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Abstract

There is an urgent need to improve the efficiency of similarity queries. For this
reason, this thesis investigates approximate similarity search in the environment of
metric spaces. Four different approximation techniques are proposed, each of which
obtain high performance at the price of tolerable imprecision in the results. Measures
are defined to quantify the improvement of performance obtained and the quality
of approximations. The proposed techniques were tested on various synthetic and
real-life files. The results of the experiments confirm the hypothesis that high quality
approximate similarity search can be performed at a much lower cost than exact sim-
ilarity search. The approaches that we propose provide an improvement of efficiency
of up to two orders of magnitude, guaranteeing a good quality of the approximation.

The most promising of the proposed techniques exploits the measurement of the
proximity of ball regions in metric spaces. The proximity of two ball regions is de-
fined as the probability that data objects are contained in their intersection. This
probability can be easily obtained in vector spaces but is very difficult to measure in
generic metric spaces, where only distance distribution is available and data distri-
bution cannot be used. Alternative techniques, which can be used to estimate such
probability in metric spaces, are thus also proposed, discussed, and validated in the

thesis.
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Chapter 1

Introduction

The performance capabilities of computer systems are rapidly increasing. Faster
CPUs, larger secondary storage, and larger network bandwidth make it possible to
handle more complex data types. Nowadays, people buy computers attracted by the
promise of using audio, image, video, and 3D data. In professional and scientific areas
such as medicine, computational biology, signal processing, or finance, new large data
types in the form, for example, of time series, huge sequences of symbols, or raw

streams of data are processed, analyzed and contrasted.

A very important issue on any kind of data management is searching. Traditional
database systems efficiently search for structured records by using the exact match
paradigm. However, the new data types, cannot be effectively represented as struc-
tured records. In these cases, the similarity search paradigm [JMM95] is used instead
of exact match. Similarity searching consists in retrieving data that are similar to
a given query. The measure of similarity is specifically defined with respect to the

target application.

Techniques for improving performance of exact match search cannot be used for

similarity search, and even if other alternative approaches were proposed, current



techniques are far from satisfactory [WSB98, BGRS99]. Therefore, the issue of ap-
prozimate similarity search [AM95, AMN198, CP00, FTAA00, FTAAO01, IM98, PL99,
PAL99, ZSAR98, Kle97, Cha97, KOR99, PMDO01] has recently become an important
research topic. Approximate similarity search provides an improvement in similarity
search performance at the price of some imprecision in the results.

In this thesis, we have investigated techniques for approximate similarity search
when data are represented in generic metric spaces. The techniques proposed offer
an improvement of efficiency, with respect to exact similarity search techniques, up
to two orders of magnitude, guaranteeing a high degree of accuracy.

In particular, one of the approximate similarity search techniques that is proposed
relies on the measurement of the so-called prozrimity of regions. This measurement
provides an estimation of the amount of objects shared by two regions of the space.
In generic metric spaces, proximity of regions is not easily computed, given the lack
of a coordinate system. We have also developed some techniques for computing
the proximity of ball regions defined in metric spaces. The techniques proposed are

efficient and their estimation of the proximity is extremely accurate.

1.1 Similarity search

Traditional database systems maintain files consisting of sequences of homogeneous
records. In these databases the search paradigm used is the ezact match search
paradigm. Even more sophisticated searches, where a range of possible values is
specified, such as a numerical range or a string prefix, rely on the possibility of exact
comparison among attribute values. The exact match search divides the whole set

of records into a subset that contains all records that satisfy the query, and another



subset that contains the records that do not satisfy the query.

On the other hand, a similarity search query orders the whole set of managed
data with respect to the similarity of the individual items to the query. Therefore,
ideally, the result set returned by a similarity search contains all items contained in
the database along with the degree of similarity of each item to the query.

In order to limit the size of the returned result set, two different techniques are
typically considered: cutting off items whose similarity to the query is below a spec-
ified threshold, or specifying the maximum number of items to be retrieved. Corre-
spondingly, there are two basic types of similarity queries: range queries and nearest
neighbors queries. A range query is composed of a query object and a similarity
threshold. All data whose similarity to the query object is greater than the thresh-
old satisfy the query. A nearest neighbors query, on the other hand, is composed
of a query object and a value k indicating the maximum number of elements to be

retrieved. The k elements most similar to the query satisfy the query.

1.1.1 Similarity and distance functions

At the basis of the similarity search process lies the ability of measuring the similarity
between two items. This is obtained by defining a similarity function. There is not a
general, universal definition of this function, since it depends on the specific applica-
tion. Similarity functions are typically defined by application experts depending on
the aspect that interests them.

Note that in some applications a distance function can be easily and more intu-
itively defined than a similarity function. However, it is easy to obtain a similarity

function given a distance function and vice versa. In fact, similarity functions and



distance functions have an exactly opposite behaviour: the smaller the distances the
higher the similarity.

The similarity function is typically considered as a black box provided by the
application expert. General techniques developed for similarity search should not be
tied to a particular similarity function. However, the similarity functions might be
required to satisfy some specific properties.

In the following we briefly introduce two typical frameworks used to handle simi-

larity search.

1.1.2 Vector spaces

Several similarity search applications represent data as high dimensional vectors. As
an example consider image databases. Typically, the similarity between images is
assessed by comparing features extracted by them, instead of using the raw images
themselves. For instance, a typical image feature is a color histogram. This can easily
be represented as a vector, where the value contained in each dimension is the density
of the color associated with the dimension as a consequence of the quantization of
the color space [Smi97].

When data are represented in vector spaces, similarity can be assessed by mea-
suring the distance between two vectors, using a function of the Minkowski family,

such as for instance, the Euclidean distance.

1.1.3 Metric spaces

In certain applications requiring similarity search either data cannot be effectively

represented as vectors, or distance (similarity) cannot be effectively defined in terms



of functions of the Minkowski family. Consider again, for instance, color histogram
similarity. Minkowski functions compare values in each dimension (colors) indepen-
dently of the others. However it has been shown that color histogram similarity can
be better assessed by using the quadratic form distance [FSA195, HSE195, NBE+93],
which does not belong to the Minkowski family.

In such cases data are typically represented in metric spaces. The advantage of
metric spaces is that there are no specific requirements on the representation of data,
while the only constraint for the distance function is that it should comply to the
metric postulates: it should satisfy the symmetric, positivity, identity, and triangular
inequality properties.

Note that, when distances are measured by using Minkowski functions, vector
spaces are in fact specific metric spaces. Therefore, techniques developed for generic
metric spaces can also be applied to them. However metric spaces are generally more
difficult to handle than vector spaces. This is due to the fact that vector spaces
provide more information, such as geometric properties and coordinate systems.

Given their generality, in this thesis, we suppose that data are represented in a

metric space; our results are thus widely applicable.

1.2 Approximate similarity search

Though the problem of similarity search seems to be very well defined and several
storage structures have been proposed — see for example the survey in [CNBYMO01] for
metric spaces and the numerous methods for the vector spaces surveyed in [GG98] —
current technology cannot certainly be considered stable. In fact, in some situations,

performance of existing access methods is worse than a sequential scan of the whole



data set [BKK97, WSB98, BGRS99].

Given this inefficiency problem, the notion of approzimate similarity search [AM95,
AMNT98, CP00, FTAA00, FTAAO01, TM98, PL99, PAL99, ZSAR98, Kle97, Cha97,
KOR99, PMDO01] has emerged as important research issue. The basic idea behind
the approximate similarity search is that queries are processed faster, at the price of
some imprecision in search results.

In general, approaches to approximate similarity search are motivated by the fol-
lowing three observations. First, typically a good data partitioning of metric data
sets is simply not possible, so resulting data regions have typically a high overlap,
and many regions must be accessed to answer a single query. Second, similarity-based
search processes are intrinsically iterative. In many cases, users redefine queries de-
pending on the results of previous searches. In such cases, an efficient execution of
elementary queries is of particular importance and users easily accept some impreci-
sion, especially in the initial and intermediate search results, if much faster responses
can be achieved. Third, introducing some controlled imprecision in the result of a
similarity search query may not be noticed by users or will be accepted when the
increase in performance obtained is high. Note that similarity is an intuitive and sub-
jective measurement. People, for instance, judge the similarity between two images
differently. However, when similarity search algorithms are designed, the similarity
measure must be defined using a rigorous mathematical formula and intuitiveness
and subjectivity is lost.

Approaches to approximate similarity search can be classified into two broad cat-

egories [FTAAO1]:

(1) approaches that reduce the size of data objects;



(2) approaches that reduce the data set that needs to be examined.

Approaches of the first category are mainly based on techniques of dimensionality
reduction, and assume that a few dimensions are enough to represent the most relevant
information of data items.

Two classes of approaches can be distinguished in the second category:

(a) approaches based on heuristics that stop the search algorithms before natural

termination, when the current result set is judged to be satisfactory;

(b) approaches based on heuristics that do not access regions judged as not to con-

taining promising results.

The advantage of the second category of approximate algorithms is that the orig-
inal data representation is used and the heuristics may be tuned by using specific
approximation parameters at query time: the higher the performance, the lower the
accuracy of the approximation. Approaches belonging to the first category, on the
other hand, modify the original data set and no tuning can be typically performed at

query time.

1.3 Contribution of this thesis

This thesis proposes four new techniques for approrimate similarity search, starting
from the general case that data are represented in a metric space.
In addition we have developed some techniques to measure the proximity of ball

regions wn generic metric spaces efficiently and accurately. This measurement gives



the amount of data shared by two regions. One of the algorithms proposed exploits
the measurement of the proximity of ball regions in its approximation strategy.

In the following we list the main issues that will be developed in the thesis.

1.3.1 Approximate similarity search

All the methods proposed belong to the category of approximation algorithms that
reduce the data set that needs to be examined (category 1). Two of the proposed
techniques are based on heuristics of early terminations (class a). The other two are
based on heuristics for discarding unpromising regions (class b).

