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Abstract

The increasing complexity of today’s testing scenarios for complex systems demands
an integrated, open, and flexible approach to support the management of the over-
all test process. “Classical” model-based testing approaches, where a complete and
precise formal specification serves as a reference for automatic test generation, are
often impractical. Reasons are, on the one hand, the absence of a suitable formal
specification. As complex systems are composed of several components, either hard-
ware or software, often pre-built and third party, it is unrealistic to assume that a
formal specification exists a priori. On the other hand, a sophisticated test execution
environment is needed that can handle distributed test cases. This is because the
test actions and observations can take place on different subsystems of the overall
system.

This thesis presents a novel approach to the integrated testing of complex sys-
tems. Our approach offers a coarse grained test environment, realized in terms of
a component-based test design on top of a library of elementary but intuitively un-
derstandable test case fragments. The relations between the fragments are treated
orthogonally, delivering a test design and execution environment enhanced by means
of light-weight formal verification methods. In this way we are able to shift the test
design issues from total experts of the system and the used test tools to experts
of the system’s logic only. We illustrate the practical usability of our approach by
means of industrial case studies in two different application domains: Computer
Telephony Integrated solutions and Web-based applications.

As an enhancement of our integrated test approach we provide an algorithm for gen-
erating approximate models for complex systems a posteriori. This is done by op-
timizing a standard machine learning algorithm according to domain-specific struc-
tural properties, i.e. properties like prefix-closeness, input-determinism, as well as
independency and symmetries of events. The resulting models can never be exact,
i.e. reflect the complete and correct behaviour of the considered system. Neverthe-
less they can be useful in practice, to represent the cumulative knowledge of the
system in a consistent description.





Zusammenfassung

Die steigende Komplexität heutiger Testszenarien für komplexe Systeme erfordert
einen ganzheitlichen und offenen Ansatz zur Verwaltung des gesamten Testprozesses.
Eine Anwendung klassischer modellbasierter Testansätze, in denen eine präzise und
vollständige formale Spezifikation des Systems als Referenz zur automatischen Test-
fallgenerierung dient, ist in der Praxis nicht möglich. Gründe dafür liegen zum einen
im Fehlen einer adäquaten formalen Spezifikation. Komplexe Systeme sind aus ver-
schiedenen Komponenten zusammengesetzt, teils Hardware teils Software und oft
auch aus Fremdkomponenten. Dadurch ist es inhärent unrealistisch anzunehmen,
dass eine solche formale Spezifikation a priori existiert. Andererseits muss eine aus-
gereifte Testumgebung die Ausführung von verteilten Testfällen unterstützen, denn
die Test-Stimuli und -Beobachtungen können an verschiedenen Teilkomponenten des
Systems stattfinden.

Diese Arbeit präsentiert einen neuartigen Ansatz für das ganzheitliche Testen kom-
plexer Systeme. Der Ansatz stellt eine grobgranulare Testumgebung zur Verfügung,
die mittels einer komponentenbasierten Testfallbeschreibung realisiert ist. Die Ba-
sis dafür bildet eine Bibliothek von elementaren, aber intuitiv verständlichen Test-
fallfragmenten. Die Beziehungen zwischen den Testfallfragmenten sind orthogonal.
Dies ermöglicht eine Testbeschreibung und -ausführung, die durch formale Verifika-
tionsmethoden ergänzt wird. Hierdurch können die Testfallbeschreibungsaspekte
von Experten des Systems und der verwendeten Testwerkzeuge zu Experten der
Systemlogik verschoben werden. Der Ansatz wird durch verschiedene, industrielle
Fallstudien in zwei verschiedenen Bereichen illustriert: Computer Telephony Inte-
grations Lösungen und Webbasierte Applikationen.

Als Erweiterung des ganzheitlichen Testansatzes wird ein Algorithmus zur a poste-
riori Generierung approximativer Modelle für komplexe Systeme vorgestellt. Dafür
wurde ein bekannter Algorithmus aus dem Maschinellen Lernen an applikationsbed-
ingte Charakteristika angepasst, wie Präfix-Abgeschlossenheit, Input-Determinismus,
sowie Unabhängigkeit und Symmetrien zwischen Aktionen. Die resultierenden Mod-
elle können zwar nie exakt sein, in dem Sinne, dass sie das vollständige und korrekte
Systemverhalten abbilden. Dennoch können sie von hohem praktischen Nutzen sein,
da sie das gesammelte Wissen über das System in einer konsistenten Beschreibungs-
form repräsentieren.
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Chapter 1

Introduction

This thesis presents a novel approach to the integrated testing of complex systems.
Its development is driven by the observation that “classical” formal-method-based
approaches fail to enter in practice. Therefore, our approach offers a coarse-grained
test environment, realized in terms of a component-based test design on top of
a library of elementary but intuitively understandable test case fragments. The
relations between the fragments are treated orthogonally, delivering a test design
and execution environment enhanced by means of light-weight formal verification
methods. In this way we are able to shift the test design issues from total experts
of the system and the used test tools to experts of the system’s logic only.

This chapter gives a general introduction to the subject, motivations, aims and
scientific contributions of our work.

1.1 Background and Motivation

A common trend in system development nowadays is the construction of so-called
complex systems, i.e. systems consisting of several components, either hardware or
software, often pre-built and third-party. Typical examples for complex systems
are composite systems, like Computer Telephony Integration (CTI ) solutions. Here
whole hardware/software solutions, composed themselves out of special computer
systems equipped with telephony hardware and corresponding software, are con-
nected to a telephone switch. Other examples are distributed software architectures,
like Web-based applications, where software running on a web server interacts with
several clients.

Our starting point was the testing of complex Computer Telephony Integration so-
lutions in a project together with Siemens AG [Sie]. Here we were faced with the

– 3 –



4 Introduction

problem of performing functional regression testing for a legacy telephony switch in
cooperation with over 200 value-added applications, to assure that they were com-
pliant to the switch. As those applications communicate with the telephone switch
via standardized protocols, namely the Computer Supported Telecommunication Ap-
plications (CSTA) protocol and the Telephony Application Programming Interface
(TAPI), they are developed mainly by third-party vendors. Furthermore, the soft-
ware of the telephone switch is changing rapidly, i.e. 4 major releases per year. This
implies that after every release of the telephone switch all of the 200 value-added
applications have to be recertified, often in various combinations as well. Obviously
this task demands test automation. Unfortunately “classical” formal-methods based
approaches, i.e. where test suites are generated with respect to a formal specification
of the system, are not applicable in this situation. The reasons are on the one hand
that a formal specification of the sort of systems described above is not available, be-
cause parts of the overall system are third-party. But even for the telephone switch
a complete and precise formal specification cannot be achieved for both complexity
reasons (a precise model will be “too large” to construct) and economic reasons (the
generation and maintenance of a precise model will be “too costly”) 1.
On the other hand for test execution an environment is needed that can handle
distributed tests, i.e. tests where some actions/observations take place on the tele-
phone switch and others on the application(s). But this is not covered by “classical”
formal-method-based approaches. Thus a tool-supported test approach is needed
that supports:

— the intuitive (manual) construction of test cases out of reusable building-
blocks;

— guidance during the test case construction;

— automatic execution of distributed test cases;

— support for test run evaluation; and

— easy integration of new test scenarios.

To sum up, the increasing complexity of today’s testing scenarios for complex sys-
tems demands an integrated, open, and flexible approach to support the manage-
ment of the overall test process. “Classical” model-based testing approaches, where
a complete and precise formal specification serves as a reference for automatic test
generation, have often proved impractical. Reasons are on the one hand the absence
of a suitable formal specification. Because of the characteristics of complex systems

1Note that we present a promising approach for the a posteriori generation of approximate
models in this thesis.
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it is unrealistic to assume that a formal specification exists a priori. On the other
hand, a sophisticated test execution environment that can handle distributed test
cases is needed. This is because the test actions and observations can take place on
different subsystems of the overall system.

1.2 Main Contributions

In this thesis an integrated approach is developed for testing complex systems. The
main contributions of this thesis are the design of the general approach, the develop-
ment of a suitable test environment for supporting the approach, and an operational
procedure that bridges the gap between formal testing theory and current testing
practice by a posteriori model generation.

Integrated Test Approach

An integrated test approach for testing complex systems has been developed, in
which we aim at test automation by supporting test engineers during their manual
design of tests. The tests can be instantly executed within a test environment. As
system-level testing usually treats the system under test from an end-user’s point
of view, this should be maintained when moving to an automated test execution,
meaning that the test design should also happen at this level of expertise and intu-
ition. Furthermore, the test design is accompanied by formal methods as much as
possible, i.e. rules concerning the construction of “correct” tests guide test engineers
during the design of tests. The formulation of the consistency rules is supported by
a pattern-based approach.

I was involved in the development of the general concepts and was responsible for
its realization and the formal foundation of the test approach as well as the pattern-
based approach.

Integrated Test Environment

A test environment has been developed to facilitate the proposed integrated test
approach. Our environment is characterized on the one hand by its open and flexible
architecture so that diverse test tools can be integrated as required, where test tools
carry out the test actions/observations. One the other hand, it is built on top of
a CORBA-based communication layer that supports distributed test execution on
heterogenous platforms. In addition a well-defined and tool-supported integration
process for test tools is presented.
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I was responsible for the design and implementation of the integrated test environ-
ment and advised the case studies, in particular:

— Design of the communication layer for the communication with the test tools;

— definition of the test tool integration process;

— integration of the test tool Rational Robot .

A Posteriori Model Generation

We present an approach for generating models for complex systems a posteriori by
adapting a machine learning algorithm. In this way we are able to represent the
cumulative knowledge about the system in a consistent description. Furthermore,
various pieces of information about the considered system domain helps to optimize
the algorithm, e.g. independency and symmetries of events.

By optimizing a standard learning method according to domain-specific structural
properties, we are aiming at generating approximate models for complex reactive
systems in practice. Here we considered properties like prefix-closeness, input-
determinism, as well as independency and symmetries of events.

Learning is only feasible if one can check actively whether a given abstract sequence
corresponds to (is an abstraction of) a concrete system behaviour. In fact it was
the integrated test environment that enabled us to implement learning procedures in
practice by bridging the gap between the abstract models and the “real” world. Its
flexible test specification formalism supports the generation of concrete test cases
from abstract propositional sequences. Furthermore, its precise test execution se-
mantics ensures that we can perform the mapping of the results of the test runs back
into the abstract sequences so that they can be processed by the learning algorithm.
We emphasize the practicability of our method by means of experiments we have
carried out in an industrial setting.

I worked on the optimizations of the standard learning procedure and additionally
I adapted the learning procedure to deal with input/output systems directly. Fur-
thermore, I implemented the algorithms and established an environment for “real”
world experimentation with the help of the integrated test environment.

1.3 Related Work

The contributions of this thesis are in two different research areas: Testing and
machine learning.
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Testing

To our knowledge there exists neither commercial nor academic tool-supported test
approaches providing comprehensive support for the whole system-level test process.
In particular, most research on test automation concentrates on the generation of
test cases and test suites on the basis of a formal model of the system. In the TorX
approach [TB99] a (possibly infinite) test suite is derived from a formal model,
described as a labelled transition system. Consequently this approach will usually
be applied on-the-fly. In contrast the TGV approach [FJJ+97] derives single test
cases out of a formal specification – again described by a labelled transition system –
with respect to a given test purpose (provided by a special sort of labelled transition
systems). Test cases can be derived by computing the intersection between the model
and the test purpose. The project Agedis [Age] tries to bring this approach into an
industrial context. Furthermore, there exist several approaches based on Standard
Description Language (SDL) specifications, e.g. Autolink [SKGH98] to name an
academic one and Telelogic Tau [Tel] as a representative for commercial SDL test
tools. These approaches usually derive test cases with respect to test purposes given
by Message Sequence Chart (MSC ) descriptions. Common to all of these tools is
that they on the one hand presuppose the existence of a precise and finely granular
formal specification in the particular formalism. On the other hand they do not care
about the test execution, i.e. for the resulting test cases an execution environment
has to be implemented.

Other approaches concentrate on providing (generic) test execution environments. A
remarkable one is the Test Environment Toolkit (TET ) [The], an extensible frame-
work for both local or distributed testing. Test engineers develop test interfaces
that can be used during the formulation of test cases. The major drawback of TET
is that test cases have to be “implemented”, i.e. are small programs written in the
particular programming language of the application being tested. This requires a
deep understanding of the system’s internals in contrast to our approach, where
a test engineer only needs to be expertise of the application’s logic. Furthermore,
no well-defined and tool-supported integration process for test tools exist. Finally,
during distributed testing the involved components communicate via proprietary
interfaces instead of using standard communication mechanisms like CORBA.
Another interesting, but yet new and incomplete, approach is the Eclipse/Hyades
project [Hya]. Here software test tools can be integrated via a plug-in approach and
operate on a common data model. However, the global coordination of these test
tools during test execution has to be implemented “hard-coded”, e.g. directly as a
Java program.

Another recent upcoming approach is based on the new revision of the Test and Test
Control Notation (TTCN -3) [Eur03], called TT Series [Tes]. One big advantage is
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that TTCN-3 is a standardized notation. So far various test tools already supports
TTCN-2, the predecessor of TTCN-3, for exporting their test case descriptions. The
TT Series, however, does not support a uniform handling of the involved test tools,
as test cases are compiled in Java code and have to be integrated into a “self-made”
and application-specific test execution environment.

To sum up, none of the approaches presented above covers all required aspects as
postulated in Section 1.1.

Machine Learning

Machine learning is a wide area of active research. The idea of combining learning
and testing techniques is quite new. At the theoretical level the work of [PVY99,
GPY02] is a notable exception, where the problem of learning and refining system
models is studied. The ultimate goal may be testing a given system for a specific
property, or correcting a preliminary or invalidated model. In our approach, how-
ever, we focus on the very practical aspects of learning models of real-life systems.
We improve the learning efficiency by optimizing a standard learning algorithm with
respect to structural properties of the considered system domain. To our knowledge
no comparable approach exists.

1.4 Publications

The research for this thesis lead to 11 publications of the intermediate scientific
results and 3 (refereed) tool-related papers.

Testing of Complex Systems Our general approach for testing complex systems
has been described in [NMN+00, NSM+01].

Testing of Computer Telephony Integrated Systems In [NMH+00] we have
discussed how to apply our approach to the testing of Computer Telephony
Integrated solutions. In addition in [NMH+01, HMN+01] we have shown the
efficiency of our approach along industrial case studies. Finally in [MNSE02,
MNS02b] we have demonstrated that our approach scales to modern IP-based
telecommunication solutions. A tool presentation was given in [NNH+01].

Testing of Web-based Applications We have extended our approach to cope
with Web-based applications as well, which is discussed in [NMS02] and a
corresponding tool presentation in [MNS02a].
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A Posteriori Model Generation In [HHNS02, HHM+02b] we have developed
a novel way of generating models for complex systems a posteriori and in
[HHM+02a] a tool presentation can be found. Furthermore, in [HNS03] we
have presented an optimized learning algorithm that allows the efficient learn-
ing of such models.

1.5 Organization of this Thesis

This thesis elaborates an integrated approach for testing complex systems. It is
structured into five parts:

Part I. After this introductory chapter we give in Chapter 2 a brief overview
of formal testing theory. We present basic terms and notations, the international
standard of Formal Methods in Conformance Testing, and a concrete instantiation
of this standard.

Part II. This part introduces our integrated test approach together with a corre-
sponding test environment for supporting the test process. In Chapter 3 the general
concepts of our approach are presented and its formal foundation in particular. A
concrete test environment that supports our approach is developed in Chapter 4.
Finally in Chapter 5 we illustrate the usage of our test environment by means of a
concrete example.

Part III. In the third part we discus practical experience in industrial case studies,
where our approach has been applied to the test in the area of Computer Telephony
Integrated solutions and Web-based applications.

The first case study deals with the test of 11 different Computer Telephony Integrated
solutions which we have performed with our industrial partners at Siemens AG [Sie].
The work on this study and its results are presented in Chapter 6.

The second case study was done on Web-based applications in cooperation with
METAFrame Technologies GmbH [MET] and is presented in Chapter 7.

Part IV. In the fourth part we suggest and discuss various improvement oppor-
tunities for our approach. In particular the a posteriori generation of models for
complex systems is presented in Chapter 8. Here we present, in addition to the
method itself, practical results that we have achieved by generating models for non-
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trivial telecommunication systems. Finally in Chapter 9 we draw some conclusions
and provide an outlook for future work.

Part V. provides the appendices.



Chapter 2

Foundations of Testing Theory

To assure that system behaviour is not faulty which might cause severe damage,
the system has to be checked to see if it behaves as expected. This process is called
validation. For the validation of a system the desired behaviour must be known. A
description of the desired behaviour is called a specification, which identifies what
a system must do. A specification, however, does not prescribe how this is done. A
system that is supposed to implement the desired behaviour is called an implemen-
tation. Usually it is a real, executing, system.

Two complementary validation techniques that can be used to increase the level of
confidence in the correct functioning of systems as prescribed by their specifications,
are testing and verification. Whereas verification aims at proving properties about
the system based on a mathematical model of the system, testing is performed by
experimenting with the real, executing implementation (or an executable simulation
model) in order to find errors. Testing can be understood as the process of eval-
uating a system or its components by manual or automated means to verify that
it satisfies specified requirements or to identify differences between expected and
actual results [ANS83].

Verification can ascertain whether a required property has been satisfied, but this
certainty only applies to the model of the system. This implies that any verification
is only as good as the validity of the system model. Testing, in practice based on
observing only a small subset of all possible instances of system behaviour, is usually
incomplete: testing can show the presence of errors, not their absence. Since testing
can be applied to the real implementation, it is useful in those cases when a valid
and reliable model is not present.

The outline of this chapter is as follows: first in Section 2.1 the general terms
and notions of testing theory are presented. After that in Section 2.2 a framework

– 11 –
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for testing based on formal methods, “Formal Methods in Conformance Testing”, is
introduced. Finally, a concrete instance of this framework is discussed in Section 2.3.

2.1 Introduction to Testing Theory

Testing can take place at different levels of abstraction:

— Unit Testing: Testing the smallest testable piece of software or hardware

— Component Testing: Testing the cooperation of a number of units that make
up a component

— System-level Testing: Testing the complete system

For each of these levels of abstraction different aspects of a system can be tested:

— Functional/Conformance Testing: Tests whether the behaviour of the imple-
mentation conforms to the specified behaviour. Its primary objective is to
assess whether the system under test is conforming to end-user requirements.

— Regression Testing: Determines whether any errors have been introduced dur-
ing the error-fixing process. Note that it is in this area of regression testing
that automated test tools offer the largest return on investment.

— Stress Testing: Testing the performance under heavy workload. It measures
the capacity and resiliency of the system, often on several hardware platforms.
The system is asked to process a huge amount of data or perform many function
calls within a short period of time. A typical example could be to perform the
same function call from all workstations simultaneously on the server.

— Performance Testing: In performance testing we are interested in verifying
that the system under test meets specific performance efficiency objectives.
Performance testing can measure and report on such data as input/output
rates, average database query response time, and CPU utilization rates. The
same tools used in stress testing can generally be used in performance testing.

— Robustness Testing: Tests how an implementation reacts to unspecified, or
“abnormal” environments.

— Acceptance Testing: Tests whether the initial system requirements are met
when the system operates in its intended production environment.
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To test an implementation, called system under test, a tester must access the imple-
mentation and carry out tests against this implementation. Basically three different
levels of accessibility are distinguished and these corresponds to different types of
testing: white-box testing, grey-box testing, and black-box testing. If the internal
structure of an implementation is fully known, then this information can be utilized
when the implementation is tested. This is called white-box testing. An example
of white-box (software) testing is when the implementation consists of a piece of
code, and the source code of the implementation is available to the tester; in that
case the tester can access, and measure, specific internal characteristics of the imple-
mentation (e.g., if particular statements are executed, or if certain variables contain
the expected values or not). The opposite of white-box testing is black-box testing.
In black-box testing it is assumed that the implementation can only be accessed
through its interface with the environment, and no knowledge of the internal struc-
ture of the implementation is present. Black-box testing is done when, for example,
the source code of an implementation is not available but only the executable is, or
in case of third-party testing. Grey-box testing lies in between black-box testing and
white-box testing. In grey-box testing it is assumed that only part of the internal
structure of an implementation is known.

In this thesis we concentrate on functional testing at system-level, which is often
used as a synonym for black-box testing, because during system-level testing the test
purposes deal mostly with the system’s externals. Functional testing is concerned
with checking implementations against their specifications by means of experimen-
tation. Tests are derived from the (informal) specification, then applied to the
implementation under test, and, based on observations made during the execution
of the tests, a verdict about the correct functioning of the implementation is given.
Within system-level testing this is a mainly manual, laborious and time-consuming
process, as usually, neither a complete and precise specification of the overall system
exists, nor is there an execution environment for the test execution.

Figure 2.1: Simple Test Architecture

A test architecture is an environment in which a system is tested, cf. Figure 2.1. It
describes at a high level of abstraction how the tester communicates with the system
under test. It consists of a tester and a system under test, which provides access
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via points of control and observation (PCO) and offers observation interfaces via
points of observation (PO). The PCO’s and PO’s define the test interface between
the tester and the system under test. Note that often an additional indirection step
is introduced through a special test context, as in practice not all system under test
offer PCO resp. PO. In such cases the test context is responsible for providing the
test interfaces.

2.2 Formal Methods in Conformance Testing

The standard ‘Formal Methods in Conformance Testing ’ (FMCT) defines a frame-
work for the use of formal methods in conformance testing [ISO96] and is complemen-
tary to the international standard IS-9646 ‘OSI Conformance Testing Methodology
and Framework ’ (CTMF) [ISO91], that is mainly intended for specifications written
in a natural language. FMCT is intended to guide the testing process of an imple-
mentation with respect to a formal specification, and it defines, at a high level of
abstraction, the concepts used in conformance testing, such as conformance, testing,
test generation, etc. In this section the main concepts of FMCT about conformance,
testing, and conformance testing, are recalled. For a detailed description we refer
to the FMCT document itself [ISO96].

2.2.1 Specifications and Implementations

Within FMCT it is assumed that specifications prescribe the behaviour of a system
by means of formal description techniques (FDT ). A specification s is therefore a
formal object, contained in the set of specifications SPECS, that can be expressed
by means of the particular FDT. The implementations are real systems and not
mathematical objects, thus making it impossible to define a formal relation between
specifications and implementations. By a test assumption or test hypothesis we
suppose that any implementation IUT ∈ IMPS, where IMPS denotes the universe
of implementations, can be modelled by a formal model mIUT ∈ MODS, where
MODS represents the universe of models of a particular formalism (e.g. labelled
transition system, finite state machines, etc.). In order to facilitate the comparison,
the formalism MODS may be chosen to be the same as SPEC. Note that the test
assumption only assumes that such a model exists, and not that this model is known
a priori.
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2.2.2 Conformance

There are two approaches to define conformance. One depends on the abstract
concept of the implementation relation, the other one relates to the more concrete
concept of conformance requirements. The latter can be seen as a refinement of the
former definition.

Implementation Relation

The conformance between specification and implementation is formally character-
ized by a relation between the model mIUT and the specification s and is called an
implementation relation:

imp ⊆MODS × SPECS

The implementation relation is not determined by the combination of MODS and
SPECS, as there can exist several different implementation relations for a given
formalism.

There may also be more than one implementation conforming to a specification. For
a specification s ∈ SPECS and an implementation relation imp there exists a set
M imp

s , denoting the set of all conforming models m ∈MODS, with respect to s and
imp:

M imp
s = {m ∈MODS | m imp s}

Figure 2.2: Relations between Specifications, Implementations, and their Models

The relations between specifications, implementations and their models are depicted
in Figure 2.2. The implementation IUT is correctly implementing the specification
s if the implementation IUT may be modelled by the model mIUT and if this model
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in turn is part of the set of models Ms that implement the specification s according
to the implementation relation imp. It is important to note that the conformance
between an implementation and a specification depends on the chosen implemen-
tation relation. For the formalism of labelled transition systems or input/output
automata there exists a variety of different implementation relations. Usually fail-
ure or testing equivalences or preorders are defined in terms of tests whose pro-
cesses or models may or must satisfy [DNH84, Hen85, Hoa85], and also the work of
[CC92, CS90, Hee98, Lan90, NC95, Seg93, Tre92, Tre96a, VT95]. There also exists
variants where bisimulations ([Mil89, Par81, Wal88]) are used rather than failure
relations, e.g. [Abr87, CH93].

Conformance Requirements

The second definition of conformance is based on the concept of conformance re-
quirements as used in CTMF. These requirements denote properties to be satisfied
by the (model of the) implementation that claims to conform to the specification.

Let REQS be the set of all requirements which may be expressed in a particular
formal requirement language. A specification s ∈ SPECS may now be expressed as
a set of requirements Rs ⊆ REQS, and the set of all possible specifications may be
defined as SPECS = P(REQS), i.e. as the powerset of the possible requirements.
The set Rs is called a requirement specification, and a single element of Rs is called
a requirement.

An implementation modelled by mIUT conforms to a specification s if all require-
ments r ∈ Rs are satisfied by mIUT . Thus the relation sat is defined to be:

sat ⊆MODS ×REQS

The set Ms of models conforming to the specification s may then be defined as

Ms = {m ∈MODS | ∀r ∈ Rs : m sat r}

An implementation IUT conforms to a specification s, if it can be modelled by a
model mIUT ∈ Ms, since Ms is the set of all models that satisfy all conformance
requirements Rs of the specification s. In other words, an implementation IUT
conforms to a requirement specification Rs if its model mIUT satisfies at least all
requirements in Rs, and possibly more.

2.2.3 Testing

Testing relates to the experiment where an IUT is stimulated and its responses
are observed. This experiment is called test execution and is performed within a
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concrete test architecture. The test execution procedure is specified by test cases
t ∈ T , where t represents a single test case and T denotes a set of test cases, called
test suite. The test cases are specified by means of a test notation referred to as
TESTS, i.e., t ∈ T ⊆ TESTS. During test execution observations o out of the
domain of the observations OBS are made. To each observation there is assigned a
verdict, denoted by the function

verdt : OBS → {pass, fail}

which must exist for all test cases t ∈ T . Test execution may be formalized by:

exec : TESTS ×MODS → OBS

Thus exec(t,mIUT ) calculates the observations resulting from the application of
test case t to the model mIUT . By means of this function we may express the set of
models Pt that pass a test case t with:

Pt = {m ∈MODS | verdt(exec(t,m)) = pass}

Based on the set Pt for test case t we can state that:

IUT passes t⇔ mIUT ∈ Pt

Applying it to test suites as a whole we may say that an IUT passes a test suite T
if the pass verdict is assigned to all executions of test cases t ∈ T :

IUT passes T ⇔ mIUT ∈ PT , where PT =
⋂
t∈T

Pt

2.2.4 Conformance Testing

In conformance testing we link the concepts of the implementation relation and
testing. What we need is a test suite T for which we can say: an IUT passes that
test suite if (and only if) the IUT conforms to the specification with respect to the
implementation relation imp:

mIUT imp s⇔ IUT passes T

Such a test suite is called complete, but in general it is not possible to create test
suites that allow the implication in both directions: these test suites are usually
infinite and consequently cannot be carried out in practice. A test suite can be

Exhaustive The set of implementation models that pass T is a subset of the models
conforming to the specification s, i.e., PT ⊆ Ms (implication ‘⇐’ in the last
equation),
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Sound The set of implementation models that pass T is a superset of the models
conforming to the specification s, i.e., PT ⊇Ms (implication ‘⇒’), or

Complete The set of implementation models that pass T is equal to the set of the
models conforming to the specification s, i.e., PT = Ms (implication ‘⇔’).

There exists a variety of different test generation algorithms, which can generate
test suites out of a given formal specification, e.g. labelled transition systems or (ex-
tended) finite state machines. Some test generation methods focus on the derivation
of complete test suites rather than on computing finite test suites, e.g. [BSS86, Bri88,
Tre92, Tre96a]. Other approaches generate test cases with respect to certain formal
test purposes, e.g. as can be found in the TGV approach [FJJ+96, FJJ+97]. In the
domain of finite state machines several test generation methods exist, where finite
test suites with respect to given fault models are generated, beginning from a simple
state coverage up to a sophisticated state verification, e.g. [Vas73, Cho78, CVI89,
EP90, FvBK+91, ADLU91, LPvB93, vBP94, LvBP94, PvBY96]. These methods
were also adapted for dealing with labelled transition systems resp. input/output
automata, see [TP98, TPvB96]. There are, however, a lot of other approaches, e.g.
[NT81, SD88, SL88, UZ93, Ber94, PYvBD96, SKGH98, YCL98, RNHW98, RS98,
PW99, God99a, KSK00, FHP02]. Please refer to [LY96, BT00] for good surveys of
the different test generation approaches.

2.3 Instantiation of the FMCT Framework

By instantiating the abstract concepts defined in the previous section with specific
choices, the formal conformance testing framework can be used in practice.

2.3.1 Models

The formalism of labelled transition systems is used to describe the behaviour of a
system.

Definition 2.1 (Labelled Transition System). A labelled transition system
(LT S) is a structure S = (Σ, A,→, s0), consisting of a countable, non-empty set Σ of
states, a countable set A of labels or actions, a transition relation→⊆ Σ×A∪{τ}×Σ,
and a unique start state s0.
The class of all labelled transition systems over A is denoted by LT S(A).

The actions in A represent the external observable behaviour of the system, where
the special action τ denotes an unobservable, internal behaviour.
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Let S = (Σ, A,→, s0) be a labelled transition system with s, s′ ∈ Σ, µ(i) ∈ A ∪ {τ},
a(i) ∈ A and σ ∈ A∗, then the following notations can be defined:

s
µ−→ s′ =def (s, µ, s′) ∈→

s
µ1·...·µn

−−−−−−→ s′ =def ∃s1, . . . , sn+1 : s = s1
µ1−→ s2

µ2−→ . . .
µn−→ sn+1 = s′

s
µ1·...·µn

−−−−−−→ =def ∃s′ : s
µ1·...·µn

−−−−−−→ s′

s
ε

=⇒ s′ =def s = s′ or s
τ ·...·τ
−−−−→ s′

s
a

=⇒ s′ =def ∃s1, s2 : s
ε

=⇒ s1
a−→ s2

ε
=⇒ s′

s
a1·...·an======⇒ s′ =def ∃s1 . . . sn+1 : s = s1

a1=⇒ s1
a2=⇒ . . .

an=⇒ sn+1 = s′

s
σ

=⇒ =def ∃s′ : s σ
=⇒ s′

s
σ

�=⇒ =def not ∃s′ : s σ
=⇒ s′

A sequence of observable actions is called a trace. The traces of a labelled transition
system specification S, denoted by Tr(S), are all sequences of visible actions that
S can perform. If σ is a trace of S, then any initial part of σ is also a trace of S.
We call this a prefix of σ.

Definition 2.2 (Trace, Prefix). Let S ∈ LT S.

1. Tr(S) =def {σ ∈ A∗ | S σ
=⇒}

2. A trace σ1 is a prefix of σ2, denoted by σ1 � σ2, if ∃σ′ : σ1 · σ′ = σ2. Since σ′

is unique we write σ′ = σ2\σ1.

Some additional definitions can be made: these are especially important in the
consideration of the conformance relations.

Definition 2.3. Let s be a (state out of a) labelled transitions system and let S be
a set of states.

1. init(s) =def {µ ∈ A ∪ {τ}|s µ−→}

2. init(S) =def

⋃
{init(s)|s ∈ S}

3. s after σ =def {s′|s σ−→ s′}

4. S after σ =def

⋃
{s after σ|s ∈ S}

However many real-world systems can be described as reactive systems, i.e. they
react to stimuli from their environment. To describe these system type the granular-
ity of labelled transitions systems is often not fine enough. We have to distinguish
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between input and output actions. The formalism of input/output automata [LT89]
provides exactly this partition of A.

Definition 2.4 (Action signature). A partition of a set A of actions into three
disjoint sets of input actions (AI), output actions (AO) and internal actions (Aint)
is called an action signature.

Proposition 2.5. Let A be an action signature, then the set Aext = AI ∪ AO is
called the set of external observable actions.

Proposition 2.6. Let A be an action signature, then the set Alocal = AO ∪ Aint is
called the set of locally controlled actions.

Definition 2.7 (Input/Output Automaton). An Input/Output automaton
(IOA) is a structure S = (Σ, A,→, s0, P ), where Σ denotes a set of states, A a set
of actions,→ a transition relation→⊆ Σ×A×Σ, s0 is a unique start state and the
following holds:

1. A is an action signature

2. P is a partition of local

3. ∀s ∈ Σ, a ∈ AI : s
a−→

Note that an IOA can be seen as a special case of a LT S, i.e. IOA ⊆ LT S.
In testing a weakened version of input/output automata will often be used: these are
called input/output labelled transition system (IOTS ) [Tre96a, Tre96b]. Instead of
requiring each state to be input-enabled, in an IOTS, each input must be reachable
within a transitive closure of internal actions. Note, however, that this weakening
conflicts with the fairness properties of IOA, as now infinite internal computations
are possible.

The model of IOA serves as a formalism for describing the behaviour of both
specifications and implementations. Note that sometimes the more general model
of labelled transition systems is used to describe the behaviour of specifications.

2.3.2 Conformance

In the most prominent implementation relation, the testing preorder [DNH84, DN87],
it is assumed that the behaviour of external observers, like the behaviour of imple-
mentations and specifications, can be modelled as labelled transition systems or



2.3. Instantiation of the FMCT Framework 21

input/output automata. Furthermore it is assumed that these observers communi-
cate in a synchronous and symmetric way with the system under test. From the
observer o and the system under test p, the binary infix operator ‖ creates a la-
belled transition system o ‖ p that models the behaviour of o experimenting on p in
a synchronous way.

Definition 2.8 (Synchronous Product). Let o, p ∈ LT S, then the operator
‖: LT S × LT S → LT S is defined by the following inference rules:

1. o
τ→ o′

o ‖ p
τ→ o′ ‖ p

2.
p

τ→ p′

o ‖ p
τ→ o ‖ p′

3.
o

a→ o′, p a→ p′

o ‖ p
a→ o′ ‖ p′

(a ∈ A)

Note that the third rule denotes that only observable actions that can occur are the
ones agreed upon by both the observer and the system under test. If the system
under test p cannot match an action offered by the observer o, then this action will
not take place, and o ‖ p is not able to continue, if both o and p are stable, i.e.
cannot leave their current states through internal τ -actions.

We present the testing preorder ≤te in a slightly different way than in the original
definition of [DNH84].

Definition 2.9 (Testing Preorder). The testing preorder ≤te⊆ LT S ×LT S is
defined by:
i ≤te s =def ∀o ∈ LT S : obsmay(o, i) ⊆ obsmay(o, s) and obsmust(o, i) ⊆ obsmust(o, s)

where obsmay(o, p) =def {σ ∈ A∗ | (o ‖ p)
σ

=⇒}, and
obsmust(o, p) =def {σ ∈ A∗ | init((o ‖ p) after σ) = ∅}

The testing preorder is defined in an extensional way, i.e. by comparison on the
basis of external behaviour of the system under test. Intuitively an implementation
i is testing preorder related to a specification s, if for every external observer o,
modelled as a labelled transition system, each trace that o ‖ i can perform can be
performed by o ‖ s, and each deadlock trace of o ‖ i is one of o ‖ s. Here a deadlock
trace is a trace, after which the system is unable to perform any further action of
A. Testing preorder allows implementations to be “more deterministic” than their
specification, but it does not allow that implementations can do more than specified.
In this sense the specification prescribes what behaviour is allowed and what is not.
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2.3.3 Testing

Now that we have chosen the models for specifications and their implementations,
i.e. labelled transition systems resp. input/output automata, we can define the ob-
servers, needed in Definition 2.9. We call these observers tester processes or test
cases.

Definition 2.10 (Tester Process). A tester process tp = (Σ, A,→, s0, P ) for an
implementation I = (ΣI , AI ,→I , sI

0, P
I) ∈ IOA is an IOA (T P ⊂ IOA), such

that

1. AI = AI
O, AInt = ∅, and AO ⊆ AI

I

2. tp is deterministic and has finite behaviour,

3. Σ contains the terminal states pass and fail, with init(pass) = init(fail) = ∅.

Definition 2.11 (Test Run). A test run of a test process t ∈ T P with an
implementation I ∈ IOA is a computation of the synchronous product t ‖ I leading
to a terminal state of t:

σ is a test run of t and I =def ∃I ′ : t ‖ I
σ

=⇒ pass ‖ I ′ or t ‖ I
σ

=⇒ fail ‖ I ′

Note that as tester processes have finite behaviour it is always ensured that a test
run is finite. Additionally the definition of the alphabet ensures that the test process
is compatible to the implementation, i.e. the outputs of the implementation are the
inputs of the test process and the inputs of the implementation are the outputs of
the test process. This means that an implementation can never block stimuli of
the test process, and the test process is always able to process an output of the
implementation.

Having this in mind an implementation i passes a test process t if all their test runs
lead to the pass-state of t:

i passes t =def ∀σ ∈ A∗ : i ‖ t
σ

=⇒ i′ ‖ pass

Thus an implementation passes a test suite if it passes all its tests. The aim of
test generation algorithms is now to restrict the set of all possible observers or test
processes, expressed by the forall quantifier in Definition 2.9, to a finite subset in a
systematic way to ensure a certain coverage.



2.3. Instantiation of the FMCT Framework 23

2.3.4 Test Generation for Input/Output Automata

As stated in the previous section a complete test suite, i.e. an implementation pass
the test suite if and only if it is conform to the specification, can in general not be
achieved. Therefore test generation methods are aiming at computing a finite set of
tests by ensuring a certain coverage, e.g. state coverage. In this section we present
a test generation method, called HSI-method, tailored for specifications given as
IOA, which is presented in [TP98]. Note that it bases on the work of [Pet91], who
developed this method for dealing with finite state machines.

The HSI-method bases, as all its companions, on the W-method [Vas73, Cho78].
These methods differ basically in their state identification facilities, i.e. the verifica-
tion that a given machine, with a known state diagram, is in a particular state.

In general the testing approach can be divided into two phases:

1. Transfer the implementation to all states and ensure that it is the correct state.

2. Execute every transition of the implementation and ensure that it is in the
correct state afterwards.

Here each of the two phases consists of the following actions:

1. Transfer the implementation to a certain state si (Transfer) and

2. identify the reached state si by applying sequences, that separates it from all
other states (State Identification).

To transfer an implementation to a certain state, it is helpful if a reliable reset can
be assumed. Having this in mind we can reset the implementation first, i.e. the
implementation is now in its initial state, and transfer it afterwards to a particular
state. This can be formalized as a state cover set, which will be used in the first
testing phase.

Definition 2.12 (State Cover Set). Let S ∈ IOA be a specification with n
states. Then a state cover set is defined as follows:

SC =
n⋃

i=1

{σ ∈ A∗
Ext|s0

σ−→ si}

So a state cover set contains (external observable) sequences, that brings the im-
plementation from the start state to all other states. A more sophisticated cover
set enables us to ensure, that not only all states of a (correct) implementation are
covered but also all transitions. This set is called transition cover set and is used
for the second testing phase.
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Definition 2.13 (Transition Cover Set). Let S ∈ IOA be a specification with
n states and SC a corresponding state cover. Then a transition cover set is defined
as follows:

TC = {σ ∈ SC · AExt|s0
σ−→ }

A transition cover set can be obtained out of a state cover set by performing after
each sequence, which leads to a certain state of the implementation, all possible
transitions. Note that the operator A · B appends each sequence of B to each
sequence of A.

To define a test suite the state identification facilities have to be formulated. For
this purpose we first define when two states are distinguishable.

Definition 2.14 (Distinguishable States). Let s, s′ ∈ Σ be two states of an
IOA. They are said to be distinguishable, if there exists a σ ∈ A∗

Ext, such that
init(s after σ) �= init(s′ after σ).

It turns out, that two distinguishable states are not trace equivalent. This means
that for two distinguishable states, there exists a (external observable) sequence of
inputs and outputs, such that it is a trace for one of the states, but it is not a
trace for the other. An IOA which consist only of pairwise distinguishable states
is called reduced IOA and in the remainder we will only consider reduced IOA.
Note, however, that every IOA can be transformed in a reduced one, with respect
to trace equivalence.

There exists several state identification notions, e.g.Distinguishing Sequence [Gon70],
Characterization Set [Vas73, Cho78], Unique Input/Output Sequences [SD88], Par-
tial Characterization Set [FvBK+91] just to name the most prominent ones. The
HSI-method, however, bases on the so called harmonized state identifiers [Pet91].

Definition 2.15 (Harmonized State Identifiers). The setHSI = {H1, . . . , Hn}
is denoted as a set of harmonized state identifiers for an IOA, if

1. Hi ⊆ A∗
Ext · AO for 1 ≤ i ≤ n.

2. For each pair of different states si �= sj, there exists σ ∈ prefix(Hi) ∩
prefix(Hj) such that σ ∈ Tr(si) ⊕ Tr(sj), where the operator ⊕ is denoted
to be A⊕B = (A \B) ∪ (B \ A).

Hi is said to be a harmonized state identifier for state si. The harmonized state
identifier for si captures the following property: for any other state sj, there ex-
ists a sequence σi in prefix(Hi) that distinguishes si from sj and σi is also in
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prefix(Hj)
1. Note that because of the input-enableness of an IOA, states can only

be distinguished by outputs (cf. Definition 2.15.1)

The state resp. transition cover sets together with the harmonized state identifiers
enables us to define the test suites for the two test phases.

In the first phase we bring the implementation to every state and verify with the
corresponding harmonized state identifier that it is indeed in the correct state.

TS1 =
n⋃

i=1

SCi ·Hi

In the second phase we execute the missing transitions, i.e. the transitions that have
not been executed by the state cover set, and again verify that the implementation
is in the correct state.

TS2 =
n⋃

i=1

(TCi \ SCi) ·Hi

A test suite for the HSI-method is now composed out of TS1 and TS2.

Definition 2.16 (Test Suite). Let S ∈ IOA be a specification with n states.
Then a test suite can be computed as follows:

TS = TS1 ∪ TS2 =
n⋃

i=1

SCi ·Hi ∪
n⋃

i=1

(TCi \ SCi) ·Hi =
n⋃

i=1

TCi ·Hi

Test suites, generated with the HSI-method, consists of a set of test sequences, i.e.
linear sequences of input resp. output actions.

