
A Coarse-granular Approach to
Software Development allowing
Non-Programmers to Build and

Deploy Reliable, Web-based
Applications

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Universität Dortmund

am Fachbereich Informatik

von

Dipl. Inform. Volker Braun

Dortmund

2001

Tag der mündlichen Prüfung: 05.02.2002

Dekan: Prof. Dr. Thomas Herrmann

Gutachter: Prof. Dr. Bernhard Steffen

Prof. Dr. Heiko Krumm

Table of Contents
Preface..i

I. Motivation and Background ...i

1. Introduction..1
1.1. The Problem..1
1.2. The Goal..2
1.3. The ETI Approach..3

1.3.1. ETI Sites...3
1.3.2. Meta-Level...4
1.3.3. Non-functional Platform Characteristics...6

1.3.3.1. Usability..7
1.3.3.2. Openness...7
1.3.3.3. Maintainability..7

1.4. Background...9
1.4.1. The METAFrame Environment...9
1.4.2. The Service Definition Environment...10

1.5. The History of the ETI Project in Dates...11
2. Technology Overview..13

2.1. Introducing the ToolZone Software..13
2.1.1. Activities..14
2.1.2. Taxonomies..16
2.1.3. HLL Programming...17
2.1.4. Program Synthesis...18

2.1.4.1. Coordination Sequences..18
2.1.4.2. Loose Specifications...19
2.1.4.3. The Synthesis Process...20

2.1.5. The ToolZone Architecture..22
2.2. Building the Community Online Service..24

2.2.1. The Key Concepts of the Process..25
2.2.2. An Overview of the SD Environment..28

2.2.2.1. Service-Independent Building Blocks..29
2.2.2.2. Modeling the Application’s Coordination Layer........................29
2.2.2.3. Validation..30
2.2.2.4. Automatic Code Generation...31

2.2.3. Component Deployment and Packaging..32
3. Contributions and State of the Art...35

3.1. Contributions...35
3.2. State of the Art..37

3.2.1. Component Models and Process Modeling Tools.................................37
3.2.2. Projects related to the ETI Platform...39
3.2.3. State of the Art Web Application Development....................................41

v

II. The ToolZone Software ..43

4. Introduction..45
4.1. Sample Tools...45

4.1.1. The Caesar/Aldebaran Development Package.......................................45
4.1.2. The Hybrid Technology Tool...46

5. End User Aspects...49
5.1. Logging In...50

5.1.1. Initializing a Session..50
5.1.2. Client-Request Handling..52

5.2. A User Session..52
5.2.1. Browsing through the available Activities...53
5.2.2. Combining Activities...55

5.2.2.1. Writing Coordination Formulae..56
5.2.2.2. Experimenting with ETI’s Synthesis Feature.............................57

5.2.3. Data Access..61
5.2.3.1. The General Text File Editor..61
5.2.3.2. The Graph and Graphs System Editors.......................................62
5.2.3.3. The File Dialog...64

6. The ETI Developer’s View...67
6.1. Zooming into the ToolZone Architecture...67

6.1.1. The Internet Access Layer...67
6.1.2. The Feature Layer..69

6.1.2.1. The HLL Interpreter..70
6.1.2.2. The PLGraph Library..72

6.2. The Design of the Business Classes..74
6.2.1. The Design of the generic Types..74

6.2.1.1. Basic Features...75
6.2.1.2. Access to the File System...75

6.2.1.2.1. Selecting a File Name..75
6.2.1.2.2. Accessing the File within the Tool Management

Application...78
6.2.1.3. Directed Graphs..79

6.2.1.3.1. The Graphical User Interface...80
6.2.1.3.2. File Formats...82

6.2.2. ETI Activities...83
6.2.2.1. Wrapping Tool Features..84
6.2.2.2. Activity Execution..85
6.2.2.3. Inter-activity Communication...87

7. The Tool Integrator’s Tasks..89
7.1. Conceptual Modeling..91

7.1.1. Classification within the Taxonomies..92
7.1.2. Defining the Activity’s Interface Constituent..93

7.2. The Integration Process Distilled..93

vi

7.3. Integration Support...94
7.3.1. Utility Software..94
7.3.2. Coding Guidelines...95

7.4. Integration Light...96
7.4.1. Conceptual Modeling...96
7.4.2. HLL Programming...97

7.5. Advanced Integration..97
7.5.1. Files..98

7.5.1.1. Encapsulation..98
7.5.1.2. HLL Extension..100

7.5.2. Integrating a new Graph Type..101
7.5.2.1. Encapsulation..101

7.5.2.1.1. Implementing a Node Label Class.................................102
7.5.2.1.2. Implementing an Edge Label Class...............................104
7.5.2.1.3. Implementing a Graph Label Class................................104
7.5.2.1.4. Implementing a File Format Class.................................108
7.5.2.1.5. Generating the Facade Graph Class...............................110

7.5.2.2. HLL Extension..110
7.5.3. Feature Integration...111

7.5.3.1. Black Box Integration...112
7.5.3.2. HLL Extension..115

7.5.3.2.1. The Adapter’s Declaration Part......................................116
7.5.3.2.2. The Adapter’s Implementation Part...............................116

7.5.3.3. HLL Programming..118
7.5.3.3.1. Tool-Coordination Execution Mode..............................118
7.5.3.3.2. Stand-Alone Execution Mode..120

7.6. Integration Effort...121
7.6.1. Types..122
7.6.2. Activities..122
7.6.3. Summary..123

III. Building reliable Web Applications ...125

8. Introduction..127
9. Process Overview...129
10. Analysis..133
11. Modeling..137
12. Design..139

12.1. Service Independent Building Blocks...139
12.2. Building the Service Logic Graph..141

12.2.1. Validation Features...142
12.2.1.1. Symbolic Execution..143
12.2.1.2. Local Checking...144
12.2.1.3. Model Checking..145

13. Implementation..149

vii

13.1. Compiling the Service Logic Graph...149
13.1.1. HTTP Fundamentals..152
13.1.2. Handling a Client Request...153

13.2. Implementing SIBs...155
13.2.1. Storing the Values of SIB Parameters..156
13.2.2. Linking GUI and SIBs...158

14. Integration Test..161

IV. Conclusion and Perspectives...163

15. Summary..165
16. ToolZone Enhancements..169
17. Automated functional Testing of Web Applications..171

17.1. Generating Test Suites..171
17.2. Automated Test Execution..174

18. Self-Adapting Web Applications...177
18.1. Motivation...177
18.2. Fundamentals of Global Self-adaption...178
18.3. The Agent Universe..180
18.4. The Life Cycle..181
18.5. The Agent Adaption Phase...183

18.5.1. Rule Evaluation..184
18.5.2. Feature Integration...185

18.5.2.1. Building the SLTL Formula..188
18.5.2.2. Path Integration...188
18.5.2.3. Must Completion..190

18.6. Conclusion..191
19. Final Remarks..193

A. Design and Integration of Graphs Systems..195

A.1. The Design of Graphs Systems..195
A.1.1. The Graphical User Interface..195
A.1.2. File Formats..197

A.2. Integrating a Graphs System Type...198
A.2.1. Encapsulation..198

A.2.1.1. Implementing the System Component Class...................................199
A.2.1.2. Implementing the Graphs System Class..201

B. GUI Statechart Diagram Transformation ..205

B.1. Transforming the GUI Statechart Diagram..206
B.2. Transforming the Activity Diagram...209

Glossary..213

Print Bibliography ...225

Web Bibliography ..235

viii

List of Tables
2-1. Simple Text Processing Activities..16
5-1. The Syntax of the Coordination Formulae...56
7-1. Tool-based Integration Support..95
7-2. ..123
10-1. Analysis Summary..135
11-1. Analysis Summary..138
12-1. Design Summary..139
13-1. Implementation Summary..149

List of Figures
1-1. ETI Project Organization..5
2-1. The conceptual Model of the ToolZone Software..14
2-2. A simple Type Taxonomy...17
2-3. The Synthesis Process..20
2-4. The “TEXFile< Output” Solution Graph..22
2-5. The logical Architecture of the ToolZone Software...23
2-6. The physical Organization of an ETI Site..24
2-7. The idealized Structure of a Software Development Process...26
2-8. Architectural Layers of a Web Application..26
2-9. The Service Logic Graph Editor...30
2-10. The Deployment of the Components implementing the Web Application.....................32
5-1. The Client Login Screen...50
5-2. The first Phase of the Login Process..51
5-3. The second Phase of the Login Process..51
5-4. The ETI Shell Window...53
5-5. TheActivity Taxonomy Window...54
5-6. TheSynthesis Editor Window..58
5-7. A Synthesis Solution Graph...58
5-8. A Minimizer Example..60
5-9. TheETI Text Editor Window..62
5-10. TheETI Graph Editor Window..63
5-11. TheETI System Editor Window..64
5-12. The Load File Dialog..64
6-1. Central Software Components of the Internet Access Layer...68
6-2. The Structure of a METAFrame Module..70
6-3. Building theAUTFile Module...71
6-4. The PLGraph Design..72
6-5. Conceptual Structure of a PLGraph Library Node...73
6-6. The ToolZone User File System Classes..76

ix

6-7. Requesting File Names of a Directory...77
6-8. The Java File Class Hierarchy..78
6-9. Part of the STTT File Classes Hierarchy..79
6-10. The ETI Graph Label Hierarchy...79
6-11. Classes building the GUI of a Graph Object..81
6-12. Creating a remote Graph Editor Window...81
6-13. Saving anAUTGraph Object to a File..83
6-14. Wrapping Tool Functionality..85
6-15. Executing an Activity in tool-coordination Mode..85
6-16. Handling Input/Output Data...86
6-17. Passing Data between Activities...87
7-2. A typical Coordination Sequence and the associated HLL Code...................................120
9-1. The Process Overview..130
10-1. The Use Case Diagram of the Shop Application..135
11-1. The GUI Statechart Diagram of the Shop Application...137
12-1. The Service Logic Graph Editor...141
12-2. A simple SIB Palette...142
12-3. A Tracer Run..143
12-4. The Local Checker detects an Error...145
12-5. The Model Checker finds an Error...146
13-1. TheSD Compilation Inspector Window...150
13-2. Execution of an HTTP-get Request asking for Web Application Functionality..........154
13-3. TheSIB Interface...155
17-1. Automized Test-Suite Generation..173
17-2. A Test Model Fragment..173
17-3. The Test Setting..174
18-1. The local Personalization Process..178
18-2. A Fragment of the Agent Universe of the Shop Application.......................................181
18-3. The Life Cycle of a self-adapting Web Application...182
18-4. The Agent Adaption Process..183
18-5. The Conceptual Model of the Agent Adaption..185
18-6. The Path Integration Task...188
18-7. The temporal Model of the Shop including the new Feature.......................................189
18-8. The adapted Agent..191
A-1. Class Hierarchy of the generic Graphs-System Type..195
A-2. The Graphs System Editor Window Class Hierarchy..196
A-3. Creating a remote Graphs System Editor Window..197
A-4. Saving anHYSystem Object to a File...197
A-5. TheHytechSystem Class Hierarchy..199
A-6. Delegating Component Method Invocations...200
B-3. A simple GUI Activity Diagram..208
B-4. A UML Activity Diagram enriched by Object Flows..208
B-5. Transforming an Action State into a SIB...209

x

B-6. The Shop Service Logic Graph..211

List of Examples
2-1. An HLL Coordination Program..17
2-2. A Coordination Sequence Example..19
2-3. A loose Specification..19
4-1. Anaut -format Specification of an LTS...46
6-1. Registering theAUTFileFormat ...82
6-2. Realization of thealdebaranMIN_STD_I HLL function...84
7-1. The AUTFile Entries in the STTT Repository File..92
7-2. Specification of thealdebaranMIN_STD_I ’s Interface Constituent..............................93
7-3. Thexeuca Activity ..96
7-4. The stand-alone Execution Code of thexeuca Activity ..97
7-7. Theinit Function of theAUTFile Module...100
7-15. Method Delegation in the Facade Class...110
7-16. Theinit Function of theAUTGraph Module...111
7-17. The C++ Signature Specification of thealdebaranMIN_STD_I Method..................113
7-18. The Implementation of thealdebaranMIN_STD_I Method......................................114
7-19. TheCADPAdapter’s Declaration Part...116
7-20. The header and init block of theCADPAdapter’s Implementation Part.......................116
7-21. The HLL Signature Specification of thealdebaranMIN_STD_I Function................117
7-22. ThealdebaranMIN_STD_I Wrapper...118
7-23. The tool-coordination Code of thealdebaranMIN_STD_I Activity119
7-24. The stand-alone Code of thealdebaranMIN_STD_I Activity121
12-1. TheShowPersonalHomePage SIB Definition...140
12-2. A SIB Simulation-Code Fragment...143
12-3. A Local Check Code Example...145
12-4. A SLG Constraint...146
13-1. The generatedShopLogic Class...151
13-2. The generatedShopSIBContainer Class..151
13-3. A typical Web-Application URL..153
13-4. Java Code Fragment of the SIB ShowPersonalHomePage...157
13-5. A Scripting Fragment of a Skeleton Page..159
17-1. A simple Test Graph...172
18-1. An initial temporal Model of a User Agent..187
18-2. Resolving a Conflict...190
A-3. TheHytechSystem clear Method...202

xi

xii

Preface
Many software tools have been developed both in academia and industry, covering different
application domains and profiles. Unfortunately, understanding a tool’s profile to the point
of deciding whether it can be used for a specific application problem is very hard. In fact,
looking for an adequate tool, one is typically confronted with a pool of alternatives, none of
which matching exactly the expectations, and it is almost impossible to predict the necessary
modifications, let alone estimate their cost. Thus in the course of:

1. searching for candidate tools,

2. installing the tools and getting acquainted with them, and

3. comparing the installed tools in the light of the own application profile and intended use,

people far too often decide to write their own tool, as this gives them the reassuring feeling of
full control. Consequently, the wheel is developed over and over again, not necessarily with
increasing quality. The main reason for this unsatisfactory situation is the lack of adequate
decision support. In fact, none of the steps above is currently systematized:

1. Surfing in the Web may sound like a good solution for the first step, but also the use of
search engines usually delivers an accidental collection of results rather than a compre-
hensive list of the relevant items.

2. The acquisition and installation effort depends very much on the specific situation, but,
due to the plague of unpredictable problems, it is usually substantial and often becomes
much higher than first expected.

3. A fair comparison is hardly possible because of strongly differing tool profiles, hard-
ware/software constellation, etc.

Even if these problems do not strike, finding ready-to-use solutions for many practical prob-
lems would still be out of reach. Often thecooperation of differentsoftware tools is required
to solve the faced problem.

TheElectronic Tool Integration (ETI) Projectaddresses all these concerns by providing a Web-
based, open platform for the interactive experimentation with and coordination of heteroge-
neous, off-the-shelf software tools. Via this platform, whose core is theToolZone software, tool
providerscan publish their tools on the Internet, supply case studies and benchmarks defining
the tool’s profile, and get valuable feedback from the users.End userscan experiment online
with the available tools or combinations of them, evaluate them, and give feedback on their
experiences.

A Web site which uses the ETI platform to offer this functionality is called anETI Site. The
first ETI site which has been built is the electronic component of the Springer International
Journal onSoftware Tools for Technology Transfer(STTT) [STTT]. Here, software analysis
and verification tools published in this journal are made available via the Internet. This Web

i

Preface

site is intended to develop into a collaborative, independent tool presentation and evaluation
site: users are invited to report on their experience with the available tools in the context of the
site as a

• directory for possible tools and algorithms satisfying totally or partially their needs.

• (vendor- and producer-) independent test site for trying and comparing alternative products
and solutions without any installation overhead.

• quality assessment site for the published tools, which are refereed according to requirements
like originality, usability, stability, performance, and design.

• independent benchmarking site for performance on a growing basis of problems and case
studies.

In addition to the platform, the ETI project offers an infrastructure

1. which organizes the distributed effort to enhance and maintain the platform,

2. which provides tools and processes helping people to make new tools accessible via the
platform, and

3. which supports people who (want to) host an ETI site.

This infrastructure is accessible via theETI Community Online Serviceat www.eti-service.org.

Acknowledgments
First of all, I would like to thank my supervisor Prof. Bernhard Steffen. After he introduced
me to the theoretical foundations of computer science in Aachen in 1991, I attended him on
his way from Aachen to Passau and finally to Dortmund. His visionary ideas were always a
driving force for my work, in particular in the ETI project. His motivation gave me the energy
to bring forward the project even in hard days.

I am grateful to Dr. Tiziana Margaria who, from the very beginning, took care of the users’
perspective in the ETI project. This concerned usability aspects of the system itself as well as
the forming of the ETI-community and the organization of the annual ETI-days.

A project like the one presented in this thesis could never been successfully realized without a
good and motivated team. I would like to thank

• Dr. Andreas Claßen, Achim Dannecker, Carsten Friedrich, Andreas Holzmann, Dirk Koschützki,
Falk Schreiber, and Matthias Seul who started the development of the METAFrame en-
vironment in 1993. Special thanks to Andreas Holzmann, who is still a member of the
METAFrame team, for lots of valuable technical discussions.

• Haiseung Yoo who was responsible for the synthesis component.

• Jürgen Kreileder who is one of the members of the Blackdown team porting the Java plat-
form to Linux. His deep knowledge of the Java platform and his contacts to the Java devel-

ii

Preface

oper community helped me to provide fixes and sometimes workarounds for a lot of Java
problems I faced during the development of the ToolZone software.

• Neda Zandi-Esser for designing the Web pages of the ETI Community Online Service and
the ETI Sites.

I also benefited from many discussions with people of the Chair of Programming Systems and
Compiler Construction at the University of Dortmund and with people working at METAFrame
Technologies: Claudia Gsottberger, Dr. Andreas Hagerer, Dr. Jens Knoop, Ben Lindner, and
Oliver Niese. Dr. Hardi Hungar deserves special mention for critically reading drafts of this
thesis and giving valuable comments.

Last but not least I want to thank my family for their ongoing support during my time in
Aachen, Passau and Dortmund, as well as my friends for giving me a good time when I visited
my home town Düren.

How to read this Document
This thesis comprises four parts:

• I. Motivation and Background,

• II. The ToolZone Software,

• III. Building reliable Web Applications, and

• VI. Conclusion and Perspectives.

Whereas the first and fourth part of this document provide a high level overview for a general
audience, Part II and Part III are more focussed. They address:

1. people, who are interested inInternet-based integration and coordination techniques.
These people should readSection 2.1of Part I and Part II of the thesis which introduce
and go into the details of the ToolZone software.

2. developers, who look for an environment which supports thecomponent-based develop-
ment of reliable Web applications. The information they are interested in is presented in
Section 2.2of Part I and Part III of the document.

Part I presents the goals of the ETI project inChapter 1and the technology which is used to
put them into practice (Chapter 2). For this, the second chapter provides two sections which
introduce

1. the concepts of ToolZone software (Section 2.1) and

2. the fundamentals of the Web-development environment (Section 2.2).

Chapter 3then presents related work. It discusses the similarities and differences of the appli-
cations offered by the ETI project with respect to already available projects aiming at (Web-

iii

Preface

based) tool access, tool integration and tool coordination as well as approaches to maintain a
user community via the Internet.

Part II goes into the details of the design of theToolZone softwareand the process which is
used to make new tool features and data type accessible as activities and types. After a short
introduction inChapter 4we look at the ToolZone software from a role-based perspective: End
Users (Chapter 5), Platform Developers (Chapter 6) and Tool Integrators (Chapter 7). Since
the tasks performed by the Site Managers are very technical and depend on the environment in
which the ToolZone software is deployed, this role is not covered within this thesis. Specific
information can be found within the technical documentation of the project which is available
at the ETI Community Online Service.

Part III covers theService Definition Environmentand the software development process which
is used to build and enhance theETI Community Online Service. First,Chapter 8gives some
fundamental information. After that,Chapter 9presents the proposed software development
process. It is organized along the typical software-development phases: analysis (Chapter 10),
modeling (Chapter 11), design (Chapter 12), implementation (Chapter 13) and integration test
(Chapter 14).

Part IV presents conclusion and future work. Beside planned enhancements of the ETI platform
(seeChapter 16), it introduces first ideas on extensions of the Web development environment
supporting

• automated functional testing of Web applications (Chapter 17) and

• self-adapting Web applications (Chapter 18).

Appendix A andAppendix Bpresent detailed information on the design and integration of
graphs systems within the ETI platform, and a transformation algorithm used inChapter 12.

At the end of the document, the glossary and two bibliographies, one providing printed refer-
ences and one providing online references, are located.

iv

I. Motivation and Background

Chapter 1. Introduction

1.1. The Problem
Modern software engineering is more and more dependent on automation and good tool sup-
port. However, faced with a problem, it is hard to identify the appropriate tools. In particular,
since generic tools are often not adequate, (different) tools having a specific focus are needed
to tackle the task.

Of course, the Internet is a good resource for information. But the advantage of the available
information-variety is extenuated by the fact that the right software tool is difficult to find.
Though, there is generic support for each step of the tool evaluation process, i.e.

1. searching the Web,

2. reading the available documentation,

3. installing the software tool and finally

4. experimenting with the tool,

tool-evaluation specific support and overlapping assistance is still missing.

Searching the Web:

The search support currently ranges from generic search engines to Web portals focusing
on a certain application domains.

In the course of tool evaluation, the use of search engines often fails, since they deliver
masses of results many of which are unqualified. Additionally, most search engines only
search with respect to syntactic criteria, like substrings contained in Web pages. But often
users are searching for tools with respect to properties which cannot be expressed within
the query language.

Web portals are moderated sites offering information on specific issues. In most cases
they provide more structured access than general search-engines.

Reading the available documentation:

In general, the documentation of the tool can be accessed by reading the corresponding
Web pages or downloading documents, video and audio files. Due to some well-known
standards like the Portable Document Format (PDF), MPEG-2 (Moving Picture Experts
Group [MPEG]) covering video formats and MPEG audio layer 3 (MP3) covering audio
formats in addition to appropriate software support, this step is very easy.

1

Chapter 1. Introduction

Installing the software tool:

In contrast to previous step, the software-installation procedure is much more complex.
Here, the following (often painful and time-consuming) steps have to be undertaken:

1. The user must (eventually) apply for an evaluation license of the chosen software.

2. The source code or a binary version of the software has to be obtained, e.g. via Web-
download or on a CD.

3. An appropriate environment (in terms of hardware, operating system, etc.) which is
required by the chosen software has to be made available.

4. The software has to be (compiled and) made available on a local machine.

There are a few sites (see e.g. [HyTech, SMV]) which offer the remote use of a software
tool, but they mostly accept and present data on a textual basis and focus of a single tool
only (see alsoChapter 3).

Experimenting with the tool:

Once the software is installed, the end user finally uses it to perform the evaluation pro-
cess. To speed-up and improve this process, it is often vital to get in contact with other end
users or even with the tool provider to discuss about experiences with respect to the soft-
ware under evaluation. But most tool providers do not offer the infrastructure that allows
tool-related communication. In this case, the end user must again search for appropriate
Web sites or within the USENET News Groups.

The tools are evaluated on the basis of case studies sometimes offered by the tool providers.
Since the tool providers want to present their tools in a good way, the case studies are of-
ten customized for the tool’s profile. A fair comparison of two tools covering the same
application-domain is only possible if they are run on the same data. For this, the case
studies must be available in the tool specific format.

1.2. The Goal
The goal of this thesis is to establish an electronic medium intended to bring software-tool
providers and potential end users together that supports all four steps of the tool evaluation
process:

Searching the Web:

End users are able to search within a tool database using

2

Chapter 1. Introduction

• syntactic criteria, like substrings contained in a tool’s name and description, as well as

• abstract properties specifying the profile of the tool they are interested in.

Reading the available documentation:

As mentioned inSection 1.1, this step is already supported in an adequate manner.

Installing the software tool:

The installation procedure is facilitated in a way that

• the software installation is performed by a central organization, not by the end user.

• single tools as well as combinations of features coming from different tools are exe-
cutable.

Experimenting with the tool:

An infrastructure is offered which allows the communication between end users, and end
users and tool providers.

For each tool covering a certain application domain, either the same set of case studies is
offered, or there are data transformers available which are able to perform the appropriate
format conversion, if conceptually possible.

To provide this service to a wide range of people in a reliable way, all this is available within
an environment which is

• Internet-based,

• secure,

• performant and

• failsafe.

Besides a rigid organization, a project like this depends on an infrastructure which supports the
distributed, collaborative effort to put the project’s goals into practice.

1.3. The ETI Approach
The Electronic Tool Integration (ETI) Project is intended to offer an electronic communication
medium for tool providers and end users looking for tools helping to solve their problems. This
is done by providing a network of moderated Internet sites, calledETI sites.

3

Chapter 1. Introduction

1.3.1. ETI Sites
Each ETI site hosts aTool Repositorywhich contains a collection of functional entities called
ETI Activities, each of them representing a certain functionality of an individual software tool.
Additionally, the tool repository comprises the data types the activities work on. The activi-
ties and the associated data types are classified for ease of retrieval according to behavioral and
interfacing criteria. In general single functionalities of a tool are identified and integrated as ac-
tivities into the tool repository, rather than making the tool available as monolithic block. Note,
that within this document the termtool is used to denote a piece of software which provides
certain functionality. This may range from a complex software system to the implementation
of a single algorithm.

The ETI sites are not software-distribution sites! End users cannot download the source code
of the software nor a binary version. Instead of this, the tools are installed on server machines
at the ETI site, which makes their features available via the Internet using theToolZone Soft-
ware. This client-server application provides Internet-based access to the activities contained
in the tool repository offered by an ETI site. Using theToolZone Client, the end user can get
information on each activity contained in the tool repository, beside others, in form of a link
to the underlying tool’s home page or contact address. Whereas links to tools having a specific
focus are also available via other Web sites like the Petri Nets Tool Database [PNTD] or the
Formal Methods Europe [FME] database, the key feature of the ToolZone software is its unique
Internet-based experimentation facility. This means, that via the ToolZone client end users can

• execute single activities as well as

• combine activities and finally execute the resulting programs via the Internet.

To combine (coordinate) the activities contained in the tool repository, experienced users can
make use of ETI’s proceduralcoordination language HLL(High-Level Language) [Hol-a] to
manually implement the intended coordination task on the basis of the available activities.
Unexperienced users are supported by means ofETI’s Synthesis Component[SMF93] which
generates sequences of activities out of abstract specifications.

Single activities or combinations of them can be run via the Internet on libraries of examples,
case studies, and benchmarks which are also available in the tool repository. Additionally, the
user can experiment with own sets of data, to be deployed in user-specific, protected home
areas.

The technology which is used to provide these services is called theETI Platform (see also
[SMB97, SMB98]). This Web-based, open communication platform was built to offer facili-
ties for the interactive experimentation with and coordination of heterogeneous, off-the-shelf
software tools. Using the functionality offered by the platform,tool providerscan publish their
tools on the Internet and get valuable feedback from the end users.End userscan compare
different tools within their application domain and can combine tools coming from different
application domains to solve problems a single tool never would have been able to.

4

Chapter 1. Introduction

1.3.2. Meta-Level
In addition to the platform, the ETI project offers meta-level support. It is realized by means
of theETI Community Online Serviceat www.eti-service.org. This personalizable Web appli-
cation

• organizes the collaborative effort to develop and enhance the platform,

• supports the people who make new tools and the corresponding data types accessible as ETI
activities and types, and

• helps people who (want to) host an ETI site.

Via this virtual meeting point, the people involved in the development and maintenance of
the platform as well as people being responsible for an ETI site may exchange information
and discuss topics of their interest. Of course, end users and tool providers are also invited to
comment on the platform via the community site to influence future directions. For this, regis-
tered users get access to mailing lists, discussion groups, frequently asked questions, platform
updates and documentation. To ensure that everyone finds the right information in a fast and
easy way, this application is customizable by the user. Additionally, a profile-based permission
concept controls the access to the offered functionality and data.

In addition to the ETI Community Online Service, the project infrastructure comprises:

• access to the platform’s source code via a version control system which offers concurrent
access and secure data transfer,

• coding guidelines to ease the maintenance of code written by other developers,

• SGML-based documentation supporting automatic generation of online and printed versions
of the documentation out ofonesource base,

• tools for automatic generation of source code level documentation similar to Javadoc [Javadoc],

• a problem report tracking system for filing and maintaining problem reports, and change
requests.

The easiest way to explain the relation between the ETI project, the platform, and the ETI
sites, is to present it as a producer-consumer relation (seeFigure 1-1). Here, the ETI project is
the producer which offers a product called the ETI platform. The ETI sites are the customers
of the ETI project. They use the product to provide services to their customers, i.e. the tool
providers and the end users. The ETI Community Online Service then organizes the product
development and maintenance. In addition it offers product support for the ETI sites.

5

Chapter 1. Introduction

Figure 1-1. ETI Project Organization

1.3.3. Non-functional Platform Characteristics
The architecture and the concrete implementation of the ETI platform are driven by the four
non-functional key requirements mentioned inSection 1.2: Internet-based, secure, performant
andfailsafe. The following paragraphs document how these aspects have been addressed within
the ETI platform.

Internet-based

The access to the tool repository and the experimentation facilities is provided by a client-
server application, called the ToolZone software. The client, a Java application, commu-
nicates with the server-side software components using the Hyper-Text Transfer Protocol
(HTTP) protocol [HTTP] and Java Remote Method Invocation (RMI) [Dow98, RMI].

Secure

The ToolZone software offers protected home areas to store personal case studies and
data. Additionally, a profile-based security concept is employed to control the access to
personal data and functionality. Sensible parts (like access to the user’s profile data) of the
Web applications hosted by the ETI sites are only accessible using Secure Socket Layer
(SSL) based encryption [Res00, SSL].

Performant and failsafe

The ToolZone software uses a load-balancing component to distribute the client sessions
on several server machines. This ensures a performant and failsafe access to the provided

6

Chapter 1. Introduction

functionality. The only restriction currently is that ToolZone-users sessions which were
served by the machine that went down are lost. They cannot be recovered.

Beside the four main requirements which are specific to the solution we propose, there are
three generic requirements every software system should address, i.e. usability, openness and
maintainability. The next three paragraphs document how they have been realized within the
ETI platform.

1.3.3.1. Usability

Usability of the ETI platform is mainly important for the end user. It is the main aspect which
influences the acceptance of the software and by this of the whole project, since the software is
represented by the end user’s view, here the ToolZone client, on it. Beside others, the software
components offered by the ETI project provide:

Intuitive graphical user interface for the client applications:

The ToolZone client application giving access to the tool repository provides an elaborate
GUI with help functionality and hypertext support.

Easy and structured access to the activities located in the tool repository:

A taxonomy-based retrieval mechanism offered by the ToolZone software in combination
with the synthesis of coordination sequences from loose specifications enable a goal-
oriented access to the activities contained in the tool repository.

Minimal set of requirements for client machines:

The ETI Community Online Service as well as the Web applications hosted by the ETI
sites can be accessed with a standard Web browser. No additional browser plugins are
required. The access to the tool repository is provided by the Java-based ToolZone client
which requires a Java Runtime Environment to be installed on the client machine. To fully
automize its installation on the client machine, the Java Web Start application launcher
[JavaWebStart] must also be available.

1.3.3.2. Openness

“A-posteriori”-integration is another key characteristic of the ETI platform: every feature of
an off-the-shelf tool can be made available in the tool repository as an activity. In fact, the
ETI platform makes no assumptions on the design, the availability (e.g. source code or binary
version, operating system), and the accessibility (e.g. system calls, Java RMI, CORBA [Sie00,
CORBA]) of the tool functionalities.

7

Chapter 1. Introduction

1.3.3.3. Maintainability

This aspect is mostly of interest for the people maintaining the general platform, extending
it by new tools and hosting an ETI site as well as for the people developing the ETI Com-
munity Online Service. They work on the applications in different phases (development, tool
integration, and installation).

With respect to the maintenance of the ETI platform, one important aspect is the availability
of an infrastructure which allows fast communication between the platform developers. In the
context of the ETI project, this is implemented beside others via

• the ETI Community Online Service providing up-to-date information on the project and
communication facilities, like discussion groups and mailing lists,

• remote, secure and concurrent access to the platform’s source code via a version control
system which provides user-based authentication and encrypted data transfer,

• coding guidelines and standardized processes ensuring the uniformity of the platform’s ar-
chitecture, source code and installations.

Additionally, the ETI platform defines several roles which help to identify the tasks per-
formed by various parties during the development, extension and hosting of the platform:Tool
Provider, Tool Integrator, Platform Developer, andSite Manager. Each role can be fulfilled by
any person having the skills which are necessary to perform the associated task. The following
paragraphs give a short introduction into each role defined by the ETI platform, including the
tasks and mandatory skills:

Tool Provider:

A tool provider is an end user with special focus. Whereas the standard end user looks for
candidate tools or a combination of tool functionalities to solve a certain problem, the tool
provider is mainly interested in publishing his tool and getting valuable feedback from the
end users. In addition to the tool itself, the tool provider supplies benchmarks defining the
tool’s profile.

Tool Integrator:

The tool integrator makes new activities and data types available within the tool repos-
itory. He investigates the tool to be integrated, identifies new activities and types, and
establishes connections between the new activities and already available ones. Thus he
needs a good understanding of the tool to be integrated and of the application domain
modeled in the tool repository. In addition, he must be an expert in the C++ programming
language [Str97], which is used to implement the tool management application (seeFig-
ure 2-5), the core of the ToolZone software. We support the integration task by providing
a tailored process as well as some utility tools (seeChapter 7).

8

Chapter 1. Introduction

Platform Developer:

The platform developer adds new functionality to the ToolZone software. He must have
Java and C++ knowledge. In addition to that, ToolZone software developers need a good
understanding of the platform’s architecture which is documented in Part II of this docu-
ment.

Site Manager:

A site manager sets up and maintains an ETI site. This includes setting up the servers,
installing the required software, and customizing the site-specific Web application. He
needs expertise on a UNIX-based operating system (e.g. Linux or SUN’s Solaris) for the
installation process.

The development of the ETI Community Online Service is supported by a process and a soft-
ware development tool which are customized for the development of reliable Web applications
(see Part III of this thesis). On the basis of a five-layer architecture of the Web application,
the process organizes HTML experts, OO specialists, component integrators and application
experts to deliver the application within a short time frame. Within this process, the software
development tool allows the construction, the validation and the deployment of the Web appli-
cation in a graphical manner. No programming skills are required for these tasks.

1.4. Background
As will be explained inChapter 3, there was and still is no existing approach which com-
pletely satisfies our needs with respect to the features that should be offered by the platform as
well as the ETI Community Online Service. Consequently, we started to realize the platform
and in parallel established the corresponding infrastructure in form of a personalizable Web
application on our own. For this, two projects provided a good starting point:

• the METAFrame environment (seeSection 1.4.1) and

• the Service Definition Environment of the METAFrame project (seeSection 1.4.2).

1.4.1. The METAFrame Environment
METAFrame [SMCB96a, MS97, Cla97, CSMB97] “is a meta-level framework designed to
offer a sophisticated support for the systematic and structured computer aided generation of
application-specific complex objects from collections of reusable components” [MF]. This
framework implements a flexible, open component integration architecture (see [Cla97]). As
soon as the components are integrated into the METAFrame framework, they can be accessed

9

Chapter 1. Introduction

via High-Level Language(HLL) programs. HLL is a coordination language with Pascal-like
syntax whose design was influenced by the following four requirements:

• interpreted: HLL programs can be easily modified and run without any time-consuming
compilation process.

• simple: HLL is not a full procedural programming language. Its syntax is in principal re-
stricted to variable declarations, an assignment operator, statements (like while-loops and
if-then-else), and procedures/functions. Thus, it is on the one hand simpler to use than other
well-known coordination languages like Perl [WCO00]. On the other hand it is expressive
enough to realize the coordination tasks we aimed at.

• typed: In contrast to other coordination languages, where in most cases only one data type
(often the type String) exists, HLL variables can be arbitrarily typed. A central characteristic
of the HLL-type concept is that newbasictypes

• can be added to the language at runtime and

• may represent complex data structures like directed graphs.

This contrasts other programming languages like Java and C++ where basic types are hard
coded into the compiler. The flexibility of the HLL-type concept is central to the interoper-
ability of activities, since it allows us to define data compatibility on a symbolic level.

• extensible: the language can be extended dynamically by new basic types and functions. The
types and functions are provided by so-called METAFrame Modules which can be loaded
into the interpreter at runtime [Hol97b]. The implementation of the METAFrame Modules is
provided by C++ classes. Thus, even third-party functionality provided e.g. by local libraries,
remote services like CORBA or binary executables can be made available within HLL.

HLL programs can be run using the HLL interpreter presented in [Hol97b] in detail.

In addition to the HLL interpreter, the METAFrame framework offers thesynthesis component
which generates sequences of functional components out of abstract descriptions [SMF93].
This is central for a non-expert tool coordination.

Consequently, the HLL in combination with METAFrame’s synthesis functionality matched
our ideas on the coordination aspects. Thus, the METAFrame framework was ideal as the basis
for the ToolZone software.

1.4.2. The Service Definition Environment
To build the ETI Community Online Service, we looked for support in terms of tools and
processes. But in 1996, Web applications were rather simple. We found none of the available
techniques to implement and maintain them (like Common Gateway Interface (CGI) scripts
[CGI] and Server Side Includes (SSI) [SSI]) adequate to support the development of complex

10

Chapter 1. Introduction

Web applications like the one we aimed at. We wanted a solution which supported the struc-
tured, cooperative (many developers having complementary skills) development of reliable
Web applications. For this, we set up an environment which comprises

• a software development process,

• a Web-application architecture and

• a workflow design tool

The workflow design tool is based on the Service Definition Environment of the METAFrame
project. This programming environment had already successfully been used in the area of
telecommunications in 1995: in a cooperation with the University of Passau and the Siemens
Nixdorf Informationssysteme AG in Munich this tool has been used to realize value-added tele-
phony services in a fast and reliable way [SMCB96b, SMCBR96a, SMCBR96b, SMCBRW96,
SMCBNR96, BMSB97, SMBK97, MB98]. There

1. the control flow of the service was graphically configured on basis of a set of components,

2. it was checked using the validation features offered by the Service Definition Environment
and

3. once the configuration and validation of the control flow was finished, a compiler gen-
erated code out of the description of the control flow which implemented the intended
telephony service.

To adjust the Service Definition Environment to the Web-application domain, we generalized
the telecommunication-focused framework and developed a compiler which generates Java
code mapping the specified control flow into an application (step 3 documented above).

Today, the Service Definition Environment and the associated process are not only used to
enhance the ETI Community Online Service. A commercial version of the Service Definition
Environment and the development process are used in projects aiming at the realization of
reliable, personalized Web applications (see [MFTech]).

1.5. The History of the ETI Project in Dates

1993

Start of the METAFrame project at the University of Passau, Germany. In the initial phase
an interpreter for the interpreted, procedural coordination language HLL (High-Level
Language) and a graph library was implemented by 4 students.

11

Chapter 1. Introduction

1994

The initial version of the synthesis component was added to the METAFrame environ-
ment. It offers sophisticated support for the systematic and structured computer aided
generation of application-specific complex objects from collections of reusable compo-
nents .

03.1995 - 10.1995

The first version of the Service Definition Environment was implemented in cooperation
with the University of Passau and Siemens Nixdorf Informationssysteme AG in Munich.

1996

The realization of the ETI platform was initiated in the context of theSpringer Interna-
tional Journal on Software Tools for Technology Transfer(STTT)[STTT], with the goal to
provide a platform for the interactive experimentation and coordination of heterogeneous
software tools.

31.03. - 2.4.1998

First official presentation of STTT/ETI at ETAPS’ 98, the firstEuropean Joint Confer-
ences on Theory and Practice of Software, in Lisbon, Portugal, including online ETI
demonstrations.

1999

Start of the platform’s re-engineering process, motivated by feedback of the platform
users. One important result of this re-engineering phase was the decoupling of the ETI
platform from STTT. Whereas the first version of the platform was tighten to STTT, the
Web site hosting the electronic component of STTT today is one of the available ETI sites.

This generalization was the starting point of an international open-source project, called
theETI Project. Within this context the ETI community was founded which is organized
via the ETI Community Online Service.

06.2000

Launch of the ETI Community Online Service and of the documented version of the ETI
platform.

12

Chapter 2. Technology Overview
Beside some utility programs, which will not be documented in this thesis, the ETI project
offers two main applications (see alsoFigure 1-1):

1. the ToolZone software, which is part of the ETI platform (see also [SMB97, SMB98]),
gives Internet-based access to the tool repository which contains the activities and types
representing functionalities offered by off-the-shelf tools and the data types they work on.

2. the ETI Community Online Serviceorganizes the development of the ETI platform and
provides support for the people operating an ETI site. This Web application offers access
to discussion groups, mailing lists, a problem report management system, and platform
documentation and source code etc.

This chapter provides some fundamental knowledge about the two key-applications offered by
the ETI project and gives references to later chapters which go into the details of the illustrated
aspects.Section 2.1presents the concepts of the main software component of the ETI platform,
theToolZone software(the end user’s and developer’s view on the software is documented in
Chapter 5andChapter 6, respectively). This component gives direct access to the activities and
types contained in the tool repository of an ETI site. Using the ToolZone client, the end user
can via the Internet

1. retrieve information on the available tool-repository entities,

2. execute single activities, and

3. combine activities to programs and then execute the programs.

Section 2.2then introduces the Web-development environment. Here, we give a short overview
of the Web-application architecture and the software development process inSection 2.2.1.
Section 2.2.2then introduces the Service Definition Environment of the METAFrame project.
Finally, Section 2.2.3presents how the software components implementing the Web applica-
tion, which has been built with the proposed environment, can be distributed on several server
machines to ensure performant and failsafe access to the application’s features.

Note: Besides the maintenance of the ETI Community Online Service, the Service Def-
inition Environment and the associated software development process are also used to
build parts of the Web application hosted by each of the ETI sites.

2.1. Introducing the ToolZone Software
The ToolZone software gives structured access via the Internet to the activities contained in an
ETI site’s tool repository, with the ability to

13

Chapter 2. Technology Overview

1. browse through the available activities and the data types they work on,

2. execute single activities,

3. combine activities to programs (calledCoordination Programs), and run the programs.