A brief description of these heuristics follows:

First method The first technique discards regions, containing data, guaranteeing
that the maximum relative error on distances introduced, when regions con-
taining qualifying data are discarded, is smaller than a threshold defined by the

user. This method can be used both for range and nearest neighbors queries.

Second method The second technique of approximation stops the search algorithm
when the current result set belongs to a user-defined percentage of the most sim-
ilar data in the whole database. This method can be used for nearest neighbors

queries only.

Third method Similarity search algorithms are based on an iterative process where
a current result set is improved at every iteration. The third approximation
method stops the search algorithm when the improvement of the current result

set slows down. This method can be used for nearest neighbors queries only.



Fourth method The fourth approximation method discards regions when it is judged
that they do not contain qualifying objects. This estimation is obtained by mea-
suring the proximity of ball regions. This corresponds to the amount of data
shared by two ball regions in a metric space. This method can be used both for

range and nearest neighbors queries.

The results were extremely promising. The improvement of efficiency offered
by these techniques reaches some orders of magnitude in correspondence with high
accuracy of the retrieved result sets. Our techniques are more general than other
existing techniques for approximate similarity search. In fact, they can be used in
metric spaces and some can be used both for range and nearest neighbors queries.
Most of the existing technique are, on the other hand, typically limited to vector
spaces and to nearest neighbors queries. Their performance is generally worse than
that of our techniques. As far as we know, there are no other techniques that can be

used for both range and nearest neighbor queries.

1.3.2 Proximity of ball regions in metric spaces

It is easy to infer that a large overlap between regions does not always imply that
a large amount of data are shared by them. The amount of data contained in the
intersections depends on the data distribution. Therefore, there may be regions with
a large intersection and few data in common, but also regions with a small intersection
and many data in common. This happens when the intersection covers a dense area
of the data space.

In this thesis, the measurement of the amount of data shared by two ball regions,

called the proxzimity of regions, is analyzed and techniques for its quantification are
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proposed. The proposed techniques are developed for general metric spaces, which
naturally subsume the case of vector spaces. These techniques satisfy the following
criteria: (1) the proximity is measured with sufficient precision; (2) the computational
cost is low; (3) it can be applied to different metrics and data sets; (4) storage overhead
is moderate.

Note that in a generic metric space it is not easy to obtain such measurements since
we are not able, for instance, to compute volumes or areas. Therefore, the problem
of the proximity of ball regions is analyzed using a probabilistic approach. After an
analysis of the computational difficulties of the proximity measurement, heuristics to
compute it in an effective and efficient way are proposed. An extensive validation
was performed to prove the high accuracy of the proposed approaches. It was also
shown that the accuracy of the proximity measurement has a high impact on the
application involved. In fact, it was observed that, when the probabilistic approach
was used, the performance of the approximate similarity search algorithm based on
the proximity was much higher than the same algorithm when a trivial measurement

of the proximity was adopted.

1.4 Outline of the thesis

Chapter 2 introduces the issues of similarity search. We discuss applications that need
this approach instead of exact match search, discuss differences between handling
similarity search using vector spaces or with generic metric spaces, and introduce
similarity search queries. Finally, the data sets used for the tests performed to validate
the approaches proposed in the thesis are described.

Chapter 3 describes the most important access methods for improving performance
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of similarity search. In particular tree-based access methods were described in detail,
as the results of this thesis are mainly applicable to them. These access methods were
discussed giving a general definition of their structure and their similarity search
algorithms. Specific techniques for one dimensional data, multi dimensional data,
spatial data, and metric data are then presented.

Chapter 4 discusses the measurement of the proximity of ball regions in metric
spaces. This measurement is needed by one of the approximate similarity search algo-
rithms proposed later. Given the difficulty of computing this measurement efficiently
in metric spaces, we propose some heuristics to estimate it efficiently and accurately.
Tests performed to validate the techniques proposed are discussed and analyzed.

Chapter 5 deals with the issue of approximate similarity search. After an in-
troduction to this technique, some of the most important existing approaches are
described.

Chapter 6 proposes four new techniques for approximate similarity search in metric
spaces. These techniques are defined by relaxing similarity search algorithms on tree-
based access methods for metric data so that the trade-off between the accuracy
of results and performance can be effectively controlled. The results obtained from

extensive testing are discussed and analyzed.
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Chapter 2

Similarity search in metric spaces:
overview and preliminaries

2.1 Introduction

Traditional databases use exact match to search for data records. Retrieved records
are those whose attributes exactly match the ones specified in the query. However, for
several applications exact match search is not suitable and similarity search should
be used instead. In these cases, data that are similar to the query are retrieved.

In some applications requiring similarity search, data are represented in a vector
space. Similarity is obtained by computing the distance between vectors: the smaller
the distance, the higher the similarity. Several access methods were defined to improve
performance of similarity search for data represented in vector space. These, typically,
allows efficient similarity search to be performed when the number of dimension of
the vector space is below 15.

There are several other applications where geometric interpretation of distance
between vectors cannot be effectively used to asses similarity between represented

data or, simply, where data cannot be represented in a vector space. One example

13
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is image similarity. Even though image’s features are represented by vectors, for in-
stance color histograms, sometimes vectors that are geometrically distant could be
more effectively considered similar, because of the phenomenon of cross-talk between
dimensions representing individual colors. An example where data cannot be even
represented in a vector space is the string similarity. The similarity between two
strings is typically assessed by computing the number of operations needed to trans-
form one into another. Strings cannot be effectively represented by real valued vectors

and no geometric interpretation can be inferred from their distance function.

In all these cases geometric properties and information on the coordinates are not
available — only pair-wise distances can be computed. For this reason, the study of
data represented in metric spaces and access methods for similarity search in metric

spaces has recently attracted much attention.

In this section we justify the need of techniques for similarity search, when data
are represented in a metric space, and give some preliminary definitions useful for the

remainder of the thesis.

We first discuss some applications where exact match search cannot be applied
and similarity search should be used instead. We compare similarity search when data
are represented in metric spaces and vector spaces, and we discuss the different basic

statistic techniques that can be respectively used to build optimized access methods.

Finally we describe the specific data sets that we have used as test beds for

validating the techniques proposed in this thesis.
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2.2 Similarity search and its applications

Traditional database systems typically manage files of homogeneous records. Each
record is composed of a specified set of attributes that are used to characterize the
entities they represent. Values associated with attributes are supposed to describe
each record unequivocally and completely. For instance records representing cus-
tomers of a bank may be characterized by the attributes FirstName, FamilyName,
SocialSecurityNum, and probably a few others. Each record, by means of the values

associated with its attributes, unambiguously represents a particular customer of the

bank.

In these systems, typically ezact match search is used to retrieve interesting records
from the database. Queries specify values for a subset of record attributes and only
records whose attribute values exactly match those specified in the query are re-
trieved. Not retrieved records contain at least one attribute, among those specified in
the query, whose value differs from that of the query attribute. For instance, a typ-
ical query submitted to a traditional database system would be, informally, retrieve
the records corresponding to the customer whose name is John Smith. In this case,
the system would retrieve the records contained in the database, where the value
associated with the FirstName field is exactly John, and the value associated with
the FamilyName field is exactly Smith. Eventually, when there are several matching
records, the query can be defined to be more selective by adding additional conve-
nient attribute values, like for instance the date of birth, the city of birth, or the

social security number.

Exact match search basically partitions the set of records, contained in the database,

in two subsets. One, sometime called the result set, contains the records that exactly
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match the query. The other contains the records where at least one attribute value
does not exactly match the corresponding query attribute value. However, there
are some applications where partitions distinguishing qualifying from not qualifying
records cannot be defined. In some of these applications all records possibly match the
query and a "degree” of matching can be computed instead, comparing each record
with the query. In these circumstances, the concept of similarity search is introduced
as opposite to the exact match search, to indicate that retrieved records are those
having high degree of matching with the query. Qualifying and not qualifying records
can be identified, for instance, by specifying a threshold on the degree of similarity
or on the number of records retrieved — see Section 2.4 for a formal definition of
similarity search queries. In the following we outline some typical applications where

similarity search capabilities are needed.

Multimedia document retrieval: Probably one of the most common application
of similarity search is the retrieval of multimedia documents. Application in this
area are for instance face recognition, object recognition, finger print matching,
voice recognition, and in general multimedia databases [ABH97, YI99]. In this
case retrieval is not performed by using directly the raw content of document,
for instance, comparing pixel by pixel two images. Documents of the database
are processed and salient features, which describe the content of documents,
are extracted. Search is performed by comparing features extracted from the
queries with features extracted from documents of the database. Let us consider
image documents for instance. In this cases, typically, the feature extracted are
dominant colors, textures, and shapes [Cas96, SO95, Smi97|, generally repre-

sented as vectors. In case of color features, for instance, the color spaces is
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quantized in a certain number of colors, the quantity of each individual color
in the whole image is stored in each dimension of the vector, obtaining a color
histogram [Smi97]. Searching for images similar to a query image corresponds

to retrieve images whose color histogram is similar to the query color histogram.

Computational biology: Another very interesting application comes from the com-
putational biology. The basic objects managed and studied in this area are DNA
and protein sequences. Typically they are modeled as huge sequences of sym-
bols, that can be easily represented by very long text strings. The problem
here is finding a given sequence of letters, corresponding to some particular
characteristic, inside a longer sequence. In most cases it is not possible to find
an exact match of the given short sequence, and computational biologist are
more interested in finding parts of a longer sequence which are similar to a
short sequence. In fact, there could be minor differences in genetic sequences
that somehow identify the species which they belong to. In this area, the simi-
larity among sequences is based on the probability of mutations that somehow

rearrange the sequences themselves [Wat95].