1Note that we have extended the notation of prefix (cf. Definition 2.2) for sets of sequences in
the usual fashion.
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Chapter 3

An Integrated Approach to
Testing Complex Systems

The increasing complexity of today’s testing scenarios for complex systems, i.e. sys-
tems composed out of a set of interacting subsystems, demands an integrated, open,
and flexible approach to support the management of the overall test process. It
turns out that “classical” model-based testing approaches, as presented in Chap-
ter 2, are in general not applicable for the test of complex systems, because of the
absence of a suitable formal specification. In our approach we are aiming at test
automation by supporting test engineers during their manual design of tests, which
can be instantly executed within a test environment. As system-level testing usu-
ally treats the system under test from an end-user’s point of view, this should be
maintained when moving to an automated test execution, meaning that also the test
design should happen at this level of expertise and intuition. Furthermore, the test
design is accompanied by formal methods as much as possible, i.e. rules concerning
the construction of “correct” tests guides test engineers during the design of tests.
Altogether this implies that we need an user-friendly and flexible formalism for the
specification of tests, while preserving enough exactness to allow to check the tests
against consistency rules and to provide a mapping of tests into the world of formal
test theory to ensure a precise semantics. To sum up this way we are able to shift
the test design issues from total experts of the system and the used test tools to
experts of the system’s logic only.

Within this chapter we first introduce complex systems in Section 3.1, before we
discuss the specialities of testing complex systems in Section 3.2. After that we are
designing an integrated approach to testing complex systems (Section 3.3). Finally
in Section 3.4 we present a test specification formalism, together with a precise
execution semantics and a suitable temporal logic for expressing consistency rules
for tests.

– 29 –
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3.1 Complex Systems

A common trend in system development nowadays is the construction of so-called
complex systems, i.e. systems consisting of several components, either hardware or
software, often pre-built and third-party. A complex system can be defined as a set
of interacting resp. cooperating components. One key aspect of a complex system
is that its overall behaviour is determined by the interaction of the communicating
subcomponents or subsystems.

Typical examples for complex systems are composite systems, like Computer Tele-
phony Integration (CTI) solutions (cf. Chapter 6). Here whole hardware/software
solutions, composed themselves out of special computer systems equipped with tele-
phony hardware and corresponding software, are connected to a telephone switch
(or even to a network of those, acting in a compound as a “virtual switch”). Other
examples are distributed software architectures, like Web-based applications (cf.
Chapter 7), where software running on a web server interacts with several clients.

Figure 3.1: Example of a Computer Telephony Integration Solution

The (logical) architecture of a CTI solution, shown in Figure 3.1, serves as an
example for a complex system. Here a telephone switch is connected to the public
telephone network and operates locally connected telephones. Additionally it is
connected to an application server and to several client PC’s. In CTI solutions the
physical telephones works in cooperation with applications located on the server
resp. client PC’s. So it is possible that e.g. an incoming call will be announced on
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a telephone and its dedicated application simultaneously or that an application can
initiate a new call.

3.2 System-level Testing of Complex Systems

In general, when treating complex systems one runs into the problem that even
a single subcomponent (e.g. a piece of software) depends on the underlying com-
puter hardware (which is itself a complex system), the operating system, the device
drivers, and probably several other components. In system-level testing, however,
we are interested in certain aspects of the system’s behaviour only, and therefore
usually focus on specific components, while relying on the correctness of the others.
In system-level testing the system is treated as a black-box, or at least some of its
subcomponents, and one is usually interested in end-user behaviour only. For in-
stance, when testing a CTI system one is only interested in the correct, functional
interplay between a client software and a corresponding telephone and so all the
aspects concerning e.g. the underlying computer hardware or the connection inbe-
tween can be abstracted away. Note that deciding what can be seen as a single
component, or subsystem, can vary, and depends inherently on the concrete testing
aims.

Another aspect of testing complex systems is that it becomes increasingly unrealistic
to restrict the consideration of the testing activities to the separate handling of single
units of the systems only. On the contrary, since the subsystems communicate with
and affect each other, scalable, integrated test methodologies are required that can
handle the overall complex system as a whole. Obviously a complete complex system
has to be handled on a more coarse granular level than its independent subsystems.
When considering the example of Figure 3.1 one is e.g. interested in questions like:
“What happens in case of an incoming call?” Is the information announced on
both the physical telephone and on the corresponding application? To answer this
question, we have to take the complete complex system into account. So the main
interest in system-level testing is to ensure the (global) correct functional interplay
of the involved subcomponents, rather than their intrinsic algorithmic correctness.
This task is already complex enough and does not involve treating aspects like
performance issues or concurrent access. Especially the concurrency can introduce
non-deterministic test results, which conflicts with the regression testing situation,
where repeatable results are to be achieved.

It turns out, that the simple test architecture depicted in Figure 2.1 is not sufficient
to test a complex system. Instead we need to involve specialized test tools, each
tailored for testing a specific aspect of the overall complex system. An example of a
test architecture for the CTI solution of Figure 3.1 is shown in Figure 3.2. Here each
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Figure 3.2: Test Architecture for a Computer Telephony Integration Solution

subcomponent, e.g. a client or a telephone, is steered and observed by its own test
tool. For a system-level test, the test actions resp. observations must be distributed
and coordinated throughout the different involved test tools.

3.3 Designing an Integrated Test Approach

Manual system-level testing of complex systems is a difficult and error-prone task.
One reason for the complexity is the involvement of different, heterogenous test
tools. So a test engineer needs to know, e.g. how to apply each of the test tools, how
to evaluate the results, how to combine them (interaction), etc. Therefore a detailed
technical understanding of the considered test setting is needed. Another reason for
the complexity of system-level testing is that a global understanding of the overall
systems’s behaviour is unavoidable, e.g. how the subsystems are interacting with
each other. Taken together test engineers must have knowledge in two dimensions:

— Technical overview of the used test tools and of the overall system (needed for
test case execution) and

— extensive understanding of the system’s logic (needed for test case design).
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Furthermore for testing complex systems lots of experience is needed, because one
have to take care of the interdependencies between the involved subsystems, between
the subsystems and the test tools, and between the test tools itself.

Figure 3.3: Classification of different Test Approaches

Figure 3.3 classifies three different approaches to tackle the problem of system-level
testing of complex systems with respect to their degree of Automation and For-
malization. With automation we denote particularly the ability of the automatic
execution of tests, whereas formalization ranges from no formal specification avail-
able up to a full formal specification is available.

Manual Testing supports neither automation nor formalization, i.e. tests are ex-
ecuted manually and only documented informally.

Model-based Testing supports the generation of test suites out of a formal spec-
ification. For test execution, however, two non-trivial task have to be solved:

1. Implementation of a test execution environment for the resulting tests,
and

2. distribution of the generic test actions among the involved test tools (see
e.g. [JJKV98, TVJ00]).

Integrated Test Approach supports the manual test design in a formalism that
is tailored for the automated execution within a test execution environment.

We denote the discrepancy between two approaches with respect to the degree of
formalization with Formalization Gap. In Figure 3.3 the formalization gap between
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manual testing and the integrated test approach is depicted, i.e. informally doc-
umented tests vs. formalized tests. Obviously to minimize the additional effort
when shifting towards test automation, the initial formalization gap should be as
small as possible. When comparing the formalization gap between manual testing
and model-based testing approaches resp. the integrated test approach it turns out,
that, independent from a concrete formalism, the formalization gap is bigger for
model-based testing. The reason is, that we need a full formal specification before
we can even start the testing process, whereas in the integrated test approach we can
start testing right after the specification of a single test case. The more test cases
exists in the integrated test approach, possibly enriched by additional information
about the considered system, the higher is the degree of formalization.

Figure 3.4: Integrated Test Approach

Whereas the trend of model-based testing and the integrated test approach is the
same, i.e. automatic execution of a test suite, their starting points are quite contrary.
In Figure 3.4 the two approaches are illustrated. In the first case a test suite can be
generated out of a formal specification automatically. In the second case it has to
be developed manually by test engineers. In both cases, however, we have to tackle
the problem of test execution afterwards.
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In practice it is intrinsically unrealistic to have a complete and exact formal model
of a complex system in advance, as they usually comprise third-party or legacy com-
ponents. Therefore “classical” model based test methods cannot be applied, since
the prerequisite for such approaches, a formal specification, does not exist1. This is
the reason why we propose an approach which supports the manual design of tests,
accompanied, however, by a Knowledge Base, where rules concerning the construc-
tion of “correct” tests are gathered. The knowledge base reflects the expertise of
senior test engineers about the do’s and don’ts of test design, as well as the expertise
of system experts about the correct behaviour of the considered complex system.

A key aspect of the integrated test approach is a separation of the specification of test
cases and their actual execution, cf. Figure 3.4. This separation helps us to distribute
the intellectual properties of “classical” test engineers among several people, i.e. to
define a test process, where different experts are responsible for treating the different
aspects:

— A Test Engineer is responsible for the design of test cases and needs therefore
only knowledge concerning all aspects of the system’s logic.

— An Integrator is responsible for the implementation of concrete test interfaces,
so that test cases can be executed, i.e. covers all technical aspects.

— A System Expert defines frame conditions for “correct” test cases (knowledge
base).

In the remainder we will first talk about the requirements for an integrated test
approach (Section 3.3.1), before we define the corresponding test process (Sec-
tion 3.3.2).

3.3.1 Requirements for an Integrated Test Approach

Summarizing the discussion of the previous section leads to some requirements a
reasonable test approach should satisfy, so that the overall test process is supported.
The resulting requirements can be classified into:

— test design,

— test verification,

— test execution,

1Note, however, that we present in Chapter 8 an approach to (re-)construct approximate models
for special classes of complex systems.
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— test run analysis, and

— general test organization

issues. In the following we discuss each category in more detail.

Test Design Requirements

As system-level testing usually treats the system under test from an end-user’s point
of view, this should be maintained when moving to an automated test execution,
meaning that the test design should also happen at this level of expertise and intu-
ition. In particular, it should not require programming expertise nor any knowledge
of how to apply/use a specific test tool, so that it is sufficient for test engineers to
be experts of the considered system’s logic only. Thus an adequate test specification
formalism should be on the same granularity as end-users would treat the system:

— Flow graph like structures which captures the essence of system runs, which
are composed out of

— coarse granular generic test building-blocks.

The keys to the user-level test design are the test stimuli and observation points,
here called test building-blocks, of which tests are composed. Additionally, the test
building-blocks should be parameterized. Consider the example of Figure 3.1, where
several telephone devices are involved in the test setting. Usually the telephones are
of the same kind, so that they can perform similar actions. When providing param-
eterized actions (e.g. here parameterized according to the instance of the concrete
telephone), less different test building-blocks are needed, and the resulting tests
therefore become more intuitive.

Furthermore, the test design formalism should give test engineers enough freedom
to design partially defined tests, where the overall system behaviour need not always
be taken into account for test case evaluation, but it is possible to concentrate on
certain aspects only.

Test Verification Requirements

Because of the complexity of the considered testing scenario, the resulting tests will
become quite complex, as they must capture the global interplay between the in-
volved components and subsystems. Open problems are e.g. the interdependencies
between the involved subsystems, i.e. one test action executed on one subsystem usu-
ally results in reactions of some other. Typical examples for problems coming from
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these interdependencies are situations where after test execution some subsystems
are in their initial state while others are not, i.e. the complete system is not in its
initial state. This problem, where resources that were requested during a previous
test case but not released afterwards, can influence forthcoming tests. Therefore, a
knowledge base, where vital properties (constraints) concerning the appropriate and
correct usage of parameters (local properties) as well as the interplay between the
stimuli and observation points of a test (global properties) are stored, helps much
to guide test engineers during test case design (cf. Figure 3.4). Design decisions
that conflict with the constraints and consistency conditions of the intended system
or the current test purpose can thus be detected immediately. These properties
should be expressible enough to capture the essence of the expertise of senior test
engineers and system experts. The constraints usually concern the do’s and don’ts
of test creation, e.g. which test building-blocks are incompatible, which can or can-
not occur before/after some other test building-blocks, how test building-blocks are
correctly be parameterized, or the correct behaviour of the considered system. Such
properties are rarely straightforward, sometimes they are documented as exceptions
in thick user manuals, but more often they are not documented at all, and have
been discovered at a hard price as bugs in previously developed tests. The more
constraints are available, the more reliable the resulting test cases are. Note, how-
ever, that it is importance in practice that the overall test approach can be applied
directly, although no constraints have been defined so far (small formalization gap).

Test Execution Requirements

During test execution one needs to stimulate and observe all involved subsystems
through several test interfaces. For this purpose usually each subsystem has its own
dedicated (instance of a) test tool, cf. Figure 3.2. So distributed executed test tools
of different abilities and different interconnection variants must be controlled in a
way that emphasizes the aspects control of tool activities and determination of state
and state changes of subsystems. The reactions of subsystems to stimuli must be
retrieved and evaluated, and their evaluation results must control succeeding test
steps.

Test execution should be fully automated, and, furthermore, must ensure repeata-
bility. This is of course of intrinsic importance in the regression testing scenario.
Therefore a well-defined execution semantics of test cases is needed, at least on a
theoretical level, to ensure a common understanding of what test cases do. This
enables test engineers to design unambiguous test cases. A concrete instance of an
test environment is then committed to implement the desired execution semantics
(cf. Chapter 4).
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Test Run Analysis Requirements

A report must be available that records a test run and facilitates documentation and
tracking of defects by providing sufficient details to support test engineers during
error analysis. Note that although we are considering black-box testing it is some-
times important for a detailed analysis of the test runs to carefully document all
signals of the underlying communication between the involved subsystems, which
is obviously only applicable when corresponding test interfaces and test tools exist.
Furthermore a characterization of the system under test, i.e., versions of subsystems
and of test tools, must be documented for repetition. Result and data of each step
of the tests must be logged and the overall status of a test run must be summarized.

Test Organization Requirements

Additionally an integrated test approach must also take care of several environ-
mental aspects, i.e. the structuring and storage of tests and additional data needed
throughout the test process, a generic configuration management, etc. As these
requirements are not of central importance within this thesis they are discussed for
the sake of completeness only.

Beside the tests themselves, many other files referenced and used in test cases have
to be organized, e.g. the test building-blocks, configuration files, test documentation,
or test reports. All these data evolve throughout the test process and need to be
organized throughout the test process. Therefore, it is important to capture the
history of changes and the dependencies between versions by means of a version
control system.

Furthermore, for complex systems it is essential to prepare a test, i.e. to bring
the system under test into a well-defined, initial state before a test run is started.
This is because the initialization of one component usually affects the state of the
others. Therefore, configuration management is needed to help during the test
setup. The configuration of the test scenario ranges from the physical setup of the
test infrastructure, to the concrete initialization of the system before real tests can
start. Whereas the initialization of the system under test can be seen as a special
test run, the physical setup cannot be automated. So configuration management
consists of the administration of documentation, different versions of configuration
files or even program versions resp. operating systems, and the workflow of setting
up the system under test, either automated or simply documented.

Finally tests must be organized by means of several criteria, often orthogonal to
each other, which particularly help managing large sets of tests. Examples for such
criteria can be the test aim or the considered test scenario. For this purpose it is
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useful to provide a classification scheme of tests, which allows the mapping of tests
according to several criteria.

3.3.2 An Integrated Test Approach – The Test Process

During the overall test process of a complex system, i.e. from the setup of the test
scenario to the real execution of tests, several tasks have to be carried out. Some of
them are independent of each other and can therefore be done concurrently, while
dependencies exist between others, so that they have to be coordinated. In addition,
in larger test projects several people with different capabilities are involved. To
ensure a successful execution of the overall test project a well-defined test process
is needed, one which coordinates the different tasks during the test of a complex
system. Furthermore, the test process should be facilitated by an appropriate test
environment, which will be presented in Chapter 4.

Within this section we discuss the process from the conceptual point of view, while
in Chapter 5 we present the concrete tasks that have to be done from a practical
point of view.

Figure 3.5: Global view of the supported test process



40 An Integrated Approach to Testing Complex Systems

Figure 3.5 presents an overview of the overall test process for testing complex sys-
tems. Three different roles are involved in the process: System Experts, Test Engi-
neers, and Integrators (cf. Figure 3.4). There are, however, several other participants
in the test process, like Verification Experts or End Users, with minor importance.

System Expert The system expert has detailed information about the system
under test; usually he is also involved in the development of the considered
system. He has at least particularized knowledge of the external interfaces
of the system, e.g. the graphical user interface of an application or the sup-
ported communication protocols, and the system logic itself, i.e. he can answer
questions like “how should the system react to a certain stimulus”.

Test Engineer The test engineer plays the central role within the process, as he is
responsible for designing and verifying new tests, executing them, and finally
analyzing the results. He also needs basic knowledge of the system under test,
but less detailed than a system expert, as he will usually treat the system from
an end-user point of view only.

Integrator The integrator is responsible for all environmental aspects of the pro-
cess. So he has to take care of the (selection and) integration of the involved
test tools and the concrete implementation of the test building-blocks, so that
test cases can be executed. The integrator needs sophisticated programming
skills and detailed knowledge of both the used test tools and the system under
test, because he has to establish the test interfaces to the system. Since this
role is so complex, it is usually shared among several team members.

Orthogonal to the involved roles we can split the process into three, usually overlap-
ping, phases: the setup phase, the implementation phase, and the test phase. While
in the setup phase the definition and establishment of the test interfaces take place,
the implementation phase takes care of the concrete test case design. Finally, once
a full test setting is integrated and the corresponding test cases are designed, the
recurrent test phase starts.

In the following section we will discuss each phase in detail.

Setup Phase

The very first task within the test process is the evaluation and selection of ap-
propriate test tools – possibly with the help of test engineers –, that can be used
for the test of the system under test, by the integrator. The definition of the test
building-blocks by system experts used to design test cases depends particularly
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on the abilities of the used test tools, as different test tools support different test
actions resp. different checking capabilities. After the test tool selection, the inte-
gration into the test environment takes place, so that they can be accessed from the
test execution environment. Once the test interfaces are established, the integrator
can start with the implementation of the concrete test building-blocks. Here special
code has to be implemented so that the test environment is able to coordinate the
corresponding test tools for test execution.

Implementation Phase

Once the test building-blocks are defined, the system expert can start to define the
constraints used to ensure reliable test case design. The constraints reflect typical
properties of the considered scenario. To support the system experts during the
specification of the constraints, we propose a pattern system in Section 3.4.4.

At the same time test engineers can start preparing the real testing of the system.
Therefore, after a test planning, where the test purposes are determined, the test
case design starts, which is is constantly accompanied by test case verification.

Test Phase

During the test phase the previously defined test cases can be executed automatically
within the test environment. During test execution a detailed report about the test
results is prepared, which is then subject to further analysis. Note that it is this
area of the test process that offers the largest return of investment.

Test Engineer’s View

Figure 3.6: Test engineer’s view of the supported test process
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The test process discussed above is, however, too idealistic for practical use. For
instance, a typical problem that arises during the test case design is, that some
test building-blocks discovered to be missing, or the test case analysis leads to an
adaption of the test case itself. So the different phases have to be organized in an
iterative process. In the this section we investigate the iterative test process from
the test engineer’s point of view only. Therefore we assume that the setup phase
and parts of the implementation phase have already been completed2.

The iterative test process for a test engineer during the test phase is roughly pre-
sented in Figure 3.6. The cycle starts with the design of test cases. In the design
phase the test engineer defines test cases on a coarse granular level, i.e. test cases
that treats the system from the end-user point of view. Note that all (technical)
aspects concerning, e.g. the treatment of the underlying communication protocols,
have already been covered during the setup phase.

Test engineers can use test building-blocks for a graphical design of complex test
cases. After the design of test cases, during the verification phase they will be
checked against the constraints. The verification process provide concrete informa-
tion concerning mistakes and their possible location and guide the test engineer
through the redefinition of the test cases.

Test cases that pass the verification phase can be executed directly within the test
environment in a control flow driven way. For this purpose executable code has been
implemented for each test building-block during the setup phase, which enables
the test environment to steer and observe the corresponding subsystems by the
(dedicated instance of their) assigned test tool.

When executing a test case, a detailed report will be prepared in the form of a test
protocol. For each test building-block executed by the execution engine, all relevant
data (its execution time, its name, the version of the files associated with the test
building-block, the building-block’s parameter assignments, and the processed data)
will be recorded in a protocol for later analysis and reuse.

The results of the analysis usually lead to a revision of the test cases themselves. This
is either because incomplete or faulty test cases are detected or because adaptations
to the test cases are necessary as a result of modifications in the system under test.

2Note that usually also tasks of the setup phase are subject of revisions, e.g. when additional
test building-blocks are needed.
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3.4 Formal Foundation of the Integrated Test Ap-

proach

Key aspects of the integrated test approach, presented in the previous section, are
the separation of design issues like test specification and technical issues like test
execution, and the support of test engineers throughout the test specification by
a knowledge base. This way we are able to shift the test design issues from total
experts of the system and the used test tools to experts of the system’s logic. What
is needed is a flexible test specification formalism that gives test engineers enough
freedom during test case design. It is particularly important that:

— tests can be specified from an end-user perspective, i.e. on a level like end-users
would treat the system, and

— tests can focus on relevant system behaviour only, i.e. take into account only
special aspects of the system state, as it is intrinsically unrealistic to check the
complete (distributed) state of a complex system after stimulations.

When testing complex systems we see that the formalism of tester processes, as
stated in Definition 2.10, is often too finely granular. This is because tester processes
have to be specified exactly to prevent from deadlock situations, as they need to be
input-enabled. Additionally the test actions, of which tester processes are composed
of, are on a technical level on which the tester communicates with the system.

Figure 3.7: Adequate Test Case Specification

In Figure 3.7 our approach is depicted: instead of specifying tests on the fine granular
level of tester processes, we propose to establish a coarse granular level for the test
case design. This allows test engineers to specify test cases on the right level of
adequacy, i.e. on a user lever rather than on a theoretical level. We offer, however, a
transformation of test cases (user level) into (enhanced) tester processes (theoretical
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level), called test graphs, which allows us to take the well established formal testing
theory, presented in Chapter 2, as a fundament for our integrated test approach.
The “normal” test engineer, however, is not bothered with the underlying theory.

In the remainder we discuss in Section 3.4.1 the formalism of test cases, that provides
the required flexibility. The test specification, however, preserves enough exactness
to allow the definition of a precise execution semantics, which will be presented
afterwards (Section 3.4.2). In Section 3.4.3 we introduce a suitable temporal logic
for the specification of consistency rules (constraints), and finally we discuss how
to facilitate test engineers during the formulation of their constraints by a pattern
based approach (Section 3.4.4).

3.4.1 Establishment of a suitable Test Specification Formal-
ism

We present below a notation of test cases that, beside others, provides exactly the
features discussed above: introduction of coarse-granular, parameterized actions and
specification of incomplete tests.

It can be observed that often the test of the interaction of several components of
the same kind is the matter of interest, e.g. as can be seen in CTI systems where we
treat several telephone devices with similar capabilities. Each component has the
same set of commands, which can be parameterized by e.g. the concrete instance of
the component, or the communicating counterpart. Here parametric actions help a
great deal, as instead of providing different atomic actions for each possible variant,
one parametric action is sufficient. In our context we will denote the parametric
actions with test building-blocks, or test blocks for short, and test cases will be
composed out of it. Test blocks are characterized by means of an identifier and a set
of formal parameters. Here the parameters are bound to the test block identifier,
meaning that different test block instances, but with the same identifier, have the
same parameters. To simplify the parameter handling, we restrict in the following
definition the domain of parameter values to integers and strings.

Definition 3.1. Let N be a finite fixed set of test block identifiers, and Π a finite
fixed set of parameter identifiers. Let furthermore {V alk}k∈I denote the domains
of parameter values, with I = {Integer, String}. Then V alInteger will be the set

Z of Integers and V alString the set of Strings. V al denotes the union
⋃

k∈I V alk
of parameter value domains. The function type : N × Π → I defines the types of
parameters.

Test cases are represented by graphs, where formally a test case can be seen as a
kripke-transition system, i.e. a graph where both states and transitions are labelled.
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Test cases are composed out of test blocks, where we need to distinguish between
action test blocks, that stimulates the system, and check test blocks, that validates
possible outputs of the system. So the set of test blocks is partitioned into four
disjoined sets:

1. internal action test blocks, which are used e.g. for test case or system under
test initialization, or more general for environmental purposes;

2. external action test block, which stimulate the system under test;

3. internal check test blocks, which allow e.g. repetitive executions of (parts of)
a test case with respect to internal counters; and

4. external check test blocks, which check the status of certain aspects of the
system under test.

For a concrete instance of a test block in a test case a corresponding identifier out
of N and a concrete parameterization of its parameters, according to their domains,
has to constituted. Note that the definitions ofN , Π, and type are available globally,
i.e. not bound to a single test case only.

Due to the intuitive semantics of the different test block classes, we can determine
the number of their outgoing transitions in advance, i.e.:

— Action test blocks have one outgoing transition, and

— check test blocks have exactly two outgoing transitions (true if the check is
ok, or false otherwise).

Now test cases3 can now be defined as follows:

Definition 3.2 (Test Case). A test case tc ∈ T C is defined as a tuple (Σ, A,−→,
so,L, F ), where

1. Σ is the set of available test blocks, partitioned into four pairwise disjoined sets:
internal (external) action test blocks are denoted with ΣI

A (ΣE
A), and internal

(external) check test blocks with ΣI
C (ΣE

C), where Σ = ΣI
A ∪ ΣE

A ∪ ΣI
C ∪ ΣE

C .
Let furthermore ΣI denote all internal and ΣE all external test blocks. There
exists two special test blocks {Passed, Failed} ⊆ ΣI

A

3Note that the definition of a test case refines the definition of test models used in [NSM+01]
with a partition of the set of test blocks and a parameterization of test blocks. Furthermore, the
set of possible labels for the transitions will be limited.
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2. The set of actions is given by A = {default, true, false}

3. −→:
(
(ΣI

A ∪ ΣE
A)× {default} → Σ

)
∪

(
(ΣI

C ∪ ΣE
C)× {true, false} → Σ

)
is

a transition function4

4. s0 ∈ ΣI is the uniquely determined initial test block

5. L : Σ→ (N × (Π→ V al)) is a test block labelling function that associates a
name out of N and a partial parameter function p : Π → V al with each test
block

6. F ⊆ Σ is a non-empty set of final test blocks

For technical reasons we restrict the class of all test cases to those that have reachable
final test blocks, i.e. ones where at least one path from the start state to a final test
block exists.

For the parameterization of test blocks we assume that all parameter values are of
correct type, i.e. ∀s ∈ Σ, π ∈ Π.L(s) ↓2 (π) ∈ V altype(L(s)↓1,π) ∪ {⊥}, meaning that
a parameter value is either undefined or of the corresponding (correct) domain. Note
that ↓1 (↓2) denotes the projection on the first (second) component. The parameter-
ization of test blocks is only a syntactical construction providing further convenience
to users, as we can always represent parameterized test blocks by distinguishable,
generic counterparts, where each generic test block stands for one possible valuation
of Π. The introduction of parameterized test blocks instead of propositional ones
prevents the usage of an impractically high number of different test blocks.

Note that test cases as defined in Definition 3.2 can be seen as test programs rather
than linear test sequences or tester processes. This is because during the test case
design, one is not restricted introducing cycles which can be used, e.g. in conjunction
with internal action and check blocks, to implement repetitions. The drawback
of this flexible specification formalism is of course, that one cannot prevent users
from designing infinite, and therefore counterproductive test cases, or to be more
precise test cases with an infinite behaviour. We will present below a well-defined
test execution semantic in terms of (special sorts of) tester processes, that is able,
together with a concrete implementation of an execution engine, to handle even
infinite or partially defined, test cases.

4Note that the transition function is defined by the union of its subfunctions. This is, however,
possible because the parameter domains of the subfunctions are disjoined (overloading).
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3.4.2 Execution Semantics for Test Cases

It is of intrinsic importance to support a well-defined execution semantics for test
cases. In addition the following reasons are of particular interest:

1. Common understanding of what test cases do;

2. The handling of partially defined test cases, i.e. test cases that

(i) do not take the complete system behaviour into account for test evalua-
tion, or

(ii) do not evaluate a test case at all;

3. The introduction of the notation of timeouts.

Obviously a common understanding about test cases is necessary. This is important
for test engineers, who must be able to design unambiguous test cases, as well as for
the implementation of the actual test environment. It becomes particularly relevant
when providing a flexible test case formalism as stated in Definition 3.2, because it
is not prescribed to define complete test cases only. When executing incomplete,
or partial test cases, the problem occurs that during a test run additional system
behaviour reflecting unexpected outputs of the system cannot be matched from
within the test case and therefore the test execution deadlocks. To prevent this
problem, every test case has to be completed so that for each test case a unique
corresponding enhanced tester process in terms of a test graph has to be computed.
This represents the semantics of a test cases. The test graph must also end with
pass or fail, so that test runs can be properly evaluated. This must be possible even
if in the test case no path from the start state to Passed or Failed exists (as it is
not prescribed that such paths ever exist in Definition 3.2). Finally, a notation of
timeout must be established because systems often don’t respond directly to stimuli,
but with a delay. When considering e.g. telecommunication systems, these timeouts
are defined within the protocol specification.

In Figure 3.8 the general picture of the execution semantics is presented: First test
cases will be transformed into test graphs. For test graphs we can define a notation
of test runs similar as we have done for tester processes in Definition 2.11, i.e. we
define how test graphs can be executed synchronous with a (theoretical) model of
the implementation. This results in a test evaluation out of {pass, fail}, which
determines the result of the original test case.
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Figure 3.8: Execution Semantics of Test Cases in Terms of Test Graphs

Test Graphs and Test Runs

First we have to refine the notation of tester processes as presented in Definition 2.10,
here called test graph. The following definition stands for a test graph with respect to
its specification resp. implementation model, in terms of an input/output automata
(IOA, cf. Definition 2.7).

Definition 3.3 (Test Graph). A test graph t = (Σ, A,→, s0, P ) for an imple-
mentation I = (ΣI , AI ,→I , sI

0, P
I) ∈ IOA is an IOA (T G ⊂ IOA), where the

following holds:

1. AI = AI
O, AInt = {τ, δ}, and AO ⊆ AI

I

2. The special action δ ∈ AInt denotes a timeout

3. The special states pass and fail denote terminal states, i.e. init(pass) =
init(fail) = ∅

4. ∀s ∈ Σ.∃σ ∈ A∗.
(
s

σ−→ pass
)
∨

(
s

σ−→ fail
)

The alphabet A of a test graph and its partition P (A = AI ∪ AO ∪ AInt where
AI ∩ AO ∩ AInt = ∅) is given by means of the alphabet of the corresponding imple-
mentation, just the other way round: the inputs of a test graph are the outputs of
the specification, and the outputs are a subset of the inputs. This is particularly
relevant for the compatibility of a test graph and its corresponding system. Fur-
thermore two special internal actions enrich the alphabet to model timeouts (δ) and
internal choices resp. actions of a test case (τ), which are not reflected in the com-
munication between the test graph and the system under test. Two special states
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are needed for the test evaluation (pass and fail). To be exact these states are
terminal states, i.e. they are not input-enabled. The condition that there exists a
path from every state to either pass or fail, finally ensures that every test run can
be properly evaluated.

Formally we have to adapt the definition of test runs (Definition 2.11) because we
are interested in finite computations only.

Definition 3.4 (Test Run). A test run of a test graph t ∈ T G with an im-
plementation I ∈ IOA is a finite computation of the synchronous product t ‖ I
leading to a terminal state of t:

σ is a test run of t and I =def ∃I ′ :
(
t ‖ I

σ
=⇒ pass ‖ I ′

)
or

(
t ‖ I

σ
=⇒ fail ‖ I ′

)
Because of the way the alphabet of a test graph is defined and because test graphs
are IOA as well as the specification, it is ensured that every test run terminates
properly. This is because every output of the system can be matched by the test
graph and vice versa, as both systems are input-enabled and because it is always
possible to reach a terminal state of the test graph, cf. Definition 3.3.4.

There are two major differences between test graphs and (classical) tester processes:

— Test graphs allow non-determinism by means of internal actions, and

— test graphs can describe infinite behaviour, i.e. can contain cycles as well.

These two properties are needed to provide a flexible and user-friendly test case de-
sign. Internal actions are needed mainly for environmental purposes and a concrete
test environment has to ensure a deterministic execution of such. Finite execution
can be achieved by the introduction of δ, which ensures that a concrete execu-
tion engine will abort the test run after a specified period of time. Note that this
common timeout captures on the theoretical level all the different, subsystem or
command-specific timeouts of a concrete implementation (cf. Section 4.1).

Transformation of Test Cases into Test Graphs

The general idea behind the transformation rules of test cases into test graphs is to:

— Keep the (generic) structure of the test case graph, and

— transform test blocks into actions of the test graph.
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During the transformation external action test blocks are simply translated into
output actions of the test graph (i.e. input actions of the system under test), whereas
check test blocks are translated into binary decisions structures, modelled by a state
which is followed by two outgoing transitions. One transition is labelled with the
input action, that should be produced by the system under test and is checked by
the check test block, the other one is labelled with the special (internal) action δ, to
model a timeout. The semantic is that we are waiting, until the timeout occurs, for
the arrival of the prescribed output action and can continue accordingly. Internal
test blocks are translated into internal actions of the test graph (τ), i.e. are ignored
during test runs. To ensure input-enabled test graphs, reflexive transitions, labelled
with all unregarded input actions, are attached to all states of the test graph. Finally,
to allow a proper evaluation of test graphs, we treat every test graph as pass until we
find a path in the test case which goes across a Failed test block. This information
is maintained during the transformation with a temporarily valuation function ν.
Note that this allow even to treat test cases, which contains no Passed resp. Failed
test block.

The concrete transformation rules for test cases into test graphs are given below:

Definition 3.5 (Transformation Rules). Let t = (Σt, At,→t, st
o, P

t) be a test
graph and tc = (Σ, A,−→, so,L, F ) a test case. Let furthermore ν be a (temporary)
valuation function which maps each state of t into a valuation, i.e. ν : Σt → {⊥,'},
and ν(st

0) = '. S ∈ Σ, A ∈ ΣE
A ∪ ΣI

A, C ∈ ΣE
C ∪ ΣI

C , a ∈ A, St ∈ Σt, and
fA : Σ × L → At, fΣ : Σ → Σt. The transformation rules of a test case into a test
graph is then defined as follows:

1.
fΣ(A)

fA(A,L)

−−−−−→ fΣ(S), fΣ(A)
AI−→ fΣ(A), ν(fΣ(S)) = ν(fΣ(A))

A
default
−−−−−→ S

2.
fΣ(C)

fA(C,L)

−−−−−→ fΣ(S), fΣ(C)
AI\{fA(C,L)}

−−−−−−−−−−→ fΣ(C), ν(fΣ(S)) = ν(fΣ(C))

C
true

−−−−−→ S

3.
fΣ(C)

δ−→ fΣ(S), ν(fΣ(S)) = ν(fΣ(C))

C
false

−−−−−→ S

4.
ν(fΣ(Passed)) = '

Passed

5.
ν(fΣ(Failed)) =⊥

Failed
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6.
fΣ(S)

fA(S,L)

−−−−−→ St, St
δ−→ passed, fΣ(S)

AI−→ fΣ(S), St
AI−→ St

S

S ∈ F,
ν(fΣ(S)) = '

7.
fΣ(S)

fA(S,L)

−−−−−→ St, St
δ−→ failed, fΣ(S)

AI−→ fΣ(S), St
AI−→ St

S

S ∈ F,
ν(fΣ(S)) =⊥

Let us now discuss in detail what is stated in Definition 3.5.

To transform test cases into test graphs two functions are needed:

— fA maps test blocks under consideration of their parameterization to actions
of the test graph, and

— fΣ maps test blocks to states of the test graph.

The function fA usually maps test blocks of the same kind (i.e. with the same name)
but with different parameter values (i.e. let n1, n2 ∈ Σ, then ∃π ∈ Π.L(n1)(π) �=
L(n2)(π)) into different actions5. An exception will be internal action and check
test blocks, which will be mapped, regardless to their actual parameterization, to
the internal action τ . Furthermore we often want to define fA so that it maps one
test block to a sequence of actions to establish a coarser granular view of the test
setting. Without loss of generality we will assume that this kind of abstraction will
take place in the definition of test cases only, i.e. several (connected) test blocks will
be subsumed into one macro, which is then again available as a generic test block,
cf. Section 4.4.1. Note that this point of view is for the moment only needed for
technical reasons to keep Definition 3.5 as simple as possible. Theoretically it does
not matter whether to use either a hierarchy on test blocks or to map single test
blocks to sequences of actions.
To retain the information about cycles, the usage of the function fΣ is required. It
maps each test block, except for the two special test blocks Passed and Failed, to
a corresponding state in the test graph.

During the transformation of test cases into test graphs a valuation function ν keeps
the current evaluation of the test case. Therefore, it maps every state of the test
graph into ⊥, if it is failed so far, or ' if it is passed, beginning with ' for the initial
state. This ensures that every test run is passed until it is explicitly evaluated as
failed, i.e. processes a Failed test block. As a consequence a test case without any
evaluation will be evaluated to pass. The function ν is needed, because it is not
prescribed for a test case where the test blocks Passed and Failed occur. So it
is possible that they either occur somewhere in the middle of the test case, and

5Note that because L is available globally, for simplification we overload fA : Σ → At.
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afterwards some common reset actions take place, or that they do not occur at all.
In the first setting the information about the test evaluation must be propagated
until to the terminal states of the test graph are reached, in the second one it must
be ensured that the test graph can be evaluated at all. Note that rule 3.5.4 and
3.5.5 takes care of the update of ν.

Whereas rule 3.5.1, 3.5.2, and 3.5.3 deal with the transformation of actions resp.
check test blocks, special attention is denoted to rule 3.5.6 and 3.5.7. Here for the
final states of a test case with respect to ν the corresponding terminal states of the
test graph will be established, i.e. pass resp. fail, where an intermediate state St will
be introduced. Note that these two rule ensures that the transformation process
terminates properly.

We will illustrate below the transformation using two concrete examples:

I

A

(a) Test Case

default

{�}

{�}

{�}

pass

(b) Test Graph

τ

fA(A)

δ

AI

AI

AI

Figure 3.9: Semantic for a simple test case

Example 3.1. In the following example we present the execution semantics for the
simplest test case: After the initialization (I) the system under test is stimulated by
test block A (cf. Figure 3.9 (left)). When computing the corresponding test graph,
we start with rule 3.5.1, followed by rule 3.5.6. Note that the initialization for the
valuation function ν with ' ensures that all resulting test runs will be evaluated to
pass. In the resulting test graph (cf. Figure 3.9 (right)), one can see that at every
state of the test graph, except for pass, a reflexive edge, labelled with all possible
inputs of the tests graph, is attached to guarantee input-enableness. During test
execution this ensures that all produced outputs of the system under test will be
collected. Internal actions will be transformed into τ edges of the test graph, i.e.
will be ignored during the communication of the test graph and the system under
test.
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I

A

C

CI

Passed

Failed

(a) Test Case

default

default

true false

false

true

{�}

{�}

{�}

{�} {⊥}

{�}

pass

fail

(b) Test Graph

τ

fA(A)

fA(C)
δ

δτ

δ

τ

AI

AI

AI \ {fA(C)}

AI AI

AI

Figure 3.10: Semantic of a test case with repetitions

Example 3.2. The example presented in Figure 3.10 shows a test case with repeti-
tions. After the initialization of the test case by I, test action A is executed. The
current system state is then validated through the check test block C. Note that
it is possible that the system produces additional outputs that are not covered by
C. When the checked output does not occur within a predefined period of time (δ),
the test case continues with Failed, otherwise an internal check test block repeats
the execution of A with respect to an internal counter, i.e. if the counter is less
than a specified value that can be defined through a test block parameter, A will
be executed, or otherwise the test case ends with Passed. Here the test execution
environment has to ensure that in the corresponding test graph the τ -edge which
leads to pass will sometimes be chosen.

Test cases in conjunction with their execution semantics in terms of test graphs
can be specified partially only. Their semantics ensures that they can be executed
without deadlocking. This enables test engineers to design their test cases aspect
oriented, i.e. to concentrate for the test evaluation on certain aspects of the system
state only instead of taking the overall system behaviour into account, which is
obviously often too finely granular when testing complex systems.
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3.4.3 Verifying Test Cases

Test cases are subject to local and global constraints which together offer a means
to identify “critical” pattern in the test case during the early design phase. The
semantic domain of the constraints is given by the test blocks together with their
actual parameterization. Within local constraints assertions concerning certain test
block parameter values can be expressed, e.g. in the simplest case that a parameter
value is not nil. Other examples for local properties can be structural properties,
like checking the number of outgoing edges of a test block. Local constraints are
characterized by the fact that they can be checked within the context of a single test
block. There are, however, more sophisticated properties that captures the global
interplay of test blocks, called global constraints. Using global constraints allows
users to specify causality, eventuality and other relationships between test blocks
which may be necessary in order to guarantee frame conditions for e.g., executability
and version compatibility. Typical examples of these kinds of constraints are

— general ordering properties, in which
a test block must be executed/reached some time before some other test block,

— abstract liveness properties, in which
a certain test block is required to be executed/reached eventually, and

— abstract safety properties, in which
two specific test blocks must never occur within the same test run.

Note that usually not only the test blocks themselves are taken into account, but
also their actual parameterization. Within global constraints essential properties of
correct test runs resp. properties that capture what is forbidden in a test run can
be described.

As the treatment of local constraints is rather straightforward, we will concentrate
here on the more interesting global properties. Therefore, we present a formalism
which is suitable for capturing global constraints.

Global constraints are specified in a temporal logic, to be exact in a variant of the
linear-time temporal logic [Eme90, Sti92], called Semantic Linear-time Temporal
Logic (SLTL), cf. [SM99, NSM+01]. In the following we present a first-order ex-
tension of SLTL called Extended Semantic Linear-time Temporal Logic (ESLTL),
capable of dealing with parameterized models, in the style of [Hof97], where a first-
order extension of the modal µ-calculus is discussed.

For the definition of the atomic propositions that can then be used in the specifica-
tion of the constraints, there exists two possibilities:
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1. Each test block of a test case has a corresponding atomic proposition deter-
mined by its name, or

2. an atomic proposition take additionally the parameterizations of a test block
into account.

As mentioned above, it is useful to take test blocks together with their actual param-
eterization into account; therefore, we will concentrate below on the second variant
only. The first case, however, can also be seen as a special case of the second one.