Every functionality of an off-the-shelf software tool can be integrated into the tool repository
as an ETI activity. After their integration, the activities can either be executed stand-alone or
they can be combined to programs. The ToolZone software provides two means for activity
combination (in the following called coordination):HLL programmingandprogram synthesis.

The implementation of the ToolZone software is based on the part of the ETI meta model
shown inFigure 2-1as a UML class diagram [BRJ98, FS99, UML]. Within this figure, a
“Coordination Program” denotes either a hand-made HLL program or a program generated by
the synthesis component.

Figure 2-1. The conceptual Model of the ToolZone Software

The right part of the meta model shown inFigure 2-1covers the platform’s view on the tool
features. It presents the relation between the activities, the types they work on, the taxonomies
and the tool repository. The left part of the same figure models the world of the software-
tools. The link between the software tools and the platform’s view on them in form of the
activities is modeled by the “implemented by” associations. This link is established during the
tool integration task, which makes a certain tool feature and the concrete data types they work
on accessible by the platform as activities and types.Chapter 7goes into the details of this
process.

In this section, we first go into the details of the functional entities contained in the tool repos-
itory, i.e. the ETI Activities. Subsequently,Section 2.1.2presents how activities and the data
types they work on can be classified within theActivity TaxonomyandType Taxonomy, re-
spectively.Section 2.1.3andSection 2.1.4then cover the coordination facilities offered by the
ToolZone software: HLL programming and program synthesis. Finally,Section 2.1.5gives an
overview of the architecture of the ToolZone software.

14

Chapter 2. Technology Overview

2.1.1. Activities
In general, tools are not integrated into the tool repository as monolithic blocks. Rather, sin-
gle tool features are identified and prepared to be accessible by the platform. Within the tool
repository, a single tool functionality is represented by anETI Activitywhich is the elementary
functional component of the ETI platform.

An activity definition comprises

• the namethat is beside others required to reference the activity in a coordination-task de-
scription (seeSection 2.1.4.2).

• thetool including the parameters to access the feature represented by this activity.

• thedocumentationwhich provides beside others the information on the tool feature that is
represented by this activity.

• the classification constituentin terms of predicates which characterizes the activity within
the tool repository. This is the basis for the structured activity access by means of the tax-
onomies (seeSection 2.1.2). Additionally this information can be used to specify an activity
using abstract properties instead of its name in a coordination-task description (seeSection
2.1.4.2).

• theimplementation constituentin terms of a HLL function which implements the activity on
the basis of the corresponding tool feature.

• the stand-alone constituentwhich defines the execution behavior of the activity in stand-
alone execution mode. This HLL program is run, when a single activity is executed by
the user. Whereas the implementation constituent is defined by one single HLL function,
the stand-alone constituent provides the implementation of the context in which this HLL
function can be executed in stand-alone execution mode.

After an activity has been made available within the tool repository, it can be combined with
other activities. For this, the end user can write an HLL-program implementing the intended
coordination task (seeSection 2.1.3). Alternatively, the glue-code coordinating the activities
can be generated automatically on the basis of an abstract coordination-task description, called
loose specification(seeSection 2.1.4). A planned extension of the ToolZone software will also
allow a mixed approach.

In contrast to HLL-based coordination which can be used to combine arbitrary activities con-
tained in the tool repository, only activities having a certain profile can be used for program
synthesis. Thesesynthesis-compliant activitieslook at a tool feature as a “transformational”
entity. This means that a tool feature is seen as a component taking an object of typeT

1
as

input and delivering an object of typeT
2

as output.

In addition to the information about standard activities synthesis-compliant activities provide

15

Chapter 2. Technology Overview

• the interface constituentspecifying the abstract input/output behavior of the activity, i.e.
its input and output type. This is used by the synthesis component to combine activities to
programs.

• thetool-coordination constituentwhich defines the execution behavior of the activity in tool-
coordination execution mode. Similar to the stand-alone constituent, this activity constituent
provides the implementation of the context in which the HLL function can be executed in
tool-coordination execution mode.

As an example,Table 2-1shows the names and the interface constituent of the definition of
simple synthesis-compliant activities identified in the world of text processing tools. It presents
the name of the activities, their input and output types as well as the tools their implementation
is based on.

Table 2-1. Simple Text Processing Activities

Activity Name Input Type Output Type Tool Description
latex TEXFile DVIFile latex Structured text

formatting and
typesetting
program.

dvips DVIFile PSFile dvips Converts a TeX
DVI file to
PostScript.

gv PSFile Display gv A PostScript
viewer.

lpr PSFile Printer lpr Prints files.

2.1.2. Taxonomies
For a flexible handling (retrieval, loose object specification, abstract views), activities and the
data types they work on are classified by means of theActivity TaxonomyandType Taxonomy,
respectively. A taxonomy is a hierarchical structure of predicates over a set of atomic elements,
here the activities and types respectively. Formally, a taxonomy (defined over a set of atomic
objectsS) is a sub-lattice of the power-set lattice overS which comprises elements with a
particular profile which are identified by names.

Taxonomies can be represented as directed acyclic graphs (DAGs) (seeFigure 2-2) where each
leaf represents an atomic entity (here activity or type) and each intermediate node represents a
set of entities, calledgroup. Conceptually, edges reflect an “is-a” relation between their target
and source nodes. The semantics of an intermediate node is the set of all atomic entities which
are reachable within the taxonomy DAG from this node. With respect to this semantics, edges
reflect the standard set inclusion.

16

Chapter 2. Technology Overview

Figure 2-2shows a simple classification of the types introduced inTable 2-1. Here, the type
group tt represents all types which are available in the tool repository, i.e. TEXFile, PSFile,
DVIFile, Display, and Printer. The type group Files represents the types TEXFile, PSFile, and
DVIFile. The activities are organized within the activity taxonomy analogously.

Figure 2-2. A simple Type Taxonomy

2.1.3. HLL Programming
Once an activity is available in the tool repository, it can be accessed via the HLL (High-Level
Language) [Hol-a] function defined by the activity’s implementation constituent. On the basis
of this HLL function, HLL programs are used to manually combine activities representing
heterogeneous functionalities coming from different tools in order to perform complex tasks.
Example 2-1shows an HLL-based coordination program.

Example 2-1. An HLL Coordination Program

The HLL-based coordination program presented in this example minimizes a labelled tran-
sition system (LTS) stored in theaut -format, a file format defined by the Caesar/Aldebaran
Development Package (CADP) [FGK96, CADP]. After that, thextl model checker, a tool
contained in the CADP toolkit, is invoked on the minimized labelled transition system.

In detail, this is done by requesting from the user the files storing the labelled transitions system
and the formula to be checked via thefsBoxLoad function of theETI HLL-library (see(1) and
(2) of Example 2-1). Then the model is minimized with respect to observational equivalence
[Mil89] using thealdebaranMIN_STD_I function contained in the HLL-libraryCADP(see
(3)). Since thextl model checker requires the model to be provided in thebcg file format, the
aut -representation of the minimized labelled transition system is transformed into this format
by the HLL functionautF2bcgF (see(4)). Finally, thextl model checker is called using the
xtl function of the HLL-libraryCADPgetting the model and the formula as arguments (see
(5)).

17

Chapter 2. Technology Overview

var String: aut_model;
var String: min_aut_model;
var String: bcg_model;
var String: formula;
var ETIResult: result;

aut_model := ETI.fsBoxLoad ("Select Model", "*.aut"); (1)
formula := ETI.fsBoxLoad ("Select Formula", "*.xtl"); (2)

result := CADP.aldebaranMIN_STD_I (aut_model, min_aut_model); (3)
result := CADP.autF2bcgF (min_aut_model, bcg_model); (4)
result := CADP.xtl (bcg_model, formula); (5)

2.1.4. Program Synthesis
In addition to the HLL-based coordination, the ETI platform provides automated coordina-
tion support by means of its synthesis component. Here, the glue-code combining the activi-
ties is automatically generated. For this, the userspecifiesa coordination task via an abstract
description calledloose specification, instead of programming it using the HLL. From the
coordination-task description, the synthesis component then generates sequences of activities
(calledcoordination sequences) each implementing the specified task. Using loose specifica-
tions, the user characterizeswhathe wants to achieve instead ofhow to achieve it. This goal-
oriented approach is the main difference between ETI’s synthesis-based coordination facility
and other coordination approaches like UNIX piped commands, scripting languages (e.g. Perl
[WCO00], Python [Lut01]) or theToolBus [BK96, KO96, ToolBus]: there the user is forced
to precisely specify the coordination process like in HLL programs.

But there are two limitations with respect to the programs generated by the synthesis compo-
nent, which do not apply to HLL-based coordination:

• Whereas a full procedural programming language can be used to implement the coordination
task in HLL, only sequential compositions of activities can currently be generated by the
synthesis functionality.

• The synthesis algorithm can only combine synthesis-compliant activities (seeSection 2.1.1),
whereas the HLL can be used to coordinate arbitrary activities available in the tool reposi-
tory.

In the following sections we go into the detail of the program synthesis.

18

Chapter 2. Technology Overview

2.1.4.1. Coordination Sequences

On the basis of the available synthesis-compliant activities, end users can build and then exe-
cute sequential programs calledcoordination sequenceswhich are finite paths of the form

whereT
i

is a type anda
i

is a synthesis-compliant activity which transforms an object of type
T

i
into an object ofT

i+1
. For illustration, we provide a concrete example of a coordination

sequence based on the activities introduced inTable 2-1.

Example 2-2. A Coordination Sequence Example

The following coordination sequence starts with atex -file, runs thelatex command on it,
transforms the DVI result into a PostScript file and displays the PostScript file on the screen
using the PostScript viewergv.

2.1.4.2. Loose Specifications

Building a coordination sequence manually may be a non-trivial task: the end user must know
the synthesis-compliant activities contained in the tool repository and must solve tool interfac-
ing issues like finding the right data-type transformer to connect features possibly provided by
different tools. To ease this task, the ETI platform offers a synthesis component which gener-
ates the coordination sequences out of abstract descriptions, calledloose specifications.

These abstract descriptions which are based on the Semantic Linear-time Temporal Logic
[SMF93] (seeSection 5.2.2for details) are loose in two orthogonal dimensions:

Local Looseness:

The characterization of types and activities is done at the abstract level of the taxonomies,
instead of enumerating them explicitly. Here names contained in the taxonomies are in-
terpreted as propositional predicates. They can be combined by the Boolean operators &
(and), | (or) and ~ (not) to specify sets of activities and types. With respect to the type
taxonomy presented inFigure 2-2, the formulatt & ~Files characterizes the types
Display and Printer.

Global/Temporal Looseness

The characterization of whole coordination sequences is done in terms of abstract con-
straints specifying precedences, eventuality, and conditional occurrence of single taxon-
omy entities, rather than specifying the precise occurrence of the types and activities (see
e.g. thebeforeoperator< in Example 2-3).

19

Chapter 2. Technology Overview

Example 2-3. A loose Specification

On the basis of the activities shown inTable 2-1and the type taxonomy presented inFigure
2-2, the user could write a loose specification of the form of

TEXFile < Output

to query all coordination sequences able to bring a TEXFile on some Output device. Note, the
beforeoperator< contained in the formula. It specifies that an Output object must follow a
TEXFile object without fixing when (as direct successor or anywhere later in the future) this
occurrence should take place.

2.1.4.3. The Synthesis Process

On the basis of the available synthesis-compliant activities and a loose specification, the syn-
thesis component (seeFigure 2-3) delivers asynthesis solution graph. Within this directed
graph (seeFigure 2-4as an example), each path starting at the unique start node and ending
at the unique end node represents one coordination sequence which satisfies the given loose
specification.

Figure 2-3. The Synthesis Process

The synthesis solution graph is determined on the basis of thecoordination universewhich is
the mathematical model of the synthesis process. This directed graph represents all possible
combinations of the activities contained in the tool repository. Similar to the synthesis solution
graph, nodes contained in the coordination universe model types and edges model synthesis-
compliant activities whose input type is represented by the source node of the edge and whose
output type is represented by the target node. In order to determine the synthesis solution graph,
the synthesis process “searches” for paths within the coordination universe that satisfy the loose
specification. This set of paths (if not empty) is then returned in form of the synthesis solution

20

Chapter 2. Technology Overview

graph as result of the synthesis process. The coordination universe is automatically generated
by the synthesis component. This process uses the specification of the activities’ input/output
behavior defined by the activities’ interface constituent (seeSection 2.1.1).

The result of the synthesis process is influenced by asolution strategywhich specifies the kind
of the coordination sequences the end user is interested in. Four strategies are available:

All Solutions

Returns all coordination sequences which satisfy the given loose specification. Since the
coordination universe may contain cycles, this is also true for the generated solution graph.

All Minimal Solutions

Returns all minimal (w.r.t. their length) coordination sequences which satisfy the given
loose specification. In contrast to the all-solutions strategy, the minimal-solutions strategy
handles loops contained in the coordination universe by unrolling. This means that the re-
sulting solution graph does not contain any cycles. Minimal-solutions may have different
length.

All Shortest Solutions

Returns all shortest (w.r.t. their length) coordination sequences which satisfy the given
loose specification. The set of the shortest coordination sequences is the subset of the
minimal coordination sequences where each element has a minimal number of activities.
Thus, all generated coordination sequences have the same length.

One Shortest Solution

Generates one shortest coordination sequence which satisfies the given loose specification.
If there exists more than one shortest coordination sequence which satisfies the specifica-
tion, the algorithm randomly selects one.

With respect to the loose specification introduced inExample 2-3ETI’s synthesis component
deliverstwocoordination sequences as result:

and

This is due to the fact that the output device has been loosely specified by using the type group
Output instead of one of the atomic types Display or Printer (local looseness). Since there is
no activity which directly transforms a TEXFile object into a Display or Printer object, the
synthesis component automatically inserts three activities which in combination perform this
transformation.

21

Chapter 2. Technology Overview

The two coordination sequences are represented by the coordination graph shown inFigure
2-4 which is the result of the synthesis process. Note that the “start” and “end” nodes are
automatically added for technical reasons.

Figure 2-4. The “TEXFile < Output” Solution Graph

As documented inSection 5.2, using the ToolZone client the end user can select and then
execute a path within the solution graph.

2.1.5. The ToolZone Architecture
Logically, the ToolZone software is built using four layers (seeFigure 2-5): the data layer, the
feature layer, the Internet access layer and the presentation layer.

TheData Layerstores information on the tool repository, i.e. the available activities and types
as well the user-owned (private) and common case studies.

On top of the data layer, theFeature Layerprovides the real functionality offered by the Tool-
Zone software. This layer contains the C++-based [Str97] Tool Management Application, the

22

Chapter 2. Technology Overview

core of the ToolZone software. All end-user features offered by the ToolZone software are im-
plemented by this application. It gives access to the activities and types contained in the tool
repository, it provides the coordination means, and controls the execution of single activities
and coordination programs.

Figure 2-5. The logical Architecture of the ToolZone Software

The Internet Access Layerprovides the facilities to make the features of the tool management
application accessible via the Internet. For its implementation we use a standard HTTP (Hyper-
text Transfer Protocol [HTTP]) server, e.g. the Apache server [Apache], and theTool Internet
Access Server. Here, the HTTP server provides the activity and type documentation, and an
ETI site specific configuration file (seeSection 5.1for more details). The functionality pro-
vided by the tool management application is encapsulated by the tool Internet access server
which is connected via Java Remote Method Invocation (RMI) [Dow98, RMI] to the ToolZone
client.

ThePresentation Layercontains software components to access the functionality provided by
the feature layer via a graphical user interface. Here, the Java-based ToolZone client is used to
gain access to the activities and types contained in the tool repository. It can be launched from
the Web browser using the Java Web Start technology [JavaWebStart].

Physically, the components implementing the ToolZone software can be distributed on several
machines to provide performant and failsafe access to the offered features.Figure 2-6shows a
UML deployment diagram documenting the distribution of the ToolZone software components
on different server machines. This illustrates a possible physical organization of an ETI site.
Here, the ToolZone server running on the ToolZone host and the application server running on
the application host in combination with the Java Virtual Machine (JVM) process implement
the tool Internet access server introduced inFigure 2-5.

Note: In a minimal scenario, all server-side software components may be deployed on
one single host.

23

Chapter 2. Technology Overview

Figure 2-6. The physical Organization of an ETI Site

In Figure 2-6, the blocks denote the hosts being part of an ETI site. The software components
running on each of the hosts are listed near the corresponding blocks. The links in conjunction
with their labels specify the kind of communication taking place between the hosts.

The responsibilities of the hosts and the require software components are in detail described in
Section 5.1.

2.2. Building the Community Online Service
The ToolZone software documented in the previous section gives access to the tool repository
provided by an ETI site. Using this application, end users can experiment with the available
activities via the Internet. In contrast to that, the ETI Community Online Service at www.eti-
service.org organizes the collaborative effort to enhance the ToolZone software, to extend it
by new activities and types, and to host an instantiation of the platform at an ETI site. This
personalizable Web application implements a virtual meeting point where ETI platform de-
velopers, tool integrators as well as ETI site managers may exchange information and discuss

24

Chapter 2. Technology Overview

topics related to the general platform. Of course, end users are also invited to comment on the
platform, to file bug reports and to propose future enhancements.

The ETI Community Online Service and the Web applications of the ETI sites have been
implemented and are continuously being extended using the Service Definition Environment
of the METAFrame project as workflow design tool and a software development process in
which the tool is embedded.

Whereas the already available Java technology [CW98, Java] and appropriate development
tools, like Borland’s JBuilder [JBuilder], were sufficient to build the ToolZone software, there
was no adequate development support in terms of processes and tools customized to realize the
ETI Community Online Service in 1996. At that time, Web applications were implemented by
simple CGI (Common Gateway Interface) [CGI] scripts, like visitor counters on Web pages or
scripts presenting the content of a database within a Web browser. There was neither a process
nor tool support required to bring a Web application into operation. In most cases, the CGI
scripts were programmed by a single developer just using a standard text editor like XEmacs
[XEmacs].

The complexity of the ETI Community Online Service required a more structure approach.
We developed a general environment which was intended to build reliable Web applications
based on the Java technology. This environment which supports distributed development teams
comprises

• a role-based software development process,

• a Web-application architecture, and

• a workflow-design tool.

The results of the workflow-design tool can automatically be translated into a server-side Java
application in form of a Servlet [HC98, Servlet].

Section 2.2.1gives an overview of the process and the Web-application architecture the process
is based on. After that,Section 2.2.2introduces the workflow design tool, i.e. the Service
Definition Environment of the METAFrame project (Details can be found in Part III of this
thesis). Afterwards,Section 2.2.3presents how the software components implementing the
Web application may be distributed on several machines to provide performant and failsafe
access to the features provided by the ETI Community Online Service.

2.2.1. The Key Concepts of the Process
To successfully roll-out an application within a given time frame the required tasks have to be
centrally coordinated. This is done by a software development process which defines

• which taskhas to be performed by

• whichpersonat

25

Chapter 2. Technology Overview

• which time.

The progress of this process is supervised by the project manager. In general, a software devel-
opment process is defined along the five core phases: Analysis, Modeling, Design, Implementa-
tion, (Integration) Test. Additionally, there are at least three tasks which accompany these core
phases: Project Management, Quality Assurance and Documentation (seeFigure 2-7). Note
that the figure illustrates an idealized structure of a software development process. Within an
iterative process, the phases are typically traversed several times.

Figure 2-7. The idealized Structure of a Software Development Process

The process presented in detail in Part III of the thesis, focuses on the core development phases.
It is based on a five-layers architecture of a Web application shownFigure 2-8.

Figure 2-8. Architectural Layers of a Web Application

As shown inFigure 2-8, we distinguish the application’s GUI (Presentation Layer), the com-
munication layer (Internet Access Layer), the application’s logic (Coordination Layer), the
base functionality implemented by theBusiness Object Layerand a layer to store persistent
data (Data Layer):

The lowest layer is theData Layer. It provides the functionality to store the persistent data of
the business objects contained in Layer Two into a persistent, electronic medium like a database
or the file system.

On top of the data layer, theBusiness Object Layerof the Web application is located. Busi-
ness objects are instances of business classes which represent things of the chosen application
domain, like a user or a tool within the ETI Community Online Service. In general, this layer
provides the features on which the implementation of the business processes is based.

26

Chapter 2. Technology Overview

The software components contained in theCoordination Layerimplement the business pro-
cesses provided by the application, like the registration procedure of the ETI Community On-
line Service. They coordinate the features offered by the business object layer to perform their
task. Whereas the business classes can in most cases be reused for other applications within the
same application domain, the processes are specific to the application to be built. Additionally,
unlike the business classes, the represented processes may change over the time. For this a
flexible handling of the coordination layer is required.

The Internet Access Layer“just” connects the presentation layer and the coordination layer
using the HTTP (Hypertext Transfer Protocol) protocol [HTTP]. In our scenario, its imple-
mentation is provided by a Java 2 Platform Enterprise Edition (J2EE) [J2EE] compliant Web
container like tomcat [tomcat].

ThePresentation Layercontains components implementing the Web application’s GUI. These
are mostly HTML pages which are rendered by the client’s Web browser. In general, the HTML
(Hypertext Markup Language [HTML]) pages may contain Applets [Applets], JavaScript [Fla98]
functions or Flash [Flash] elements to integrate functionality, or graphic and sound elements
to animate the presented content. Client-side components like these should only be used in
a restricted way with respect to the presented architecture. It must be ensured that the soft-
ware components located in the coordination layer always keep the full control on the Web
application.

Other tools support the realization of the software components located in the application’s
presentation layer (e.g. Macromedia Dreamweaver [Dreamweaver]) and business object layer
(e.g. the JBuilder). Our coordination-centric approach, which is realized by the Service Defi-
nition Environment, does not require manual programming. Instead, the implementation of the
coordination layer is provided by the following steps:

1. On the basis of the business classes a library of components calledService-Independent
Building Blocks(SIBs) is built.

2. The coordination layer is modeled as aService Logic Graphusing the Service Definition
Environment on the basis of the available SIBs.

3. The service logic graph is checked with respect to quality requirements using the valida-
tion features offered by the Service Definition Environment.

4. The implementation of the coordination layer is automatically generated from the service
logic graph on the basis of the SIBs’ implementations.

Once the implementation of the business classes and the required components have been pro-
vided, the construction, the validation, and the installation of the Web application (steps 2 - 4)
are done via the GUI of the Service Definition Environment. Neither Java-programming skills,
nor system administration knowledge (like configuring and restarting the Web container) are
required to perform these steps.

Compared to other widespread techniques for the development of Web-applications (like e.g.

27

Chapter 2. Technology Overview

Allaire’s Cold Fusion Scripts [ColdFusion] and Java Server Pages[FI00, JSP]) where features
are implemented by scripting elements embedded into the HTML pages, the proposed concept
has two advantages:

1. Due to the explicit representation of the process layer, the application development is
workflow-centric and not document-centric. Change requests concerning the processes
implemented by the Web application can be realized without any programming effort.

2. The strict architectural separation of the GUI and the process layer allows the indepen-
dent implementation and maintenance of the features provided by the application and the
application’s look and feel. In consequence, another or a new GUI can be implemented
without modifying the implementation of the features provided by the process layer and
the business object layer. This contrasts HTML-embedded scripting techniques where the
implementation of the GUI and the offered features are maintained in the same document.
There, providing another GUI for the same application often results in

1. making a copy of the original application,

2. modifying the GUI portion of the copy and

3. finally maintaining two versions of the same application which only differ in their
look and feel.

The logical layers of a Web application induce several task-specific roles:

• System Engineersanalyze the problem which should be addressed by the Web application.

• OO Specialistsdesign and implement the business classes required to realize the SIBs.

• SIB Integratorsprovide the new Service-Definition-Environment-compliant components and

• Application Expertsconfigure the application using the Service Definition Environment,

• HTML Designersbuild the GUI of the application,

In combination with the validation features offered by the Service Definition Environment (see
next section for an overview), this division of labor is central for developing complex, reliable
Web applications with a cooperative, distributed effort within a short time frame.

The next section gives a short introduction to the Service Definition Environment. It is orga-
nized along the steps 2 to 4 which have to be performed to construct the coordination layer
of a Web application on the basis of the SIBs. Step 1 of the procedure documented above is
detailed inSection 13.2.

28

Chapter 2. Technology Overview

2.2.2. An Overview of the SD Environment
The Service Definition Environment is a workflow design tool which allows the graphical
configuration of workflows on the basis of components calledService-Independent Building
Blocks(SIBs).

2.2.2.1. Service-Independent Building Blocks

Conceptually, SIBs can be seen as functions which perform specific tasks and deliver a return
value as result. Their specification comprises all information which are used by the features
of the Service Definition Environment, like symbolic execution, local and global consistency
checking (seeSection 12.2), and code generation (seeChapter 13):

The SIB Definition

describes the logical view of a component of the Service Definition Environment. It spec-
ifies the identifier of the component, classification information, the parameters (which can
be used to customize instances of a specific SIB) and a collection of possible return val-
ues. Beside others, this information is the basis for the global validation of the application
logic in terms of formal verification.

The SIB Documentation

gives some information on the task performed by this SIB. Beside others, it documents
under which circumstances a specific return value is delivered.

The Simulation Code

is used by the trace-feature of the Service Definition Environment to symbolically execute
the modeled application logic at design time.

The Local-Check Code

specifies local consistency rules. In contrast to global validation, which checks the inter-
action between SIBs, local validation checks the consistency of the configuration of single
SIB occurrences.

The Implementation Code

defines the physical aspect of a SIB. It is used by the compiler during the code-generation
process. In general, the SIBs’ implementation code may be written in any programming or
scripting language like C/C++ [Str97] or Perl [WCO00]. However in the Web-application
area, the implementation of a SIB is provided by a Java class.

This strict separation of the aspects of a SIB specification was motivated by the requirement
that the modeling and validation of the application logic can already be performedbeforethe
implementation of the business objects and SIBs is available (seeFigure 9-1).

29

Chapter 2. Technology Overview

2.2.2.2. Modeling the Application’s Coordination Layer

The coordinating workflows are modeled as directed graphs calledService Logic Graphs(SLGs).
Figure 2-9shows an SLG fragment which models the login and registration procedure of a Web
application. The nodes of the graph represent functional entities, i.e. the SIBs in this process.
Within the SLG each of the possible return values of a SIB can be attached to an edge starting
at the node which represents the corresponding SIB to steer the flow of control.

In the SLG shown inFigure 2-9the edge which starts at the nodeRegisterNewUser and ends
at the nodeInitSession specifies that the execution of the application should be continued
with the SIBInitSession , if the execution of the SIBRegisterNewUser delivers the results
successful . This way the edges represent the flow of control through the coordination layer.
Each service logic graph must have a unique start node which defines the starting point of the
application.

Figure 2-9. The Service Logic Graph Editor

30

Chapter 2. Technology Overview

2.2.2.3. Validation

During the design, the Service Definition Environment supports the end-users in checking the
modeled application on the level of the coordination layer using the validation features docu-
mented inSection 12.2. This means, that the validation components work on the service logic
graph by checking the proper configuration and interaction of the SIBs. They do not consider
the implementation code of a SIB which is viewed as an atomic entity and assumed to be cor-
rect. Beside symbolic execution and local consistency checking, formal verification in terms
of model checking [VW86, SO97, MSS99, Cle99] is used to validate the global interaction of
the SIBs. With respect to the model checking, the correctness assumption of the SIBs’ imple-
mentation code was an explicit design criterion settled at the beginning of the realization of the
Service Definition Environment. This was motivated by the following reasons:

The profile of the end-user:

The targeted end-user group of the Service Definition Environment is the application ex-
pert who knows the workflows of his application domain very well, but in general has
little or no programming skills. Confronting an end-user with error messages on (e.g.
Java-) code level would make no sense, since he is unable to interpret the error reports.

The complexity of exhaustive formal verification:

Proving the correctness of complex Web applications on code level is in general infeasible.
There are techniques which allow the formal verification of Java programs with respect
to certain properties (see e.g. the Bandera project [CDHLPRZ00, Bandera]). But all these
techniques require a deep understanding of the program and the problem to be verified,
and the technique which is used for the program analysis. Additionally, a lot of properties
cannot even be verified automatically. Here, the end-user must interact with the verifier to
provide auxiliary information required for the verification process.

The application expert, the end-user of the Service Definition Environment, would of
course never accept such a use of formal verification. He wants a seamless integration of
formal methods at his level of understanding (see also [MBS01]). For Web applications,
service logic graphs turned out to be adequate for modeling. Moreover, since the model-
checking problem is decidable for finite state systems [CES83, Eme90, CPS93, SC93],
like service logic graphs, checking whether a service logic graph satisfies a certain prop-
erty can even be done fully automatically without any interaction of the end-user.

Of course, the validation features provided by the Service Definition Environment cannot guar-
antee the correctness of the whole Web application, since they focus on the process layer.
But they are a valuable mechanism to detect errors already in an early phase of the software
development cycle. Additionally, in combination with the component model of the Service
Definition Environment, the SIBs, the validation features realize the means which allow even
non-programmers to build reliable Web applications.

31

Chapter 2. Technology Overview

2.2.2.4. Automatic Code Generation

After the design of the workflow has been finished and validated, the Service Definition Envi-
ronment is able to generate the implementation of the application’s coordination layer out of the
service logic graph on the basis of the provided SIBs. The implementation of the corresponding
compiler depends of course on the application domain in which the Service Definition Envi-
ronment is used. With respect to the Web, the offered compiler generates a Java Servlet [HC98,
Servlet] which implements the process layer of the intended Web application. Since the code
generation is performed automatically, there are only two possible classes of errors:

• process errors, which can be detected using the validation features, and

• errors located in the implementation of the business classes.

In fact, as we will see in the next section, the coordinating workflows can be put into practice
without introducing errors.

2.2.3. Component Deployment and Packaging
A Web application which has been built using the Service Definition Environment is imple-
mented by three kinds of components:

• the servlet which implements the service logic graph,

• the components implementing the SIBs and

• the components implementing the business classes.

The servlet and the components implementing the SIBs are always executed on the host running
the Web container which is located in the Internet access layer of the Web application.

Concerning the components implementing the business classes, the Service Definition Envi-
ronment places no restrictions on their location. Since the SIBs are realized by Java classes,
their implementation

• can be based on local components, i.e. components located on the same host running the
Web container.

• can connect to remote services (like Enterprise JavaBeans [Mon00, EJB], Java Remote
Method Invocation (RMI) [Dow98, RMI] and CORBA [Sie00, CORBA] services) to per-
form their task.

Figure 2-10shows an overview of the deployment of the components implementing the Web
application. Note that the Web container, the servlet, the SIBs and the local business objects
are all physically located on the same Web server, but belong to different logical layers.

32

Chapter 2. Technology Overview

Figure 2-10. The Deployment of the Components implementing the Web Application

The packaging and the installation of the local software components is also performed by the
Service Definition Environment. The corresponding process which depends on the available
infrastructure, e.g. the kind of the Web container, can be flexibly configured. In particular, the
Service Definition Environment supports the creation of Web Archive (WAR) files which are
the J2EE standard for packaging the resources needed by a Web application.

The packaging and the installation of the components implementing the remote services can
currently not be performed by the Service Definition Environment. It has to be done using other
tools before the Web application which uses these services can be made available.

33

Chapter 2. Technology Overview

34

Chapter 3. Contributions and State of
the Art

3.1. Contributions
Main contribution of this thesis is a new process for application development which puts the
application expert into the center. Application experts

1. can easily compose coarse-granular components to applications,

2. are controlled by formal methods during the composition process,

3. can generate code on the basis of a specification of the components’ interaction, and

4. can automatically deploy the application within a specifically designed runtime environ-
ment

within an Internet-based infrastructure.

This goal to software development requires a strict architectural separation of

• elementary services which provide the basic functionality of the application,

• coarse-granular components wrapping the elementary services into building blocks on the
level of the application expert’s understanding, and

• coordinating workflows which specify the behavior of the application on the level of the
components’ cooperation.

Our approach extends “traditional” software development, in the sense that the application’s
coordination layer is not coded using programming languages like Java [CW98, Java] or C++
[Str97]. Instead it is graphically designed using coordinating workflows, which afterwards can
be validated, compiled into Java or C++ source code and put into operation by the application
expert himself. The implementation of the elementary services and the components is per-
formed by system developers using standard techniques and tools e.g., as described inSection
3.2.3.

The process is built on top of METAFrame’s integration architecture [Cla97] including the
synthesis tool [SMF93], the Service Definition Environment, as well as public developments
like Java and Web technology like SUN’s Java 2 Enterprise Edition (J2EE) [J2EE] and the
Jakarta [Jakarta] project. These technologies are integrated into an entire framework which
comprises:

35

Chapter 3. Contributions and State of the Art

• a component model representing functionalities on the level of the application expert’s un-
derstanding,

• a coordinating workflow model specifying the components’ interaction based on extended
finite automata,

• a tooling with an intuitive graphical user interface offering the seamless integration of formal
methods to control the component composition,

• a compiler which generates Java source code out of the coordination model,

• a deployment tool which packages the application and deploys it in an appropriate runtime
environment, and

• a runtime environment which, in particular, hides details of process distribution, hardware
configuration and server locations from the application experts.

This thesis also presents two applications of the proposed approach to software development:
the Electronic Tool Integration Platform and a development environment for reliable Web ap-
plications.

The Electronic Tool Integration Platform

The Electronic Tool Integration (ETI) Platform, in particular the ToolZone software, allows
users to build complex, heterogeneous software tools without any programming knowledge in
an Internet-based, secure, performant, and failsafe environment:

1. Users combine components called ETI activities, which are implemented on the basis of a
set of pre-installed software tools.

2. Component composition is either performed manually using the High Level Language or
graphically using coordination sequences, the coordinating workflow model of the ETI
platform.

3. Users are guided during the composition process by ETI’s synthesis service which gener-
ates coordination sequences out of goal-oriented, loose specifications.

4. Users easily execute HLL programs and coordination sequences on a remote server farm.

A specifically designed runtime environment which is part of the ETI platform takes care of
the inter-tool communication, and the details of the hardware and software requirements when
executing a customized tool.

A Development Environment for reliable Web Applications

The Web development environment, in particular, the extension of the Service Definition Envi-
ronment enables an application expert to build reliable Web applications and to put them into
operation without any knowledge of Java and server technology:

36

Chapter 3. Contributions and State of the Art

1. Application experts easily build applications on the basis of components called Service-
Independent Building Blocks (SIBs).

2. The cooperation of the SIBs is modeled in terms of service logic graphs, the coordinating
workflow model of the Service Definition Environment.

3. Application experts are supported during the design of the service logic graph (beside oth-
ers) by model checking which guarantees the global consistency of the SIBs’ cooperation.

4. Application experts graphically generate and package the Web application, and finally
deploy it in a Java-based runtime environment.

The runtime system of the Web development environment uses Java Servlet technology [HC98,
Servlet] in combination with a J2EE compliant Web container like the tomcat container [tom-
cat] of the Jakarta project.

3.2. State of the Art
This section discusses state of the art technology and projects. It is split into three subsections
which cover

• technology which is related to our software development process (seeSection 3.2.1),

• projects which are related to the ETI platform (seeSection 3.2.2), and

• technology for Web application development (seeSection 3.2.3).

3.2.1. Component Models and Process Modeling Tools

“Standard” Component Models

Our application expert-centric development process defines a component model which is on the
application expert’s level of understanding. In consequence is does not compete with defacto
standards like JavaBeans [JavaBeans], Enterprise JavaBeans [Mon00, EJB] and the Microsoft
(D)COM model [Rog97, COM], since these models address developers, but not application
experts. In fact our technology is built on top of these well-known component models: our
development process uses the above-mentioned widespread models in combination with inter-
operability services like CORBA [Sie00, CORBA] to implement the elementary services of the
applications.

Component Frameworks

The component frameworks we discuss in this section can be classified in frameworks which
can handle generic components and frameworks offering a customized component model. The
first class of frameworks can be used in several application scenarios. In contrast to that, frame-

37

Chapter 3. Contributions and State of the Art

works providing a customized component model are typically restricted to a specific applica-
tion domain.

Frameworks supporting generic components

Component frameworks like the SanFrancisco framework of IBM [SanFrancisco] or,
more generally, the WebSphere Business Components product family [WBC] as part of
the IBM framework for e-business [IBMebusiness] typically offer:

• a set of low-level components (e.g. business classes implementing things like company,
address, currency, business partner, unit of measure, cash balances),

• coarse-granular components implementing common business processes such as general
ledger, order processing, inventory management, product distribution, and often

• a runtime environment in which applications built with the framework are executed.

Developers can then extend the framework by adding new low-level and coarse-granular
components, and afterwards build applications on top them. For example, application de-
velopment within the SanFrancisco framework is based on standard tools like Rational
Rose [Rose] and Java development environments like Borland JBuilder, and IBM Visu-
alAge for Java [vajava] (see [SanFranciscoAD]). Applications using WebSphere Business
Components are realized with the WebSphere Business Components Composer [WBCC].
All frameworks of this class address developers and are not adequate for application ex-
perts without a deep programming knowledge.

Frameworks supporting customized component models

Component frameworks like WaterBeans [WaterBeans] and Sally [SBFMMS98, Sally]
are customized for a specific application domain, i.e. water quality modeling and signal
processing, respectively. They offer

• a customized component model,

• a tool to graphically build applications on the basis of the components as well as

• a runtime environment for application execution.

Characteristic to these approaches is that they focus on the data flow between the com-
ponents. This means that the components have several typed input ports and output ports,
and they “fire” when all data is available. The control flow is described implicitly and in a
distributed fashion. This Petri-Net like execution semantics is difficult to comprise and in-
adequate for the application experts we have in mind. In addition, the validation facilities
offered by the frameworks are limited to local type compatibility.

38

Chapter 3. Contributions and State of the Art

Generic Coordination Approaches

The previous sections presented approaches where either

• generic components are composed using standard development environments (see e.g. the
WebSphere Business Components), or

• more customized components are graphically coordinated (see e.g. Sally).

All techniques have in common that they focus on the components rather than on component
coordination. Projects like ToolBus (seeSection 3.2.2), or coordination languages like STL++
[SCH99, STLPP] and Linda [CGM93, Linda] concentrate on the communication between com-
ponents (see also the Coordination conference series on coordination models and languages,
e.g. [Coordination2002]). Similar to process modeling tools their strength is the specification
of complex, distributed systems, which is, on this level, far beyond the skills of the application
experts we address.

Process Modeling Tools

Advanced process modeling tools like LEU [DGSZ94] or projects like MOKASSIN [mokassin]
focus on modeling complex processes as well as process cooperation and distribution typically
on the basis of Petri-Net based software modeling languages. They are designed to support
software development that requires to model at this level of detail, but they are far to com-
plicated for the people we address. Our goal is to enable application experts to build reliable
applications in a controlled and easy way without concerning about architectural and distribu-
tion aspects. This requires

1. a coordinating workflow model which is on the application expert’s level of understand-
ing, and which can automatically be checked for implementability and guaranteed service
properties, and

2. to hide hardware and software details as well as process distribution and communication
issues within the components’ implementation or an (appropriate) runtime environment.

Even if process modeling tools are used in a restricted way where only a single process (no
process cooperation and no distribution) is specified, source code generation is only possible, if
the complete system is (hierarchically) modeled within the tool. Typically, there is no support
for code generation on the basis of coarse-granular components whose implementation is done
outside the modeling tool.

3.2.2. Projects related to the ETI Platform
We do not know of any project combining the features offered by the ETI platform, which
enables users to

39

Chapter 3. Contributions and State of the Art

• search for software tools using syntactic criteria as well as abstract properties specifying the
profile of the tool they are interested in,

• execute single tool features remotely,

• combine features coming from heterogeneous software tools to complex applications and

• execute the applications via the Internet.

Projects related to the ETI platform can be classified by Web sites giving access to tools and
tools which focus on tool coordination.

Web Sites giving Access to Software Tools

Link Collections and Software Archives:

This class of Web sites provides passive access to software tools. They

• offer links to software tools in a specific application domain, like the Petri Nets Tool
Database [PNTD], the Formal Methods Europe [FME] database or the UM weather
software library [UMW], or

• give direct access to the software in source code or in binary format like the comp.simulation
software archive [CSSA], the download.com site [DownloadCOM], etc.

Users which access software tools via these sites are still confronted with the full down-
load and installation burden. ETI sites overcome these burdens by giving access to a repos-
itory of pre-installed software tools with remote execution and coordination facilities.

Web sites providing execution facilities of a single tool:

Some Web sites like theHyTech [HyTech] home page or thesmvguided tour [SMV] give
remote access to a specific tool functionality via an HTML form. In contrast to ETI sites,
they are restricted to a single tool and do not support a fair evaluation of different tools.

Project focusing on Tool Coordination

PROSPER[DCNB00, Prosper]:

ThePROSPER(Proof and Specification Assisted Design Environments) toolkit provides
an infrastructure based on the HOL98 theorem prover [GM93]. Existing verification tools
can be integrated into nearly any application (like CAD and CASE tools), thus extend-
ing this application by a new validation feature. For this, verification tools are encap-
sulated into components called plugins. Afterwards, system developers may implement
customized verification procedures on the basis of the plugins’ features at the level of
ML programming [MTHM97]. In contrast, ETI offers programming-free tool coordina-
tion facilities and it supports the tool coordination process by a synthesis service which in
particular takes care of incompatible tool compositions.

40

Chapter 3. Contributions and State of the Art

ToolBus[BK96, KO96, ToolBus]:

Closest to our approach is theToolBusproject since it offers a coordination infrastructure
as well as a language for process communication. The cooperation of processes is speci-
fied via a process-algebra based scripting language. ToolBus scripts specify the behavior
of each process as well as their interaction with each other and with external tools. Similar
to process modeling tools (seeSection 3.2.1), this approach to software development is
very well suited for (process algebra) experts to solve complex tool coordination task, but
it is far to complicated for the people we address.

3.2.3. State of the Art Web Application Development
Current state of the art Web development is based on SUN’s Java 2 Enterprise Edition (J2EE)
technology or Microsoft’s .NET initiative [TL01, NET]. Both approaches define several com-
ponent models and a runtime environment which provides inter-component communication,
transaction and communication services. Application development is performed by

1. developing the components using standard tools like Borland’s JBuilder [JBuilder], the
Together ControlCenter [Together] or Microsoft’s Visual Studio [VisualStudio], and

2. deploying and configuring the components within an implementation application server
like BEA WebLogic Server [WebLogic], Borland AppServer [AppServer], IBM Web-
Sphere [WebSphere], or Microsoft .NET Enterprise Servers [MSNetServers].