Web search engines: Web search engines traverse the World Wide Web and index
the Web sites that they visit. Users may express queries to search for web
sites they are interested in. Suppose, for instance, that a user wants to buy
a vacation package to Hawaii that costs less that 1000$. Probably, he would
specify the keywords "vacation Hawaii less than 1000$", or "low price
vacation package to Hawaii", or perhaps "please, search for web sites
that offer vacation packages to Hawaii that cost less than 1000 dollars",

or other similar variants. Of course all previous queries do not exactly specify
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what the user is interested in and similarity search is needed to retrieve web
sites that are judged to be relevant. Web search engines are a particular appli-
cations of the more generic information retrieval systems [SM83], which allow
the retrieval of text documents to be performed by specifying list of keywords

as queries.

Filtering and recommender systems: Filtering systems [BC92, MMLP97] and
recommender systems [RV97] build and maintain a profile of their users. This
profile is built by using various strategies, ranging from analysis of the behaviour
of the user [MS94] using the system, to techniques of relevance feedback [A1196].
In case of filtering systems, the profile is used to filter out what is not interesting
to the user and to provide him only with interesting documents (for instances
sport news from new agencies). In case of recommender systems, it is used to
suggest something to the users (for instance a book to buy, a web site to visit,
an advertisement). In both cases what the system has to do is to compute the
similarity between the profile of the user and elements to be suggested or to be

filtered.

Stock quotes: A further example is suggested by systems that manage stock quotes,
which are typically represented as time series [AFS93]. In most cases, in order
to take reliable decisions on investments, it is useful to check if circumstances
similar to the current one (represented by some time series) occurred in the
past, provided that experts of the fields have defined how to compare time
series representing stock quotes. In fact, if a certain situation occurred in the
past, evaluating what occurred in the following periods helps to understand

what could be the trend in the future.
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In addition to the previous examples, several other applications might need the
use of similarity retrieval. An exhaustive analysis of these applications is out of the
scope of this thesis, however we can broadly identify three circumstances where exact

match search provides little help and similarity search should be used instead:

i) data cannot be precisely described and represented
ii) queries cannot be precisely specified

iii) data that exactly match a query do not exist in practice

In several cases, a combination of circumstances 1), ii), and iii) occur.

Let us consider case i). Sometimes, it is not possible to have a precise descrip-
tion of represented entities. Consider for instance, images, videos or audio documents.
Typically these documents are not searched by directly using their raw content. They
are associated with description of their content, generated either manually, or auto-
matically. These description might be subjective and ambiguous, in case of those
manually generated, or can be too generic and imprecise, in case of those automat-
ically generated. In both cases, what can be retrieved, is the set of descriptions of
documents that present some high degree of coincidence with the query, or simply
that are similar to the query.

In case ii) the imprecision applies to the query specification. In some cases, users
are not capable of precisely expressing their needs with a query. This may happen,
for instance, because the system does not offer expressive and unambiguous query
specification facilities, or simply because users have a foggy idea of what they are
really looking for. This is the case of all techniques of query by example, which are

largely used in image retrieval systems, for instance. In these systems, the query
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image is either sketched by the user, or an arbitrary preexisting image is used as
query. In both cases what the user searches for is a set of images that are somehow

similar to the one used as a query.

Case iii) occurs when the probability of finding something that is exactly equal to
the query is practically 0. This is, for instance, the case of stock quotes management.
Of course, the probability that time series of the past exactly match the current ones
is very low. However, as we said above, it is very interesting to retrieve situations

similar to the current one.

All applications described above require as a basic functionality the possibility
to compute the similarity between representation of data managed by the retrieval
system. In the remainder of the thesis we generally refer to these representation as
objects or data objects, without distinguishing and defining the nature of the represen-
tations themselves. Accordingly data used as queries will be here called query objects.
Systems supporting previous applications should be able to efficiently retrieve data

objects stored in the database which are similar to the query object.

2.3 From vector spaces to generic metric spaces

In several similarity search applications, data are represented by tuples of real num-
bers (for instance color histograms). In these cases, data are defined in a vector space,
or better in a finite dimensional vector space, since the number of elements in a tuple
is supposed to be finite. Similarity between objects can be indirectly obtained by

using the distance between vectors: the smaller the distance the higher the similarity.

There are several possibilities to measure the distance between vectors. The most
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widely used distance functions, however, are those of the family of Minkowski dis-
tances (see Section 2.3.3) where the distance between vectors is interpreted geomet-
rically. For instance, the Euclidean distance belongs to the family of Minkowski

distances.

In order to speed up retrieval in large collections of data, with respect the trivial
sequential scan, access methods have been developed. The basic idea, which they are
based on, is the definition of convenient partitions of objects such that only few subset
of objects have to be accessed in order to answer to similarity queries (see Chapter 3
for details). The use of vectors and Minkowski distances offers a great advantage to
this purpose since it is possible to exploit geometric and coordinate information to
obtain optimal partition and to achieve high performance. In fact, access methods
for vector spaces such as k-d-Trees [Ben75, Ben79], R-Trees [Gut84, BKSS90], quad-
Trees [Sam95], X-Trees [BKK96], to mention some, rely heavily on geometric and
coordinate information. In this context, optimal algorithms have been proposed both
for the average and the worst case [BWY80] to answer to nearest neighbor queries. An
excellent survey of access methods for data represented in vector spaces can be found
in [GG98] and [BBKO1]. However, it has been seen that all these techniques degrade
their performance when the number of dimensions of the vector space increases. In
fact, these access methods suffer of the so called dimensionality curse. That is,
they have an exponential dependency on the dimensionality of the space. When the
number of dimensions is greater than 10-15, a linear scan over the whole data set

would perform better [BGRS99, WSB98].

However, in many cases, it has been observed that, even if objects are represented

in a high dimensional vector space, fewer dimensions are in fact needed to represent
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effectively their geometric distributions [Fal96]. For instance, let suppose that we
have objects represented in a 100 dimensional vector space, analyzing them in most
case we might notice that they are in fact mostly distributed on an hyper-plane so
that, by some ad-hoc transformations, we may preserve the geometric relationships
among objects, but we use less dimensions to represent them. This is also the di-
rection followed by some dimensionality reduction techniques that use, for instance,
Karhunen-Loeve Transformation (KLT) [Fuk90], Discrete Fourier Transform (DFT)
[OS89], Discrete Cosine Transform (DCT) [Kai85], or Discrete Wavelet Transform
(DWT) [Cas96], to transform data from a vector space with a high number of di-
mensions to another with fewer dimensions. All these methods assume that a few
dimensions are enough to retain the most important information regarding the rep-
resented data objects. However, they might introduce some approximation since not

always the geometric relationships are exactly preserved.

In the past, given these established techniques that can be used in vector spaces,
the problem of similarity search has always been approached by enforcing the use
of vectors to represent objects. However, this strategy, that somehow guarantees
that similarity searches can be executed efliciently, does not guarantee effectiveness
as well. In fact, in several cases, vectors and Minkowski distances fail to accurately
represent similarity relationships among objects. For instance, in the image processing
field, several functions used to compare two images, cannot be easily expressed as
distance between two vectors. An important example is the quadratic form distance
[FSA*T95, HSE195, NBE193] (see Section 2.3.3) that takes into account the so called
cross-talk between different dimensions. The quadratic form distance does not belong

to the family of Minkowski distances and it does not preserve geometric properties
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of the vector space which it is applied to. Other important examples that cannot
be handled by using vector distances are the string similarity, used for instance to
compare DNA sequences in genetic databases, or the set similarity (see again Section

2.3.3).

Notice that when arbitrary distance functions are used to compute similarity
between objects (even if represented as vectors), the geometric properties and the
coordinates cannot be exploited and, as a consequence, the access methods for vec-
tor spaces indicated above cannot be used as well. Recently, the study of objects
represented in generic metric spaces and consequently the design of access methods
for metric spaces, as M-Trees [CPZ97], Slim-Trees [TTSF00], Vantage Point Trees
[Chi94, Uhl91, Yia93, Yia99, BO99], or GNAT [Bri95] has attracted much attention
in the field of similarity search. In metric space the only information that can be ob-
tained about objects is their distance from other objects. Formal definition of metric
spaces is given at the end of this section. Of course these new approaches are also able
to deal with vector spaces and the Minkowski distances, since these are special cases
of metric spaces: only the distances between vectors are considered and the fact that
they are vectors is ignored, so no geometric information on coordinates are exploited.
By doing this, an immediate advantage is the independence on the dimensionality
of objects. In fact, in [CPZ97] is shown that M-Trees perform better than R*-Trees
[BKSS90] when applied to high dimensional vector spaces. An excellent survey of

techniques for searching in metric spaces is provided in [CNBYMO01].

In this thesis we suppose that objects are represented in generic metric spaces,
given their generality, their wide applicability, and their increasing demand in the

similarity search area. In this way, we are not tied to specific cases of similarity
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search problems, as with vector spaces, even if our results can also be applied to
them.
In the following we give some definitions that are needed in the remaining of the

thesis.

2.3.1 Metric spaces

Let D be a domain of objects, for instance image features or DNA sequences. Let d
a function defined as follows:

d:DxD—-R

that for each triple of objects Oy, Oy, O, € D satisfy the following properties:

(1) d(Oz,0y) = d(Oy, O4) (symmetry)
(2) 0<d(O,,0y) < 00,0, # O, (positiveness)
(3) d(0z,0;) =0 (reflezivity)
(4) d(O,0,) < d(0,4,0,) +d(0,,0,) (triangle inequality)
We define
M = (D,d)

a metric space. D is the domain of the metric space, while d is the distance function of
the metric space. For practical reasons, in this thesis, we assume that the maximum
possible distance between objects of the considered domain D never exceeds a value
dm, thus we consider a bounded metric space. This is not a restriction, since all

practical applications, which we have dealt with up to now, consider distances to be

bounded.
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Notice that there are no assumptions on the nature of the objects of the domain
D. There are only some constraints on the distance function d. It is easy to show
that the family of Minkowski distances satisfies these properties, so a vector space is
also a metric space when they are used to measure the vector distances.