The set A of atomic propositions is then as follows:

A =def {(n, π, c, i)|n ∈ N , π ∈ Π, c ∈ C, and i ∈ V altype(n,π)}

where C =def {=, �=,≤,≥, <,>}.
Intuitively an atomic proposition consists of a name n for a test block and a pa-
rameter π, which is compared by means of a comparator c to a value i. So atomic
propositions can be parameterized by means of the parameter value i. Therefore
instead of using atomic propositions directly, we will use atomic formulae of the form
p(t) instead, where p is an unary predicate symbol, and t is either a value constant
ci, or a value variable x ranging over an arbitrary domain I of values. Let P be the
set of unary predicate symbols, where p denotes a single one.

Now we are ready to define the syntax and semantics of the first-order extension of
SLTL.

Definition 3.6 (Syntax of Extended Semantic Linear-time Temporal Logic).

The syntax of extended Semantic Linear-time Temporal Logic (ESLTL) is given in
BNF format by:

Φ ::= p(t) | ¬Φ | (Φ ∨ Φ) | < a > Φ | X(Φ) | G(Φ) | (Φ U Φ)| ∃x(Φ)

where a is given as a propositional logic formula over the set of actions A, and p(t)
is a predicate symbol out of P, where t can be either a value constant ci or a value
variable x ranging over an arbitrary domain I of values.

The ESLTL formulae will be interpreted over the set of all legal paths of a test case
which are given by sequences of test blocks. The semantics of ESLTL formulae is
intuitively defined as follows:

— p(t) is satisfied by every path whose first element (a test block) satisfies the
predicate p(t), meaning that both the name of the test block matches and the
parameterization is as prescribed.
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— Negation ¬ and disjunction ∨ are interpreted in the usual fashion.

— Next-time operator < > :
< a > Φ is satisfied by all paths where the action of the transition from the first
to the second element satisfies a and whose continuation, i.e. starting from the
second test block, satisfies Φ. In particular, < true > Φ is satisfied by every test
sequence whose continuation satisfies Φ.

— Next-step operator X:
X(Φ) requires that Φ is satisfied for the next situation in the path.

— Generally operator G:
G(Φ) requires that Φ is satisfied for every suffix.

— Until operator U :
(ΦUΨ) expresses that the property Φ applies at all test blocks of the sequence,
until a position is reached where the corresponding continuation satisfies the
property Ψ. Note that ΦU Ψ guarantees that the property Ψ eventually holds
(strong until).

— Exists operator:
∃x(Φ) expresses that there exists a value ci for x such that Φ holds, if every x
is replaced by ci.

In addition, the following derived operators can be defined for further convenience:

Conjunction: (Φ1 ∧ Φ2) =def ¬(¬Φ1 ∨ ¬Φ2)
Implication: (Φ1 ⇒ Φ2) =def ¬Φ1 ∨ Φ2

Forall: ∀x(Φ) =def ¬∃(¬Φ)
Box: [a]Φ =def ¬< a > (¬Φ)
Eventually: F(Φ) =def ¬G(¬Φ)
Weak Until: (ΦWU Ψ) =def (Φ U Ψ) ∨G(Φ)

Whereas the first three operators are quite obvious, the latter ones need some expla-
nation. The eventually or finally operator F ensures that Φ holds for some (later)
situation. The weak until operator WU holds, in contrast to the strong until
operator U, even when Φ holds forever.

Before we are able to define a formal semantic for ESLTL, we need to state a
valuation function V , that can be used to compute a set of nodes that fulfil a certain
predicate p with respect to a value i.
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Definition 3.7 (Valuation Function). The valuation function V : P → (I →
2Σ) is given through:

V((n, π, c))(i) =def




{
s ∈ Σ

∣∣∣∣ L(s) ↓1= n, and
(L(s) ↓2 (π), i) ∈ c∼

}
if L(s) ↓2 (π) is defined,

∅ otherwise.

where c∼ ⊆ V al × V al denotes the binary relation c, i.e. =∼ is equality on integers
(strings), �=∼ is inequality of integers (strings), and so on.

V defines for each predicate p and value i ∈ I, in which states p(i) holds. Note that
the set A of atomic propositions is infinite, as the parameter domains are infinite.
To check a certain property φ it is sufficient to consider the finite restriction V|A(φ)

only, where A(φ) denotes the set of atomic propositions appearing in φ.

The formal definition of the semantics, with respect to a test case, is given as follows,
where π denotes a path of test blocks, and πi the i-th position.

Definition 3.8 (Semantics of Extended Semantic Linear-time Temporal
Logic).

π |= p(t) ⇔def

{
π0 ∈ V(p)(i) if t = ci

false otherwise

π |= ¬Φ ⇔def π �|= Φ

π |= (Φ1 ∨ Φ2) ⇔def π |= Φ1 or π |= Φ2

π |= < a > Φ ⇔def |π| > 1 and π0
a−→ π1 and π1 |= Φ

π |= X(Φ) ⇔def |π| > 1 and π1 |= Φ

π |= G(Φ) ⇔def for all k with 0 ≤ k < |π|, πk |= Φ

π |= (Φ U Ψ) ⇔def there is k, 0 ≤ k < |π|, with πk |= Ψ and for all i,

0 ≤ i < k, πi |= Φ

π |= ∃x(Φ) ⇔def

∨
i∈I

[i/x]Φ

The substitution [i/x]Φ is used to specify the semantics of quantified sub-formulae,
and is itself defined inductively. It replaces all occurrences of value variable x with
the constant ci. It ensures correct scoping, as the recursive process stops at a
quantified sub-formula binding value variable x.
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Definition 3.9.

[i/x]p(t) =def

{
p(ci) if t = x

p(t) otherwise

[i/x]¬Φ =def ¬[i/x]Φ
[i/x](Φ1 ∨ Φ2) =def [i/x]Φ1 ∧ [i/x]Φ2

[i/x]< a > Φ =def < a > [i/x]Φ

[i/x]X(Φ) =def X[i/x]Φ

[i/x]G(Φ) =def G[i/x]Φ

[i/x](Φ U Ψ) =def [i/x]Φ U [i/x]Ψ

[i/x]∃x′(Φ) =def

{
∃x′[i/x]Φ if x �= x′

∃x′Φ otherwise

To model check an ESLTL-formula with respect to a test case, both the formula and
the test case will be transformed first. Within this transformation step the predicates
of the formula will be transformed into (real) atomic propositions again (i.e. without
parameters). Furthermore, corresponding atomic propositions have to be attached
to all test blocks of the test case. Afterwards the properties can be checked within
a standard, propositional model checking algorithm. Intuitively the problem of
checking T C |=P Φ, where we need to check a parameterized formula with a special
checking algorithm, will be transformed into T C ′ |= Φ′, where we transform both
the model and the formula, but can use a standard checking algorithm. A detailed
technical discussion of the transformation of both the model and the formula to use
standard model checking techniques can be found in [Hof97].

3.4.4 Pattern System for Property Specification for Finite
State Verification

Although the formalism of ESLTL is, to some extent, given by a user-friendly nota-
tion, it is not suitable to be used by “normal” test engineers. This is the reason why
we propose a pattern based approach, which allows an easy specification of such
properties. Within a survey, Dwyer et. al. have evaluated more than 500 examples
of property specifications, and they have found out that the vast majority (92%)
are instances of only a few patterns, which they organizes in a pattern system for
property specification for finite state verification [DAC98, DAC99]. With this pat-
tern system it becomes quite simple to define properties, and particularly it enables
even people, unexperienced with temporal logic to formulate such. We present the
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original pattern system, and discuss how to extend it, so that it properly fits to our
needs, i.e.:

— Parameter Handling, so that particularly ESLTL can be covered, and

— Grouping of Patterns, to capture more sophisticated relations between pat-
terns.

Figure 3.11: Overview of the pattern system

Figure 3.11 illustrates the general idea behind our enhanced pattern system. It
bases on the original pattern system of [DAC98, DAC99], however enriched with
the parameter handling (Logic Pattern). Note that within this thesis we are only
interested in a mapping of the logic pattern to ESLTL, but it is not restricted to
it. One can observe that often the interdependencies between certain states/events
cannot usefully be captured within a single property, e.g. the following two prop-
erties belong strictly together “After a user logs in to the system, he has to logout
afterwards” and “A user can logout only after he has been logged in before”. There-
fore we propose the notation of composite pattern, which are capable of capturing a
more sophisticated relationship between states/events. These composite pattern are
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defined on top of the logic pattern and allows to group them. Technically speaking
a composite pattern consists of the conjunction of several logic pattern. Finally typ-
ical users, e.g. test engineers, can instantiate composite pattern to define concrete
Constraints, which can then be used for test case verification.

We will first present the original pattern of Dwyer et. al., before we discuss our
enhancements in more detail.

Pattern System

Dwyer et. al. presented in [DAC98, DAC99, DAC97] a pattern system for property
specifications for finite state verification. In their work they developed a pattern
system, based on property specification patterns together with various scopes, and
a corresponding hierarchy, cf. Figure 3.13. Such patterns describe the essential
structure of a system’s behaviour and provide expressions of this behaviour in a
range of common formalisms. For each pattern and a certain scope they present
mappings for several temporal logics, e.g. beyond others for linear-time temporal
logic (LTL), computational tree logic (CTL), and the regular alternation-free µ-
calculus. Because different specification formalisms are either event based or state
based, the patterns make arrangements for both of them.

Figure 3.12: Pattern Scopes [DAC99]

Each pattern consists of a name and intent, as well as a scope, over which it must
hold. Figure 3.12 illustrates the portions of an execution that are designated by
the different scope types. Each scope is determined by specifying a starting and an
ending state/event for the pattern. There are five basic kinds of scopes:

Global The property holds globally.

Before The property holds before the occurrence of a certain state/event.

After The property holds after the occurrence of a certain state/event.

Between The property holds in between the occurrence of one given state/event
up to another one.
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After-Until As above, but it even holds if the second state/event does not occur
at all.

The property patterns are as follows:

Absence A given state/event does not occur within a scope.

Existence A given state/event must occur within a scope.

Bounded Existence A given state/event must occur k times within a scope.

Universality A given state/event occurs throughout a scope.

Precedence A state/event P must always be preceded by a state/event Q within
a scope.

Response A state/event P must always be followed by a state/event Q within a
scope.

Chain Precedence A sequence of states/events P1, . . . , Pn must always be pre-
ceded by a sequence of states/events Q1, . . . , Qm.

Chain Response A sequence of states/events P1, . . . , Pn must always be followed
by a sequence of states/events Q1, . . . , Qm.

In Figure 3.13 a hierarchy is presented, which organizes the patterns. Here the
patterns are distinguished according to whether they deal with the occurrence or
the ordering of events/states.

Figure 3.13: Pattern Hierarchy [DAC99]

In principle each pattern of the pattern system proposed by [DAC99] consists of
five concrete ones, where there is one instance for each scope. In Figure 3.12 it can
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be seen that in addition to the placeholders of the patterns themselves, the scope
introduces new dependencies needed e.g. to define the start and end point of the
scope between. So each concrete pattern P depends on a number of placeholders A1

to An, which will be abbreviated by P (A1, . . . , An)
6. The set of all concrete pattern

is called logic pattern and is denoted with LP. Note that when we talk about a
pattern below we will always mean a concrete pattern.

Enhancements of the Pattern System

We propose two enhancements of the original pattern system of [DAC99]. The
improvements are quite orthogonal to each other and can therefore be applied in-
dependently. In particular, we present an extension of the patterns itself, so that
we are able to take advantage of the first-order portions of our logic. Handling the
first-order portions of ESLTL requires to introduce another dimension within each
pattern, i.e. to allow the usage of the first-order quantifiers. On the other side we
extend the overall pattern system to support the handling of groups of patterns.

Parameter Handling

The introduction of parameterized propositions instead of atomic propositions is
itself rather straightforward, as the placeholders in the pattern can already deal
with it. The use of the two first-order quantifiers, however, introduces another
dimension within the patterns. Now a pattern consists, beyond other information,
of a scope and of a quantification over parameters.

To obtain a first-order pattern out of an original one, the following transformation
step has to be performed:

Qx.(P (A1, . . . , An)[A1/A
p
1(x1)] . . . [An/A

p
n(xn)]), with Q = {∃,∀}

Intuitively within each pattern all placeholders will be replaced with parametric
ones, and additionally the pattern will be embedded with a quantifier. Note that if
x �= x1, . . . , x �= xn the constraint is treated like a “classical” propositional one.

Example 3.3. In the following example we will illustrate how to construct a param-
eterized pattern out of a propositional one within the Response pattern with scope
Global. The original mapping of this pattern to LTL is

G(P ⇒ F(S))
6Note that the logical variables Ai will be substituted by single atomic propositions or simple

propositional formula only.
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First of all we have to substitute each occurrence of an atomic proposition with a
parameterized one, i.e. P will be replaced by P (xp), and S by S(xs). After that, we
will embed the whole pattern into a quantifier, which results in

Qx(G(P (xp)⇒ F(S(xs)))), where Q = {∃,∀}

The property that every login for a certain user must be followed by a logout can
now be specified as

∀x(G(login(x)⇒ F(logout(x))))

i.e. we use the ∀-quantifier, and x = xp = xs.

The complete mappings for ESLTL of all patterns can be found in Appendix A.

Handling groups of patterns

It is apparent that the relationship between states/events are often manifold, and
that they cannot be captured within a single logic resp. concrete pattern. There-
fore it is useful to establish the notation of Composite Pattern which allow us to
combine logic patterns. The level of Logic Pattern corresponds to the concrete pat-
tern of [DAC98, DAC99], i.e. in fact, the patterns proposed are a subset of our
logic patterns, because they represent the propositional case only (Figure 3.11).
Logic patterns, as well as their mapping to a concrete logic, are usually defined
by temporal-logic experts and can be seen as the fundament of the overall pattern
system. Composite patterns are specified on top of the logic pattern and combine
them, meaning that we have a 1 : n relation between composite patterns and logic
patterns. As composite patterns already deal with predefined logic patterns, they
can be defined domain specific by experts within the considered application domain,
without deeper knowledge of the underlying logic.

Formally a composite pattern is a conjunction of several logic, or concrete, patterns,
where a mapping of the variables of the composite pattern to variables of the logical
patterns will additionally be established.

Definition 3.10 (Composite Pattern). Let LP denote the set of all logic pat-
tern, and a subset L = {P1(A

1
1, . . . , A

r1
1 ), . . . , Ps(A

1
n, . . . , A

rs
s )} ⊆ LP. Then P is

called a composite pattern, where

P (B1, . . . , Bt) =
∧

1≤i≤s

Pi(A
1
i , . . . , A

ri
i )

where A1
1 = Bi, . . . , A

rs
s = Bj with 1 ≤ i, j ≤ t.
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Note that in Section 4.4.2 we propose a notation to specify composite pattern.

Example 3.4. Let us illustrate the definition of composite patterns according to a
simple example, where we capture the relationship between the request req and
release rel of a resource. The relation between these actions is twofold, as on the
one hand every requested resource should be released at some point, and on the
other hand a resource can only be released, when it was previously requested. The
corresponding patterns are both with scope Global, the Response pattern, i.e.

P glob
Resp(P1, S1) = G(P1 ⇒ F(S1))

and the Precedence pattern

P glob
P rec(P2, S2) = ¬P2 WU S2

The notation of behavioural pattern allows the combination of the two, i.e.

PB(req, rel) = P glob
Resp(P1, S1) ∧ P glob

P rec(P2, S2)

where
P1 = S2 = req and P2 = S1 = rel

This results in

PB(req, rel) = (G(req ⇒ F(rel))) ∧ (¬rel WU req)



Chapter 4

An Integrated Test Environment

To facilitate the integrated test approach, presented in the previous chapter, a tool
support is unavoidable. In particular, a modular and open test framework is needed
so that diverse test tools and units can be integrated as required. Combining test
tools allows us to make optimal use of their individual strengths and to avoid their
weaknesses by using the most adequate tool for each task.

Within this chapter we discuss the implementation fundamentals of an integrated
test environment (ITE ). In Section 4.1 we propose a general architecture for an
ITE for the test of complex systems. We were able to build the ITE on top of an
existing general purpose environment for the management of complex workflows as
is presented in Section 4.2. The communication architecture of the ITE and partic-
ularly the notation of test tools is presented in Section 4.3. After that we discuss in
Section 4.4 how the requirements presented in Section 3.3.1 are implemented in prac-
tice. Section 4.5 introduces the test tool integration task. This chapter concludes
with the discussion of the integration of a special test tool (Section 4.6) capable of
stimulating and observing graphical user interfaces. It is generic enough to be of
use in various test settings.

4.1 Designing an Integrated Test Environment

In system-level testing the involved test tools are usually distributed and run on
heterogenous platforms, cf. Figure 3.2. Therefore a flexible architecture for a test
environment should lead to a modular and open environment, so that diverse test
tools and units under test can be added as required. A sophisticated framework for
a test environment must support a uniform handling of such test tools and provide a
well-defined, preferably almost automated, integration process. This comprises the
“core” communication between the test environment and the test tools, as well as

– 65 –
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the appropriation of the offered test stimuli and observation points to test engineers
for test case design. To support this test tools must provide a special interface,
preferably in a common used formalism like the Interface Definition Language (IDL).
The interface then forms the basis for both the integration into the framework and
for the definition of building-blocks for test case design.

Figure 4.1: Architectural overview of the integrated test environment

The classical test execution architecture presented in Chapter 2 is not suitable for
handling complex systems. This is because such systems cannot be tested within a
single monolithic tester or test tool. Instead we have to coordinate several indepen-
dent test tools, each suitable for testing a specific aspect, e.g. a certain subsystem,
or a specific communication protocol. In general, a test tool is able to control several
points of control and observation (PCO’s) and to observe several points of observa-
tion (PO’s) simultaneously. Altogether the different test tools, probably running on
heterogenous platforms, allow the testing of the overall complex system.

Figure 4.1 presents a rough overview of an architecture for an integrated test en-
vironment (ITE ). The system under test is composed of several subsystems, here
denoted by System1 to Systemn. The subsystems are controlled and observed by
the corresponding test tools. Sometimes a one-to-one mapping is possible between
a subsystem and a test tool, but in general a single test tool has access to several
P(C)O’S, denoted by the dashed connections in Figure 4.1. The test tools them-
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selves are coordinated by the ITE more precisely by the execution engine, by means
of a communication layer.

The ITE consists of two main portions: the general framework, also called core ITE
or test coordinator, and the concrete instantiation, where test interfaces for specific
complex systems are integrated.

Integrated Test Environment – The Framework

Figure 4.2: Concept of the integration of a test tool into the test environment

The core ITE can be seen as a framework consisting of the following modules: Test
Case Design, Execution Engine, Verification Engine, Analyzer, and the Communi-
cation Layer. We also often refer to this as the Test Coordinator .

In Figure 4.1 the modules and their dependencies can be seen. The design module
enables test engineers to graphically construct tests out of test building-blocks, which
have to be defined separately, cf. Section 3.3.2. The verification engine checks the
resulting tests with respect to a set of constraints, i.e. the verification engine has
access to the designed tests. The execution engine is in principle able to execute
the tests by means of a communication layer. Within the framework the execution
engine only defines generic interfaces to coordinate test tools, where a concrete
test tool provides its particular functionality, specified via an interface description
(e.g. expressed in the IDL), cf. Figure 4.2. The Interface Description forms the
basis for the integration of the test tool functionality into the test environment,
meaning that the functionality can be accessed by the execution engine during test
execution. Furthermore the Interface Description, or more precisely the abilities of
the corresponding test tool, determines what test actions and observations points
are available for test case design. After the integration of concrete test interfaces
the framework can be used for testing concrete complex systems. In general this
approach introduces the required flexibilization of the overall architecture of the test
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environment. When integrating a new system under test, the required test tools can
be easily added. Via the test tools the ITE has access to all the involved subsystems
and can manage the test execution by a coordination of different, heterogenous test
tools.

Finally, during test execution an analyzer module records all relevant data that is
needed for the detailed analysis of the test runs afterwards. This can range from the
information which test building-blocks have been executed in which order, i.e. the
concrete test run, up to a detailed record of the signals of the involved communication
protocols.

Concrete Instance of the Integrated Test Environment

Figure 4.3: Coordination of involved test tools

When testing a specific complex system, it was previously explained that concrete
test interfaces to the subsystems have to be established for the ITE. So a concrete
instance of the ITE consists, beside the core framework, of several test tools. These
test tools will be coordinated during test execution by the execution engine of the
ITE. Figure 4.3 demonstrates how the coordination task takes place: The execution
engine triggers Test Tool1 with a certain command. The test tool itself stimulates
the dedicated subsystem(s) (here System1) and afterwards collects all the responses.
To ensure that all relevant responses will be picked up, the test tool waits for a
subsystem or even command-specific timeout δ1. The collected data will be pre-
processed, and sometimes an abstraction takes place. Afterwards the result will be
sent back to the execution engine. The analysis of the result determines which ac-
tion/observation should next take place. Here the next command stimulates System2
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through Test Tool2, in the same manner as before. However, the timeout for the
second command is in general different to the previous one (δ2). This synchronous
execution of test actions – i.e. stimulation of the system under test and waiting a
certain period of time to ensure that the system has produced all its responses – is
needed to ensure repeatable test results.

4.2 The Agent Building Center

The ITE or more precisely the test coordinator, is built on top of an existing gen-
eral purpose environment for the management of complex workflows, (METAFrame
Technologies’ Agent Building Center (ABC )) [SM99], which already encompass
some of the requirements that are discussed in Section 3.3.1 in an application inde-
pendent way. The ABC is made up of the following characteristics:

Behaviour-Oriented Development: In general, application development in the ABC
consists of a behaviour-oriented combination of building-blocks on a coarse gran-
ular level. Building blocks are identified on a functional basis, understandable to
application experts, and usually encompass a number of “classical” programming
units (be they procedures, classes, modules, or functions). They are organized in
application-specific collections (palettes). In contrast to (other) component-based
approaches, e.g., for object-oriented program development, ABC focusses the dy-
namic behaviour: (complex) functionalities are graphically stuck together to yield
flow graph-like structures embodying the application behaviour in terms of control.
This graph structure is independent of the paradigm of the underlying programming
language. In particular, we view this flow-graph structure as a control-oriented coor-
dination layer on top of data-oriented communication mechanisms enforced, e.g., via
RMI, CORBA or (D)COM. Concretely, the test coordination layer communicates
with individual test tools by means of CORBA [Obj99]. Accordingly, the purely
graphical combination of building-blocks’ behaviours happens at a more abstract
level.

Incremental Formalization: The successive enrichment of the application-specific
development environment is two-dimensional. In addition to the library of application-
specific building-blocks, a collection which dynamically grows whenever new func-
tionalities are made available, ABC supports the dynamic growth of a hierarchically
organized library of constraints, controlling and governing the adequate use of these
building-blocks within application programs. This library is intended to grow with
the experience gained while using the environment, e.g., detected errors, strength-
ened policies, and new building-blocks may directly lead to additional constraints.
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It is the possible looseness of these constraints which makes the constraints highly
reusable and intuitively understandable.

Library-Based Consistency Checking: Throughout the behaviour-oriented develop-
ment process, ABC offers access to mechanisms for the verification of libraries of
constraints via model checking. The model checker individually checks hundreds of
usually very small and application- and purpose-specific constraints over the flow
graph structure. This allows concise and comprehensible diagnostic information in
the case of a constraint violation, particularly as the information is given at the
application rather than at the programming level.

The ABC is a well established toolkit, successfully applied both in academia and in-
dustrial practice. It forms particularly the kernel for the Electronic Tool Integration
Platform [CSMB97, SMB97, Bra01]. Furthermore, it is used for the design of Intelli-
gent Network Services [SMC+96a, SMC+96b, SMBK97, BMSY97, SMCB96, SM99]

The ABC forms the heart of our test environment, particularly the components
Test Case Design, Execution Engine, and Verification Engine are based on existing
ABC modules. The ABC bases on an interpreter kernel, which can be extended by
specialized modules at runtime. In the next section we first discuss the key aspects
of the ABC interpreter, before we sketch the used ABC modules.

4.2.1 The High-Level Language Interpreter

Module 1

Interpreter

Module
Adapter

Encapsulation
Object Code

Module 1 Module n

<<wraps>>

Module n

Module
Adapter

Encapsulation
Object Code

<<wraps>>

<<imports>><<imports>>

...

...

%function name (type: var, ...): return type
{
    implementation
}

Figure 4.4: The High-Level Language Interpreter
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The ABC provides a flexible interpreter, capable of interpreting a simple, pascal-
like, imperative language, called High-Level Language (HLL) [Cla97, Hol99a]. The
interpreter can be dynamically extended by new data types and functions, where
the additional types and functions are provided by METAFrame Modules that can
be imported into the interpreter core. Such modules consist of:

— Encapsulation Object Code, implementing the actual functionality and corre-
sponding types. This code is given as C++ classes.

— Module Adapter, wrapping the Encapsulation Object Code into HLL-functions
and types accessed by the interpreter.

A module adapter is particularly responsible for wrapping and unwrapping HLL
data objects into C++ objects and also maps the execution of a HLL function to
the corresponding encapsulation code.

For the integration of a METAFrame Module into the interpreter, a special compiler
is used to translate the Module Adapter, specified in a certain format suitable for
extending the interpreter (cf. Figure 4.4), into C++ source code which can then be
compiled and linked together with the Encapsulation Object Code into a concrete
METAFrame Module. These modules are built as shared libraries so that they can
be imported at runtime into the interpreter. For a more technical discussion of the
implementation of modules and their integration into the interpreter, please refer
to [Hol97, Hol99b].

Next we will present a rough overview of special modules that are already available
within the ABC, and fit into the ITE approach particularly well. Note that we will
discuss the usage of some of the modules in more technical details when we present
their test specific adaptations later on.

4.2.2 Polymorphic Labelled Graphs

One of the most important modules within the ABC is the Polymorphic Labelled
Graph Library (PLGraph) [vdBBC+97, Hol98], which provides a flexible graph data
structure. The main characteristic of these graphs is that all graph components (i.e.
the graph itself, the nodes, and the edges) can store information via labels. This
labelling concept is polymorphic in the sense that each graph component can contain
more than one label. The labels themselves are implemented as C++ classes that
are inherited from a common label class. Labels can contain various information
and have access to the graph structure as well as to the corresponding components.
In particular the ability to display graphs has been implemented by labels. Further-
more, special interfaces exist that ensure that the content of the labels can be saved
and reloaded, or will be copied during the cloning of a graph.
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An important extension of the generic graph library is called Service Logic Graph
[SM99]. Here a special description is attached to each node, consisting, beyond
others, of a name, a parameterization, and a portion of HLL code. In the context
of service logic graphs, the nodes are called Service Independent Building Blocks
(SIB). These service logic graphs are especially important in forming the basis for
our test cases, cf. Section 4.4. Furthermore, for service logic graphs there exist a
graph editor, used for the graphical construction of service logic graphs.

4.2.3 Tracer

A special module, called Tracer, can be used for the execution of a service logic
graph. For each node executable code has to be implemented in HLL. Within this
code, called Run-Time-Code (RTC ), the call to the functionality specified in HLL
can be implemented. The tracer executes the RTC code of the nodes, starting with
the unique start node of a service logic graph. The tracer will then run in a loop
until it reaches an end node:

1. Call the RTC code of the actual node.

2. The RTC code calls the tracer back, giving the identifier of an outgoing branch.

3. If the tracer finds an invalid branch, i.e. the branch given is not a valid branch
for this node, it terminates the execution with an error.

4. The tracer waits a specified period of time, and then executes the RTC code
for the node, which is determined through the branch.

As the RTC code is specified in HLL it is possible to use all the functionality provided
by the used modules, and particularly all control structures that are defined in HLL
(if-then-else and while).

4.2.4 Verification Facilities

Service logic graphs are subject to local and global verification. Local constraints
are specified as assertions in HLL. A special module LocalCheck provides several
methods which ease the specification of these constraints. When performing a local
check, for all nodes of a graph it will be checked whether they fulfill their constraints.
For checking global constraints the ABC consists of a game based model checker for
the modal µ-calculus [Yoo03, SCK+95]. Here the atomic propositions are attached
as node- resp. edge-labels and can then be accessed from within the model checker.
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Before using this model checker for checking ESLTL-formulae, a preprocess, as de-
scribed in Section 3.4.3, will be performed to compute the atomic propositions and
to transform the ESLTL-formula. The constraints are organized in libraries, and can
be attached to a graph at need. This relationship of a graph and the corresponding
constraints is stored within a graph.

4.3 An Architecture for an Integrated Test Envi-

ronment

Figure 4.5: Communication Architecture of the Integrated Test Environment

As presented in Section 4.1 the ITE consists of a framework portion (Test Coordi-
nator) that is completed by concrete test interfaces which allow us to test a certain
test scenario. Figure 4.5 shows the communication architecture of the integrated
test environment in more detail. Each test tool supports one or more test interfaces
(PO or PCO) to the system under test (see Section 4.3.1 for a detailed discussion of
test tools). In the ITE we call the set of stimuli and observation points for a certain
test interface Test Protocol , or simply Protocol when unambiguous from the context.
A protocol adapter wraps the functionality1 provided by a test protocol, and makes
it available to the test coordinator, or more precisely to the HLL interpreter.

1Usually in the testing context we are only interested in defining new functionality rather than
defining new types.
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The availability of a test tool depends on the circumstances at runtime. There-
fore, the TestToolAccess adapter in cooperation with the ToolAccess adapter is
responsible for administrating the used test tools in a registry. For the implemen-
tation of the communication layer between the ITE and the test tools (cf. Fig-
ure 4.1) we use CORBA. CORBA is the acronym for Common Object Request
Broker Architecture, a vendor-independent architecture and infrastructure that
computer applications use to work together over networks. Using the standard
protocol Internet Inter ORB Protocol (IIOP), a CORBA-based program from any
vendor, on almost any computer, operating system, programming language, and
network, can interoperate with a CORBA-based program from the same or another
vendor, on almost any other computer, operating system, programming language,
and network. CORBA is an established industrial standard for complex middle ware
solutions [Obj99]. Within the ITE a special adapter is responsible for encapsulating
the general CORBA functionality.
The test tools offer their functionality via an interface description, specified in the
Interface Definition Language (IDL)2, which can then be accessed from within the
ITE.

In the next section we will first discuss what a test tool is in the context of the ITE,
before we discuss the interaction between the ITE and the test tools in more detail.

4.3.1 Test Tool

TestTool

Protocol 1

Protocol n

TestToolAccess ...
System
under
Test

ITE

Figure 4.6: Test Tool

In general a test tool within the ITE is able to observe and stimulate the system
under test via several PO or PCO, which we also call Test Interfaces. This capability
of a test tool is pictured in Figure 4.6. A test tool is made up of a control interface
(TestToolAccess), to be remotely accessed from the ITE, and several test protocols
(Protocol1 . . . Protocoln), each responsible for testing a certain test interface of the

2Note that in the following we will often refer to the interface description as IDL.



4.3. An Architecture for an Integrated Test Environment 75

system under test. Sometimes it is even possible to apply a certain test protocol via
several system interfaces, e.g. communication protocols exist that can be transported
over TCP/IP as well as packed in HDLC frames of ISDN (cf. Section 6.1). So a test
tool in terms of the ITE establishes the connection between a remote interface and
one or more test interfaces. One of the advantages of treating test tools in such a
general way is that one is not restricted to implementing a certain protocol within
several test tools. So we can ensure that one is, in principle, not limited by the
weaknesses of specific test tools, but can use for every test task, e.g. a particular
test stimulus, always the best available test tool. Note that from the conceptual
point of view this approach works quite well, as it is ensured from within the ITE
that the involved test tools does not interfere with each other. This is because of
the synchronous execution of test cases: Only one test action is executed through a
particular test tool at one moment.

«Interface»
ToolRemoteAccess

+getInfo(): ToolRemoteInfo
+ping(): Timestamp
+restart(): void
+syncTime(timestamp:Timestamp): void

«Interface»
TestToolAccess

+getSystemInformation(): sequence<ComponentInfo>
+getProtocolInformation(): sequence<ProtocolInfo>
+getProtocol(type:ProtocolType,interface:SystemInterface): Protocol
+openCommandSequence(): boolean
+closeCommandSequence(): void
+putFile(file:File): void
+getFile(): File

«Interface»
TestTool1

«Interface»
TestTool2

«Structure»
ProtocolInfo

+name: String
+interface: String

«Structure»
ToolRemoteInfo

+toolInfo: ComponentInfo
+hostIP: String
+toolComponents: sequence<ComponentInfo>
+typeOfTool: ToolType

«Structure»
ComponentInfo

+name: String
+version: String
+comment: String
+typeInfo: String

«Interface»
Protocol

+getExecutionInformation(start:Timestamp,end:Timestamp)

«Interface»
ProtocolA

«Interface»
ProtocolB

«Interface»
ProtocolC

Figure 4.7: Tool Remote Access

Let’s focus on the technical realization of a test tool, cf. Figure 4.7. The general
interface ToolRemoteAccess is particularly suited to providing functionality for re-
questing detailed information about a (general) tool (getInfo) and for checking its
availability (ping) resp. restarting the tool (restart). The information about a tool
is gathered within the structure ToolRemoteInfo, which provides information about
the tool itself, its IP address, the type of the tool, and detailed information about
the components the tool is built on. Information about the tool and its subcompo-
nents are collected in the structure ComponentInfo, where the name, the version, the
information about the type of the tool, and a detailed comment is stored. This infor-
mation is needed in every tool coordination scenario and therefore it is not restricted
to the ITE. To take the specialities of the test tools into account, a specialization of
the interface ToolRemoteAccess is provided by TestToolAccess. Here additional
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information about the tested subsystem (getSystemInformation) and about the
supported test protocols (getProtocolInformation) is available. The information
about a protocol (ProtocolInfo) consists of a name and the interface. Furthermore,
a certain protocol on a specific system interface can be requested (getProtocol) if
such exists. In various communication protocols the stimuli have to be submitted
during a stipulated time slot. This cannot be ensured from within the ITE when
the stimuli are distributed over several test blocks, because of the indirect step that
is introduced by means of the CORBA communication in between. Therefore it
is possible to send sequences of commands to a test tool that are executed as a
whole. Two methods are responsible for dealing with that: openCommandSequence
and closeCommandSequence. All commands that are dropped in between are inter-
preted as a sequence that is executed immediately after the closing of the command
sequence. Note, however, that these commands can take place on different sup-
ported protocols. Finally a test tool supports the generic transfer of files in both
directions through putFile and getFile.

A concrete test tool has to provide an access by specializing the interface TestTool-
Access and one or more protocols, which provide the real testing facilities, by spe-
cializing the interface Protocol. The only method prescribed by this interface is
getExecutionInformation, which retrieves the start and end timestamp of the last
executed command.

4.3.2 Interaction between the Integrated Test Environment
and its Test Tools

Figure 4.8 shows the cooperation between the test tool access adapter and a test tool.
The relationship between the two of them will be established loosely, i.e. the test
tool registers itself at the CORBA Nameservice, a standard CORBA service which
allows clients to find objects based on names instead of their Inter Object Reference
(IOR) or their CORBA location3. The ITE resolves tools that are available within
the nameservice, and binds them in a local tool registry. In that way we avoid
the lookup of the tool via CORBA for every communication, i.e. call of a method.
A local test tool instance is especially created for every remote tool and it serves
as a facade to the remote test tool. This tool registry is maintained by the, more
general, ToolAccess adapter. The more specialized TestToolAccess adapter uses
the functionality by delegation, i.e. because in the adapter concept no inheritance is
possible. Furthermore, the TestToolAccess adapter adds functionality to support
the specialities that have to be considered when dealing with test tools as a special
instance of general tools.

3A CORBA location, or corbaloc, is a URL format object reference.
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Interpreter

<<Remote>>
Nameservice

<<Remote>>
TestTool

<<Adapter>>
ToolAccess

<<Adapter>>
TestToolAccess

Tool
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<<binds>>

<<Local>>
TestTool

Figure 4.8: Cooperation between the ITE and a Test tool

More technically the ToolAccess adapter is responsible for the general management
of (remote) tools. It maintains a tool registry, where the local facades for the re-
mote tools are stored. To allow convenient usage of the test tools, the ToolAccess
adapter provides access to the general tool specific methods (see Figure 4.7) via the
tool’s identifer, used for storage in the registry. For the management of the tool
registry it provides methods e.g. for retrieving the number of registered tools, or for
testing whether a certain tool identifier is already in use. By using a tool identi-
fier one is able to check whether a tool is alive, to restart a tool, and to retrieve
all the meta information that is provided by a tool, i.e. name, IP address, com-
ment, version information, and the detailed component information. Furthermore,
it maps the exceptions that can occur during the usage of a tool, to special types
of HLL (TAException and CorbaException), and provides functionality to check,
e.g. whether a communication problem arises (CORBA exception). This is needed,
because no concept of exceptions exists in HLL.

The TestToolAccess adapter uses the functionality of the ToolAccess adapter
for the general management of the tool registry. The most important additional
functionality is the registration of new test tools. Here a new facade for a test tool
will be created and later bound with a unique tool identifier to the tool registry.
Furthermore, it provides methods for accessing the specialized methods of test tools,
i.e. handling of command sequences, retrieval of system under test information, and
protocol information handling via the test tool identifier.
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With this concept we are able to fully abstract ourselves from the underlying com-
munication layer, so that within the interpreter test tools can be accessed via the
tool registry. Changing the communication layer would therefore only affect the
ToolAccess adapter.

Figure 4.9: Test Tool Coordination

Figure 4.9 presents the conceptual realization of the execution semantics for test
cases, as presented in Section 3.4, within the ITE. Let us assume that the test block
A should be executed. This results in a corresponding HLL function call that will
be processed by the HLL interpreter. The test protocol adapter that defines the
HLL function communicates with its corresponding test tool. This first translates
the test block into the real stimulus (fA(A)) and then performs the stimulation of
the system under test. Within a well-defined time period δ, the test tool gathers all
resulting responses of the system (fA(C1), . . . , fA(Cn)) and stores them for further
processing. This agrees with the structure of the corresponding test graph, which
represents the execution semantics of the test case (cf. Section 3.4.2). Here at every
node of a test graph all the outputs from the system (responses) are collected by a
reflexive edge that is labelled with the complete input alphabet. This loop can only
be exited via the special timeout edge (δ). Note that in the real implementation the
timeout depends either on the test tool or even on a specific command. The test
tool, however, must ensure that it is fixed within a certain situation to guarantee a
deterministic, and therefore repeatable, execution of test cases. After the execution
of the stimulus and the expiration of the timeout, the test tool signals the correct
execution to the protocol adapter, or else the error cause. The corresponding meth-
ods of the protocol adapter then terminate as well, so that the test block execution
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ends. In case of check test blocks, the results of this execution lead to a selection
that decides which test block has to be executed next.

The coordination task can be split into two different layers: a Uniform Coordination
Layer and a Test Tool Specific Layer (see Figure 4.9). The first one assures that
test cases will be executed from within the ITE in a uniform fashion, independent
of specific characteristics of the considered testing scenario. The test tool specific
layers are then responsible for the concrete implementation of the test blocks which
depend on the underlying test tools and their test protocols.

4.4 Realization of the Fundamental Functionali-

ties of the ITE

Whereas in Section 3.3.1 the requirements of the ITE were discussed, within this
section we present their concrete realization.

4.4.1 Test Case Design

As mentioned above, there exists an extension of ABC ’s generic graph library, called
Service Logic Graph, that is well suited to the specification of test cases, as stated
in Definition 3.2. In our context we denote the SIB’s as test blocks and our test
cases are then special service logic graphs.

A test block, as the elementary entity of a test case, is defined by three different
specifications:

1. Specification of its interface, consisting of a name, a class, a list of formal
parameters, and a list of outgoing branches,

2. specification of its execution code, used for test execution and defined in HLL
(cf. Section 4.4.3), and

3. optional specification of local check code, used for local consistency checks, e.g.
concerning the correct parameterization (cf. Section 4.4.2).

Figure 4.10 shows an example of a test block interface4. First, the name and the
class of the test block are defined. The class is mainly needed to support comfortable
browsing through all available test blocks afterwards, but also for the partition of
the test blocks into external and internal ones. The parameters of a test block are

4Note that all keywords are uppercase.
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SIB name

CLS class

PAR parName1 NUM min max default

PAR parName2 STR maxlen "default"

PAR OPT parName3 SEL "Sel1" "Sel2" ... "Seln" END i

BR default

Figure 4.10: Example of a Test Block Interface File

specified by the keyword PAR. Parameters consists of a name, a type (NUM for integer
values, STR for strings, and SEL for an enumeration of strings), and depending on
their type, additional information:

— For NUM the range and a default value can be specified (min, max, default),

— for STR the maximal length of a string (maxlen) and a default value can be
specified, and

— for SEL first the alternatives are specified, ending with keyword END, and ad-
ditionally the index i to the default value is given. Note that 1 ≤ i ≤ n.

Note that according to this declaration the parameter domains are always finite.
Furthermore, each parameter can be declared as optional by the keyword OPT, cf.
the declaration of the last parameter in Figure 4.10. We will use this keyword to
distinguish between internal and external parameters. Internal parameters are only
needed for environmental purposes, e.g. for specifying the test tool which should
execute the command. External parameters will be transferred to the actual test
tool.

Finally, a test block interface makes up the definition of the outgoing branches.
As stated in Definition 3.2 we only distinguish between two cases, i.e. action test
blocks with one outgoing branch (default), and check test blocks with two out-
going branches (true and false). Please note that these test block specifications
were usually generated automatically and do not have to be edited by hand, cf.
Section 4.5.

Figure 4.11 illustrates the graphical definition of a test case. For test case design
an editor is available that allows a test engineer to add test blocks to a test case,
to connect their instances by edges, and finally to set their internal parameters.
This high level of abstraction is tailored for an easy design of test cases, where
no particularly programming expertise or detailed knowledge of the test tools and
their coordination is needed for the design task. The test case design is illustrated
according to a concrete example in Chapter 5.
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Figure 4.11: Specification of a test case through the ITE

Reuse by Hierarchical Test Case Design

Test cases have recurrent structures, e.g. when testing complex systems usually
some applications must be started during an initialization phase or a user must
log on to the system. Hierarchical test case design allows test engineers to specify
these tasks as test cases once and for all and to make them available as generic
test blocks (or macros) for later reuse. This accelerates the design of new test cases
and it supports the maintenance of the test suites: modified macros automatically
update all their instances. The ITE supports a truly hierarchical design, where
macros are allowed to make full use of other already existing macros. Figure 4.12
shows how this works in practice (cf. [SMBK97] for a detailed discussion): Within
an abstraction step a (part of a) test case is stored as a macro, which becomes
directly available as a new generic test block. In addition to the identifier and the
name of the macro, the formal parameters and the outgoing branches have to be
specified. The parameters of the macro can be mapped to (selected) parameters
of the underlying test blocks. E.g. in Figure 4.12 the parameter P12 of test block
TB1 and P21 of test block TB2 become parameters of the macro. Similarly, the
set of (unset) outgoing branches of the underlying test blocks defines the outgoing
branches of the macro. E.g. in Figure 4.12 the unset branches of test block TB2 and
TB4 (denoted through the dashed edges) will constitute the outgoing branches of the
macro. As usual, the resulting hierarchy is a design and management aid without
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Figure 4.12: Hierarchical Test Case Design using Macros

any influence on the execution time: during the execution macros are automatically
unfolded (concretized) and the underlying graph structure will be executed.