Our approach uses standard development tools and J2EE technology to implement the elemen-
tary services of the Web application. But since this requires expertise that is far beyond the
skills of the application experts, our approach wraps this technology in order to hide all the
technical details. This enables application experts without knowledge of the component mod-
els, or distribution and interoperability facilities to graphically build reliable Web applications
in a controlled manner.

Within the traditional scenario, the implementation of the graphical user interface (GUI) of
the Web application is typically performed using Java Server Pages (JSPs) [JSP] or standard
HTML with integrated scripting. In the later case, HTML designers use tools like Macrome-
dia Dreamweaver [Dreamweaver] and FrontPage [FrontPage] in combination with Velocity
[Velocity] or WebMacro [WebMacro] scripts. Our approach to Web application development
is based on standard HTML with integrated Velocity scripting to realize the GUI of the ap-
plication. JSPs are not adequate for our purpose, since they focus on a document view of the
application (instead of a control flow view) and they too often require Java programming skills.

41

Chapter 3. Contributions and State of the Art

42

II. The ToolZone Software

Chapter 4. Introduction
The purpose of the ToolZone software (seeSection 2.1for an overview) is to give an end user
Internet-based, secure, performant and failsafe access to the activities and types available in
the tool repository with the ability to

1. get detailed information on each activity and type,

2. execute single activities,

3. combine activities to programs, and

4. run these programs via the Internet.

This part of the thesis presents the ToolZone software from several points of view correspond-
ing to the roles introduced inSection 1.3.3.3. First, the end user’s view is illustrated inChapter
5. Afterwards we go into the details of the design of the ToolZone software inChapter 6(plat-
form developer’s view).Chapter 7then focusses on the tool-integration process which makes
new activities and types available in the tool repository.

But before we present the ToolZone software in detail, we give a short introduction to two
software tools which are used to illustrate the presented ideas. The tools are taken from the
instantiation of the ETI platform customized for theSpringer International Journal on Software
Tools for Technology Transfer(STTT) [STTT]. This ETI site, which can be found at eti.cs.uni-
dortmund.de, provides tools focusing on the analysis and verification of distributed (real-time)
systems.

4.1. Sample Tools
In this part of the thesis we will give several examples which should help the reader to under-
stand the concepts. They are based on the

• the Caesar/Aldebaran Development Package (CADP) [FGK96, CADP] (seeSection 4.1.1)
and

• the Hybrid Technology Tool (HyTech) [HHW97, HyTech] (seeSection 4.1.2).

4.1.1. The Caesar/Aldebaran Development Package
CADP is a “Software Engineering Toolbox for Protocols and Distributed Systems” [CADP]. It
provides tools for the simulation, testing and verification of systems specified in the ISO [ISO]
language LOTOS [BB87, LOTOS]. In addition to other tools, it ships withaldebaran, a tool

45

Chapter 4. Introduction

for minimizing and comparing (edge-)labeled transition systems (LTSs) [BFKM97]. One of
the file formats which can be used to store LTSs is theaut -format.

Eachaut file starts with a header line, which stores an integer number representing the start
node of the LTS as well as the number of the nodes and edges contained in the LTS (see(1) in
Example 4-1). The subsequent lines represent the edges contained in the LTS (see e.g.(2) in
Example 4-1). They are triples of the form of

(n
1
, a, n

2
),

wheren
1

is an integer number representing the start node of this edge,a is the information
associated to this edge, andn

2
is an integer number representing the end node of this edge.

Example 4-1shows a specification of a simple LTS in theaut -format, which contains four
nodes and four edges.

Note: Within the aut -format, information can only be associated to edges. No node in-
formation can be stored.

Example 4-1. Anaut -format Specification of an LTS

des (0,4,4) (1)
(0,a,2) (2)
(0,a,1)
(2,b,3)
(1,b,3)

Since most of the tools provided by the toolbox are command-line tools, i.e. they offer no
graphical user interface (GUI) to access the offered functionality, CADP ships thexeucaap-
plication [Gar96] which allows to uniformly access the features implemented by the command-
line tools via a TCL/TK-based [Wel97] GUI.

4.1.2. The Hybrid Technology Tool
The purpose of the HyTech tool is documented in [HyTech] as follows: “HyTech is an auto-
matic tool for the analysis of embedded systems. HyTech computes the condition under which
a linear hybrid system satisfies a temporal requirement. Hybrid systems are specified as col-
lections of automata with discrete and continuous components, and temporal requirements are
verified by symbolic model checking. If the verification fails, then HyTech generates a diag-
nostic error trace”. Hybrid systems which can be analyzed using HyTech are stored in files
being conformant to thehy -format. Ahy -file is split into three sections:

46

Chapter 4. Introduction

1. Thedeclaration sectionprovides an entry for each variable which is needed to define the
automata of the system.

2. Theautomata sectionspecifies each hybrid automaton which is part of the system to ana-
lyze.

3. Thecommands sectiondefines the analysis which has to be performed by the HyTech tool
on the given system.

A detailed description of this format can be found in the HyTech user guide available at
[HyTech].

47

Chapter 4. Introduction

48

Chapter 5. End User Aspects
Since the end user is primarily confronted with the graphical user interface of the ToolZone
client, we begin with a brief history of its implementation. This illustrates the meanders of the
ToolZone client which were induced by the evolution of the Java technology [Java].

When we started to plan the first version of the ETI platform in 1996, we wanted to give access
to its features via remote login on the server machine. Though this access method is available
on a wide range of operating systems and hardware architectures, it would not be accepted
by the users since the user interface would have been textual. This is of course not intuitive,
especially since working on directed graphs representing labeled transition systems is one of
the main features of ETI’s first application domain, the analysis and verification of distributed
(real-time) systems. Additionally this solution would not scale with a huge number of users,
since there must be a real account maintained on the server machine for every user.

Fortunately these were the days when Java came up. First released in 1995, Java is an object-
oriented programming language which “itself is closely based on C++, but simplified some-
what and with automatic garbage collection added. In addition it has been made so that it is
completely architecture neutral, with the quirks of the particular platform being handled by the
interpreter.”[JavaPress]

Believing in the promises of its inventor, SUN Microsystems Inc. [SUN], we implemented the
first version of the ToolZone client as an applet with the Java Development Kit (JDK) version
1.0.2 using the Java Abstract Window Toolkit (AWT) classes to build the GUI. “An applet
is a program written in the Java programming language that can be included in an HTML
page, much in the same way an image is included. When you use a Java technology-enabled
browser to view a page that contains an applet, the applet’s code is transferred to your system
and executed by the browser’s Java Virtual Machine (JVM).” [Applets] But testing the applet
on Java technology-enabled Web browsers from different vendors having different versions
was more a “Write once, runs only on the browser of a specific vendor having a dedicated
version number” experience rather than SUN’s promoted “Write Once, Run Anywhere” slogan.
The main problems we faced were the different implementations of the AWT classes and the
security policy within the browsers’ JVMs.

Even SUN admitted these problems and launched the first version of the Java Activator (today
known as the Java Plug-in [JavaPlugIn]) a few month before the initial ToolZone software
release was planned. This Web browser plug-in disables the JVM shipped with the browser
and redirects the execution of an applet to the virtual machine bundled with the plug-in. By this
the Java virtual machines available to run the applet became more compatible. Consequently,
to get rid of the browsers’ vendor and version problems we adapted the ToolZone client to be
plug-in conform, and finally released and presented the first version in March 1998.

But the experience showed that only a few users were willing to download and install a nearly
11 MByte browser plug-in just to get an impression of the ToolZone software. Additionally, the
AWT based GUI had several drawbacks, and we observed some performance problems when

49

Chapter 5. End User Aspects

displaying huge graphs. Consequently we started to refactor the software in 1999.

Today, after the Java technology has been improved and we have adapted the software several
times to the updated versions of the JDK, the ToolZone client runs as a Java application (not as
an applet anymore) which has an intuitive Swing-based GUI [WC99, Swing]. The installation
of the ToolZone client is done fully automatically by using the Java Web Start application
launcher [JavaWebStart]. The current ToolZone client implementation has been tested on a
wide range of platforms which support the Java 2 runtime environment. See [JavaPorts] for
information on available ports.

In the rest of this chapter we show some client’s features and give some information on their
implementation. For this, we start with the login process inSection 5.1. Here we illustrate the
responsibilities and the collaborations of the software components introduced inSection 2.1.5.
Afterwards,Section 5.2gives an overview of the features provided by the ToolZone client.
This is done by presenting a guided tour which shows a typical end-user session.

5.1. Logging In
To provide Internet-based, performant and failsafe access to the tool repository, the ToolZone
software is deployed on four logical layers (see alsoFigure 2-6): the presentation layer, the
Internet access layer, the feature layer and the data layer.

The client host located in the presentation layer runs the ToolZone client software. The Tool-
Zone client gives remote access to the features offered by the ToolZone software. To use the
features offered by the ToolZone software, the user must login to an ETI site. For this, he must
specify the ToolZone host to connect to, and a user id and password valid for this site. He can
supply this information using the login screen shown inFigure 5-1. This screen appears when
the ToolZone client is started.

Figure 5-1. The Client Login Screen

50

Chapter 5. End User Aspects

5.1.1. Initializing a Session
As soon as the user has entered the required data and has pressed theLogin button, the client
contacts the specified ToolZone host via the Hypertext Transfer Protocol (HTTP) [HTTP] to
download a file characterizing the configuration of the chosen ETI site (seeFigure 5-2). Beside
others, the file contains information necessary to configure the client GUI properly. The GUI
specific information is mainly used to build theFile menu of the ETI Shell Window (seeFigure
5-4). The items shown in theNew Graph andNew System sub-menus depend on the types
available in the tool repository hosted by the chosen ETI site (seeSection 5.2.3). In addition
to the GUI information, the configuration file provides the location of the site’s ToolZone
server, which is responsible to accept the initial connection from the client. The location of the
server component is specified as a URL which conforms to the Java Remote Method Invocation
(RMI) format [Dow98, RMI]. Via this URL, the client obtains a reference to the ToolZone
server object located on the ToolZone host. For this it uses theNaming class contained in the
java.rmi package of the Java 2 runtime environment.Figure 5-2shows the first phase of the
login process.

Figure 5-2. The first Phase of the Login Process

After the client has got the reference to the remote ToolZone server object, it connects to the
server via Java RMI to obtain a connection handler object, which is responsible to handle the
session of this client.

This connection handler object is obtained as follows (seeFigure 5-3): First, the ToolZone
server accepts thenewConnectionHandler request by the ToolZone client. Then it delegates
it to an application server running on one of the ETI site’s application hosts (seeFigure 2-6).
The appropriate application server is selected by the ToolZone server using a load balancer.
This software component ensures that incoming client requests are distributed on the site’s
application hosts to share the available computing power amongst the connected clients in an
optimal fashion. In the current version of the ETI platform a simple load balancing strategy
has been implemented which just selects the “next” application server based on a fixed server
enumeration (round robin strategy).

51

Chapter 5. End User Aspects

Figure 5-3. The second Phase of the Login Process

The application server is then responsible for authoring the request by validating the passed
user id and password. For this, it uses the database management system (DBMS) running on
the database host. Here the database is located which stores the user profiles. If the check is
successful, the application host creates a new connection handler object and returns a remote
reference to it back to the client.

Once the user is successfully logged in, the ToolZone server object will not be connected by
this client again. Further client requests will then be processed by the connection handler.

If the client has successfully logged in to the ETI site, theETI Shell Window is shown (see
Figure 5-4) which gives access to the ToolZone client functionality (seeSection 5.2for further
details). Otherwise, a message will be displayed in theMessages text area of the client login
screen (seeFigure 5-1) giving information and possible solutions to the problem.

5.1.2. Client-Request Handling
As already mentioned, the session of a client is maintained by the connection handler object
returned by the ToolZone server during the login procedure. But the connection handler does
not provide the implementation of the ToolZone-software features. In combination with other
objects documented inChapter 6the connection handler is only the mediator between the client
and the tool management application (seeSection 6.1.1). For every session which is created a
corresponding instance of the tool management application is started on the application host.
An instance of the application then provides the implementation of the ToolZone-software
feature for the associated client.

The tool management application is based on the METAFrame environment introduced inSec-
tion 1.4.1. It gives uniform access to the activities and types available in the tool repository,
regardless whether the tool functionality is available locally on the application host or remotely
on a remote tool host. In the current status of the project remote tools can be accessed via the
interoperability services RMI [Dow98, RMI] and CORBA [Sie00, CORBA].

52

Chapter 5. End User Aspects

5.2. A User Session
After a successful login, all features provided by the ToolZone client can be accessed via the
ETI Shell Window shown inFigure 5-4.

Figure 5-4. The ETI Shell Window

To present an overview of the ToolZone-software functionality, the next two sections (Section
5.2.1andSection 5.2.2) are organized along the typical workflow which is performed by an
end user (see also [MBS98, BKMS99]):

1. Browsing through the available activities (seeSection 5.2.1).

2. Executing single activities in stand-alone mode (seeSection 5.2.1).

3. Combining activities to programs (seeSection 5.2.2).

4. Executing the coordination programs (seeSection 5.2.2).

Note: A complete user manual can be found in [TZUser].

Afterwards,Section 5.2.3shows how the data, which is needed to execute the activities, can be
accessed via the ToolZone client.

5.2.1. Browsing through the available Activities
When the user connects to an ETI site, he wants to get an overview of the activities and types

53

Chapter 5. End User Aspects

which are available in the corresponding tool repository. As already mentioned inSection 2.1.2
the activities and types are organized in theETI Activity TaxonomyandETI Type Taxonomy, re-
spectively. In the rest of this section we will focus on the activity taxonomy. The type taxonomy
can be accessed analogously.

To visualize the activity-taxonomy DAG, the user obtains theActivity Taxonomy window (see
Figure 5-5) by selectingOptions−→Activity Taxonomy (Ctrl-A) in the ETI shell main menu.

Figure 5-5. TheActivity Taxonomy Window

The activity taxonomy window is split up into two parts: the taxonomy graph pane and the
description pane (seeFigure 5-5). By dragging the divider that appears between the two panes,
the user can specify how much of the window’s total area goes to the graph or the description
pane.

The taxonomy graph pane of the window shows the ETI activity taxonomy represented as a
directed acyclic graph (DAG). Here, leaf nodes model available atomic activities. The other
nodes denote activity groups, which represent all atomic activities that are reachable by fol-
lowing the edges within the taxonomy DAG which start at this node (seeSection 2.1for more
information on the taxonomies).

54

Chapter 5. End User Aspects

The description of an atomic activity or activity group can be obtained by selecting the corre-
sponding node in the graph pane. In this case the associated documentation will be displayed
in the description pane of theActivity Taxonomy window.

If the chosen node represents an atomic activity, i.e. it is a leaf node of the activity taxonomy
DAG, theExecute Activity button located at the bottom of the window will be enabled, and
the associated activity can be executed by selecting this button. If the button is pressed by
the user, the tool management application executes the chosen activity in stand-alone mode.
The associated behavior is specified by the stand-alone constituent of this activity (seeSection
2.1.1). It is documented in theStand-Alone Functionality section of the activity description
(seeFigure 5-5).

Similar to the activities, their input and output types are organized in theETI Type Taxonomy.
The correspondingType Taxonomy window can be obtained by selectingOptions−→Type
Taxonomy (Ctrl-T). Note that theType Taxonomy window does not offer anExecute button,
since only activities can be executed.

5.2.2. Combining Activities
As documented inSection 5.2.1singleactivities can be executed via theActivity Taxonomy
window shown inFigure 5-5. But the real power of the platform is thecombinationof activities.
This can be done either by

• combining activities manually using the coordination language HLL (see alsoSection 2.1.3)
or by

• automatic generation of coordination sequences from abstract coordination-task descrip-
tions, calledLoose Specifications(see alsoSection 2.1.4).

In the following two sections, we focus on the usage of the synthesis feature provided by the
ToolZone software. For this, we present inSection 5.2.2.1the syntax and the semantics of the
coordination formulae which are used to formalize the loose specifications. AfterwardsSection
5.2.2.2illustrates how the synthesis functionality can be accessed via the ToolZone client.

Using ETI’s synthesis component, synthesis-compliant activities (seeSection 2.1.1) can be
combined toCoordination Sequences. Conceptually, a coordination sequence is a finite path of
the form of

whereT
i

is an atomic type anda
i

is an atomic activity which transforms an object of typeT
i

into an object ofT
i+1

. This means that two atomic activitiesa
i

anda
j

can only be combined
directly, if the output type of the activitya

i
is the same as the input type of the activitya

j
or if

the output type of the activitya
j

is the same as the input type of the activitya
i
.

55

Chapter 5. End User Aspects

Note: In the context of the ETI project, every coordination sequence starts with the type
ETINone and it ends with the type ETIResult. These two special types ensure that the
coordination sequences are well-defined, in the sense that the execution of a coordina-
tion sequence always starts with “nothing” and ends with a result which can be shown
graphically on the screen of the client host.

5.2.2.1. Writing Coordination Formulae

Coordination sequences are generated out of abstract descriptions (calledloose specifications)
using the synthesis component of the METAFrame project (see [SMF93] for information on the
implemented algorithm). The loose specifications are defined bycoordination formulaewhose
syntax is derived from the Semantic Linear-time Temporal Logic (SLTL) (see also [SMB97]) .

Syntax

The actual syntax of the coordination formulae is defined by the BNF shown inTable 5-1. Here
T andA are identifiers contained in the type taxonomy and activity taxonomy, respectively.

Table 5-1. The Syntax of the Coordination Formulae

f ::= f type | f activity |

(f & f) | (f | f) |

F (f) | G (f) |

(f < f) | F {f, ...,

f}

f type ::= T | ~(f type) |

(f type & f type) | (f type | f type)

factivity ::= A | ~(f activity) |

(f activity &

f activity)
| (f activity |

f activity)

Semantics

The semantics of a coordination formula is a set of coordination sequences which is deter-
mined on the basis of thecoordination universe. The coordination universe is a directed graph
which represents all possible combinations of the available synthesis-compliant activities. It
is automatically generated by the synthesis component on the basis of the taxonomies and the
input/output-behavior description of the activities.

Using thesynthesis strategy, the user can define a filter on the solutions he is interested in.
The following four strategies are available: all solutions, all shortest solutions, all minimal

56

Chapter 5. End User Aspects

solutions, one shortest solution. SeeSection 2.1.4.3for a detailed description.

The set of coordination sequences

• which satisfy a given loose specification, i.e. the semantics of a coordination formula, and

• which are conform to the provided synthesis strategy

is represented as a directed acyclic graph calledSynthesis Solution Graph. In the context of
the ToolZone software, each path within this graph which starts at the node ETINone and ends
at the node ETIResult represents a solution with respect to the given formula and the chosen
synthesis strategy. The left part ofFigure 5-7shows an example of a synthesis solution graph.

Formally, the semantics of a coordination formula is based on the SLTL semantics. But intu-
itively, it can be explained as follows:

• A type formulaf
type

is satisfied by every path in the coordination universe whose first el-
ement (a type) is contained in the set of types specified byf

type
. The set of types defined

by a type formula is determined on the basis of the type taxonomy. For this, the non-atomic
elements of the taxonomy (which may be used to build the type formula) are interpreted as
sets over the atomic types. In consequence, the semantics of the operators&, | and~ are
defined by set intersection, union and complement. SeeSection 2.1.2for an example.

• An activity formula f
activity

is satisfied by every path in the coordination universe whose
first activity is contained in the set of activities specified byf

activity
. The set of activities

defined by a activity formula is determined in analogy to a type formula on the basis of the
activity taxonomy.

• The operators& and| are interpreted in the usual fashion as intersection and union of sets
of paths.

• F (f) (thefinally operator) is satisfied by every path in the coordination universe which has
a suffix satisfyingf .

• G (f) (thegenerallyoperator) is satisfied by every path in the coordination universe where
f is satisfied for every suffix.

• (f
1

< f
2
) is defined by the formulaF (f

1
& F (f

2)
)) which means that it is satisfied by

every path in the coordination universe having a suffix satisfyingf
1
, which itself possesses

a suffix satisfyingf
2
. By this the operator< is in particular a simple means for ordering the

occurrences of property satisfaction within a coordination sequence.

• F { f
1
, ..., f

n
} is defined by the formulaF (f

1
) & ... & F (f

n
) which is satisfied

by every path in the coordination universe having a suffix for each of the sub-propertiesf
i
.

57

Chapter 5. End User Aspects

5.2.2.2. Experimenting with ETI’s Synthesis Feature

To access the synthesis feature, the user must obtain theSynthesis Editor window (seeFigure
5-6) by selectingOptions−→Synthesis Editor (Ctrl-Y) in the ETI shell main menu. Here
he can directly enter the coordination formula which specifies his coordination request using
the syntax defined inTable 5-1. Alternatively, he can load a formula into the editor via the
File−→Load (Ctrl-L) menu item. The internal types ETINone and ETIResult should never be
used when defining a coordination formula. The software automatically extends the formula
supplied by the user in a way that the resulting coordination sequence(s) are well-defined.

The synthesis strategy can be selected via theOptions menu provided by theSynthesis Editor
window. By default theAll Shortest Solutionsstrategy will be used.

Figure 5-6. TheSynthesis Editor Window

The formula((AUTGraph < minimizer) < display) shown inFigure 5-6is taken from
a scenario where the the CADP toolkit is available within the tool repository. It specifies the
following request: “Within the returned sequences an LTS represented by anAUTGraph object
should be available. On this LTS aminimizer algorithm should be invoked. After that, the
result of the minimization should bedisplay ed on the screen”. Note, that the formula does not
specify the exact minimizer and display features to be used, since in this example the identifiers
minimizer anddisplay represent activity groups, and not atomic activities.

When the user submits the coordination request by selecting theSubmit button at the bottom
of theSynthesis Editor window, the synthesis component provided by the tool management
application solves this specification. If a solution can be found, the result of the synthesis
invocation is a synthesis solution graph where each path of the graph starting at the node
ETINone and ending at the node ETIResult represents a solution with respect to the given
formula that is conformant to the selected synthesis strategy. Otherwise, a window will be
shown giving the information that no coordination sequence satisfying the formula could be
found. The left part ofFigure 5-7shows the synthesis solution graph representing all shortest
paths which satisfy the formula shown inFigure 5-6.

58

Chapter 5. End User Aspects

Figure 5-7. A Synthesis Solution Graph

With respect to the formula presented inFigure 5-6the synthesis solution graph shown in
Figure 5-7looks a little bit long winded, in the sense that

1. first an AUTFile object is created,

2. then the AUTFile object is transformed into an AUTGraph object which is

3. finally converted into an AUTFile object again.

But a detailed view on the formula explains this fact. It is explicitly specified in the formula,
that an AUTGraph object should be reached before aminimizer activity is executed. Thus, the
surrounding activities must be automatically inserted by the synthesis component to make the
coordination sequences type-correct. The first two activities (openAUTFile andautF2autG)
are introduced since

1. every valid coordination sequence must start with the type ETINone and

59

Chapter 5. End User Aspects

2. (with respect to this example) there is only theautF2autG activity which transforms an
AUTFile object into an AUTGraph object.

The autG2autF (third) activity has been added due to the fact that all suitableminimizer

activities, i.e.aldebaranMIN_STD_I , aldebaranMIN_STD_O andaldebaranMIN_STD_B ,
can only work on AUTFile objects as their input type, and not on AUTGraph objects. Note that
concerning the activity groupdisplay exactly one alternative (displayAUT) matches in this
context.

The user can now select his favored coordination sequence within the coordination graph win-
dow, and execute it by selecting theExecute Path button as soon as the selection is unique.
The selection of the sequence is done by clicking with the left mouse button on the edges that
should be contained in the favored solution. As shown in the right part ofFigure 5-7, the edges
contained in the favored solution remain black, all other edges will be colored in light gray.
See [TZUser] for detailed information on the selection process.

When the user executes the coordination sequence, the tool management application runs the
corresponding activities in tool-coordination mode. The associated behavior is specified by the
tool-coordination constituent of the activity (seeSection 2.1.1).

With respect to the coordination sequence selected inFigure 5-7(black path in the right part
of the figure), the execution will perform the following steps in order:

1. First, the activityopenAUTFile displays a file selector dialog (seeSection 5.2.3) where
the user can select the file which stores the graph to be minimized. This activity will
generate an object of type AUTFile as output.

2. The object of type AUTFile gets now automatically transformed into an object of type
AUTGraph by the activityautF2autG .

3. Then the AUTGraph object is transformed into an AUTFile object again, using the activity
autG2autF .

4. After that, the minimization algorithmaldebaranMIN_STD_I is invoked on the AUTFile
object. This algorithm minimizes the graph with respect to thetau*.abisimulation [Mil89]
using the Paige/Tarjan algorithm [FM90, PT87].

5. The resulting AUTFile object is then transformed into an AUTGraph object by the activity
autF2autG .

6. Finally, the AUTGraph is displayed on the screen using thedisplayAUT activity.

Starting with an AUTFile having the content shown in the left part ofFigure 5-8, the minimized
AUTGraph looks like the one shown in the right part of the same figure.

60

Chapter 5. End User Aspects

Figure 5-8. A Minimizer Example

5.2.3. Data Access
This section presents the ToolZone-client features which can be used to access the data areas
offered by an ETI site. For this the ToolZone client provides three editor-classes:

1. a general text file editor,

2. an editor to work on files representing directed graphs and

3. an editor to work on files representing graphs systems.

Note: Graphs systems are collections of directed graphs plus some “global” information.
The interpretation of the collection and the global information is tool specific. In one case,
the collection may be interpreted as a set of procedures with the global information being
a set of global variables. In another case the collection may represent a set of LTSs which
model the components of a large software system, where the whole system is defined by
the parallel composition of the single components.

All editors can be accessed via theFile menu contained in the menubar of the ETI Shell Win-
dow (seeFigure 5-4). Whereas theNew Text File menu item can be used to obtain the text file
editor window, the menu items offered by theNew Graph andNew System submenues give
access to the graph and graphs-system editors.

In the following two sections (Section 5.2.3.1andSection 5.2.3.2) we give a short introduc-
tion to the editors offered by the ToolZone software. Afterwards,Section 5.2.3.3present the
ToolZone-client file dialog which can be used to load and store the objects visualized by the
editors into a file. Please take a look at [TZUser] for a detailed description of the available
features.

61

Chapter 5. End User Aspects

5.2.3.1. The General Text File Editor

The most universal editor is the one for general text files. It can be used to edit text files having
an arbitrary format.Figure 5-9presents anETI Text Editor window which shows a fragment
of a real-time system specification in the HyTech [HHW97, HyTech] format. The ETI editor
provides all features a standard text editor offers. Thus, there is nothing specific with respect
to the ETI text editor.

Figure 5-9. TheETI Text Editor Window

5.2.3.2. The Graph and Graphs System Editors

Whereas there exists just one editor implementation for text files, which supports any textual
file format, the ToolZone software provides a generic editor for directed graphs (seeFigure
5-10) and a generic editor for graphs systems (seeFigure 5-11). In the following, we give an
overview of the the graph editor. The graphs system editors are handled a similar way.

The generic graph editor can be customized to support a specific file format which is used
to store a graph object into a file. Here, an example of a file format may be theaut -format
introduced inChapter 4. Of course, textual LTS-descriptions in theaut -format can also be
edited using the general text editor (seeSection 5.2.3.1). But using the graph editor, the end
user can specify the LTS in a graphical manner which is more comfortable. Instances of the
generic graph editors mainly differ in the implementation of the load and save functionality

62

Chapter 5. End User Aspects

(seeSection 7.5.2andSection A.2for details) which is of course specific to the supported file
format. The GUI, i.e. the end user’s view on the editors, is the same for all instances.

Figure 5-10. TheETI Graph Editor Window

Since the instances of the graph editors which are accessible via the ToolZone software depend
on the graph types available in the tool repository, the menu items provided by theNew Graph
submenu are specific to the connected ETI site. This means that dependent on the available
graph types a menu item giving access to the corresponding graph editor has dynamically to
be generated. This is done on the basis of the configuration file loaded from the ETI site during
the startup of the client application (seeSection 5.1).

The ETI site associated to the Springer International Journal on Software Tools for Technology
Transfer [STTT] currently provides two concrete editors for directed graphs:

• one supports theaut -format which is used to store labelled transition systems within the
Caesar/Aldebaran Development Package [FGK96, CADP],

• the other gives access totg -files representing real-time systems which can be analyzed by
the Kronos [Yov97, Kronos] tool.

With respect to graphs systems, this version of the software provides editors for real-time
systems stored in the formats which can be used by

63

Chapter 5. End User Aspects

• the Uppaal [LPY97],

• the HyTech [HHW97], and

• the Kronos tools.

Figure 5-11. TheETI System Editor Window

5.2.3.3. The File Dialog

The objects visualized by the editors can be loaded or saved via the file dialog (seeFigure
5-12). Using this window, the user can select the file which contains the required information.

There are two data areas which can be accessed via the file dialog:

• thepublic areawhich contains examples common to all users, and

• thehome areawhich contains files which can only be accessed by a specific user.

64

Chapter 5. End User Aspects

Figure 5-12. The Load File Dialog

In contrast to the public area which can only be accessed in read-only mode, the home area can
also be used to upload files on the server. Both data areas are located on the file server which
is accessible by the application host (seeFigure 2-6).

The implementation of the file dialog is based on the standard Swing file chooser [WC99,
Swing]. For our purposes it has been extended by an accessibility component which can be
used to switch between the home and the public data area. Selecting either theHome Area or
thePublic Area radio button placed in the right part of the dialog, will show the files contained
in the user’s home area and the public area, respectively.

65

Chapter 5. End User Aspects

66

Chapter 6. The ETI Developer’s View
This chapter documents the developer’s view on the ETI ToolZone software. For this, it is
organized as follows.

First, Section 6.1gives a coarse-granular overview of the software components located in the
Internet access layer (seeSection 6.1.1) and the feature layer (seeSection 6.1.2) of the Tool-
Zone software. This will provide information which is required to understand the ETI-platform
design documented inSection 6.2.1andSection 6.2.2. Beside others

• Section 6.1.1illustrates the general communication mechanism which is used to connect
the client software and the tool management application via objects located in the Internet
access layer.

• Section 6.1.2presents facts on the structure of the METAFrame environment which are
important to understand the ToolZone software design.

Section 6.2then illustrates the design of the main conceptual business classes:

• types (Section 6.2.1) and

• activities (Section 6.2.2).

The types and activities are implemented by C++ and Java classes depending on the layer the
associated object are located in: C++ classes provide the implementation for the objects within
the feature layer, and objects within the Internet access layer and presentation layer are realized
by Java classes.

In particular,Section 6.2.1contains two sub-section. The first sub-section is dedicated to the
generic file types (Section 6.2.1.2). The second one (Section 6.2.1.3) present the design of
graphs. Since the design concepts illustrated in the two sections are reused in the context of the
graphs system design, this aspect is not covered by this chapter. The interested reader can find
it in Appendix A.

6.1. Zooming into the ToolZone Architecture
Before we start to present the design details of the ToolZone software, we need a better un-
derstanding of the software components and their responsibilities located in the Internet access
layer and the feature layer.

6.1.1. The Internet Access Layer
The Internet access layer of the ToolZone software is the mediator between the client software
and the tool-management application running on the application host. As already mentioned in

67

Chapter 6. The ETI Developer’s View

Section 2.1.5, its implementation comprises

• an HTTP server,

• the ToolZone server,

• the application server, and

• a Java Virtual Machine (JVM) process running on the application host.

Here the ToolZone server, the application server, and the JVM process implement the tool In-
ternet access server introduced inFigure 2-5. Whereas the ToolZone server and the application
server are only relevant during the login process (seeSection 5.1), the JVM process provides a
set of remotely accessible objects that manage the communication between the client and the
tool management application during a user session. The objects deployed in the JVM commu-
nicate via Java Remote Method Invocation with the ToolZone client and via the Java Native
Interface (JNI) [Gor98, JNI] with the tool management application (seeFigure 6-1). Beside
others,Section 6.2.1.3.1andSection A.1.1give concrete examples of objects deployed in the
JVM and present their collaboration in certain scenarios.

Figure 6-1. Central Software Components of the Internet Access Layer

As already mentioned inChapter 4, neither the ToolZone client nor the implementation of the
Internet access layer provide direct tool access. The client-side software implements the re-
mote graphical user interface (GUI) giving access to the features provided by the platform.
The features in terms of data objects and business logic are all implemented by the tool man-
agement application, i.e. within the feature layer. The Internet access layer implements the
communication facilities. Its purpose is to delegate client requests to objects within the tool
management application and vice versa. This strict separation of GUI, communication layer
and feature layer ensures that the tool management application fully controls the access to the
activities. At the same time this separation allows us to deploy a “thin” client application. This
keeps the system requirements on the client host at a minimum which is an important aspect of
wide software usability (seeSection 1.3.3.1).

68

Chapter 6. The ETI Developer’s View

The communication between the client and the feature layer via the Internet access layer con-
forms to the following pattern:

1. A GUI event invokes a method on an object provided by the ToolZone client.

2. The client side object delegates the method invocation to its server side opponent located
in the Internet access layer via Java RMI.

3. The corresponding method of the server side object is implemented as native method. In
consequence it is mapped to a function provided by the tool management application using
JNI.

4. The tool management application then performs the computation and finally initiates mod-
ifications on the client GUI by calling methods on Java objects located in the Java Virtual
Machine of the Internet access layer.

5. The method calls are then delegated to the equivalent object on the client side using Java
RMI.

6. The result of the initial GUI event is displayed on the client screen.

Figure 6-12andFigure A-3show concrete instantiations of this generic communication proce-
dure.

The next section now provides more information on the software components located in the
feature layer of the ToolZone software.

6.1.2. The Feature Layer
The feature layer of the ToolZone software is implemented by the tool management applica-
tion running on the application host. This application, which controls the access to the tools lo-
cated in the tool repository, is based on the METAFrame framework. It is implemented in C++
[Str97], and consists of an application-independent kernel managing the application-specific
components (here the activities and types) contained in a component database (the tool reposi-
tory). Amongst others, the METAFrame kernel provides

• the hypertext system[Dan98] giving access to the documentation and classification of the
activities and types,

• the synthesis component[SMF93] that allows the end user to generate coordination se-
quences from the synthesis-compliant activities contained in the tool repository,

• theHLL interpreter[Cla97, Hol97b] which controls the execution of single activities as well
as coordination programs, and

• thePLGraph library [BBCD97, PLGraph], that implements a flexible, polymorphic graph
data structure.

69

Chapter 6. The ETI Developer’s View

With respect to the ToolZone software, the HLL interpreter and the PLGraph library are rel-
evant to understand its design and the extension capabilities. Whereas extending the HLL by
new functions and types is the main task during the implementation of new activities and types,
the implementation of the generic graph and graphs system types are based on the PLGraph
graph library. The following two sections give a basic introduction to the two software compo-
nents, presenting mainly aspects which are relevant to the design of the ToolZone software.

6.1.2.1. The HLL Interpreter

Within the ETI project the HLL interpreter is used to control the execution of the ETI activities.
It can be programmed using the coordination language HLL. This imperative coordination
language can be extended by new data types and functions at runtime. The additional types
and functions are provided byMETAFrame Modules(implemented as shared libraries) that
can be imported into the interpreter core.Figure 6-2shows the structure of a METAFrame
module.

Figure 6-2. The Structure of a METAFrame Module

As presented in [Cla97], it consists of

• theEncapsulation Object Codeproviding the C++ classes implementing the chosen function
or type, and

• theModule Adapterwrapping the C++ classes into HLL functions and data types.

70

Chapter 6. The ETI Developer’s View

The adapter wraps and unwraps HLL data objects into C++ objects and maps the execution of
an HLL function to the corresponding encapsulation code. Besides some error handling, there
is no additional functionality provided by the adapter.

Building a METAFrame Module

Building METAFrame modules (see also [Hol97b]) is one of the main tasks of the integration
process which makes new activities and types available in the tool repository (seeChapter 7
for more information). In this process the METAFrame module is automatically generated on
the basis of

1. the C++ encapsulation code and

2. the METAFrame Module Adapter Specification

which provide the implementation of the addressed functions and types, and specify their
linkage to HLL functions and types, respectively. In detail, the automatic generation of the
METAFrame module on the basis of the encapsulation source code and the adapter specifica-
tion is performed in four steps:

1. generating the C++ source code of the module adapter out of the adapter specification,

2. compiling the C++ source code of the module adapter which results in the actualMETA-
Frame Module Adapter,

3. compiling the C++ source code of the encapsulation code which results in theEncapsula-
tion Object Code, and finally

4. building theMETAFrame Module(a shared library) by linking the METAFrame Module
Adapter and the encapsulation object code.

Figure 6-3exemplarily shows how the general workflow has been applied to build theAUTFile

METAFrame module. This module provides the HLL type AUTFile which gives access to la-
belled transition systems stored in theaut -file format (seeSection 4.1.1). Within Figure 6-3
the automatically generated files are represented by gray rectangulars whereas the files that
have to be provided by the developer are colored white. Edges denote automatic transforma-
tions which are performed either by tools bundled with the METAFrame environment or by
standard C++ compilers.

In the context of the ETI platform, this generic wrapping-process has been customized for the
integration of off-the-shelf software tools (see e.g.Chapter 7).

71

Chapter 6. The ETI Developer’s View

Figure 6-3. Building the AUTFile Module

6.1.2.2. The PLGraph Library

The PLGraph library realizes a flexible, polymorphic graph data structure implemented in C++.
The main concept of the library is the strict separation of

1. the graph structure represented by the nodes and edges, and

2. the application-specific data and functionality, which can be associated to these objects.

Figure 6-4shows a UML class diagram [BRJ98, FS99, UML] presenting important classes of
the library.

Figure 6-4. The PLGraph Design

72

Chapter 6. The ETI Developer’s View

Beside others the PLGraph library contains

• the classPLGraphClass gives access to the graph data structure by providing beside others
methods for obtaining the node and edge sets,

• the classesPLNode andPLEdge model node and edge objects, and

• the classesPLNodeLabel , PLEdgeLabel andPLGraphLabel model so calledlabelswhich
encapsulate the application-specific data and functionality.

Figure 6-5shows the conceptual structure of a node object in the PLGraph library. It consists
of a part which manages common data and functionality primarily concerned with providing
access to the graph structure, like access to predecessor and successor nodes. In addition to
that, it contains slots where application-specific data and functionality encapsulated into a label
object can be attached. Edge and graph objects are structured analogously.

Figure 6-5. Conceptual Structure of a PLGraph Library Node

Using the PLGraph library, a new graph type isnot obtained via inheritance from the graph,
node and edge classes. Instead the additional data and functionality is provided by label classes
inheriting from the classesPLNodeLabel , PLEdgeLabel andPLGraphLabel . A graph object
of the addressed type is then obtained by adding the corresponding label objects to the graph
at runtime.

The label classes are the key for the flexibility of the PLGraph library which in turn is important
for the ToolZone software. This is because the kind of data associated to nodes, edges and
graphs may change at runtime due to the different transformations which are applied to a
graph object. If we would obtain specific node types via inheritance instead of delegation the
kind of information associated to a node cannot be changed dynamically. It is fixed at the
time the corresponding graph object is created. To provide the required flexibility one could
alternatively

• provideone node classwhich is able to store all kind of data. This would solve the problem
but waste a lot of memory, since at a given time only a small part of the allocated node-
memory is used. This approach would not scale, since graph objects may contain a huge
number of nodes.

73

Chapter 6. The ETI Developer’s View

• implementseveral node classesone for each possible combination of node information. This
would also not scale due to an explosion of the number of node classes. Another disadvan-
tage of this approach is that we must know the different kind of information needed for the
actual transformation at the creation time of the graph object.

The trade-off to the flexibility are the following three minor drawbacks:

1. The type of a graph cannot be determined at compile time. This is due to the fact that the
type of a graph is implicitly defined by the type of the label objects attached to the nodes,
edges and the graph. But this information cannot be computed at compile time.

2. During runtime it is not ensured that the proper label objects are attached to the graph,
when required. This is the responsibility of the application developer.

3. The concept of specializing a graph object by encapsulating the new functionality into
special classes and not by inheritance from a base graph class is unusual to most pro-
grammers. Additionally, the graph’s functionality is not accessible via one class. Instead
it is distributed over several label classes each providing a dedicated set of methods. This
means that the usage of the library within an application gets more complicated.

Within a specific context like the ETI platform these drawbacks can be hidden from the devel-
oper using certain design patterns (seeSection 6.2.1.3).

6.2. The Design of the Business Classes
The next two sections go into the details of the design of the main business classes of the
ToolZone software:

1. types (Section 6.2.1)

2. activities (Section 6.2.2).

6.2.1. The Design of the generic Types
This section explains the design of two generic types which are currently supported by the
ToolZone software:

1. files (seeSection 6.2.1.2),

2. graphs (seeSection 6.2.1.3), and

The third supported type, i.e. the graphs system, is handled inAppendix Asince its design does
not introduce new concept.

74

Chapter 6. The ETI Developer’s View

In particular, the following two sections present the realization of the communication between
the presentation layer and the feature layer introduced inSection 6.1.1on a detailed level. Thus
they document the realization of an Internet-based, secure, performant and failsafe infrastruc-
ture to provide access to the coordination features offered by METAFrame environment, was
put into practice. The sections do not introduce new concepts. For this, they mainly address

• readers who want to extend the ToolZone software and

• readers who look for a solution in a similar application domain.

Consequently, readers who are not interested in the design details may continue withSection
6.2.2.

6.2.1.1. Basic Features

The generic types are realized by the classesETIFile , ETIGraph and ETISystem . New,
specific file, graph, and graphs system types are (mainly) obtained via inheritance from these
base classes.

All generic types provide basic features which help to maintain their concrete subtypes. For
this a unique type identifier is used (seeChapter 7). This management functionality includes
beside others

• methods to register new concrete types, like theregisterFileType method of the class
ETIFile ,

• methods to obtain all currently available subtypes of a specific generic type, likegetReg-

isteredGraphTypes method of the classETIGraph ,

• methods to obtain a fresh object of a specific subtype via the unique type identifier (e.g.
provided by the methodgetSystemByType of the classETISystem).

Note that the following sections do not go further into the design of graphs systems. This is
presented inAppendix A.