In the rest of the thesis, when we use the the term distance function we suppose
that it always satisfies the properties defined above. We also use simply M to indicate
a metric space, that implicitly is defined by a domain D of objects and by a distance

function d.

2.3.2 Metric ball regions

Access methods for vector spaces, typically partition the data set and bound elements
of the partition by hyper-rectangular region. In metric space, the notion of hyper-
rectangle cannot be used, since it requires the use of coordinates. However we may

use the notion of ball regions. Given an object O in a metric space M, we define a

ball region B(O,r) as
B(O,r)={0; € D|d(0,0;) <r}
A ball region B(O,r) is determined by a center O € D and a radius 7 > 0. It includes

such objects from D so that their distances from O are less than or equal to 7.

2.3.3 Similarity and distance functions

Computing similarity between objects can be done in several ways, depending on

their specific representation. Similarity functions are generally defined as follows:

sim:D xD —[0,1]
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given two objects of the considered domain, their similarity is a real value in the
interval between 0 and 1.

However, as previously observed, a suitable formalization for the similarity search
problem is to represent objects in a metric space and to search for objects whose
distance from the query object is small. Accordingly to this formalization, a distance
function that satisfies the metric postulates should be provided instead of the sim-
ilarity function. In several cases, the distance function is obtained naturally from
the definition of the specific similarity search application. In other cases, where only
the similarity function is available, the distance function should be obtained from
it. Intuitively, the higher the similarity the smaller the distance, therefore, given a

similarity function sim, a distance function d can be obtained as follows:
d(Ol, 02) =1- sim(Ol, 02), (231)

where O; and O, are two objects of D. When d satisfies the metric postulates,
M = (D, d) is a metric space.

The similarity function can be obtained from a distance function as well, provided
the metric space is bounded, that is, provided that a distance between two objects
never exceeds a fixed distance d,,:

(dm — d(O1,03))
A,

sim(Ol, 02) =

Relationships between similarity and distance function are discussed in [CPZ98b].
In the following we discuss some of the most important metric distance functions
and similarity functions that result in metric distance functions when Equation 2.3.1

is applied.

Minkowski distances: Let us first, consider the case where the objects are real
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valued vectors. Let us suppose that we have two vectors v, and v, defined
in a vector space with dim dimensions. This implies that both v, and v, are
tuples composed of dim real values. The traditional way of computing similarity
among objects represented in a vector space is to use a function of the family
of the Minkowski distances. This set of distance function is often designated as

the L, distance and it is defined for vectors v, and v, as

dim

1/p
L;D(Umvy) = (Z | Uw[]] - Uy[]] |p) ,p =1

i=1

Varying the value of p, we may enumerate the various function of this fam-
ily. For instance, L, is known as the city-block or Manhattan distance, and
it corresponds to the sum of the distances along each individual dimension of
the considered vector space. Lq is the famous and intuitive Fuclidean distance.
Another interesting function of this family is the L.,, which corresponds to
compute the limit of L,, when p goes to 0co. Ly is the maximum among the

distances along each individual coordinate:

Lo = (v, 0y) = b {] valj] = vy ] I}

Figure 2.1 sketches how the shape of a ball region B(O, r) changes when different

Ly’s are used.

Quadratic form: The family of the Minkowski distances considers different vector
coordinates to be independent, thus distances are strictly related to the close-
ness of vectors in a multi-dimensional space. However, in many cases, vector

coordinates can be dependent or correlated. Good examples of such type data
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Figure 2.1: Shape of a ball region B(O,r), in a two dimensional vector space, when
respectively L, Lo, Lg, Lo, are used as distance functions.

are color histograms [Smi97] with each dimension representing a different color.
Obviously, orange and pink are certainly more similar than red and blue. In
order to effectively measure the distance between color histograms, this natural
(though also subjective) cross-talk of dimensions should be taken into account
properly [Fal96]. One way to handle this problem is to use the quadratic-form
distance [FSA195, HSE*95, NBE*93].

dog (v y) = 1/ (02 — 1) A (02 — 1),

where A = [a;;] is a correlation matrix between dimensions of vectors v, and
vy, and the superscript T' indicates the vector transposition. Naturally, there
is no direct correspondence between distances and positions of vectors in the

space. If the correlation matrix A is symmetric and its diagonal is 1, that is
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when a; ; = a;; and a;; = 1, then d, satisfies the metric properties.

String distance: There are several cases where objects can be effectively repre-
sented by strings of arbitrary length and retrieval is performed by searching for
string that partially match a query string [HD80, Nav01]. This is quite com-
mon in computational biology [Wat95], signal processing [Lev65], text retrieval
[Dam64], for instance. In all these applications distance among two strings s;
and ss is defined as the minimal cost of a sequence of operations that transform
s1 into s3. The cost is oo when that transformation sequence does not exist.
The cost of a sequence of operations is computed as the sum of the cost of
the individual operations. The most common distance functions are defined as

sequences of some of the following operations:

op1: insert a letter
opz: delete a letter
ops: replace a letter

op4: swap adjacent letters

Depending on which of the previous operation are allowed, different distance

functions are defined:

e Levenshtein or Edit distance [Lev65]: allows insertions and replacements.
e Humming distance [SK83]: allows only replacements.

e Longest Common Subsequence distance [NWT0, AG8T7]: allows only inser-

tions.
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It is easy to show that these distance functions satisfy the metric postulates,

when all individual operations is given the same cost.

Set similarity: Another interesting case is the similarity of sets. Given two sets S;
and S,, which contains arbitrary elements, a largely used similarity function is
defined as the ratio of the number of their common elements to the number of

all different elements
#(81 N Sy)
#(SUS,)’

where #(8) is the number of elements in set S.

ST(Sh 82) =

Tanimoto similarity: A generalization of the set similarity is the Tanimoto similar-
ity measure [Koh84]. It is used for instance to compute the similarity between
structural features of biological data [GPR97]. Let us suppose that we have vec-
tors v, and v, defined in a vector space. Let us indicate with v, - v, the scalar
product of v, and vy, and with ||v,|| the Euclidean norm of v,. The Tanimoto
similarity is defined as

_ Vg Uy
[z |2 + [y [1* = (v - vy)

ST(Uwv Uy)

When vectors contain only 0’s and 1’s, the similarity of sets is obtained. In
this case 0 means that an element, identified by a vector position, does not
belong to the set, while 1 means that it belongs to it. Notice that the distance
function, obtained in correspondence of the Tanimoto similarity, satisfies the

metric properties but it does not preserve the geometric closeness of vectors.

Hausdorff distance: As a final example, consider the Hausdorff distance, which is

used to compare shapes of images [HKR93]. Here the compared objects are sets
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of relevant points, for example high curvature points. Given two finite point

sets A = {a,a9,...,0a,} and B = {by, by, ..., b,}, the Hausdorff distance is

H(A, B) = max(h(A, B), h(B, A)),

where
h(A,B) = maxmin || a—b ||,
acA beB
and || - || is some underlying norm on the points of A and B, for example the L

or Euclidean norm. Also this distance function satisfy the metric postulates.

2.3.4 Statistical information on data

The use of statistical information on data has always played a key role for the perfor-
mance optimization of database systems. Statistical information is in fact at the basis
of many cost models used for the optimization of query execution. In addition, it is
also used to better organize the structure of some access methods for performance im-
provement. There are some differences on the type of statistics that can be obtained
depending on the fact that geometric information can be used, as with vector spaces
and distance of the Minkowski family, or no geometric information is available, as in
generic metric spaces. In the first case, statistics on the position of the objects in the
space can be exploited. In the second case, only information on the distances can
be used and no geometric information on data can be exploited. In the following we
first introduce the probabilistic notions of density and distribution functions then we
discuss how these applies to our scenario to characterize data represented in metric

spaces.
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Distribution and density functions

Let suppose that V is a continuous random variable [HPS71]. Mathematically it
is a real-valued function, defined on a probability space, which takes real values,
depending on some event whose probability is 0.

The distribution function Fy of a random variable V is the following probability:

Fy(v) =Pr{V < v}

For instance, let us suppose that V is a continuous random variable associated
with the height of people, then Fy (v) is the probability that chosen a random person
(the event), its height is smaller than v. Notice that, chosen a random person, the
probability that its height is exactly v is 0 of course, given that v is a real value.

The density function fy of a random variable V is a function such that

+00

fv(v)dv=1

—Co0

Of course, we have that

Fo)= [ w fo(w)do

When the random variables are more than one, for instance V; and V5, then we
have respectively the joint distribution, Fy,v, (v, v2), and the joint density, fv,v, (v, v2).

The joint distribution is defined as follows

Fyv,(v1,v2) =Pr{Vi < v AV, < g}

The joint density fy,v;(v1,v2) is a function such that
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As before, we have that

b a
Fvlvz(a,b)/ / fviva(v1, v2)dvidoy = 1

This approach can be extended to an arbitrary number of random variables.

Distance distribution versus data distribution

When a data set contains objects represented in a vector space, a useful property
that can be obtained by analyzing it is the data distribution. By using it is possible
to know, for each arbitrary region of the space, what is expected amount of object
contained in it or, in probabilistic terms, what is the probability that a random object
belongs to the region. This can be obtained by integrating the data density function
over the given region. For instance, Figure 2.2 shows the data density function,
say fxy(z,y), in a two dimensional vector space, where X and Y are continuous
random variables corresponding to the x and y coordinates of objects. In the Figure,
dark values correspond to high values of fxy(z,y), while light values correspond to
low values. Data density, or data distribution, has been used on vector spaces to
characterize data sets for various purposes, as for instance to develop effective cost
models [BKK97, FK97, KF93, PM97, TS96| for multi-dimensional access methods
such as R-Trees [Gut84] or R*-Trees [BKSS90].