4.4.2 Test Case Verification

Test cases are subject to local and global constraints, cf. Section 3.4.3. To support
a reliable test case design, however, both of them are needed.

Local check code, i.e. assertions for test blocks, can be bound to single test blocks,
whole classes of test blocks, and can furthermore be specified globally. Depending
on the scope, the local check code is stored in different files, i.e. test block local
check code is stored in a file like <TestBlockName>.lcc, class local check code
under <ClassName>.class.lcc, and global local check code at global.lcc. This
reduces redundancies in the local check code, as we are able to define the check of
e.g. parameters common to a whole class only once.

var String: toolName =

SD.getSibParameter ( SDLocalCheck.local check node , "toolName");

if (empty (toolName)) then

SDLocalCheck.localCheckError ("Unset Tool Name");

fi;

Figure 4.13: Example for Local Check Code

Figure 4.13 shows a portion of local check code. During this process the Local-

Check module provides access to the currently checked node of the graph through
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SDLocalCheck.local check node. First the value of the parameter toolName5 is
read out and assigned to a local variable. Afterwards it is checked whether this
value is empty or not. If so, a local check error will be raised, which usually results
in an error message being presented to the user, together with highlighting of the
erroneous node.

Furthermore, by local checking it can be assured that all edges in the test case
are labelled correctly. More technical details about writing local check code can be
found in [MET99].

For global checking first of all global constraints have to be specified in a temporal
logic (ESLTL), so that the model checker can verify whether a test case fulfil cer-
tain properties. An open issue is the realization of the pattern system proposed in
Section 3.4.4 that supports test engineer during the specification of the global con-
straints. Here a flexible management of the underlying data is needed. On the one
hand it should support an automatic and efficient generation of concrete constraints
that can be further processed by the model checker. On the other hand it must offer
enough information for building a corresponding graphical user interface (Constraint
Editor) for the specification of constraints. For this purpose we use the Extensible
Markup Language (XML) [Wora] and Document Type Descriptions (DTD). XML
is a simple flexible text format derived from the Standard Generalized Markup Lan-
guage (SGML) [ISO86]. In principle a DTD is a grammar which prescribes how
correct XML documents of a specific type have to be constructed. Thereby an XML
based notation concentrates on the information itself and its structure rather than
on its presentation. In addition there is a variety of powerful tools and libraries for
an automatic processing of XML based documents.

For an implementation of our pattern system we propose three different DTD’s, one
for each level of the pattern system, cf. Figure 3.11:

1. A DTD for storing a set of logic patterns together with their mapping to
a concrete logic in a given syntax (here ESLTL in a syntax suitable for the
built-in model checker) (cf. Figure 4.14).

2. A DTD for storing a composite pattern (cf. Figure 4.15), which consists of two
parts:

(i) Definition of the used placeholders together with the type of their corre-
sponding input dialog, used for their specification.

5Note that every external action and check test block needs this parameter to resolve the test
tool that is responsible for its execution.
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(ii) Definition how to generate the corresponding logic pattern, i.e. mapping
of the (global) placeholders of the composite pattern to the (local) place-
holders of each logic pattern.

3. A DTD for storing concrete constraints, i.e. the reference to the corresponding
composite pattern, together with the concrete values for the placeholders.

While the complete DTD’s can be found in appendix B.1 we illustrate their usage
by means of a concrete example, i.e. the definition of the composite pattern of
example 3.4.

<pattern name="response" scope="global">

<raw> <![CDATA[ AG F(’ ]]> </raw>

<p/>

<raw> <![CDATA[ => AF F(’ ]]> </raw>

<s/>

<raw> <![CDATA[ )) ]]> </raw>

</pattern>

Figure 4.14: Mapping of the Logic Pattern Response with Scope Global to ESLTL

First we have to define the mapping of the corresponding logic pattern to the
concrete syntax of ESLTL. In Figure 4.14 the mapping of the logic pattern Re-
sponse with scope Global is shown. Basically what is stated here is the following:
AG_F (’P => AF_F (’S)), all other symbols are just representing the structure of
the document.

In Figure 4.15 a shortened version of the representation of the composite pattern of
example 3.4 is presented. Beside the meta information about the new pattern, i.e.
its name, informal description, and a corresponding class used for a classification
of the composite patterns, the XML document can be split into two main sections.
The first section (input) prescribes which steps are needed to gather all required
information about how to fill the placeholders in the corresponding logic patterns.
For each placeholder a matching step has to be defined, which consists of a number to
be identified later, and an informal description that is presented to a user, together
with the declaration of a dialog. Currently there are two different dialogs supported,
one for specifying test blocks with parameters (SelectTBWithParameters), and one
for specifying them without parameters (SelectTB). The set of available dialogs, as
well as their attributes, is not prescribed within the DTD. The main reason for doing
this is to offer enough flexibility and to allow to create new, specialized dialogs in
the future. One can think of additional dialogs, e.g. to specify whole subformulae.
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<CompositePattern name="ResourceBalance" class="Resource">
<patternDescription> ... </patternDescription>

<input>
<step no="1">
<stepDescription> Selection of the first test block </stepDescription>
<dialog> SelectTBWithParameters </dialog>

</step>
<step no="2">
<stepDescription> Selection of the first test block </stepDescription>
<dialog> SelectTBWithParameters </dialog>

</step>
</input>

<generateLogicPattern>
<logicPattern pattern="response" scope="global" ...>
<logicPatternDescription>...</logicPatternDescription>
<sibs>

<p>
<name> <advancedLink step="2"> nameSib </advancedLink> </name>
<args> <simpleLink step="2"/> </args>

</p>
<r>
<name> <advancedLink step="1"> nameSib </advancedLink> </name>
<args> <simpleLink step="1"/> </args>

</r>
</sibs>

</logicPattern>
<logicPattern type=...>
...

</logicPattern>
</generateLogicPattern>

</CompositePattern>

Figure 4.15: Representation of the Composite Pattern of Example 3.4

The drawback of this flexibility is that it is possible to obtain syntactically correct
XML documents that cannot be further processed, because of missing dialogs or
incorrect links to their elements.
The second part defines the mapping of the inputs of the composite pattern to the
placeholders of the logic pattern (generateLogicPattern). For each corresponding
logic pattern an entry is provided (logicPattern) which is made up of the logic
pattern name and its scope. Furthermore, an informal description has to be given.
Then for each placeholder an entry needs to be specified which defines within which
step the information can be found. The names of the placeholders are defined
in the logic pattern definition. The names that are used for the generation will
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beginenv;
...
var (Bool * TAException): rt;

var String: toolId := SD.getSibParameter ( Tracer.current node , "toolName");
...

rt := ExampleProtocol.execCommand (toolId, ...) ;

if (ToolAccess.isException (#2.(rt)) == false) then
if (#1.(rt) == true) then

Tracer.setBranch ("true");

else
Tracer.setBranch ("false");

fi;
else

...

Tracer.setNode (FAILURE);

fi;
...

endenv;

Figure 4.16: Example for the Run-Time-Code of a Check Test Block

then be matched. For the establishment of the relation between the information,
given through the input steps and the concrete placeholders, two kinds of links are
provided: Simple Links and Advance Links.

Simple Link If parameters for a test block have been defined by a SelectTB-

WithParameter dialog, this link retrieves all name/content pairs of this step.
Consequently a simple link is used when specifying test block parameters, cf.
Figure 4.15.

Advance Link An advance link can be used to access a specific attribute of the
corresponding dialog. In Figure 4.15 it is used to specify the name of the test
block.

A concrete example of the use of this approach for the specification of constraints
will be illustrated in Chapter 5.

4.4.3 Test Case Execution

Test cases can be executed in the ITE by means of the ABC -Tracer module. For
this purpose for each test case corresponding RTC code has to be implemented. In
Figure 4.16 an example of the RTC of a check test block is depicted. Note that only
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the relevant parts are shown here, whereas all others are suppressed. The RTC code
is encapsulated in a local environment to avoid name clashes between different test
blocks. First a variable is declared for storing the result of the command execution
(rt): this consists of a boolean value and an exception. After that the value of a
certain test block parameter is read out, where the reference to the currently active
node is provided by the tracer (Tracer.current node). Now the command can be
executed in the context of a specific protocol, here ExampleProtocol, where both
the tool identifier has to be given as well as well as all the relevant parameters needed
for a correct execution of the remote method. After the execution one must first
check whether general problems occurred during execution (communication failures
or problems with the test tool resp. system under test). Here #2.(rt) denotes the
projection to the second component of rt. If there are problems, we directly instruct
the tracer to proceed with a dedicated error sink (Tracer.setNode (FAILURE)).
Otherwise we are finally able to evaluate the real result and to proceed with either
the true or false branch (e.g. Tracer.setBranch ("true")). Note that the RTC
code can be generated automatically in most cases, cf. Section 4.5.2.

The detailed communication that takes place when a test block is executed can be
seen in Figure 4.17. The call to execCommand within a test block is invoked at the
corresponding protocol adapter. Here the two kinds of parameters are needed: the
“normal” parameter are used to e.g. determine the concrete tool, whereas the op-
tional parameters are transferred to the real (remote) test tool (here denoted through
params). The protocol adapter first resolves the local test tool via its unique tool
identifier, which is given as a parameter, from the ToolManager. The ToolManager
is available as a singleton. The local test tool serves as a facade to the remote test
tool, which provides the real functionality of the corresponding test protocol. With
this information, i.e. the local test tool facade, together with the information about
the protocol (available from the protocol adapter itself) and eventually additional
information about the considered system interface, the concrete (remote) test pro-
tocol instance is retrieved by the local test tool, via the remote test tool. Before
the command can really be executed it has to be registered at the CommandManager.
This is needed to allow subsequent check test blocks to refer to prior actions via a
unique command identifier. The CommandManager stores the command identifiers as
well as the start and the end time of their execution. Finally after the registration of
the command it can be executed via the concrete remote test protocol. At the end of
the execution the protocol adapter informs the CommandManager of the termination
of the command, and returns itself.
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Figure 4.17: Command execution
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4.4.4 Test Case Analysis

During the test case execution and in cooperation with the other ITE components
the test coordinator gathers detailed information and prepares it for a test case
analysis in the form of a test report. The basis of the test reports is an XML DTD,
cf. appendix B.2. The key reason for a test report is to collect characterizing infor-
mation about the system under test (configuration, version, ...), the involved test
tools (name, version, used protocols, ...), and the results of the real test execution
(processed test blocks with parameterization, execution time, ...). All this data is
important for a sophisticated analysis of the test runs afterwards, and furthermore
ensures repeatable tests, as it provides enough information to set up the test sce-
nario properly. In general a test report summarizes the execution information about
a whole test suite.

The module ReportGenerator provides the needed functionality for the generation
of a test report. So basically, specific internal test blocks are needed for the general
handling of test reports and the RTC code of (external) test blocks has to be further
annotated so that a suitable test report can be generated. Usually, all the meta data
that cannot be gathered from within a test case itself must be requested from the
test engineer before test execution, e.g. a detailed description of the considered
test setting. In the following we discuss the functionality provided by the Report-

Generator module in more detail:

openReport Creates a new report and opens it for processing.

closeReport Closes a report.

setScenario Allows the naming of a scenario.

describeTestTool Describes a test tool. Here all relevant data about a test tool
can be logged, e.g. its name, version, IP address, configuration, etc. Note that
this information is usually already provided by the involved test tools and can
be retrieved by getInfo.

describeSystem Describes the system under test. Again all relevant data can
be logged, e.g. names and versions of the subsystems, further configuration
information, etc. This information is also available by the corresponding test
tool (getSystemInformation).

startTestCase Begins a new test case section in the test report.

addLogEntry Allows the logging of various data in a test report.
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logTestBlockData Logs the execution of a test block. Here not only the time-
stamp and the name of the test block is logged, but, more important, the
concrete parameterization and the default one. Eventually, when connected
to a version control system, the version number is logged.

logBranch Logs the chosen branch during execution. Together with the informa-
tion of the executed test blocks this defines the complete execution sequence.

addErrorMsg Specific error messages can be logged, e.g. the processing of the test
block Failed.

Taken together a test report provides enough information to present either a com-
pressed overview about the execution of a test suite, i.e. in particular whether the
whole test suite evaluates to passed or failed, or an elaborated test execution log,
where detailed information about the execution of a single test case is given. The
ITE manages the test reports by a special internet service that is able to provide
role-based access to test reports, together with the presentation of test reports at
different levels of detail, suitable for each role. E.g. guests will only see a compressed
overview of selected test suites, whereas test engineers are allowed to see full test
reports. The usage of this internet service will be presented in Chapter 5.

4.5 Test Tool Integration

This section discusses how new test tools can be integrated into the ITE. There are
three main tasks that have to be carried out during the integration of a new test
tool:

1. Definition of an IDL for the remote access of the test tool and at least one
IDL that specifies a test protocol.

2. Implementation of the proposed functionality in the test tool so that it can be
exported via CORBA to the ITE.

3. Based on the offered IDL the functionality of the test tool must be integrated
into the ITE so that it is accessible within the interpreter.

The definition of an appropriate IDL depends on a concrete test setting as well as
on the abilities of a test tool, and can therefore not be solved in advance. Assuming
that this IDL already exists, the other two tasks will be discussed in more detail
below. Concrete examples for the definition of appropriate IDL’s can be found in
Section 4.6.1 and Chapter 5.
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4.5.1 Implementation of a CORBA Interface in a Test Tool

Figure 4.18: Variants for the Implementation of a CORBA Interface in a Test Tool

The implementation of the CORBA interface in a test tool can be done in at least
three different variants, cf. Figure 4.18:

Integration The CORBA interface will be fully integrated into the test tool. This
is only possible when the source code of the test tool is available.

Extension The CORBA interface will be implemented in a separate library. This
library is responsible for the communication aspects as well as for controlling
the test tool. One possibility is that the test tool initializes the library and
afterwards calls a special method. This method transfers the execution flow
to the external library so that it is able to control the test tool.

Encapsulation This approach is particularly well suited to command line test
tools. Here a CORBA server will be implemented and it realizes the required
functionality by delegating it to the test tool. For this purpose the test tool will
be called, together with all necessary command line options and parameters,
in a shell.

4.5.2 Integration of a CORBA Interface into the Integrated
Test Environment

For the integration of a test tool into the ITE, the corresponding adapters have to
be implemented. Furthermore, we need test blocks, together with RTC that provide
access to the functionality during test case design. Most of the work, however, that
has to be done during the integration of test tools into the ITE, can be automated.
Figure 4.19 sketches the workflow of the automatic generation of adapter code as
well as of the test blocks. An IDL describing the test protocol serves as the source
of information for the transformation process. On the one hand the stubs for the
IDL will be generated with a “normal” IDL Compiler, shipped with the CORBA
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Figure 4.19: Workflow for the Automated Integration of Test Tools in the ITE

ORB. On the other hand a special IDL-to-Adapter compiler is used to create a
corresponding protocol adapter, where for each method of the IDL a HLL function
will be generated. The IDL together with the protocol adapter is also the source for
creating test blocks with the IDL-to-TB compiler. For each function of the protocol
adapter a matching test block will be created as well. The test blocks can then be
used in the test case design. For the execution of test cases, RTC for the test blocks
also needs to be generated. For this purpose the test block interface, together with
special templates, forms the basis for creating its particular RTC by means of the
TB-to-RTC compiler for each test block.

In the following we describe each of the used compilers in detail.



4.5. Test Tool Integration 93

<<IDL>>
TestToolAccess

<<IDL>>
TestToolAccess1

<<IDL>>
Protocol

<<IDL>>
ProtocolA

<<IDL>>
ProtocolB

<<Adapter>>
ProtocolB

<<Interface>>
TestToolAccess1

TestToolAccess1

<<Interface>>
TestTool1

TestTool1

<<Interface>>
TestUtil1

TestUtil1

<<Adapter>>
ProtocolB

<<Interface>>
ProtocolA

<<Interface>>
ProtocolB

ProtocolA ProtocolB

<<Interface>>
TestTool

Generated

Figure 4.20: Tool Integration

IDL to Adapter Compiler

While the generation of the protocol adapter out of an IDL can be done automat-
ically, the implementation of (some of) the encapsulation classes still has to be
done manually. Figure 4.20 provides an overview showing which classes are needed
to make the functionality of a test tool available within the ITE. The IDL’s that
the test tool offers are shown at the top. In this class diagram the test tool pro-
vides one access interface (TestToolAccess1) and two test protocols (ProtocolA

and ProtocolB). The idl compiler generates the stubs to the IDL’s. Furthermore
the idl-to-adapter compiler generates a corresponding protocol adapter for each test
protocol6. For each method provided by the IDL a corresponding HLL function will
be created. The signature of the HLL functions will be enriched with respect to the
original IDL method, by two additional parameters: toolName and commandName.
These parameters are used to resolve the concrete test tool instance during the exe-

6Note that all code that is automatically generated is presented in light gray in Figure 4.20.
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cution, cf. Section 4.4.3. In addition, two special classes are needed by the protocol
adapter:

1. A local test tool class, acting as a facade for the remote test tool, and

2. a utility class for a test tool which helps to compute the results of check
functions.

The local test tool class manages all accesses to the remote test tool class and is a
specialization of the general TestTool class. It acts as a facade for the remote class
and provides most of its functionality by delegating it to the remote class. Note
that we view a facade in the sense of [GHJV95]. The advantage of this approach
is that the tool registry of the ITE must only handle references to local instances,
rather than storing remote objects.

Functionalities like the generation of stimuli can be translated straightforwardly into
HLL functions, as only parameters have to be transferred to the test tool and no
evaluation of the results has to be done. Therefore, the corresponding HLL functions
just return the special type TAException which captures possible communication
errors in general. The treatment of checking functions is, however, not that easy.
Checking functions usually returns the actual status of a certain property of the
system under test, e.g. the content of a GUI text label. The result has to be
compared to a reference value to achieve a boolean value that can be mapped to
the two possible outgoing branches of a check test block. Therefore the IDL has to
be further instrumented, so that for each checking function a corresponding HLL
(wrapper) function can be created (see the next paragraph as to how this can be
specified). This new function uses the original functionality to retrieve the results.
After that it uses a helper function to compare the result to the reference value
which was given as an additional parameter, and finally returns a boolean value. All
helper functions that are needed by the adapter are declared in a special interface (in
Figure 4.20 it is called TestUtil1) which is automatically generated, but needs to be
implemented manually. This can be seen as a drawback to this solution. However,
with this approach we are able to handle almost every IDL provided by a test tool,
and do not have to prescribe test tool vendors how to define their external interfaces.

IDL to Test Block Compiler

For the generation of test blocks from an IDL we have to provide a corresponding test
block for each generated adapter function. For the checking functions, see above,
we need to provide test blocks, that are also able to specify a reference value for the
comparison. Furthermore, we want to allow certain parameters of a test block to be
specified as enumerations. This makes the test case design a lot easier afterwards.
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All of our instrumentations are defined through special comments in the IDL to
ensure that the IDL can be used for other purposes as well, e.g. to compile stubs
with the idl compiler.

Specifying Enumerations: A certain test block parameter domain can be declared
as an enumeration rather than as a string. At the end of the line, where this
parameter is declared in the IDL, the following comment has to be added:

/** case: E1 E2 ... En */

Each Ei represents a single case. Note that it is therefore useful to declare each
parameter of a method in a single line within the IDL.

Specifying special check functions: A special check function for an IDL method
which compares the result of the original method to (a set of) given reference values
can be declared. It extends the signature of the corresponding HLL function with
all parameters that are declared within this function. Note that in this case no test
block for the original IDL function will be generated.

ReturnType f (P1 p1, ..., Pn pn);

/** boolean checkF (P p); */

Here the Pi denotes the types of the parameters and pi the parameter names respec-
tively. Furthermore the return type of f, ReturnType, and the type of the reference
value P, declared in the special check method checkF, must be compatible in the
sense that they can be compared. For the comparison a corresponding function will
be defined in the interface:

<TestToolName>Util: bool compute<checkF> (ReturnType c1, P c2)

The definition of the check function finally results in an HLL function with the
following signature:
%function checkF (P1: p1, ..., Pn: pn, P: p) : (Bool * TAException)

To support user defined data types in the IDL, the interface <TestToolName>Util

also creates for each non-primitive data type a function that converts a string into
this type. This is because all parameters of test blocks are either of type integer or
strings.

Test Block to RTC Compiler

The RTC for test blocks has a recurrent structure:

1. Read out the actual values of the parameters of the test block,
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beginenv;

@PARAMETER

@EXEC

@BRANCH

endenv;

Figure 4.21: Template for the Generation of RTC for Test Blocks

2. call a method of a protocol adapter and pass (some of) the parameters, and

3. check the result to see whether an exception has occurred. If not, evaluate it
further to determine the subsequent control flow.

Therefore we propose for the generation of RTC for a test block a template based
approach. This enables us to cover almost every standard test tool. There are,
however, special test tools that need extra treatment. To support an automatic
generation of the RTC for the test blocks for these tools as well, we have devel-
oped the TB-to-RTC compiler in a general fashion so that it it possible to create
specialized instances quite easily.

The most generic template is shown in Figure 4.21. It is comprised only of the
portion needed for the execution and evaluation of certain commands. Although it
can be used directly for the generation of RTC for almost every standard test tool,
templates usually will be enriched by special HLL code that e.g. adds messages to
test reports or provides a more sophisticated analysis of exceptions. Every template,
used for the automatic generation of RTC, contains up to three special placehold-
ers: @PARAMETER, @EXEC, and @BRANCH. They will be replaced during the generation
process with concrete HLL code.

In the first case (@PARAMETER) all the values of the parameters of a test block will
be stored in local variables. Concretely, for each parameter p of a test block the
following code will be prepared:
var String: <p> := SD.getSibParameter (Tracer.current node, "<p>");

The keyword @EXEC will be replaced with an instruction to execute a command of a
protocol. The command is given by the name of the test block (command), while the
protocol, resp. the name of the adapter, is given by the keyword Protocol, prefixed
with the class of the test block (<Class>Protocol). Note that due to the fully
automated generation of the adapters consistency is guaranteed. The return type
of the HLL function depends on whether this test block is an action or check test
block. In the first case the return type is TAException, in the latter a pair consisting
of the real result and the exception type (Bool * TAException). The meaning of
the parameters was discussed in Section 4.4.3 and it was said that the optional
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parameters of a test block are finally transferred to the remote test tool, while the
others are only used for determining the corresponding test tool. Let p1, ..., pn

denote the set of optional parameters, while toolName and commandName denote
“normal” parameters, common to all test blocks7. Then the execution code is as
follows:
rt := <Class>Protocol.<command> (toolName, commandName, <p1>, ..., <pn>);

Where the variable rt is declared through var TAException: rt; or var (Bool

* TAException): rt; respectively.

Finally @BRANCH will be replaced by HLL code to determine the subsequent branch.
This again depends on whether this test block is an action or check test block. In
the first case rt has to be checked to see if a communication problem arises, in which
case we proceed with the special error sink Failure. If there is no problem we can
proceed normally with the branch default. When the current test block is a check
test block, we additionally have to choose the subsequent branch with respect to the
boolean return value of rt. The resulting HLL code is then as follows:

var Bool: e;
e := ToolAccess.isException (rt);
if (e == false) then

Tracer.setBranch ("default");
else

Tracer.setNode (FAILURE);
fi;

var Bool: e;
e := ToolAccess.isException (#2.(rt));
if (e == false) then

if (#1.(rt) == true) then
Tracer.setBranch ("passed");

else
Tracer.setBranch ("failed");

fi;
else

Tracer.setNode (FAILURE);
fi;

Action Test Block Check Test Block

The class diagram of the generic RTC generator is shown in Figure 4.22. The
abstract class RtcGenerator provides the generic functionality needed to implement
the features discussed above. The RTC can be computed from the template, where
the placeholders are replaced with the result of the functions getParameterHLLCode,
getBranchHLLCode, and getExecHLLCode. The retrieval of the parameters from a
test block is, however, already implemented in the abstract class. The Generic-

RTCGenerator implements the missing functionality in the fashion described above,
and can be used for almost every standard test tool. There are, however, special
test tools which require more effort for the generation of RTC, cf. Section 4.6. For
the implementation of a specialized instance of a RTC generator, a generator simply
inherits from either RtcGenerator or GenericRtcGenerator and is able to overwrite
the methods that are responsible for generating the HLL code for the placeholders

7Note that all parameter values are stored in local variables, where the names correspond to
the test block parameter names.



98 An Integrated Test Environment

(getParameterHLLCode, getBranchHLLCode, and getExecHLLCode). Within these
methods access to all attributes of a test block is possible, i.e. its name, class,
parameters, and its branches.

<<Abstract>>
RtcGenerator

+<<Abstract>> getExecHLLCode(): String
+<<Abstract>> getBranchHLLCode(): String
+getParameterHLLCode(): String
+getRtcCode(): String

GenericRtcGenerator
+getExecHLLCode(): String
+getBranchHLLCode(): String

Figure 4.22: Run-Time-Code Generator

To sum up, the following steps have to be performed to integrate a new test tool
into the ITE :

1. Generate the stubs for the IDL’s.

2. Compile the IDL’s into ABC adapter code.

3. Implement a tool facade for accessing the test tool.

4. Implement if required a corresponding utility class for computing the results.

5. Compile the IDL into test block interfaces.

6. Generate RTC for the test blocks.

4.6 Integration of the Rational Robot into the In-

tegrated Test Environment

Whereas standard test tools can be integrated into the ITE with the tool supported
integration process (cf. Chapter 5 and Chapter 6 for examples), within this section
we illustrate the integration of the non-standard test tool Rational Robot [Rat], capa-
ble of the functional regression testing of applications with graphical user interfaces
(GUI) running under Microsoft Windows8. The Rational Robot can automatically
play back test scripts that emulate user actions interacting with the GUI of the
application under test. So in contrast to standard test tools, the Rational Robot
comprises no fixed set of test actions resp. observation points, but they depend
inherent on the concrete application under test.

The Rational Robot test scripts can be either programmed in an extension of Visual
Basic [Mic], called SQABasic, or automatically created by capturing user actions.

8Another comparable tool is the Mercury Winrunner [Mer].
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As recorded scripts are also translated into SQABasic, they can be changed manually
afterwards. Test scripts usually refer to the GUI objects of interest via their (sym-
bolic) component names rather than via their absolute coordinates on the screen.
This provides a more general use for the scripts, as they do not depend on e.g. the
screen resolution or the applications position on the screen. Before playback, the
Rational Robot must compile scripts into machine instructions. The validity of the
system is determined by comparators at Verification Points, where GUI objects (e.g.
a certain button or a text field) are compared with a reference of what is expected
and usually comprises also non visible properties of such components. Some refer-
ences are stored in Verification Files, while others are embedded in the test script.
To sum up the Rational Robot is a general test tool which can be used for almost
every test scenario where applications with GUI’s are being considered.

For the integration of the Rational Robot we have to perform the following tasks,
cf. Section 4.5:

1. Definition of an IDL for both the test tool and the corresponding protocol(s).

2. Implementation of the CORBA-interface in the Rational Robot .

3. Integration of the CORBA-interface into the ITE.

4.6.1 Definition of an IDL for the Rational Robot

First we have to define an interface to access the test tool itself. In the case of the
Rational Robot it is not necessary to provide additional functionality that has not
already been defined in the base interface TestToolAccess. Therefore, it is sufficient
to simply inherit from it. For the definition of the supported test protocols we have
at least two different possibilities:

1. Define a specific protocol for each considered test scenario, or

2. provide a generic protocol which just supports the transfer and execution of
test scripts.

Both possibilities have both advantages and drawbacks. In the first case, we have to
define a protocol for every new test scenario that has to be integrated into the ITE.
Additionally, it is not quite clear where the corresponding test scripts are located.
An advantage will be that the protocols can be integrated using the tool supported
integration process, presented in Section 4.5.

In contrast, it is also possible to provide a generic protocol only, in principle capable
of handling all test scenarios. But then we have to establish a relationship between
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interface SQAExecProtocol : Protocol {

void execScript (FileBuffer script, SQAParameterList pars, Timestamp execAtTime)
raises ToolException;

boolean putVerificationFile (FileBuffer verificationFile, string filename)
raises ToolException;

SQALogMessageSequence getLogMessages (Timestamp startTime, Timestamp stopTime)
raises ToolException;

};

Figure 4.23: IDL for the Test Protocol of the Rational Robot

test blocks and test scripts to support an easy and flexible handling of the Rational
Robot . So in this case we need a compiler that can transform test scripts directly
into test blocks. This allows us to extend the ITE or more precisely the set of
test blocks, quite comfortably. After considering both possibilities we have decided
to use this second method. This requires more effort during the integration of the
Rational Robot , but provides a much more general and flexible usage afterwards.
Furthermore, one is not restricted to implementing specialized protocols for certain
test scenarios. To allow a broader usage of Rational Robot test scripts, we support
a parameterization of them. In this way we are able to transfer the (optional) test
block parameter at runtime to the test scripts. More technical details about this
mechanism are provided in Section 4.6.3.

A shortened version of the general test protocol supported by the Rational Robot
is given in Figure 4.23. The interface provides methods for the transfer and execu-
tion of test scripts, the transfer of verification files, and the retrieval of execution
information.

execScript This method allows us to execute a test script within the Rational
Robot . The parameters of the method are the test script itself, as well as a
concrete parameterization for the test script. The parameterization is given by
a list of SQAParameter, where a SQAParameter is a pair of parameter names
and their value. Furthermore we can specify a timestamp, that determines the
start time of the execution.

putVerificationFile This method transfers a verification file to the Rational Robot ,
which is under certain circumstances needed for the proper execution of a test
script. The verification file itself can be given as well as a filename, under
which it will be available on the Rational Robot . This method is usually
invoked before the call of the method execScript.
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getLogMessages After the successful execution of a test script the results can be
retrieved through this method. It can be specified which time slot the results
should be gathered from. However in the default case, i.e. empty timestamp,
all the results from the last script execution are collected. The result of this
method is a sequence of SQALogMessage, where each SQALogMessage is made
up of of an execution status (a boolean value), a message, and a detailed
comment.

4.6.2 Implementation of a CORBA-Interface in the Ratio-
nal Robot

Testtool Robot

ActiveX
Wrapper

Java
Bean

<<coordinates>> ITE

<<uses>> Rational
Robot

<<implements>>

Figure 4.24: CORBA-Implementation in the Rational Robot

For the implementation of a CORBA-interface in the Rational Robot one has to
extend a commercial product designed for testing standalone. To coordinate it
from within the ITE, a bypass has to be established. Fortunately, the Rational
Robot supports external Visual Basic libraries so that the pattern extension can be
applied (cf. Figure 4.18). In Figure 4.24 the general architecture of the integration
can be seen. The test tool Robot9 consists of the Rational Robot itself, together with
an external component which implements the CORBA interfaces. This external
component is an ActiveX-Component [Mic], which is wrapped around a Java-Bean.
ActiveX-Components and Java-Beans are to some extent comparable component
models. In particular, a Java-Bean can be transformed into an ActiveX-Component
through the ActiveX-Bridge [Sun]. The real implementation of the corresponding
IDL is then provided by the Java-Bean. This indirection step is needed as at the
moment CORBA is not available for Visual Basic directly.

Figure 4.25 illustrates the implementation of the coordination interface within the
Rational Robot . The Rational Robot will be started with a dedicated test script

9Note that in the remainder we will often denote the test tool Robot with Rational Robot , when
unambiguous from the context.
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(control) which initializes the CORBA connection to the ITE, i.e. registers the
test tool Rational Robot at the CORBA nameservice. After that a method of the
java bean is called (waitForScript), and this brings the Rational Robot into an
interpreter modus, i.e. it waits until a test script is provided from the ITE. Once
the ITE sends such a test script via the command execScript, the Rational Robot
executes it (Call script). Note that the test scripts are transferred at runtime
on demand and are in general not physically available to the Rational Robot in
advance. To stop the Rational Robot , a dedicated test script has to be transferred.
Finally after a successful execution of the script the Rational Robot informs all other
components (scriptExecuted) and is in the state waitForScript again.

waitForScript waitForScript

Call script

scriptExecuted

script?

Robot Java Bean/
ActiceX Component

execScript

currentCommandExecuted

Test Coordinator

Execution of
Robot-Script

true

false

Figure 4.25: Coordination of the Rational Robot through the ITE

4.6.3 Integration of the CORBA-Interface into the Inte-
grated Test Environment

The tool chain presented in Section 4.5.2 cannot be used for the integration of the
Rational Robot into the ITE. This is because the test functionality is not provided
through the IDL but through the test scripts of the Rational Robot and this gives
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more flexibility for extending the test block palette. This way the Rational Robot can
be used as a generic test tool, capable of testing almost every GUI based application.
For the integration there are two tasks:

1. Implementation of adapter code for the IDL SQAExecProtocol and

2. generation of test blocks and their RTC for each test script.

Implementation of Adapter Code

Although the general principle of the generation of suitable adapter code for the IDL
is similar, the implementation is in the case of the Rational Robot more sophisticated,
as all three methods of the IDL need special treatment.

execScript When executing a test script the compiled test script has to be trans-
ferred to the Rational Robot at runtime. It is, however, not suitable to specify
the binary code of the compiled test script by a test block parameter. There-
fore we propose to specify the (local) filename of the test script only. The
HLL function execScript is then responsible for loading the binary file and
for passing it to the test tool. In addition it is possible to parameterize the test
scripts. For this purpose a map of parameters can be passed, realized through
two lists of strings, where the first one contains the keys and the second one
the values.

putVerificationFile Each test script can refer to several Verification Files, where
comparators which contain the reference GUI state are stored. The prefix of a
test script and the prefixes of its corresponding verification files are identical
and these can be used to determine all verification files for a given test script.
An additional HLL function putAllVerfificationFiles scans the directory
where the test script is located for corresponding verification files, loads them,
and calls for each the IDL method putVerificationFile.

getLogMessages This method allows us to retrieve the results of the execution
of a test script from the Rational Robot . The original method from the IDL
returns all log messages within an interval which is given by parameters. The
HLL function, however, is able to retrieve the timing information via the corre-
sponding tool name and the command identifier from the command manager,
cf. Figure 4.17. For a further evaluation, an additional HLL type SQALog-

Message has to be created. The result of the HLL method getLogMessages

will be a list of SQALogMessage.
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Generation of Test Blocks for Test Scripts

Figure 4.26: Workflow for the Generation of Test Blocks for the Rational Robot

To support a convenient usage of the Rational Robot by the ITE, test scripts have
to be compiled automatically into test blocks and their RTC. In Figure 4.26 the
general approach is sketched. The test block interface is compiled by the Rec-to-TB
compiler out of its corresponding test script. The test block interface, together with
a special template, serves as a basis for the generation of the RTC through a special
instance of the TB-to-RTC compiler.

The Rec-to-TB compiler is quite simple: it creates a test block for the test script,
where the name is just the name of the test script, the class is SQACommon, the
parameters are toolName and commandName, and one branch is defined (default).
This is, however, not always sufficient, in particular one is not able to define check
test blocks. Therefore, it is possible to refine each of the elements of a test block
interface by means of a special comment at the beginning of a test script10. So
it is easily possible to define a new name (#SIB name) resp. class (#CLS class).
Furthermore, one can define additional parameters (#PAR p ...), which can then
be accessed in a test script via the special method getParam ("p"). Note that
all parameter values are stored as strings. Finally it is also possible to define two

10In test scripts for the Rational Robot a comment begins with the special character #.
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outgoing branches instead of the default one. Here it should be noted that test
scripts that define more than two branches are rejected by the compiler.

The special TB-to-RTC compiler ensures that the specialities of the protocol are
taken into account for the generation of RTC. In particular the handling of execution
code together with the handling of the branches has to be specialized.

getExecHLLCode The compiler has to determine the full qualified name of the
corresponding test script <name>, and has to build the parameter map. Let
p1,..., pn be the set of optional parameters of the test block and v1,..., vn

their values respectively. The execution code is then as follows:

var TAException: rt;
rt := SQAExecProtocol.putAllVerificationFiles (toolName, <name>);
if (ToolAccess.isException(rt) == true) then

Tracer.setNode (FAILURE);
else

rt := SQAExecProtocol.execScript (toolName, commandName, <name>,
["<p1>", ..., "<pn>"],
["<v1>", ..., "<vn>"]);

fi;

getBranchHLLCode The HLL code for the determination of the outgoing branches
is quite straightforward. First the log messages from the Rational Robot are
evaluated in the template and the result is stored in a special variable result.
Then a simple evaluation of the log messages is presented, where the status of
the first message determines the overall result:

var Bool : result := true;
var (SQALogMessage List * TAException): logs;
logs := SQAExecProtocol.getLogMessages (toolName, commandName);
if (ToolAccess.isException(#2.(rt2)) == false) then

var SQALogMessage: msg := hd (logs);
result := SQAExecProtocol.getStatus (msg);

fi;

The description of the Rational Robot template presented here is rather simple;
one may think, however, of more sophisticated evaluation strategies. The HLL
code for the branch selection is then as follows:

Tracer.setBranch ("default");

if (result == true) then
Tracer.setBranch ("true");

else
Tracer.setBranch ("false");

fi;
Action Test Block Check Test Block
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In summary this approach ensures the required flexibility. The integration effort is
higher than for standard test tools, but as the Rational Robot is a generic test tool,
suitable for testing various settings, it is adequate because it only has to be done
once. The generation of test blocks directly out of (generalized) test scripts allows
an easy integration of new test settings.



Chapter 5

Testing Complex Systems with the
Integrated Test Environment

This chapter illustrates the use of the ITE by means of a concrete example: the test
of a coffee machine server1. The example test setting is rather intuitive so that we can
concentrate on the tasks that are defined in the test process, cf. Section 3.3.2. First
we will introduce the example that will guide us through this chapter in Section 5.1.
After that the integration of a particular test tool for this scenario is presented in
Section 5.2, using the automated integration process. Finally the last section covers
all end-user aspects concerning the use of the ITE for the test of complex systems
(Section 5.3).

5.1 Introduction

Figure 5.1 shows the architecture of the Coffee Machine Server from a logical point of
view, i.e. the connections shown denotes no physical connections, as all components
are connected through a LAN or WAN. The Coffee Machine Server is able to control
two instances of concrete coffee machines, i.e. it can switch the coffee machines on
or standby, brew coffee, and dispense fresh coffee. The coffee machine server also
provides a remote interface via Remote Method Invocation (RMI ) [RMI], so that
remote clients can gather the current status of the coffee machines (on/standby,
coffee pot full/empty), switch the machine on or on standby, and can brew coffee.
It is, however, not possible to dispense fresh coffee via a remote client. The remote
access to the coffee machine service for end-user’s is provided through a web-based
application. This application allows us to connect to the coffee machine server and to

1The commonly used vendor machine example in process algebra was the inspiration for this
example.
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Figure 5.1: Logical Architecture of the Coffee Machine Server

brew coffee on one of the corresponding coffee machines. Afterwards it allows us to
check whether the coffee machine is free again. To access the web-based application
we use two instances of a web browser. Each browser is in the test setting responsible
for dealing with a particular instance of one of the coffee machines.

For test purposes the setting described above has to be enriched by several test tools.
The Coffee Machine Test Tool is responsible for testing the coffee machine server.
All possible actions are mapped by the test tool. In addition it provides methods
for checking the status of the coffee machines (on/standby resp. full/empty). This
functionality will be exported to the ITE via CORBA. The web-based application
can be tested via a “normal” browser which needs to provide a test interface as well.
Within this test interface it must be at least possible to follow links on an HTML
page and to check certain properties of them. Again the Browser Test Tool can be
accessed from the ITE via CORBA. Note that it is also possible to use the Rational
Robot for controlling a browser, as it is a generic GUI test tool.
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interface BrowserProtocol : Protocol {
void initBrowser (in string baseURL) raises (ToolException);

void resetBrowser () raises (ToolException);

void followLink (in string link) raises (ToolException);

string getTitle () raises (ToolException);
/**

boolean checkTitle (in string title);
*/

};

Figure 5.2: Instrumented IDL for the Browser Test Tool

5.2 Integration of the Test Tools

The test process starts with a setup phase, cf. Section 3.3.2. Here it is particularly
important to define and implement the test blocks on the basis of the corresponding
test tools. With the tool-supported integration process, proposed in Section 4.5, this
can be done automatically on the basis of an interface definition of the test tool.

In the next section we will illustrate the integration process for the Browser Test
Tool, a generic Java browser. This test tool allows us to initialize resp. reset the
browser, to follow a link, and to get the title of the currently shown HTML page.
In Figure 5.2 the BrowserProtocol IDL as a specialization of the generic interface
Protocol is presented. The methods result in corresponding functions of the proto-
col adapter, cf. Figure 5.3. For the last method (getTitle), an additional adapter
function will be created, which returns a pair consisting of a boolean value and the
(possible) exception. This function is used for providing the associated check test
block, cf. Figure 5.4. It is specified in the comment underneath the original IDL
method. In this special case the adapter function checkTitle extends the original
parameter list of the IDL method with the parameter title. Note that although
an adapter method for getTitle will be created, no corresponding test block will
be generated.

%function initBrowser (String: toolId, String: cmdId, String: baseURL) : TAException

%function resetBrowser (String: toolId, String: cmdId) : TAException

%function followLink (String: toolId, String: cmdId, String: link) : TAException

%function getTitle (String: toolId, String: cmdId) : TAException

%function checkTitle (String: toolId, String: cmdId, String: title) : (Bool * TAException)

Figure 5.3: Signatures of the corresponding Adapter Functions
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For the computation of the result of the adapter function checkTitle a helper
method is needed. All helper methods, and generally there are more than one,
are gathered in a corresponding utility class called BrowserUtil, implemented in
C++. The idl-to-adapter compiler generates the header files for this class, whereas
the implementation body has to be implemented manually. In this special case it
results in the following declaration in the header file:
static bool computeCheckTitle (const char* cmp value1, const char* cmp value2);

This method compares two strings and is used in the generated implementation of
checkTitle to compare the parameter value of title with the result of the IDL
method getTitle.