6.2.1.2. Access to the File System

The design of the generic file type is illustrated along the two steps that have to be performed
to access the data which is stored in a file:

1. Selecting the name of the file via the file dialog (seeSection 6.2.1.2.1).

2. Accessing the file within the tool management application (seeSection 6.2.1.2.2).

75

Chapter 6. The ETI Developer’s View

6.2.1.2.1. Selecting a File Name

The selection of a file name is done using the file dialog shown inFigure 5-12. The window ex-
tends the standard Swing file chooser by two radio buttons, which are used to switch between
the public and the home area. According to the design of the Swing file chooser, the func-
tionality required to browse through a file system is provided by the classFileSystemView

contained in thejavax.swing.filechooser package. Here methods likegetFiles and
createNewFolder give access to the underlying file system (see [JavaAPI] for more infor-
mation).

Figure 6-6. The ToolZone User File System Classes

Note: Since objects of the type javax.swing.filechooser.FileSystemView are lo-
cated in the client layer as well as the Internet access layer, this class is contained in
both package elements.

The ToolZone file system is split up into a client side and a server side file system which
communicate via Java RMI.Figure 6-6shows the classes implementing the home area (user
file system).

The implementation uses theProxy Patternwhich is a standard design guideline to “provide a
surrogate or placeholder for another object to control access to it” [GHJV95]. The purpose of
the pattern within the ToolZone software is

1. to provide a client side representative of the file system located on the server, thereby hid-
ing the details of the client server communication to the client application. In consequence,
changing the communication mechanism does not affect the code of the client application.
This characteristics of the proxy pattern is also calledremote proxy.

2. to control the access to the “real” files located on the server. This ensures, that clients

• can only access the specific parts of the whole file system which are dedicated to the
ToolZone application.

76

Chapter 6. The ETI Developer’s View

• can access the public area only in read-only mode.

• can access the home area in read and write mode.

This means that a central part of the security policy of the ToolZone software is imple-
mented via this particular form of the proxy pattern, also known asprotection proxy.

The remote proxy is realized by the classETIUserFileSystemProxy which gives the client-
side classes access to the server-side file system. The object providing the server-side access
to the file system is the classETIRemoteUserFSImpl . To control the operation on the file
system, the classETIRemoteUserFSImpl does not use the standardFileSystemView class
contained in thejavax.swing.filechooser package. Instead of this the access policy is
implemented by a protection proxy (classETIFileSystem) which controls the real file access
provided by theFileSystemView class.

Note: The design of the public file system is similar to the design of user file system.

Within the selection process only client side objects and objects contained in the Internet access
layer are involved. No tool management functionality is required.

Figure 6-7shows the collaboration between the client side and server side classes implementing
the user file system as UML sequence diagram. Here the scenario where the client file chooser
requests the name of the files contained in a directory is documented. This complex process,
where client side request are delegated via the remote proxy (ETIUserFileSystemProxy)
and the protection proxy implemented by theETIFileSystem class, ensures that the client
code is independent of the particular communication mechanism and that the data is securely
accessed.

Figure 6-7. Requesting File Names of a Directory

77

Chapter 6. The ETI Developer’s View

In detail, a client request for a file name is handled as follows. Whenever the client wants to
get the list of the files contained in a directory on the server, it calls thegetFiles method
on the ETIUserFileSystemProxy object. This object is an implementation-independent
representative of the real file system. It delegates the method invocation to its opponent on
the server side (object of typeETIRemoteUserFileSystem), here using Java RMI. The
server side object then uses theETIFileSystem to get the list of the files represented as
java.io.File objects. To make these objects accessible by the client, theETIFileSystem

wraps theFile objects intoRemoteFileImpl objects which implement the remote interface
RemoteFile . After that, the skeletons of theRemoteFile objects are returned to the client,
i.e. to theETIUserFileSystemProxy object. Since the classETIUserFileSystemProxy

is derived from the classFileSystemView (seeFigure 6-6), the getFiles method must
return objects derived fromjava.io.File . Hence, theETIUserFileSystemProxy object
encapsulates theRemoteFile objects intoETIFile objects, which are derived from the class
java.io.File . Figure 6-8shows the classes implementing the file handling in the Internet
access and presentation layer.

Figure 6-8. The Java File Class Hierarchy

6.2.1.2.2. Accessing the File within the Tool Management Application

The result of the file-selection process is a string which locates the file on the server. It is passed
by the client to the tool management application for further processing. There are mainly two
scenarios for this processing task:

1. The content of the file is loaded into a corresponding editor.

2. The content of the file is used to initialize an object which is itself processed by an activity.

Within the tool management application, files are modeled as classes derived fromETIFile .
This means, that e.g. a file in the CADPaut -format is represented by a C++ class with name
AUTFile , which inherits from the generic file classETIFile . Figure 6-9shows a part of the
ETIFile class hierarchy within the platform instantiation for STTT. Here the classesTGFile ,
TAFile andHYFile model text files which store graphs systems of the tools Kronos, Uppaal,
and HyTech respectively.

Similar to thejava.io.File class, the file objects only provide meta information on the
chosen file. Within the ToolZone software, the meta information comprises the file name and

78

Chapter 6. The ETI Developer’s View

its type, and the unique file type identifier. It is the responsibility of the application to open,
close, etc. the associated file on the hard disk.

Figure 6-9. Part of the STTT File Classes Hierarchy

6.2.1.3. Directed Graphs

Verification tools like [FGK96, Yov97, HHW97, LPY97] were in the focus of the first applica-
tion domain of the ETI platform. These tools (semi) decide whether a system satisfies a certain
property. In most cases the system is modeled as labelled transition system, i.e. a directed
graph where atomic information can be associated to the nodes and edges, or a collection of
them calledgraphs system. The corresponding property is defined by a formula in a certain
logic, e.g. the modal mu-calculus [Koz82]. In consequence, directed graphs and collections of
them are very important data structures in this field of application.

As already mentioned, the ToolZone software uses the PLGraph library of the METAFrame
project to implement the generic graph type. This was done by writing node, edge and graph
label classes which provide the ETI specific functionality (seeFigure 6-10). On the basis of the
label classes a new graph type can be obtained by providing label classes which inherit from
the classesETINodeLabel , ETIEdgeLabel andETIGraphLabel , respectively.Section 7.5.2
goes into the details of this process.

Figure 6-10. The ETI Graph Label Hierarchy

In the context of the ToolZone software the PLGraph library can be controlled by introducing
a facade class [GHJV95] (classETIGraph of Figure 6-10) and coding guidelines in a way that

79

Chapter 6. The ETI Developer’s View

the usage of a graph type is simplified without loosing its flexibility. In combination, the two
concepts tackle all drawbacks mentioned inSection 6.1.2.2:

1. The facade class makes the type of a graph object explicit. Consequently, we can check
the type of a graph at compile time without loosing the runtime-flexibility.

2. The coding guidelines recommend to initialize the appropriate label objects at the creation
time of the graph object (seeSection 7.5.2.1.3). This ensures that the proper label objects
are attached to the graph, which prevents runtime errors.

3. The ToolZone software extends the classPLGraph to implement the base class (class
ETIGraph) for the specific facade classes. The facade classes themselves are derived from
the classETIGraph .

Every implementation of a specialized graph type comprises a facade class which is derived
from the classETIGraph (seeSection 7.5.2.1.5). The facade class does not provide any func-
tionality itself. It delegates all method invocations to the corresponding graph label object.

In the rest of this section we present the implementation of the graphical user interface of the
graph types (Section 6.2.1.3.1). This illustrates the communication between client and server
side components of the ToolZone software in the graph scenario (see alsoSection 6.1.1). Fi-
nally, we explain the basic design of the file formats inSection 6.2.1.3.2. In combination with
the label classes, the file-format classes are the basis for the graph-integration process docu-
mented inSection 7.5.2.

6.2.1.3.1. The Graphical User Interface

Whereas the objects which store the graph data structure are all located in the feature layer,
the objects which display the graph are distributed over all the layers of the ToolZone software
depicted inFigure 2-5. Depending on the layer in which the objects are located, they commu-
nicate via Java RMI or JNI with each other, and the graph object which is shown on the screen.
Figure 6-11shows all classes which are responsible for displaying a graph object on the client
screen.

Within the feature layer, the main class representing the GUI is the classETIJavaGraph-

Window. It is derived fromPLGraphWindow which is a special graph label, i.e. it is derived
from the classPLGraphLabel . To display a graph on the client screen, first a newETIJava-

GraphWindow object is created on the server side, and then this object is attached to the graph
object to be shown using theaddGraphLabel method of the classPLGraph . Figure 6-12
shows the details of this process. TheETIGraphHandler object residing in the Internet ac-
cess layer of the software is the mediator between the server side and the client side GUI
objects. It communicates with the server object via JNI and with the client objects of type
ETIGraphFrameImpl andETIGraphImpl via Java RMI. The remote views of the objects of
the two classes are defined by the interfacesETIGraphFrame andETIGraph , respectively.
The ETIGraphFrameImpl implements the window in which the graph is shown, i.e. it pro-
vides the menu bar, the tool bar including the quick and mode buttons, and the graph canvas

80

Chapter 6. The ETI Developer’s View

(seeFigure 5-10). The graphic representation of the nodes and edges of the graph, i.e. the
content of the graph canvas, is implemented by theETIGraphImpl class.

Figure 6-11. Classes building the GUI of a Graph Object

The ETIGraphHandler object provides two remote views to the client defined by the in-
terfacesETIGraphController andETIGraphMenuController . The methods of theETI-

GraphController interface are used by theETIGraphImpl objects to get access to the cor-
respondingETIGraph object located in the feature layer. TheETIGraphMenuController

interface allows theETIGraphFrameImpl object to accessETIJavaGraphWindow function-
ality.

Figure 6-12. Creating a remote Graph Editor Window

Figure 6-12shows the scenario where a remote graph window is created by the server side

81

Chapter 6. The ETI Developer’s View

application in order to display a graph object on the client. In accordance to the communication
pattern documented inSection 6.1.1, the creation of theETIJavaGraphWindow object has
been initiated by the client GUI, and passed via the Internet access layer to the tool management
application (see steps one to three of the communication pattern). As already mentioned in
Section 6.1.1, this complex process has been realized to let the application logic been executed
on the server, thus allowing us to deploy a thin client application.

The GUI of the ToolZone software is implemented in a generic way. This means that it is the
same for all graph types available in the ETI platform. Adding a new graph type to the platform
has no impact on the GUI classes.

6.2.1.3.2. File Formats

A file-format class provides the implementation of the functionality which is needed to load a
graph object from and to store it to a file. Beside others, it comprises the scanner and the parser
which are able to handle the syntax of a specific format. The ToolZone software distinguishes
two kinds of file formats:

The (unique)native file format:

The native format is the default format which is used to make a graph object persistent on
the disk.

Optionalimport/export filters:

The filters store graph objects into and load graph objects from files whose content is not
conform to the native format. Thereby they provide a link to other graph libraries.

A file-format class is implemented as a graph label. More precisely, it must be derived from
the classPLFileFormat contained in the PLGraph library. Before a graph can be stored to or
loaded from a file of a certain format, a corresponding file format object has to be created and
registered to the graph object. This is done in the constructor of the graph facade class using
theaddFileFormat method of the classPLGraphClass . Example 6-1shows the registration
of theAUTFileFormat to an object of typeAUTGraph.

Example 6-1. Registering theAUTFileFormat

AUTGraph::AUTGraph ()
{

:
:

addFileFormat (new AUTFileFormat ());
}

82

Chapter 6. The ETI Developer’s View

The interaction between a graph and a file-format object is exemplarily illustrated in a scenario
where a graph is stored into a native file (seeFigure 6-13). In the case that a graph is loaded
from a native file, or that non-native export and import filters are used, the communication
between the objects is similar. Only the requested methods vary.

Whenever the application stores a graph into a native file, the methodtoFile is called on the
graph facade object (seeAUTGraph object inFigure 6-13). Since this facade class does not pro-
vide the requested functionality, the method invocation is first delegated to the corresponding
graph label object. Now, the graph label object determines the identifier of the native file for-
mat via agetNativeFileFormat call. Knowing the file type identifier, the graph label object
requests the save functionality from the corresponding graph object. ThesaveFile method
of thePLGraphClass object then uses the passed file format identifier to determine the cor-
responding file format object, and invokes thesave method on it. This finally stores the graph
object into a file.Figure 6-13shows a UML sequence diagram documenting this scenario.

Figure 6-13. Saving anAUTGraph Object to a File

Note that most parts of the process are implemented in the core of the ToolZone software,
in particular in the classPLGraphLabel from which theAUTGraphLabel class is derived.
This means that only the specific file format class has to be provided and registered to the
graph object when a new file format should be supported (seeSection 7.5.2). In consequence,
the developer can focus on his expertise, here writing the chosen file format (see alsoSection
7.5.2.1.4).

6.2.2. ETI Activities
An activity represents a single functionality of which many may be provided by a single in-

83

Chapter 6. The ETI Developer’s View

tegrated tool. This tool feature can be accessed via the HLL function defined by the activity’s
implementation constituent (Section 2.1.1). The signature of the HLL function is of the form
of

f1 (Type
1
: input

1
, ..., Type

m
: input

m
,

Type
m+1

: result
m+1

, ..., Type
n
: result

n
): ETIResult,

where

• f1 is the name of the HLL function,

• input
1

to input
m

are the arguments representing theinput data,

• result
m+1

to result
n

are the arguments which contain thecomputational resultafter the
activity execution, and

• the return value of type ETIResult providesdiagnostic information about the activity execu-
tion. It comprises the termination status of the activity (ok, fail, etc.) and optional diagnostic
output generated by the wrapped tool feature.

If it is a synthesis-compliant activity, the signature of the HLL function contains onlyoneinput
parameter andoneoutput parameter (which may be composite).

6.2.2.1. Wrapping Tool Features

As already mentioned inSection 6.1.2.1, the HLL function is implemented by a METAFrame
module which consists of two components:

• theencapsulation codewhich comprises several C++ classes giving direct access to the tool
feature, and

• themodule adapterwrapping the C++ functionality into the HLL function.

Example 6-2shows how the the HLL functionaldebaranMIN_STD_I has been realized on the
basis of thealdebaran tool. Note that the example only presents an overview of the wrapping
concept.Section 7.5.3goes into the details of the techniques which are used to provide the
implementation constituent of an activity.

Example 6-2. Realization of thealdebaranMIN_STD_I HLL function

The activityaldebaranMIN_STD_I represents the feature of thealdebaran tool which min-
imizes a labelled transition system with respect to thetau*.a bisimulation [Mil89] using the
Paige/Tarjan algorithm [FM90, PT87]. The feature can be accessed by executing a command
of the form of

aldebaran -std -imin in.aut > out.aut,

84

Chapter 6. The ETI Developer’s View

where

• the command line options-std and-imin specify the kind of the minimization procedure
which has been chosen, heretau*.a bisimulation using the Paige/Tarjan algorithm,

• in.aut specifies theaut file which stores the LTS to be minimized, and

• out.aut defines the file into which the minimized LTS is stored.

Figure 6-14shows how the chosen aldebaran feature is accessed via the HLL function. For
this,

• the encapsulation code comprises the C++ classCADPwhich offers the methodaldebaran-

MIN_STD_I . This method executes the system call to access thealdebaran feature.

• the module adapter provides the implementation of the HLL functionaldebaranMIN_STD_I

of theCADP. The implementation uses thealdebaranMIN_STD_I of the classCADP.

Figure 6-14. Wrapping Tool Functionality

6.2.2.2. Activity Execution

An activity can be executed either in stand-alone mode or in tool-coordination mode. The
corresponding HLL code fragment, which uses the HLL function defined by the activity’s
implementation constituent, is run by the METAFrame interpreter. Here, the interpreter only
controls the execution flow. Neither the adapter code nor the encapsulation code provide the
implementation of the real computation. This is performed by the tool itself. For this, the
execution flow is delegated by the interpreter via the module adapter and the encapsulation
code to the tool.Figure 6-15shows how thealdebaranMID_STD_I activity is executed by
the interpreter in the context of a coordination sequence.

85

Chapter 6. The ETI Developer’s View

Figure 6-15. Executing an Activity in tool-coordination Mode

When a coordination sequence is executed by the client, the tool management application calls
theexecuteSequence method on theETIRepository object, which models the tool repos-
itory in the ToolZone software. For every activity contained in the coordination sequence, the
ETIRepository object first fetches the tool-coordination HLL code of the activity. Then the
interpreter is asked to run the corresponding HLL code. In our example the HLL code com-
prises thealdebaranMIN_STD_I function. When this HLL function is run, the interpreter
passes the execution flow via theCADPAdapter and theCADPobjects to thealdebaran tool,
which provides the implementation of the chosen functionality.

During the execution of the HLL function, the input and output data is handled as follows (see
Figure 6-16). TheCADPAdapter is responsible for unwrapping the real C++ data object from
the HLL object passed as the first argument of the HLL function (the input data of the activity)
and calling thealdebaranMIN_STD_I method of theCADPencapsulation object. The imple-
mentation of thealdebaranMIN_STD_I method then builds the appropriate system call and
executes it. The diagnostic output of the system command execution is collected and passed
back to theCADPAdapter as return value of the C++ method invocation. The computational
result, i.e. the file representing the minimized graph is encapsulated into a C++AUTFile ob-
ject. After the execution of thealdebaranMIN_STD_I method within theCADPobject has
been finished, the control flow gets back to theCADPAdapter . Now the adapter

1. wraps the computational result (obtained via the second parameter of the C++ method)
into an HLL AUTFile object,

2. wraps the diagnostic result into a ETIResult object, and

3. finally passes the control flow back to the interpreter.

86

Chapter 6. The ETI Developer’s View

Figure 6-16. Handling Input/Output Data

6.2.2.3. Inter-activity Communication

Inter-activity communication is realized by means of data passing. This means, that the two
activities can share information by using the same variable identifier to store the data for the
transfer. Depending on the coordination facility, the activity communication must either be
programmed by hand (HLL-based coordination) or it is provided by the activity execution
context (synthesis-based coordination). Since we have already presented HLL-based coordina-
tion in Section 2.1.3, we will now focus on inter-activity communication in the context of the
execution of a coordination sequence.

After the execution of an activity has been finished, its computational result is passed, via the
second argument of the corresponding HLL function call, back to the interpreter. The inter-
preter can now pass this object to the subsequent activity as first parameter, if the HLL code
uses the same variable identifier to reference the data. The upper part ofFigure 6-17shows a
fragment of the coordination sequence documented inFigure 5-7. In the lower part of the same
figure the corresponding HLL code is presented. Here, the dotted arrows document how the
data is passed from one activity to another.

Figure 6-17. Passing Data between Activities

Conceptually, this procedure is well-defined, since the synthesis component only delivers type-
safe coordination sequences, i.e. sequences of activities where the output type of an activity

87

Chapter 6. The ETI Developer’s View

is the same as the input type of the subsequent one. From the HLL programming point of
view, this requires some guidelines for writing the tool-coordination HLL-code (seeSection
7.5.3.3.1).

88

Chapter 7. The Tool Integrator’s Tasks
Tool integration (see also [BMW97]) is the task of adding new activities and types to the ETI
tool repository. After the integration the activities and types can be accessed via the ToolZone
client. In general, integrating software tools is a complex task. But the ETI platform provides
an environment where the integrator can focus on his expertise (see e.g.Section 6.2.1.3.2), i.e.
the knowledge on the tool to be integrated.

To make tool integration as easy as possible it is important, that the tool integrator is guided by
a clearly defined process which beside others

• documents the specific hooks which are offered by the ETI platform for the integration of
new types and activities and

• presents solutions for frequently occurring integration situations.

This also ensures that the source code of the platform extensions in form of new activities and
types remains maintainable.

This chapter covers the ETI tool integration process. It uses the flexible component-integration
facilities offered by the METAFrame project (see [Cla97]). In the context of the ETI platform,
we embed this technology into workflows, utility tools and guidelines customized for the inte-
gration task.

Process Overview

To add a new software tool to the ETI tool repository, the integrator has to

1. split up the tool to be integrated conceptually into a set of ETI activities, and to choose or
invent appropriate input and output types,

2. classify the activities and the associated types within ETI’s taxonomies,

3. define the activities’ implementation constituent,

4. specify the stand-alone constituent of the activities.

If the chosen activity is synthesis-compliant, the tool integrator must also

1. specify the activity’s interface constituent and

2. define the tool-coordination constituent of the activity.

The easiest way to integrate a tool into the ETI platform is theETI Integration Light. This
process applies primarily to tools providing their own GUI. The big disadvantage of this kind
of tool integration is that lightly integrated activities cannot be used for tool coordination.
They can only be executed in stand-alone mode. This means, that the tool is integrated as one
monolithic activity, which cannot be connected to other ETI activities. In contrast to the ETI

89

Chapter 7. The Tool Integrator’s Tasks

Integration Light, theETI Advanced Integrationneeds more integration effort. But it results in
activities which can be coordinated with any other activity available in the tool-repository.

The integration process, in particular the programming in the context of the advanced integra-
tion, seems to be a time-consuming and often not challenging task. But adding new activities
over and over again is indispensable for the success of the ETI platform. To ease this proce-
dure, the ETI platform provides a process including coding guidelines and some utility tools to
make the labor of integration more convenient.

Outline of this Chapter

The focus of this chapter are the steps which require programming effort, i.e.

• the realization of an activity’simplementation constituent,

• the definition of an activity’sstand-alone constituent, and

• if required, the definition of an activity’stool-coordination constituent.

Whereas the realization of an activity’s implementation constituent is done bycreating METAFrame
modulesproviding the corresponding HLL function and data types (seeSection 6.1.2.1), the
specification of the stand-alone and tool-coordination constituent is done viaHLL program-
ming.

To present the integration process and to point out where the tool integrator is supported during
his task, this chapter is organized as follows.

From a coarse granular point of view,Section 7.1, Section 7.2, andSection 7.3cover aspects
that are relevant for both, the light and the advanced integration processes.Section 7.4and
Section 7.5then apply the presented concepts to the two kinds of tool-integration, i.e. Integra-
tion Light and Advanced Integration, respectively. Most of this chapter is concerned with the
advanced integration. Whereas the light integration is rather simple, there are a lot of aspects
that have to be presented with respect to the advanced integration process.

Concretely,Section 7.1illustrates the conceptual tasks.

Here

• the taxonomy extension (Section 7.1.1) and

• the specification of the interface constituent of an synthesis-compliant activity (Section
7.1.2)

are presented.

Section 7.2gives an overview of the implementation tasks of the integration process.

For this, the section introduces the subtasks which are concerned with the concrete imple-
mentation of an activity or type:

90

Chapter 7. The Tool Integrator’s Tasks

• encapsulation and

• HLL extension

result in the METAFrame modules providing the activity’s implementation constituent
including the required types and

• HLL programming

is used to define the activity’s stand-alone and tool-coordination constituents.

Section 7.3presents the integration support offered by the ETI platform.

It gives an overview of the utility programs and the coding guidelines that ease the ad-
vanced integration process.

Section 7.4covers the ETI Integration Light.

This section points out that the light integration is on the one hand much easier than the
advanced integration. But on the other hand this process does not prepare the chosen tool’s
features for coordination.

Section 7.5, the focus of this chapter, goes into the details of the ETI Advanced Integration.

Here, we cover the integration of new data types inSection 7.5.1(files), andSection 7.5.2
(graphs). Since the integration of graphs systems is very similar to graph integration, this
aspect is delegated toAppendix A. Finally, we go into the details of integrating activities
in Section 7.5.3.

Section 7.6

summarizes this chapter by talking about the effort which is needed to integrate tools into
the ETI platform.

Still more technical information on the ETI integration process can be found in [Bra99]. Note
that a thorough understanding of the design of the ToolZone software is essential. SeeChapter
6 for more details on this issue.

7.1. Conceptual Modeling
After the chosen tool has been split up into a set of activities and adequate types have been
invented (see Step 1 of the integration process), the activities and the associated types have to
be classified in the activity and type taxonomy, respectively. Additionally, the interface con-
stituents of all synthesis-compliant activities have to be defined. This procedure extends ETI’s
coordination language by new identifiers. Subsequently, end users are able to define loose spec-
ifications which contain the new types and activities (seeSection 2.1.4.2). However, since the

91

Chapter 7. The Tool Integrator’s Tasks

concrete implementation of the new repository entities is still missing, neither HLL programs
nor coordination sequences using the new types and activities can be executed at this stage.

7.1.1. Classification within the Taxonomies
To modify the type and activity taxonomies, currently a text file storing the type and activity
information of the tool repository has to be edited. In a future version of the platform, this
information will be editable via a graphical user interface (seeChapter 16). To add a new
entity to a taxonomy, first of all a group has to be chosen to which the new taxonomy entry
should be "connected". Depending on the current status of the taxonomies, either an adequate
group can be found, or it may have to be invented and added to the taxonomy.

Tip: If the tool to be integrated provides more than one type or activity, one entry should
be added to the taxonomy that defines a group representing all types or activities pro-
vided by this tool.

Example 7-1shows the general process of classifying a new type by means of the type AUTFile.

Example 7-1. The AUTFile Entries in the STTT Repository File

In the following we will add the type AUTFile to the type taxonomy as an example. After an
appropriate group has been chosen to connect the new type to (here the group CADPFile shown
in Example 7-1line (1)), at least the following two entries have to be added to the repository
file to extend the taxonomy:

1. An entry that declares the entity to be added to the taxonomy and establishes an is-a
relation to the previously chosen group (see(2) in Example 7-1).

2. An entry which establishes a link between the new entity and the HTML file containing
its documentation (see(3) in Example 7-1).

% Declaration of the type CADPFile as a descendant
& of the type group File.
% The type group CADPFile represents all
% file types provided by the CADP Tool Kit
tax (type, File, CADPFile). (1)

% Declaration of the type AUTFile as a "special" CADPFile type
tax (type, CADPFile, AUTFile). (2)

% Reference to the AUTFile type documentation page
tax_info (type, AUTFile, ’AUTFile.html’). (3)

92

Chapter 7. The Tool Integrator’s Tasks

Note: If the entity to be added is an activity, the keyword module must be used instead of
type . This is due to the fact that the ToolZone software uses the synthesis component of
the METAFrame environment, which offers types and modules. Whereas ETI types are
represented as types in the synthesis component, ETI activities are modeled as modules.

The documented entries specify only the repository file entries which are required to add a
new entity to one of ETI’s taxonomies. Additionally, entries establishing further usefulis-a
relations between the new entity and other entities of the taxonomy can be added. To define a
new relation representing that a typeT

1
is-a typeT

2
, the repository file must be extended by

the following entry:

tax (type, T
2
, T

1
).

With respect to the DAG presentation of the taxonomy, each entry of this kind models an edge
starting at the nodeT

2
and ending atT

1
.

7.1.2. Defining the Activity’s Interface Constituent
If a synthesis-compliant activity is to be declared within the tool repository, an entry which
specifies the activity’s interface constituent has to be added. This is of the form of

module (activity_name , input_type , output_type).

Example 7-2shows the specification of the interface constituent of thealdebaranMIN_STD_I

activity introduced inSection 6.2.2.

Example 7-2. Specification of thealdebaranMIN_STD_I ’s Interface Constituent

% interface constituent of aldebaranMIN_STD_I
module (aldebaranMIN_STD_I, AUTFile, AUTFile).

7.2. The Integration Process Distilled
After the conceptual modeling of the activity and the associated types (seeSection 7.1) have
been finished, two major tasks have to be performed to provide the implementation constituent
of the activity:

93

Chapter 7. The Tool Integrator’s Tasks

1. Integration of the required data types.

2. Integration of the chosen tool feature.

Each task consists of two subtasks which make the data types and the tool feature available to
the HLL interpreter as new HLL types and functions:

1. Encapsulation:

Encapsulate the data types and functionality provided by the tool to be integrated into
C++ [Str97] classes. These classes constitute the encapsulation code shown inFigure 6-2.

2. HLL Extension:

Extend the HLL by writing a module adapter specification on the basis of the encapsula-
tion code and build the METAFrame modules which make the chosen functionality and
data types available as HLL functions and types.

If a tool feature (and not a type) is to be integrated, the stand-alone and tool-coordination
constituent of the activity has to be defined. This is done in the HLL programming subtask:

3. HLL Programming:

Define the stand-alone constituent of the activity as an HLL program. If the chosen activity
is synthesis-compliant, the tool-coordination constituent also has to be provided in form
of a HLL program.

7.3. Integration Support
When we designed the ETI platform, one of our major concerns was a simple and standardized
integration process, which should make the integration tasks as easy as possible.

For this the ETI platform offers

• utility softwarewhich generates C++ encapsulation code and METAFrame adapter specifi-
cations from specifications of the type and the activity to be integrated (seeSection 7.3.1).

• design-level and coding guidelinesthat standardize the integration architecture and code (see
Section 7.3.2).

7.3.1. Utility Software
The ETI platform provides several utility tools which generate C++ encapsulation code and
METAFrame adapter specifications from specifications of the type and the activity to be in-
tegrated. These tools semi-automize the integration process, since they generate substantial

94

Chapter 7. The Tool Integrator’s Tasks

parts of the code which is required to integrate a tool.Table 7-1shows an overview of the tool
support which is currently offered to simplify the advanced integration process.

Note: A complete list of all functions provided by the generated C++ classes and adapter
specifications can be found in [Bra99].

Table 7-1. Tool-based Integration Support

Entity Encapsulation HLL Extension HLL Programming
File fully automatic fully automatic not required

Graph semi automatic fully automatic not required

Graphs System manual fully automatic not required

Activity manual manual manual

Although the functionality offered by the generated C++ classes and adapter specifications
cover most integration scenarios, in some special cases the code must be implemented manu-
ally. In the latter case, the C++ classes building the encapsulation code are realized on the basis
of the API of the ToolZone software documented inChapter 6. The creation of METAFrame
module adapters is detailed in [Hol-b].

7.3.2. Coding Guidelines
In addition to the tools documented in the previous section, the integration process is accom-
panied by design-level and coding guidelines. Similar to other well-known coding guidelines
like the Code Conventions for the Java Programming Language [JavaCodeConv], they contain
rules which beside others settle how identifiers of classes, methods and data attributes should
be built. The ETI coding guidelines, which can be found at the ETI Community Online Ser-
vice, also provide platform-specific suggestions which simplify the integration process and
keep the platform’s architecture uniform. The most important guidelines which are relevant to
the examples presented in this thesis are listed below.

For every tool which is to be integrated into the platform:

1. ImplementoneC++ class that providesstaticmethods giving access to the tool features to
be integrated.

2. For each type needed by one of the tool features implementoneC++ class encapsulating
this type.

3. Build oneMETAFrame module that exports HLL functions wrapping the static methods of
the C++ class. This module makes functionality offered by the encapsulated tool available
as HLL functions.

95

Chapter 7. The Tool Integrator’s Tasks

4. Build oneMETAFrame module for each tool data type implemented in step 2. This HLL-
enables the encapsulated tool data types.

5. Use the same identifier for a function/method or a data type within the taxonomies, module
adapters and encapsulation code.

7.4. Integration Light
The easiest way to integrate a tool into the ETI platform is theETI Integration Light. This
process applies primarily to tools providing their own GUI. Here, no encapsulation and no
HLL extension is required, since the required data types and functions are already available
in the core of the ToolZone software. Even the tasks which have to be performed within the
conceptual modeling and HLL programming phases are trivial.

As already mentioned at the beginning of this chapter, lightly integrated tools can only be
executed in stand-alone mode. A lightly integrated tool always runs on the application host
(seeFigure 2-6). The GUI of the tool is transfered to the client machine using the X protocol
[Nye95, XWindows]. Technically, the remote display of the GUI via the Internet is problematic.
On the one hand a lot of data has to pass the Net, on the other hand most firewall configurations
disallow the remote display for security reasons. But in an Intranet scenario, where bandwidth
is not a big issue and where all machines run in a trusted environment, this feature can be very
useful.

In the rest of this section we document

• the conceptual modeling (Section 7.4.1and

• HLL programming (Section 7.4.2) tasks

in the context of the ETI Light Integration.

7.4.1. Conceptual Modeling
The modeling of a lightly integrated tool as an ETI activity is very simple. It is always repre-
sented by exactlyoneactivity having input and output type ETINone. This activity has to be
a descendant of the special activity group namedstand_alone . This is due to the fact that
lightly integrated tools should not be considered by the synthesis process for the generation of
coordination sequences.

Example 7-3shows the entries that were added to the ETI tool repository file to fully specify
the classification and the interface constituent of the activityxeuca .

96

Chapter 7. The Tool Integrator’s Tasks

Example 7-3. Thexeuca Activity

The activityxeuca represents thexeucatool contained in the CADP toolkit (seeSection 4.1.1).
In this example, we put thexeuca activity into the activity groupmisc (see(2) in Example
7-3) which is a descendant of the groupstand_alone (see(1) in Example 7-3). Line (3) of
Example 7-3defines the declarative view, i.e. input/output behavior, of thexeuca activity. It
transforms an object of type ETINone into an object of the same type.

tax(module, stand_alone, misc). (1)
tax(module, misc, xeuca). (2)
module(xeuca, ETINone, ETINone). (3)

7.4.2. HLL Programming
During the HLL programming phase, the integrator must provide two HLL code fragments
which define the execution behavior of the activity. Since a lightly integrated tool can only
be run in stand-alone execution mode, the HLL code specifying the tool-coordination runtime
behavior is trivial. It consists of the empty statement denoted as the empty string.

The stand-alone HLL code of a lightly integrated tool is simple too, since the ToolZone soft-
ware provides the METAFrame moduleETI implementing beside others the functionality for
remote execution. The remote execution feature can be accessed by the HLL functionrexec

contained in theETI module.Example 7-4shows the stand-alone execution code of thexeuca

activity.

Example 7-4. The stand-alone Execution Code of thexeuca Activity

ETI.rexec("cd /eti/public/cadp; xeuca");

7.5. Advanced Integration
The next sections go into the details of the advanced integration process. They present the
extension capabilities of the ToolZone software, sometimes on the level of its C++ application
programming interface. Although the rest of this chapter is very technical, it is important to
be presented since it emphasizes the flexibility of the ToolZone software and shows that tool-
integration is easier than one might expect at first sight. Since a lot of information has to be
provided concerning this kind of integration, this section covers the most part of the chapter.

This section is organized as follows. The first two sections present the integration of new data
types: files (Section 7.5.1), graphs (Section 7.5.2). Afterwards the integration of tool function-

97

Chapter 7. The Tool Integrator’s Tasks

ality is illustrated inSection 7.5.3. All three sections are organized along the technical tasks
which have to be performed to provide the implementation of a new repository entity:

1. encapsulation,

2. HLL extension and

3. HLL programming, if the chosen entity is an activity.

Note that the integration of graphs systems is presented inAppendix A.

7.5.1. Files
This section goes into the details on how to integrate a new file type into the tool repository.
At the beginning of each integration process, the integrator should choose a reasonable, unique
identifier for the file type to be integrated. According to the coding guidelines, this identifier
is used to name C++ classes, METAFrame modules etc. A good guideline is to choose the file
name suffix as identifier. But other identifiers work of course as well.

Note: Similar to Java files, ETI file objects store only meta data of the corresponding file,
i.e. they are containers encapsulating a file type and a file name amongst others. It is the
responsibility of the application to open, close, etc. the associated files on the hard disk.

The ToolZone software distinguishes two kinds of file objects: objects representing temporary
files and objects representing non-temporary files. They differ in their creation and deletion
behavior.

temporary file objects:

When an object that represents a temporary file is created, a temporary file name is au-
tomatically determined by the tool management application. It is the responsibility of the
file object to create the associated file on the hard disk, too. At the time when the object
is deleted, the corresponding file on the hard disk is also removed.

non-temporary file objects:

The creation of a file object representing a non-temporary file requires the specification
of the associated file name. It is required that the associated file on the hard disk already
exists. The object deletion has no effect on the file located on the hard disk.

In this chapter we will be integrating as an example the file type AUT. It represents files with
suffix .aut storing labelled transition systems that can be analyzed using the CADP toolbox
(see alsoSection 4.1.1).

98

Chapter 7. The Tool Integrator’s Tasks

7.5.1.1. Encapsulation

After the conceptual modeling, the chosen file type has to be encapsulated into a C++ class.
This class must be derived from the classETIFile (seeSection 6.2.1.2) provided by the core
of the ToolZone software. To ease the maintenance of the software, the name of this class
should be built out of the identifier, chosen at the start of the integration process, followed by
the string “File” (here “AUTFile ”).

There are two ways to provide the encapsulation source code:

1. The code is implemented by the tool integrator.

2. The code is generated using a utility tool offered by the ETI platform (seeSection 7.3.1).

If the C++ class encapsulating the new file type is programmed by hand it must at least offer:

A default constructor

that creates a file object representing atemporaryfile of the chosen type. Since the han-
dling of temporary files is already provided by the base class, a minimal implementation
of this constructor simply calls the constructor of the base class passing an internal file
type identifier and the file name suffix as arguments.Example 7-5shows the default con-
structor of the classAUTFile .

Example 7-5. The default Constructor of the ClassAUTFile

AUTFile::AUTFile ()
: ETIFile ("ETI_FILE_AUT", ".aut")

{
}

The chosen file type identifier must be unique within the ETI environment. It is used to
determine whether a file type is known (can be handled) by the tool management applica-
tion and to get information on the file name suffix that is associated to this file type. As a
guideline, this identifier should conform to the following format: the string “ETI_FILE_”
followed by the identifier that has been chosen at the start of the integration process (in
our example this identifier is “ETI_FILE_AUT”).

A constructor getting a const string reference as argument

that creates a file object of the chosen type representing anon-temporaryfile. The name
of the file is passed as the argument to the constructor.

A typical implementation of this constructor simply calls the constructor of the base class
with the file name, the file type identifier and the file suffix as arguments (seeExample
7-6)

99

Chapter 7. The Tool Integrator’s Tasks

Example 7-6. The "const string&" Constructor of the Class AUTFile

AUTFile::AUTFile (const string& f)
: ETIFile (f, "ETI_FILE_AUT", ".aut")

{
}

The encapsulation code can also be generated using a utility program offered by the ETI plat-
form. This program generates the encapsulation code in form of a C++ header file on basis of
the chosen file type identifier. The header file only implements the two required constructors
in the way documented inExample 7-5andExample 7-6. In most cases the generated code is
sufficient for the encapsulation of a new file type.

7.5.1.2. HLL Extension

After we have encapsulated the file type into a C++ class, we have to make the new file type in-
cluding all operations accessible to the HLL interpreter. This is done by writing a METAFrame
module adapter specification and generating the corresponding METAFrame module (seeSec-
tion 6.1.2.1for the general procedure).

Similar to the code of the encapsulation class, the integrator can write the adapter specification
by hand or he can generate a default implementation using a utility program (seeSection 7.3.1).

If the adapter specification is implemented manually, it is important to note that it must export
the init function (seeExample 7-7). This function registers the corresponding file type with
the tool management application as soon as the METAFrame module is loaded into the inter-
preter. The registration is performed by invoking the static methodregisterFileType of the
classETIFile (see(1) in Example 7-7).

Example 7-7. Theinit Function of the AUTFile Module

%init
{

try {
ETIFile* new_type = new AUTFile ();
ETIFile::registerFileType (new_type); (1)
cout << "registered file type " << new_type->getType ()

<< endl;
} catch (const ETIException& e) {

cout << "Module AUTFile: file type "
<< new_type->getType ()
<< " already registered . .." << endl;

}
}

100

Chapter 7. The Tool Integrator’s Tasks

To complete the HLL extension, the METAFrame adapter C++ source code, the adapter itself
and the corresponding METAFrame module have to be generated. As documented inSection
6.1.2.1, this process is fully automated.

7.5.2. Integrating a new Graph Type
Integrating a new graph type means "linking" a graph file format or a graph library to META-
Frame’s PLGraph library [BBCD97, PLGraph]. After the integration, graph objects of the as-
sociated format or library can be modified using ETI’s Graph Editor (seeFigure 5-10). The
main effort of establishing the link is to implement

• the load and save functionality reading and writing the native file format and

• methods to modify the node, edge and graph information via the editor

Besides the "functional" connection to the ToolZone software, the PLGraph Library serves as
some kind of Intermediate Representation Language to provide transformers between different
graph file formats and libraries.

Similar to the process of integrating a file type, the first step when integrating a graph type is
to define a unique identifier. This identifier will prefix all C++ classes, METAFrame module
names, HLL types, etc. provided to integrate the chosen graph format.

In this chapter we will be integrating the AUT graph type as an example. This graph type
"links" the aut -file format, which is used to store edge-labelled transition system, introduced
in Section 4.1.1, to the PLGraph Library.

7.5.2.1. Encapsulation

To encapsulate a new graph type, the following steps have to be performed. Let<ID > be the
identifier of the chosen graph type. Then the integrator has to provide

1. a node label class named<ID >NodeLabel encapsulating the node specific data and meth-
ods (seeSection 7.5.2.1.1),

2. an edge label class named<ID >EdgeLabel encapsulating the edge specific data and
methods (seeSection 7.5.2.1.2),

3. a graph label class named<ID >GraphLabel encapsulating the graph specific data and
methods (seeSection 7.5.2.1.3),

4. a class named<ID >FileFormat encapsulating the graph specific native file format (see
Section 7.5.2.1.4) and finally

101

Chapter 7. The Tool Integrator’s Tasks

5. generate the facade graph class<ID >Graph (seeSection 7.5.2.1.5).

Note: When implementing the required classes, the integrator may of course choose the
names of the classes on his own. But following the ETI coding conventions keeps the
software uniform and makes it easier to maintain.

7.5.2.1.1. Implementing a Node Label Class

The node label class must inherit from the classETINodeLabel . It encapsulates data and
methods specific to the node type associated to the graph type to be integrated. In addition,
it has to provide the following set of methods which are mainly used by the GUI to read or
modify the label data:

virtual void parse (const PLLabelData& data)

The methodparse initializes the label data from the passedPLLabelData objectdata .
It it used to modify the label data via the node inspector window of the ToolZone client
(seeFigure 5-10).

If the specific node type does not provide any information associated to a node, theparse

method needs not to be implemented. Here it is important, that the methodisInspectable

of the chosen node label class returnsfalse (see below).

virtual void unparse (PLLabelData& data) const

This method returns a representation of the label data encapsulated into thePLLabelData

objectdata . It is used to show the label data in the node inspector window of the Tool-
Zone client (seeFigure 5-10).