In this thesis we assume that data objects are represented in a generic metric
space, and vector spaces are just a special case. As discussed in Section 2.3.1, metric

spaces allow only to measure distance between two objects, and in particular no
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coordinate systems can be used. This, among other things, has the implication that
no information on data distribution can be exploited. In fact, data distribution cannot
be obtained since an object in a metric space does not have an identifiable position

and the only thing that can be known is its distance from other objects.

The characterization of generic metric spaces requires a novel approach. In [CPZ98a]
the use of the distance distribution is proposed as a counterpart of data distribution
used for vector spaces, since it is the ”"natural” way to characterize metric spaces.
Given an object O;, the distribution of distances from O;, characterize how the other
objects are distributed around O;. For instance if we report these observations to
a two dimensional vector space the result is what is sketched in Figure 2.3. That
is given the distance distribution or the distance density with respect to an object
O;, we might know what is the amount of objects whose distance from O; is smaller
than a certain value or, in probabilistic terms, what is the probability that a random
object has a distance from O; smaller than a certain value. However no information
on the ”"dense” zones of the space is available, since an object whose distance from
O, is d, may be on any point on the circumference with center O; and radius d. If the
vector space has three dimensions the circumference become a sphere and so on. In
particular, in a ”pure” metric space, no guesses on the position of the object can be
made, since there is not position. The distribution of distances from O; is sometime

called the O;’s viewpoint.

In addition to the distribution of distances from a specific object, another property
that can be easily computed is the overall distance distribution. Given a distance d
the overall distance distribution says what is the probability that distances smaller

than d exist, that is, what is the probability that given two random objects their
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distance is smaller than d.

Managing the overall distance distribution is far more easy than managing the
viewpoint of every possible object of the data set. In [CPZ98a] it is shown that the
overall distance distribution can be used, instead of the viewpoints, when the data
set is probabilistically homogeneous, that is when there is no significant discrepancy
between the various viewpoints. In case of highly non homogeneous spaces, the
viewpoint of a certain individual object is significantly different that that of a different
object. However, it was found that real and ”realistic” synthetic data sets are highly
homogeneous so the overall distance distribution can be reliably used in practice to
characterize them. These notions are more formally discussed in the following.

Let Do be a continuous random variable corresponding to the distance d(O, O),
where Oy is a random object. The distance density fp,(z) represents the probability!
of distance z from object O. The corresponding distance distribution Fp,(x), that is

the probability of a distance to O of being at most z, can be determined as

Fpy(z) = /0 " oo (8) dt (2.3.2)

Given two different objects Oz, Oy € D, the corresponding viewpoints Fpp, and FDoy
are different functions.

In the remaining of this thesis we will simply use Fp,, to indicate the distance
distribution or the viewpoint with respect to the object O;.

The overall distribution of distances over D can be defined as

F(z) =Pr{d(04,02) < z}, (2.3.3)

'We are using continuous random variables so, to be rigorous, the probability that they take a
specific value is by definition 0. However, in order to simplify the explanation, we slightly abuse
the terminology and use the term probability to give an intuitive idea of the behavior of the density
function being defined.
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v

Figure 2.2: Density of data in a two dimensional vector space

where O; and O, are two independent random objects of D.

Th discrepancy between two viewpoints is defined as
5(Fo,, Fo;) = Avgl| Fo,(x) — Fo,(x) [ (2.3.4)

where x is a random distance in the interval [0, d,,], and d,, is the maximum distance
between two objects of the dataset. The discrepancy between two viewpoints is the
average difference of values that they assume varying the distance.

The index of homogeneity of viewpoints HV of a metric space M is defined as

HV (M) =1 - Avg[é(Fo,, Fo,)]
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Figure 2.3: Density of distances from the object O;

where O; and O are random points of &/4. The index of homogeneity of viewpoints
of a metric space is 1 minus the average discrepancy of the viewpoints.

When HV (M) =~ 1, two different relative distance distributions are likely to
behave similarly and in [CPZ98a] was shown that the overall distance distribution

F(x) can be used as the representative instead of any Fp,.

As we said before, for real and realistic synthetic data sets, including the ones
that we have used in this thesis 2.5, the index of homogeneity was found to be close
to 1. Accordingly, we use the overall distance distribution F'(z), in our experiments,

for any reference object O;.

Notice that, even if we neglect the computational complexity of a procedure that

would be able to determine F'(x), all objects from D are usually not known. Therefore,
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an estimation of F'(x) is computed, by considering distances between objects from a

representative sample of D.

2.4 Similarity queries

The most frequently used types of similarity queries are similarity range and the
nearest neighbors queries. Accordingly, in this thesis we concentrate our efforts on
these two, even if other forms of similarity queries exist, as for instance the all pairs
or the all nearest neighbors queries.

In similarity search applications, in principle, it is not possible to distinguish the
set of objects that qualify from those that do not qualify. In fact, all objects qualify to
a similarity query and the only possibility is to asses the degree of similarity between
each object and the query. The result is that, theoretically, all objects should be
retrieved in correspondence of a similarity query. Of course this is not realistic for
practical applications, and the possibility of distinguishing between qualifying and
not qualifying objects should be somehow enforced. There are two basic techniques
to obtain this, in correspondence of which similarity range and nearest neighbors
queries are defined.

The first possibility, which results in similarity range queries, is to use a threshold
on the degree of similarity with the query, or correspondingly on the distance from
the query. Qualifying objects are those whose similarity with the query is above
the specified threshold, or correspondingly, whose distance is below the specified
threshold.

The second possibility, which results in nearest neighbors queries, is to specify the

maximum number of objects to be retrieved. Let us suppose that & is the number of
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object to be retrieved. Qualifying objects are the £ most similar objects to the query,
or correspondingly, the £ objects closest to the query.

In the first case, the response set is determined by the maximal dissimilarity with
respect to the query, while in the second case the response is constrained by the
maximal number of closest objects. In the following a formal definition of similarity
range and nearest neighbors queries is given.

Let us suppose that we have a data set DS C D in metric space M = (D, d) and
a query object O, € D. The similarity range query range(O,,r,) for query object

O, and search radius 7, is defined as
range(O,,7,) = {0; € DS | d(Oy, 0;) < 1y} (2.4.1)

Notice that a range queries is in fact defined by the ball region B(O,,r,), that we
will call the query region.
The nearest neighbors query nearest(O,, k) for query object O, and k nearest
neighbors is defined as
nearest(Oy, k) ={0,€DS| 1<i<kA

V] < k: d(0j7 O‘I)
Vj > k,d(Oy, O,)

(Oj+17 Oq)/\ (2.4.2)
(Oj7 Oq)}-

Similarity response sets are ordered (sorted, ranked) sets, where the position of

<d
<d

an object in the set is determined by its distance with respect to O,.

Some access methods for similarity search partition the data set into disjoint
subsets which are characterized by bounding regions. Such aggregate information is
used for pruning regions (subsets) that cannot contain qualifying objects. When a
range query is considered, it is easy to imagine that regions having no overlap with

the query region can safely be pruned.
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In fact, the situation is quite similar even in case of the nearest neighbor queries.
By considering the distance to the £-th nearest neighbor, we can transform the nearest
neighbors query to a range query. The only problem is that this radius is not known in
advance, so the query region. However, good nearest neighbor search strategies only
access the regions that have an overlap with this theoretic query region. In order to
achieve this behaviour, typically a priority queue of candidate regions is maintained,
and the regions are accessed starting with the most promising one.

Details of similarity search algorithms that implement Equation 2.4.1 and 2.4.2

using access methods are discussed in Chapter 3.

2.5 Data sets used in this thesis

We have conducted our experiments using three data sets: one synthetic and two
real-life data sets of image color features. The synthetic data set, called UV, is
a set of vectors uniformly distributed in a 2-dimensional space where vectors are
compared through the Euclidean (L,) distance. The second data set, designated as
HV1, represents color features of images. In this case, the features are represented
as 9-dimensional vectors containing the average, standard deviation, and skewness
of pizel values for each of the red, green, and blue channels [SO95]. An image is
divided into five overlapping regions, each one represented by a 9-dimensional color
feature vector. This results in a 45-dimensional vector as a descriptor of one image.
The distance function to compare two feature vectors is again the Euclidean (Lo)
distance. The third data set, called HV2, contains color histograms represented in
32-dimensions. This data set was obtained from the UCI Knowledge Discovery in

Databases Archive, [HB99]. The color histograms were extracted from the Corel
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Figure 2.4: Overall distance density functions of the data sets used for the experiments
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image collection as follows. The HSV space is divided into 32 subspaces (colors),
using 8 ranges of hue and 4 ranges of saturation. The value for each dimension of a
vector is the density of each color in the entire image. The distance function used to
compare two feature vectors is the histogram intersection implemented as L;. Data
sets UV and HV1 contain 10,000 objects, while HV2 contains 50,000 objects.

The range of distances and the corresponding overall distance density functions
can be seen in Figure 2.4. Note the differences in densities of the individual data col-
lections that were selected to test proximity for qualitatively different metric spaces,
i.e. spaces characterized by different data (distance) distributions.

Notice that even if these data sets are defined in a vector space, we ignore this and
in the remaining of the thesis we deal with them as if they where defined in a generic
metric space. For instance, we never make any assumption on data distribution, and

only distance distribution is used when needed.



Chapter 3

Access methods for similarity
search

3.1 Introduction

Searching for data in large repository is intrinsically a difficult task. In order to
perform search operations efficiently a physical level support is needed. Accordingly,
several access methods were designed to optimize the execution of both exact match
and similarity search operation.