Furthermore, a local test tool class has to be implemented, cf. Section 4.5.2. This
class inherits from a common interface TestTool. Basically all relevant functionality
has already been implemented in the base class. Therefore we only have to provide
special constructors to ensure a proper initialization of the facade class and a com-
parison operator. So for the test tool Browser we need to implement the following
methods:

BrowserTool (BrowserTool& tool);

BrowserTool (BrowserAccess_ptr access);

void operator= (BrowserTool& tool);

Here the class BrowserAccess ptr denotes a pointer to the corresponding protocol
BrowserAccess, which has been generated from the CORBA idl compiler.

Finally in Figure 5.4 the interface of the test block checkTitle is shown. The
parameter title is marked as optional to denote that it is a parameter of the
corresponding IDL method. Within the RTC code of the test block the adapter
function BrowserProtocol.checkTitle (toolId, cmdId, title) is called.

SIB checkTitle

CLS Browser

PAR toolName STR 40 "Browser"

PAR commandName STR 40 "checkTitle"

PAR OPT title STR 40 ""

BR passed

BR failed

Figure 5.4: Interface of Test Block checkTitle
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5.3 Using the Integrated Test Environment

Figure 5.5: Main Window of the Test Coordinator

The main window of the test coordinator can be seen in Figure 5.5. It consists
of the ABC interpreter window in the background and a project window. In the
ABC interpreter window several information messages are logged. In particular the
currently loaded modules are presented to the user, together with additional diag-
nostic information. In this special case it is noted that the CORBA initialization
was successful and that the ToolManager is now attached to the CORBA nameser-
vice. In addition, the ITE instance of the ABC interpreter provides a special menu
ITE, which covers all global aspects of the ITE. The menu allows users to access the
project window which manages test cases. Within the ITE test cases are organized
by test projects, where a single test project is in some respects comparable to a test
suite, as they both combine test cases. But test projects offer more functionality
than plain test suites, as they also organize test blocks and constraints. Furthermore
test projects are hierarchical, meaning that all defined test blocks and constraints
of a test project can be included together. In principle it is possible to include test
cases as well, but they are suppressed in the project window to keep it manageable.
The test project window allows us to browse all available test projects, to create
new test cases, to load existing ones, and to create macros which can later be used
as atomic test blocks.
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By the ITE menu of the ABC interpreter it is also possible to control the report
module. The user can turn the report mode on or off, which is useful when developing
new test cases. Furthermore, a user can open new reports or can close active ones.
The report management can also be controlled via specific test blocks in the test
cases directly.

5.3.1 Defining Properties using the Constraint Editor

Figure 5.6: The Constraint Editor of the ITE

After the definition of the test blocks, the test process continues with the definition
of constraints. For this purpose the ITE provides a special editor that offers a
graphical user interface on top of the pattern system based on XML documents (see
Section 4.4.2). A few dialogs of the constraint editor are shown in Figure 5.6. The
definition of a new constraint starts with the selection of an appropriate composite
pattern. As discussed in Section 4.4.2, composite patterns are organized via classes.
After the class has been chosen, a pattern of this class can be selected. A detailed
description is presented in the rightmost text field, to help a user during the selection
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process. Once a composite pattern has been chosen, the user is asked to provide
some meta data, i.e. a name and an informal description has to be given. Finally
the user must fill the slots of the pattern with concrete test blocks. At the bottom
of Figure 5.6 a concrete one is presented. Here the test block that allocates or
requests the resource has to be selected for the composite pattern Resource Balance,
cf. Example 3.4. In Figure 5.6 the test block brew is chosen. The definition of this
pattern prescribes the dialog SelectTBWithParameters, i.e. the user has to specify
a test block together with its parameters (cf. Figure 4.15). All parameters of the
test block brew are listed at the bottom of this dialog. For a single parameter either
a concrete value can be given (select) or the check box for all denotes that it
will be bound to the quantifier. The generated constraints will then be immediately
available within the ITE.

5.3.2 Designing Test Cases

Figure 5.7: Designing Test Cases

As shown in Figure 5.7 the test blocks occurring in test cases are presented to the
user according to their classes, in palettes accessible from the test coordinator’s GUI.
Note that different test block classes are represented through different icons. Users
construct test cases by drag-and-drop of the desired test blocks from a palette onto
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the canvas. The control flow design to steer the execution is also done graphically,
by defining

— the workflows contained in the test case. This is done by connecting the test
blocks through edges, and

— the data and events steering the branching, done by configuring each test
block’s internal parameters.

The test block parameter can be configured via a special dialog presented in Fig-
ure 5.7. It allows us to set all parameters for the chosen test block. Here a tool
identifier has to be specified to identify the corresponding test tool at execution
time. In the example presented here the first followLink test block will be exe-
cuted on the tool with the identifier browser0, whereas the second one at browser1.
To support user readable test cases, the test blocks in a test case can be renamed to
e.g. give a hint as to which tool instance will execute the action or which link will
be followed.

Furthermore the editor provides functionality, common to each graphical editor:

— Loading and saving of test cases,

— an undo/redo mechanism, and

— a highly configurable layouter module.

For a detailed discussion of this features please refer to [MET99].

A concrete test case is shown in Figure 5.8. Every test case starts with an ini-
tialization phase, where all used test tools are initialized. The first test block
(startTestCase) is an internal one which mainly declares the two special exception
states failure and commFailure. These two error sinks allow a sophisticated er-
ror diagnosis. While the first one captures problems that occur within a test tool
resp. the system under test, the second one catches general communication failures,
i.e. CORBA exceptions. The initialization phase proceeds with the initialization of
the test tools needed in the test case. Here two test tools are prepared through
prepareCMT and prepareBT. A prepare<Tool> test block binds a test tool to a
symbolic name through the ToolManager. Afterwards the test tool Browser needs
to be initialized before being used.

After the initialization phase, in this example a single stimulus is sent to the sys-
tem, i.e. the coffee machine will be switched on through the browser. During the
evaluation phase, the responses will be checked by the coffee machine test tool, i.e.
whether the coffee machine is now properly switched on or not. Note that even this
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Figure 5.8: Example of a simple Test Case

simple test case captures the essence of complex systems, i.e. the stimulation by one
test interface (browser) and the observation by another (coffee machine). Finally a
reset will be performed on the Browser.

5.3.3 Verifying Test Cases

After their design the test cases are subject to verification. Here both local and
global properties of the test cases are checked. Both checks can be initiated directly
from within the editor through the LC resp. MC button. Figure 5.9 shows the results
of a local check, where here concretely two errors were detected. The first one
concerns the parameterization of the marked test block brew, where the parameter
toolName is unset. This check for a correct parameterization is the most common
application of local checking. The other error, however, concerns the start node,
which is not marked as such. The corresponding local check code assures that every
test block without ingoing edges has to be marked as a start node. Note, however,
that the second erroneous node is not visible within the screenshot of Figure 5.9.
When checking local properties for each error the corresponding node is usually
shown in the editor.
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Figure 5.9: Local Check of a Test Case

After the correction of the errors, that were found during the local check, the global
check will be initiated. The constraints are organized in a constraint database, see
Figure 5.10. Constraints are also part of a test project, so that only the constraints
of the current active test project and all included ones are visible. The user chooses
one or more constraints of interest out of the constraint database, expressing sin-
gle aspects of the test case under construction, and checks their correctness online.
Note that the test engineer is not bothered with the concrete syntax of the con-
straints, but only with their abstract description. If a test case violates a constraint
detailed diagnostic information concerning the mistake and its possible location will
be presented, cf. Figure 5.10. This is repeated until all relevant aspects have been
treated. Due to the online verification with the model checker, constraint violations
are immediately detected at design time.

The failure detected in Figure 5.10 is a good example of commonly detected errors.
The user takes the coffee out of the machine in the passed path, but has forgotten
to release the coffee pot after the test case has been evaluated to failed. This,
however, usually affects the execution of further test cases, as the overall system has
not returned to its initial state.
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Figure 5.10: Global Check of a Test Case
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5.3.4 Executing Test Cases

Figure 5.11: Executing Test Cases

Once the test cases have passed the verification step they can be immediately exe-
cuted by means of the Tracer. Starting at a dedicated test block, the tracer proceeds
from test block to test block. The current execution path is marked in the test case.
The execution can be controlled through the Tracer dialog, cf. Figure 5.11. Here
detailed parameters about the execution can be set, e.g. the delay between each test
block execution. Furthermore, the execution can be done step by step to have full
control, or automatically. The test block being carried out is marked in the test
case and is also presented in the middle of the dialog.

5.3.5 Analyzing Test Cases

The ITE provides a web-based application for the management of test reports. It
is designed as a role-based, proactive web service, which supports the cooperation
process of teams of test engineers. We focus on the role-based and permission-
based management of the test protocols: the web service provides several roles with
different rights to access test reports and functionalities. This ensures that all users
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Figure 5.12: Web-based Application for the Management of Test Reports

of the service get a tailored view of the scenario of their interest, which guarantees
data security and easy handling: only the functionalities (e.g. show test report,
search, delete, and modify) are presented to a user and these are supported by the
current role. Figure 5.12 presents a screenshot of the application. It provides a
comfortable search mask for accessing the database, e.g. concerning the date of test
runs, the test result, the system under test, etc. Test reports can be modified so that
different attributes can be set (e.g. the status) and comments can be added. Due to
the XML based storage of the test protocols the ITE web service is able to present
different views of the same underlying sources: the service provides different XSL
([Worb]) style sheets that generate different HTML outputs for the presentation of
the data. E.g. Figure 5.13(a) shows a test report at the detailed level required for
a test engineer, whereas Figure 5.13(b) shows a guest user’s view, as provided by
another style sheet. It only presents a rough overview of the test suite.



120
T
estin

g
C
om
p
lex
S
y
stem

s
w
ith
th
e
In
tegrated

T
est
E
n
v
iron
m
en
t

ITE-Testreport 
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System-under-test: CoffeeMachine_Demo

Übersicht

System-under-test: CoffeMachine Demo

Scenario: BrewAndGet
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26.02.2003 16:44:57
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Testprotokolle 
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verfolgter Kontrollflusszweig: default 

26.02.2003 16:44:54isFull 
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ITE-Testreport 
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Übersicht
System-under-test: CoffeeMachine_Demo
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System-under-test: CoffeeMachine Demo
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Figure 5.13: Test Reports
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Chapter 6

Testing Computer Telephony
Integration Solutions

Testing Complex Telephony Integration solutions is a multidimensional task which
demands automation via adequate system-level tool support. The complexity lies
in the interaction between the components, i.e. a classical telephony switch in co-
operation with applications, as well as in the short innovation cycles and the great
number of possible combinations between the telephone switch and the applications.
In previously published articles we have discussed the use of the ITE along indus-
trial applications, which we have done in cooperation with Siemens AG [Sie]. There
we have focussed on the test of a complex call center solution [NMH+01, HMN+01]
and on the test of a virtual switch architecture together with a web-based call man-
agement application [MNSE02, MNS02b]. The results presented in this chapter,
however, go beyond that, as we will discuss the general concepts of testing Com-
plex Telephony Integration solutions in more detail and present additional practical
results.

This chapter starts with a description of the application domain that we are con-
sidering: Computer Telephony Integration solutions (Section 6.1). After that in
Section 6.2 we discuss the specialities when testing such systems and present a suit-
able test architecture. In Section 6.3, 6.4, and 6.5 we present results from case
studies we have done together with Siemens AG. The chapter concludes with an
evaluation of the use of the ITE for the test of Computer Telephony Integration
solutions, where we discuss aspects concerning the design of test cases, as well as
economic aspects (Section 6.6).
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6.1 Computer Telephony Integration Solutions

The world of telecommunications has rapidly evolved during the last 15 years, mod-
ifying in this process its focus. In 1985 a telephone switch was “only” used as a
telephone switch. Additional components, either hardware or software, were grad-
ually developed to bring additional functionality and flexibility to the traditional
switch, e.g. in the initial days voice mail or billing systems. Today not only single
functionalities are added at a quick pace, but the switch is mutating its role into the
central element of complex heterogeneous and multivendor systems: it is nowadays
integrated into whole business solutions, e.g. in the field of hotel solutions, call center
and unified messaging applications. These solutions are called Computer Telephony
Integration (CTI ), i.e. systems consisting of telephony hardware in cooperation with
software applications, often called value-added applications. CTI solutions aim to
support the workflows involved in the use of telephones by means of applications,
e.g.

— Support of the establishment of telephone connections through an application
where e.g. a number can be dialed from within an electronic address book.

— Automatic dialing, e.g. in a call center, an application organizes the process
of connecting free call center agents to customers from a call list.

— Incoming calls will be announced, and additional information concerning the
conversational partner will be presented within an application, where the part-
ner is identified by his or her call number.

— Intelligent call forwarding, based on e.g. the incoming call number or on an
automatic interaction with the caller.

— Logging of communication details, e.g. the call parties, call duration, further
notes, etc.

The first attempt to implement CTI solutions was to directly connect computers to
a telephone switch or Private Automatic Branch Exchange (PABX ), to create an
added value for the PABX, cf. Figure 6.1 (left). Here the interaction between the
PABX and the applications, located on a dedicated application server, was almost
exclusively implemented via proprietary interfaces. Today the definition of open
standards like e.g. the Computer Supported Telecommunication Applications Proto-
col (CSTA) [Eur94, Eur98], which specifies command sets and the data structures
needed for telephony applications, or Telephony Application Programming Interface
(TAPI ) [Mic01], which defines a programming interface for telephony applications,
pushes the field towards the development of new, system-level applications. Nowa-
days a PABX is just another node in an IP based network, and the communication



6.1. Computer Telephony Integration Solutions 125

Figure 6.1: Evolution of CTI Platforms

between the PABX and its (IP-) telephones and application servers resp. clients
takes place on the LAN, as depicted in Figure 6.1 (right).

The diagram in Figure 6.2 (left) documents the trend towards a growing product
integration in terms of the increase in the number of value-added applications that
work in average on or with a PABX. As one can see, the integration factor has been
rapidly increasing since 1995, and the trend points in the direction of even larger
value-added product ranges.

A parallel but concurring aspect is the increasing number of major PABX releases
per year (cf. Figure 6.2 right). This trend is driven mainly by the convergence
between classical telecommunication technology and modern IP technology, e.g.
“Voice-over-IP”: a modern PABX is itself a complete complex system, and expe-
riences the accelerating evolutionary pace of hardware and software in combination!
In order to summarize the overall complexity of CTI solutions, we must look at
the interaction between the components as well as in short innovation cycles and
the great number of possible combinations between the PABX and the value-added
applications.

A typical example of a CTI setting is illustrated in Figure 6.3, showing a midrange
PABX and its environment. The PABX is connected to the Integrated Services Dig-
ital Network (ISDN ) or, more generally, to the Public Switched Telephone Network
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Figure 6.2: Trends in the development of CTI systems: (left) growing product
integration and (right) faster paced PABX releases

(PSTN ), and acts as a “normal” telephone switch to the phones. In addition, it
communicates directly via a LAN or indirectly via an application server with CTI
applications that are executed on PCs. Like the phones, CTI applications are ac-
tive components: they may stimulate the PABX (e.g. initiate calls), and they also
react to stimuli sent by the PABX (e.g. announce incoming calls). Therefore in a
system-level test scenario it is necessary to investigate the interaction between such
subsystems.

Even the relatively simple scenario of Figure 6.3 demonstrates the complexity of CTI
platforms from the communication point of view, because there are several (internal)
protocols involved. E.g. the telephones communicate via the Corporate Network
Protocol with the PABX, whereas the PABX communicates via CSTA Phase II/III
protocol with the application server. On the application server, a TAPI service
provider performs a mapping of the CSTA protocol to the TAPI protocol, which is
the communication protocol between the application server and its clients.

In the rest of this chapter we first briefly recall the Open Systems Interconnection ba-
sic reference model for communication protocols, before we focus on some technical
details concerning the involved protocols.
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Figure 6.3: Example of a CTI Setting

Open Systems Interconnection – ISO/OSI Basic Reference Model

The objective of the Open Systems Interconnection (OSI ) [ISO84] model is to pro-
vide a set of design standards for equipment manufacturers, so they can communicate
with each other. The OSI model defines a hierarchical architecture that logically
partitions the functions required to support system-to-system communication. The
OSI model has seven layers, each of which has a different level of abstraction and
performs a well-defined function, cf. Figure 6.4. The principles that were applied to
arrive at the seven layers are as follows: a layer should be created where a different
level of abstraction is needed; each layer should perform a well-defined function;
the layer boundaries should be chosen to minimize the information flow across the
interfaces; and finally the number of layers should be large enough that distinct
functions do not have to be thrown together in the same layer, and small enough
that the architecture does not become unwieldy.

The layered approach offers several advantages. By separating networking functions
into logical smaller pieces, network problems can be more easily solved through a
divide-and-conquer methodology. OSI layers also allow extensibility. New protocols
and other network services are generally easier to add to a layered architecture.

The application, presentation and session layers comprise the upper layers of the
OSI Model. Software in these layers performs application-specific functions like data
formatting, encryption, and connection management. The transport, network, data
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Figure 6.4: Open Systems Interconnection – ISO/OSI Basic Reference Model

link, and physical layers comprise the lower layers, which provide more primitive
network-specific functions like routing, addressing, and flow controls.

Integrated Services Digital Network Protocol

The Integrated Services Digital Network Protocol (ISDN ) [CCI89a, CCI89b] is a
design for a completely digital telephone/telecommunications network. It is capable
of carrying voice, data, images, video, etc. It is also designed to provide a single
interface (in terms of both hardware and communication protocols) for hooking up
a phone, a fax machine, or a computer. ISDN is based on a number of fundamental
building-blocks. First, there are two types of ISDN “channels” or communication
paths:

B-channel The Bearer (“B”) channel is a 64 kbps channel which can be used for
voice, video, data, or multimedia calls. B-channels can be joined together for
even higher bandwidth applications.

D-channel The Delta (“D”) channel can be either a 16 kbps or a 64 kbps channel
used primarily for communications (or “signaling”) between switching equip-
ment in the ISDN network and the local ISDN equipment. In Europe the
DSS-1 protocol [CCI93] is used for the corresponding control protocol.

These ISDN channels are delivered to the user in one of two pre-defined configura-
tions: Basic Rate Interface resp. Primary Rate Interface. The difference between
these two configurations lies in the number of available B-channels (2 resp. 30 B-
channels). The physical interface of ISDN is called S0 resp. S2M.
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It must be noted that in contrast to the reference model of [ISO84] for ISDN the
D-channel is only defined up to layer 3 and the B-channel only for layer 1. So the
ISDN protocol is responsible for the management of connections, whereas the layers
4 to 7 are only implemented in e.g. the telephones.

Figure 6.5: Establishment of a connection with DSS-1

The establishment of a connection between two ISDN devices according to the DSS-1
protocol is depicted in Figure 6.5. A time-sensitive interplay of protocol messages
is needed for this purpose. Note that we present the connection procedure in a
somewhat simplified manner, as in the real implementation more timers are used.
First the initiating device (DeviceA) sends a Setup command. Now the called de-
vice (DeviceB) reacts to the Setup with a Setup Acknowledge. After the Setup

Acknowledge the called device has to send an Alert to the initiator within a well-
defined amount of time (specified by means of the timer T304). After the initiator
receives this message, it can present it to the user, e.g. by changing the ring tone. Fi-
nally after a Connect from the called device, i.e. the user has answered the incoming
call, a Connect Acknowledge establishes the connection.

Corporate Network Protocol

The Corporate Network Protocol (CorNet) is a proprietary ISDN oriented D-channel
layer 3 protocol, defining the communication between a Siemens PABX (Hicom
150e) [Sie] and its telephones. CorNet can be transported on the physical resp.
link layer through ISDN, as well as through TCP/IP or even RS.232. The CorNet
protocol basically offers commands for handling resp. controlling a telephone, e.g.

— commands to lift up the receiver or replace it, type digits, and where applicable
alphanumeric symbols or special buttons,
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— signals for modifying display lines, brightness and colour of lamps, or ringer
mode and ringer pattern,

— commands for the activation resp. deactivation of specific features of the
PABX.

Computer Supported Telecommunication Applications Protocol

The Computer Supported Telecommunication Applications Protocol (CSTA) [Eur94,
Eur98] specifies an application interface and protocols for monitoring and controlling
calls and devices in a communications network. These calls and devices may support
various media and can reside in various network environments such as IP, Switched
Circuit Networks and mobile networks. CSTA, however, abstracts various details of
underlying signalling protocols (e.g. SIP/H.323) and networks for the applications.
CSTA is an application layer protocol and the CSTA protocol messages can be
transported on the lower layers again through ISDN, TCP/IP, and RS.232.

Depending on how one looks at it, CSTA defines a telephony-process model for ap-
plications and a computing process model for the PABX. In our case, we are inter-
ested in CSTA-services as well as in the CSTA-protocol: by means of the protocol
an application accesses the CSTA-telephony-services from the PABX or provides
CSTA-computing-services to the PABX. Each model consists of a set of objects and
rules to change the states of the objects. Examples of telephony objects include

Device Objects representing anything that allows users to access telecommunica-
tions services. They can be either physical (buttons, lines, and stations) or
logical (a group of devices, e.g. an automatic call distribution (ACD) group).
A device has attributes, including device type, device identifier, and device
state that can be monitored and manipulated by an application.

Call Objects describing logical sessions among calling and called parties. The call
behaviour, i.e. its establishment and release, can be observed and manipulated
by an application. A call object representing a call session has attributes
such as identifier and state and offers operations such as make call or clear
connection. One or more devices may involved in a call in different phases.

Connection Objects representing a relationship between a call and a device. It
is characterized by attributes such as identifier and state and by operations
such as hold or clear. Many CSTA-services, such as hold-call, reconnect-call,
or clear-call, operate directly on connections.

Basically, CSTA-services consist of a request and a response, both possibly parame-
terized. A monitor service can be activated to track control and other activities and
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to receive notification of all changes in the PABX. Starting a monitor indicates that
an application, be it a component of the system or an external observer, wants to be
notified of changes that occur in calls, devices or applications, and device attributes
managed by the PABX. Examples of changes include arrival of a call at a device,
answering a call, and changing a device by modifying features such as “forwarding”.
Event reports are sent to the monitor-requestor.

Telephony Application Programming Interface

The Telephony Application Programming Interface (TAPI ) [Mic01] provides a uni-
form set of commands for any supported telephony device that is connected to a
computer. TAPI bridges the gap between the (abstract) telephony hardware re-
lated protocol CSTA to a concrete programming interface for building applications
through a TAPI Service Provider.

TAPI is designed to establish connections between end-points on a telephone network
and provides programming access to three objects for call control: addresses, lines
and calls. End-points are called addresses, which can be represented by a phone
number. It is possible to have more than one address on a single line, where a line
is the physical connection between each end-point and the PABX. So one location
can have multiple lines and one line can have multiple addresses. Furthermore, one
address can have multiple calls and it is possible to switch between calls, by placing
one on hold before activating another. With this technique one can also place a
call on hold, establish another call and transfer the initial call to the new address,
or join two or more calls together and have a conference. These and many other
advanced call control techniques are supported by TAPI.

6.2 System-level Testing of Complex Computer

Telephony Integration Systems

In the rapidly evolving scenario discussed in Section 6.1, the need for efficient auto-
mated regression testing is evident: whenever a release occurs, either of the PABX
or of (a subset of) the application programs that cooperate with it, – singularly
or, increasingly, in collaborative combinations – the correct functioning of the new
configurations must be certified again.

The following properties are of particular interest when testing CTI solutions:

Interdependencies The test of interdependencies between the actions of a test
case or even between actions of different test cases is needed to be able to con-
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Figure 6.6: Concrete Test Setting for a CTI Solution

tain the feature interaction problem, which occurs usually in “non-standard”
situations.

Assumptions The test of assumptions about the state of the system’s resources is
required, since this is distributed as well. Within this class of testing properties
it must be ensured that the assumptions about the systems state are correct,
i.e. the states of the applications and the PABX are synchronized.

Admissibility Criteria The test of admissibility criteria for single operations is
important because of the widely distributed character of the solutions.

To test the properties discussed above the complex interplay between protocols, on
different levels of abstraction, must be considered, and it is clearly unfeasible to do
this at the level of customary, finely grained protocol analysis. This is why the ITE
is particularly well suited to deal with CTI systems. Within the ITE it is possible to
cover the overall system in a uniform way, i.e. test blocks for e.g. the DSS-1 protocol
(ISDN, level 3) can be used in conjunction with application level test blocks, e.g.
which stimulate the application directly1.

1Usually stimulating a CTI application results in corresponding CSTA protocol messages (level
7).
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Additional scale complexity is introduced by the test tools themselves: for each
significant test interface a specific, dedicated test tool participates in the regression
test. Note that some test tools are able to control/observe more than one interface.
Concretely, the simple scenario shown in Figure 6.3 grows in the test laboratory to
the dimensions depicted in Figure 6.6, whereby each of the devices and applications
must be set up, steered, and reset during system-level regression test.

In the scenario considered here three different kind of test tools are supported by
the ITE :

Hicom Environment Simulator

The Hicom Environment Simulator (HUSIM 2) is a simulation device used for quality
assurance in small telecommunication systems. The scope of HUSIM is to perform
tests on a PABX of type Hicom 150e, where it simulates the behaviour of a variety
of devices:

— analog and digital telephones,

— analog and digital trunks,

— proprietary digital telephones,

— proprietary DECT base station and handsets,

— printers, account devices, CSTA devices, etc.

The HUSIM can perform operations such as: user off hook and on hook, selections,
trunk calls, speech tests, DECT base station calls, ISDN calls and so on. The
commands for the HUSIM are gathered in test scripts which can be sent to the
HUSIM by means of a special command line test tool. During test execution, the
messages sent from the PABX are received by the HUSIM and sent back to the test
tool. The test tool can decode the messages and e.g. store them in a plain text
file. The test evaluation will be done by means of a comparison of the result file
with a previously recorded reference file. This low level of abstraction during test
case evaluation is the main reason why we do not propose to integrate the HUSIM
directly. Instead, the HUSIM will be controlled by another test tool (Hipermon),
which establishes a level of abstraction higher than that of the HUSIM.

2In German it denotes Hicom Umwelt Simulator.
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Hicom Protocol Emulator and Real-time Monitor

The Hicom Protocol Emulator and Real-time Monitor (Hipermon) [Her] is a propri-
etary test tool, well suited for the testing of CTI systems. It is capable of recording
(filtered) traces of protocols on different system interfaces simultaneously. In par-
ticular the Hipermon is able to trace the CorNet, DSS-1 and CSTA protocols on the
system interfaces LAN, S0/S2M, and V.24 (serial interface). So in the sense of an
ITE test tool the Hipermon supports three test protocols, each on three different
system interfaces.

The test functionality of the Hipermon is based on the HUSIM. The Hipermon,
however, provides a higher level of abstraction for the level 3 protocols than the
HUSIM does.

CorNet For the CorNet protocol, the Hipermon establishes a state-oriented view on
top of the message-oriented protocol. So the Hipermon keeps a record of all sent and
received protocol messages and is able to determine the actual state of all involved
telephones, given through their individual connection state, display content, and
LED state. With this abstraction a telephone can be fully controlled and observed
from the end-user’s perspective, i.e. it is possible to hook off resp. hook on, to dial
a number, to press all available buttons, and also to check the current state of the
display (-lines), to check the state of the LED’s and the ring-tone.

DSS-1 For the DSS-1 protocol, commands for the management of connections are
offered by the Hipermon. Again it is important to provide the commands from the
end-user’s perspective, as the detailed, time sensitive interplay of protocol messages
needed for the establishment of a connection between two devices (cf. Figure 6.5),
is not suitable to be used within ITE test cases. Instead the Hipermon provides
two special commands for this purpose, i.e. makeCall and acceptCall. The com-
mand makeCall implicitly activates a separate task that waits for a Connect and
sends the corresponding Connect Acknowledge within the protocol conform time-
outs. Furthermore, the command acceptCall sends first a Setup Acknowledge,
and after a well-defined period of time an Alert followed by a Connect. Note that
it is also possible to answer an ISDN call to an internal telephone with the corre-
sponding CorNet commands. Additionally the Hipermon provides commands for
clearing resp. rejecting connections, and is able to report on the current call-state
of a device.

CSTA The commands for the CSTA protocol can be mapped directly by the Hiper-
mon, as it is already an application layer protocol. It is, however, necessary to pro-
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vide check functionality that allows an abstraction of too detailed information, e.g.
concrete timestamps or connection identifier.

The Hipermon also provides functionality to e.g. manage the underlying trace buffer
(reset, retrieve, and save) and to obtain the corresponding test protocols (get-
CorNetProtocol, getDSS1Protocol, getCSTAProtocol, and getHUSIMControl-

Protocol). The latter provides commands to activate the HUSIM trace explicitly.
This is needed for certain HUSIM variants that are unable to trace all the time. In
this case, before a stimulation of the system through an application takes place, the
HUSIM must be armed in order to trace the corresponding responses of the PABX.

Overall the Hipermon provides 31 different test blocks for stimulating and observing
telephone devices (without CSTA). Please note that the integration of the Hipermon
exactly follows the automated integration process, defined in Section 4.5.

Rational Robot

The Rational Robot , as a general purpose GUI test tool (cf. Section 4.6), will be used
in several instances to steer and observe the involved applications, located either on
the application server or on a client.

In addition the test coordinator has access to the PABX itself, e.g. to perform an
initialization at the beginning of a test case execution.

6.3 Testing the HiPath ProCenter Office

The HiPath ProCenter Office (HPCO) of Siemens AG [Sie] is a total solution for
call center and messaging applications for small and medium size companies. It
offers wide-ranging application possibilities of individually matching all communi-
cation processes to corporate workflows and optimizing them. HPCO offers both
conventional call center functions such as Automatic Call Distribution (ACD) with
routing to groups of experts and messaging applications such as VoiceMail, eMail,
FaxMail, and SMS (Short Message Service via GSM).

6.3.1 Introduction to HPCO

HPCO consists of a PABX of type Hicom 150e and several applications running
on either an application server or a client. The client applications are used in
several instances, one for each involved call center agent. Additionally every call
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center agent is equipped with a telephone. For the test of the HPCO four different
applications are considered: ACD Supervisor (application server), Tray Phone, ACD
Agent, and Communications (all client PC, cf. Figure 6.7).

ACD Supervisor This application allows the supervisor or administrator to config-
ure agents, groups, etc., and to actively influence the communication process in the
call center. Furthermore, it provides detailed information about the call center in
forms of reports and statistics. During the testing of HPCO this application is used
to initialize the call center, so that it is in a well-defined configuration.

Figure 6.7: Client Applications of the HPCO

Tray Phone The Tray Phone application manages calls, i.e. initiating new calls,
holding calls, transfering calls to other agents, or initiating conference calls. Fur-
thermore, it provides status information about other agents in the call center, e.g.
whether the agent is active, off duty, or in a call.

ACD Agent This application allows a call center agent to login to resp. logout of
the call center easily, to set his status to active or off duty, etc. Additionally it
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provides information about the duration of active calls by means of a progress bar
and the duration of the post processing of calls.

Communications The Communications application offers sophisticated messaging
functions, like VoiceMail, FaxMail, eMail, and SMS. It also offers statistical infor-
mation about the groups the call-center agent is a member of, and about the agent
itself.

Furthermore, the telephone of a call-center agent continuously shows information
relevant to the agent, i.e. group association, current call status, waiting calls, and
his own status.

6.3.2 Test Setting for the HPCO

When testing HPCO an instance of the test setting of Figure 6.6 can be directly
used, where the application ACD Supervisor resides on the server, and the client
applications are distributed among the clients.

Relevant testing properties concerning the client applications are, e.g.:

— The Tray Phone application signals the actual status of several call center
agents, e.g. concerning the call state. Therefore, the interdependency between
the Tray Phone and the physical phones must be tested. This can be done
e.g. by initiating a call via the telephones and validating whether this call is
visualized correctly by the application, or by performing a call by means of an
interaction between a telephone and Tray Phone.

— The state of the application and the state of the PABX resp. of a single tele-
phone needs to be synchronized. For this purpose an application activates a
monitor service and uses the resulting CSTA event-reports to update its status.
Missing CSTA events, however, can lead to inconsistent states and therefore
to typical error situations that have to identified throughout the testing phase.

— In the HPCO, groups of experts can be established. In the test setting it must
be ensured that only members of such a group can accept calls intended for
this group. In other words a call to an expert group must not be sent to a
member of another group.
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6.3.3 Evaluation

For the test of HPCO 171 different test cases were designed. Additionally 95 new
test blocks for the test of the involved applications were developed and they have
been implemented, without exception, with the help of the Rational Robot , i.e. test
scripts for the Rational Robot have been recorded and were automatically compiled
into test blocks. Overall 2371 instances of the test blocks have been used for the
implementation of the test cases, which implies that a test case is composed of an
average of approximately 14 test blocks. The distribution of the used test blocks, i.e.
how many test blocks are PABX-related, for environmental purposes, or application
specific, is depicted in Figure 6.8. Over 57% of test blocks are reused, i.e. not imple-
mented for this test setting only. The high degree of environmental, i.e. internal, test
blocks is remarkable. Considering the concrete number of test blocks it turns out,
that in an average test case (14 test blocks) 5 test blocks are internal ones. These
test blocks, however, are necessary in every test case, i.e. StartTestCase for the
test case initialization, commFailure and failure as exceptions, and passed and
failed for test case evaluation. Furthermore, as seen in Figure 6.8 the test cases
focus on the behaviour of the CTI applications, as twice as many test blocks con-
cerning the applications are used than PABX related ones. Note that the behaviour
of the CTI applications, however, depends on the interaction with the PABX.

Figure 6.8: Distribution of used Test Blocks: HPCO
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6.4 Testing the Personal Call Manager

An example for the convergence of classical telecommunication systems with web-
based applications is the Personal Call Manager application [Sie01]. It allows users
to comfortably reconfigure their settings at any time and independent of their actual
location, as they can access this application via the internet with a normal web
browser.

6.4.1 Introduction to the Personal Call Manager

A B

C

Figure 6.9: The Personal Call Manager

The Personal Call Manager application is particularly useful in enabling users to
manage a qualified call-forwarding: this takes into account characteristics like the
identity of the caller or the current time. It can forward the call with respect to
those conditions to different numbers, it can handle user-defined profiles connected
with specific forwarding conditions (forwarding policies) as well as a well-organized
user-defined exception handling of those policies (cf. Figure 6.9(B,C)). Addition-
ally, it supports a user management that allows protecting the access with personal
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passwords, and a role management that respects the association of specific rights to
different user groups (cf. Figure 6.9(A)).

Figure 6.10: Setting for the Web-based Reconfiguration of Call Management via a
Virtual PABX

The Personal Call Manager is embedded in an IP-based cluster of up to 4 midrange
PABX of type Hicom 150e. The Personal Call Manager server is connected to a
network of switches which are themselves connected through an IP-infrastructure.
This multi-node solution can be seen externally as a “virtual” PABX : the system
can grow and be reconfigured at runtime, and the handling of the up-to 250 users
can be modularly organized over the physical switches. The general architecture
of the considered scenario is illustrated in Figure 6.10. The “virtual” PABX is
connected to an application server which also includes a web-server. The Personal
Call Manager runs on the application server and is accessible via the web server.
On the application server a TAPI service provider is also located which performs a
mapping of the TAPI protocol on which the application and services are based, to
the CSTA protocol.

To modify a call-forwarding for a specific port via the Personal Call Manager the
user first selects the actual configuration via the application GUI. The application
is then able to modify the configuration of the “virtual” PABX via the TAPI service
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provider, which sends the corresponding CSTA commands to the PABX. To con-
figure a qualified call-forwarding that forwards calls to different numbers depending
on several user defined time intervals, the Personal Call Manager actually modifies
a call-forwarding for the specific port automatically every time the time interval
changes.

6.4.2 Test Setting for the Personal Call Manager

Figure 6.11: Architecture of the Test Setting for the Personal Call Manager

The concrete test setting for the Personal Call Manager is shown in Figure 6.11.
We consider the full configuration here, i.e. a cluster of 4 PABX. Each PABX is
tested by its an individual Hipermon/HUSIM combination, as used for the test of
a single PABX, cf. Figure 6.6. For the test of the web-based application Personal
Call Manager, several instances of the Rational Robot are used, each responsible for
controlling a browser. Note that the application server is not considered in this test
setting. The test of the Personal Call Manager application, however, implies some
special testing properties:
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— In the Personal Call Manager it is possible to specify a set of destination num-
bers which will be used sequentially as forwarding targets (in a sort of graceful
exception handling) if the normally foreseen destination of the call-forwarding
is either (i) busy, or (ii) not accessible, or (iii) has its own call-forwarding,
or (iv) is itself controlled via the Personal Call Manager. Accordingly, it is
important to test extreme situations where all forwarding destination numbers
match the criteria mentioned above. In this case, the “default” case should be
entered, i.e. no call-forwarding should be made.

— A second instance of this kind of problem occurs in conjunction with the
specification of the forwarding time intervals. The user can specify different
call-forwarding targets according to several time intervals, but it must always
be ensured that a “default” case is defined for execution during the missing
(i.e. implicitely undefined) time slots. Tests should ensure that (i) this default
case will be entered during undefined time slots and that (ii) if no such default
case is defined, no call-forwarding will occur.

— In the Personal Call Manager setting, a virtual PABX is composed of up to
4 physical PABX. Here each of the physical PABX is responsible for a subset
of the “virtual” ports (i.e. it maps them to physical ports) but every switch
works on the basis of the configuration for the whole “virtual” switch, i.e.
knows the situation of all “virtual” ports. This implies that every change
of the configuration of a (virtual) port needs to be distributed to all other
connected switches to maintain coherence. Testing this mechanism requires
testing (i) the exchanged protocol messages for the synchronization via the
Hipermon, and (ii) the impact on the associated features.

— Frequent examples of admissibility criteria concern features that depend on
the rights that a role allows. E.g. in the Personal Call Manager it is possible
to create profiles for call-forwarding: they store the attributes of a qualified
call-forwarding, i.e. time-intervals for the forwarding, the caller-id’s and the
corresponding destination numbers. Obviously, access to this information un-
derlies restrictions: only that particular user and an administrator can modify
these profiles, but other selected users may have read-only access to the in-
formation. It is therefore important to test, the call-forwarding functionality
itself, as well as that it is impossible for (normal) users to modify the pro-
files of other users. This results in fact new facets to the testing of telephone
switches, since this kind of relation (access to resources in correspondence to
roles/rights) only occurs during (re-)configuration processes.
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6.4.3 Evaluation

For the test of the Personal Call Manager application 34 different test cases were
designed and 46 new test blocks were implemented, again using the Rational Robot .
Overall 586 instances of the test blocks were needed in the test cases (average number
of test blocks per test case is approximately 17). The distribution of the used test
blocks can be seen in Figure 6.12. In this test setting over 61% of test blocks could
be reused. An average of approximately 6.5 internal test blocks are used in a test
case. This is because of the relatively high number of involved test tools that needs
to be initialized, e.g. when compared to the HPCO test setting. Furthermore when
testing the Personal Call Manager application more PABX related test blocks are
used.

Figure 6.12: Distribution of used Test Blocks: PCM

6.5 Testing Miscellaneous CTI Solutions

We have also investigated the test of nine “smaller” CTI solutions, where “smaller”
refers to the complexity of the used test setting. All solutions have in common that
they take at most one application into account, which is sometimes even located
on the application server. For this reason it is sufficient to test the application side
with one instance of the Rational Robot only. In the remainder we briefly introduce
three of the considered scenarios:

Hotel Solutions – Caracas Inn The Caracas Inn application is a PC based hotel
solution for small and medium-sized hotels with a maximum of 250 rooms. It can
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be either installed on a single workstation or distributed over multiple ones. In
cooperation with a Hicom switch, the main functions of Caracas Inn are: check-
in resp. check-out, invoice management, name entry for caller identification, call
charge recording and evaluation, room status management, recording of minibar
use via telephone, etc.

Virtual Telephone – OptiPhone The OptiPhone is a virtual telephone that can
replace a physical one. It is located on an application client and interacts with
the PABX either directly via e.g. ISDN hardware in the client PC or the LAN, or
by means of an application server via TAPI. The OptiPhone offers almost the full
functionality of a “normal” telephone, e.g. basic calls, call forwarding, conference
calls, redials, etc.

Call Charging Computer A Call Charging Computer is responsible for record-
ing and assigning incoming and outgoing call charge data that permit evaluation
by extension, trunk, department, etc. This can be done either passively, i.e. the
PABX sends all call charge data to the Call Charging Computer, or actively, i.e. the
Call Charging Computer gathers the information from the PABX. Nowadays a Call
Charging Computer is normally realized as an application, running on a dedicated
application server, which is connected to the PABX.

In addition we considered settings where e.g. voice mail or special CSTA clients were
tested.

Figure 6.13: Distribution of used Test Blocks: Miscellaneous CTI Solutions

In total 109 test cases were developed for the test of all miscellaneous CTI solutions.
Furthermore 97 application specific test blocks have been implemented and 1459
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instances of test blocks are used in the test cases (an average of 13 test blocks per
test case). The distribution of the test blocks is depicted in Figure 6.13. The reuse
factor for these solutions is with almost 66% much higher than in the other settings,
which emphasizes the assumption that “small” CTI solutions can be integrated into
the ITE quite easily. Finally it must be noted that when converting the relatively
high number of environmental test blocks into absolute numbers, we have discovered
that less than 6 internal test blocks are needed per test case.

6.6 Evaluation

This chapter concludes with an evaluation of the ITE for the test of complex CTI
solutions. We first discuss aspects concerning the design of the test cases, and
afterwards the economic impact of the ITE with respect to selected applications.

Figure 6.14: Distribution of used Test Blocks: Overall

The total number of test cases for all investigated CTI solutions is 314, where
302 different test blocks were implemented. These test blocks occur 4416 times,
which makes an average of 14 test blocks per test case. The reuse factor lies above
60%, where each PABX related test block is used an average of 30 times, each
environmental one 53 times and each application specific 7 times. So even the
test blocks that are implemented for a particular test setting can be reused. The
overall distribution of used test blocks is illustrated in Figure 6.14. It must be
noted that an average of twice as many test blocks concerning the applications are
used as PABX related. The reason for this is that the PABX has already tested
intensively individually, so that the tests within the ITE can really concentrate on
the interaction between the PABX and the CTI applications.
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Table 6.1: Regression Test Cost factors

Task manual with ITE frequency

Test planning
√ √

once
Test specification

√ √
once

Test scripts (
√
)

√
once

Test execution
√

- recurrent
Test protocol

√
- recurrent

Test analysis
√

(
√
) recurrent

To evaluate the economic impact of the ITE introduction, we must first identify
the cost factors that pertain to testing CTI systems. Table 6.1 identifies the macro-
scopic cost factors that arise during the lifecycle. They are listed together with
their frequency of occurrence and with a qualitative indication of their relevance
in a manual testing and an automated testing scenario. Test planning and spec-
ification and the definition and setup of test scripts occur only initially, when an
experimental scenario (i.e. the testing of a specific CTI system) is set up. The
planning and specification phases are not affected by the ITE. The usual collection
or programming of test scripts that directly constitute the elementary test blocks
in a manual setting is in the ITE additionally supported by a largely automated
generation of reusable test blocks that fit in with the overall ITE architecture. The
additional effort required by this wrapping is compensated for the increased reuse
and ease of test design, but it does require some additional effort.