Similar to theparse method, theunparse method must only be implemented, if the
chosen node type provides information associated to a node.

virtual PLNodeLabel* proto (void) const

proto returns a new (initial) instance of a node label object of the chosen class. It is used
internally, when adding a new node to the graph. A typical implementation of the method
looks like the one shown inExample 7-8.

Example 7-8. TheAUTNodeLabel ’s proto Method

PLNodeLabel*
AUTNodeLabel::proto (void) const
{

102

Chapter 7. The Tool Integrator’s Tasks

return new AUTNodeLabel ();
}

virtual void assign (const PLLabelClass* l)

The methodassign copies the label data from the label objectl to the this object.
A standard implementation of this method would check, if the passed label object is not
equal tothis and then call a methodcopy which implements all the real copying of
the label data. Thecopy method can then also be used when implementing the copy-
constructor and the assignment operator.Example 7-9shows the implementation of the
AUTNodeLabel ’s assign andExample 7-10the associated copy method.

Example 7-9. TheAUTNodeLabel ’s assign Method

void
AUTNodeLabel::assign (const PLLabelClass* l)
{

if (l != NULL && l != this) {
ETINodeLabel::assign (l);
const AUTNodeLabel* nl

= static_cast <const AUTNodeLabel* > (l);
copy (*nl);

}
}

Example 7-10. TheAUTNodeLabel ’s copy Method

void
AUTNodeLabel::copy (const AUTNodeLabel& l , bool)
{

node_id = l.node_id;
}

virtual bool isInspectable (void) const

Depending on the type of the graph, it may occur that there is no information associated
to a node. In this case it is recommended to overwrite the methodisInspectable . If
this method returnsfalse instead oftrue , theApply button and the inspector window’s
text area (seeFigure 5-10) will be disabled preventing that a user types in any data.

103

Chapter 7. The Tool Integrator’s Tasks

Tip: If the method isInspectable returns false , the parse and unparse methods
need not to be implemented.

7.5.2.1.2. Implementing an Edge Label Class

Implementing an edge label class is very similar to the process of providing a node label class.
The label class must inherit from the classETIEdgeLabel and implement at least the follow-
ing methods:

• virtual void parse (const LabelData& data) ,

• virtual void unparse (LabelData& data) const ,

• virtual PLEdgeLabel* proto (void) const ,

• virtual void assign (const PLLabelClass* l) ,

• virtual bool isInspectable (void) const

which have the same meaning as the ones provided by the node label class.

7.5.2.1.3. Implementing a Graph Label Class

A graph label class (derived fromETIGraphLabel) provides three types of methods:

1. one that contains the basic label functionality (similar to the ones provided by the node
and edge label classes),

2. one that links the label to the ToolZone software and

3. one that is specific to the chosen graph type.

Since we already went into the details of the basic functionality in the previous two section,
we only list the basic label methods and their signatures for completeness:

• virtual void parse (const PLLabelData& data) ,

• virtual void unparse (PLLabelData& data) const ,

• virtual PLGraphLabel* proto (void) const ,

• virtual void assign (const PLLabelClass* l) ,

• virtual bool isInspectable (void) const .

104

Chapter 7. The Tool Integrator’s Tasks

In addition to the basic label functionality, each graph label class must implement methods
specific to the ToolZone software. These methods provide functionality, which will be accessed
by the ToolZone client, amongst others. These methods are:

virtual void check (ETIGraphInfo& info) throw (ETIException)

Changing node, edge or the graph information may result in an inconsistent graph object.
For this, the methodcheck must be provided, which checks the consistency of the graph
information. This method should at least ensure that the file content generated by a save
operation can be read without any errors by a subsequent load method invocation. The
info argument can be used to return diagnostic information to the application.

check throws anETIException , if the check failed. Note that theETIGraphInfo argu-
ment can be used to pass detailed information on the source of the problem to the calling
application.

Example 7-11shows the implementation of thecheck method of the classAUTGraphLabel .
Here, the graph object is stored into a temporary file which is analyzed using thealde-
baran -info command. If the command execution results in an error, the check fails,
otherwise it terminates successfully.

Example 7-11. TheAUTGraphLabel ’s check Method

void
AUTGraphLabel::check (ETIGraphInfo& i) const throw (ETIException)
{

// 1. save this graph object to a temporare file
// but do not forget to store ’old’ filename to reset it after
// temporary save!
string file_name

= getGraphClass ()->getGraphFilename ().get().c_str();
AUTFile aut_file;
toFile (aut_file.getFileName ());
getGraphClass ()->getGraphFilename ().set (file_name);

// 2. check the generated file content using the command
// aldebaran -info <file_name >

string system_call = "aldebaran -info "
+ aut_file.getFileName ();

string tool_output;

cout << "Executing: " << system_call << " ... " << flush;
int ret = SystemUtils::execCommand (system_call, tool_output);
cout << "done (" << ret << ")" << endl;

// 3. analyze the result of the system call
if (ret > 0) {

105

Chapter 7. The Tool Integrator’s Tasks

i.setMessage ("Could not execute\n" + system_call);
return false;

}

if (tool_output.find ("error") != string::npos) {
i.setMessage (tool_output);
return false;

}

return true;
}

virtual const char* getNativeFileFormat () const

This method returns the file format identifier to which this graph type is linked to. Amongst
others, it is used by the methodsfromFile andtoFile to determine the native file for-
mat filter (seeSection 6.2.1.3.2). Example 7-12shows the implementation of thegetNa-

tiveFileFormat method of the classAUTGraphLabel .

Example 7-12. TheAUTGraphLabel ’s getNativeFileFormat Method

const char*
AUTGraphLabel::getNativeFileFormat () const
{

return "ETI_FILE_AUT";
}

In addition to the mandatory basic and platform-specific methods, there are two methods whose
implementation is optional, but strongly recommended:

virtual void init (PLGraphClass* g)

Theinit method is automatically called, whenever a graph label object is attached to the
graph by calling theaddGraphLabel method of the classPLGraph . Here, graph label
data which depend on the concrete graph object, to which this label object is be bound,
can be initialized (e.g. the number of nodes).

According to the ETI design style guideline theinit method should be used to add the
appropriate node and edge label objects to the graph. This can be done using the methods
addNodeLabel andaddEdgeLabel of the classPLGraph . This ensures

106

Chapter 7. The Tool Integrator’s Tasks

• that the label classes and the code generated for the corresponding facade class (see
Section 7.5.2.1.5) work properly in combination and

• that during runtime of the tool management application the proper label objects are
available, when required (see alsoSection 6.2.1.3).

Example 7-13presents theinit method of the classAUTGraphLabel . It shows that in
general the implementation of this method consists of three steps in order:

1. Call theinit method of the super classETIGraphLabel .

2. Add corresponding node and edge label objects to the graph using the methodadd-

NodeLabel andaddEdgeLabel .

3. Initialize the label data that depends on the concrete graph object.

Example 7-13. TheAUTGraphLabel ’s init Method

void
AUTGraphLabel::init (PLGraphClass* g)
{

// call init() method of super class
ETIGraphLabel::init (g);

// add corresponding node and edge label objects to the graph
getGraphClass ()->addNodeLabel (new AUTNodeLabel ());
getGraphClass ()->addEdgeLabel (new AUTEdgeLabel ());

// initialize the data that depends
// on the concrete graph object
num_of_nodes = g->getAllNodes ().size ();
num_of_edges = g->getAllEdges ().size ();

}

Figure 7-1shows the interaction of the generated facade class and the label classes pro-
vided by the user in a UML sequence diagram [BRJ98, FS99]. In this example we focus
on the graph class’init method and the triggered creation of the node and edge label
object.

107

Chapter 7. The Tool Integrator’s Tasks

Figure 7-1. Creating anAUTGraph Object

virtual void clear (void)

The default implementation of theclear method within the classETIGraphLabel re-
moves all nodes and edges from the graph by callingclear on the associated graph
object. If you want to clear the graph type specific data too, you have to overwrite the
methodclear of the classETIGraphLabel . Example 7-14shows the implementation of
this method used for the integration of the AUT graph type.

Example 7-14. TheAUTGraphLabel ’s clear Method

void
AUTGraphLabel::clear (void)
{

// clear graph label specific data
first_state = 0;
num_of_nodes = 0;
num_of_edges = 0;

// call clear method of the super class
ETIGraphLabel::clear ();

}

108

Chapter 7. The Tool Integrator’s Tasks

7.5.2.1.4. Implementing a File Format Class

A file format class encapsulates the functionality which is needed to load a graph object from
and to store it to a file. The ToolZone software distinguishes two kinds of file formats: the
(unique) native file format of the graph type, and optional export and import filters (seeSection
6.2.1.3.2).

The native file format of a graph type is the file format which it is linked to, in our example
theaut -file format of the CADP toolkit. The associated file type identifier can be retrieved by
invoking thegetNativeFileFormat method on a graph object (seeSection 7.5.2.1.3). When
a graph object is loaded or stored using thefromFile andtoFile methods, the control flow
is delegated to the file format object referenced by thegetNativeFileFormat method (see
Figure 6-13).

Every file format class available in the ToolZone software must be derived from the class
PLFileFormat which provides the following methods:

void init (PLGraphClass* g)

Theinit method should perform initialization tasks. It is comparable to theinit method
of the graph label class.

The init method gets called whenever the file format object is added to a graph object.
The graph object to which the file format is added is passed as argumentg.

virtual const char* getFormatType (void) const = 0

This method returns the file type identifier of the file format which is encapsulated in this
class. If this class encapsulates the native file format the returned value must be the same
as the one returned by thegetNativeFileFormat method of the graph object.

virtual bool canLoad (void) const = 0

Checks whether this file format supports reading from a file. It returnstrue , if the encap-
sulated file format can be read, otherwisefalse . If this method returnsfalse , theload

method needs not to be implemented.

virtual bool canSave (void) const = 0

Checks whether this file format supports writing to a file. It returnstrue , if the encapsu-
lated file format can be written, otherwisefalse . If this method returnsfalse , thesave

method needs not to be implemented.

virtual void save (ostream& o, const set <PLNode* >& nodes, const set <PLEdge* >&

edges) = 0

Writes the set of nodesnodes and the edgesedges to the output streamo.

109

Chapter 7. The Tool Integrator’s Tasks

virtual void load (istream& i) = 0

Initializes the graph object from the input streami .

Every file format which should be associated to a graph type must be registered to the cor-
responding C++ objects. This is done via anaddFileFormat call in the constructor of the
graph’s facade class (seeSection 7.5.2.1.5).

7.5.2.1.5. Generating the Facade Graph Class

In addition to the label classes, the encapsulation code of a graph type comprises a top level
class (calledfacadeclass [GHJV95]) which is derived fromETIGraph (seeFigure 6-10). The
facade object can then be used to access the whole graph structure. The corresponding source
code (only a C++ header file) is automatically generated by a utility program contained in the
ETI platform (seeSection 7.3.1).

The generated facade class implements only some management functionality, like a construc-
tor, a destructor and an assignment operator. In addition to that, it makes the graph-type speci-
cifc methods provided by the graph label available. The implementation of the graph type
specific methods in the facade class just delegate the method invocation to the corresponding
method of the associated graph label object.Example 7-15shows the implementation of the
generateReceiverList method of theHytechGraph facade class documenting the dele-
gation principle.

Example 7-15. Method Delegation in the Facade Class

void
HytechGraph::generateReceiverList (const string& proc_name,

const HytechSystem& system) const
{

static_cast <HytechGraphLabel* > (getETIGraphLabel ())
->generateReceiverList (proc_name, system);

}

7.5.2.2. HLL Extension

The next step in the integration process is to provide a new HLL type<ID >Graph, where
<ID > is the identifier chosen at the beginning of the graph integration process (hereAUT).
This is done by building a METAFrame module that exports the type and the associated set of
functionality. For this, the integrator must provide a METAFrame module adapter specification.
Similar to the process documented inSection 7.5.1.2, he can write the adapter specification by
hand or generate one via a utility program. The generated module exports

110

Chapter 7. The Tool Integrator’s Tasks

• the HLL type,

• functions to load and save the graph objects of the exported type

• functions to display it in the current graphic context and

• functions to transform graph objects of the exported type into generic PLGraph objects.

Like the file modules, each graph module must implement theinit function which registers
the corresponding graph type in the tool management application (see(1) in Example 7-16),
when the module is loaded into the interpreter.Example 7-16shows theinit function of the
AUTGraph module.

Example 7-16. Theinit Function of the AUTGraph Module

%init
{

try {
ETIGraph* new_graph = new AUTGraph ();
ETIGraph::registerGraphType (new_graph); (1)

} catch (const ETIException& e)
cerr << "Module AUTGraph: " << e.getMessage ()

<< endl;
}

}

To complete the HLL extension, the METAFrame adapter C++ source code, the adapter itself
and the corresponding METAFrame module have to be generated. This task is like in the file
integration process fully automated (seeSection 6.1.2.1).

7.5.3. Feature Integration
After the data types have been made available within the tool repository, the tool functional-
ity has to be prepared for coordination. Depending on the availability of the tool, the chosen
functionality can currently be accessed within the encapsulation code by one of the following
methods:

Black Box Integration

If the chosen tool is available in binary format only, and if it is installed on the application
host (seeFigure 2-6), the chosen functionality can be accessed using UNIX system calls.

111

Chapter 7. The Tool Integrator’s Tasks

White Box Integration

If the source code of the tool or the libraries implementing the functionality have been
supplied by the tool maintainer, the chosen functionality can directly be integrated on
source code level.

Remote Box Integration

Remote Box Integration is white box integration of a tool which is available on a remote
host, i.e. not on the application host (seeFigure 2-6). Within the encapsulation code in-
teroperability services like RMI or CORBA are used to access the remote features. Note
that in contrast to black box and white box integration, remote box integration is an ETI
specific term.

Since the encapsulation layer is implemented in C++, other tool access methods can be made
available, if necessary.

With respect to the four integration phases (conceptual modeling, encapsulation, HLL exten-
sion and HLL programming) only the encapsulation code depends on the kind of integration,
i.e. currently black box, white box or remote box integration. The tasks performed in the other
three phases are independent of it.

As an example, let us focus on thealdebaranfeature that minimizes labelled transition systems
with respect to thetau*.a bisimulation equivalence [Mil89] using the Paige/Tarjan algorithm
[FM90, PT87]. This synthesis-compliant activity can be modeled as the activityaldebaran-

MIN_STD_I transforming an object of the abstract type AUTFile, representing the source la-
belled transition system, into another object of the abstract type AUTFile, representing the
minimized one. This means that the activity can be represented by an entry of the form of

module (aldebaranMIN_STD_I, AUTFile, AUTFile)

within the repository file (see alsoSection 7.1.2).

In the following sections, we first document the encapsulation process of the black box inte-
gration inSection 7.5.3.1. Since the white and remote box integration process heavily depend
on the API to access the tool’s source code, libraries or the CORBA/RMI interface, there is
no standard procedure for these kinds of integration. Following the black box encapsulation,
we document the generic HLL extension and HLL programming phases inSection 7.5.3.2and
Section 7.5.3.3. The conceptual modeling is left out since it has already been documented in
Section 7.1.

7.5.3.1. Black Box Integration

TheBlack Box Integration Processapplies to tools that are only available in binary format and
installed on the application host. Here, the tool functionality can only be accessed by executing
an operating system command. The different tool features are addressed by command line
options. During runtime, the tool execution may benon-interactiveor interactive. In the first

112

Chapter 7. The Tool Integrator’s Tasks

case the tool execution terminates without any interaction of the user. In the second case, the
tool execution may stop at a certain point waiting for user input. After the user has provided
the requested information, the execution of the tool continues.

Black Box Integration supports both kinds of execution modes, but with one restriction: if the
tool execution is interactive, the information provided by the user may not influence thetype
of result delivered by the tool. This means, that the following situation may not be happen:
depending on the information that is provided by the user during the runtime, the tool execution
either results in an object of typeT

1
or in an object of typeT

2
. It must be ensured the return

type does not vary.

The rest of this section gives an overview of the encapsulation task performed during the inte-
gration process.

The Encapsulation Task

After the conceptual modeling, the next task in the integration process is the encapsulation.
With respect to the black box integration process, we encapsulate the chosen tool feature into a
static method of the unique C++ class wrapping all features of an integrated tool. Following the
design guidelines documented inSection 7.2, the C++ method should have the same name as
the activity, herealdebaranMIN_STD_I . Similar to the signature of the corresponding HLL
function (seeSection 7.5.3.2), the signature of the C++ method is standardized (seeExample
7-17).

Example 7-17. The C++ Signature Specification of thealdebaranMIN_STD_I Method

static string aldebaranMIN_STD_I (const AUTFile& in,
const AUTFile& out)

throw (ETIException);

For a synthesis-compliant activity, the signature specification contains two arguments, one rep-
resenting the input object and one representing the output object.

In general the signature of the C++ encapsulation method is parametric in three dimensions:

1. the return valuegives access to the diagnostic information (see alsoFigure 6-16). The
information, like the amount of memory which has been consumpted, is generated by the
tool during its execution.

2. theparameter listhandles the input and output data.

3. theexceptionis used to indicate that an unrecoverable error during the tool execution has
occurred.

113

Chapter 7. The Tool Integrator’s Tasks

Note: Some readers may find it more natural to deliver the computational result of the ac-
tivity execution as return value of the method invocation. We did not follow this approach
since

• only synthesis compliant activities are guaranteed to return a single object. There
might be activities whose execution may result in more than one output. This situation
could of course be handled via a composite object, but this design seemed unnatural
from our perspective.

• conceptually, input and output objects belong together. For this they are grouped within
the parameter list of the method signature. We did not want to mix input data and
diagnostic information within the same portion, i.e. the parameter list, of the method
signature.

In the context of black box integration, the following procedure is implemented by the encap-
sulating C++ method:

1. The operating system command which gives access to the chosen tool feature is built.

2. The command is executed. Within this step the output generated by the executed tool is
collected and made accessible within the C++ method.

3. It is checked, if the tool has been executed successfully. If not, anETIException is
thrown giving the reason for the failed execution.

4. The output of the tool is analyzed to obtain the computational result. Depending on char-
acteristics of the chosen tool, the computational result may not be contained in the tool
output, since it may e.g. be written into a file. In this case, this step is obsolete.

5. The diagnostic result, which is part of the output generated in step 2, is returned.

Example 7-18. The Implementation of thealdebaranMIN_STD_I Method

ThealdebaranMIN_STD_I method encapsulates the correspondingaldebaran feature. It can
be accessed by the following system call:

aldebaran -std -imin in.aut > out.aut,

wherein.aut is the name of the file storing the labelled transition system which should be
minimized andout.aut is the name of the file into which the result of the minimization is
written.

Following the procedure presented above, thealdebaranMIN_STD_I method is implemented
as follows:

static string aldebaranMIN_STD_I (const AUTFile& in,
const AUTFile& out)

throw (ETIException)

114

Chapter 7. The Tool Integrator’s Tasks

{
// 1. the system call is built
string system_call = "/bin/bash -c \’aldebaran -std -imin "

+ in.getFileName () + " > " + out.getFileName () + "\’";

// 2. the command is executed and tool output is returned
string tool_output;
cout << "Executing: " << system_call << " ... " << flush;
int ret = SystemUtils::execCommand (system_call, tool_output);
cout << " finished (" << ret << ")!!" << endl;

// 3. it is checked, if the tool has been executed successfully
if (ret != 0) {

// an error occurred
throw ETIException ("CADPOperations::aldebaranMIN_STD_I:\n"

+ tool_output);
}

// 4. no tool output analysis is necessary, since
// computational result is written into a file

// 5. diagnostic output is returned
return tool_output;

}

7.5.3.2. HLL Extension

After the tool’s functionality has been encapsulated into the C++ class it must be made available
as HLL function. This is done by writing a METAFrame adapter specification and generating
the corresponding METAFrame module (seeSection 6.1.2.1).

Note: In contrast to the encapsulation task, the HLL extension is independent of the type
of the integration process, i.e. black box, white box or remote box integration, used to
encapsulate the chosen tool feature.

There is currently no tool support to generate the adapter specification automatically (see also
Table 7-1). It must be provided by the integrator. In the following we will present the generic
structure of an adapter specification registering tool functionality to the interpreter. The com-
plete format is documented in [Hol-b].

The adapter specification comprises

115

Chapter 7. The Tool Integrator’s Tasks

• the declaration part and

• the implementation part.

7.5.3.2.1. The Adapter’s Declaration Part

The declaration part of the adapter specification (seeExample 7-19) contains

therequire block

which imports all HLL types which are needed to implement the HLL functions exported
by this module.

theheaderblock

which always remains empty in this scenario.

Example 7-19. TheCADPAdapter’s Declaration Part

%require ETIResult Int ETIFile AUTFile AUTGraph BCGFile LOTOSFile
EXPFile MCLFile SEQFile XTLFile

%header
{

// %header block can be left out, if empty!
}

%---%

7.5.3.2.2. The Adapter’s Implementation Part

The implementation part of the adapter specification provides three blocks:

1. the header block,

2. the init block and

3. the wrapper block.

As shown inExample 7-20, the header blockcontains only a C++#include statement which
imports the header file containing the C++ encapsulation class, hereCADP.hh.

In contrast to the METAFrame modules exporting a type, theinit block of a METAFrame
module providing tool functionality in general remains empty.

116

Chapter 7. The Tool Integrator’s Tasks

Example 7-20. The header and init block of theCADPAdapter’s Implementation Part

%header
{

#include "CADP.hh"
}

%init
{

// %init block can be left out, if empty!
}

Thewrapper blockprovides the implementation of the exported HLL functions on the basis of
the encapsulation class. Each HLL function has a standardized signature. Whereas the return
value of the function is always of type ETIResult, the number and types of the parameters
depend on the parameters of the corresponding C++ method. A synthesis-compliant activity
taking an object of typeT

1
as input and delivering an object of typeT

2
is represented by an

HLL function taking two arguments: One of theHLL typeT
1

representing the input type and
one of theHLL typeT

2
representing the output type.

Tip: The abstract type and the associated HLL type should have the same name for
convenience.

Following this design, thealdebaranMIN_STD_I HLL function exported by theCADPmod-
ule takes two AUTFile HLL objects as arguments and returns an ETIResult HLL object. The
arguments represent the source and the minimized labeled transition system.Example 7-21
shows the specification of the function’s signature within the METAFrame module adapter
specification.

Example 7-21. The HLL Signature Specification of thealdebaranMIN_STD_I Function

%function aldebaranMIN_STD_I (ref AUTFile: in,
ref AUTFile: out): ETIResult

The implementation of the function wrapper does not provide anyreal functionality. It imple-
ments some error handling and delegates the computation to the corresponding method of the
C++ encapsulation class. As shown inExample 7-22the wrapper implements the following
procedure:

1. The function’s return value is initialized(1).

117

Chapter 7. The Tool Integrator’s Tasks

2. It is checked, whether the passed HLL objects are properly initialized. If not, the HLL
function’s return value is a wrappedETIException object(2).

3. The computation is delegated to the corresponding method of the C++ encapsulation class
(3).

4. It is checked, whether the C++ method has terminated successfully. In this case, the func-
tion’s return value wraps aETIInfo object encapsulating the diagnostic tool output(4).
Otherwise theETIException object thrown by the encapsulation method is wrapped into
an HLL ETIResult object(5).

Example 7-22. ThealdebaranMIN_STD_I Wrapper

%function aldebaranMIN_STD_I (ref AUTFile: aut_file,
ref AUTFile: min_file): ETIResult

{
// return value is initialized
RETURN.value = NULL; (1)

// proper initialization of the passed HLL objects is checked.
if (aut_file.value == NULL || min_file.value == NULL) {

RETURN.value
= new ETIException ("CADP.aldebaranMIN_STD_I: "

"uninitialized AUTFile object"); (2)
} else {

// computation is delegated to the encapsulation class.
try {

string tool_output
= CADPOperations::aldebaranMIN_STD_I (*aut_file.value,

*min_file.value); (3)
RETURN.value = new ETIInfo (tool_output); (4)

} catch (const ETIException& e) {
RETURN.value = const_cast <ETIException& > (e).clone (); (5)

}
}

}

7.5.3.3. HLL Programming

The result of this task are two HLL code fragments defining the stand-alone and the tool-
coordination execution behavior of the activity. The heart of both source code fragments is the
HLL function encapsulating the chosen tool functionality (see(2) in Example 7-23and(2) in
Example 7-24). The remaining HLL commands are only concerned with collecting the input
data and handling the output data of this function call.

118

Chapter 7. The Tool Integrator’s Tasks

7.5.3.3.1. Tool-Coordination Execution Mode

The code fragment provided for the tool-coordination mode is run when a coordination se-
quence is executed by the tool management application.Example 7-23shows the tool-coordination
code of the activityaldebaranMIN_STD_I .

Example 7-23. The tool-coordination Code of thealdebaranMIN_STD_I Activity

var AUTFile: min_file; (1)
exec_result := CADP.aldebaranMIN_STD_I (aut_file, min_file); (2)
aut_file := min_file; (3)

For activities whose input type does not equal ETINone, the value of the input object is deter-
mined by the value of the output object of the previously executed activity (seeFigure 6-17).
To ensure that the single code fragments of the activities can be combined to work properly
the output object of one activity must be passed as input object to the subsequent activity (see
Figure 6-17). On code level, the value passing is implemented by using one global variable to
store all objects of a specific type. The canonical identifier of this variable is obtained by the
name of the corresponding type where all capital characters are transformed to lowercase ones
and words within the identifier are separated by the underscore character ’_’, e.g. the variable
with identifier “aut_file” is used to store theAUTFile objects. Since the generated coordination
sequences are type-correct, i.e. the input type of an activity is the same as the output type of the
predecessor activity, the implementation of data passing is well defined (seeFigure 6-17). This
process may introduce multiple declarations of the same variable which are simply considered
redundant by the HLL interpreter.

Note: Depending on the implementation of the tool feature associated to an activity which
has the same input and output type (e.g. activity aldebaranMIN_STD_I), using the same
variable identifier for the input and output object might be problematic. Within this special
scenario, an auxiliary variable has to be provided which stores the result of the activity
execution temporarily (see the variable min_file in Example 7-23).

In general, the HLL fragment specifying the activity’s tool-coordination constituent consists of
the following steps:

1. A variable which will contain the output data of the activity is declared.

Depending on the input/output behavior of the activity

• declare an auxiliary variable (see(1) of Example 7-23), if the input and output type of
the activity are the same,

• otherwise, declare a variable having the canonical identifier.

119

Chapter 7. The Tool Integrator’s Tasks

Note that this step is obsolete, if the output type of the chosen activity is ETINone. In this
case the corresponding variable exists by default (see e.gdisplayAUT activity in Figure
7-2).

2. Execute the activity by calling the HLL function defined by the activity’s implementation
constituent (see(2) of Example 7-23).

3. Only if the input and output type of the activity are the same, the value of the auxiliary
variable has to be assigned to the unique variable associated to the output type (see(3) of
Example 7-23).

If the input type of the chosen activity is ETINone, it is always the first activity of a coordina-
tion sequence. Thus, the input object is of course not provided by a predecessing activity. In
this case the code which initializes the input object has to be contained in the activity’s tool-
coordination code. With respect to the activityopenAUTFile shown inFigure 7-2, the input
object is created using a file whose location is requested from the user. This feature is provided
by thefsBoxLoad function offered by theETI module.

Figure 7-2shows an example of a coordination sequence and the HLL code fragments associ-
ated to the activities.

Figure 7-2. A typical Coordination Sequence and the associated HLL Code

As shown inFigure 7-2the code fragment associated to an activity is only responsible to
declare a variable storing the output object of the activity. The type-correctness of the generated
coordination sequence ensures, that there exists already a variable (declared by the previously
executed activity) for the input object of the currently executed activity.

120

Chapter 7. The Tool Integrator’s Tasks

7.5.3.3.2. Stand-Alone Execution Mode

In contrast to the tool-coordination mode, where the parameters required for the activity execu-
tion are automatically handled by the runtime environment, the parameter handling within the
stand-alone code must be explicitly programmed. This means that the value of the input object
must be requested from the user, and the value of the output object (if not of type ETIResult)
must be handled, too. In most cases the value of the output object is stored to a file.

Example 7-24shows the stand-alone HLL code of the activityaldebaranMIN_STD_I . Here,
first the name of the file storing the graph to be minimized is requested from the user (see(1)).
If the file selection has not been canceled by the user, the HLL function wrapping the chosen
tool functionality is run in(2). After the HLL function has successfully been executed, the user
is asked to provide the name of the file to which the minimized graph should be stored (see
(3)). Finally, the value of the minimized graph is stored into the specified file (see(4)), if the
file selection process has not been canceled by the user.

Example 7-24. The stand-alone Code of thealdebaranMIN_STD_I Activity

var String: file_name := ETI.fsBoxLoad ("Select AUT file", "aut"); (1)
var AUTFile: aut_file := file_fame: AUTFile;
var AUTFile: min_file;

if (file_fame == "") then
exec_result := "Execution Canceled!": ETIResult;

else
exec_result := CADP.aldebaranMIN_STD_I (aut_file, min_file); (2)
if (ETIResult.ok (exec_result)) then

file_name := ETI.fsBoxSave ("Select AUT file","aut"); (3)
if(file_fame == "") then

exec_result := "Execution Canceled!": ETIResult;
else

exec_result := AUTFile.saveAs (min_file,file_name); (4)
fi;

fi;
fi;

7.6. Integration Effort
This section summarizes the advanced integration process by talking about the effort which
is required to integrate a tool into the ETI platform. As documented inSection 7.4, the ETI

121

Chapter 7. The Tool Integrator’s Tasks

light integration is not a time consuming process. We plan to provide tool support which fully
automizes this procedure.

In the following two sections we will present therelative effort which is needed to integrate
the two main entities of an ETI tool repository:

1. types (Section 7.6.1) and

2. activities (Section 7.6.2).

These two sections focus on the effort which is required to provide the integration code, i.e.
the encapsulation classes and the adapter specifications.

Section 7.6.3then givesabsolutenumbers which resulted from the experiences gathered during
the integration of the tools into the STTT repository.

7.6.1. Types
Since the wholefile-integrationprocess is supported by utility software, which is able to gen-
erate the required integration code (see alsoSection 7.3.1), new file types can very easily be
integrated.

More integration effort is needed when agraph typeis to be added. Since parts of the encapsu-
lation code and the adapter specification can be automatically generated (seeTable 7-1), most
effort is required to provide scanners and parsers which are required

1. to read and write the node, edge and graph information which are accessible via theparse

andunparse methods of the label classes (seeSection 7.5.2.1.1, Section 7.5.2.1.2, and
Section 7.5.2.1.3).

2. to load and store graph objects using the file format classes (seeSection 7.5.2.1.4).

With respect to data-type integration, theintegration of graphs systemsis most expensive. It
requires the encapsulation of the component type (seeSection A.2.1.1) as well as the imple-
mentation of the graphs system class which maintains the components (seeSection A.2.1.2).
Since component-type integration is essentially graph integration, the effort of the integrating
a system component type is comparable to the graph-integration effort. Once the component
type is available, the graphs-system integration effort is mainly influenced by the time which
is needed to implement the parsers and scanners which read and write the global system infor-
mation.

7.6.2. Activities
The integration effort, in particular the encapsulation effort (seeSection 7.5.3), of an activity
depends on the API which is available to access the chosen tool feature. As already documented

122

Chapter 7. The Tool Integrator’s Tasks

in Section 7.5.3, we distinguish

• black box integration

• white box integration, and

• remote box integration.

Black box integrationis by far the easiest way to integrate a tool into the ETI platform. This is
due to the fact, that tools integrated this way work on files as input and output types, and the
provided API is very simple. Single tool features can then be addressed by passing command
line options to a tool invocation.

Integrating a tool inwhite box manneris in general more expensive than black box integration.
This is due to the fact that using an API to access the tool’s features is more complex than the
system-call based feature-access.

The encapsulation ofremotely available toolsrequires two steps:

1. providing a means to remotely access the chosen tool features, e.g. by defining and then
implementing a corresponding CORBA IDL, and

2. accessing the classes implementing the CORBA IDL within the tool-specific encapsulation
class (seeSection 7.5.3.1).

Since the complexity of Step 2 is comparable to the white box integration process, remote box
integration is most expensive, if the remote access facility is not already available.

7.6.3. Summary
As can be seen very easily from the facts presented in the previous sections, the black-box
integration of a tool which takes a file as input and delivers a file as output is the easiest.
Except for the fact that we had to provide the graph and graphs system types, most of the
activities available in the STTT repository are conformant to this behavior.Table 7-2shows
absolute numbers which have been measured during the STTT tool-integration process. Here,
the integration has been performed by a developer which had a good knowledge of the concepts
and design of the ETI platform.

Table 7-2.

Repository Entity Integration Effort
AUTFile 1/4 day

AUTGraph 1 day

aldebaranMIN_STD_I 1/4 day

HYFile 1/4 day

123

Chapter 7. The Tool Integrator’s Tasks

Repository Entity Integration Effort
HytechGraph 3 days

HytechSystem 2 day

hytechVerify 1/4 day

124

III. Building reliable Web
Applications

Chapter 8. Introduction
Whereas Part II of this thesis covers the ToolZone software which is used to access the tool
repository hosted by an ETI site, we are now going into the details of the environment which
has been used and is still in use to develop theETI Community Online Service(www.eti-
service.org). This personalizable Web application organizes the people being involved in the
development and extension of the platform as well as in the hosting of an ETI site. It offers
beside others access to discussion groups, mailing lists, platform documentation and source
code.

Starting as a distributed document database, the Web has evolved into an architecture of new
generation software systems called Web applications. Even the profile of Web applications has
changed dramatically during the last years. In contrast to simple CGI (Common Gateway Inter-
face) [CGI] scripts, like a visitor counter on a Web page, today’s Web applications are complex
(distributed) software systems. They range from shops and auctions to highly available online
brokering services. From the implemented features’ point of view there is currently no differ-
ence to normal applications, except for the fact that the graphical user interface (GUI) is in most
cases implemented by HTML pages, rendered by a Web browser, instead of a powerful GUI
library like Motif [Bra92] or Tk/Tcl [Wel97]. From the hardware and software architectural
point of view aspects like high availability, load balancing, security, etc. become particularly
important.

In consequence the development of a Web application is not a one man’s task any longer. In
most cases building a Web application is at least as complex as building a standard application.
A team of people with different skills is necessary to realize the application. System engineers
design the global architecture, Web designers build the application’s GUI, software design-
ers and programmers provide the software components implementing the features, and system
administrators are responsible for setting up a highly available server farm running the appli-
cation. The team has to be well coordinated to deploy the application on time and to maintain
the software system once it is set up. This goal can only be achieved, if the system is built
using a well organized software development environment. From the technical point of view
things like coding guidelines, tool support, and a good Web-application architecture play an
important role. On the other hand, human aspects are very important too. [DL99] gives a nice
introduction to this part of project management.

This part of this thesis goes into the details of the software development environment intro-
duced inSection 2.2. It starts with an overview of the process and the corresponding roles in
Chapter 9. The rest of this part is organized along the core phases of software development:
analysis (Chapter 10), modeling (Chapter 11), design (Chapter 12), implementation (Chapter
13) and integration test (Chapter 14).

127

Chapter 8. Introduction

128

Chapter 9. Process Overview
This chapter gives an overview of the development environment for reliable Web applications
introduced inSection 2.2. In particular it introduces the environment specific roles. The devel-
opment environment comprises a

• a role-based software development process,

• a five-layers architecture of a Web-application, and

• the Service Definition Environment of the METAFrame project as workflow-design tool.

Figure 9-1shows an overview of the development process as UML activity diagram [BRJ98,
FS99, Con00, UML]. It presents the tasks which are performed after the analysis and the mod-
eling phases which are documented inChapter 10andChapter 11, respectively. Note thatFig-
ure 9-1shows an idealized version of the process. As in every incremental process the analysis
and modeling phases as well as the tasks shown in this figure may be performed repetitively,
each time enhancing the system under construction.

The process defines several roles which identify the tasks which have to be performed during
the software development:

The System Engineer:

The system engineer analyses the problem which should be addressed by the Web appli-
cation. In cooperation with the customer he defines beside others the external behavior
of the system, the environment in which the application should be integrated, and perfor-
mance and security demands. His activity is mostly restricted to the analysis and modeling
phases.

The OO Specialist:

The OO specialist designs, implements and tests the business objects, i.e. he is responsible
for the implementation of the business object layer. In contrast to the SIB integrator, he
has major skills in object oriented analysis, design and implementation.

The SIB Integrator:

The SIB integrator implements the physical view of the SIBs on top of the business
classes. He needs only minor Java programming skills to perform his tasks, because he is
guided by the platform rules.

The Application Expert:

The application expert builds the coordination layer of the system using the SIBs provided
by the SIB integrator. Supported by the Service Definition Environment documented in
Section 12.2andSection 13.1he never gets in touch with Java programming or system
administration tasks.

129

Chapter 9. Process Overview

The HTML Designer:

The HTML designer is responsible for the presentation layer of the Web application.
He provides the HTML pages which constitute the GUI of the Web application under
construction.

Figure 9-1. The Process Overview

The rest of this part is organized along the five core phases of a software development process.
We start with the analysis phase (Chapter 10) and the modeling phase (Chapter 11). Here, we
do not present a detailed description of the tasks which have to be performed, since they are not
in the focus of the process description. Instead we propose an organization of the requirements
document and a model of the graphical user interface of the Web application which are suitable
with respect to the task which are performed during the design and implementation phases.

After that, the design phase (Chapter 12) and the implementation phase (Chapter 13) are cov-
ered. With respect to the presented process, these development phases are the most important

130

Chapter 9. Process Overview

ones. Within the two sections we focus on the use of the Service Definition Environment dur-
ing the design and the implementation of the system. This means that we focus on the tasks
done by the application expert and SIB integrator. As already mentioned, the presented process
is parametric with respect to the implementation of the business classes and the HTML pages.
Consequently, the OO specialists and the HTML designers may use their own tools and pro-
cesses to deliver their contributions to the project, i.e. the libraries implementing the business
classes and the HTML pages.

Finally, theChapter 14will give some information on the integration test which is performed
before the Web application is made publicly available.

At the end of every chapter we summarize the tasks which have to be performed by the people
being involved in the construction of the Web application. This is done by presenting a table
which covers

• the people,

• their tasks and

• the artifacts

of the corresponding software development phase. The tasks presented in the design, imple-
mentation and integration test summaries are also documented inFigure 9-1.

Within this chapter we use a simple shop application as example, instead of the complex ETI
Community Online Service. This decision was taken, since this kind of Web application is
well-known to every reader and therefore does not require any further explanation.

131

Chapter 9. Process Overview

132

Chapter 10. Analysis
The development of every application starts with an analysis phase. Here a vision statement
documenting the scope of the application, and the non-functional (e.g. hardware requirements,
collaboration with third-party software) and functional requirements of the system to be de-
veloped are identified and specified in the requirements document. This document describes
the external behavior of the system, i.e. it specifieswhat the system should do butnot how
it should perform its tasks. The main part is an overview of the features and their user-level
description in form of scenarios which document the interaction of the user with the software
system. Additionally, the business processes in which the system is embedded or which should
be supported by the software are documented.

The requirements document is the central document of every application, since it is the basis
for

• the project plan,

• the project’s cost estimation,

• the legal contract,

• the user manual and

• the system test document.

Feature List of a simple Shop Application
The following feature descriptions are taken from a simple shop application. The associated
feature identifiers are used to track the requirements during the whole software development
process. These identifiers start with the stringNFRor FRdepending whether the chosen feature
is a non-functional or functional requirement of the system. After that an identifier denoting
the feature groupfollows. Feature groups are the means to group application features. Here,
PT denotes the requirements on the platform on which the Web application will be provided
andCF means that the features belong to the customer feature group. Finally, the three digit
part of the feature identifier references the feature within the feature group.

Web Server (Feature ID: NFR-PT-001)

In the first phase of the project it is planned to deploy the Web application on a Windows
NT server running the Microsoft Internet Information server. Later the deployment plat-
form will be changed to a server farm consisting of a cluster of 4 SUN Servers running
Solaris 7 and Borland’s AppServer [AppServer] as Web application server. The delivered
Web application must run on each of the chosen platforms.

133

Chapter 10. Analysis

Personal Home Page (Feature ID: FR-CF-001)

As soon as the customer has logged-in successfully, he will see his personal home page.
On this page, at least the customer’s name and three product advertisements should be
shown.

Starting at this page, the customer should be able to change the data he provided during
the registration (see feature FR-CF-002) and to get the list of his favored products (see
feature FR-CF-003).

Change Profile (Feature ID: FR-CF-002)

The Change Profile functionality shows an HTML form, where the customer can modify
his personal data. At the end of the form aSubmit button should be presented. When
the customer selects this button, the provided data will be validated. If the validation is
successful, the customer data in the database will be changed accordingly. Otherwise an
error message will be presented to the customer giving information on occurred problem.

Favored Products List (Feature ID: FR-CF-003)

The list of favored products shows a list of the products the customer ever bought. This
list should be sorted by the totally ordered quantity and be restricted to ten products.
Additionally, three product advertisements should be shown on this page.

Handling User Roles
In a complex Web application, there are different users having different permissions which
control the access to the data and functionality provided by the Web application. Permissions
can be grouped to roles which then can be associated to users. Depending on the role of the user
who accesses a feature, the feature may have then different characteristics. In the following
we present the specification of theChange Profilefeature which distinguishes two roles: a
customer and an administrator:

Change Profile (Feature ID: FR-CF-002)

The Change Profile functionality shows an HTML form, where the customer can modify
his personal data. In contrast to that, an administrator may change the profile of any user
registered to the shop application. At the end of the form aSubmit button should be
presented. When the user (customer or administrator) selects this button, the provided
data will be validated. If the validation is successful, the customer data in the database
will be changed accordingly. Otherwise an error message will be presented to the user
giving information on occurred problem.

Within a UML use case diagram, a user role is represented by an actor. An association between
an actor and a use case specifies, that a user having the role represented by the actor may

134

Chapter 10. Analysis

access the feature modeled by the corresponding use case.Figure 10-1shows the UML use
case diagram of the shop application.

Figure 10-1. The Use Case Diagram of the Shop Application

Summarizing, the requirements document may be organized as follows:

1. the vision statement,

2. the non-functional requirements and

3. the functional requirements.