In the following we introduce three classes of access methods: sequential scan
techniques, hashing techniques, and tree-based techniques. Since the approaches
proposed in this thesis are applied to tree-based access methods, we briefly introduce
sequential scan and hashing techniques. Then, we dedicate more space to tree-based
access methods. We define a general structure for tree-based access methods and we
also introduce the basic similarity search algorithms. The definition of some specific
tree based access methods is finally discussed distinguishing four different application

areas: one dimensional data, multi dimensional data, spatial data, and metric data.

43
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3.2 Access methods for similarity search

Literature offers several excellent surveys related to access methods for similarity
search. As an example consider [GG98, BBK01, CNBYMO1]. Here we describe some
of the most significant approaches related to the issues discussed in this thesis.

In this chapter, for convenience, we broadly classify the access structures organi-

zations for efficient processing of similarity search queries into three categories:

a) sequential scan
b) hashing
c) tree-based

Access structure organizations for sequential scan organize data in such a way
that a sequential scan of the whole data base can be efficiently executed. Hashing
methods, organize data in buckets according to some hashing functions so that only
a few buckets should be accessed to process a query. Tree-based access methods,
organize data in a tree hierarchy. Only a few nodes of the tree should be accessed to
process a query.

Comparison of different access methods can be performed considering several as-
pects. However, as suggested in [GG98], among the important features of access

methods is worth considering the followings:

Dynamicity: Access methods should allow insertion and removal of entries, without

affecting their performance

Secondary storage: Since databases contains huge amount of data, data structures
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used to organize entries cannot be maintained into main memory and should

be designed to make an efficient use of secondary storage.

Independence of input sequence: Performance of access methods should not de-

pend on the order in which data are inserted in the index.

Scalability: Performance of access methods should not degrade quickly as the size

of the database increases.

Space efficiency: The space required to maintain the access structure should be

limited.

The algorithms and the techniques presented in this thesis are mainly devoted
to tree-based access method. Therefore, in the following we will briefly introduce
sequential scan and hashing techniques, then we will dedicate more space to the

tree-based techniques.

3.2.1 Sequential scan

The basic technique to process similarity search queries defined in Section 2.4 is to
perform a single scan of the entire database. In order to perform this efficiently, data
can be densely stored on contiguous blocks of a secondary storage. The sequential
scan techniques, access sequentially all data of the database, according to the ordering
used to place data on the secondary storage. This technique is faster than accessing
randomly small blocks spread widely on the secondary storage. In fact, data stored
contiguously can be transferred into main memory very fast, since no head seek
latency occurs. On the other hand, in case of random block transfer, head seek time

is is the main reason for inefficiency. Sequential scan algorithms transfer into main
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memory large blocks of data, depending on the available amount of main memory.
After a block is transferred, data contained in it are processed, then a new block is
transferred, until all data are processed. Performance of sequential scan techniques is
linearly proportional to the size of the database. Their aim is to improve performance
of similarity search algorithms by minimizing the head seek overhead. However, they
cannot reduce the data transfer and data process overheads, that are linear to the
size of the database.

A relevant approach for data represented in vector spaces, based on the sequential
scan technique, is the VA-File (Vector Approximation File) [WSB98]. It reduces the
size of the data set using a coarse approximate representation of data objects. In
this representation more objects may collapse in one coarse object. Sequential scan is
performed on the reduced data set containing the coarse representation. The resulting
coarse result set is used to lookup in the original data set to find the actual result set.

Notice that in some applications, head seek and data transfer overhead have a
minor impact with respect to data process overhead. In fact, data process overhead
is mainly due to distance computation between data objects and query objects and,
some applications, as for instance genetic databases, require distance functions whose
computation costs much more than disk accesses.

Hashing and tree-based access methods, on the other hand, use data structures

that also aim at minimizing the amount of data transferred and processed.

3.2.2 Hashing

The idea behind the hashing techniques [Knu98, WFHC92] is that data objects should

be allocated in a certain number of buckets in order to access just a few of them when
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a query should be processed. Each bucket typically corresponds to a disk page and has
a specific capacity. A hash function takes as input an object and returns the identifier
of a bucket. The object is added to the obtained bucket. A typical technique used
to handle the situation where adding a new object in a bucket would exceed the
bucket’s capacity is to store the additional entries in overflow buckets associated with

the original bucket.

Hashing techniques for exact match search use arbitrary hash functions: when a
query is processed, the hash function is applied to the query object. The exactly
matching data object is searched in the obtained bucket and eventually in the corre-

sponding overflow buckets.

Hashing techniques for similarity search, as for instance range queries, use hash
functions that preserve the closeness of data objects. Close (similar) objects are stored

in the same bucket.

A significant hashing approach for multi-dimensional data, therefore applicable
to data represented in vector spaces and distances measured using functions of the
Minkowski family, is the grid-file [NHS84]. It partitions the search space symmetri-
cally in all dimensions. Specifically the grid-file put a d-dimensional orthogonal grid
on top of the search space obtaining a set of hyper-rectangular cells, whose shape
and size might be different, depending on the regularity of the grid itself. Each cell
or a group of cells are associated with data buckets. Each cell is associated with one
bucket but each bucket might contain several adjacent cells. When a new object (that
is a vector) should be added to the data set, first the cell that contains it is identified.
If the bucket containing the cell is not full, then the object is inserted. If the bucket

is full, there are two possibilities. If the bucket contains several cells, one checks if
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one of the existing hyperplane of the grid can be used for splitting the bucket. If
there is not such an hyperplane or if the bucket is associated with only one cell, then
a new hyperplane is added to the grid so that the bucket is split. Exact queries are
executed by locating the cell that contains the query object and searching inside the
corresponding bucket. Range queries are processed by locating cells that overlap the
query region and searching in the corresponding buckets.

Another interesting hashing approach for similarity search in metric spaces is the
D-Index [GSZ02], whose basic techniques were also proposed in [GSZ00, GSZ01]. It
is a multilevel hash structure that takes advantage of the idea of the excluded middle
partitioning, also exploited in [Yia99] for building an access method based on excluded
middle vantage point. In each level of the hash structure a certain number of buckets
are defined. Each level is associated with a hash function that, given an object,
assigns it to either a specific bucket or no buckets in the corresponding level. Objects
that are associated with no buckets in a level become candidate to be stored in the
next level. It might happen that some objects are excluded to be stored in all levels.
These remaining objects are stored in a separate ezcluded bucket. In this access
structure, each object is stored in one bucket of the multilevel structure or in the
excluded bucket. Queries can be processed, by accessing at most one bucket per level
plus the excluded bucket. The upper bound on the number of disk access is limited
by the number of levels, and the number of required distance computations can be
significantly reduced by using some pre-computed distances. Distance computation
between query objects and some accessed objects sometime is not performed since,
by using pre-computed distances, it is possible to infer that they do not belong to the

result set.
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3.3 Tree-based access methods and similarity search

algorithms

Approaches classified as tree-based access methods currently dominate the field. Their
basic principle is the hierarchical decomposition of the data space. Techniques de-
veloped in this thesis suppose that tree-based access methods are used so we devote
more space to their description.

All tree-based access methods have some common features, concerning their struc-
ture. All of them, for instance, hierarchically organize the space by using regions,
however there are differences concerning the definition of the used regions and the
way the trees are built and maintained. For instance, the Generalized search trees
(GIST) [HNP95] subsumes most of the characteristics of tree-based access methods
under a generic architecture, so it can be used as a reliable framework for the imple-
mentation of new access methods.

In the following we describe the general structure of tree-based access methods,
we outline the generic similarity search algorithms that exploit this structure, finally

we discuss some specific implementation of tree-based access methods.

3.3.1 General structure

Tree-based access methods partition objects and store elements (set of objects) of the
partition in buckets, as hashing methods also do. However, while in hashing methods
a bucket identifier is obtained by applying a hash function to data objects, in tree
based access methods, buckets are accessed by traversing the tree structure.

The tree structure is composed of nodes that contain pointers to other nodes.



90

Nodes that do not refer other nodes are called leaf nodes. The remaining are called
internal nodes. Each node of the tree is associated with a region that represents a
subspace of the entire search space. The region associated with a node V; is contained
in the region associated with the N;’s parent node and contains all regions associated
with the N;’s descendants.

A leaf node is simply a container of references to data records along with the
objects that represent them. Let’s suppose that N; is a leaf node of a tree. The

generic structure of N; is the following:
N; = ((pzi, Oi)? R (pim OTZL,))

where n; is the number of objects contained in N;, pé is a pointer to a record (for
instance an image), and the object O; is the corresponding representation (for instance
the image color histogram). All objects O;, 1 < j < n;, belong to the region associated
with NV;. Notice that in traditional database systems, objects O; are typically called
keys.

The definition of the region associated with a node is stored in its parent node,
along with its reference. In fact, an internal node is a container of references to
other nodes, either internal or leaf nodes, along with the definition of their associated
region. Let’s suppose that N; is an internal node of the tree. The generic structure
of N; is the following:

Ni = ((r, R, - (1, Rn,))
where 7%,1 < j < ny, is a reference to another node, say Nj, and R, 1 < j < n,
is the region associated with V;. Regions are not necessarily disjoint, that is, it is
possible that some regions associated with nodes referred by the same parent node

overlap.
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In some tree-based access methods also internal nodes, in addition to leaf nodes,
may contain references to searched data and the object that represents it. The cor-

responding (extended) node structure is the following:
N; = (((pzh Oi)? Ti? RZI)? R ((p:.w 022)7 wa R:L,)) .

We will generally suppose that only leaf nodes contain pointers to real data, so
we will use the simplified node structure. However, when needed we will mention the
other possibility.

Let’s suppose that N, is an internal node and node N, one of its child nodes. Let
R, be the region associated with IV, and R, the one associated with N.. As we have
previously said, region R, is included in region R,, that is if object O € R, then
0 €eR,.

The number of elements n; in a node NN;, either leaf or internal node, and the type
of regions associated with nodes depend on the specific access method.

The entry point to the tree is the root node. The root node is associated with a
region representing the entire universe.