The main focus of the ITE is, however, the reduction of costs for the repetitive,
recurrent phases of CTI testing (cf. Test Phase of the test process defined in Sec-
tion 3.3.2): primarily, we address the test execution (cf. Table 6.2), in combination
with the automatic creation of test reports.

Table 6.2 documents the measured improvement of the test execution costs due to
the introduction of ITE at Siemens. The systems under test considered in each row
are composed by the PC client-server application listed in Col. 1 cooperating with
the Hicom switch along the configuration pattern illustrated in Figure 6.63. The sec-
ond and third column report the measured effort (in man hours) of one regression
cycle for the system under test when performed manually (Col. 2) or with the ITE
(Col. 3). The improvement is dramatic: factors between 10 and 25 for each regres-
sion cycle execution. The full automation is not yet feasible at the moment since
some manual steps like system setup and configuration (e.g. physical connection
of the components, installation of the software on the machines) are still needed.

3Note that because of still incomplete data we were not able to evaluate all of the previously
discussed test settings.
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Table 6.2: Test execution effort in hours per regression

System-under-test manual with ITE

Hotel Solutions 10,0 0,5
Call Center Solutions 43,0 1,0
Analog Voice Mail 23,0 0,5
Digital Voice Mail 20,0 0,5
Call Charge Computer 19,0 0,5
Total 115,0 5,0

These initial results are indeed representative for average behaviour. Concerning
the next applications that are joining the ITE, the conservative expectations shown
in the last rows of Table 6.2 also indicate a factor of approximately 20.

A global cost-benefit calculation shows that the additional investment for ITE is
well able to pay off in a short period of time, if extensively adopted. In fact the ITE
dramatically reduces the recurring cost factors, without increasing the remaining
positions significantly which are concerned with the basic effort that still has to be
made along the whole test lifecycle (test planning, manual configuration of the test
settings, ...) and the necessary upfront investments (e.g. licence fees for test tools,
hardware, ...).





Chapter 7

Testing Web-based Applications

Modern web-based applications are complex multitiered, distributed applications
that usually run on heterogeneous platforms. For testing purposes it is not sufficient
to concentrate on the analysis of the static structure of a web site alone, as today’s
web-based applications must be treated as applications which are particularly char-
acterized by a high degree of (multiple) user interactions and the presentation of
dynamic content. This has a huge impact on the test and validation requirements:
web-based applications have to be handled as complex systems. So testing these
kind of systems fits well into the ITE approach.

We will first introduce the considered application domain, i.e. web-based applications
(Section 7.1). After that we discuss in Section 7.2 an appropriate test architecture
for testing such applications, together with a concrete realization of the ITE. Finally
in Section 7.3 we present two case studies made by testing web-based applications:
the test of the Online Conference Service [NMS02, MNS02a, MNS02b] and the Bug
Tracking System [Raf02].

7.1 Web-based Applications

A Web-based Application is an URL addressable resource returning information in
response to client requests. A Uniform Resource Locator (URL) [Wor94], or more
generally a Uniform Resource Identifier (URI ) [Wor99c], provides a standard way of
expressing the location and data type of a resource. URL’s in general take the form
protocol://address, where protocol is e.g. HTTP or FTP, and the address is merely
the server and pathname of a given resource. Figure 7.1 sketches the typical archi-
tecture of a web-based application. The browser, located on a client, plays the role
of the “classical” application GUI and interacts with a Web server via the Hyper-
text Transfer Protocol (HTTP) [Wor99b], which is an application-level protocol for
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Figure 7.1: Overview of the Architecture for a Web-based Application

distributed, collaborative, hypermedia information systems. The web server itself
communicates with an Application Server that dynamically builds the requested web
pages by means of an interaction with a Database and (several) Back-end Services.
Here various protocols are often used, e.g. among others CORBA, RMI, or database
access protocols like JDBC or ODBC. The architecture of Figure 7.1 is somewhat
simplified, as staging servers, firewall solutions, load balancing and redundant ar-
chitectures often increase the speed and availability of the offered application, but
also increase the complexity of the considered architecture.

The Hypertext Transfer Protocol

HTTP is a generic, stateless, protocol which can be used for many tasks beyond its
use for hypertext, such as name servers and distributed object management systems,
through extension of its request methods, error codes and headers. A feature of
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HTTP is the typing and negotiation of data representation, allowing systems to be
built independently of the data being transferred.
The HTTP protocol is a request/response protocol. A client sends a request to the
server in the form of a request method, URI, and protocol version, followed by a
message containing request modifiers, client information, and possible body content
over a connection with a server. The server responds with a status line, including
the message’s protocol version and a success or error code, followed by a message
containing server information, entity meta-information, and possible entity-body
content.

The Hypertext Markup Language

The pieces of information that are provided by a web-based application are ex-
changed in the Hypertext Markup Language (HTML) [Wor99a]. HTML is an SGML
application, i.e. defined by a DTD. Note that for each version of HTML a different
DTD exists.

<!DOCTYPE HTML PUBLIC ...>
<HTML>

<HEAD>
<TITLE>...</TITLE>
...

</HEAD>

<BODY>
...

</BODY>

</HTML>

Figure 7.2: Structure of a HTML document

First of all a HTML document is made up of a section where the document type
(and a version) is specified, i.e. the corresponding DTD is stated, which defines both
type and version. Furthermore HTML documents are structured into two parts:
the HEAD and the BODY. The HEAD contains general information, or meta-
information, about the document. The BODY element contains all the content of
a document. Various mark-up elements are allowed within the body to indicate
headings, paragraphs, lists, tables, hypertext links, images, and so on. Additional
it is possible to specify forms in HTML, so that an interaction with a user can
take place. A HTML form is the section of a document containing normal content,
markup, special elements called controls (checkboxes, radio buttons, menus, etc.),
and labels on those controls. Users generally “complete” a form by modifying its
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controls (entering text, selecting menu items, etc.), before submitting the form to
an agent for processing (e.g., to a web server, to a mail server, etc.). In Figure 7.3
all available controls of a form are presented in a browser (Figure 7.3 (left)) and for
each a portion of the corresponding HTML source (Figure 7.3 (right)).

Figure 7.3: Controls of Forms in HTML

Text Field Two types of controls are available to allow users to input text: a
simple text field (single-line input control) and a text area (multi-line input
control).

Check Box A check box is an on/off switch that may be toggled by the user.

Radio Button Radio buttons are like check boxes except that when several share
the same control name (cf. Figure 7.3 (right)), they are mutually exclusive:
when one is switched on, all others are switched off.

Combo Box A combo box or menu offers users options to choose from.

List Box A list box is like a combo box except that several options can be chosen
simultaneously.

Button There exist three types of buttons:

— submit buttons are used to submit the form;

— reset buttons reset all controls to their initial value and
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— push buttons have no default behaviour and can trigger client-side script,
e.g. programmed in the Java Script Language.

File Browser This control allows the user to select (local) files, so that their con-
tents may be submitted with the form.

Figure 7.4: Dynamic Behaviour of HTML Sites

In Figure 7.4 the dynamic behaviour of an HTML site, i.e. a collection of coherent
HTML documents, is indicated. Note that an HTML site is usually stored as a set
of static HTML pages on a web server. Starting at a dedicated HTML document
the user can control the subsequent execution flow, i.e. HTML documents shown
in the browser. Here we can distinguish between two different types of control:
static links (solid line in Figure 7.4) and forms (dashed line). Whereas for the first
the target is fixed within a HTML document, for the latter the succeeding HTML
document depends on the content of the form filled in by the user. For instance,
in Figure 7.4 depending on the value of the text field, different HTML documents
will be presented to the user. Consequently the static structure of an HTML site
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can be computed in advance, i.e. in the form of a dependency or link graph by
computing the reflexive, transitive closure of links, starting at the start page. The
static structure of an HTML site is often referred to as a Site Map. Forms, however,
are usually evaluated on the side of the server and the subsequent execution flow
can therefore not be computed in advance. Note that form evaluation is usually not
as simple as depicted in the situation of Figure 7.4.

7.2 System-level Testing of Web-based Applica-

tions

Contemporary web application testing tools are still dominated by static approaches,
focussing on a posteriori structure reconstruction and interpretation [RT01, LKHH00]
rather than on functional aspects directly related to the applications design. As
mentioned above web-based applications generate HTML documents dynamically
on demand. This implies that a site map cannot be computed in advance, because
the HTML documents are not directly stored on a web server. Therefore web-based
applications must be treated as applications and it is not sufficient to restrict the
testing to pure link testing or performance issues. Due to the architecture of web-
based applications, the ITE is predestined for testing such systems.

In Figure 7.5 the test architecture for web-based applications within the ITE is
depicted. Here the test coordinator has access to the client PC’s, or more precisely
to the browsers located on the client PC’s, via the Rational Robot . This enables
us to test even complex workflows of web-based applications, where the interplay
between various involved users must be tested. Usually different users have different
rights resp. permissions. Here it is generally not sufficient to use several instances of
a browser on a single client only, as they usually share common session information,
so that it is not possible e.g. to login with different identities. With the ITE,
however, it is possible to distribute the treatment of different users over different
clients, as it occurs in reality. Furthermore, within the ITE approach it is possible
to take the server side into account as well, i.e. denoted by the dashed test tools, cf.
[NMS02, MNS02a]. However, we will concentrate here on the test of multiple clients
only, where the following properties are of particular interest:

Interdependencies Interdependencies between the various involved users have to
be tested intensively, because they usually work on shared data.

Safety Criteria Here the rights and permissions of a user must be tested, e.g. to
ensure that sensitive data is not accessible without having the corresponding
permissions assigned.
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Figure 7.5: Test Architecture for a Web-based Application

Admissibility Criteria Because of the highly distributed character of web-based
applications, i.e. due to the involvement of a whole web-server architecture, a
test for the admissibility of single operations is needed.

For the test of the browser located on the client PC’s we will again use the Rational
Robot . The Rational Robot provides sophisticated support for testing web-based
applications. It is possible to record a test script with one browser (e.g. Internet
Explorer) and to replay it with another browser without changes (e.g. Netscape
Browser). Furthermore, the Rational Robot offers verification points especially
suited for testing the elements of HTML documents, e.g. checking of hyperlinks,
images, tags, content, tables, etc.

The restricted and specially standardized set of available GUI controls simplifies the
test of web-based applications. This is why in contrast to the test of “normal” ap-
plications, where customized GUI controls can be used, once a set of test blocks has
been implemented it can be used for the test of almost every web-based application
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(from the client point of view). Table 7.1 shows the test blocks that have been im-
plemented in the ITE for supporting the test of web-based applications. They can
be divided into three different sections: internal action test blocks for the handling
of a browser, external action check test blocks to command the HTML controls,
and external check test blocks for checking certain properties of HTML documents1.
Please note that as a file browser control is composed of a text field and a button,
it can be handled via the text field resp. button-related test blocks.

Table 7.1: Test Blocks for Testing Web-based Applications

startBrowser Starts a browser on a client.
stopBrowser Stops a browser on a client.
initBrowser Initializes a browser. Here in particular the currently shown

page will be cleared.

setTextfield Inputs text in a text field.
setCheckBox Activates resp. deactivates a check box.

setRadioButton Activates a radio button.
setComboBox Selects the entry of a combo box.
setListBox Selects an (additional) entry of a list box.
pressButton Presses a button.
followLink Follows a link.
gotoURL Redirects the browser to an absolute URL.

checkURL Checks the actual URL of the currently shown page.
checkTitle Checks the actual title.
checkContent Checks whether the given text is visible on the actual page.
checkCheckBox Checks the status of a check box.

checkRadioButton Checks the status of a radio button.
checkComboBox Checks whether a combo box contains an entry.
checkListBox Checks whether a list box contains an entry.

7.3 Testing various Web-based Applications

We have done two different case studies with the test of web-based applications: the
test of the Online Conference Service and the test of the Bug Tracking System.

The Online Conference Service [LMS01] is a complex web-service that supports
online the management of the scientific program of professional conferences. It

1Although HTML documents can be checked with the available check test blocks, it is often
useful to extend the check test blocks for checking application specific properties.
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proactively helps authors, Program Committee chairs, Program Committee mem-
bers, and reviewers to cooperate efficiently during their collaborative handling of
the composition of a conference program. The application provides a timely, trans-
parent, and secure handling of the papers and of the related submission, review,
report and decision management process. The online conference service is a power-
ful application, including a role-based access-and-rights-management feature that is
reconfigurable online, which leads to high flexibility and administration comfort, but
which is responsible for potentially disruptive behaviour in connection with sensitive
information. Because of the complexity of the underlying workflows (and of course,
therefore, the complexity of the application itself) intensive testing is clearly nec-
essary. The test for the submission of an article to a conference demonstrates how
complex the process is to ensure that an article submitted by an author, is correctly
delegated to a member of the program committee. From the submission to the start
of the review process of the article at least three different roles are involved: the
author himself; the conference chair, who must delegate the article to a member of
the program committee; and finally the members of the program committee, who
are responsible for the reviews. So we need at least three concrete users to run this
test, whereby each user has a distinct role. Note that the three users are distributed
over three clients.

The second web-based application considered here is the Bug Tracking System of
[MET], which organizes the administration of bugs in software projects. In contrast
to the conference service, the functionality of the bug-tracking system is not imple-
mented in the web-based application itself, but delegated to the Gnats system [Gna],
a set of tools for tracking bugs reported by users to a central site. Gnats allows prob-
lem report management and communication with users by various means. Gnats
stores all the information about problem reports in its databases and provides tools
for querying, editing, and maintenance of the databases. The bug tracking system
provides a web interface for accessing the information offered by the Gnats system.
Interesting test purposes are e.g. to test whether a bug report, created by an ar-
bitrary user and eventually marked as confidential, can be accessed (read only) by
another user. A similar test purpose is to check whether a test report can be deleted,
which should only be possible for administrator users, or edited by developers to
document the current status of the bug.

Summarizing, we have investigated two different kinds of web-based applications,
i.e.

1. The online conference service, which is a pure web service, i.e. all functionality
is implemented in the application itself. No additional back-end server is
needed for the realization of this service.
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2. The bug tracking system, which us based on an existing legacy system (Gnats),
located on an back-end server. Here the web-based application provides a
sophisticated frontend for using Gnats, but adds no additional functionality.

It is obvious, that the ITE instance for testing web-based applications is generic
enough so that for both concrete test settings no further integration effort was re-
quired, i.e. in terms of the integration of new test tools or the realization of additional
test blocks. We have, however, restricted the testing activities to testing the client
side only, which perfectly fits into the black box testing approach. There are testing
purposes that need a more sophisticated test setting, i.e. that take the back end side
into account as well. Examples of this kind of applications can be, e.g.

E-Commerce When testing E-Commerce applications (e.g. Web-shops) it is im-
portant to consider simple functional requirements like a user can check the
shopping cart after buying an item or security/administrative requirements like
a user can be logged in only once. But more complex tests must also be per-
formed and these take the whole distributed configuration of the service into
account e.g. check the validity of a credit card. Here it is no longer sufficient
to perform tests that consider the client side only, since e.g. a faulty imple-
mentation of a back-end service may accept all credit cards without checking
them correctly.

(Safety critical) Web-services A good example of this special kind of Web-
services is e.g. Online/Internet-Banking. It is of crucial importance that on
the one hand the user-interface reacts as prescribed and that on the other hand
the back-end services are interacting correctly with the clients, as in this sce-
nario there are normally well established back-end services or legacy systems
in use. In this special field of applications every fault (either functional errors
or a system crash) can be extremely expensive in terms of indemnification,
and, more importantly, may cause a loss of trust.

As indicated in Figure 7.5 by the dashed test tools, the ITE approach supports
these enhanced test settings as well. It must, however, be noted that in these cases
an additional, application specific integration resp. setup effort is required.
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Chapter 8

A Posteriori Generation of
Approximate Models

In this chapter we present an approach for generating approximate models for com-
plex systems a posteriori. Such models can never be exact, i.e. reflect the complete
and correct behaviour of the considered system. Nevertheless they can be useful in
practice, to present the cumulative knowledge of the system in a consistent descrip-
tion. Such knowledge consists of e.g. observations of the system, (partial) specifica-
tions, and expert knowledge. In Chapter 6 we have discussed that particularly in
the telecommunication area, revision cycle times are extremely short, making the
maintenance of specifications unrealistic, and at the same time the short revision
cycles necessitate extensive testing effort. All this could be dramatically improved if
it were possible to generate and then maintain appropriate reference models steering
the testing effort and helping to evaluate the test results.

By optimizing a standard learning method according to domain-specific structural
properties, we are able to generate approximate models for complex reactive sys-
tems. Learning is only feasible if one can check actively whether a given abstract
sequence corresponds to (is an abstraction of) a concrete system behaviour. In fact
it was the ITE that enabled us to implement learning procedures in practice by
bridging the gap between the abstract models and the “real” world. Its flexible test
specification formalism supports the generation of concrete test cases from abstract
propositional sequences. Furthermore, its precise test execution semantics ensures
that we can perform the mapping of the results of the test runs back into the abstract
sequences so that they can be processed by the learning algorithm. We emphasize
the practicability of our method by means of experiments we have carried out in an
industrial setting.
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The outline of this chapter is as follows. After a motivation (Section 8.1), in Sec-
tion 8.2 we present the underlying basic learning algorithm. Section 8.3 discusses
the application-specific adaptations, needed to implement a learning algorithm in
practice with the help of the ITE. Furthermore, we present several improvements of
the basic algorithm:

— A first improved version of the algorithm L∗ is introduced in Section 8.4. It
elaborates on the application-specific characteristics of the considered scenario,
i.e. prefix-closeness, input-determinism, as well as partial order and symme-
tries between events. We have implemented filters that helps to improve the
algorithm by incorporating the above mentioned characteristics. This way we
do not need to change the core algorithm itself and are able to adapt the
learning procedure easily to new settings, by selecting the appropriate filters
according to the system characteristics.

— In Section 8.5 we provide an adaptation of the core learning algorithm itself
called L∗

i/o. It is is tailored for dealing with input/output deterministic sys-
tems. Therefore we have changed the general datastructure of the algorithm,
i.e. the observation table. Due to this changes, some of the system character-
istics are already incorporated into the algorithm itself (prefix-closeness and
input-determinism), while others are still implemented via filters (partial or-
der and symmetries between events). Additionally we learn the systems in a
representation that is tailored for input/output deterministic systems and are
able to improve the performance once more.

8.1 Motivation

The aim of our work is improving quality control for reactive systems as can be
found e.g. in complex telecommunication solutions. A key factor for effective quality
control is the availability of a specification of the intended behaviour of a system or
system component. In current practice, however, precise and reliable documentation
of a system’s behaviour is only rarely produced during its development. Revisions
and last minute changes invalidate design sketches, and while systems are updated
in the maintenance cycle, often their implementation documentation is not. It is our
experience that in the telecommunication area, revision cycle times are extremely
short, making the maintenance of specifications unrealistic, and at the same time
the short revision cycles necessitate extensive testing effort (cf. Chapter 6). All this
could be dramatically improved if it were possible to generate and then maintain
appropriate reference models steering the testing effort and helping to evaluate the
test results. In [HHNS02] it has been proposed to generate the models from previous
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system versions by using learning techniques and incorporating further knowledge
in various ways. We call this general approach moderated regular extrapolation.
Motivation for this name comes from the fact that learning in this domain involves
generalizing from finite observations to cyclic behaviour patterns, which comprise
infinite behaviour. The approach is tailored for a posteriori model construction and
model updating during the system’s lifecycle. The general method includes many
different theories and techniques.

Regression testing provides a particularly fruitful application scenario for using ex-
trapolated models. Here, previous versions of a system are taken as the reference
for the validation of future releases. By and large, new versions should provide ev-
erything the previous version did. I.e., if we compare the new with the old, there
should not be too many essential differences. Thus, a model of the previous system
version could serve as a useful reference to much of the expected system behaviour,
in particular if the model is abstract enough to focus on the essential functional
aspects and not on details like, for instance, exact but irrelevant timing issues. Such
a reference could be used for:

— Enhanced test result evaluation: Usually, success of a test is measured only
via very few criteria. A good system model provides a much more thorough
evaluation criterion for success of a test run.

— Improved error diagnosis: Related to the usage above, in case of a test er-
ror, a model might expose already very early some discrepancy to expected
behaviour, so that using a model will improve the ability to pinpoint an error.

— Test-suite evaluation and test generation: As soon as a model is generated, all
the standard methods for test generation and test evaluation become applica-
ble (see [LY96, BT00] for surveys about test generation methods).

For a detailed discussion of further usages of the extrapolated models please refer
to [HHNS02].

In this chapter we will focus on the method’s fundamental ingredient, learning a
finite system model from observations of the real system, from a practical point of
view: How it is possible to successfully exploit automata learning, a currently mostly
theoretical research area, in an industrial setting for the testing of telecommunication
systems.

Learning and testing are two wide areas of very active research – but with a rather
small intersection so far, in particular with respect to practical application. At the
theoretical level, a notable exception is the work of [PVY99, GPY02]. There, the
problem of learning and refining system models is studied. The ultimate goal may
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be testing a given system for a specific property, or correcting a preliminary or
invalidated model. In contrast our approach focuses on the very practical aspects
of learning models of real-life systems based on the concepts of moderated regular
extrapolation [HHNS02].

8.1.1 Moderated Regular Extrapolation

In [HHNS02] we propose a new method for model generation, called (moderated)
regular extrapolation, which is tailored for a posteriori model construction and model
updating during the system’s lifecycle. The method, which comprises many different
theories and techniques, makes formal methods applicable even in situations where
no formal specification is available: based on knowledge accumulated from many
sources, i.e. observations, test protocols, available specifications and last but not
least knowledge of experts, an operational model in terms of an (input/output)
deterministic finite automaton is constructed that uniformly and concisely resembles
the input knowledge in a way that allows further investigation.

A key feature of our approach is the largely automatic nature of the extrapolation
process. The main source of information is observation of the system, represented
by system traces. These traces may be obtained passively by profiling a running
system, or they may be gathered as reactions of the system to external stimulation
(as in testing). Extrapolation from passively obtained observations and protocols of
test runs may yield a too rough model of the system, leaving out many of its features
and generalizing too freely. So these models have to be refined. We adapt machine
learning algorithms and also incorporate expert’s knowledge. Learning consists of
running specific tests with the aim of distinguishing superficially similar states and
finding additional system traces. Experts can either be implementors or people
concerned with the environment of the system, for instance people knowing the
protocols to be observed. Their knowledge enters the model in the form of declarative
specifications, either to rule out certain patterns or to guide state distinguishing
searches. Technically this is done by employing the bridge from temporal logic to
automata, model checking techniques and partial order methods. Conflicts arising
during the extrapolation process between the different sources of information have
to be examined and resolved manually (moderation).

The starting point of our investigation was the regression testing problem in the
so-called black box scenario: a technique was needed to deal with a large legacy
telephony system in which most of the involved applications (the so-called “value-
added” products) running on and with the platform are third party. There was
no hope of obtaining formal specifications (cf. Chapter 6). The only source of
information was intuitive user manuals, interaction with experienced test engineers
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and observations, observations, observations. As none of these sources could be fully
trusted (and since what is true today may not be true tomorrow), the only possible
approach was to faithfully and uniformly model all the information and to manually
investigate arising inconsistencies. This lead to a change management process with
continuous moderated updates.

Fig. 8.1 sketches briefly our iterative ap-
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ExtrapolationValidation

Consistency

Figure 8.1: Generation of Models

proach. It starts with a model (initially
empty) and a set of observations. The ob-
servations are gathered from a reference
system in the form of traces. They can be
obtained either passively, i.e. a running ref-
erence system is observed, or actively, i.e. a
reference system is stimulated through test
cases. The set of traces (i.e. the observa-
tions) is then preprocessed, extrapolated
and used to extend the current model. Af-
ter extension the model is completed through several techniques, including adjusting
to expert specifications. The last step validates the current hypothesis for the model,
which can lead to new observations.

It is impossible in practice to find a precise model of the system under consideration,
even on an abstract level. Such a model would usually be far too large and, as
results from learning theory indicate, too time-consuming to obtain and to manage.
Instead we are aiming at concise, problem-specific models, expressive enough to
provide powerful guidance and to enhance the system understanding. It is of course
very important that the models are reasonably close to the system. Exploiting
all the information at hand, independently of their source, to obtain a comprising
“hypothesis” model is the best we can do.

8.2 L∗: A Basic Learning Algorithm

In the domain of machine learning, beyond others, the problem of constructing an
acceptor, in terms of an automata representation, for an unknown regular language
is studied. If the result is to be exact, and the only means of information are tests
for membership in the considered language and a bound on the number of states of
the minimal accepting deterministic finite automaton (DFA) for the language, the
worst-case complexity is exponential in the number of states of the acceptor [Moo56].
If other sources of information are available, i.e. an equivalence test whether a hy-
pothesis is a correct acceptor for the unknown language, the learning procedure
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can be done in polynomial time1 with the algorithm L∗ [Ang87]. Furthermore, the
equivalence test enables the algorithm to achieve an exact result, not only an ap-
proximation. Thus for the concrete realization of the model generation procedure,
we propose to use the machine learning algorithm L∗ of [Ang87] as a basis.

8.2.1 Introduction to L∗

Angluin describes in [Ang87] a learning algorithm for determining an initially un-
known regular set exactly and efficiently. To achieve this aim besides the alphabet
A of the language two additional sources of information are needed: a Membership
Oracle (MO) and an Equivalence Oracle (EO). A Membership Oracle answers the
question whether a sequence σ is in the unknown regular set or not with true or
false. The Equivalence Oracle is able to answer the question whether a hypothesis
(an acceptor for a regular language) is equivalent to the unknown set with ⊥ or a
counterexample, where ⊥ denotes that there exists no counterexample, which im-
plies that the hypothesis accepts the set to be learned. The hypothesis is represented
as a deterministic finite automaton.

Definition 8.1. A deterministic finite automaton (DFA) is a structure S = (Σ, A,
δ, s0, F ), where

— Σ is a finite, non-empty set of states,

— A is a finite set of actions,

— δ denotes the transition function δ : Σ× A→ Σ,

— s0 is the unique start state,

— F is the non-empty set of accepting states F ⊆ Σ.

We write s
a−→ s′ if δ maps (s, a) to s′, and extend this notation to strings σ ∈ A∗.

The language L(S) accepted by the automata is the set of strings which lead to an
accepting state, i.e. {σ ∈ A∗ | ∃s ∈ F. s0

σ−→ s }.

The basic idea behind Angluin’s algorithm (cf. Algorithm 8.1) is to systematically
explore the system’s behaviour using the membership oracle and trying to build
the transition table of a deterministic finite automaton with a minimal number of
states. The algorithm starts with the initial state, which is reached by the empty

1Polynomial in the number of states of the minimum acceptor and the maximum length of any
counterexample [Ang87].
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string. It keeps a set of strings S which lead from the initial state to all the states
discovered so far. S may, and in fact usually will, contain for several states more
than one string leading to it. It also maintains a set E of strings which distinguishes
between states accessed by S in that some e is accepted after one element of S
but not the other. With membership queries, the algorithm tests whether all states
reachable in one step from the states so far behave like known states (closed table
in the following definition). This provides a guess for the transition table of the
automaton. It is also checked whether all strings which lead to states thought to
be equivalent so far have the same one-step behaviour (consistent). If not, S or
E are extended according to the observed discrepancy. Otherwise (if everything
seems correct), an equivalence query is raised with an automaton constructed from
the available information, i.e. the actual observation table. If the query is not
successful, a counterexample is returned in the form of a string which serves to
distinguish further states and another iteration will be started.

The central data structure of the algorithm is called observation table OT , where
the results of membership queries are stored and from which a hypothesis is read
off.

Definition 8.2 (Observation Table). An observation table for an alphabet A is
a triple OT = (S,E, T ), where S ⊂ A∗ is a finite, prefix-closed set, E ⊂ A∗ is a
finite, suffix-closed set, and T is a finite function mapping strings of (S ∪ S ·A) · E
to entries out of {0, 1}. Furthermore if s is an element of (S ∪ S · A), then row(s)
denotes the finite function f from E to {0, 1} defined by f(e) = T (s · e).

1. OT is called closed, if ∀t ∈ S · A. ∃s ∈ S. row(t) = row(s).

2. OT is called consistent, if ∀s1, s2 ∈ S. row(s1) = row(s2)⇒
∀a ∈ A. row(s1 · a) = row(s2 · a).

Fact 8.3. Obviously if two rows row(s) and row(s′) are not equal, there exists at
least one element e out of E such that T (s · e) �= T (s′ · e).

8.3 Application-Specific Adaptations to L∗

The considered application domain is the functional regression testing of complex,
reactive systems, as discussed in Section 3.2. In this section we first present the
application-specific adaptations of L∗ so that it can be used for learning models for
reactive systems. We start with a discussion of some assumptions about the consid-
ered application domain and the resulting implications for the learning procedure
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Algorithm 8.1: L∗

Alphabet A, Observation Table OT = (S,E, T ), where initially S = E = {λ}
repeat
OT ← update(OT )
while (¬isClosed(OT ) ∨ ¬isConsistent(OT )) do
if (¬isClosed(OT )) then
∃s1 ∈ S, a ∈ A. ∀s ∈ S. row(s1 · a) �= row(s)
S ← S ∪ {s1 · a}
OT ← update(OT )

end if
if (¬isConsistent(OT )) then
∃s1, s2 ∈ S, a ∈ A, e ∈ E. row(s1) = row(s2) ∧ T (s1 · a · e) �= T (s2 · a · e)
E ← E ∪ {a · e}
OT ← update(OT )

end if
end while
Mc ←M(OT )
σc ← EO(Mc)
if (σc �=⊥) then

S ← S ∪ Prefix(σc)
end if

until (σc =⊥)

MO (EO) denotes the call to the membership oracle (equivalence oracle) and the
functions update resp. M are defined as follows:

— update : OT → OT , where for each s ∈ (S ∪ S · A) and e ∈ E, T (s · e) =
MO(s · e)

— The hypothesis can be computed from the observation table as follows:
M : OT → DFA

– Σ = {row(s)|s ∈ S},
– δ(row(s), a) = row(s · a) (a ∈ A),

– s0 = row(λ),

– F = {row(s)|s ∈ S and T (s) = 1}.
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(cf. Section 8.3.1). The problem of a practical implementation of a membership
oracle resp. equivalence oracle is discussed in Section 8.3.2. Here particularly the
problem of the connection to the “real” world is studied, which is realized by us-
ing the ITE. Afterwards we define the finite installations on which we have carried
out our experiments to evaluate the learning efficiency (Section 8.3.3), before we
illustrate the algorithm L∗ along a concrete scenario (Section 8.3.4).

8.3.1 Formal Adaptations

To make L∗ work in practice, there are several problems to solve. First of all, the
worlds of automata learning and testing have to be matched. A reactive system
cannot be readily seen as a finite automaton. It is a reactive, real-time system
which receives and produces signals from large value domains. To arrive at a finite
automaton, one has to abstract from timing issues, tags, identifiers and other data
fields.

As we are dealing with reactive systems the formalism of synchronous languages
like Esterel [BG92] or Lustre [HCP91] fits perfectly well. Reactive systems behave
deterministic, i.e. the outputs of the system are uniquely determined by its inputs.
But this is an important property for regression testing, because results need to
be reproducible, i.e., results should not be subject to accidental changes (cf. Sec-
tion 3.4). In the context of reactive systems, one observes that a system’s reaction
to a stimulus may consist of more than one output signal. We assume that there is
no reordering between the outputs, i.e. they are produced everytime in a particular
order. Those outputs are produced with some delay, and in everyday application
some of them may actually occur only after the next outside stimulus has been re-
ceived by the system. It is very important to be able to match outputs correctly
to the stimuli which provoked them, i.e. to keep the causality. In synchronous lan-
guages this is conceptually ensured by assuming that the reactions take no time,
or, equivalently that outputs become available as soon as inputs become available.
In testing practice, however, it is common to wait after each stimulus to collect all
outputs. Most often, appropriate timeouts are applied to ensure that the system has
produced all responses and settled into a “stable” state. If all tests are conducted
in this way, for interpreting, storing and comparing test results, a reactive system
can be viewed as an input/output deterministic finite automaton: a device which
reacts on inputs by producing outputs and possibly changing its internal state. It
may also be assumed that the system is input enabled, i.e. that it accepts all inputs
regardless of its internal state.

Furthermore, we would like to look at the system as a propositional, i.e. finite, ob-
ject. This means that we would like to have only a finite number of components,
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input signals, and output signals. With respect to the number of components, again
we are helped by common testing practice. The complexity of the testing task ne-
cessitates a restriction to small configurations. So only a small number of addresses
and component identifications will occur, for instance up to four telephone devices
in a CTI setting, and can accordingly be represented by propositional symbols. Fur-
thermore, we abstract away other components of signals, e.g. like time stamps. This
leads to deterministic systems responses to stimuli, which is another important pre-
requisite for reproducible, unambiguously interpretable test results. Finally, we will
assume, that the system models we consider are all finite-state.

Summarizing, we adopted the following common assumptions and practices from
real-life testing.

1. Distinction between stimuli and responses

2. Matching deterministic reactions to the stimuli that cause them (synchronous
hypothesis)

3. System accepts all stimuli in every situation (input enabled)

4. Restriction to small installations

5. Abstraction to propositional signals

6. Abstract from timing issues (causality)

Altogether, this leads to a view of a reactive system as a propositional Input/Output
Deterministic Finite Automaton.

Definition 8.4 (Input/Output Deterministic Finite Automaton). An in-
put/output deterministic finite automata (IODFA) is a structure S = (Σ, AI , AO, δ,
χ, s0), where

— Σ is a non-empty, finite set of states,

— AI is the alphabet of input symbols,

— AO is the alphabet of output symbols,

— δ : Σ× AI → Σ is the transition function,

— χ : Σ× AI → A∗
O is the output function,

— s0 is the unique start state.
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We write s
a/σ−→ s′ if δ(s, a) = s′ and χ(s, a) = σ. Furthermore we will extend δ, χ to

operate on strings, i.e. δ(s, a · σ) = δ(δ(s, a), σ) and χ(s, a · σ) = χ(δ(s, a), σ).

Input/output deterministic finite automata according to this definition are not to
be confused with the richer structures from Definition 2.7 ([LT89]). As we are not
concerned with automata algebra, we can use this simple form here2.

Input/output deterministic finite automata differ from ordinary automata in that
their edges are labelled with inputs and outputs instead of just one symbol. Obvi-
ously we could view a combination of an input and the corresponding output symbols
as one single symbol. In our scenario this would result in a very large alphabet, par-
ticularly because of the sequences of elementary output symbols. Running L∗ with
such a large alphabet would be very inefficient. So we chose to split an edge labelled

by a sequence of one input and several output symbols, i.e. s
a/σ−→ s′, into a sequence

of auxiliary states, connected by edges with exactly one symbol. In this way, we
keep the alphabet and the observation table small (even though the number of states
increases). Further reductions, which are possible because of the specific structure
of the resulting automata, prohibit a negative impact of the state increase on the
learning behaviour. They are discussed in Section 8.4.

Definition 8.5. The transformation of an input/output deterministic finite au-
tomaton S = (Σio, AI , AO, δio, χio, sio

0 ) into a DFA DFA(S) = (Σ, A, δ, s0, F ), is
given by:

— A = AI ∪ AO,

— Σ ⊇ Σio ∪ {s⊥}, where s⊥ is an artificial error state,

— s0 = sio
0 ,

— for each transition δio(s, a) = s′ and χ(s, a) = a1 · . . . · an, the set Σ contains
transient states s1, . . . sn, with transitions

– δ(s, a) = s1 and δ(sn, an) = s′,

– 1 ≤ i < n. δ(si, ai) = si+1 and δ(si, b) = s⊥ for each b ∈ A \ {ai}

— transitions δ(s, b) = s⊥ for each s ∈ Σio and b ∈ AO,

— the transitions δ(s⊥, a) = s⊥ for each a ∈ A,

— F = Σ \ {s⊥}.
2Another common name for our type of machine is (deterministic) Mealy Automaton, only we

permit a string of output symbols at each transition.
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Given a system represented by an input/output deterministic finite automaton S,
our adaptation of L∗ will learn a minimalDFA equivalent toDFA(S). This requires
the adequate realization of a membership and an equivalence oracle.

8.3.2 A Practical Implementation of a Membership and an
Equivalence Oracle

In practice, membership tests may be available – and, in fact, in the application
scenario considered here they are – but equivalence tests are out of reach, particu-
lary in a black-box scenario. Nevertheless, L∗ is useful in practice, as the (exact)
equivalence oracle can be replaced by an approximative one. Key to the practical
implementation of both oracles is, however, the definition of appropriate abstraction
and concretization functions. Different from other situations where abstraction is
applied, for instance validation by formal methods, it is of crucial importance here
to be able to reverse the abstraction (concretization). Learning is only feasible if
one can check actively whether a given abstract sequence corresponds to (is an ab-
straction of) a concrete system behaviour, and L∗ relies heavily on being able to
have such questions answered. I.e., in order to be able to resolve the membership
queries, abstract sequences of symbols have to be retranslated into concrete stimuli
sequences and fed to the system at hand.

Abstraction and Concretization

Membership queries can be answered by testing the system we want to learn. This
is not quite as simple as it sounds, mainly because the sequence to be tested is
an abstract, propositional string, and the system on the other hand is a physical
entity whose interface follows a real-time protocol for the exchange of digital (non-
propositional) data. Here the ITE helps bridging the gap between the abstract
model and the concrete system. In principle we need to transform an abstract,
propositional string into an ITE test case and the resulting test run back again into
a propositional string.

The substitution of the parametric actions by propositional ones is to some ex-
tend comparable to the concept of schematic names of [JP89]. However, whereas
schematic names are used because the programs are data-independent, i.e. their be-
haviours are independent of the actual data domain on which they operate, in our
case some parameters are still important, while others can be simply disregarded.
Thus it is still important to decide, which parameters are relevant and which not,
e.g. internal timers can often be abstracted away, whereas concrete device identifiers
are of crucial importance.
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The key idea for the definition of the abstraction resp. concretization functions
is given by the handling of parameterized actions by the model checker, cf. Sec-
tion 3.4.3. There we also needed to transform parameterized actions into proposi-
tional ones. Thus we decided to encode the parameters and their values directly
into the propositional action itself, in a style inspired by the parameter encoding in
URL’s. This enables us on the one hand to distinguish between actions with differ-
ent parameter values. On the other hand we are able to define the concretization
function easily. Note that these are pure syntactical transformations.

The following definition states the abstraction function fA and its corresponding
concretization function f−1

A .

Definition 8.6. Let Π = {p1, . . . , pn} be the set of available formal test block
parameters, s ∈ Σ be a test block, and AP be the set of propositional actions. Re-
member that L is the test block labelling function (cf. Definition 3.2), mapping each
test block to a pair consisting of the identifier (id) of the test block (first component)
and a partial parameter function (second component), which itself maps parameters
to their values. Then the abstraction function fA can be defined as follows:

id p1 pn

fA(s) =
︷ ︸︸ ︷
L(s) ↓1 ?

︷ ︸︸ ︷
p1 = L(s) ↓2 (p1) ? . . . ?

︷ ︸︸ ︷
pn = L(s) ↓2 (pn)︸ ︷︷ ︸

a ∈ AP

Furthermore the concretization function f−1
A can be defined:

f−1
A (id ? p1 = v1 ? . . . ? pn = vn) = s, where L(s) ↓1= id, and

L(s) ↓2 (p1) = v1, . . . ,L(s) ↓2 (pn) = vn

Note that the set of input actions is determined by the corresponding set of external
action test blocks.

Example 8.1. To illustrate the abstraction resp. concretization functions, let us con-
sider a test block with the identifier makeCall which initiates a call between two
telephone devices. These devices can be specified by means of two parameters, i.e.
source and target. Let furthermore s denote an instance of this test block in a test
graph where device A calls device B , i.e. L(s) ↓1= makeCall , L(s) ↓2 (source) = A,
and L(s) ↓2 (target) = B. Now

fA(s) = makeCall ? source=A ? target=B

And on the other hand

f−1
A ( makeCall︸ ︷︷ ︸ ? source=A︸ ︷︷ ︸ ? target=B︸ ︷︷ ︸ ) = s

L(s) ↓1 L(s) ↓2 (source) = A L(s) ↓2 (target) = B
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Membership Oracle

With these preconditions, the following steps have to be carried out to perform a
membership query for a sequence σ:

(1) Compute the projection σI of σ to elements out of AI only.

(2) Build a test case for σI . Here for each symbol a out of AI the corresponding test
block is computed by f−1

A (a). Note that the generation procedure for such test
cases is straightforward, as they are composed out of action test blocks only,
i.e. without branching. This is only possible because of our “loose” definition
of test cases. In Section 3.4.1 we have established a test case specification
formalism that allows us to focus on the relevant system behaviour, i.e. we
do not have to check the complete system state after stimulations. In this
situation we use this feature by checking nothing at all.

(3) Execute the test case. Due to the execution semantics of a test case, cf.
Section 3.4.2, the resulting test run σr contains all corresponding responses of
the system as well.

(4) Retransform the test run σr back into a propositional sequence σp by applying
fA to every element of σr. Note that eventually an output symbol, represent-
ing e.g. a structured protocol entity, must be transformed into the required
notation of Definition 8.6, i.e. an identifier followed by key/value pairs for the
mandatory parameters. During this step we additionally need to abstract from
unnecessary elements, e.g. like timestamps or message identifiers.

(5) If the original sequence σ is included in the set of prefixes of σp (σ ∈ prefix(σp)),
then the membership query can be answered with 1. Otherwise σ contains un-
expected output symbols and the answer is 0.