Within the chapters documenting the non-functional and functional requirements, there is one
section dedicated to each feature group. Each section then contains a paragraph for the features
belonging to the corresponding feature group. A use case diagram like the one shown inFigure
10-1at the beginning of the feature-group sections is useful to give an overview of the features
contained in this group and the roles interacting with the documented features.

Table 10-1. Analysis Summary

People Task Artifacts
System Engineer and
Customer

analysis of the software system
to be built

requirements document

135

Chapter 10. Analysis

136

Chapter 11. Modeling
The modeling phase formalizes the requirements document into a domain-level model of the
software under construction. Beside other tasks, the conceptual business classes, their respon-
sibilities and collaborations are identified using standard object-oriented methods like the one
documented in [Shl88]. Additionally, the internal processes associated to the identified features
are analyzed and documented.

The modeling phase in particular results in the model of the application’s graphical user inter-
face. This model is represented as a UML statechart diagram which documents

• theconceptual HTML pagesfocusing on what information should be presented to the user
instead of how this information is layouted,

• thenavigation optionsand if required

• entry points to functionality which influences the structure of a dynamic HTML page.

Figure 11-1shows a fragment of the GUI statechart diagram associated to the shop application
introduced inChapter 10.

Figure 11-1. The GUI Statechart Diagram of the Shop Application

Every state of the diagram represents one HTML page of the Web application which is pre-
sented to the user. A transition models a possible navigation option from one page to another.
There are two kinds of navigation options.Static linksare just pointers to other HTML pages.
In contrast to that,dynamic linksmodel that a computation has to be performed before the re-
quested HTML page is shown. In this case, the content of the requested HTML page depends
on the result of the computation.

Within the GUI statechart diagram, the distinction whether a transition represents a static or
dynamic link is made by the label of the transition. If the transition models a dynamic link
between Web pages, this transition contains an action which represents the computation to
be executed during the state transition (e.g.buildProductList in Figure 11-1). Within the
design phase, the actions will be mapped to nodes within the service logic graph, thus linking

137

Chapter 11. Modeling

the GUI and the features offered by the application. Additionally, every (static and dynamic)
transition contains an event trigger representing one of the navigation options within the start
page of the transition (e.g.requestProducts in Figure 11-1).

The GUI model in form of the UML statechart diagram only documents the structure of the
application’s GUI. It does not specify the information which should be displayed in each of
the states (screens). Thus the GUI description must be enriched accordingly, resulting in the
GUI specificationwhich in addition provides the informationwhat should be presented to
the user in each GUI state. The look and feel of the Web pages is not covered. The GUI
specification is passed to the HTML designers who build the application’s GUI with respect to
this specification extending it by the customer-preferred look and feel.

Table 11-1. Analysis Summary

People Task Artifacts
System Engineer and
Customer

domain modeling conceptual business classes as
well as their responsibilities
and collaborations

System Engineer and
Customer

domain modeling business-process description

System Engineer and
Customer

GUI modeling GUI specification

138

Chapter 12. Design
The design phase refines the model of the application with respect to the environment in which
the application should be deployed. Here, aspects like performance, security, the chosen Web
application architecture, influence the model. All aspects which must be considered during this
transition should be fixed in the non-functional requirements part of the requirements document
(seeChapter 10).

The following three major tasks can now be performed independently (see alsoTable 12-1):

• Designing the business classes providing the base functionality. This task is performed by
the OO specialist using standard UML modeling tools like MagicDraw [MagicDraw] or
Rational Rose [Rose].

• Building a static prototype of the application’s GUI according to the GUI specification cre-
ated in the modeling phase. The prototype of the GUI does not provide any functionality.
Dynamic information are exemplarily hard-coded into the Web pages. It is the basis for an
initial discussion with the customer on the aimed GUI if the product.

• Building the service logic graph which defines the application’s coordination layer. The GUI
statechart diagram created in the modeling phase serves as starting point for this task.

Table 12-1. Design Summary

People Task Artifacts
HTML Designer designs GUI layer by

Web-page programming
static GUI prototype

OO Specialist object-oriented design model of the business classes

Application Expert imports the GUI model initial service logic graph

Application Expert SLG design model of the application’s
coordination layer

In the following paragraphs we go into the details on how the Service Definition Environment
is used to model the application’s coordination layer. For this, we need detailed information
on the component model of the Service Definition Environment, i.e. the Service Independent
Building Blocks (SIBs). This will be provided bySection 12.1which focuses on the SIB-
definition aspect. Note that the other constituents of a SIB specification can be found inSection
2.2.2. Section 12.2then covers how service logic graphs are built on the basis of the SIBs using
the Service Definition Environment. In this section we focus on the validation features provided
by the tool.

139

Chapter 12. Design

12.1. Service Independent Building Blocks
Service Independent Building Blocks (SIBs) are software components from which service
logic graphs (seeSection 12.2) are built. Like activities (seeSection 2.1.1) they are one type of
building blocks for coordinating workflows presented in this thesis. Whereas activities focus
just on data transformation, SIBs specify the control flow of an application: A SIB execution
returns a result which navigates the execution through the service logic graph to decide which
SIB is subsequently executed.

An instance of a SIB can be configured using SIB parameters, which provide the means that
the same SIB can be used in different contexts of the same service logic graph or even in
different service logic graphs. In contrast to more complex component models like JavaBeans
[JavaBeans], the SIB model is tailored to the skills of the application expert, the end-user of
the Service Definition Environment. Similar to activities and types, the components of the
coordination sequences (seeSection 2.1.2), SIBs can be organized in taxonomies to ease their
retrieval.

As already presented inSection 2.2.2.1, a SIB is defined by several constituents: SIB definition,
SIB documentation, simulation code, local-check code and implementation code. The central
aspect of the SIB specification is covered by the SIB definition, which beside others specifies
the SIB identifier, the parameters and the set of return values.Example 12-1shows the SIB
definition of theShowPersonalHomePage SIB. A SIB definition comprises

• theSIB identifier(see (1) inExample 12-1), which is beside other user to reference a SIB
within a constraint definition (seeSection 12.2.1).

• The SIB class identifieridentifier is used to group SIBs together in classes (see (2) inEx-
ample 12-1). Typically SIBs which perform similar functions, or act on similar data, are
grouped into the same class. Whereas SIBs are represented by leafs within the taxonomy
DAG, intermediate nodes model sets of SIBs, called SIB classes.

• The parametersof a SIB are the key to the service independent nature of SIBs (see (3) in
Example 12-1). They are used to customize an instance of a SIB within the service logic
graph.

• Exits of SIBs represent different possible results a SIB execution may return (see (4) in
Example 12-1). A SIB may have any number of these. If a SIB does not define any exits
then the service logic graph execution will terminate at the corresponding node.

Example 12-1. TheShowPersonalHomePage SIB Definition

SIB ShowPersonalHomePage (1)
CLS Interaction (2)
PAR template STR 100 "" (3)
PAR in_state STR 100 ""
PAR out_state STR 100 ""
PAR out DIM * 0

140

Chapter 12. Design

BR requests[]out (4)

There are two SIB types:Interaction SIBsandCoordination SIBs. Interaction SIBs terminate
the execution of the current request. They generate a Web page which is sent to the client by the
Web server. Thereby, they give the user the means to interact with the application. Coordination
SIBs control the business objects to perform the intended task. Within the service logic graph
there will be an interaction SIB for every state contained in the GUI statechart diagram.

Note the difference between a SIB type and a SIB class. A SIB type is a conceptual notion,
which splits up the chosen set of SIBs into two subsets, regardless of the SIB class. In contrast
to that, SIB classes may be defined by a user. They are application specific. One SIB class can
contain interaction SIBs as well as coordination SIBs.

12.2. Building the Service Logic Graph
Service logic graphs model Web applications at the level of the coordination layer (seeFigure
2-8). Whereas coordination sequences (seeSection 2.1.4.1) focus on data transformation and
provide a trivial workflow model in form of sequential composition, service logic graphs are
control flow centric. Data is modified as side effect of a SIB execution. This means that data is
not explicitly modeled within a service logic graph.

Figure 12-1. The Service Logic Graph Editor

Service logic graphs are designed using the Service Logic Editor (seeFigure 12-1) of the

141

Chapter 12. Design

Service Definition Environment. Here, the service designer can build a graph from a set of
Service Independent Building Blocks (SIBs) (seeSection 12.1) which can be accessed via the
SIB palette.Figure 12-2shows a fragment of the SIB palette which has been used for the shop
service logic graph.

The Service Definition Environment focuses on the dynamic behavior: (complex) functionali-
ties are graphically stuck together to yield flow graph-like structures embodying the application
behavior in terms of control. During the design of the service logic graph the SIB set may be
continuously expanded and modified when the action states are refined or new requirements
are added to the application.

Within the presented development environment, the application expert does not build the ini-
tial service logic graph from scratch. Instead, he can automatically import the GUI statechart
diagram (seeChapter 11) as service logic graph into the Service Definition Environment.Ap-
pendix Bpresents the algorithm that is used for this process. Since the Service Definition Envi-
ronment also offers the functionality to store service logic graphs as UML statechart diagrams,
the Service Definition Environment can tightly be integrated with UML modeling tools.

Figure 12-2. A simple SIB Palette

12.2.1. Validation Features
In analogy to the concepts documented in [SMCB96, SMCBRW96], the validation features
are the key to reliable application design. Here, the user can check the consistency of the
application on the level of the service logic graph at design time, i.e.beforethe coordination
layer is generated and the application is tested. Consequently, a lot of errors are found in a very
early phase of the software development process. This reduces the costs and the delivery time
of the Web application.

142

Chapter 12. Design

It is important to note that the validation features work on the level of the application’s coor-
dination layer. They are based on the SIB definition, the simulation code and the local-check
code to perform their tasks. In particular, they do not consider the implementation code of the
SIBs in form of the Java classes. This means that the validation can be performed even before
the implementation of the SIBs is available (see alsoSection 2.2.2.3).

In the following we give an overview of the offered validation features:

1. Symbolic Execution (Section 12.2.1.1),

2. Local Checking (Section 12.2.1.2), and

3. Model Checking (Section 12.2.1.3).

12.2.1.1. Symbolic Execution

Service logic graphs can symbolically be executed using the tracer feature offered by the Ser-
vice Definition Environment. The tracer validates the functional aspect of the service logic
graph. Using this feature, the user gets a feeling whether the graph specifies the desired behav-
ior at the coordination level. Since the tracer relies on the simulation code of the SIBs instead
of its implementation, the application’s logic can be animated even before the implementation
of the business classes and the SIBs is available. For each SIB, the simulation code can be
provided as an HLL-code fragment (seeExample 12-2).

Example 12-2. A SIB Simulation-Code Fragment

(* read counter id and increment value *)
var String: cid := SD.getSibParameter (Tracer.current_node, "id");
var String: inc := SD.getSibParameter (Tracer.current_node, "inc");

(* execute the increment-command ’cid := cid + inc;’ *)
eval (cid + " := " + cid + " + " + inc + ";");

(* return dflt exit *)
Tracer.setBranch ("dflt");

Apart from the service logic design, the tracer is also helpful during the analysis. Here, it can
be used for online validation of the requirements with the customer.

Figure 12-3shows a snapshot of a tracer run. During the tracing, the current node is marked
gold and the path which has already been executed is marked red. The user may control and
configure the tracer using theTracer window shown on the right ofFigure 12-3. Note that in
Figure 12-3the currently executed path is marked by bold arrows.

143

Chapter 12. Design

Figure 12-3. A Tracer Run

12.2.1.2. Local Checking

The local checking facility searches for local errors. This means that it checks the consistency
of the configuration ofsingleSIBs within the service logic graph. No SIB interaction is con-
sidered. Besides others, the Service Definition Environment provides checks which ensure that

• every SIB parameter has a defined value,

• every non-optional SIB exit is assigned to an outgoing edge and that

• every edge has at least one assigned SIB exit.

In contrast to other software development tools, the local checks are not hard-coded into the
Service Definition Environment implementation, they can be programmed using the HLL.Ex-

144

Chapter 12. Design

ample 12-3shows a local check code fragment which tests, if the value of the SIB parameter
template of an interaction SIB is set.

Example 12-3. A Local Check Code Example

var String: template
:= SD.getSibParameter (SDLocalCheck.local_check_node, "template");

if (empty (template))
then

SDLocalCheck.localCheckError ("Parameter ’template’ not set.");
fi;

For every error found in the service logic graph, the local checker shows a message box doc-
umenting the kind of the error. Faulty nodes are marked red or green, depending whether the
found problem is an error or just a warning.Figure 12-4shows a service logic graph where a
dead subtree exists, which starts at nodechkPIN : the edge starting at nodechkPIN and ending
at chargeBParty has no assigned SIB exit.

Figure 12-4. The Local Checker detects an Error

145

Chapter 12. Design

12.2.1.3. Model Checking

In contrast to the local checker, the model checker verifies theglobalconsistency of the service
logic graph, i.e. it checks the interaction between the SIBs.

Model checking (see [VW86, SO97, MSS99, Cle99] for an overview) is a technique which
(semi-) decides, whether a mathematical structure (called model), here a labelled transition
system (LTS), satisfies a certain (temporal) constraint. An LTS is a directed graph where atomic
information can be attached to the nodes and edges. Constraints are specified by formulas writ-
ten in a certain logic like the modal mu-calculus [Koz82]. Via the formula temporal properties
on the basis of the node and edge information can be specified. The formula can only be used
to express properties which are concerned with the structure of the graph. Data are typically
not taken into consideration or they are symbolically coded into the node information.

In the context of the Service Definition Environment, a service logic graph is interpreted as an
LTS, where the node information encodes the SIB names and the values of the SIB parameters.
Edge information encode SIB exits. Model checking is performed by a first-order extension of
the algorithm presented in [SCKKM95] where constraints are specified in the logic presented
in [Hof97] (seeExample 12-4as an example). This logic is a first-order extension of the modal
mu-calculus, which even is sensitive to the values of the SIB parameters.

Example 12-4. A SLG Constraint

//: CounterCheck
// Every counter must be initialized before it can be accessed.
// (The counter names are different.)
constraint CounterCheck
{

Forall X in model (’start =>
AWU_F (~(’incCount[name == X] | ’cmpCount[name == X]),

’initCount[name == X]))
}

Using the textual form shown inExample 12-4or a formula editor, the user can specify con-
straints which e.g. ensure that

• specific parts of the Web application can only be accessed after a successful login,

• user information can only be accessed after the user record is fetched from the database,

• a user must pay before he leaves the shop application with the goods.

If the model checker finds an error, a message box will be shown which indicates the source of
trouble (seeFigure 12-5).

146

Chapter 12. Design

Figure 12-5. The Model Checker finds an Error

In addition to the message box, the Service Definition Environment is able to generate error
information at the level of the service logic graph. This is done by determining a sub-structure
of the service logic graph which makes the chosen constraint unsatisfiable. This sub-structure
is also called acounter example. Depending on the structure of the constraint, the counter
example may be a path or a tree. If the counter example is a path, this path is automatically
marked in red within the service logic graph (see [BMSY98]). Figure 12-5shows an example
of an error path within the service logic graph, where the red edges are highlighted by thicker
arrows. If the counter example is a tree, the error information will be determined by the Service
Definition Environment in interaction with the user. Whereas paths can be handled by the
Service Definition Environment, a prototypical implementation of tree-based counter examples
is currently being integrated (see [Yoo]).

147

Chapter 12. Design

148

Chapter 13. Implementation
The activities of the design phase deliver

• the model of the business classes,

• the model of the application’s coordination layer and

• the prototype of the application’s GUI.

During the implementation phase, the OO specialists, the SIB integrators, the application ex-
perts, and the HTML designers provide the implementation of the part of the Web application
they are concerned with. The result of the implementation is the Web application which has
been ordered by the customer. It has finally to be tested before it can be rolled out (seeChapter
14). Within this software-development phase, the OO specialists and the HTML designers may
use their own tools and methods to provide the implementation for the business classes and to
integrate the dynamic elements into the static HTML pages. In contrast to that

1. the SIB integrator provides the implementation of the SIBs used in the service logic graph
on the basis of the business classes, and

2. the application expert provides the implementation of the coordination layer by compiling
the service logic graph into a set of Java classes.

Table 13-1. Implementation Summary

People Task Artifacts
HTML Designer integrates the GUI by adding

dynamic elements to the static
Web pages

implementation of the GUI
layer

OO Specialist implements the business
classes

implementation of the business
object layer

SIB Integrator implements the SIBs and
provides the corresponding
skeleton pages

implementation of the SIBs

Application Expert compiles the service logic
graph

implementation of the
coordination layer

Application Expert packages the application

The following paragraphs go into the details of the two tasks, i.e. the SIB implementation and
the service-logic-graph compilation. We start with the presentation of the service-logic-graph
compiler inSection 13.1since this gives an overview on the generated components and their
collaboration. After that,Section 13.2goes into the details of SIB programming.

149

Chapter 13. Implementation

13.1. Compiling the Service Logic Graph
After the service logic graph has been designed using the Service Definition Environment, and
the business classes and SIBs have been implemented, the implementation of the coordination
layer of the Web application is automatically generated by theService-Logic-Graph Compiler.

Note that the Service Definition Environment including its service-logic-graph model is in
general independent of the application domain. It can be used to design and validate workflows
appearing e.g. in the Web area or the telephony area. In contrast to that, the transformation of
service logic graphs into code of a programming or scripting language is application-domain
specific and depends on the chosen environment. This means that depending on the application
domain service logic graphs may either be translated into C/C++, Java programs or Perl scripts.
For this, the Service Definition Environment provides an application programming interface
(API) which allows the integration of customized compilers.

In the Web-application domain, the Java-compiler can be accessed via theSD Compilation
Inspector window shown inFigure 13-1.

Figure 13-1. TheSD Compilation Inspector Window

The result of the compilation process are two Java classes which store

• the branching structure of the service logic graph and

• the parameterization of the SIBs contained in this graph.

The generated classes are derived from the classesLogic andSIBContainer which provide
the methods to access the encapsulated service-logic-graph information:

The classLogic :

An object of this class encapsulates the branching structure of the service logic graph. It
contains the public method

String getSuccSIB (String state, String exit)

which maintains the commitment relation, i.e. the information of the successor nodes on
the basis of the current node and a SIB exit.

150

Chapter 13. Implementation

The classSIBContainer :

The SIBContainer object maps occurrences of nodes contained in the service logic
graph to instances ofSIB objects represented by the nodes. This information is important
since the SIB represented by a node can be configured via its parameters. The instance of
the SIB object associated to the node then stores the values of the parameters of the SIB
represented by this node.

Example 13-1andExample 13-2show theLogic andSIBContainer classes generated from
the service logic graph shown inFigure 12-1.

Example 13-1. The generatedShopLogic Class

(1) Represents the edge starting at nodeShowPersonalHomePage and ending atShowPro-
filePage with branchrequestProfile.

public class ShopLogic extends Logic
{

public ShopLogic ()
{

super();
addBranch ("ShowPersonalHomePage", "requestProfile", "ShowProfilePage"); (1)
addBranch ("buildProductList", "dflt", "ShowFavoredProducts");
addBranch ("ShowPersonalHomePage", "requestProducts", "buildProductList");

}
}

Example 13-2. The generatedShopSIBContainer Class

(1) Maps the nodeShowFavoredProducts to the Java object of classShowInteraction-

State . The values of the SIB parameters of the node are passed as constructor arguments.

(2) Sets the start node information.

public class ShopSIBContainer extends SIBContainer
{

public ShopSIBContainer ()
{

super ();

// fill map which links node names to SIB objects
addSIB ("ShowFavoredProducts",

new ShowInteractionState ("PersonalHomePage",
1,
"FavoredProducts",
"product_template.html")); (1)

addSIB ("ShowProfilePage",
new ShowInteractionState ("PersonalHomePage",

151

Chapter 13. Implementation

1,
"Profile",
"profile_template.html"));

addSIB ("ShowPersonalHomePage",
new ShowInteractionState ("Start",

2,
"PersonalHomePage",
"home_template.html"));

addSIB ("buildProductList", new ExecuteAction ());

// set the start node information of this service logic graph
setStartSIB ("ShowPersonalHomePage"); (2)

}
}

The two classes are used by theService-Logic-Graph Interpreter, which controls the execu-
tion of the application logic on their basis. The service-logic-graph interpreter, which is im-
plemented as a Servlet [HC98, Servlet], is the mediator between the application’s GUI and
its logic in a model-view-controller (MVC) [GHJV95] fashion. The MVC design pattern en-
forces the conceptual separation between presentation (view), access logic (controller) and data
(model). In our scenario the view is the application’s GUI, the model is represented by the two
generated Java classes and the generic controller is the service-logic-graph interpreter.

The next paragraphs give an overview of how instances of the interpreter and the generated
Logic andSIBContainer classes interact. This is done by documenting how an incoming
client connection requesting functionality offered by the Web application is processed. But
before we go on with the details, we have to give some fundamental information on the HTTP
protocol [HTTP] which is used to access the Web applications via the Internet.

13.1.1. HTTP Fundamentals
In general, the functionality offered by a Web application is made available via the Hyper-
text Transfer Protocol (HTTP) [HTTP]. To access the offered features, a client connects to
the HTTP server providing the Web application via a Uniform Resource Locator (URL) (see
Example 13-3as an example). The URL is a string which contains

1. the protocol to connect the server (here HTTP),

2. the host name running the HTTP server,

3. an optional port number specifying the location of the HTTP server on the host (if the port
number is omitted the port 80 is used by default) and

4. a string which encodes the requested functionality.

The functionality string in turn provides information on

152

Chapter 13. Implementation

1. the name of the Web application,

2. a reference to the functionality within this application and

3. and optional parameters.

Example 13-3. A typical Web-Application URL

The URL shown below defines an HTTP connection to the hostwww.somedomain.com on the
default port 80. It request the featureAddShoppingCartItem of the Web applicationMyShop.
The requested item is specified by the parameteritemid , whose value is 27 in this example.

http://www.somedomain.com/MyShop/AddShoppingCartItem?itemid=27

When a client connects to an HTTP server, the server analyses the functionality string and
passes the functionality and options portion of this string to the encoded Web application for
further processing. The Web application then performs the requested task and sends an HTML
page presenting the result of the computation back to the client via the HTTP server.

In the presented scenario, the communication between the HTTP server and the Web applica-
tion is handled via the Servlet Application Programming Interface (API).

13.1.2. Handling a Client Request
With respect to Web applications which have been build using the Service Definition Environ-
ment, client requests are processed as follows (see alsoFigure 13-2):

1. The requested URL is analyzed by the HTTP server.

2. If the request asks for functionality offered by the Web application the functionality and
the options portion of the URL (see above) are passed by the HTTP server to the service-
logic-graph-interpreter using thedoGet or doPost method provided by the Servlet API.

Note: The doGet method is used, when the incoming request is an HTTP-get re-
quest. The request will be forwarded using doPost , if it is of type HTTP-post.

3. The service-logic-graph interpreter then analyzes the functionality and the option portion
(if any) of the URL. Technically, the functionality portion encodes either a node identifier
contained in the service logic graph, or a node identifier and a SIB exit name.

4. Depending on whether the URL passed by the client to the service-logic-graph interpreter
contains a node identifier and a SIB exit name or only a node identifier, the request is
processed as follows:

153

Chapter 13. Implementation

If the request encapsulates a node identifieranda SIB exit name,

the Logic object is asked by the interpreter to determine the successor node of
the node encapsulated in the URL with respect to the passed the SIB exit. Then
the execution of the associated SIB object is invoked by the interpreter using the
SIBContainer object, which maps node identifiers to SIB objects.

If the URL encapsulates only a node identifier,

the execution of the associated SIB object is directly invoked by the interpreter using
theSIBContainer object. In this scenario, no interaction of the interpreter with the
Logic object is required.

In both cases the SIB object is executed by calling theexec method which must be pro-
vided by each SIB object. This method is the generic entry point for the SIB-execution
(seeSection 13.2for more details).

5. The result of the SIB’sexec method invocation is aString object which represents a
SIB-exit name. It is passed back to the service-logic-graph-interpreter for further process-
ing.

6. Depending on the result of theexec method, the execution of the current request is termi-
nated or continued with another SIB:

If the returnedString object does not equalnull ,

the execution of the current request will be continued. For this, the service-logic-
graph interpreter determines the next node to be executed via theLogic object. The
associated SIB instance is then run by theSIBContainer again (see step 5).

If the result of the SIB execution equalsnull

the service-logic-graph interpreter stops the execution of the current request. It sends
the HTML page generated by the last executed SIB back to the client. For this the Web
application uses theResponse object contained in the Servlet API, which provides
writable access to the current HTTP connection.

HTTP is a stateless protocol, this means that the same request delivers the same result each time
it is executed. In consequence, we need a mechanism to store data which should be passed
between two requests of the same client. This is done by a session object which serves as a
container for data of this kind. Here, the Web server identifies the requesting client by an id
passed as a cookie or encoded in the URL and associates the correspondingSession object
to this request. The session object can then be accessed by the SIB object during the execution
(seeSection 13.2for more details).

154

Chapter 13. Implementation

Figure 13-2. Execution of an HTTP-get Request asking for Web Application Functionality

Note: Some parameters passed as additional arguments to methods shown in Figure
13-2 are left out since they are not relevant to the presented scenario.

13.2. Implementing SIBs
A SIB is realized by a Java class implementing theSIB interface shown inFigure 13-3. Here,
coordination SIBs are are built on the basis of the business classes identified during the software
modeling (seeChapter 11). Interaction SIBs generate HTML pages which are sent to the client
and rendered by the Web browser.

Figure 13-3. TheSIB Interface

public interface SIB
{

/**
* Exec Method
*
* @param call_context Calling context of the SIB. Beside others, it
* stores information on the session object which
* is associated to this request.
* @return Branch id that should be used for selecting the next SIB

155

Chapter 13. Implementation

* may be ’null’. That means the application waits for
* user interaction.
* @exception ServletException Servlet Exceptions.
* @exception IOException IO Exceptions.
* @exception SIBExecException SIB Exceptions.
*/

public abstract String exec (CallContext call_context)
throws ServletException, IOException, SIBExecException;

}

As shown inFigure 13-3, each SIB implementation must provide the methodexec , which
is the generic entry point for the SIB execution (see also the “Strategy Pattern” documented
in [GHJV95]). This method is invoked by the interpreter through theSIBContainer object
each time the control flow of the application reaches a node representing an instance of this
SIB (seeFigure 13-2). The method invocation returns a SIB-exit identifier declared in the SIB
definition (seeSection 12.1), which is used by the service-logic-graph interpreter to determine
the SIB object which should be executed next. The specification of theexec method defines,
that the returnedString object must benull , if the SIB which is implemented by the Java
class is an interaction SIB. This tells the service-logic-graph interpreter to stop the execution
of the current request. The interpreter then sends the Web page prepared by the corresponding
interaction-SIB object back to the client’s browser and waits for the next user interaction (see
Section 13.1.2).

The parameterCallContext of the exec method encapsulates the environment, in which
the Web application and the SIB objects are executed. Via this object a SIB instance has beside
others access to three data areas:

• data which is global to the Web container in which the Web application is running,

• data which is restricted to the Web application, like a customer database, and

• objects whose scope is limited to the current request. This local information is accessible via
theSession object, which can be used to pass local data between SIB instances.

13.2.1. Storing the Values of SIB Parameters
SIB instances can be configured via SIB parameters within the Service Definition Environment.
The values of the SIB parameters are hard coded into the generated Java classes by the service-
logic-graph compiler. To store the values of the SIB parameters in the objects associated to
the corresponding service-logic-graph node, the Java class implementing a SIB must provide
a data attribute for each parameter specified in the corresponding SIB definition. The Java
class presented inExample 13-4implements the SIBShowPersonalHomePage defined in
Example 12-1. Here, the data attributetemplate is used to store the value of the SIB parameter
template .

156

Chapter 13. Implementation

Note: Although it is not required that the data attribute of the Java class has the same
identifier as the associated SIB parameter, choosing the same identifiers makes the ap-
plication better maintainable.

To pass the values of the parameters from the service-logic-graph node to the associated SIB
object, the compiler requires that the Java class offers a public constructor whose signature
depends on the number and types of the SIB parameters. As shown inExample 13-4, the
signature of the constructor provides an argument for each SIB parameter.

Example 13-4. Java Code Fragment of the SIB ShowPersonalHomePage

public class ShowPersonalHomePage
implements SIB

{
/**

* Stores the value of the SIB parameter template of type STR.
* This parameter holds a reference to the HTML page
* representing the associated GUI state.
*/

private String template;

/**
* Stores the value the SIB parameter in_state of type STR.
* This parameter is used to hold information on the
* object flows.
*/

private String in_state;

/**
* Stores the value the SIB parameter out_state of type STR.
* This parameter is used to hold information on the
* object flows.
*/

private String out_state;

/**
* Constructor
*
* @param in_state the value of the SIB parameter in_state
* set during the service logic design.
* @param template the value of the SIB parameter template
* set during the service logic design.
* @param out_dimension the value of the SIB parameter
* set during the service logic design.
* @param out_state the value of the SIB parameter out_state
* set during the service logic design.
*/

public ShowPersonalHomePage (String in_state,
int out_dimension,
String out_state,
String template)

{

157

Chapter 13. Implementation

this.in_state = in_state;
this.template = template;

// the value of out_dimension will not be used in the
// implementation of this SIB. It is only passed to
// the constructor to make the signature of the
// constructor conform to the SIB definition.

this.out_state = out_state;
}

:
:

}

13.2.2. Linking GUI and SIBs
In addition to the Java classes implementing the SIBs, the SIB integrator has to provide an
HTML Skeleton-Pagefor each interaction SIB. This skeleton page presents the information and
the navigation options which are shown in the associated state of the GUI statechart diagram.
The information to be presented is defined in the GUI specification (seeChapter 11). Using the
skeleton pages, the application can already be tested, before the real HTML pages are finished
(seeFigure 9-1). This is the basis for the independent development of the application’s features
and their GUI-presentation. Although the HTML skeleton pages already present all required
information and offer the requested navigation options, they are typically very simple from the
HTML-design point of view. The reasons for this are

• that the look and feel of the GUI does not matter and is often even not approved by the
customer in this state of the application development.

• that we want to decouple the GUI look and feel from the application code

• as key for the division of labor and

• to provide different GUIs for the same application.

• that SIB integrators are not expected to be HTML experts.

To present the dynamic information within the resulting HTML page, i.e. to integrate GUI
and application, each skeleton page contains scripting elements which extract data from the
business objects maintained by the Web application. It is important to note, that the scripting
elements onlypresentthe required information within the HTML page. In contrast to HTML-
embedded scripting techniques for Web site development, no real functionality is implemented
using the scripting fragments. The functionality of the application remains under full control
of the service-logic-graph interpreter. Thus, the skeleton pages specify the interface (in form

158

Chapter 13. Implementation

of scripting fragments and navigation options) between the application’s functionality and its
GUI. Currently, the Service Definition Environment uses the Velocity Template Engine of the
Jakarta project [Velocity] for dynamic Web-page creation.

Example 13-5shows a scripting fragment which iterates through a collection of user objects.
The names of the users are presented as an unordered list within the HTML page.

Example 13-5. A Scripting Fragment of a Skeleton Page

#foreach $user in $UserList

$user.Name

#done

During the GUI integration task of the software development process, the skeleton pages and
the HTML pages of the static GUI prototype are integrated. The result of this activity is the
real GUI of the application. The integration is essentially done by replacing the static parts of
the HTML-prototype pages which should present dynamic content by the scripting elements
of the skeleton pages.

159

Chapter 13. Implementation

160

Chapter 14. Integration Test
The integration test is the last task before the Web application is finally delivered to the cus-
tomer. It is performed after the GUI integration task (seeFigure 9-1) has been finished. The
integration test complements the testing activities performed during the previous phases of the
application development, like the testing of the business classes or the validation of the service
logic graph. Therefore, it should focus on aspects not covered by the previous tasks of the soft-
ware development. Consequently, beside others, functional testing on GUI level, performance
issues, and the server farm configuration are of major interest.

Currently, there is no integration test support provided by the Service Definition Environment
within the Web application framework today. But there is ongoing work which aims at the
automated functional testing of Web applications (seeChapter 17).

With respect to the Web domain, the integration test must today be performed using testing
tools like the Rational TeamTest suite [TeamTest], which beside others can be used to perform
functional tests, or JMeter [JMeter], which tests the performance of the Web application.

161

Chapter 14. Integration Test

162

IV. Conclusion and
Perspectives

Chapter 15. Summary
In this thesis we have presentedElectronic Tool Integration (ETI) Projectwhich is intended to
provide an infrastructure which supports the tool evaluation process by offering

1. the ETI Platform and

2. the ETI Community Online Service.

The ETI Platform

The ETI Platform, whose central ingredient is theToolZone Software, is used to build a net-
work of moderated Internet sites, calledETI Sites. These moderated Web sites offer continuous
support during the four phases of the Web-based tool evaluation process:

1. searching for candidate tools,

2. reading the available documentation,

3. installing the software tool, and finally

4. experimenting with the tool.

The whole service is provided via the Internet in a

• secure,

• performant, and

• failsafe

manner.

In the current status of the project the

• Caesar Aldebaran Development Package [FGK96, CADP],

• the Uppaal tool environment [LPY97, Uppaal],

• the HyTech tool [HHW97, HyTech],

• Kronos [Yov97, Kronos],

• some spin features [Hol97a, spin], and

• the smv model checker [McM92, SMV]

are available via two ETI sites. These sites are hosted by

• the Chair of Programming Systems at the computer science department of the University of
Dortmund and

165

Chapter 15. Summary

• the department of Computing and Information Sciences at the Kansas State University.

The ETI Community Online Service

TheETI Community Online Serviceorganizes the people who are involved in the

• maintenance,

• extension, and

• hosting

of the ETI platform. This personalizable Web application serves as a virtual meeting point
which beside others offers online access to the source code and the documentation of the ETI
platform. It enables team members to exchange information and discuss on ETI-related topics.
In particular end users are invited to comment on the ETI platform and to propose change
requests and future directions.

The construction and maintenance of the ETI Community Online Service is supported by a
development environment comprising

• a role-based software development process,

• a Web-application architecture, and

• a workflow-design tool.

Although we have already put a lot of effort into the development of the ETI platform, the ETI
Community Online Service and the Web development environment, there is still a lot of work
to be done.

The Common Pattern

The thesis has illustrated our approach to component-based development of Internet-based
applications by two variations, the ETI platform and the Web development environment. The
characteristic

• strict division of labor and

• coordination-centric application development by non-programmers

is achieved by the following four-step procedure:

Development of Base Functionality by Software Experts:

The coordination-centric development of a component-based Internet application starts
with the implementation of the base functionality. Within the ETI project, the base func-
tionality is provided either by third-party software tools or by Java libraries.

166

Chapter 15. Summary

Component Development by Component Integrators:

The base functionality is encapsulated into components which are adequate for the cor-
responding coordinating-workflow model. As component types we have presented ETI
activities and types, and service independent building blocks. The components can be
classified using predicates, which are organized in component-type specific taxonomies.

Coordination-centric Design of the Application Logic by Application Experts:

On the basis of the components an application expert without programming skills, can
specify the behavior of the application on his level of understanding. For this he can use
HLL programs, coordination sequences and service logic graphs. During this task, he is
supported by formal methods like program synthesis and model checking which guarantee
the correctness of the application at the coordination layer.

Application Execution:

Applications can be put into operation without any programming effort. Either they are in-
terpreted (HLL programs and coordination sequences) or they are automatically compiled
into native code like Java (service logic graphs). The applications are executed within
a workflow-model specific runtime environment. In this context we have presented the
ToolZone software which is able to run HLL programs and coordination sequences via
the Internet. The code generated out of the service logic graphs is executed within a Java
2 Enterprise Edition compliant Web Container.

Future Directions

Beside some technical enhancements of the ETI platform covered inChapter 16the middle-
term goals of the project are

• the integration of new tools and

• the involvement of additional research groups.

For this, we are in the course of setting up a network of excellence comprising several European
research sites.

Chapter 17illustrates a concept for automated functional testing of Web applications which
applies the coordination-centric software development process in the field of test suite man-
agement. In addition, it adds testing facilities to the development environment presented in
Part III. This concept is part of another Ph.D. thesis at the chair of Programming Systems and
Compiler Construction of the University of Dortmund.

Chapter 18presents an experiment with an extension of the service logic graph model which
in combination with program synthesis allows even end users to modify the application at the
coordination layer in a safe manner.

167

Chapter 15. Summary

168

Chapter 16. ToolZone Enhancements
From the implementational point of view, the following enhancements of the ETI platform are
currently planned:

Utility Tools

As e.g. mentioned inSection 7.6we plan to offer more and advanced utility tools which
simplify the integration process.

Firewall-compliant Communication

Currently, the communication between the client and the server side is mainly based on
Java RMI. This results in a lot of trouble, when a firewall is located between the two com-
municating hosts, especially since the client-side software relies onincomingRMI calls.
The problems can be solved, if the firewalls are configured properly (see [RMIFAQ]).
With respect to the server side, this is not an issue, since it is the interest of the ETI site to
provide this service. But in general, the ETI user has no influence on the configuration of
the client-side firewall.

"XMLification" of Configuration and Data Files

Some formats of the tool management application’s configuration and data files are still
"old fashioned" with respect to the file formats. Therefore, we are working on defining
XML DTDs for the taxonomy files, and for storing graph and graphs systems. This will
enable us to use and integrate standard software and eases the data exchange between the
ETI platform and third party applications.

Taxonomy Editor

In the current version of the ETI platform, the taxonomies can only be modified by editing
a text file. This is of course not very user friendly. Therefore we are in the course of
enhancing the taxonomy window which will enable the tool integrator to modify ETI’s
taxonomies via the ToolZone software.

The items only present the main enhancements scheduled within the platform’s project plan. In
addition to the modifications proposed by the ETI developers, every user is invited to propose
future enhancements via the quality management system offered by the ETI Online Community
Service.

169

Chapter 16. ToolZone Enhancements

170

Chapter 17. Automated functional
Testing of Web Applications
The purpose of functional testing of the Web applications is to validate that the Web application
is conformant with the functional requirements specified in the requirements document (see
Chapter 10). Since the functional requirements describe the behavior of the system from the
user’s point of view, the testing is typically performed by interacting with the Web application
via a Web browser.

This chapter presents first ideas ofautomatedfunctional testing of Web applications. The work
illustrated in this chapter is part of another Ph.D. thesis at the chair of Programming Systems
and Compiler Construction of the University of Dortmund. It

• applies the coordination-centric software development process to design and execute test
suites, and to manage the configuration of the system under test, and

• adds automated functional testing facilities to the Web development environment.

The test concept illustrated in the following two sections is based on the Integrated Test Envi-
ronment (ITE) for Computer Telephony Integration (CTI) Applications [NMNSBI00, NMHNSBI01,
NMHSBI01, NNHKGEH01], which has been successfully realized in cooperation with a group
at Siemens Witten, Germany, and the METAFrame Technologies GmbH [MFTech]. The ITE
supports the generation, execution, evaluation and management of system-level tests. In the
rest of this chapter, we will focus on the test generation and test execution capabilities.

On the basis of the service logic graph, which models Web application under test at the coor-
dination layer, and a set of test data, the environment supports

• the automated generation of test suites (Section 17.1), and

• their automated execution (Section 17.2).

17.1. Generating Test Suites
A test suiteis a collection oftest graphswhich check the system under test (SUT) with respect
to a certain test criterion, like code coverage. Here, test graphs are modeled as service logic
graphs (seeExample 17-1), which contain two kinds oftest blocks(SIBs):

• write blockssend stimuli to the SUT and (see e.g.login , logout in Example 17-1)

• read blocksare able to get status information from the SUT (see e.g.checkLogin , check-

Home in Example 17-1).

171

Chapter 17. Automated functional Testing of Web Applications

The read blocks are used to evaluate the system status after a test stimulus has been sent by a
write block. For this they can be used to decide whether the execution of a test stimulus resulted
in the expected system status, i.e. to decide whether the test passed or failed. This contrasts test
sequences which are defined by a composition of test stimuli only.

Example 17-1. A simple Test Graph

This example shows a simple generated test graph. After some initialization tasks, like starting
the Web browser on the client, the test sequence

1. logs in to the Web application,

2. checks that the home page of the user is shown,

3. logs out from the Web application and

4. checks whether the logout page is presented.

In general, the test graphs are built from application-independent test blocks which beside
others are able to

172

Chapter 17. Automated functional Testing of Web Applications

• follow a link within an HTML page,

• input data into HTML forms and

• examine the title of an HTML page.

The test suite is generated in two steps (seeFigure 17-1).

Figure 17-1. Automized Test-Suite Generation

First, a model of the application in form of a labelled transition system is generated. The model
encodes

• the structure of the service logic graph of the Web application and

• a set of test data.

The test data is beside others

• extracted for the GUI specification (seeChapter 11) which provides the navigation capabil-
ities of each HTML page and

• provided by the SIB integrator. For interaction SIBs (seeSection 12.1) he can specify test
data which defines input for HTML forms.

Figure 17-2shows a fragment of an application model. As can be seen, the edge information
encode actions likecheckLogin or login as well as the data that is used to perform them
(e.g.title=User Login).

173

Chapter 17. Automated functional Testing of Web Applications

Figure 17-2. A Test Model Fragment

Using the application model the test-suite generator delivers the test suite. As already men-
tioned, the corresponding test graphs depend on test criteria. Currently the prototypical imple-
mentation supports the coverage of execution sequences as test criteria. This means that for
each execution sequence specified by the service logic graph of the Web application under test,
an appropriate test graph is generated.

17.2. Automated Test Execution
The test graphs are executed by theTest Coordinator, which is added to the system architecture
as shown inFigure 17-3.

The test coordinator has access to the Web application at different layers (see alsoFigure 2-10).
Via the presentation layer, it is able

• to control the application by following links shown in the HTML pages or by entering data
into HTML forms, and

• to retrieve information contained in the HTML pages, like its title.

To control the GUI of the Web application, the test coordinator remotely operates the Web
browser. This is realized via

• a test tool installed on the client, and

• a CORBA object which makes the test-tool features remotely available via the Internet Inter-
ORB Protocol (IIOP).

174

Chapter 17. Automated functional Testing of Web Applications

Figure 17-3. The Test Setting

In the current implementation of the test setting, we use Rational Robot [Robot] as test tool on
the client machine. Rational Robot is a product of Rational Software [Rational]. Beside others,
it allows to control the GUI of an application via scripts.