Notice that even if regions associated with different nodes might overlap, a refer-
ence to a record whose representation is contained in the intersection of two regions
is typically stored just in one node.

When only leaf nodes contain references to real data, leaf nodes represent a parti-
tion of the whole data set. The strategies used to partition the data set and to bound
elements of the partition with regions are specific for each access method.

Some tree-based access methods are designed to be maintained into main memory
and do not take into consideration secondary memory storage. These are not suitable

for large databases. Other access methods are primarily designed to be maintained
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into secondary storage. In this case, in order to minimize disk access overhead, size
of nodes of the tree corresponds to the size of a disk page. In this way reading a node
of the tree corresponds to one disk access.

Most tree-based access methods are built using strategies that maintain them
height-balanced. Therefore, the lengths of the paths from the root node to all leaf
nodes are identical. In these cases, the length of the path from the root to the leaf

nodes is called the height of the tree.

3.3.2 General similarity search algorithms

The hierarchical structure of tree-based access methods allows similarity search algo-
rithms to ignore subsets of objects where qualifying objects cannot be found. Search
algorithms traverse the tree structure top down, starting from the root, discarding
paths corresponding to sub-trees where no qualifying objects can be found. Leaf
nodes reached by search algorithms are exhaustively searched for qualifying objects.

For the sake of simplicity we suppose that data objects and references to searched
data are only contained in the leaf nodes. However, it is straightforward to modify
the algorithms in order to have a correct behaviour on tree structures where also
internal nodes contain references to searched data.

The algorithms described in this section solve range and nearest neighbors queries
defined in Section 2.4. The intuition behind these algorithms is the following. In case
of range queries, only nodes associated with regions intersecting the query region
B(Oy,74), where O, is the query object and 7, the query radius, should be accessed.
If the region associated with a node does not intersect the query region, all regions

associated with nodes belonging to the sub-tree rooted at this node do not intersect
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the query region and leaf nodes of the sub-tree do not contain objects that are covered
by the query region. Therefore the entire sub-tree can be safely pruned. In case of
nearest neighbors search, the behaviour is similar, since we will see that the nearest
neighbors search algorithm is in fact defined as a range search algorithm where the
query radius is reduced step by step. A query region with a large radius is used at the
beginning. Then the radius is reduced step by step depending on the nearest objects
currently found.

Similarity search algorithms on tree-based access methods traverse multiple branches
of a tree to collect objects that satisfy the query. Accordingly, both algorithms use
a dynamic queue of Pending Requests, PR, to temporarily store pointers to tree’s
nodes, whose bounding regions potentially contain qualifying objects, to be accessed
in the next iterations of the algorithms. Each node corresponds to a different branch

to be searched in the trees structure.

Range search algorithm

The response range(O,,7,) to the similarity range query of query object O, and
search radius 7, can be determined by the Algorithm 3.3.1.

The algorithm takes as input values the query region, composed of the query
object O, and the query radius r,. It returns the set of pairs range(Oy,r,) =
{(p1,01), (p2, 02), ..., (;i, O1) } where p; is a pointer to a record, O; is the object that
represents it, and [ is the number of elements retrieved.

The algorithm starts with an empty result set and a queue of pending requests
PR containing only the pointer to the root of the tree (Step 1). Then the algorithm

iterates while PR contains some nodes to be accessed (Steps 2 and 11). At each
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Algorithm 3.3.1. Range
Input: query object Oy; query radius ry.
Output: response set range(Oy, 7).

1. Enter pointer to the tree root into PR; empty range(Og, ).
2. While PR # (), do:
3.  Extract entry N from PR. Suppose that N is bounded by region R.

Read N.
If N is a leaf node then:
For each (p;,0;) € N do:

4
5
6
7. If d(Oq, O;) < rq then (p;, O;) — range(Oy,ry).
8. If N is an internal node:

9 For each child node N, of N, bounded by region R, do:

10. If Overlap(B(Oy,7q), Rc) then insert pointer to N, into PR.

11. End

iteration, a node is extracted from PR (Step 3) and its content is read (Step 4).
Notice that in case of secondary storage access methods, reading a node corresponds
to one disk access. If the extracted node is a leaf node (Step 5) the algorithm checks
if the contained objects are covered by the query region. Covered objects, along
with the corresponding record pointers, are inserted in the result set (Steps 6 and
7). If the extracted node is an internal node (Step 8) it refers to other nodes of the
tree, so the algorithm checks if these child nodes should be accessed. Each referred
node is inserted in PR, to be examined in the next iterations, if the region, they are

associated with, overlaps the current query region (Steps 9 and 10).
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Algorithm 3.3.2. Nearest neighbors
Input: query object O4; number of neighbors k.

Output: response set nearest(Og, k).

Enter pointer to the tree root into PR, fill nearest(Oy, k) with k (random) objects;
determine r4 as the max. distance in nearest(Oy, k) from O,.

While PR # ), do:
Extract the first entry N from PR. Suppose that N is bounded by region R.
If Overlap(B(Oy,14), R) then read N, exit otherwise.
If N is a leaf node then:
For each (p;,0;) € N do:

If d(Oy, O5) < rq then update nearest(Oy, k) by inserting (p;, O;) and removing
the most distant pair from Og; set 1, as the max. distance of objects in nearest(Oy, k)
from O,.

If N is an internal node:
For each child node N, of N bounded by region R, do:

If Overlap(B(Oy,7q), Rc) then insert pointer to N, into PR.
Sort entries in PR with increasing distance to O,.

End

Nearest neighbors search algorithm

The response nearest(O,, k) to the nearest neighbors query for query object O, and

k nearest neighbors, according to [HS95), can be executed by the Algorithm 3.3.2 in

the optimum way, i.e. with the minimum number of accessed nodes.

There is a strong similarity between Algorithms 3.3.1 and 3.3.2. However we can

highlight two main differences. First, the nearest neighbors algorithm maintains a

dynamically shrinking query radius while the search radius (specified as input pa-

rameter) is constant for range queries. Second, the queue of pending requests PR

does not assume any ordering for the range queries, while increasing distance to the

query object is used for ordering in the approximate nearest neighbors algorithm — a
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node close to the query object should be accessed first.

The algorithm for approximate nearest neighbors search takes as input values the
query object O,, the number of neighbors required £. It returns the set of pairs
nearest(Oy, k) = {(p1,01), (2, 02), .., (pr, Ox) } where p; is a pointer to a record, O;

is the object that represents it, and d(O,4, O;) < d(Oy, 0;),i < j.

The algorithm starts with a result set initialized with k£ random objects from
the data set, the current query radius r, set to the maximum distance between the
query object and the objects in the result set, and the queue of pending requests
PR containing only the pointer to the root of the tree (Step 1). Then the algorithm
iterates while PR contains some nodes to be accessed (Steps 2 and 12). At each
iteration, a node is extracted from PR (Step 3). The content of the node is read
only in case the region associated with it overlaps the query region (Step 4) elsewhere
the algorithm exits since no other region in PR may overlap the query region, given
the ordering used in PR (Step 11). If the extracted node is a leaf node (Step 5)
the algorithm checks if the contained objects are nearer to the query objects than
those in the current result set. In this case, these nearer objects are inserted in the
result set, along with the corresponding record pointer, elements exceeding the k-th
position of the updated result set are removed, and the current query radius r, is
set to the distance between the query object and the object that represent the k-th
element in the result set (Steps 6 and 7). If the extracted node is an internal node
(Step 8) the algorithm checks if pointed nodes should be considered or not. Each
pointed node is inserted in PR, to be examined in the next iterations, if the region
they are associated with overlaps the current query region (Steps 9 and 10). The

entries in PR are sorted according to their distance to the current query object (Step
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11); the distance of an object from a region is the nearest possible distance of any
point inside the region from the object. Notice that given the dynamic behaviour of
the query radius 7,4, a node that is inserted in PR at Step 10 can be pruned at Step 4

since, after its insertion and before its extraction, the query radius might be reduced.

3.4 Specific tree-based access methods

In this section we describe some specific tree-based access methods. We have con-
sidered four different application areas and for each of them we have described the
most popular tree-based access methods. The first application area is that of one
dimenstonal data, where an absolute ordering among data can be conveniently ex-
ploited. This is a typical case in traditional database systems. B-Trees are the most
popular tree-based access methods in this case. The second application area is that
of point or multi-dimensional data, where data are represented by points in a multi-
dimensional vector space. The point access methods described here are k-d-Trees and
quad-Trees. The third application area is that of spatial data, where spatial objects
like polygon, or curves, in addition to points, are managed. R-Trees are typically
used as access methods in this case. Finally, the fourth application area is that of
metric or distance only data, where no coordinate information can be exploited since
only distances among data objects can be computed. M-Trees are a significant access

method for this kind of data.

As previously stated, techniques developed in this thesis are defined for metric

data. Specifically they were tested by using M-Trees as access method.
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3.4.1 Omne dimensional access methods: B-Trees

B-Trees [BM72], and their extensions [Com79], especially B*-Trees, are the most
popular tree-based access methods. They can be used for one dimensional data, that
is in those case where an absolute ordering among data can be exploited, and are
widely used for high performance primary key accesses, in traditional databases. B-
Trees are secondary storage structures, therefore, node’s size corresponds to the size
of a disk page. Each node, either leaf or internal node, may have several pointers to
descendant (either nodes or data records).

The structure of a leaf node of a B-Tree is defined exactly as in Section 3.3.1. That
is, it just contains a certain number of objects (keys) along with the corresponding
references to real data (records).

Regions associated with nodes are disjoint adjacent intervals of the one dimen-

sional space. The region R; associated with the j-th child of the ¢-th node is

RE = [ai. bi.)

