ad- 
ditional information and can be determined from the re- 
lation 

(A ( - t )A (0) =(A  ( t -  i f l )A (0)) 

=(A (t)A (0)>*. 

Equations (B.7), converted by Laplace transform into 
a set of algebraic equations, 

Z C k (Z) -- (~k,o = Ck -- 1 (Z) -- A k + 1 Ck + 1 (Z),  

k = 0 ,  1,2,.. .  (B.9) 

with c_ 1 (z) -= 0, can be solved for the relaxation function 
in the continued-fraction representation: 

1 
c0(z ) -  ] dte-ZtCo(t)  - (B.10) 

o z +  Al 
A2 

z + - -  
Z §  

The spectral density is obtained from (B.10) via the re- 
lation 

Oo(co)- [. dtei~~ 
- - o o  

= 2 lim Re [c o (e - i~o )]. (B. 11) 
C~0 

We have designed a FORTRAN program which calcu- 
lates high-precision numerical values of the A, for the 
spin autocorrelation functions (S  7 (t) S 7 ) of the 1D s 
= �89 X Y Z  model (1.1) at T =  oo. Owing to the property 
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(S 7 ) z =  1 o f  spin-�89 operators,  the vectors f~ produced by 
the or thogonal iza t ion scheme (B.4, B.5) have the follow- 
ing general structure (for fo - Sg ): 

M(n) 

fn = ~, am(n) rI ~[ S~. (B.12) 
m = l  1 = 0  c r  

Since the S 7 have zero trace, the evaluat ion o f  the norms 
is greatly simplified: 

M(n) 

(f~,fn)= Z [am( n)]2" (B.13) 
m = l  

For  mos t  applications o f  interest, only a limited num- 
ber o f  cont inued-fract ion coefficients A k can be deter- 
mined in practice. I f  the number  o f  known coefficients 
A k is not  too  small, valuable informat ion on the structure 
o f  the associated spectral density can safely be predicted 
directly f rom that  set o f  numbers.  Examples are discussed 
in Sects. 2 and 3. Tha t  informat ion can then be used for  
the reconstruct ion o f  the detailed shape o f  q~0 (o9) by a 
special me thod  o f  terminat ing cont inued fractions, a 
me thod  that  was in t roduced in ([17], [18]). 
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