In Figure 8.2 this process is illustrated for a concrete example. Let us assume that
L∗ raises a membership query for the sequence a ·x ·b (a and b denote input symbols,
whereas x and y are output symbols). Then during step (1) the projection to the
input symbols will be performed, which results in a · b. This sequence will then be
transformed into a test case with the help of the concretization function f−1

A (we
have omitted the internal start test block to concentrate on the essentials of this
test case only). The corresponding test graph, which represents its semantics, will
be computed by the ITE test execution engine using the abstraction function fA,
cf. Section 3.4.2. Here the reflexive edges, labelled with the overall output alphabet
ensure that all responses of the system that occur during test execution will be
gathered during the test run (3). As the test run may contain unnecessary details
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Figure 8.2: Illustration of a practical Membership Oracle

for the respective actions, e.g. timestamps or message identifiers for the responses
of the system or test tool identifiers for the stimuli, we have to abstract from these
details. During this abstraction step we simply disregard certain parameters that
are encoded in the action (e.g. transformation of x′ to x in Figure 8.2). Note that
this does not conflict with the concretization function f−1

A , as all parameters of a test
block have predefined values so that every test block is always executable. Finally,
we have to retransform the (abstract) test run back into a propositional sequence
(4). The result for this particular membership query is then true, as the sequence
a ·x · b is indeed a prefix of the result a ·x · b ·y. If we have received e.g. the sequence
a · y · b · x the result of the membership query would have been false.

Although the tests are automatically generated, membership queries are very ex-
pensive: The automatic execution of a single test took approximately 1,5 minutes
during our experimentation. So it is very important to keep the number of such
membership queries low.



176 A Posteriori Generation of Approximate Models

Equivalence Oracle

For a black-box system there is obviously no reliable equivalence check – one can
never be sure whether the whole behaviour spectrum of a system has been explored.
But there are approximations which cover the majority of systems quite well. This is
the basis of the theoretical result that approximate learning (learning with probably
approximately correct results [Val84]) can be done with membership queries alone
[KV94]. The basic idea is to scan the system in the vicinity of the explored part for
discrepancies to the expected behaviour.

Substituting the equivalence queries of L∗ turned out to be simple in our experi-
ments. We used simple lookahead queries and were able to (manually) identify the
structural properties of the learned models that we have expected. Assume that we
have the membership query for input symbol σ = σI = a which results in σr = a ·x,
where x is an output symbol. For answering the membership question we simply
have to compare σ and σr. The full information provided by the test run, i.e. that
after an input action a an output action x occurred, can be stored as a new test
in the equivalence oracle as well. This helps to guide the algorithm afterwards, as
every hypothesis must also satisfy the system behaviour seen before.

Though we do not expect this to remain that easy if we move to more ambitious
scenarios than the ones studied so far, approximate equivalence checks seem unlikely
to pose difficulties.

One particularly good approximation is achieved by performing a test in the spirit
of [TP98], cf. Section 2.3.4. This test procedure has polynomial complexity in the
size of the hypothesis automaton. Note that for the real execution of the resulting
test sequences, we can use the already implemented membership oracle. Another
possibility lies in checking consistency within a fixed lookahead from all states. In
the limit, by increasing the lookahead, this exploration will rule out any uncertainty,
though at the price of exponentially increasing complexity [KV94].

Another possibility of enriching the source of information the equivalence oracle is
based on the incorporation of expert knowledge. This has already been proposed in
the general approach of regular extrapolation, cf. Section 8.1.1. On the one hand
experts can specify special sequences that distinguish similar states (tests). On the
other hand LTL constraints help to discover an incorrect hypothesis: if a constraint
is violated, the model checker of the ABC is able to present a counterexample.

8.3.3 Scenarios for Experimentation

To illustrate our approach we have conducted several experiment, where we learned
models for small installations of (a part of) a complex call center solution, cf. Sec-
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tion 6.2. In all of our scenarios, a telephone switch is connected to the telephone
network and acts as a “normal” telephone switch to the phones. Additionally it
communicates with CTI applications that are executed on PC’s. Here in essence
two communication protocols are used: CorNet for the communication between the
switch and its devices, and CSTA/Tapi for the communication between the switch
and its CTI applications (cf. Figure 6.6). The technical realization of the necessary
interface to this setup is provided by the ITE, i.e. we are particularly able to:

1. Stimulate the system by means of the CorNet protocol, and

2. Observe the system with respect to the resulting CSTA messages.

A model on CSTA level of the telephone switch will be of practical interest, because
in Section 6.1 it was stated that there exist more than 200 different CTI applications
and each communicates via the CSTA protocol with the telephone switch. As the
telephone switch is involved into all of these settings, a model of the behaviour of
the telephone switch on CSTA level helps to steer the testing effort.

We have carried out our experiments on four specific (partial) installations of a call
center solution, each consisting of the telephone switch connected to a fixed number
of telephones (called “physical devices”)3. Our main aims are to present a qualitative
evaluation of our approach and to study the effects of independency between actions.
Therefore the telephones were restricted differently in their behaviour, ranging from
simple on-hook (↑) and off-hook (↓) actions of the receiver to actually performing
calls (→). The four installations are listed below. Note that we have two versions of
the first three scenarios, depending on the observability of the signal (hookswitch).

In the following we present a short description of our experimental settings together
with the corresponding input resp. output alphabet.

Scenario 1 (S1): One telephone device is connected to the telephone switch and
it is able to on-hook resp. off-hook the receiver.

1 physical device (A),
AI = {A ↑, A ↓},
AO = {initA, clearA, [hookswitchA]}.

Scenario 2 (S2): Two telephone devices are involved in this setting and each is
able to on-hook resp. off-hook its receiver. The actions depending on device
A are independent from the actions concerning device B.

2 physical devices (A,B),

3Note that this restriction is sufficient for the investigation of the relevant behaviour of the
CSTA protocol [Eur00].
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AI = {A ↑, A ↓, B ↑, B ↓},
AO = {init{A,B}, clear{A,B}, [hookswitch{A,B}]}.

Scenario 3 (S3): Three independent telephone devices are included in this sce-
nario.

3 physical devices (A,B,C),
AI = {A ↑, A ↓, B ↑, B ↓, C ↑, C ↓, },
AO = {init{A,B,C}, clear{A,B,C}, [hookswitch{A,B,C}]}.

Scenario 4 (S4): The last setting incorporates three telephone devices and device
A can call device B, i.e. they are eventually interdependencies between these
devices.

3 physical devices (A,B,C),
AI = {A ↑, A ↓, A→ B,B ↑, B ↓, C ↑, C ↓, },
AO = {init{A,B,C}, clear{A,B,C}, origA→B, estblB}

The output events indicate which actions the telephone switch has performed on
the particular input. For instance, initA indicates that the switch has noticed that
the receiver of device A is off the hook, whereas init{A,B} abbreviates the situation
that we have both events initA and initB. With origA→B the switch reports that it
has forwarded the call request from A to B.

8.3.4 Basic Learning in Practice

Let us discuss the practical application of the basic learning algorithm L∗ by com-
puting the scenario S2.

Example 8.2. Let us assume that the alphabet is given by A = AI ∪ AO = {A ↑,
B ↑, A ↓, B ↓, initA, initB, clearA, clearB}. Then the initial observation table is
given by (1).



8.3. Application-Specific Adaptations to L∗ 179

λ

λ 1
A ↑ 1
B ↑ 1
A ↓ 1
B ↓ 1
initA 0

initB 0
clearA 0
clearB 0

(1) Initial Observation Table

λ

λ 1
initA 0
A ↑ 1
B ↑ 1
A ↓ 1
B ↓ 1
initA ·A∗ 0
initB 0
clearA 0
clearB 0

(2) Closed and Consistent Observation Table

The initial observation table (1) is not closed, because there are rows out of S ·A, e.g.
row(initA), with no corresponding row in the set S, i.e. ∀s ∈ S.row(s) �= row(initA).
Consequently the string of one of these rows, e.g. initA, will be added to the set S.
Afterwards the observation table will be updated, i.e. for each s out of (S ∪ S · A)
and e out of E the corresponding value for T (s · e) will be updated by membership
queries. The right observation table4 (2) is then closed and consistent and the
corresponding hypothesis will be computed:

AO
AAI

The equivalence oracle rejects the hypothesis, because e.g. after an off-hook for de-
vice A the telephone switch responds with the signal initA. Thus σc = A ↑; initA ∈ L
is not reflected in the hypothesis. Note that we have added the (possible) counterex-
ample σc to the equivalence oracle when performing the membership query for A ↑.
The counterexample σc, and all its prefixes, will be added to set S, which results in
the following observation table (3).

4Note that we present the observation table in a somewhat compressed view, as e.g. entry
initA ·A∗ denotes a set of entries, e.g. initA ·A ↑, initA ·B ↑ and so forth.
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λ

λ 1
initA 0
A ↑ 1
A ↑ ·initA 1
B ↑ 1
A ↓ 1
B ↓ 1
initA ·A∗ 0
initB 0
clearA 0
clearB 0
A ↑ ·A∗

I 0
A ↑ ·(AO \ {initA})∗ 0
A ↑ ·initA ·AI 1
A ↑ ·initA ·A∗

O 0

(3) Inconsistent Observation Table

λ initA

λ 1 0
initA 0 0
A ↑ 1 1
A ↑ ·initA 1 0
B ↑ 1 0
A ↓ 1 0
B ↓ 1 0
initA ·A∗ 0 0
initB 0 0
clearA 0 0
clearB 0 0
A ↑ ·A∗

I 0 0
A ↑ ·(AO \ {initA})∗ 0 0
A ↑ ·initA ·AI 1 0
A ↑ ·initA ·A∗

O 0 0

(4)

The left observation table (3) is not consistent, because row(λ) = row(A ↑) but
row(initA) �= row(A ↑; initA). Thus the string λ·initA will be added to set E and the
observation table will be updated accordingly. Note that the resulting observation
table (4) is still not consistent (row(λ) and row(A ↑ ·initA)). We will now suppress
the intermediate steps and present directly the final hypothesis in Figure 8.3. Note
that in the hypothesis all disregarded actions lead to the non-accepting state ⊥, but
are not depicted explicitly.

Results

Table 8.1: Number of Membership Queries for Basic Learning
Scenario States Membership Queries

S1 5 108
S ′

1 7 672
S2 13 2,431
S ′

2 29 15,425
S3 33 19,426
S ′

3 81 132,340
S4 79 132,300

Table 8.1 presents the sizes of the learned automata and the number of membership
queries needed for the learning procedure. The third column of Table 8.1 points
out impressively that even in relatively small scenarios the number of membership
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⊥

A ↓,B ↓

A ↑,B ↓ B ↑,A ↓

A ↑,B ↑

A ↑

initA

A ↓

clearA

B ↑

initB

B ↓

clearB

B ↑

initB

B ↓

clearB

A ↑

initA

A ↓

clearA

Figure 8.3: Final Model for Scenario S2

queries needed is quite large. Therefore it is clearly necessary to reduce the number of
membership queries drastically. In fact, we would have had difficulties in computing
these figures in time without using some reductions5. The next section formally
develops this novel application of a profile-dependent optimization of the learning
process, which we consider a key for the practicality of automata learning.

8.4 Optimized Learning with L∗

A major cause of the difficulties is the fact that L∗ – as all its companions – does
not take peculiarities of the application domain into account. Though a suitable
abstraction of a telecommunication system does indeed yield a finite automaton, it
is a very special one: Its set of finite traces forms a prefix-closed language, every other
symbol in the trace is an output determined by the inputs received by the system
before, and, assuming correct behaviour, the trace set is closed under rearrangements
of independent events. It was this last property which caused the most problems
when adapting the learning scenario. In fact, identifying independence and the
concrete corresponding exploitation for the reduction of memberships queries both

5We have learned the corresponding automata directly with our optimized version of L∗, which
we will present in the next section. However, to evaluate the impact of our optimizations we have
used theses models to trigger the basic algorithm L∗.
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turned out to be difficult. However, since physical testing, even if automated as in
our case, is very time intensive, these optimizations are vital for practicality reasons.

To reduce the huge amount of membership queries needed in the case of basic L∗, we
propose a process which is presented in Fig. 8.4. Here, additional filters are added
to the connection from L∗ to the two oracles. These filters reduce the number of
queries to the oracles by answering queries themselves in cases where the answer
can be deduced from previous queries. In our experiments, we used properties like
determinism, prefix closure, and also independence and symmetry of events for filter
construction.

Figure 8.4: L∗ with oracle substitutes

8.4.1 Theory

This section describes several optimizations given through rules which can be used
in the filter shown in Figure 8.4. Common to all rules is that they are able to answer
the membership queries from within the accumulated knowledge of the system so
far. They will be presented in the form Condition ⇒ {true, false}. Condition

refers to the OT , in particular to T , to find out whether there is an entry in the
table stating that some string σ is already known to be member of the set to be
learned or not, i.e. T (σ).

The filter rules that will be presented are based on several properties of (special
classes of) reactive systems. They are to some extent orthogonal to each other
and could be applied independently. This potentially increases the usability both
of our current concrete approach and of the general scenario depicted in Fig. 8.4.
Given another learning problem, a possible way to adapt the learning procedure is to
identify a profile of the new scenario in terms of specific properties and to optimize
the learning process by means of the corresponding filter rules.
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Prefix-Closure:

In testing a reactive system, one observes the finite prefixes of the potentially infi-
nite sequences of inputs and outputs. If there is an error, all further behaviour is
disregarded. Other than in general regular languages, there is no switching from
non-accepting to accepting. Correspondingly, the DFA’s resulting from translat-
ing an input/output deterministic finite automaton according to Definition 8.5 have
just one sink as a non-accepting state. The language we want to learn is thus prefix
closed.

Definition 8.7 (Prefix Closure). A Language L over an alphabet A is called
prefix closed, if the following holds:

— If σ = σ′ · σ′′ then σ′ is called a prefix of σ. The set prefix(σ) denotes all
prefixes of σ.

— ∀σ ∈ A∗. σ ∈ L ⇒ ∀σ′ ∈ prefix(σ). σ′ ∈ L.

This property directly gives rise to the rule Filter 1, where each prefix of an entry
in OT that has already been rated 1 (i.e. is a member of the target language), will
be evaluated with true as well. Note that the filter rules are valid for all sequences
σ.

Filter 1 (Positive Prefix). ∃σ′ ∈ A∗. T (σ · σ′) = 1 =⇒MO(σ) = true

The contraposition of the condition in Definition 8.7 states that once we have found
a sequence σ that is rated false, all continuations also have to be rated false.
This yields the rule Filter 2.

Filter 2 (Negative Prefix). ∃σ′ ∈ prefix(σ). T (σ′) = 0 =⇒MO(σ)=false

Together, these two rules capture all instances of membership queries which are
avoidable when learning prefix-closed languages. These rather simple rules already
have an impressive impact on the number of membership queries as will be shown
in Table 8.2.

Input Determinism:

Input determinism ensures that the system to be tested always produces the same
outputs on any given sequence of inputs (cf. Definition 2.7). This implies that
replacing just one output symbol in a word of an input deterministic language cannot
lead to words of this same language.
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Proposition 8.8. Let S be an input/output deterministic finite automaton and let
furthermore σ ∈ L(DFA(S)). Then the following holds.

1. If there exists a decomposition of σ = σ′ · x · σ′′ with x ∈ AO , then
∀y ∈ A \ {x}. σ′ · y · σ′′′ �∈ L(S).

2. If there exists a decomposition of σ = σ′ · a · σ′′ with a ∈ AI , then
∀x ∈ AO. σ′ · x · σ′′′ �∈ L(S).

The first property says that each single output event is determined by the previ-
ous inputs. It should be emphasized that this property is of crucial importance
for learning reactive systems, as a test environment has no direct control over the
outputs of a system. If the outputs were not determined by the inputs, there would
be no way to steer the learning procedure to exhaustively explore the system under
consideration.

The second property reflects the fact that the number of output events in a given
situation is determined, and that we wait with the next stimulus until the system
has produced all its responses. This is useful but not as indispensable as the first
property. The corresponding filter rules are straightforward:

Filter 3 (Input Determinism). ∃x ∈ AO, y ∈ A, σ′, σ′′, σ′′′ ∈ A∗.σ = σ′ · x · σ′′ ∧
T (σ′ · y · σ′′′) = 1 ∧ x �= y =⇒ MO(σ) = false

Filter 4 (Output Completion). ∃a ∈ AI , x ∈ AO, σ′ ∈ A∗.σ′ · x ∈ prefix(σ) ∧
T (σ′ · a) = 1 =⇒ MO(σ) = false

Independence of Events:

Reactive systems exhibit very often a high degree of parallelism. Partial order
reduction methods for communicating processes [Maz87, Val93] deal with this kind
of phenomena. Normally these methods can help to avoid examining all possible
interleavings among processes. However, as we will illustrate here, these methods can
also be used to avoid unnecessary membership queries using the following intuition
of independency : If device A can perform a certain action and device B can perform
another and they are independent of each other, then they can perform it vice versa
as well.

Following the work of Mazurkiewicz [Maz87], we define a trace equivalence based on
the notation of independent actions.

Definition 8.9 (Dependency, Independency). A relation D ⊆ A× A on a set
A that is finite, reflexive, and symmetric is called dependency. Given dependency
D the relation ID = (A× A) \D is called independency induced by D.
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Definition 8.10 (Trace Equivalence). Let D be a dependency relation and A
be the corresponding alphabet. Let furthermore A∗ represent the set of all finite
sequences of symbols in A. We define the relation ≡P O as the least congruence in
the monoid [A∗, ·, λ] such that

(a, b) ∈ ID =⇒ a · b ≡P O b · a

The relation ≡P O is referred to as the trace equivalence over D and A. We use [σ]P O

to denote the equivalence class of all traces equivalent to σ.

In the trace semantics of Mazurkiewicz, the behaviour of systems is defined as a
set of traces. This semantics is often referred to as being a partial order semantics
because it is possible to define a correspondence between traces and partial orders
of occurrences of transitions [Maz87].

The membership question for a sequence σ can be improved, by answering it with
true if an equivalent sequence σ′ is already rated with 1 in OT . Thus we obtain
the following filter rule.

Filter 5 (Partial Order). ∃σ′ ∈ [σ]P O.T (σ′) = 1 =⇒ MO(σ) = true

Whereas the general principle of Filter 5 is quite generic, the realization of the com-
putation of the equivalent sequences strongly depends on the concrete application
domain. However, the required process always follows the same pattern:

1. An expert specifies an application-specific independence relation, e.g. Two
independent calls can be shuffled in any order.

2. σ is inspected to discover independent subparts with respect to the indepen-
dence relation.

3. Computation of the partial order completion, i.e. the set of all equivalent
traces.

In the following we will illustrate how the equivalent sequences for σ can be deter-
mined in the context of telephony systems by computing a simple example.

Example 8.3. Figure 8.5 shows the process of how to generalize a trace σ6.

Device A calls device B and after that device B answers the call so that it will be
established. As a last action, device C also picks up the receiver. However, this

6Note that input actions are prefixed by a question mark and output actions by an exclamation
mark.
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! initC

! origA→B

! estblB

! initC

? A → B

! initA

? initB

? C↑

❀ ❀
! initC

? C ↑

? C ↑

! origA→B

! estblB

? A → B

! initA

? B ↑

? A → B

! origA→B

! estblB

? A → B

! initA

! origA→B

? C ↑ ! initA? B ↑

! estblB

! initC

? B ↑

! initC

? C ↑

Figure 8.5: Partial Order Generalization

very last action is independent of the previous ones, as device C is not involved in
the connection between A and B. Therefore, it does not matter, at which time C
performs its action. Note that due to the strong coherence between the inputs and
their corresponding outputs we combine inputs and outputs to new symbols for the
computation of the interleavings. So the corresponding dependency of the example
in Figure 8.5 is as follows:

D = {(A→ B · initA · origA→B, B ↑ ·estblB)}

To compute all equivalent sequences we first will compute the dependencies between
the involved devices, which leads to two independent subsequences. Following this,
from these two independent subsequences, which describe the partial order, a di-
rected acyclic graph representing all possible interleavings is computed and this
represents the set of all equivalent traces.

Symmetries of Events:

Another observation in telecommunication systems is that several different compo-
nents of one type, here e.g. telephones, can often be regarded as generic so that they
are interchangeable. This leads to symmetries, e.g. a device A behaves like device
B. Again this helps to avoid unnecessary membership queries: If we have seen that
device A can perform a certain action we know that the other (similar) devices can
perform it as well. Note that this effect is often related to the independence of
events, within this section, however, we discuss these effects separately.



8.4. Optimized Learning with L∗ 187

To compute the set of symmetric traces for a sequence σ we first compute an ab-
stract trace, where we replace all concrete device identifiers with abstract actors.
Afterwards we concretize the abstract trace again, i.e. we assign all possible values
to the abstract actors. This way we are able to compute the set of symmetric traces.

Definition 8.11 (Abstract Trace, Symmetry). Let Dev = {A1, . . . , An} be a
set of different devices and Act = {α1, . . . , αn} be a set of actors.

1. The abstract trace for a sequence σ can be computed with the following algo-
rithm:

Initialize actorDeps with ∅, σα with λ, and maxActor with 0
while (σ �= λ) do
Decompose σ = a · σ′

Compute the device dependencies for a, i.e. {Ai, . . . , Aj}
for all (A ∈ {Ai, . . . , Aj}) do
if (A �∈ actorDeps) then
Increase maxActor
Add (A,αmaxActor) to actorDeps

end if
end for
Replace the device id’s in a with their corresponding actor id’s
Append a to σα

σ ← σ′

end while

2. The set of all symmetric traces for a sequence σ, denoted by [σ]S, can can be
computed by replacing the actors in σα with all possible concrete devices, i.e.
α1 = A1, α2 = A2, . . . and α1 = A2, α2 = A1, . . . and so forth.

The corresponding filter rule is quite similar to Filter 5, as again the membership
query for σ can be answered with true if a symmetric sequence σ′ is already rated
with 1 in OT .
Filter 6 (Symmetry). ∃σ′ ∈ [σ]S.T (σ

′) = 1 =⇒ MO(σ) = true

Taken together these two filters provide powerful optimizations for the learning
setting, cf. Section 8.4.2.

Please note that the two presented properties of telecommunication systems, i.e. in-
dependency and symmetries of events, can help to improve the approximate equiv-
alence oracle as well. For every trace, all equivalent traces can be added to the
equivalence oracle, as they are valid traces for the system as well. This means that
a correct hypothesis must also accept these traces!



188 A Posteriori Generation of Approximate Models

8.4.2 Optimized Learning in Practice

To understand how our optimizations work in practice let us investigate how the
observation table (3) of Example 8.2 can be built with the help of the filters.

Example 8.4. In the following observation table each entry, that requires a “real”
membership query is boxed in. Additional information about the query, e.g. the
filter used to deduce the entry or all equivalent traces, with respect to the partial
order, are presented in the last column.

λ Remarks

λ 1 λ
initA 0 Filter 4
A ↑ 1 A ↑ ·initA, B ↑ ·initB

A ↑ ·initA 1 Already seen
B ↑ 1 Filter 5
A ↓ 1 A ↓, B ↓
B ↓ 1 Filter 5
initA ·A∗ 0 Filter 2
initB 0 Filter 4
clearA 0 Filter 4
clearB 0 Filter 4
A ↑ ·A∗

I 0 Filter 2 + 4
A ↑ ·(AO \ {initA})∗ 0 Filter 2, 3 + 4
A ↑ ·initA ·A ↑ 1 A ↑ ·initA ·A ↑, B ↑ ·initB ·B ↑
A ↑ ·initA ·B ↑ 1 A ↑ ·initA ·B ↑ ·initB, B ↑ ·initB ·A ↑ ·initA

A ↑ ·initA ·A ↓ 1 A ↑ ·initA ·A ↓ ·clearA, B ↑ ·initB ·B ↓ ·clearB

A ↑ ·initA ·B ↓ 1 A ↑ ·initA · B ↓, B ↑ ·initB · A ↓, B ↓ ·A ↑ ·initA,
A ↓ · B ↑ · initB

A ↑ ·initA ·A∗
O 0 Filter 2 + 4

Let’s discuss in detail how the result of a membership query can be induced by
applying the filter rules.

— The sequence initA can be rated with 0 because from the membership queries
for λ and A ↑ we can conclude with Filter 4: σ = initA, x = initA,
σ′ = λ, a = A ↑ and because T (A ↑) = 1 the query will be answered with
false. Furthermore any continuation of initA can be rated with 0 because of
Filter 2 (row initA · A∗).

— The sequence B ↑ can be answered because we have already queried the equiv-
alent row A ↑ (Filter 5).
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— The sequence A ↑ ·(AO \ {initA}) can be rated with 0 because of Filter 3:
e.g. σ = A ↑ ·initB, σ′ = A ↑, x = initB, σ′′ = λ but T (A ↑ ·initA) = 1.
Furthermore because of Filter 2 + 3 we can also conclude that indeed every
A ↑ ·(AO \ {initA})∗ will be rated with 0.

Results

In the following, we discuss the impact of the filters on the scenarios defined in
Section 8.3.3. Note that our filters do not affect the algorithm L∗ itself and therefore
none of its properties (correctness and termination). We have run the learning
process with all available filters applied in a cumulative way, i.e., when using filters 3
and 4, filters 1 and 2 were also used. The results are summarized in Table 8.2, and
Figure 8.6 visualizes the results on a logarithmic scale. The factor columns in the
table provide the additional reduction factor in the number of membership queries
achieved by successively adding new filters.

Table 8.2: Number of Membership Queries
Scen. no Fil. Fil. 1 & 2 Fact. Fil. 3 & 4 Fact. Fil. 5 & 6 Fact. Tot.
S1 108 30 3.6 15 2.0 15 0.0 7.2
S′

1 672 181 3.7 31 5.8 31 0.0 21.7
S2 2,431 593 4.1 218 2.7 98 2.2 24.8
S′

2 15,425 4,080 3.8 355 11.5 145 2.4 106.4
S3 19,426 4,891 4.0 1,217 4.0 207 5.9 93.8
S′

3 132,340 36,374 3.6 2,007 18.1 289 6.9 458.0
S4 132,300 29,307 4.5 3,851 7.6 1,607 2.4 82.3

As one can see we were able to reduce the total number of membership queries in
all scenarios drastically. In the most drastic case (S ′

3), we only needed a fraction
of a percent of the number of membership queries that the basic L∗ would have
needed. In fact, learning the corresponding automaton without any optimizations
would have taken about 4.5 months of computation time.

The prefix reduction (filters 1 and 2) has a similar impact on all considered scenarios.
This seems to indicate that it does not depend very much on the nature of the
example and on its number of states.

The other two reductions (input determinism and partial order) vary much more in
their effectiveness. Note that the saving factor increases with the number of states.
Shifting attention to the number of outputs and the lengths of output sequences
between inputs, these seem to have a particularly high impact on the effects of
the filters 3 and 4. This can be seen by comparing the scenarios Si with their
counterparts S ′

i. In these counterparts an additional output event is modelled, the
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hookswitch event, which occurs very frequently, namely after each of the permitted
inputs.

One naturally expects that the impact of Filter 5, which covers the partial order
aspects, will increase with the level of independency. And indeed we find this hy-
pothesis confirmed by the experiments. S1 has only one actor so that there is no
independence, which results in a factor of 1. As the number of independent devices
increases, the saving factor increases as well, see the figures for S2 and S3. It is worth
noting that the number of states does not seem to have any noticeable impact on the
effectiveness of this filter, as it is more or less remains constant when switching from
Si and S ′

i. Compared to S3, the saving factor in S4 decreases. This is due to the
fact that an action has been added in S4 that can establish dependencies between
two devices, namely the initiation of a call.

We have demonstrated that with the right modifications to the learning procedure,
and the right environment for observing system, it is possible to learn system models.
Modifying the learning algorithm by filtering out unnecessary queries enabled us
to perform the experiments easily, and in general the method provides a flexible
approach which permits fast adaptations to different application domains.

Figure 8.6: Impact of the filter rules on the number of membership queries (loga-
rithmic scale)
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8.5 L∗i/o: Learning Input/Output Deterministic

Systems

For fixed settings, modifications to the algorithm itself should be made, because
this allows us to cope better with the peculiarities of special sorts of systems, i.e.
input/output deterministic finite systems. When learning these systems directly as
input/output deterministic finite automata, the overall performance of the learning
algorithm can be further improved. This is mainly because less states are needed to
represent such systems as IODFA in comparison to DFA, so that no intermediate
states are needed anymore.

When dealing with input/output deterministic finite systems the distinction be-
tween accepting and non-accepting states, as used in L∗, is not applicable. This
is because the corresponding system model, IODFA, only consists of “normal”
states. Therefore, in testing theory for finite state machines or mealy automata, e.g.
[Vas73, Cho78], states are distinguished with respect to the outputs they produce
after applying (specific) inputs or sequences of those. We can generalize the obser-
vation table of [Ang87] (cf. Definition 8.2), so that the column/row entries consists
of sequences of input symbols and the cell entries of sequences of output symbols.

Definition 8.12 (Input/Output Observation Table). An observation table for
an input alphabet AI is a triple OT i/o = (S,E, Ti/o), where S ⊂ A∗

I is a finite, prefix-
closed set, E ⊂ A∗

I is a finite set, and Ti/o is a finite function mapping strings of
(S∪S ·AI) ·E to strings from an output alphabet AO. Furthermore if s is an element
of (S ∪ S · AI), then rowi/o(s) denotes the finite function f from E to A∗

O defined
by f(e) = Ti/o(s · e).

1. OT is called closed, if ∀t ∈ S · AI . ∃s ∈ S. rowi/o(t) = rowi/o(s).

2. OT is called consistent, if ∀s1, s2 ∈ S. rowi/o(s1) = rowi/o(s2)⇒
∀a ∈ AI . rowi/o(s1 · a) = rowi/o(s2 · a).

Note that in the following we refer to an input/output observation table simply as
observation table.

So the result of Ti/o(s · e), where s ∈ (S ∪ S · AI) and e ∈ E, will be exactly the
sequence of output symbols that are produced after the sequence of input symbols s·e
is executed. Additionally the set E of distinguishing sequences will be initialized
with the whole set of input symbols AI , because initially we try to distinguish
between the states by applying every symbol of AI .

To fill the entries in the observation table a membership oracle is needed that returns
the (last) string of output symbols, which is produced after a sequence of input
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symbols. Note that this information is already available in our implementation
of the membership oracle as defined for L∗, cf. Figure 8.2. There we have checked
whether the result of the processed test run (σp) is in the set of prefixes of the original
sequence σ. Now we will request membership queries for sequences composed out of
input symbols only, i.e. the projection to input symbols is superfluous. The result
of the membership query is then the suffix of σp, starting at the last input symbol.

The algorithm L∗
i/o is given in Algorithm 8.2. Note that because L∗

i/o learns the
models directly as IODFA it subsumes the optimizations regarding prefix-closeness
and input determinism for obvious reasons. For further improvements we will still
use the partial order filter (Filter 5) and the symmetry filter (Filter 6).

8.5.1 Input/Output Learning in Practice

In the following example we will illustrate the power of L∗
i/o along the scenario S2

of Example 8.2.

Example 8.5. The alphabet is given by AI = {A ↑, B ↑, A ↓, B ↓} and
AO = {initA, initB, clearA, clearB}. The initial observation table is as follows:

A ↑ B ↑ A ↓ B ↓
λ initA initB λ λ

A ↑ λ initB clearA λ

B ↑ initA λ λ clearB

A ↓ initA initB λ λ
B ↓ initA initB λ λ

Let us briefly discuss how the entries inOT will be interpreted. E.g. Ti/o(A ↑ ·B ↑) =
initB comes from the membership query for A ↑ ·B ↑ which leads to the test run
σr = A ↑ ·initA · B ↑ · initB . The result given back from the membership oracle
will be exactly the boxed part of σr, i.e. initB. If we are considering the entry
Ti/o(A ↑ ·B ↓) = λ we see that the membership query for A ↑ ·B ↓ results in
σr = A ↑ ·initA · B ↓. So the last input action results in no corresponding output
action, i.e. the empty sequence λ.
This observation table is not closed, as for the two boxed rows, which are different
from each other, no corresponding row in S exists. Thus we will add the two target
rows to S which leads to the following observation table.
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Algorithm 8.2: L∗
i/o

Input Alphabet AI , Output Alphabet AO, Observation Table OT i/o = (S,E, Ti/o),
where initially S = {λ} and E = AI .

repeat
OT i/o ← updatei/o(OT i/o)
while (¬isClosed(OT i/o) ∨ ¬isConsistent(OT i/o)) do
if (¬isClosed(OT i/o)) then
∃s1 ∈ S, a ∈ AI . ∀s ∈ S. rowi/o(s1 · a) �= rowi/o(s)
S ← S ∪ {s1 · a}
OT i/o ← updatei/o(OT i/o)

end if
if (¬isConsistent(OT i/o)) then
∃s1, s2 ∈ S, a ∈ AI , e ∈ E. rowi/o(s1) = rowi/o(s2)∧

Ti/o(s1 · a · e) �= Ti/o(s2 · a · e)
E ← E ∪ {a · e}
OT i/o ← updatei/o(OT i/o)

end if
end while
Mc ←M(OT i/o)
σc ← EOi/o(Mc)
if (σc �=⊥) then

S ← S ∪ Prefix(σc)
end if

until (σc =⊥)

MOi/o (EOi/o) denotes the call to the membership oracle (equivalence oracle) and
the functions updatei/o resp. M are defined as follows:

— updatei/o : OT i/o → OT i/o, where for each s ∈ (S ∪ S · A) and e ∈ E,
Ti/o(s · e) = MOi/o(s · e)

— The hypothesis can be computed out of the observation table as follows:
M : OT i/o → DFA

– Σ = {rowi/o(s)|s ∈ S},
– δ(rowi/o(s), a) = rowi/o(s · a) (s ∈ S, a ∈ AI),

– χ(rowi/o(s), a) = Ti/o(s · a) (s ∈ S, a ∈ AI),

– s0 = rowi/o(λ).
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A ↑ B ↑ A ↓ B ↓
λ initA initB λ λ
A ↑ λ initB clearA λ
B ↑ initA λ λ clearB

A ↓ initA initB λ λ
B ↓ initA initB λ λ
A ↑ ·A ↑ λ initB clearA λ

A ↑ ·B ↑ λ λ clearA clearB

A ↑ ·A ↓ initA initB λ λ
A ↑ ·B ↓ λ initB clearA λ

B ↑ ·A ↑ λ λ clearA clearB

B ↑ ·B ↑ initA λ λ clearB

B ↑ ·A ↓ initA λ λ clearB

B ↑ ·B ↓ initA initB λ λ

Again the observation table is not closed because of the two boxed rows. As they
are equal, it is sufficient to add one of them to S.

A ↑ B ↑ A ↓ B ↓
λ initA initB λ λ
A ↑ λ initB clearA λ
B ↑ initA λ λ clearB

A ↑ ·B ↑ λ λ clearA clearB

A ↓ initA initB λ λ
B ↓ initA initB λ λ
A ↑ ·A ↑ λ initB clearA λ
A ↑ ·A ↓ initA initB λ λ
A ↑ ·B ↓ λ initB clearA λ
B ↑ ·A ↑ λ λ clearA clearB

B ↑ ·B ↑ initA λ λ clearB

B ↑ ·A ↓ initA λ λ clearB

B ↑ ·B ↓ initA initB λ λ
A ↑ ·B ↑ ·A ↑ λ λ clearA clearB

A ↑ ·B ↑ ·B ↑ λ λ clearA clearB

A ↑ ·B ↑ ·A ↓ initA λ λ clearB

A ↑ ·B ↑ ·B ↓ λ initB clearA λ

Now the observation table is both closed and consistent. Furthermore it represents
the final hypothesis. Note that we neither needed to extend the set E of distin-
guishing sequences, nor did we need to raise an equivalence query (except of the
last one). The initial elements of E were sufficient to distinguish all the states. The
final model is depicted in Figure 8.7.
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A ↓/-,B ↓/-

A ↑/-,B ↓/- B ↑/-,A ↓/-

A ↑/-,B ↑/-

A ↑/initA

A ↓/clearA

B ↑/initB

B ↓/clearB

B ↑/initB

B ↓/clearB

A ↑/initA

A ↓/clearA

Figure 8.7: Final Input/Output Model for Scenario S2

Results

During our experiments the assumption about the much better performance of L∗
i/o

in comparison to (optimized) L∗ is confirmed. Note that we use the partial order and
symmetry filters in both settings. Furthermore, because of the combination of inputs
and the corresponding outputs at a single transition, instead of the introduction
of intermediate states in case of the DFA representation, no distinction between
the scenarios Si and their counterparts S ′

i is needed anymore. Additional output
actions (hookswitch) do not result in additional states. Another observation during
our experiments is that for all scenarios no call to the equivalence oracle is needed
(except for the last one)7. Last but not least with our tailored algorithm L∗

i/o we
were even able to compute “bigger” scenarios, i.e. every involved device can hook
off resp. hook on and every device can call each other (SFull) and an additional,
independent device is participating the setting (SFull+). With the optimized L∗ we
were not able to compute these scenarios. The main reason for this phenomena is
that in the IODFA representation we need 90 states, against 3236 states in the
DFA representation. This, however, results in a much bigger observation table.
Note that this is exactly the reason for the better performance of L∗

i/o against L∗

(cf. Table 8.3): as we need to distinguish fewer different states because of the tailored
model representation, we need fewer different sequences in the set E. But each

7To arrive at comparable models that we have achieved during the run of L∗.
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element of E requires “filling” a whole column of entries in the observation table,
which usually leads to additional membership queries.

Table 8.3: Number of Membership Queries for Input/Output Learning
Scenario States L∗

i/o States L∗ Factor Opt. L∗ Factor

S1 2 10 5 108 10.8 15 1.5
S ′

1 2 10 7 672 67.2 31 3.1
S2 4 26 13 2,431 93.5 98 3.8
S ′

2 4 26 29 15,425 593.3 145 5.6
S3 8 42 33 19,426 462.5 207 4.9
S ′

3 8 42 81 132,340 3,151.0 289 6.9
S4 14 341 79 132,300 388.0 1,607 4.7

SFull 90 7,343 - - - - -
SFull+ 180 16,421 - - - - -

Table 8.3 presents the practical results from our experiments. It can be seen that
the reduction of membership queries with respect to the basic learning algorithm is
enormous. But even in comparison to the (already) optimized setting we are able to
reduce the number of membership queries by an average factor of about 4.4 (3.7 for
the “normal” scenarios resp. 5.1 for the “primed” ones). Additionally we are able
to compute even “bigger” scenarios.

8.5.2 Correctness and Termination of L∗i/o

To show the correctness and termination of L∗
i/o we can follow the corresponding

proofs for L∗ as presented in [Ang87], because the general structure of the algorithms
is the same. We present the proofs, however, in a more transparent fashion, to allow
reuse for proving future optimizations.

In the following it suffices to show that L∗
i/o terminates, because whenever it termi-

nates, it clearly produces the correct result. This is because of the assumption of
the equivalence oracle.

In the rest of this section, M(OT i/o) = (Σ, AI , AO, δ, χ, s0) denotes the IODFA for
OT i/o = (S,E, Ti/o), computed by the instructions of Algorithm 8.2. In a first step
we have to show that every M(OT i/o) is well-defined and indeed consistent with
OT i/o, where consistency denotes intuitively that every entry of the observation
table can be observed in the model.

Lemma 8.13. M(OT i/o) is well-defined.
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Proof. The set S is non-empty and prefix-closed, thus it must contain λ, so s0 is
defined. E is non-empty as initialized with AI , i.e. AI ⊆ E. Thus, if s, s′ ∈ S
such that rowi/o(s) = rowi/o(s

′), then for all a ∈ AI .Ti/o(s · a) = Ti/o(s
′ · a), so χ is

well-defined. Because of AI ⊆ E the transition function δ is well-defined: suppose
s, s′ ∈ S such that rowi/o(s) = rowi/o(s

′). Then since OT i/o is consistent, for each
a ∈ AI , rowi/o(s · a) = rowi/o(s

′ · a) holds. Because OT i/o is closed this common
value is equal to rowi/o(s

′′) for some s′′ ∈ S.

To prove that M(OT i/o) is consistent with OT i/o we first need the following lemma
which states that all access strings of the observation table are represented by valid
states in M .

Lemma 8.14. Let OT i/o = (S,E, Ti/o) be a closed and consistent observation ta-
ble. Then for M(OT i/o) the following holds, ∀s ∈ (S ∪ S · AI).δ(s0, s) = rowi/o(s).

Proof. We prove this lemma by induction on the length of s. For length 0, i.e. s = λ,
it is obviously true, as s0 = rowi/o(λ).

Let as assume that for every s ∈ (S ∪ S · AI) of length at most k ≥ 0, δ(s0, s) =
rowi/o(s) holds. Let t ∈ (S ∪ S · AI) with length k + 1. Then we can find a
decomposition of t such that t = s · a for some string s of length k and an element
a ∈ AI . This is because s must be in S as t is either in S · A (and therefore s ∈ S)
or t is in S. But S is prefix-closed, thus s ∈ S. We can conclude

δ(s0, t) = δ(s0, s · a) (t = s · a)
= δ(δ(s0, s), a) (Definition 8.4)
= δ(rowi/o(s), a) (induction hypothesis)
= rowi/o(s · a) (Algorithm 8.2, Definition of M)
= rowi/o(t) (t = s · a)

This completes the induction and the proof of Lemma 8.14.

Note that from Lemma 8.14 we can also conclude that M is reduced, i.e. all states
are reachable from within the start state.

Now we are ready to show that M(OT i/o) is consistent with OT i/o, or to be more
precise with Ti/o.

Lemma 8.15. Let OT i/o = (S,E, Ti/o) be a closed and consistent observation ta-
ble. Then M(OT i/o) is an IODFA consistent with the finite function Ti/o, i.e.
∀s ∈ (S ∪ S · AI), e ∈ E.χ(δ(s0, s), e) = Ti/o(s · e).
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Proof. We prove this lemma by induction on the length of e. As E is initialized
with AI , we begin with length 1, i.e. e ∈ AI and s ∈ (S ∪ S · AI):

χ(δ(s0, s), e) = χ(rowi/o(s), e) (Lemma 8.14)
= Ti/o(s · e) (Algorithm 8.2, Definition of M)

Suppose that χ(δ(s0, s), e) = Ti/o(s ·e) holds for all elements e ∈ E of length at most
k ≥ 1, and let e′ ∈ E be of length k + 1.