The IIOP/RMI link to the business object layer of the application gives access to the Web-
application’s data. This connection can be used to analyze the effect of a GUI interaction in
more detail. Note, that the link to the business object layer of the Web application is not nec-
essarily required. It gives access to the state of the Web application which can be used for a
more detailed analysis. In a non-intrusive scenario, the automated tests can also be performed
without having the IIOP/RMI connection to the Web-application servers. Here, the application
status can still be evaluated by analyzing the HTML pages presented as result of a test-stimulus
execution.

As central software component, the test coordinator runs the Service Definition Environment.
Each test graph contained in the generated test suite, is executed by the Service Definition
Environment using the tracer feature (seeSection 12.2.1). During the test run, test reports are
built, which beside others provide information on

• the time when the test graph was executed,

• the environment in which the test graph was run,

• the information whether the test passed or failed and

• if the test failed, the reason why it did not complete successfully.

175

Chapter 17. Automated functional Testing of Web Applications

176

Chapter 18. Self-Adapting Web
Applications
This chapter presents an extension of the Web development environment where even end users
of Web applications are able to modify the implementation of the applications coordination
layer in a safe manner. The proposed extension is part of an experiment undertaken in a two-
terms course at the University of Dortmund (PG 312) by twelve students (see [ISPA98]). It
proposes a new model for Web applications at the coordination layer, calledAgent Universe,
which in combination with program synthesis, similar to the one presented inSection 2.1.4.3,
is used for the adaption procedure.

Although there are still a lot of questions which have not yet been answered (seeSection 18.6)
we want to present the results of the experiment as motivation for further research.

18.1. Motivation
Since the Web is so popular today, a lot of people with different profiles and habits access the
publicly available applications. This means that a successful Web application cannot be a static
system. It must be personalizable by the user or even better self-adapting.

Today, locally personalizable Web applications (like [MyYahoo] or [MySun]) are state of the
art. Here, the user may provide personal data which is in most cases used to preselect informa-
tion from huge databases and to present them within an HTML page. But there are two major
disadvantages concerning this kind of personalization. First, the application is only locally per-
sonalizable. This means that the personalization only effects a single Web page. There is no
mechanism that changes the application logic. Second, if the habits or the preferences of the
user change over the time, the user himself is responsible to inform the application. He can do
this e.g. by updating his profile information manually.

In contrast, self-adapting Web applications observe the user during his interaction with the
system. By this they gather important information about the behavior of the user in addition to
the data provided by him manually. This information is then used to update the profile of the
user and in consequence the behavior of the application accordingly. The modification process
is done automatically, no interaction of the user is required.

There are two types of self-adaption. One which influences the application locally, and one
which results in global changes. The local type has impact on a single Web page only. Here,
slots contained in the HTML page are filled with profile-dependent information. Typically,
product advertisements will appear. But in general, the concept is not restricted to this kind
of information. It can even be used to present access to new functionality which seems to be
in the user’s interest. The user-specific information is determined on the basis of rules which
specify the relation between user profiles and information which should appear in the slots of

177

Chapter 18. Self-Adapting Web Applications

the HTML page presented to the user (seeFigure 18-1). This type of self-adaption is beside
others handled in [Wel00, Sch01]. In contrast to the local type of self-adaption, the global one
changes the behavior of the application.

Figure 18-1. The local Personalization Process

This chapter introduces an extension of the environment presented inChapter 9which realizes
global self-adaption by automatic modification of the application’s coordination layer.

18.2. Fundamentals of Global Self-adaption
Global self-adaption is based on an extension of the feature notion introduced inChapter 10.
There, we exposed two types of features:

• static featureswhose behavior is the same for all users of the application and

• dynamic featureswhose behavior depends on the role of the user interacting with the Web
application.

The second feature type is almost adequate with respect to globally self-adapting Web applica-
tions. Except for the fact, that the behavior of aself-adapting featuredepends on further user
attributes than the role, which is here only one aspect of the user’s profile. To formalize the
profile-dependent behavior of a self-adapting feature, we useMicro Features, which represent
sub-functionalities of self-adapting features. The behavior of a self-adapting feature, which de-
pends on the user profile and the system state, is then defined by a temporal specification on the
basis of the micro features. Micro features can be compared to activities introduced inSection
2.1.1. Similar to activities they can be combined using the temporal logic presented inSection
5.2.2.1.

The relation between a user profile and the appropriate personalized feature-behavior is de-
fined by means ofPersonalization Rules. They map user profiles and system states to temporal

178

Chapter 18. Self-Adapting Web Applications

micro-feature specifications. The declaration of the micro features and the specification of the
different feature characteristics are also part of the feature definition.

Within this chapter we use the “Personal Shop Tour” feature as an example. This feature of the
Web-shop application introduced inChapter 10guides the customer through the shop instead
of letting him search the “desired” goods on his own. The tour depends on the customer’s
profile and on the time of the day at which the customer enters the store.

Personal Shop Tour (Feature ID: FR-CF-004)

The Web shop provides a personal tour to the customer, which can be started from his
personal home page. Here, the customer is guided through the shop departments offering
milk & yogurt, meat, alcoholic drinks and sweets. The tour depends on the customer’s
profile and on the time of the day at which the customer enters the store. The personal
shop tour provides the following micro features which are used within the personalization
rules to define profile-dependent feature behavior:

• EnterMilkAndYogurt: Guides the customer to the milk & yogurt department.

• EnterMeat: Guides the customer to the meat department.

• EnterAlcoholics: Guides the customer to the alcoholic drinks department.

• EnterSweets: Guides the customer to the sweets department.

On the basis of the micro features, the following rules specify, that

• young customers should visit the milk & yogurt department and before they go to
the sweets section (sub-formulaEnterMilkAndYogurt < EnterSweets of rule 1).
They should never have a chance to buy alcoholic drinks (sub-formulaG (~EnterAl-

coholics)).

• that male customers which are not young should be guided in the evening through the
alcoholic drinks department and never be bored by milk & yogurt products.

[5] YoungCustomer =>
(EnterMilkAndYogurt < EnterSweets) & G (~EnterAlcoholics).

[8] MaleCustomer & ~YoungCustomer & Evening =>
F (EnterAlcoholics) & G (~EnterMilkAndYogurt).

Note that this is a very simple example, which is only meant to illustrate the presented
idea.

The rest of this chapter is organized as follows. First,Section 18.3introduces the extension of
the model of the application’s coordination layer.Section 18.4then presents the life cycle of a
self-adapting Web application. Beside others, the life cycle contains the agent-adaption phase

179

Chapter 18. Self-Adapting Web Applications

which modifies the behavior of the Web application. This phase is then illustrated inSection
18.5. Section 18.6concludes this chapter.

18.3. The Agent Universe
In the Web-application environment introduced inChapter 9, there isone implementation of
the coordination layer which is valid forall users of the system. This is not true for globally
self-adapting Web applications. Here, depending on his profile, each user may have another
implementation of the coordination layer and thereby of the Web application.

To reflect the new concept, we extend the model of the application’s coordination layer (the
service logic graph) as follows. The new model defines

• a skeleton implementation of the coordination layer common to all users

• a portion which specifies profile-dependent features or feature characteristics.

The second aspect provides the parts in which the application may vary for different user
profiles. The extension of the service logic graph model is achieved by distinguishing two types
of edges.Must edgesmodel the flow of control which must be present in every implementation
of the coordination layer. In contrast,may edgesmodel optional behavior. Mathematically, this
model is covered byModal Transition Systems[LT87, LT88, Lar89]. We call the extended
model of the service logic graphAgent Universe.

Figure 18-2shows a fragment of the agent universe of the shop example extended by the
personal tour feature. Here, may edges are drawn using dashed lines. Note that all valida-
tion features of the Service Definition Environment covered inSection 12.2.1can also handle
modal-transition-systems based service logic graphs.

A user accesses the application via hisUser Agent. This subpart of the agent universe models
the user-specific implementation of the coordination layer.

To be well-defined, the agent universe must satisfy certain properties, which ensure that the
resulting user agents are deterministic graphs. Otherwise the generated Java code cannot be
handled by the service logic graph interpreter introduced inSection 13.1. These properties can
be checked using the validation features presented inSection 12.2:

• It is not allowed that the same SIB exit is assigned to

• more than one must edge or

• a must and a may edge

starting at the same node. This is because the adaption process may result in a non-deterministic
user agent, if one of the two situations occurs.

180

Chapter 18. Self-Adapting Web Applications

• The same SIB exit may be assigned to several may edges. Within a user agent, only one
of these may edges may then be enabled (see the conflict resolution presented inSection
18.5.2).

Figure 18-2. A Fragment of the Agent Universe of the Shop Application

18.4. The Life Cycle
The life cycle of an application defines coarse grain phases which are traversed by the applica-
tion during its life time. In general, we can identify phases like

• development

• deployment

• usage and

• maintenance.

In the context of standard Web applications, only the development and the maintenance phases
modify the behavior of the application. Here, the application’s behavior is manually changed
according to new requirements. In particular, the application usage does not effect the applica-
tion’s behavior.

181

Chapter 18. Self-Adapting Web Applications

This changes in the context of self-adapting Web applications. There, the application usage
may result in more information about the user, which is then used to modify user’s profile and
in consequence the user agent accordingly (see also [BM99]). To model this fact within the life
cycle of a Web application, theApplication Usagephase is split up into three sub-phases (see
alsoFigure 18-3):

• theAgent Usage

• theProfile Updateand

• theAgent Adaptionphase.

In these phases the behavior of the agent may be changed according to the new profile of the
user. This means that the next time the user logs in, he uses thesameapplication but is guided
by a possiblymodifiedagent.

Figure 18-3. The Life Cycle of a self-adapting Web Application

In the Agent Usagephase, which is limited toone singlesession, the user accesses the Web
application via his agent. Thereby he is observed by the agent. By this, the agent collects
information on the user’s habits. As soon as he has logged-out (has terminated the current
session), the new information is used to modify the user’s profile accordingly in theProfile
Updatephase. Note that the application usage phase applies toseveral subsequentuser sessions
with the application performed by different users. The agent usage phase is limited toone single
session of a specific user.

182

Chapter 18. Self-Adapting Web Applications

TheAgent Adaptionphase then changes the agent’s behavior in accordance to the user’s new
profile on the basis of the personalization rules, if required. This is done, when the user logs-
in the next time. Consequently, the user’s view of the application may have been changed in
a way that fits better his needs and the current system state. In contrast to the development
and maintenance phase, the modifications performed during the agent adaption are done fully
automatically. No intervention of a service logic designer or programmer is necessary.

In the next sections, we will document the agent adaption phase in detail.

18.5. The Agent Adaption Phase
The agent adaption process modifies the user agent according to the current user-profile and
the actual system state. It uses the personalization rules which map user and system properties
to change requests defined by the feature expressions. change requests of the user agent. The
change requests are the basis for the subsequent, automatic reconfiguration of the user agent
on the level of the application logic (seeFigure 18-4).

Figure 18-4. The Agent Adaption Process

Concretely, the adaption process takes

183

Chapter 18. Self-Adapting Web Applications

• theUser and System Profile,

• thePersonalization Rules,

• theUser Agent, and

• theAgent Universe

and delivers theAdapted Agentas output. The next time, the user logs-in the adapted agent is
determined and then used to access the application.

Note: The system profile contains information on the context and global aspects of the
Web application. Here data like the current time of the day or the number of currently
active user sessions are stored.

As shown inFigure 18-4, the agent adaption process is performed in two steps:

1. rule evaluation (seeSection 18.5.1) and

2. feature integration (seeSection 18.5.2).

The next two sections cover these two task of the agent adaption process.

18.5.1. Rule Evaluation
The first step of the agent adaption process determines change request which specify either

• new features or

• new characteristics of already available features.

The rule evaluation is performed by evaluating the personalization rules which map user and
system profiles to change requests formalized byfeature expressions(seeFigure 18-5).

In general, the rules are of the form of

[weight] user/system expression => feature expression,

where

• weight is a natural number defining the weight (importance) of the rule,

• user/system expression is a Boolean expression built out of user/system properties
and

• feature expression is a temporal expression based on micro features.

184

Chapter 18. Self-Adapting Web Applications

Each personalization rule models the fact that the feature or feature configuration defined by the
right hand side of the rule is meant to be relevant for users matching the given user expression
in the context of the defined system state.

Figure 18-5. The Conceptual Model of the Agent Adaption

For a specific user, the change requests are determined as follows: for every rule, it is checked
if the current user/system profile matches the left hand side of the rule. If it matches, the
preference of the feature expression, the right hand side of the rule, is increased by the weight
of this rule.

Note: Instead of summing up the weights of the rules to determine the preference of a
feature expression, other strategies can be applied if neccessary.

After the rule evaluation has been finished, the agent adaption component “knows” the pref-
erence of every feature expression applicable to the chosen user in the current system state.
Now, the agent adaption selects the feature expressions which should really be integrated into
the user agent. This procedure uses a filter which selects the corresponding expressions on the
basis of their preferences. Possible filter strategies are to select the 5 feature expressions having
the highest preference or the integration of all feature expressions having at least preference 10.
Of course, any other filter may be realized too. The result of the rule evaluation is afterwards
processed by the feature integration.

18.5.2. Feature Integration
The feature integration adds new features to the user agent or changes the behavior of already
existing ones. Here, the new features are specified by the change requests delivered by the rule

185

Chapter 18. Self-Adapting Web Applications

evaluation (seeSection 18.5.1). Whithin this step of the agent adaption process the implemen-
tation of the Web application’s coordination layer is modified.

The feature integration is performed as follows:

1. For each change request which has been delivered by the rule evaluation the following
steps are undertaken:

1. SLTL-Formula Transformation: The feature expression is transformed into an SLTL
formula specifying the implementation of the feature to be realized within the agent
universe. This process combines the SLTL formulae associated to the micro features
regarding the operators contained in the expression.

2. Path Generation: A path which satisfies the SLTL formula is determined within the
agent universe.

In the current implementation, this path is always unique, since the synthesis com-
ponent is configured to deliver one randomly selected shortest path (see alsoSection
2.1.4.3).

3. Path Integration: If the path determined in step 2 is not empty, it is integrated into the
current version of the user agent.

Note: The path may be empty, if the SLTL formula is not satisfiable with respect
to the agent universe, which means that no path within the agent universe can
be found which implements the requested functionality.

2. Finally, theMust Completiondetermines the adapted agent.

Before we illustrate the steps of the feature integration in detail we introduce the data structure
which is used by this procedure.

The feature integration uses atemporal modelwhich represents the user agent in the different
iterations of the adaption process. After all change requests have been integrated into this
model, the adapted agent is determined by the must completion on the basis of this tempoal
model (seeSection 18.5.2.2).

Beside may and must edges, the temporal model also contains edges of two other types, which
represent a certain status of a may edge:

• Current edgesrepresent may edges which are available in the current version of the temporal
model. They have been added by previous iterations of Step 1 of the feature integration
process.

186

Chapter 18. Self-Adapting Web Applications

• Proposed edgesillustrate may edges which are hit by the path representing the actual func-
tionality to be integrated. They are added to the temporal model in Step 1.3 of the feature
integration process (path integration).

In its initial state, the temporal model is equal to the agent universe where the may edges also
contained in the current user agent are marked “current” (seeExample 18-1).

Example 18-1. An initial temporal Model of a User Agent

This example shows the initial temporal model of a user agent where the current edges are
drawn using dotted lines. Here, the personalized tour visits all departments in the following
order:

1. milk & yogurt,

2. meat,

3. alcoholic drinks and

4. sweets.

The next sections illustrate the following steps of the feature-integration task:

• Section 18.5.2.1handles the SLTL-formula transformation (Step 1.1),

• Section 18.5.2.2covers the path integration (Step 1.3), and

• Section 18.5.2.3illustrates the must completion (Step 2).

187

Chapter 18. Self-Adapting Web Applications

The path generation (Step 1.2) is not presented in this thesis, since it uses the algorithm pub-
lished in [SMF93].

18.5.2.1. Building the SLTL Formula

The link between a feature expression and the path within the agent universe is established via
a Semantic Linear-time Temporal Logic (SLTL) formula [SMF93]. This formula is built from
the SLTL formulas which have been used to define the micro features (see alsoFigure 18-5).

In general an SLTL formula specifies a set of paths within a labelled transition system like the
agent universe. The main advantage of SLTL is that the paths are not specified on a detailed
level. Instead of this they are described using temporal properties like precedence and even-
tuality of actions (here SIBs) and conditions (here SIB exits). By this, micro features and in
consequence the feature expressions are only loosely coupled to their implementation within
the agent universe. This allows certain modifications of the agent universe which do not af-
fect the satisfiability of an SLTL formula and in consequence the availability of the associated
micro feature.

18.5.2.2. Path Integration

This step of the feature integration adds a path delivered by the path generation (Step 1.2 of the
feature integration procedure) into the temporal model of the user agent. An overview of the
Path Integrationprocedure is shown inFigure 18-6as UML activity diagram.

Figure 18-6. The Path Integration Task

188

Chapter 18. Self-Adapting Web Applications

The path integration is the only task of the agent adaption process which takes the may edges
contained in the agent universe into consideration.

“Merge Path” Activity

Before a path-integration procedure is performed within an iteration of the feature-integration
process, the temporal model contains must, may and current edges representing the current sta-
tus of the user agent. The path integration now adds proposed edges to this graph which illus-
trate the path implementing the chosen change request. This is done within the “merge path” ac-
tivity shown inFigure 18-6. This path has been determined in Step 1.2 (Path Generation) of the
feature-integration process. With respect to the shop example and theF (EnterAlcoholics)

& G (~EnterMilkAndYogurt) functionality, the temporal model including the proposed
(dashed and dotted) edges is shown inFigure 18-7. Here, the personal tour leads from the
meat department directly to the alcoholic drinks and ends at the sweets section.

Figure 18-7. The temporal Model of the Shop including the new Feature

“Check Consistency” Activity

As next step, the temporal model is checked for inconsistencies. In general, an inconsistency
results in a non-deterministic user agent. This means, that there exists at least one node which
has two outgoing edges having the same SIB exit assigned. This situation of course cannot be
handled by the service-logic-graph interpreter presented inSection 13.1. With respect to the
temporal model, a conflict is found, if there exists a node which has one outgoing current and
one outgoing proposed edge having the same SIB exit assigned. This means, that in the agent
universe two may edges starting at the same node have the same SIB exit assigned.

189

Chapter 18. Self-Adapting Web Applications

Note: Due to the rules defining the consistency of the agent universe (see Section 18.3),
this is the only inconsistent situation which can occur during the feature integration.

“Resolve Conflict” Activity

If a conflict is found, the currently processed functionality interacts with a feature already
available in the temporal model. For this, theconflict resolutioncomponent tries to solve this
problem. Currently, we can only handle one simple conflict. This is characterized by the fact
that the non-determinism occurs at the first node of the path to be added. In this case we give the
new feature higher priority which means that it is favored over the currently existing one. The
conflict is resolved by marking the conflicting edge of the new requirement as “current” and the
edge of the old requirement as “may” again (seeExample 18-2). By this the old requirement is
disabled in the adapted agent, since it will be deleted from the temporal model during the must
completion step (seeSection 18.5.2.3).

Example 18-2. Resolving a Conflict

In this example, the conflicting situation occurs at the nodeShowTourStart (seeFigure 18-7).
As already mentioned, this conflict is resolved in a way that the new requirement (next -edge
leading from the nodeShowTourStart to ShowMeat) is favored over the old functionality
(next -edge leading from the nodeShowTourStart to ShowMilkYogurt).

If the conflicting situation cannot be handled, the requested requirement is rejected by reset-
ting the proposed edges to “may”. In this case the application expert is notified by the software,
since an unresolvable inconsistency can indicate an undetected problem within the agent uni-
verse and the personalization rules.

“Accept Request” Activity

Finally, the path implementing the change request, if any, is merged into the temporal model
by changing the status of the proposed edges to “current”. Consequently, after step three only
must, may and current edges are contained in the temporal model again.

18.5.2.3. Must Completion

After all change requests have been processed, the must completion determines the adapted
agent. This is done by computing the subgraph of the temporal model which starts at its unique
start node and contains all nodes which are reachable via must and current edges. By this, the

190

Chapter 18. Self-Adapting Web Applications

non-optional functionality is added via the must edges and the profile-dependent features are
reached via the current ones. The parts of the agent universe which are not relevant for the
current user profile (modeled by the may edges) will be removed in this step from the temporal
model.

Figure 18-8shows the adapted agent valid for an elder male customer using the application in
the evening. He is guided from the meat department, entering the alcoholic drinks section and
finally reaching the sweets’ shelfs. Note that the customer must walk through the meat section
since we explicitly specified in the formula, that we do not want him to be bored with milk &
yogurt products (sub formula~EnterMilkAndYogurt) and there is no other way leading to
the alcoholic beverages than passing the meat department.

Figure 18-8. The adapted Agent

18.6. Conclusion
This chapter has presented the results of an experiment with an extension of service logic
graphs which in combination with program synthesis enables even end users to modify the
behavior of a Web application in a safe manner. We want to point out that the illustrated ideas
are only first steps towards a theoretical concept. In particular, the feature integration needs
further thoughts. New features can currently only be modeled as paths. This is due to the fact

191

Chapter 18. Self-Adapting Web Applications

that the synthesis component is limited to this data structure. Tree-based program synthesis as
developed in [Yoo] would make the environment more flexible. This conceptual extension is
in particular a promising way to a systematic integration of several requirements at the same
time.

192

Chapter 19. Final Remarks
The Electronic Tool Integration (ETI) project offers

• the ETI platform, which is used to set up Web sites (called ETI Sites) providing services for
Internet-based software tool experimentation, and

• an Internet-based infrastructure, which supports the people being involved in the develop-
ment, extension and hosting of the platform.

Encouraged by the feedback of the ETI users, we believe that the network of moderated ETI
Sites will bridge the gap between tool providers and people looking for software tools to solve
specific problems. Each site of the network supports all four steps of the tool-evaluation process
and provides a platform to tool providers which can be used to make their software tools
available to a wide range of potential “customers” in an easy and secure way.

The development environment, in particular its formal methods based workflow design tool,
which has been used to realize the infrastructure, has in the meantime turned into a commercial
product. This shows that even non-scientists accept and benefit from the use of formal methods
in “real-life” projects, if they are seamlessly integrated into their infrastructure at their level of
understanding. The presented coarse-granular verification approach does of course not guar-
antee the total correctness of the software system, but it allows early error detection which
improves the quality of the developed products, reduces the development time and results in a
shorter time to market.

193

Chapter 19. Final Remarks

194

Appendix A. Design and Integration of
Graphs Systems
This appendix covers design and integration of graphs systems. These aspect have not been
covered by the main parts, since the handling of graphs systems in the context of the ETI
platform is very similar to the handling of directed graphs (seeSection 6.2.1.3andSection
7.5.2).

We start with the presentation of the graphs-system design inSection A.1. Section A.2then
goes into the details of graphs-system integration.

A.1. The Design of Graphs Systems
When modeling a system which should be verified, a single graph is often not expressive
enough. Sometimes graphs systems build a more adequate model. Graphs systems are collec-
tions of directed graphs. They structure these graphs and provide some global information.

The ToolZone software implements a generic graphs-system type which is extended to reflect
the needs of a specific graphs system (Section A.2goes into the details of the extension pro-
cess).Figure A-1shows the structure of the generic graphs-system type as UML class diagram.

Figure A-1. Class Hierarchy of the generic Graphs-System Type

All information associated with a graphs-system object is accessible via theETIBaseSystem

class. Using the base class, the application has access to the graphs system’s global information
and to its components. Like the other generic types implemented by the ToolZone software, a
graphs system type can be referenced by a string identifier. This identifier can be used to create
a graphs system object of the chosen type using the management functionality provided by the
classETISystem .

In addition to the components, anETIBaseSystem object maintains a set ofETISystemLis-

tener (see observer pattern documented in [GHJV95]) which can be added or removed from
a graphs system object. They get informed by the graphs system in the case that a component
is removed or added, the global information has been changed, etc.

195

Appendix A. Design and Integration of Graphs Systems

A.1.1. The Graphical User Interface
The GUI of a graphs system, i.e. the graphs-system editor window (seeFigure 5-11), is imple-
mented as anETISystemListener . It reacts on changes within the displayed graphs-system
object in order to represent it accordingly on the screen.

Figure A-2 shows all classes which contribute to the GUI of a graphs system. The corre-
sponding objects are distributed over all the three ToolZone-software layers (seeFigure 2-
5). Within the feature layer, the main class to access the graphs system GUI is the class
ETIJavaSystemWindow . To display a graphs-system object on the screen, the tool manage-
ment application creates a new object of this type and invokes thecreateGraphic method on
the graphs-system object to be shown on the screen.

Figure A-2. The Graphs System Editor Window Class Hierarchy

The creation of theETIJavaSystemWindow by the tool management application, initiates the
creation of the corresponding objects within the Internet access layer and the presentation layer
(seeFigure A-3).

When anETIJavaGraphWindow object is created, first an object of typeSystemGraph-

MenuHandlerImpl is instantiated within the Internet access layer. This object is responsi-
ble for handling the communication between the client and the feature layer. It interacts with
the tool management application via JNI and with the ToolZone client using Java RMI. Af-
ter the menu handler object has been created, the client is requested to create a new win-
dow object of typeSystemGraphMenuImpl . Here, a remote reference to the previously cre-
ated menu handler object (interfaceSystemGraphMenuHandler) is passed to the client. This
method invocation really displays the graphs system editor window on the client’s screen. The
SystemGraphMenuImpl class only provides the implementation of the menu bar and the area
in which the component windows are drawn. The component windows are implemented as a

196

Appendix A. Design and Integration of Graphs Systems

special version of the graph windows which are documented inSection 6.2.1.3. As already
emphasized inSection 6.1.1andSection 6.2.1.3.1this complex communication procedure has
been implemented to deploy a secure and thin client application.

Figure A-3. Creating a remote Graphs System Editor Window

A.1.2. File Formats
Since we have already introduced the concept and the features of the file formats inSection
6.2.1.3.2, we go directly into the details of their design in the context of graphs systems.

In contrast to the graph types where the save and store functionality is controlled by the graph
label and not in the graph facade class, the graphs system class provides this functionality itself.
Thereby it makes use of file system classes derived from the classSystemFileFormat , which
is derived from the classPLFileFormat extending it by graphs-system specific methods.

Figure A-4. Saving anHYSystem Object to a File

197

Appendix A. Design and Integration of Graphs Systems

Figure A-4shows a UML sequence diagram which documents a scenario where aHYSystem

object (which represents a graphs system stored in the HyTech file format) is written into a file
in the native file format (see alsoSection 6.2.1.3.2). The store procedure is completely imple-
mented in the super class of the classHYSystem (classETIBaseSystem). The only informa-
tion which is provided by theHYSystem object is the string which specifies the file type identi-
fier of the native file format. This identifier is obtained by invoking thegetNativeFileFormat

method on theHYSystem object.

A.2. Integrating a Graphs System Type
The ToolZone software provides an API which allows a user to integrate graphs systems. Sim-
ilarly to integrating a new graph type, integrating a new graphs system type means "linking"
a graphs system file format or library to the ETI infrastructure. After the integration process,
graphs system objects of the chosen type can be graphically edited via ETI’s graphs system
editor (seeFigure 5-11). In addition, ETI’s graphs system library should serve as an Intermedi-
ate Representation Language for transforming graphs-system file formats into others. The first
step in the process of integration is again the selection of a unique identifier, which will be used
to prefix C++ class names, HLL types, METAFrame modules, etc.

In this section we will be integrating as an example the Hytech graphs system type which links
thehy -file format, used to store real-time systems which can be analyzed by theHyTech tool
(seeSection 4.1.2), to the ToolZone software. In the example we focus on integration of the
graphs system data type. Here, we assume that the file type HYFile which represents the file
format to store Hytech graphs systems and the corresponding verification program are already
available. In addition, the graph type HytechGraph representing a system component should
be integrated, too. Since the HLL extension task is similar to the one documented inSection
7.5.2.2, we focus on the graphs system encapsulation.

Note, that except for the encapsulation of the component’s graph type, the graphs-system inte-
gration is currently not supported by a utility program (see alsoTable 7-1).

A.2.1. Encapsulation
Let <ID > be the identifier of the chosen graphs system type, then the encapsulation requires
four steps:

1. Encapsulate the graph type<ID >Graph which represents the type of the component
graphs. This has already been documented inSection 7.5.2.1.

2. Implement the graphs system component class<ID >SystemComponent consisting of a
component id and a component graph (Section A.2.1.1).

198

Appendix A. Design and Integration of Graphs Systems

3. Implement the graphs system class<ID >System which manages the components, global
graphs system data and provides graphs system type specific functionality (Section A.2.1.2).

4. Implement a<ID >FileFormat class which encapsulates the native file format. This pro-
cess is similar to the one documented inSection 7.5.2.1.4.

Note: Classes implementing a graphs system file format must be derived from Sys-

temFileFormat instead of PLFileFormat which has a similar interface.

The ToolZone software API provides the two classesETISystemComponent andETIBase-

System from which the component and graphs system classes must be derived.Figure A-5
shows a UML class diagram of the HyTech graphs system specific C++ classes and their link
to the ToolZone software.

Figure A-5. The HytechSystem Class Hierarchy

The remainder of this section is organized along the two (not already documented) steps which
have to be performed to encapsulate a new graphs system type:

1. implementing the system component class (Section A.2.1.1) and

2. implementing the graphs system class (Section A.2.1.2).

A.2.1.1. Implementing the System Component Class

The next step in the encapsulation process is to implement a component class derived from
ETISystemComponent . This class encapsulates the access to a component identifier which is
unique in the whole system object and the component graph. In addition to this basic function-
ality provided byETISystemComponent the component class gives access to methods and
data that are specific to the chosen component type. The implementation of this specific set of
functionality should in general not be provided by the component class itself. Instead it should
be implemented in the graph label class associated to the component’s graph class. This means,
that an invocation of a component type specific method is just delegated by the component ob-

199

Appendix A. Design and Integration of Graphs Systems

ject to the associated component graph which again delegates this method invocation to the
associated graph label object (seeFigure A-6).

Figure A-6. Delegating Component Method Invocations

In addition to the methods implementing the component specific set of functionality, the com-
ponent class must at least provide the following constructor:

<ID >SystemComponent (<ID >Graph* g, const string& id)

The associated component graph object and a string representing the component identi-
fier are passed as argumentsg and id , respectively. Since all component specific data
should be encapsulated in the associated component graph label, a typical implemen-
tation of this constructor just invokes the corresponding constructor of the base class
ETISystemComponent (seeExample A-1).

Example A-1. TheHytechSystemComponent Constructor

HytechSystemComponent::HytechSystemComponent (HytechGraph* g,
const string& id)

: ETISystemComponent (g, id)
{
}

The implementation of the destructor is in general not required, since the ETI design guidelines
suggest to encapsulate the component specific data in the graph label associated to the com-
ponent’s graph object. The destructor’s default implementation offered by the classETIBase-

System already destroys the associated graph object including its label.

In addition to the constructor which has to be provided by the chosen component class, one
can optionally implement the methodvirtual void clear (void) . This method clears
the data associated to the component class. The default implementation of this method just del-
egates the invocation to the associated graph object. In consequence, this method has only to
be implemented, if the chosen component class provides data attributes other than the compo-
nent identifier and the reference to the component graph, which are "owned" by the base class

200

Appendix A. Design and Integration of Graphs Systems

ETISystemComponent . Since encapsulating data into the component class does not conform
to the ETI design guidelines, there is in general no need to implement theclear method.

A.2.1.2. Implementing the Graphs System Class

Similarly to the graph design, there exists one facade class named<ID >System (seeFigure A-
5), which gives access to the whole graphs system. But in contrast to the process of integrating
a graph type, this class is not generated but must be implemented by the integrator. This graphs
system class must be derived fromETIBaseSystem , which provides the basic functionality
giving access to the graphs system components. Beside the set of graphs system components,
the facade class maintains global (component spawn) data, e.g. a set of clocks declared in a real
time system. In addition to the data and functionality which are specific to the chosen graphs
system type, this class must implement the following methods:

virtual const char* getNativeFileFormat () const

Similar to the method referenced inSection 7.5.2.1.3, this method returns the native
file format identifier to which this graphs system type is linked to. Amongst others, this
method is invoked in the graphs system’s load and save methods to determine the native
file format filter (see alsoSection 7.5.2.1.3).

virtual void check (ETISystemInfo& info) throw (ETIException)

Changing component or graphs system information may result in an inconsistent graphs
system object. Therefore, the integrator must provide the methodcheck , which checks
the consistency of the graphs system information. Similar to thecheck method offered
by the classETIGraphLabel (seeSection 7.5.2.1.3) the info argument can be used to
return diagnostic information to the application.

check throws anETIException if the check failed.

virtual void parse (const string& data) throw (ETIParseException)

The methodparse initializes the global graphs system data from the passed stringdata .
It is used to modify the data via the graphs system console. If the data cannot be initialized
by the passed string object, this method throws anETIParseException giving detailed
information on the error that occurred.

If there is no global graphs system information which can be edited by the user, this
method need not to be implemented. In this case the methodisInspectable of the
classETIBaseSystem should be overwritten in a way that it returnsfalse .

201

Appendix A. Design and Integration of Graphs Systems

virtual string unparse (void) const

unparse returns a string representation of the global graphs system data. It is used to
show the content of the graphs system information in the graphs system console window.

If there is no global graphs system information which can be edited by the user, this
method need not to be implemented. In this case the methodisInspectable of the
classETIBaseSystem should be overwritten in a way that it returnsfalse .

virtual ETISystemComponent* newComponent (void) const

This method returns a new (initial) component object associated to the chosen graphs
system type. Amongst others, it is used internally when quering the graphs system object
for a new component via ETI’s graphs system editor.

Example A-2shows the implementation of thenewComponent method used for the en-
capsulation of the Hytech graphs system type.

Example A-2. ThenewComponent Method of the ClassHytechSystem

ETISystemComponent*
HytechSystem::newComponent (void) const
{

HytechGraph* g = new HytechGraph ();
return new HytechSystemComponent (g,"");

}

In addition to the mandatory methods, it is optional, but recommended, to overwrite the method
virtual void clear (void) of the base classETIBaseSystem . The base class imple-
mentation of this method removes only the components of the graphs system. In consequence,
one has to provide a C++ code fragment which clears the global data specific to the chosen
graphs system.Example A-3shows that this method takes two steps in order to perform its
task:

1. Clear all data that is specific to the chosen graphs system.

2. Invoke methodclear of the base classETIBaseSystem .

Example A-3. TheHytechSystem clear Method

void
HytechSystem::clear (void)
{

// clear global data which is

202

Appendix A. Design and Integration of Graphs Systems

// Hytech graphs system specific
def_list.clear ();
integrator_list.clear ();
stopwatch_list.clear ();
clock_list.clear ();
analog_list.clear ();
parameter_list.clear ();
discrete_list.clear ();
cmd_list.clear ();

// call clear () of the base class
ETIBaseSystem::clear ();

}

203

Appendix A. Design and Integration of Graphs Systems

204

Appendix B. GUI Statechart Diagram
Transformation
The transformation of GUI statechart diagrams into service logic graphs is the key to the tight
integration of the Service Definition Environment and UML modeling tools. Here, GUI stat-
echart diagrams which are built using UML modeling tools like Rational Rose [Rose] and
MagicDraw [MagicDraw] areautomaticallyconverted into the service logic graph format and
vice versa. The prototypical implementation of the presented algorithm can handle statechart
diagrams which are available in the XML Metadata Interchange (XMI) format [XMI]. XMI
is an Object Management Group (OMG) standard combining UML [BRJ98, FS99, UML] and
XML [HM00, XML].

The following sections present an algorithm which transforms the state focussed model of the
GUI, represented by a statechart diagram, into a control-flow oriented one, represented by a
service logic graph. Conceptually, this transformation requires two steps:

1. Change the state-oriented view of the GUI into a control-flow oriented one. For this, the
UML statechart diagram is transformed into an equivalent UML activity diagram (see
Section B.1).

2. Change the representation of the control-flow oriented view into a format understandable
by the Service Definition Environment. This step transforms the UML activity diagram
into a service logic graph (seeSection B.2).

After that, the initial service logic graph can be refined using the Service Definition Environ-
ment (seeSection 12.2). Note that this conceptual two step transformation can be implemented
in one phase for reasons of efficiency.

The basic idea of the two-step transformation is the following. Each state of the statechart
diagram is represented as an interaction SIB in the service logic graph. Additionally, for each
action associated to a transition, a SIB is added, which is later refined by a set of coordination
SIBs during the service logic graph design (seeSection 12.2).

Transitions contained in the GUI statechart diagram are handled as follows:

Transitions which do not contain an action:

For each transition which does not contain an action (i.e. it only provides an event trigger),
an edge between the corresponding interaction SIBs is created in the service logic graph.
Additionally a SIB exit having the name of the event trigger is assigned to this edge (see
Figure B-1).

205

Appendix B. GUI Statechart Diagram Transformation

Figure B-1. Handling Transitions without Actions

Transitions which contain an action:

If the chosen transition contains an action two corresponding edges are created in the
service logic graph (seeFigure B-2):

• One edge starts at the associated source SIB and ends at the SIB which has been cre-
ated to represent the action. This edge gets a SIB exit having the name of the transition’s
event trigger assigned. Note that every transition contained in the GUI statechart dia-
gram has at least an event trigger assigned.

• The other edge starts at the action SIB and ends at the interaction SIB, which is as-
sociated to the end state of the chosen transition. Here, the default SIB exitdflt is
assigned to this edge.

Figure B-2. Handling Transitions with Actions

The next two sections go into the details of each of the two automatic transformation steps.

B.1. Transforming the GUI Statechart Diagram
UML statechart diagrams and activity diagrams model the same aspect of the system, but with
a different focus (see [BRJ98]). Whereas statechart diagrams look at the potential states of the

206

Appendix B. GUI Statechart Diagram Transformation

system and the transitions among them, activity diagrams emphasize the flow of control from
activity to activity. This is the reason why the GUI of an application is often modeled as a
statechart diagram. On the other hand, UML activity diagrams are more suitable to represent
service logic graphs.

In the following, we present an algorithm, which transforms the state focused view of the
GUI into a control flow oriented one. This is mainly done by representing a state of the GUI
statechart diagram by a node in the activity diagram which represents the activity that builds
the associated GUI state. For this, the presented algorithm splits up each state in the statechart
diagram into a so-calledinteraction stateand a branch in the activity diagram (seeFigure B-3).
The interaction state is later transformed into an interaction SIB which sends the HTML page
representing the associated GUI state to the client.

For each action which is associated to a transition of the statechart diagram a so-calledaction
statewill be created in the activity diagram.Figure B-3shows the activity diagram which is
equivalent to the statechart diagram shown inFigure 11-1.

Formally, the activity diagram can be obtained from a GUI statechart diagram by performing
the following steps in order:

1. For every state in the statechart diagram, a corresponding state (calledinteraction state) in
the activity diagram is created.

2. For every state in the statechart diagram which has at least two outgoing transitions, a
branch in the activity diagram is created in addition to a transition which starts at the
interaction state and ends at the branch.

3. For every action associated to a transition in the statechart diagram, a corresponding state
(calledaction state) is created in the activity diagram.

4. For every transition in the statechart diagram, the following transitions in the activity dia-
gram are created.

If no action is associated to the transition,

it starts at the branch associated to the transition’s source state and ends at the inter-
action state (created in step 1) associated to the transition’s target state.

If an action is associated to the transition,

it starts at the branch associated to the transition’s source state and ends at the action
state (created in step 4) associated to the transition’s action. Additionally, a transition
in the activity diagram is created which starts at the action state and ends at the
interaction state associated to end node of the chosen statechart transition.

In any case, the guard expression of the transition is set to

[action= ’Transition Event Trigger’].

207

Appendix B. GUI Statechart Diagram Transformation

Figure B-3shows the activity diagram which is obtained from the statechart diagram shown in
Figure 11-1.

Figure B-3. A simple GUI Activity Diagram

Adding State Information to the Activity Diagram

Activity diagrams can be enriched by object flows to document the changes of the object’s
states during the execution of the activities.

Figure B-4. A UML Activity Diagram enriched by Object Flows

To capture the object flows, the state information of the GUI is modeled by so-calledobject
states(represented by rectangulars) within the activity diagram.Figure B-4shows the activ-
ity diagram presented inFigure B-3enriched by the objects flows. Here, each object state

208

Appendix B. GUI Statechart Diagram Transformation

represents one possible state of the application’s GUI. The object flows are then modeled by
dependency relations represented as dashed arrows in the following way:

A dashed arrow which starts at the object statein and ends at an interaction state documents
the GUI is in statein beforethe activity is executed. On the other hand, a dashed arrow which
starts at an interaction state and ends at the object stateout , models thatafter the execution of
the activity the GUI is in stateout .

Note: Dashed arrows representing object flows will never start or end at action states of
the activity diagram.

Formally, the activity diagram is enriched by the objects flows as defined by the following
procedure:

1. For every state in the statechart diagram anobject stateis added to the activity diagram
which represents the corresponding status of the GUI object.

2. The object flows are then specified by the following procedure:

For every transition in the statechart diagram starting at states1 and ending at states2
two dashed arrows representing the object flows are added to the activity diagram:

1. one dashed arrow starts at the interaction state representing the states1 (created in
step 1 of the previously documented transformation) and ends at the object state which
representss1 , and

2. the other dashed arrow starts at the object state representing the states1 and ends at
the interaction state which represents the states2 (created in step 1 of the previously
documented transformation).

The modeling of the object flow in the activity diagram is not necessary for the transformation
of the statechart diagram into the service logic graph. But this information is important, when
the statechart diagram should later be re-generated out of the service logic graph again.

B.2. Transforming the Activity Diagram
Once the activity diagram is obtained from the statechart diagram, the generation of the asso-
ciated service logic graph is straightforward. Conceptually, the presented algorithm combines
an interaction state and its associated branch (if there is any) to an interaction SIB. The corre-
sponding exits of the SIB are determined by the event trigger part of the branch’s transitions
(seeFigure B-5). Each action state is represented by a SIB of the classAction having one exit
nameddflt (default).

209

Appendix B. GUI Statechart Diagram Transformation

Figure B-5. Transforming an Action State into a SIB

The object flow of the activity diagram is stored in the parameters of the interaction SIBs.