Now how can the set E evolve throughout the algorithm? The set E is initialized
with the input alphabet, i.e. AI ⊆ E, and is modified only when OT i/o is not
consistent. According to Definition 8.12.2 this means that two rows seems to be
equivalent (rowi/o(s1) = rowi/o(s2)), but there exists a symbol a which separates
them, i.e. leads to different rows (rowi/o(s1 ·a) �= rowi/o(s2 ·a)). So there must exists
an element e of E that can separate rowi/o(s1 · a) and rowi/o(s2 · a) and a · e will be
added to the set E to separate rowi/o(s1) and rowi/o(s2). But this implies that for
a member e′ ∈ E of length more than one we can find always a decomposition such
that e′ = a · e where e is of length k.
Let furthermore s ∈ (S ∪S ·AI). Then because OT i/o is closed there exists a string
s′ ∈ S such that rowi/o(s) = rowi/o(s

′). Thus

χ(δ(s0, s), e
′) = χ(δ(s0, s), a · e) (e′ = a · e)

= χ(rowi/o(s), a · e) (Lemma 8.14)
= χ(rowi/o(s

′), a · e) (rowi/o(s) = rowi/o(s
′))

= χ(δ(rowi/o(s
′), a), e) (Definition 8.4)

= χ(rowi/o(s
′ · a), e) (Algorithm 8.2, Definition of M)

= χ(δ(s0, s
′ · a), e) (Lemma 8.14)

= Ti/o(s
′ · a · e) (induction hypothesis)

= Ti/o(s
′ · e′) (e′ = a · e)

= Ti/o(s · e′) (rowi/o(s) = rowi/o(s
′))

In the next step we have to prove that M(OT i/o) is the smallest IODFA consistent
with OT i/o. Let us first define a relation φ that relates states of the hypothesis
automaton M(OT i/o) to states from an arbitrary consistent automaton M ′.

Lemma 8.16. Let OT i/o = (S,E, Ti/o) be a closed and consistent observation table
and M ′ = (Σ′, AI , AO, δ′, χ′, s′0) be any reduced IODFA consistent with Ti/o. Then
the relation φ ⊆ Σ× Σ′, defined by (rowi/o(s), δ

′(s′0, s)) ∈ φ, is

1. left-total and



8.5. L∗
i/o: Learning Input/Output Deterministic Systems 199

2. injective.

Proof. Let for each s′ ∈ Σ′, row′
i/o(s

′) be the finite function from E to A∗
O, such that

row′
i/o(e) = σ if and only if χ′(s′, e) = σ. From the consistency assumption, i.e. that

M ′ is consistent with Ti/o, we can conclude that

∀s ∈ (S ∪ S · AI), e ∈ E.χ′(δ′(s′0, s), e) = σ if and only if Ti/o(s · e) = σ

ad 1) To show that φ is left-total, we have to prove that for every state of M(OT i/o)
at least one corresponding state in M ′ exists. From the consistency requirement we
know that for every s ∈ S, rowi/o(s) is equal to row′

i/o(δ
′(s′0, s)), which implies

particulary that for every row of OT i/o, and its corresponding state in M(OT i/o),
a matching state in M ′ can be found.

ad 2) We can now prove that φ is injective, i.e. that every two states of M(OT i/o)
that have a common state in their image are equal. Let s1, s2 ∈ S and let us
assume that they are mapped to the same state s′ ∈ Σ′, i.e. (rowi/o(s1), s

′) ∈ φ
and (rowi/o(s2), s

′) ∈ φ, where s′ = δ′(s′0, s1) = δ′(s′0, s2) (Definition of φ). But
this implies that rowi/o(s1) = row′

i/o(s
′) and rowi/o(s2) = row′

i/o(s
′) because of the

consistency requirement. Thus if φ maps rowi/o(s1) and rowi/o(s2) both to state s′,
then the rows must be equal.

Corollary 8.17. |M ′| ≤ |M(OT i/o)| ⇒ φ is functional.

Proof. A relation is functional if the following holds: (a, b) ∈ R∧(a, c) ∈ R ⇒ b = c.
If M ′ has a less or equal number of states than M(OT i/o) it is easy to see that it must
have exactly the number of states of M(OT i/o). The reason is that we know from
Lemma 8.16 that for every state of M(OT i/o) a corresponding one in M ′ exists and
that this mapping is injective. But as both M ′ and M(OT i/o) have a finite number
of states, this implies that φ must be right-total and particulary be functional, which
completes this proof.

Lemma 8.18. |M ′| ≤ |M(OT i/o)| ⇒ φ is an isomorphism.

Proof. Because φ is one-to-one (Lemma 8.16) and onto (Corollary 8.17) it suffices to
show that φ is a homomorphism. Therefore we must note that if |M ′| ≤ |M(OT i/o)|,
φ is indeed a well-defined function because we know that φ is left-total (Lemma 8.16)
and functional (Corollary 8.17).

To show that φ is a homomorphism, we have to verify that it carries s0 to s′0 and
that it preserves the transition function and output function.

To see that φ(s0) = s′0 note that
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φ(s0) = φ(rowi/o(λ))
= δ′(s′0, λ)
= s′0

For each s ∈ S and a ∈ AI , let s1 be an element of S such that rowi/o(s · a) =
rowi/o(s1). Then

φ(δ(rowi/o(s), a)) = φ(rowi/o(s · a))
= φ(rowi/o(s1))
= δ′(s′0, s1)
= δ′(s′0, s · a) (*)
= δ′(δ′(s′0, s), a)
= δ′(φ(rowi/o(s)), a)

(*) Since δ′(s′0, s1) and δ′(s′0, s · a) have identical row values they must represent the
same state of M ′.

To finish the proof we must verify that the output function is preserved. But this
is clear since

χ(rowi/o(s), a) = Ti/o(s · a)
= χ′(δ′(s′0, s), a)
= χ′(rowi/o(s), a)

Now we are ready to formulate the final result, i.e. that any minimal and reduced
IODFA which is consistent with the observation table OT i/o, is unambiguously
determined.

Theorem 8.19. Let OT i/o = (S,E, Ti/o) be a closed and consistent observation
table. Then M(OT i/o) is the smallest IODFA consistent with the finite function
Ti/o.

Proof. We know from Lemma 8.18 that any IODFA that is consistent with Ti/o

and has less or equal states than M(OT i/o) is isomorphic to M(OT i/o). Thus any
other IODFA that is consistent with OT i/o must have at least one more state.
But this implies that M(OT i/o) is the uniquely smallest IODFA consistent with
OT i/o.



8.5. L∗
i/o: Learning Input/Output Deterministic Systems 201

Termination of L∗
i/o

Now we are ready to show that L∗
i/o does indeed terminate. As L∗

i/o inherits the base
algorithm from L∗, the argumentation about the correct termination is similar.

Theorem 8.20. L∗
i/o terminates.

Proof. Let us assume that the correct (minimal) IODFAMU = (Σ, AI , AO, δ, χ, s0)
has exactly n states. We have to show that the number of distinct values of row(s)
for s ∈ S increases strictly monotone up to a limit of n.

Let OT i/o = (S,E, Ti/o) denote a closed and consistent observation table. How can
the set of state access strings S evolve throughout a run of the algorithm L∗

i/o? We
have to distinguish three different situations in each step:

1. OT i/o is not closed, or

2. OT i/o is not consistent, or

3. a hypothesis is not correct.

We will show that in each of the above mentioned (internal) operations the number
of distinct rows in S increases by at least one. Thus the total number of operations
of either type over the whole run of L∗

i/o must be at most n−1, since there is initially

at least one value of row(s) and there cannot be more than n.

ad 1) If OT i/o is not closed, then there exists row(s1 · a) such that for all s ∈ S,
row(s1 · a) �= row(s). Thus s1 · a will be added to S, which increases the number of
distinct rows in S by at least one.

ad 2) IfOT i/o is not consistent, then there exists an input symbol a ∈ AI , such that
row(s1) = row(s2) but row(s1·a) �= row(s2·a), i.e. ∃e ∈ E.Ti/o(s1·a·e) �= Ti/o(s2·a·e).
So a·e will be added to E to distinguish between s1 and s2, which have been wrongly
been classified as equivalent. But this implies that the number of distinct row in S
increases, as all rows that have already been identified as being not equal remain
unequal.

ad 3) If a hypothesis M(OT i/o) is found to be incorrect by a counterexample σc,
then since the correct minimal IODFA MU is consistent with Ti/o and inequiva-
lent to M(OT i/o), by Theorem 8.19, MU must have at least one more state. I.e.
M(OT i/o) has at most n − 1 states. L∗

i/o incorporates σc by adding the string σc
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and all its prefixes to the set S. After bringing OT i/o into a closed and consistent
state, resulting in OT ′

i/o = (S ′, E ′, T ′
i/o), L∗

i/o makes a next hypothesis M(OT ′
i/o).

On the one hand this hypothesis is still consistent with Ti/o, because it must clas-
sify each string s ∈ (S ∪ S · AI) · E the same as before (T ′

i/o extends Ti/o). But
on the other hand as σc is in S ′ and AI ⊆ E it classifies σc the same as MU , i.e.
∀a ∈ AI .T

′
i/o(σc · a) = χ(σc, a). This implies that M(OT ′

i/o) is inequivalent to

M(OT i/o) as MU is inequivalent to M(OT i/o). Therefore M(OT ′
i/o) must have at

least one more state than M(OT i/o) (Theorem 8.19), i.e. S ′ has at least one “new”
row in comparison to S.

To sum up this shows that L∗
i/o can make a sequence of at most n − 1 incorrect

conjectures, since we have shown that the number of their states must be monoton-
ically increasing. Since L∗

i/o must, as long as it is running, eventually make another
hypothesis, it must terminate by making a correct hypothesis.



Chapter 9

Conclusions

This thesis concludes with a brief summary in the first section and an outlook for
future work in the second section.

9.1 Summary

In this thesis we present a novel approach to the integrated testing of complex sys-
tems. Our approach covers the whole system-level test process, i.e. test case design,
test case verification, test case execution, and test run analysis. Test cases can be
designed from building-blocks, representing generic test actions resp. observations.
Test engineers are guided during the design phase by online verification, where test
cases are constantly checked against consistency rules. These rules can be formu-
lated with the help of a pattern-system, which allows test engineers to specify them
easily. In case of an inconsistency, diagnostic information is presented to the test en-
gineer to guide the test case design. Furthermore, test cases can be executed within
the test environment. For this purpose we provide a precise execution semantic of
test cases. During test execution a detailed report will be prepared in the form of
a test protocol, used for test run analysis. To sum up, this approach enables us to
shift the test design issues from experts of the system and the used test tools to
experts in the systems’s logic only.

Our integrated test approach is supported by the Integrated Test Environment
(ITE ), a modular and open test framework. The ITE supports a uniform handling
of the involved test tools and provides a well-defined and tool-supported integra-
tion process on the basis of an interface description of the test tool. The interface
description can be used to automatically generate the test building-blocks, used for
test case design. Thus test tool vendors only have to “export” the required function-
ality via CORBA. In this way we are in principle able to coordinate almost every

– 203 –
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test tool. In addition the CORBA-based communication layer supports the required
distributed test execution.

We have illustrated the use of the ITE in several industrial case studies. In partic-
ular the field experience in testing Computer Telephony Integrated solutions (CTI )
gained in a project with Siemens AG [Sie] has shown that the usage of the ITE has
brought a new dimension of efficiency (with measured speedup factors of above 30
for the test execution phase). A global cost-benefit calculation thus shows that the
additional investment for the ITE pays for itself in a short period of time, if ex-
tensively adopted. The ITE in fact, dramatically reduces the recurring cost factors
without impairing the remaining positions involving the basic effort that still has to
be taken during the whole test lifecycle (test planning, manual configuration of the
test settings, ...) and the necessary up-front investments (e.g. license fees for test
tools, hardware, ...).
In the context of Web-based applications the ITE has also been successfully ap-
plied. Because of the restricted and standardized set of available GUI controls for
such applications, a high reuse factor can be achieved. Once a web-based application
is integrated into the ITE almost every other web-based application can be tested
with the same set of test building-blocks.

Finally, we have presented an approach for a posteriori model generation for com-
plex systems. The resulting models can never be exact, i.e. reflect the complete and
correct behaviour of the considered system. Nevertheless they can be useful in prac-
tice, to represent the cumulative knowledge of the system in a consistent description.
For the model generation procedure we have optimized a standard learning method
according to domain-specific structural properties. Two different optimized versions
of the learning algorithm are presented:

— L∗ with Filters : Modifying the learning algorithm by filtering out unnecessary
queries. We incorporated application-specific characteristics of the considered
scenario, i.e. prefix-closeness, input-determinism, as well as partial order and
symmetries between events. These filters provides a flexible approach which
permits fast adaptations to different application domains.

— L∗
i/o: Tailored to deal with input/output deterministic systems this algo-

rithm incorporates already some of the filters (prefix-closeness and input-
determinism), while others are still implemented via filters (partial order and
symmetries between events). With this optimized version we are able to im-
prove the learning efficiency in comparison to L∗ with filters once more. The
main reason for this effect is that we use a specialized representation for these
systems (input/output deterministic finite automata) which reduces the num-
ber of states needed for the representation.



9.2. Future Work 205

We have demonstrated that with the right modifications to the learning process and
the right environment for observing systems, non-trivial system models may in fact
be learned in practice.

9.2 Future Work

This section indicates some directions of future research.

Concurrent Tests

In our experience so far no notation of concurrency is needed for the definition
of system-level tests. It would, however, be an interesting issue because the ITE
provides a distributed test execution environment and it is therefore in principle able
to execute concurrent tests. This can improve the execution of special sorts of tests,
e.g. where independency between parts of a test exist. Two special types of test
blocks can be responsible for specifying concurrency: one for splitting the control
flow and another one for synchronization. For test execution some properties of the
test cases have to be ensured:

— The concurrently executed parts of a test case must be independent, i.e. do
not affect each other. This can be ensured, e.g. when the actions operates on
different address ranges (cf. Section 8.4).

— To ensure “true” concurrency the concurrent executed parts of a test case must
be executed by different test tools.

In Figure 9.1 this approach is illustrated for a simple example in the context of
telephony systems (cf. Figure 8.5). The original, sequential test case can be seen
on the left side: a call between device A and device B will be established and an
additional device C performs an offHook/onHook action. All actions are executed
by the test tool Tool1. The test case comprises of two independent sequences, as
the call between device A and B is independent of device C. This means that it is
possible to transform the sequential test case into a concurrent one (see Figure 9.1
(right)). The special test block conc states that the subsequent test blocks are
executed concurrently until the control flow synchronizes again through the sync
test block. To provide “true” concurrency the two parallel parts of the test case
must be executed by different test tools, i.e. the right path will be executed by the
test tool Tool2.

It is in principle possible to compute the independent parts of a test case automat-
ically, as we have illustrated in Chapter 8. The distribution among the involved
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Figure 9.1: Distribution of Concurrent Tests

test tools, however, is a non-trivial task (cf. e.g. [JJKV98, TVJ00]). A practical
approach may be to define a mapping of address ranges to the different test tools.

Learning Partial Order Reduced Models

Another powerful optimization that remains is to learn partial order reduced models
instead of learning the complete model. The advantage will be that a reduced model
is usually much smaller in the number of states than the complete model, which will
again improve the performance of the learning process. Furthermore, one is able to
reverse the partial order reduction to complete the model again. Thus the key idea
is: learn the smaller model with the “expensive” learning process and expand it on
demand to the complete model. Note that for many applications it is sufficient to
consider the partial order reduced model only, e.g. for checking deadlocks, safety
properties or LTL formulae [God94]

In Figure 9.2 the general idea is sketched. Imagine that actions a and b are indepen-
dent of each other. In a partial order reduced model we only want to incorporate one
representative trace, e.g. a ·b. All other possible orderings should be suppressed, e.g.
in the example depicted in Figure 9.2 the sequence b ·a will not be incorporated, i.e.
we “cut” the b-transition. The example of Figure 9.2 indicates that in general partial
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a b

b a

Figure 9.2: Normalized Trace

order reduction is ambiguous. This is because it is sufficient to consider one element
of the equivalence class only, but, as all are equal, it does not matter which one we
choose. For our learning algorithm L∗, however, it is necessary that the reduction is
unambiguous. This is because the algorithm relies on reproducible results. So what
we need is a normalization function η that normalizes every trace and for every
sequence of its equivalence class always returns a unique representative of this class.
It will depend on a concrete implementation which unique representative will be
chosen. Note, however, that this problem is non-trivial, as in general the language
induced by the set of normalized traces for a system need not be regular [Maz87].
For a simple example just consider the language L = (ab)∗ and a normalization η,
where all a’s occur before the b’s. Then the language induced by the normalization
η is given by anbn which is not regular.

For an implementation of this algorithm (L∗
η) along the ideas of L∗, we could “cut”

the model at those transitions where it “leaves” the partial order reduced model.
For this purpose all rows s where the consistency requirement s = η(s) does not
hold, could be marked with the special output symbol ⊥. In consequence the “core”
algorithm L∗ would merge all states that do not belong to the partial order reduced
submodel, into one single state. For the computation of a hypothesis out of the
observation table we simply have to disregard this special state.

Basically the algorithm L∗
η and L∗

i/o can operate on the same observation table.
However, for L∗

η we have to enrich the output alphabet to capture disallowed paths.
Remarkable differences to L∗

i/o would then be found in the update procedure of
the observation table, where for all rows that are not consistent with η, all entries
in this row are set to a special symbol (⊥). These rows can then be disregarded
during the computation of the hypothesis, which yields to a partial IODFA (the
transition function δ and the output function χ are partially defined only). Note
that if the observation table is filled according these instructions, it is possible that
two rows can be distinguished by some element e out of E, but for some other row s
(where s = η(s)) s · e �= η(s · e) holds. To arrive at a complete observation table,
i.e. without “holes”, we have to fill these entries as usual. Furthermore, we would
need a special equivalence oracle that conforms to the normalization function η and
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induces a partial order reduced model, the completion of which is indeed the full
model.

First experiments with an implementation for the algorithm L∗
η emphasizes the great

impact. Already in our first measurements (SFull+) we are able to improve the
performance by approximately 30% with respect to L∗

i/o (with partial order and

symmetry filters). We expect, however, that this factor increases for larger systems.

LearnAutomaton

An improved version of L∗ is called LearnAutomaton [KV94]. It uses a binary
classification tree rather than an observation table as the central datastructure. The
leaves of the tree represent the state rows and the internal nodes the distinguishing
sequences (E). Then any two states, i.e. leaves in the classification tree, are distin-
guished by the string labelling of their least common ancestor in the classification
tree. Transitions have to be found via a look-up (sift) in the classification tree for a
state string extended by all alphabet symbols by membership queries.

On the one hand the classification tree reduces the number of membership queries,
because we do not have to apply unnecessary elements of E to all state strings.
On the other hand this approach requires that the equivalence question is raised
exactly n times, if n denotes the number of states of the target automaton. This
must be seen as a drawback in our case where the membership queries are reliable
but the equivalence queries are not (approximate equivalence oracle). However, one
can think of maintaining a partial or reduced observation table by incorporating the
ideas of LearnAutomaton: It is sufficient to have one witness of inequality for
each pair of state strings. This will lead to an observation table, where only the cell
entries are computed that are needed to distinguish between states. The others can
be computed on demand if they are needed later during the learning procedure. In
any case it will be necessary to adapt the notations of closeness and consistency to
deal with the incomplete rows.
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Appendix A

First-order property pattern
mappings for ESLTL

In the following we present a mapping of the property specification patterns for
our first order extension of the semantic linear-time logic. The concrete second
dimension, i.e. the quantification, is denoted through Q = {∃,∀}.

Absence

P is false:

Globally Qx(G(¬P (xp)))
Before R Qx(F(R(xr))⇒ (¬P (xp) U R(xr)))
After Q Qx(G(Q(xq)⇒ G(¬P (xp))))

Between Q and R Qx(G((Q(xq) ∧ ¬R(xr) ∧ F(R(xr)))⇒ (¬P (xp) U R(xr))))
After Q until R Qx(G(Q(xq) ∧ ¬R(xr)⇒ (¬P (xp)WU R(xr))))

Universality

P is true:

Globally Qx(G(P (xp)))
Before R Qx(F(R(xr))⇒ (P (xp) U R(xr)))
After Q Qx(G(Q(xq)⇒ GP (xp)))

Between Q and R Qx(((Q(xq) ∧ ¬R(xr) ∧ F(R(xr)))⇒ (P (xp) U R(xr))))
After Q until R Qx(G(Q(xq) ∧ ¬R(xr)⇒ (P (xp)WU R(xr))))
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Existence

P is true:

Globally Qx(F(P (xp)))
Before R Qx(¬R(xr)WU (P (xp) ∧ ¬R(xr)))
After Q Qx(G(¬Q(xq) ∨ F(Q(xq) ∧ F(P (xp)))))

Between Q and R Qx(G(Q(xq) ∧ ¬R(xr)⇒ (¬R(xr)WU (P (xp) ∧ ¬R(xr)))))
After Q until R Qx(G(Q(xq) ∧ ¬R(xr)⇒ (¬R(xr) U (P (xp) ∧ ¬R(xr)))))

Precedence

S precedes P :

Globally Qx(¬P (xp)WU S(xs))
Before R Qx(F(R(xr))⇒ (¬P (xp) U (S(xs) ∨R(xr))))
After Q Qx(G(¬Q(xq)) ∨ F(Q(xq) ∧ (¬P (xp)WU S(xs))))

Between Q and R Qx(G((Q(xq) ∧ ¬R(xr) ∧ F(R(xr)))⇒ (¬P (xp) U (S(xs) ∨R(xr)))))
After Q until R Qx(G(Q(xq) ∧ ¬R(xr)⇒ (¬P (xp)WU (S(xs) ∨R(xr)))))
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Response

S responds to P :

Globally Qx(G(P (xp)⇒ F(S(xs))))
Before R Qx(F(R(xr))⇒ (P (xp)⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr)))) U R(xr))
After Q Qx(G(Q(xq)⇒ G(P (xp)⇒ F(S(xs)))))

Between Q and R Qx(G((Q(xq) ∧ ¬R(xr) ∧ F(R(xr)))⇒ (P (xp)⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr)))) U R(xr)))
After Q until R Qx(G(Q(xq) ∧ ¬R(xr)⇒ ((P (xp)⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr))))WU R(xr)))

Bounded Existence

Instance of bounded existence pattern, where the bound is at most two designated states. Transitions to P -states
occur at most 2 times:

Globally Qx((¬P (xp)WU (P (xp)WU (¬P (xp)WU (P (xp)WU G(¬P (xp)))))))
Before R Qx(F(R(xr)) ⇒ ((¬P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((¬P (xp) ∧

¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨ (¬P (xp) U R(xr)))))))))))
After Q Qx(F(Q(xq)) ⇒ (¬Q(xq) U (Q(xq) ∧ (¬P (xp) WU (P (xp) WU (¬P (xp) WU (P (xp)

WU G(¬P (xp)))))))))
Between Q and R Qx(G((Q(xq) ∧ F(R(xr))) ⇒ ((¬P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨

((¬P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨ (¬P (xp) U R(xr))))))))))))
After Q until R Qx(G(Q(xq) ⇒ ((¬P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨ ((¬P (xp) ∧

¬R(xr)) U (R(xr) ∨ ((P (xp) ∧ ¬R(xr)) U (R(xr) ∨ (¬P (xp)WU R(xr)) ∨G(P (xp))))))))))))

Precedence Chain

S, T precedes P (2 cause-1 effect precedence chain):
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Globally Qx(F(P (xp))⇒ (¬P (xp) U (S(xs) ∧ ¬P (xp) ∧X(¬P (xp) U T (xt)))))
Before R Qx(F(R(xr))⇒ (¬P (xp) U (R(xr) ∨ (S(xs) ∧ ¬P (xp) ∧X(¬P (xp) U T (xt))))))
After Q Qx((G(¬Q(xq))) ∨ (¬Q(xq) U (Q(xq) ∧ F(P (xp)) ⇒ (¬P (xp) U (S(xs) ∧ ¬P (xp) ∧

X(¬P (xp) U T (xt)))))))
Between Q and R Qx(G((Q(xq) ∧F(R(xr)))⇒ (¬P (xp) U (R(xr) ∨ (S(xs) ∧ ¬P (xp) ∧X(¬P (xp) U T (xt)))))))
After Q until R Qx(G(Q(xq)⇒ (F(P (xp))⇒ (¬P (xp) U (R(xr)∨ (S(xs)∧¬P (xp)∧X(¬P (xp) U T (xt)))))))

P precedes (S, T ) (1 cause-2 effect precedence chain):

Globally Qx((F(S(xs) ∧X(F(T (xt))))⇒ (¬S(xs) U P (xp))))
Before R Qx(F(R(xr))⇒ ((¬(S(xs) ∧ ¬R(xr) ∧X(¬R(xr) U (T (xt) ∧ ¬R(xr))))) U (R(xr) ∨ P (xp))))
After Q Qx((G(¬Q(xq))) ∨ (¬Q(xq) U (Q(xq) ∧ ((F(S(xs) ∧X(F(T (xt)))))⇒ (¬S(xs) U P (xp))))))

Between Q and R Qx(G((Q(xq)∧F(R(xr)))⇒ ((¬(S(xs)∧¬R(xr)∧X(¬R(xr)U (T (xt)∧¬R(xr)))))U (R(xr)∨
P (xp))))

After Q until R Qx(G(Q(xq) ⇒ (¬(S(xs) ∧ ¬R(xr) ∧ X(¬R(xr) U (T (xt) ∧ ¬R(xr)))) U (R(xr) ∨ P (xp)) ∨
G(¬(S(xs) ∧X(F(T (xt))))))))
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Response Chain

P responds to S, T (2 stimulus-1 response chain):

Globally Qx(G(S(xs) ∧X(F(T (xt)))⇒ X(F(T (xt) ∧ F(P (xp))))))
Before R Qx(F(R(xr))⇒ (S(xs) ∧X(¬R(xr) U T (xt))⇒ X(¬R(xr) U (T (xt) ∧ F(P (xp))))) U R(xr))
After Q Qx(G(Q(xq)⇒ G(S(xs) ∧X(F(T (xt)))⇒ X(¬T (xt) U (T (xt) ∧ F(P (xp))))))

Between Q and R Qx(G((Q(xq) ∧ F(R(xr))) ⇒ (S(xs) ∧ X(¬R(xr) U T (xt)) ⇒ X(¬R(xr) U (T (xt) ∧
F(P (xp))))) U R(xr))

After Q until R Qx(G(Q(xq)⇒ (S(xs)∧X(¬R(xr) U T (xt))⇒ X(¬R(xr) U (T (xt)∧F(P (xp))))) U (R(xr)∨
G(S(xs) ∧X(¬R(xr) U T (xt))⇒ X(¬R(xr) U (T (xt) ∧ F(P (xp))))))))

S, T responds to P (1 stimulus-2 response chain):

Globally Qx(G(P (xp)⇒ F(S(xs) ∧X(F(T (xt))))))
Before R Qx(F(R(xr))⇒ (P (xp)⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr) ∧X(¬R(xr) U T (xt))))) U R(xr))
After Q Qx(G(Q(xq)⇒ G(P (xp)⇒ (S(xs) ∧X(F(T (xt)))))))

Between Q and R Qx(G((Q(xq) ∧ F(R(xr))) ⇒ (P (xp) ⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr) ∧
X(¬R(xr) U T (xt))))) U R(xr)))

After Q until R Qx(G(Q(xq) ⇒ (P (xp) ⇒ (¬R(xr) U (S(xs) ∧ ¬R(xr) ∧ X(¬R(xr) U T (xt))))) U (R(xr) ∨
G(P (xp)⇒ (S(xs) ∧X(F(T (xt))))))))





Appendix B

Document Type Descriptions for
XML

B.1 DTD’s for the ITE Constraint Editor

B.1.1 DTD for the Collection of Logic Patterns

<!-- The collection of logic pattern contains at least -->

<!-- one pattern -->

<!ELEMENT patternSystem (pattern+)>

<!-- raw-tags and placeholders toggles -->

<!ELEMENT pattern (raw | (p | q | r | s | t | u | v | w))*>

<!ATTLIST pattern name CDATA #REQUIRED

scope CDATA #REQUIRED>

<!ELEMENT raw (#PCDATA)>

<!-- The placeholders -->

<!ELEMENT p EMPTY>

<!ELEMENT q EMPTY>

<!ELEMENT r EMPTY>

<!ELEMENT s EMPTY>

<!ELEMENT t EMPTY>

<!ELEMENT u EMPTY>

<!ELEMENT v EMPTY>

<!ELEMENT w EMPTY>
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B.1.2 DTD for Composite Patterns

<!-- Composite Pattern consists of a description, -->

<!-- the input description and the rules how to map it -->

<!-- to the logic patterns -->

<!ELEMENT CompositePattern (patternDescription,

input,

generateLogicPattern?)>

<!ATTLIST CompositePattern name CDATA #REQUIRED

class CDATA #REQUIRED>

<!ELEMENT patternDescription (#PCDATA)>

<!-- Die input description consists of several steps -->

<!ELEMENT input (step+)>

<!-- An input step consists out of its description -->

<!-- and the corresponding input dialog. -->

<!ELEMENT step (stepDescription,

dialog)>

<!ATTLIST step no CDATA #REQUIRED>

<!ELEMENT stepDescription (#PCDATA)>

<!ELEMENT dialog (#PCDATA)>

<!-- Two types of links are needed -->

<!ELEMENT simpleLink EMPTY>

<!ATTLIST simpleLink step CDATA #REQUIRED>

<!ELEMENT advancedLink (#PCDATA)>

<!ATTLIST advancedLink step CDATA #REQUIRED>

<!-- The generation of constraints -->

<!ELEMENT generateLogicPattern (logicPattern+)>

<!-- For a constraint the "name" and the corresponding -->

<!-- pattern are needed. It consists of a description -->

<!-- and a declaration how to generate the placeholders -->

<!-- for the logic pattern -->

<!ELEMENT logicPattern (logicPatternDescription, sibs)>

<!ATTLIST logicPattern type (single|multiple) #REQUIRED
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name CDATA #REQUIRED

pattern CDATA #REQUIRED

scope CDATA #REQUIRED>

<!ELEMENT logicPatternDescription (#PCDATA)>

<!-- The placeholders for the test blocks in the pattern -->

<!-- system -->

<!ELEMENT sibs (p?,q?,r?,s?,t?,u?,v?,w?)>

<!ENTITY % sib "(name, (arg* | args))">

<!ELEMENT p %sib; >

<!ELEMENT q %sib; >

<!ELEMENT r %sib; >

<!ELEMENT s %sib; >

<!ELEMENT t %sib; >

<!ELEMENT u %sib; >

<!ELEMENT v %sib; >

<!ELEMENT w %sib; >

<!-- The name of a test block can be given directly -->

<!-- or through a link -->

<!ELEMENT name (#PCDATA | advancedLink)>

<!-- <arg> generates the test block parameter "name" -->

<!-- The value of the parameter can be given directly -->

<!-- or can be specified through a link -->

<!ELEMENT arg (#PCDATA | advancedLink)*>

<!ATTLIST arg name CDATA #REQUIRED

required (yes|no) "yes">

<!-- <args> takes all <name>/<content>-pairs out of -->

<!-- a certain step and generates parameters for a test block -->

<!ELEMENT args (simpleLink)>

B.1.3 DTD for concrete Constraints

<!-- A concrete Constraint consists of a description -->

<!-- and serveral steps. -->
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<!ELEMENT constraint (description, step*)>

<!-- The Composite Pattern and the name of the constraint-->

<!-- will be given as arguments -->

<!ATTLIST constraint pattern CDATA #REQUIRED

name CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT step (nameSib,

parameter*)>

<!ATTLIST step no CDATA #REQUIRED>

<!ELEMENT nameSib (#PCDATA)>

<!-- Parameters of test blocks -->

<!ELEMENT parameter (name,content)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT content (#PCDATA | forAll | exists)*>

<!ELEMENT forAll EMPTY>

<!ATTLIST forAll placeholder CDATA #REQUIRED>

<!ELEMENT exists EMPTY>

<!ATTLIST exists placeholder CDATA #REQUIRED>

B.2 DTD for ITE Test Reports

<!ELEMENT Testreport (Testinformation, Testlog?, Testresult)>

<!ELEMENT Testinformation (Testexecution, Testconfiguration,

Testscenario)>

<!ELEMENT Testexecution (DateandTimeofTest, SUTName,

Testcoordrevision?, Testlab?, Testengineer?)>

<!ELEMENT DateandTimeofTest (Date, Time)>

<!ELEMENT Date (#PCDATA)>

<!ELEMENT Time (#PCDATA)>

<!ELEMENT SUTName (#PCDATA)>

<!ELEMENT Testcoordrevision (#PCDATA)>

<!ELEMENT Testlab (#PCDATA)>

<!ELEMENT Testengineer (#PCDATA)>
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<!ELEMENT Testconfiguration (Testenvironment+, Systemenvironment+)>

<!ELEMENT Systemenvironment (Systemcomponent | Errormessage)>

<!ELEMENT Systemcomponent (Componentname, Configuration*)>

<!ELEMENT Componentname (#PCDATA)>

<!ELEMENT Configuration (#PCDATA)>

<!ATTLIST Configuration

Configparameter CDATA #REQUIRED

IsRevisioned CDATA #REQUIRED

Revision CDATA #IMPLIED

>

<!ELEMENT Testenvironment (Testtool | Errormessage)>

<!ELEMENT Testtool (Tooldescription, Comment?, Configuration?)>

<!ELEMENT Tooldescription (#PCDATA)>

<!ATTLIST Tooldescription

ToolId CDATA #REQUIRED

Toolversion CDATA #IMPLIED

ToolIPAddress CDATA #IMPLIED

>

<!ELEMENT Comment (#PCDATA)>

<!ELEMENT Testscenario (Scenarioname, Scenariodescription?)>

<!ELEMENT Scenarioname (#PCDATA)>

<!ATTLIST Scenarioname

isRevisioned CDATA #IMPLIED

Revision CDATA #IMPLIED

>

<!ELEMENT Scenariodescription (#PCDATA)>

<!ELEMENT Testlog (Logentry+)>

<!ELEMENT Logentry (Executiontime, Execelement, Execinfo?)>

<!ELEMENT Executiontime (#PCDATA)>

<!ELEMENT Execelement (#PCDATA)>

<!ATTLIST Execelement

Exectype CDATA #REQUIRED

Revision CDATA #IMPLIED

>

<!ELEMENT Execinfo (SIBName, SIBActivator, Actualparameter*,

SIBDatablock?, Branchexecution?)>

<!ELEMENT SIBName (#PCDATA)>

<!ATTLIST SIBName

SIBId CDATA #IMPLIED

SIBClass CDATA #IMPLIED

SIBRevision CDATA #IMPLIED
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RTCRevision CDATA #IMPLIED

LCCRevision CDATA #IMPLIED

>

<!ELEMENT SIBActivator (#PCDATA)>

<!ELEMENT Actualparameter (Parametername, Parametervalue)>

<!ELEMENT Parametername (#PCDATA)>

<!ELEMENT Parametervalue (#PCDATA)>

<!ELEMENT SIBDatablock (SIBData+)>

<!ELEMENT SIBData (ProcessedData | ResultData | Errormessage)>

<!ELEMENT ProcessedData (#PCDATA)>

<!ATTLIST ProcessedData

Datatype CDATA #REQUIRED

DataId CDATA #REQUIRED

Revision CDATA #IMPLIED

>

<!ELEMENT Branchexecution (#PCDATA)>

<!ELEMENT ResultData (Returncode, Expectedresult, Obtainedresult)>

<!ATTLIST ResultData

Datatype CDATA #REQUIRED

DataId CDATA #REQUIRED

>

<!ELEMENT Returncode (#PCDATA)>

<!ELEMENT Expectedresult (#PCDATA)>

<!ELEMENT Obtainedresult (#PCDATA)>

<!ELEMENT Errormessage (#PCDATA)>

<!ELEMENT Testresult (Resultcode, ExecSummary, ComponentSummary+)>

<!ELEMENT Resultcode (#PCDATA)>

<!ELEMENT ExecSummary (ControlExecutions, TCExecutions)>

<!ELEMENT ControlExecutions (#PCDATA)>

<!ELEMENT TCExecutions (SumOfTestcases, TestcasesPassed,

TestcasesFailed)>

<!ELEMENT SumOfTestcases (#PCDATA)>

<!ELEMENT TestcasesPassed (#PCDATA)>

<!ELEMENT TestcasesFailed (#PCDATA)>

<!ELEMENT ComponentSummary (#PCDATA)>

<!ATTLIST ComponentSummary

SIBExecutions CDATA #REQUIRED

ReceivedResponses CDATA #REQUIRED

UnexpectedResponses CDATA #REQUIRED

>



Bibliography

[Abr87] S. Abramsky. Observational Equivalence as a Testing Equivalence.
Theoretical Computer Science, 53:225–241, 1987.

[ADLU91] A. Aho, A. Dahbura, D. Lee, and M. Uyar. An Optimization Technique
for Protocol Conformance Test Generation Based on UIO Sequences
and Rural Chinese Postman Tours. IEEE Transactions on Communi-
cations , 39(11):1604–1615, 1991.

[Age] AGEDIS. http://www.agedis.de.

[Ang87] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
Information and Computation, 2(75):87–106, 1987.

[ANS83] ANSI/IEEE. Glossary of Software Engineering Terminology.
ANSI/IEEE Standard 729-1983, 1983.

[Ber94] P. Bernhard. A Reduced Test Suite for Protocol Conformance Test-
ing. ACM Transactions on Software Engineering and Methodology ,
3(3):201–220, 1994.

[BG92] G. Berry and G. Gonthier. The Esterel Synchronous Programming
Language: Design, Semantics, Implementation. Science of Computer
Programming , 19(2):87–152, 1992.

[BMSY97] V. Braun, T. Margaria, B. Steffen, and H. Yoo. Automatic Error
Location for IN Service Definition. In Proc. of 2nd Int. Workshop
on Advanced Intelligent Networks (AIN ’07), volume 1385 of Lecture
Notes in Computer Science, pages 222–237. Springer Verlag, 1997.

[Bra01] V. Braun. A Coarse-granular Approach to Software Development al-
lowing Non-Programmers to Build and Deploy Reliable, Web-based Ap-
plications . Ph.D. thesis, University of Dortmund, Germany, 2001.

– 223 –



[Bri88] E. Brinksma. A Theory for the Derivation of Tests. In S. Aggarwal
and K. Sabnani, editors, Proc. of the Int. Conference on Protocol Spec-
ification, Testing and Verification (PSTV VIII), pages 63–74. 1988.

[BSS86] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifica-
tions, their Implementations and their Tests. In B. Sarikaya and
G. Bochmann, editors, Proc. of the Int. Conference on Protocol Spec-
ification, Testing and Verification (PSTV VI), pages 349–360. 1986.

[BT00] E. Brinksma and J. Tretmans. Testing Transition Systems: An An-
notated Bibliography. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan,
editors, Proc. of Summer School MOVEP’2k Modelling and Verifica-
tion of Parallel Processes , pages 44–50. 2000.

[CC92] U. Celikkan and R. Cleaveland. Computing Diagnostic Information
for Incorrect Processes. In Proc. of the Int. Conference on Protocol
Specification, Testing and Verification (PSTV XII), pages 263–278.
1992.

[CCI89a] CCITT. ISDN User-Network Interface Layer 3 – General Aspects. Rec.
Q.930, 1989.

[CCI89b] CCITT. ISDN User-Network Interface Layer 3 – Specification for Basic
Call Control. Rec. Q.931, 1989.

[CCI93] CCITT. Typical DSS 1 service indicator codings for ISDN telecom-
munications services. Rec. Q.939, 1993.

[CH93] R. Cleaveland and M. Hennessy. Testing Equivalence as a Bisimulation
Equivalence. Formal Aspects of Computing , pages 1–20, 1993.

[Cho78] T. Chow. Testing Software Design Modeled by Finite-State Machines.
IEEE Transactions on Software Engineering , 4(3):178–187, 1978.

[Cla97] A. Claßen. Component Integration into METAFrame. Ph.D. thesis,
University of Passau, 1997.

[CS90] R. Cleaveland and B. Steffen. A Preorder for Partial Process Specifi-
cations. Proc. of the Int. Conference on Concurrency Theory (CON-
CUR ’90), 458:141–151, 1990.

[CSMB97] A. Claßen, B. Steffen, T. Margaria, and V. Braun. Tool Coordination
in METAFrame. Technical Report MIP-9707, University of Passau,
1997.



[CVI89] W. Chan, S. Vuong, and M. Ito. An improved Protocol Test Gen-
eration Procedure based on UIOs. In Proc. of the Int. Symposium
on Communication Architectures & Protocols (SIGCOM ’89), pages
283–294. ACM Press, 1989.

[DAC97] M. Dwyer, G. Avrunin, and J. Corbett. A System of Specification
Patterns. http://www.cis.ksu.edu/santos/spec-patterns, 1997.

[DAC98] M. Dwyer, G. Avrunin, and J. Corbett. Property Specification Pat-
terns for Finite-State Verification. In Proc. of the 2nd Workshop on
Formal Methods in Software Practice, pages 7–15. ACM Press, 1998.

[DAC99] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in Property Speci-
fications for Finite-State Verification. In Proc. of the Int. Conference
on Software Engineering , pages 411–420. ACM Press, 1999.

[DN87] R. De Nicola. Extensional Equivalences for Transition Systems. Acta
Informatica, (24):211–237, 1987.

[DNH84] R. De Nicola and M. Hennessy. Testing Equivalences for Processes.
Theoretical Computer Science, 24:83–133, 1984.

[EJP97] E. Emerson, S. Jha, and D. Peled. Combining Partial Order and Sym-
metry Reduction. In Proc. of the 3rd Int. Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS ’97),
volume 1217 of Lecture Notes in Computer Science, pages 19–34.
Springer Verlag, 1997.

[Eme90] E. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,
Handbook of theoretical computer science. Elsevier, 1990.

[EP90] N. Evtushenko and A. Petrenko. Synthesis of Test Experiments in
some Classes of Automata. Automatic Control and Computer Science,
24(4):50–55, 1990.

[Eur94] European Computer Manufactures Association (ECMA). Services for
Computer Supported Telecommunications Applications (CSTA) Phase
II, 1994.

[Eur98] European Computer Manufactures Association (ECMA). Services for
Computer Supported Telecommunications Applications (CSTA) Phase
III, 1998.



[Eur00] European Computer Manufactures Association (ECMA). Scenarios for
Computer Supported Telecommunications Applications (CSTA) Phase
III. Technical Report TR/82, 2000.

[Eur03] European Telecommunications Standards Institute (ETSI). TTCN-3.
http://www.etsi.org, 2003.

[FHP02] E. Farchi, A. Hartman, and S. Pinter. Using a model-based Test Gen-
erator to Test for Standard Conformance. IBM Systems Journal (Soft-
ware Testing and Verification), 41(1):89–110, 2002.
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