The transformation of the activity diagram into the service logic graph is performed by the
following steps:

1. For everyinteraction statewith namen in the activity diagram, a node with namen is
added to the service logic graph. The SIB which is represented by these nodes is defined
as follows:

SIB ShowInteractionState
CLS Interaction
PAR template STR 100 ""
PAR in_state STR 100 ""
PAR out_state STR 100 ""
PAR out DIM * 0
BR requests[]out

After the activity diagram has been imported into the Service Definition Environment the
generated SIB definition can be modified to reflect the application-specific aspects. Here,
the SIB parametersin_state andout_state should never be modified. This is because
they store automatically generated information on the object flow contained in the activity
diagram. In detail, the string parameterin_state contains the name of the state the GUI
is in beforethe SIB is executed, and the parameterout_state holds the name of the state
the GUI is inafter the execution of this SIB. This information is used to re-generate the
GUI statechart diagram out of the service logic graph if requested.

The parametertemplate is generated for convenience purposes only. It stores a reference
to the HTML page which is associated to the interaction state.

The SIB exit definition needs some more explanation. It is split up into two parts. The SIB
parameterout stores the number of possible SIB exits. It is of typeDIM * , which defines
the size of a dynamically-sized array. The second part of the definition is realized by the
BR line. This declares an array of SIB exits whose size is determined by the value of the
SIB parameterout . This means that if the value ofout equals 10, the SIB has 10 exits
with identifiersrequest[0]out to request[9]out .

210

Appendix B. GUI Statechart Diagram Transformation

When adding the edges to the service logic graph in step 3, each of the SIB exits represents
one event trigger of an edge contained in the activity diagram.

2. For everyaction statewith namen in the activity diagram, a node with namen is added
to the service logic graph. The represented SIB is defined as follows:

SIB ExecuteAction
CLS Action
BR dflt

3. For every transition in the activity diagram starting at the state (or at the branch which is
associated to the state)s1 and ending at states2 , an edge is added to the service logic
graph which starts at nodes1 and ends at nodes2 .

If the source node of the edge is associated to an interaction state of the activity diagram:

the name of the SIB exit associated to the edge is set to the guard-expression’s event-
trigger identifier of the corresponding edge in the activity diagram. The exit’s identi-
fier will be arbitrarily chosen.

Note the difference between the identifier of a SIB exit and the associated name. Each
SIB definition specifies a set of SIB-exitidentifiers. They can be attached to edges
which start a node representing this SIB. Thenameof the SIB exit is representation of
the SIB-exit within the GUI. By default, the name of a SIB exit equals its identifier.
For reasons of readability, this default name can be changed. Here, the renaming
is done automatically by the transformation algorithm. The algorithm changes the
default name of the SIB exit (e.g.request[0]out) to the event trigger identifier
(e.g.requestProduct) of the chosen transition.

If the source node of the edge represents an action state:

the SIB exit’s identifier and the name associated to the edge are set todflt .

Figure B-6shows the service logic graph which corresponds to the activity diagram shown in
Figure B-3. It is obtained by the algorithm presented above.

After the initial service logic graph has automatically been imported into the Service Defini-
tion Environment, it is refined by the application expert to model the full logic of the Web
application, i.e. the application’s coordination layer. Starting with the imported service logic
graph, the application expert refines (not replaces) the SIBs representing the actions of the GUI
statechart diagram by coordination SIBs implementing the required functionality.

211

Appendix B. GUI Statechart Diagram Transformation

Figure B-6. The Shop Service Logic Graph

212

Glossary
Activity

Atomic functional entity of the ETI tool repository, which represents a single functionality
of an integrated tool.

Activity Taxonomy

Classification of the activities contained in the tool repository (see also Taxonomy).

Adaption Rule

Rule which matches user profiles to features offered by a personalized Web application.

Agent

A user specific view on the implementation of a Web application’s coordination layer.

Agent Universe

Specification of the Web application’s coordination layer which comprises the definition
of features which should be available to every user and features which should only be
available to users having a specific profile.

API

Application Programming Interface. Set of classes and functions which can be used to
access the functionality of a software library.

Applet

An applet is a program written in the Java programming language that can be included in
an HTML page.

213

AWT

Abstract Window Toolkit. Java class library which can be used to build graphical user
interfaces.

Black Box Integration

Kind of tool integration which applies to software tools being available only in binary
format and which run locally on the application host.

Business Class

Software component which represents things of the chosen application domain, like a
shopping cart within a Web-shop application.

CADP

Caesar/Aldebaran Development Package. A software engineering toolbox for protocols
and distributed systems.

CGI

Common Gateway Interface. An agreement between HTTP server implementors about
how to integrate gateway scripts and programs to a legacy information system.

Computational Result

The data which is the result of the activity execution (see also diagnostic result).

Cookie

Persistent information which is written by the browser on the client’s hard disk. Mainly
used to store data between two HTTP requests.

Coordination Formula

SLTL-based formula which specifies a set of coordination sequences.

214

Coordination Sequence

A coordination sequence is a sequential program build on the basis of synthesis-compliant
activities. It is generated by ETI’s synthesis component out of an abstract description
called loose specification.

Coordination Universe

Data structure which represents all possible combinations of the synthesis-compliant ac-
tivities contained in the tool repository.

CORBA

Common Object Request Broker Architecture. A vendor-independent architecture and
infrastructure that computer applications use to work together over networks.

CTI

Computer Telephony Integration. Scenario in which software programs interact with tele-
phony switches.

DAG

Directed Acyclic Graph.

DBMS

Database Management System. Software system which is used to maintain databases.

Diagnostic Result

The result of the activity execution which comprises the diagnostic information generated
by the software tool during its execution (see also computational result).

EJB

Enterprise Java Beans. Server-side component architecture being part of the J2EE stan-
dard.

215

Encapsulation Code

Part of a METAFrame module which wraps a third-party data type or tool feature into a
set of C++ classes.

ETAPS

European Joint Conferences on Theory and Practice of Software.

ETI Community Online Service

The virtual meeting point where people involved in the development, extension and host-
ing of the ETI platform may discuss and exchange information.

ETI Site

A moderated Web site which uses the ETI platform to offer access to a repository of
software tools.

Facade Class

Design pattern which is used to hide the complexity of a software library by one single
class.

Graphs System

A collection of directed graphs plus some “global” information. The interpretation of the
collection and the global information is application specific.

GUI

Graphical User Interface.

HLL

High Level Language. Procedural coordination language used to program the METAFrame
Interpreter.

216

HTML

Hypertext Markup Language. Language used to write documents which can be viewed
using a Web browser.

HTTP

Hyper-Text Transfer Protocol. Internet protocol used to access Web pages and applica-
tions.

HTTP Server

Software component which makes Web pages and applications accessible via HTTP.

HyTech

A tool for the analysis of embedded systems.

IIOP

Internet Inter-ORB Protocol. Internet protocol which is used for the communication be-
tween CORBA objects.

ISO

International Organization for Standardization. A worldwide federation of national stan-
dards bodies from 140 countries.

J2EE

Java 2 Enterprise Edition. Software architecture promoted by SUN Microsystems to build
enterprise applications.

Java Byte Code

Machine-independent representation of Java programs. It can be executed via a Java Vir-
tual Machine process.

217

Java Web Start

Java Web Start allows a user to simply deploy Web applications via the Internet. Java Web
Start enabled applications can be started by clicking on an appropriate link on a Web page.

JDBC

Java Database Connectivity. API that lets you access virtually any tabular data source
from the Java programming language.

JDK

Java Development Kit. Set of tools to program, document and run Java applications.

JNI

Java Native Interface. API which allows the integration of Java applications and applica-
tions written in other programming languages like C++,

JVM

Java Virtual Machine. Interpreter which is able to execute Java byte code.

Kronos

A tool for checking properties of real-time systems modeled as collections of timed au-
tomata.

Loose Specification

Language used to specify coordination sequences.

LOTOS

A formal description language based on temporal ordering of observational behavior de-
fined by the ISO.

218

LTS

Labelled Transition System. Directed graph, where atomic information can be associated
to nodes and edges.

METAFrame Module

Software component exporting HLL types or functions. These components can at runtime
be imported to the METAFrame Interpreter to extend the basic programming language by
new data types and functions.

Micro Feature

Part of a personalized-feature definition of a Web application. Micro features are used to
define profile dependent characteristics of a personalized feature.

Modal Transition System

A labelled transition system where the edge set is split up into may and must edges.

Model Checking

Model checking is a technique which (semi-) decides, whether a mathematical structure
(called model), e.g. an LTS, satisfies a certain (temporal) constraint.

Model-View-Controller Pattern

Design pattern which is used to strictly separate data and its presentation.

Module Adapter

Part of a METAFrame module which wraps the functionality offered by the encapsulation
code into HLL types and functions.

Motif

Software library which can be used to realize the graphical user interface of an application.

219

MP3

MPEG Audio Layer 3. Coding of audio data for digital storage media at up to about 1,5
Mbit/s.

MPEG-2

Moving Pictures Expert Group. A working group of ISO/IEC in charge of the develop-
ment of standards for coded representation of digital audio and video.

mu-calculus

Logic which can be used to specify temporal constraints on LTSs.

OMG

Object Management Group. The OMG is an open-membership, not-for-profit consortium
that produces and maintains computer industry specifications for interoperable enterprise
applications.

PDF

Portable Document Format. The open de facto standard for electronic document distribu-
tion.

Proxy Pattern

A proxy is a placeholder for another object to control access to it.

Remote Box Integration

Kind of tool integration which applies to software tools being installed on a machine
which is not the application host.

RMI

The Java infrastructure which is used to realize application communication via a network.

220

Service Definition Environment

The Service Definition Environment is a tool which allows the graphical construction and
validation of coordinating workflows on the basis of a component library.

Servlet

Java Servlet technology provides Web developers with a simple, consistent mechanism for
extending the functionality of a Web server and for accessing existing business systems.

SIB

Service Independent Building Block. Basic software component which is used to build
coordinating workflows with the help of the Service Definition Environment. SIBs can be
classified either in interaction or coordination SIBs. Whereas interaction SIBs generate
HTML pages which represent the result of a user interaction, coordination SIBs perform
internal (not visible by the user) tasks.

SLG

Service Logic Graph. Directed graph which models the Web application at the coordina-
tion layer. Service Logic Graphs can be edited using the Service Definition Environment.

SLTL

Semantic Linear-time Temporal Logic. Temporal linear-time logic which can be used to
loosely specify a set of paths within an LTS. The associated path set is determined by the
algorithm documented in [SMF93].

SSI

Server Side Includes. Relatively non-complex commands that can be easily inserted into
HTML pages to execute CGI programs, insert files, insert a date and time stamp and more.

SSL

Secure Socket Layer. The industry-standard method for protecting Web communications.

221

Strategy Pattern

The strategy pattern is used to provide abstract access to an algorithm. As an example,
the comparison method used by a sorting procedure can be designed using this pattern.
In this scenario, the strategy pattern allows the implementation of the sorting algorithm
independent of the actually used comparison method.

Synthesis Solution Graph

The result of the synthesis process which represents all coordination sequences satisfying
the given loose specification and being conformant to the provided synthesis strategy.

Synthesis Strategy

A synthesis strategy is a filter which is used to specify a subset of the coordination se-
quences satisfying a given loose specification. This subset is then returned as result of the
synthesis process. Using the synthesis strategy, an end user can select the coordination
sequences on the basis of their length.

Taxonomy

DAG-based classifications of activities and types available in the ETI tool repository.

ToolZone Software

The central client/server application of the ETI platform, which gives Internet-based, se-
cure, performant and failsafe access to an ETI tool repository.

Type Taxonomy

Classification of the types contained in the tool repository (see also Taxonomy).

UML

Unified Modeling Language. Graphical language for visualizing, specifying, constructing,
and documenting the artifacts of a software intensive system.

222

UPPAAL

An integrated tool environment for modeling, validation and verification of real-time sys-
tem modeled as networks of timed automata.

URL

Uniform Resource Locator.

Velocity

A Java-based template engine. It permits Web page designers to reference methods de-
fined in Java code.

WAR

Web Archive Files. The J2EE standard for packaging the components realizing a Web
application.

White Box Integration

Kind of tool integration which applies to software tools which can directly be accessed
via an API.

XMI

XML Metadata Interchange. The OMG standard combining UML and XML.

XML

Extensible Markup Language. XML is an open standard of the World Wide Web Consor-
tium (W3C) designed as a data format for structured document interchange on the web.

X Protocol

Protocol of the X Window System which is beside others used to display the GUI of an
application on a remote device.

223

224

Print Bibliography

[BB87] T. Bolognesi and E. Brinksma,Introduction to the ISO specification language LOTOS,
Computer Networks and ISDN Systems, 14, 25-59, 1987.

[BBCD97] M. von der Beeck, V. Braun, A. Claßen, A. Dannecker, C. Friedrich, D. Koschützki,
T. Margaria, F. Schreiber, and B. Steffen,Graphs in METAFrame: The Unifying Power of
Polymorphism, Int. Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’97),Lecture Notes in Computer Science (LNCS), 1217, 112-129,
Springer-Verlag, Heidelberg, 1997.

[BFKM97] M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier,Protocol Verification with
the Aldebaran toolset, International Journal on Software Tools for Technology Transfer,
1, 1+2, 166-183, Springer-Verlag, 1997.

[BK96] J. Bergstra and P. Klint,The ToolBus coordination architecture, Coordination Lan-
guages and Models (COORDINATION ’96),Lecture Notes in Computer Science (LNCS),
1061, 75-88, Springer-Verlag, Heidelberg, 1996.

[BKMS99] V. Braun, J. Kreileder, T. Margaria, and B. Steffen,The ETI Online Service in Ac-
tion, Int. Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), Lecture Notes in Computer Science (LNCS), 15791, 439-443, Springer-
Verlag, Heidelberg, 1996.

[BM99] V. Braun and T. Margaria,Neue Internet-Organisation zur Strukturierung und Organ-
isation von Inhalten und Abläufen, Online’99, Congress "Web Computing, Java, CORBA
& DCOM", Symposium "WebCommerce: Intelligente Java-Anwendungen für Electronic
Commerce", 3-89077-197-1, 1999.

[BMSB97] V. Braun, T. Margaria, B. Steffen, and F. K. Bruhns,Service Definition for Intelli-
gent Networks: Experiences in a Leading-edge Technological Project Based on Constraint
Techniques, Int. Conf. on Practical Application of Constraint Technology (PACT’97), The
Practical Application Company, 1997.

[BMSY98] V. Braun, T. Margaria, B. Steffen, and H. Yoo,Automatic Error Location for IN
Service Definition, 2nd Int. Workshop on Advanced Intelligent Networks (AIN’97),Lec-
ture Notes in Computer Science (LNCS), 1385, 222-237, Springer-Verlag, Heidelberg,
1998.

[BMSYR97] V. Braun, T. Margaria, B. Steffen, H. Yoo, and T. Rychly,Safe Service Customiza-
tion, IEEE Computer Society Workshop on Intelligent Networks, IEEE Computer Society
Press, 1997.

225

Print Bibliography

[BMW97] V. Braun, T. Margaria, and C. Weise,Integrating tools in the ETI platform, Inter-
national Journal on Software Tools for Technology Transfer, 1, 1+2, 166-183, Springer-
Verlag, 1997.

[Bra92] M. Brain,Motif Programming: The Essentials...and More, Digital Press, 1992.

[Bra99] V. Braun,The Electronic Tool Integration Platform: Integration Guide, Technical Doc-
umentation of the ETI Project, 1999.

[Bra99-a] V. Braun,The Electronic Tool Integration Platform: ToolZone Client User Guide,
Technical Documentation of the ETI Project, 1999.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified Modeling Language User
Guide, Addison-Wesley, 1998.

[CDHLPRZ00] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H.
Zheng,Bandera : Extracting Finite-state Models from Java Source Code, Proceedings of
the 22nd International Conference on Software Engineering, 2000.

[CES83] E. Clarke, E. Emerson, and A. Sistla,Automatic verification of finite-state concurrent
systems using temporal logic specifications: A practical approach, Tenth Annual ACM
Symposium on Principles of Programming Languages (POPL’83), 117-126, ACM Press,
1983.

[CES86] E. Clarke, E. Emerson, and A. Sistla,Automatic verification of finite-state concurrent
systems using temporal logic specifications, Transactions on Programming Languages
and Systems, 8, 2, 244-263, ACM Press, 1986.

[CGM93] N. Carriero, D. Gelernter, and T. Mattson,Experience with the Linda Coordination
Language and its Environment, Technical Report 958, Yale University Department of
Computer Science, 1983.

[Cla97] A. Claßen,Component Integration in METAFrame, Ph.D. Thesis, University of Passau,
1997.

[Cle99] R. Cleaveland,Pragmatics of model checking: an STTT special section, International
Journal on Software Tools for Technology Transfer, 2, 3, 208-218, Springer-Verlag, 1999.

[Con00] J. Conallen,Building Web Applications with UML, Addison-Wesley, 2000.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen,The Concurrency Workbench: a semantics-
based verification tool for finite state systems, ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 15, 1, 36-72, ACM Press, 1993.

[CSMB97] A. Claßen, B. Steffen, T. Margaria, and V. Braun,Tool Coordination in METAFrame,
MIP-9707, Fakultät für Mathematik und Informatik, University of Passau, 1997.

226

Print Bibliography

[CW98] M. Campione and K. Walrath,The Java Tutorial: Object-Oriented Programming for
the Internet, Second Edition, Addison Wesley, 1998.

[Dan98] A Dannecker,Entwurf und Implementierung eines Hypertext-Systems in METAFrame,
Diploma Thesis, University of Passau, 1998.

[DCNB00] L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gor-
don, and T. Melham,The PROSPER Toolkit, Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’2000),Lecture Notes in Computer
Science (LNCS), 1785, 78-92, Springer-Verlag, Heidelberg, 2000.

[DGSZ94] G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka,Business Process Mod-
eling in the Workflow Management Environment LEU, 13th International Conference
on the Entity-Relationship Approach,Lecture Notes in Computer Science (LNCS), 881,
Springer-Verlag, Heidelberg, 1994.

[DL99] T. Demarco and T. Lister,Peopleware: Productive Projects and Teams, Second Edition,
Dorset House, 1999.

[Dow98] T. Downing,Java RMI: Remote Method Invocation, IDG Books Worldwide Inc.,
1998.

[Eme90] E. Emerson,Temporal and modal logic, Handbook of theoretical computer science,
Edited by J. van Leeuwen, Elsevier, 1990.

[FGK96] J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu,
Cadp: A protocol validation and verification toolbox, International Conference on Com-
puter Aided Verification (CAV’96),Lecture Notes in Computer Science (LNCS), 1102,
Springer-Verlag, Heidelberg, 1996.

[FI00] D. Fields and M. Icolb,Web Development with JavaServer Pages, Manning, 2000.

[Fla98] D. Flanagan,JavaScript, O’Reilly, 1998.

[FM90] J.-C. Fernandez and Laurent. Mounier,Verifying Bisimulations “On the Fly”, Interna-
tional Conference on Formal Description Techniques (FORTE’90), North Holland, 1990.

[FS99] M. Fowler and K. Scott,UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Second Edition, Addison Wesley, 1999.

[Gar96] H. Garavel,An overview of the Eucalyptus Toolbox, Proc. of the COST 247 Interna-
tional Workshop on Applied Formal Methods in System Design, 1996.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

227

Print Bibliography

[GM93] M. Gordon and T. Melham,Introduction into HOL: A Theorem Proving Environment
for Higher Order Logic, Cambridge University Press, 1993.

[Gor98] R. Gordon,Essential JNI: Java Native Interface, Prentice Hall, 1998.

[HC98] J. Hunter and W. Crawford,Java Servlet Programming, O’Reilly, 1998.

[HHW97] T. A. Henzinger, P. Ho, and H. Wong-Toi,HyTech: a model checker for hybrid
systems, International Journal on Software Tools for Technology Transfer, 1, 1+2, 110-
122, Springer-Verlag, 1997.

[HM00] E. R. Harold and W. S. Means,XML in a Nutshell, O’Reilly, 2000.

[Hof97] J. Hofmann,Program Dependent Abstract Interpretation, Diploma Thesis, University
of Passau, 1997.

[Hol97a] G. Holzmann,The Model Checker Spin, IEEE Transactions on Software Engineering,
23, 5, 279-295, 1997.

[Hol97b] A. Holzmann,Der METAFrame-Interpreter: Entwicklung und Implementierung eines
dynamischen Modulkonzeptes, Diploma Thesis, University of Passau, 1997.

[Hol-a] A. Holzmann,The High-Level_language: Programming Language of the METAFrame
Interpreter, Technical Documentation of the METAFrame Project.

[Hol-b] A. Holzmann,Writing Adapter Specifications, Technical Documentation of the META-
Frame Project.

[ISPA98] Internet Services with Profile based Adaptation, PG 312, University of Dortmund,
1998.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh,The Unified Software Development Process,
Addison-Wesley, 1999.

[KO96] P. Klint and P. Oliver,The TOOLBUS Coordination Architecture: A Demonstration,
Fifth International Conference on Algebraic Methodology and Software Technology (AMAST’96),
Lecture Notes in Computer Science (LNCS), 1101, 575-578, Springer-Verlag, Heidelberg,
1996.

[Koz82] D. Kozen,Results on the propositional mu-calculus, International Colloquium on Au-
tomata, Languages and Programming (ICALP’82),Lecture Notes in Computer Science
(LNCS), 140, 348-359, Springer-Verlag, Heidelberg, 1982.

[Lar89] K. G. Larsen,Modal Specifications, Proc. of Automatic Verification Methods for Finite
State Systems,Lecture Notes in Computer Science (LNCS), 407, 232-2461, Springer-
Verlag, Heidelberg, 1989.

228

Print Bibliography

[LOTOS] ISO/IEC. Lotos: A Formal Description Technique Based on the Temporal Ordering
of Observational Behaviour, Internal Standard 8807, 1992.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi,Uppaal in a nutshell, International Journal
on Software Tools for Technology Transfer, 1, 1+2, 134-152, Springer-Verlag, 1997.

[LT87] K. G. Larsen and B. Thomsen,Compositional Proofs by Partial Specification of Pro-
cesses, R87-20, Aalborg University Center, 1987.

[LT88] K. G. Larsen and B. Thomsen,A Modal Process Logic, Symposium on Logic in Com-
puter Science (LICS’88), 203-210, IEEE Computer Society Press, 1988.

[Lut01] M. Lutz, Programming Python, O’Reilly & Associates, 2001.

[MB98] T. Margaria and V. Braun,Formal Methods and Visualization: A Fruitful Symbiosis,
Int. Workshop on Visual Issues for Formal Methods (VISUAL’98) as Satellite Workshop
of TACAS’98, Lecture Notes in Computer Science (LNCS), 1385, 190-207, Springer-
Verlag, Heidelberg, 1998.

[MBK97] T. Margaria, V. Braun, and J. Kreileder,Interacting with ETI: a user session, Inter-
national Journal on Software Tools for Technology Transfer, 1, 1+2, 134-152, Springer-
Verlag, 1997.

[MBS98] T. Margaria, V. Braun, and B. Steffen,The ETI Online Service: Concepts and Design,
4. Fachkongress "Smalltalk und Java in Industrie und Ausbilding, 1998.

[MBS01] T. Margaria, V. Braun, and B. Steffen,Coarse Granular Model Checking in Prac-
tice, SPIN Workshop 2001, Satellite to ICSE 2001,Lecture Notes in Computer Science
(LNCS), 2017, Springer-Verlag, Heidelberg, 2001.

[McM92] K.. L. McMillan, Symbolic model checking - an approach to the state explosion
problem, PhD thesis, SCS, Carnegie Mellon University, 1992.

[Mil89] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[Mon00] R. Monson-Haefel,Enterprise JavaBeans, Second Edition, O’Reilly, 2000.

[MS97] T. Margaria and B. Steffen,Coarse-grain Component Based Software Development:
The METAFrame Approach, 4. Fachkongress "Smalltalk und Java in Industrie und Aus-
bildung" (STJA’98), 29-34, 3-00-001828-X, 1997.

[MSS99] M. Müller-Olm, D. Schmidt, and B.. Steffen,Model-Checking: A Tutorial Introduc-
tion, Static Analysis Symposium (SAS’99), Edited by A. Cortesi Edited by and G. File,
Lecture Notes in Computer Science (LNCS), 1694, 330-354, Springer-Verlag, Heidelberg,
1999.

229

Print Bibliography

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen,The Definition of Standard ML
(Revised), MIT Press, 1997.

[NMHNSBI01] O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, and
H.-D. Ide,Library-based Design and Consistency Checks of System-level Industrial Test
Cases, Int. Conf. on Fundamental Approaches to Software Engineering (FASE 2001),
Lecture Notes in Computer Science (LNCS), 2029, 233-248, Springer-Verlag, Heidelberg,
2001.

[NMHSBI01] O. Niese, T. Margaria, A. Hagerer, B. Steffen, G. Brune, and H. Ide,Automated
Regression Testing of CTI-Systems, IEEE European Test Workshop (ETW 2001), 2001.

[NMNSBI00] O. Niese, T. Margaria, M. Nagelmann, B. Steffen, G. Brune, and H.-D. Ide,
An open Environment for Automated Integrated Testing, 4th Int. Conf. on Software and
Internet Quality Week Europe (QWE’00), November 2000.

[NNHKGEH01] O. Niese, M. Nagelmann, A. Hagerer, K. Kolodziejczyk-Strunck, W. Goerigk,
A. Erochok, and B. Hammelmann,Demonstration of an Automated Integrated Testing En-
vironment for CTI Systems, Int. Conf. on Fundamental Approaches to Software Engineer-
ing (FASE 2001),Lecture Notes in Computer Science (LNCS), 2029, 249-252, Springer-
Verlag, Heidelberg, 2001.

[Nye95] A. Nye,X Protocol Reference Manual : Volume Zero for Xii, Release 6: Definitive
Guide to X Windows, Vol 0, O’Reilly & Associates, 1995.

[PT87] R. Paige and R. Tarjan,Three partition refinement algorithms, SIAM Journal of Com-
puting, 16, 6, 973-989, 1987.

[Res00] Edited by E. Rescorla,SSL and TLS: Designing and Building Secure Systems, Addison-
Wesley, 2000.

[Rog97] D. Rogerson,Inside COM, Microsoft Press, 1997.

[SBFMMS98] A. Sicheneder, A. Bender, E. Fuchs, R. Mandl, M. Mendler, and B. Sick,Tool-
supported Software Design and Program Execution for Signal Processing Applications
Using Modular Software Components, International Workshop on Software Tools for
Technology Transfer (STTT’98), Edited by T. Margaria Edited by and B. Steffen,BRICS
Notes Series NS-98-4, 61-70, 1998.

[SC93] B. Steffen and R. Cleaveland,A Linear-Time Model-Checking Algorithm for the Alter-
nation-Free Mu-Calculus, International Journal on Formal Methods in System Design, 1,
1, 1993.

[Sch01] S. Schäfer,Auswertung regelbasierter Personalisierungsbeschreibungen für E-Com-
merce-Systeme, Diploma Thesis, University of Dortmund, 2001.

230

Print Bibliography

[SCH99] M. Schumacher, F. Chantemargue, and B. Hirsbrunner,The STL++ Coordination
Language: A Base for Implementing Distributed Multi-agent Applications, Third Int. Con-
ference on Coordination Models and Languages (COORDINATION’99),Lecture Notes
in Computer Science (LNCS), 1594, 399-414, Springer-Verlag, Heidelberg, 1999.

[SCKKM95] B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria,The Fixpoint Analysis
Machine, 6th International Conference on Concurrency Theory (CONCUR’95), Edited by
J. Lee Edited by and S. Smolka,Lecture Notes in Computer Science (LNCS), 962, 72-87,
Springer-Verlag, Heidelberg, 1995.

[Shl88] S. Shlaer,Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon
Press, 1988.

[Sie00] J. Siegel,CORBA 3 Fundamentals and Programming, 2nd Edition, John Wiley & Sons,
Inc., 2000.

[SM99] B. Steffen and T. Margaria,METAFrame in Practice: Design of Intelligent Network
Services, Lecture Notes in Computer Science (LNCS), 1710, 390-415, Springer-Verlag,
Heidelberg, 1999.

[SMB97] B. Steffen, T. Margaria, and V. Braun,The Electronic Tool Integration platform:
concepts and design, International Journal on Software Tools for Technology Transfer, 1,
1+2, 9-30, Springer-Verlag, 1997.

[SMB98] B. Steffen, T. Margaria, and V. Braun,The Electronic Tool Integration Platform, Int.
Workshop on Software Tools for Technology Transfer, Satellite to ICALP’98, Edited by
T.. Margaria Edited by and B. Steffen,BRICS Notes Series, NS-98-4, 53-54, 1998.

[SMBK97] B. Steffen, T. Margaria, V. Braun, and N. Kalt,Hierarchical Service Definition,
Annual Review of Communication, 847-856, Int. Engineering Consortium (IEC), 1997.

[SMC96] B. Steffen, T. Margaria, and Andreas Claßen,Heterogeneous analysis and verifi-
cation of distributed systems, SOFTWARE: Concept and Tools, 17, 1, 13-25, Springer-
Verlag, 1996.

[SMCB96] B. Steffen, T. Margaria, A. Claßen, and V. Braun,Incremental Formalization: A Key
to Industrial Success, SOFTWARE: Concepts and Tools, 17, 2, 78-91, Springer-Verlag,
1996.

[SMCB96a] B. Steffen, T. Margaria, A. Claßen, and V. Braun,The METAFrame’95 Environ-
ment, International Conference on Computer Aided Verification (CAV’96),Lecture Notes
in Computer Science (LNCS), 1102, 450-453, Springer-Verlag, Heidelberg, 1996.

[SMCB96b] B. Steffen, T. Margaria, A. Claßen, and V. Braun,Incremental Formalization, Int.
Conference on Algebraic Methodology and Software Technology (AMAST’96),Lecture
Notes in Computer Science (LNCS), 1101, 608-611, Springer-Verlag, Heidelberg, 1996.

231

Print Bibliography

[SMCBNR96] B. Steffen, T. Margaria, A. Claßen, V. Braun, R. Nisius, and M. Reitenspieß,
A Constraint-Oriented Service Creation Environment, Int. Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’96),Lecture Notes in
Computer Science (LNCS), 1055, 418-421, Springer-Verlag, Heidelberg, 1996.

[SMCBR96a] B. Steffen, T. Margaria, A. Claßen, V. Braun, and M. Reitenspieß,A Constraint-
Oriented Service Creation Environment, Int. Conf. on Practical Application of Constraint
Technology (PACT’96), The Practical Application Company, 1996.

[SMCBR96b] B. Steffen, T. Margaria, A. Claßen, V. Braun, and M. Reitenspieß,An Envi-
ronment for the Creation of Intelligent Network Services, Intelligent Networks: IN/AIN
Technologies, Operations, Services, and Applications - A Comprehensive Report, 287-
300, International Engineering Consortium (IEC), 1996.

[SMCBRW96] B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß, and H. Wendler,
Service Creation: Formal Verification and Abstract Views., 4th Int. Conf. on Intelligent
Networks (ICIN’96), 96-101, 1996.

[SMF93] B. Steffen, T. Margaria, and Burkard Freitag,Module Configuration by Minimal
Model Construction, MIP-9313, Fakultät für Mathematik und Informatik, University of
Passau, 1993.

[SO97] B. Steffen and E. R. Olderog,Formale Semantik und Programmverifikation, Informatik-
Handbuch, Edited by P. Rechenberg Edited by and G. Pomberger, Carl Hanser Verlag,
1997.

[Str97] B. Stroustrup,The C++ Programming Language, Third Edition, Addison Wesley,
1997.

[Tha99] T. Thai,Learning DCOM, O’Reilly, 1999.

[TL01] T. Thai and H. Lam,.NET Framework Essentials, O’Reilly, 2001.

[VW86] M. Vardi and P. Wolper,An automata-theoretic approach to automatic program veri-
fication, Symposium on Logic in Computer Science (LICS’86), IEEE Computer Society
Press, 1986.

[WC99] K. Walrath and M. Campione,The JFC Swing Tutorial: A Guide to Constructing
GUIs, Second Edition, Addison Wesley, 1999.

[WCO00] L. Wall, T. Christiansen, and J. Orwant,Programming Perl, 3rd Edition, O’Reilly &
Associates, 2000.

[Wel97] B. Welsch,Practical Programming in Tcl an Tk, Second Edition, Prentice Hall, 1997.

232

Print Bibliography

[Wel00] T. Wellhausen,Regelbasierte Personalisierung von E-Commerce-Systemen, Diploma
Thesis, University of Darmstadt, 2000.

[WHCHF99] S. White, M. Hapner, R. Cattell, G. Hamilton, and M. Fisher,JDBC API Tutorial
and Reference: Universal Data Access for the Java 2 Platform, Second Edition, Addison
Wesley, 1999.

[Yoo] H. Yoo, title to be announced, Ph.D. Thesis, University of Dortmund, to appear.

[Yov97] S. Yovine,Kronos: a verification tool for real-time systems, International Journal on
Software Tools for Technology Transfer, 1, 1+2, 123-133, Springer-Verlag, 1997.

233

Print Bibliography

234

Web Bibliography
The referenced URLs have been collected in the year 2001. But since the Web is evolving every
day, there might be links providing better information on the aspects or even links which may
even not exist any longer by the time you read this document.

[Apache]The Apache Project, www.apache.org/.

[Applets]Applets, java.sun.com/applets/.

[AppServer]AppServer: e-Infrastructure for e-Business, www.borland.com/appserver/.

[Bandera]Bandera: Software Model Construction for Finite-state Verification, www.cis.ksu.edu/
santos/bandera/.

[CADP] The Caesar/Aldebaran Development Package, www.inrialpes.fr/vasy/pub/cadp.html.

[CGI] CGI: Common Gateway Interface, www.w3.org/CGI/.

[ColdFusion]Cold Fusion, a cross-platform Web Application Server, www.allaire.com/products/
coldfusion/.

[COM] Component Object Model-based technologies, www.microsoft.com/com/.

[Coordination2002]COORDINATION 2002: Fifth International Conference on Coordination
Models and Languages, www-users.cs.york.ac.uk/~wood/Coord02/Coordination2002.html.

[CORBA] CORBA Basics, www.omg.org/gettingstarted/corbafaq.htm.

[CSSA]comp.simulation software archive, www.nmsr.labmed.umn.edu/~michael/dbase/comp-
simulation.html.

[DownloadCOM]CNET download.com, www.download.com.

[Dreamweaver]Macromedia Dreamweaver, www.macromedia.com/software/dreamweaver/.

[EJB] Enterprise JavaBeans technology: The Industry-Backed Server-Side Component Archi-
tecture, java.sun.com/products/ejb/.

[EUCALYPTUS] A Guided Tour of EUCALYPTUS, www.inrialpes.fr/vasy/cadp/tutorial/.

[Flash]Macromedia Flash 5, www.macromedia.com/software/flash/.

[FME] Formal Methods Europe, www.fmeurope.org.

[FrontPage]FrontPage Home, www.microsoft.com/frontpage/.

235

Web Bibliography

[HTML] Hypertext Markup Language Home Page, www.w3.org/MarkUp/.

[HTTP] HTTP - Hypertext Transfer Protocol, www.w3.org/Protocols/.

[HyTech]HyTech: The HYbrid TECHnology Tool, www-cad.EECS.Berkeley.EDU/~tah/HyTech/.

[IBMebusiness] , www.ibm.com/software/ebusiness/.

[ISO] International Organization for Standardization, www.iso.ch.

[Jakarta]Home Page of the Jakarta Project, jakarta.apache.org.

[J2EE]Java 2 Platform Enterprise Edition, java.sun.com/j2ee/.

[Java]The Source for Java Technology, java.sun.com.

[JavaAPI]Java 2 SDK, Standard Edition Documentation, java.sun.com/products/jdk/1.2/docs/.

[JavaBeans]JavaBeans: The only Component Architecture for Java Technology, java.sun.com/
products/javabeans/.

[JavaCodeConv]Code Conventions for the Java Programming Language, java.sun.com/docs/
codeconv/.

[Javadoc]Javadoc 1.2, java.sun.com/products/jdk/1.2/docs/tooldocs/javadoc/.

[JavaPlugIn]The Java Plug-in, java.sun.com/products/plugin/.

[JavaPorts]Java Platform Ports, java.sun.com/cgi-bin/java-ports.cgi.

[JavaPress]Java Press Release 4/17/95, java.sun.com/pr/1995/04/pr950417-01.html.

[JavaWebStart]Java Web Start, java.sun.com/products/javawebstart/.

[JBuilder]JBuilder: Pure Java Visual Development, www.borland.com/jbuilder/.

[JDBC] Java Database Connectivity, java.sun.com/products/jdbc/.

[JDC] The Java Developer Connection, developer.java.sun.com/developer/.

[JMeter] A Java desktop application designed to load test functional behavior and measure
performance, java.apache.org.

[JNI] Java Native Interface, java.sun.com/products//jdk/1.2/docs/guide/jni/.

[JSP]Java Server Pages, java.sun.com/products/jsp/.

236

Web Bibliography

[Kronos]Kronos, a tool to verify complex real-time systems., www-verimag.imag.fr/TEMPORISE/
kronos/.

[Linda] Yale Linda Group, www.cs.yale.edu/Linda/linda.html.

[MagicDraw]MagicDraw, a visual UML modeling and CASE tool., www.magicdraw.com.

[MF] The METAFrame Project, sunshine.cs.uni-dortmund.de/projects/METAFrame/.

[MFTech]METAFrame Technologies Home Page, www.metaframe.de.

[mokassin] , Mokassin Home Pagewww.informatik.uni-bremen.de/grp/mokassin/.

[MPEG] The MPEG Home Page, www.cselt.it/mpeg/.

[MSNetServers]Microsoft Servers Home Page, www.microsoft.com/servers/.

[MySun] My Sun, mysun.sun.com.

[NET] Microsoft .NET, www.microsoft.com/net/".

[MyYahoo] My Yahoo, my.yahoo.com.

[PLGraph]The PLGraph Library, sunshine.cs.uni-dortmund.de/projects/METAFrame/plgraph/.

[PNTD] The Petri Nets Tool Database, www.daimi.aau.dk/PetriNets/tools/db.html.

[Prosper]Proof and Specification Assisted Design Environments, www.dcs.gla.ac.uk/prosper/.

[Rational]Rational Software: the e-development company, www.rational.com.

[RMI] Java Remote Method Invocation (RMI), java.sun.com/products/jdk/rmi/.

[RMIFAQ] Frequently Asked Questions on RMI and Object Serialization, java.sun.com/ prod-
ucts/jdk/1.2/docs/guide/rmi/faq.html.

[Robot]Rational Robot: Reduce testing time and effort, www.rational.com/products/robot/.

[Rose]Rational Rose Product Information, www.rational.com/products/rose/.

[Sally] , lrs.fmi.uni-passau.de/projekte/sally.html.

[SanFrancisco]IBM SanFrancisco: Overview, www.ibm.com/software/ad/sanfrancisco/.

[SanFranciscoAD]IBM SanFrancisco: Application Development Environment, www.ibm.com/
software/ad/sanfrancisco/app_overview.html.

[Servlet]Java Servlet API, java.sun.com/products/servlet/.

237

Web Bibliography

[SMV] SMV guided tour, www.cs.cmu.edu/~modelcheck/tour.html.

[spin]On-the-fly, LTL Model Checking with SPIN, netlib.bell-labs.com/netlib/spin/whatispin.html.

[SSI] TDavid’s Server Side Includes (SSI) Tutorial, www.tdscripts.com/ssi.html.

[SSL] SSL 3.0 Specification, home.netscape.com/eng/ssl3/.

[STLPP]STL++: A Coordination Language for Autonomy-based Multi-Agent Systems, www-
iiuf.unifr.ch/~schumach/publications/rep-march98/.

[STTT] International Journal on Software Tools for Technology Transfer, sttt.cs.uni-dortmund.de.

[SUN] SUN Microsystems, www.sun.com.

[Swing] The Swing Connection, java.sun.com/products/jfc/tsc/.

[TeamTest]Rational TeamTest Product Information, www.rational.com/products/teamtest/.

[Together]ControlCenter Product Information, www.togethersoft.com/products/controlcenter/.

[tomcat] Tomcat, the official Reference Implementation for the Java Servlet and JavaServer
Pages technologies., jakarta.apache.org/tomcat/.

[ToolBus]The ToolBus Application Architecture, www.cwi.nl/projects/MetaEnv/toolbus/.

[TZUser]The ToolZone Client User Guide, http://www.eti-service.org/software/documentation.html.

[UML] UML Resource Page of the OMG, www.omg.org/uml/.

[UMW] UM Weather: Software Library, cirrus.sprl.umich.edu/wxnet/software.html.

[Uppaal]UPPAAL, an integrated tool environment for modeling, validation and verification of
real-time systems., www.docs.uu.se/docs/rtmv/uppaal/.

[vajava]Visual Age for Java: Overview, www.ibm.com/software/ad/vajava/.

[Velocity] Velocity, a Java-based template engine, jakarta.apache.org/velocity/.

[VisualStudio]Microsoft Visual Studio Home Page, msdn.microsoft.com/vstudio/.

[WaterBeans]WaterBeans: A Custom Component Model and Framework, www.sei.cmu.edu/cbs/
cbse2000/papers/23/23.html.

[WBC] WebSpehre Business Components: Overview, www.ibm.com/software/webservers/components/.

[WBCC] Component Composer: Overview, www.ibm.com/software/webservers/components/composer/.

238

Web Bibliography

[WebLogic]BEA WebLogic Server, www.bea.com/products/weblogic/server/.

[WebMacro]WebMacro Home Page, www.webmacro.org.

[WebSphere]IBM WebSphere Server Platform, www.ibm.com/websphere".

[XEmacs]XEmacs, a highly customizable open source text editor, www.xemacs.org.

[XMI] XML Metadata Interchange, www-4.ibm.com/software/ad/library/standards/xmi.html.

[XML] CORBA, XML And XMI Resource Page of the OMG, www.omg.org/xml/.

[XWindows]Technical X Window System and Motif WWW Sites, www.rahul.net/kenton/xsites.html.

239

Web Bibliography

240

		2002-02-19T17:02:58+0100
	Universitaetsbibliothek Dortmund - Eldorado