J 3777
Notice that, since intervals are adjacent,
by = aj,
so the structure of the node can be conveniently simplified by only storing the left
bounds of the intervals.
Internal nodes of B-Trees, in addition to references to child nodes and associated
regions, also contain references to data records, as in the extended internal node
representation given in Section 3.3.1. Let us call pé the j-th reference contained in

node Nj. p} points to the record identified by the left bound b of the j-th interval,

that is, O; = b’ is the key of the pointed record.
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Figure 3.1: B-Trees structure example, supposing that the maximum number of en-
tries in a node is three

Figure 3.1 shows the structure of a B-Tree and how intervals are organized.

BT -Trees, simplify the B-Tree structure. In fact, in BT-Trees only leaf nodes refer
to data records, while internal nodes only refer to other nodes.

B-Trees and Bt-Trees are always height-balanced. The technique to guarantee
this is to have the tree growing from the leaves to the root. Insertion first locates the
leaf node where the new entry should be inserted. If the node is full, it is split in two.
As a consequence of this, the entry referring the old node should be modified and a
new entry, corresponding to the new node should be added in the parent node. If the
parent node is also full, it is also split in two and splits may propagate up to the root
of the tree. When also the root is split, a new level (a new root) is added to the tree,

guaranteeing the height-balancing.
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3.4.2 Point access methods: k-d-Trees and quad-Trees

Access methods described in this section are able to deal with points in a vector space,
even if some of them were extended to deal also with spatial data as for instances
polygons. We describe two different tree-based point access methods, namely k-d-

Trees and quad-Trees, and discuss some of their extensions.

k-d-Trees

K-d-Trees [Ben75, Ben79] are binary search trees that exploit a recursive subdivision
of the space. Let us suppose that our objects are vectors with dim dimensions. In
every level of the tree a value (key) is used as discriminator for branching decision
of a specific dimension of the corresponding vector space. The root node (level 0)
discriminates for the first dimension. Nodes pointed by the root (level one) discrimi-
nate for the second dimension. And so on, up to the level dim — 1. If more than dim
levels are needed, the process starts again from the first dimension. Space subdivision
is obtained by (dim — 1)-dimensional hyperplanes. Each splitting hyperplane has to
contain at least one data object. See Figure 3.2 for an example.

Leaf nodes just contain a reference to a record and the object (vector) that repre-
sents it, or they are empty in case that no objects are contained in the corresponding
region. Of course empty leaf nodes can be materialized when needed, saving a lot of
unused memory space.

The structure of internal nodes is slightly different than that described in Section

3.3.1:

N; = ((pi7 Oi): (Tliv R?)? (Tviw R:"))

An internal node contains a single pointer to a record, along with its representation,
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Figure 3.2: k-d-Trees structure example

and two entries. The left entry points to the left child node and contains a description
of the region associate with it. The right entry, symmetrically points to the right
child node and contains a description of its bounding region. Modifications of search

algorithms for this modified structure are straightforward.

Let us suppose that N is a node at level lev of the tree, and object O = (oy, . . ., Ogim_1)
is the object contained in it. Let X = (=z¢,...,Zgm-1) be the axis of our dim-
dimensional vector space. The left region R;, associated with the left child node,
is obtained by the intersection of the semi-space Ty mod dim) < O(lev mod dim) and
the region R associated with the node N itself. Symmetrically, the right region
R, associated with the right child node, is obtained by intersecting the semi-space

Z(lev mod dim) > O(lev mod dim) and the region R. Notice that the hyperplane Z(ey mod dgim) =

O(lev mod dim) CONtains the object O.

It is straightforward to observe that the structure of a node can be conveniently
simplified by only storing the value 0es mod dim), corresponding to the (lev mod dim)

dimension, and the pointers ; and r, respectively to the left and right nodes.
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The name k-d-Trees stands for k-dimension tree, where k is used as the dimen-
sionality of the indexed space.

k-d-Trees have been designed as main memory access structures, but the extended
k-d-Trees [CF80] has been modified for secondary storage environments. This scheme
uses the k-d structure as a directory to data stored in pages, but only the leaves of
the directory contain these page pointers.

A successful attempt to generalize the B-Trees and k-d-Tree ideas in one is pre-
sented in [Rob81] and called the k-d-B-Trees. In geometric terms, the data space is
divided into a set of dim-dimensional boxes, which are also divided in boxes, etc.,
down to the depth of the tree. Instead of a set of one-dimensional points, each branch
node in a k-d-B-Tree contains a set of regions. Each region is represented by the set
of 2 - dim coordinates which define its boundaries. The union of all regions in a
branch node is the region which encloses them. The lowest level nodes, representing
the ”innermost” regions, contain pointers to sets of tuples pertinent to these regions.
Alternatively, the leaf nodes may contain coordinates of their content points, plus

another level of indirection to the actual tuples corresponding to these points.

quad-Trees

As previously discussed, k-d-Trees are binary trees where each node discriminate val-
ues of a single dimension of the vector space. The problem is that this data structure
degrades its performance when the number of dimensions is high. An alternative pos-
sibility is to build a data structure where each node provides 2%™ descendants in order
to ensure discrimination for all dimensions at the same time. This multi-way trees,

extensively discussed in [Sam95|, are called quad-Trees even if usually this term refers
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Figure 3.3: Point quad-Trees structure example

to the two-dimensional variant, where each node has four descendants. Quad-trees
as k-d-Trees were also originally designed as main memory data structures.

In the two dimensional case, regions associated with nodes are rectangles. Let us
suppose that N; is an internal node. Its four descendants are associated with the four
rectangles obtained by cutting the rectangle associated with NV; with an horizontal
and a vertical straight lines. The four obtained rectangles are typically referred as
the NW, NE, SW and SE (northwest, etc.) quadrants.

There are several variants of the quad-Tree structure. A very important one is
the point quad-Tree [FB74]. In point quad-Trees, internal nodes have the following

structure:
Ny = (93, 00), (M, R, -, (P, Risi)

Similarly to k-d-Trees, each internal node contain a single reference to record along
with the object that represents it. However, 2%™ entries, are included instead of
just two. Each entry refers to a child node and contains a description of the region

(hyper-rectangle) associated with the child node. See Figure 3.3 for an example.
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As in k-d-trees leaf nodes either just contain one object, or they can be empty, in
case no objects are contained in the corresponding region.

In a point quad-tree, objects (points in the dim-dimensional vector space) can be
inserted consecutively. When a new object is inserted, first a point search is performed
to check if the object already exist. If the object is not found, then it is inserted in the
leaf node where the search stopped. If the leaf node already contains another object,
then the associated region is divided into 2%™ subspaces, by using dim hyperplanes
all containing the object contained in the leaf node. The former leaf node become an
internal node containing 2%™ regions and referring 2%™ empty leaf nodes. The new
object is inserted in the new leaf node referred by the entry containing the unique
region that includes it.

Another popular variant of quad-Trees are the region quad-Trees [Sam95|. In this
variant, regions are always partitioned regularly. That is, the 2%™ subspaces resulting
from a partition are always of equal size. The hyperplanes used to cut regions do not
necessarily contain the associated data object, as in point quad-Trees. For instance
in a 2 dimensional vector space, they are such that they divide each side of the
rectangular region in two segments of equals length. Some complex versions of region
quad-Trees, as for instance the PM quad-Trees [SW85] or those described in [Sam88],

are able to deal with spatial data in addition to points.

3.4.3 Spatial access methods: R-Trees

Spatial access methods are able to deal with spatial data such as polygons, curves,
regions, etc. in addition to points. The most significant proposal of spatial access

methods are the R-Trees, discussed in the following. Other spatial access methods
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mainly refine the original design of R-Trees.
R-Trees were originally proposed in [Gut84]. They are height-balanced trees sim-
ilar to B*-Trees [BM72] (see also Section 3.4.1). Spatial objects are represented by

their minimum bounding box. Therefore, objects are defined as follows:
Oi = (Lo, - - - Lgim—1)

where I; is an interval [a, b] of the i-th dimension of the vector space, describing the
extent of the spatial object along the ¢-th dimension. Of course, other representations
for the bounding boxes are also possible.

Leaf nodes contain sets of objects (bounding boxes of spatial objects), along with
references to real spatial objects.

Internal nodes are defined exactly as in Section 3.3.1. The region R, associated
with a child node N, is the minimum bounding box including all objects contained
in the leaf nodes of the sub-tree whose root is N.. Regions associated with nodes at
the same level of the tree may overlap, however each object is stored only in one leaf
node even if it is covered by several regions. See Figure 3.4 for an example.

When a new object is inserted, the tree is traversed by choosing at each level
the child node whose region needs the minimum enlargement to contain the object.
If several children satisfy the same criterion, the one associated with the smallest
region is chosen. Once arrived to a leaf node, if the corresponding region needs to
be enlarged, it is adjusted appropriately, propagating the changes upward. If the leaf
node is full, it is split and entries are distributed in the new and old node creating
two new regions. These updates are also propagated upwards with eventually other
splits in the internal nodes. Various strategies were proposed to minimize the overlap

during insertion. Some were proposed in the original R-Trees paper [Gut84], other
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Figure 3.4: R-Trees structure example, supposing that the maximum number of en-
tries in a node is two

were proposed later by other authors as for instance the packed R-Tree [RL85], or a

packing techniques based on the use of the Hilbert Curve [KF93].

Zero overlap among regions is in general not obtainable. When a new data object
(bounding box) that overlaps two regions is inserted, since we want to store it in just
one leaf node, one of the two regions has to be enlarged, to include the object, and the
consequence is that the enlarged region will overlap the other region. However, if we
allow a data object, which overlaps more regions, to be stored in all overlapped leaf
nodes, we can obtain non overlapping regions at the price of storing objects in several
nodes. This is the main idea behind the R*-tree [SRF87]. Another variation of the
R-tree, called R*-tree [BKSS90], does not change the properties of the basic structure,
but rather has a more complex insertion algorithm that build the tree improving the

overall performance.
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3.4.4 Metric access methods: M-Trees

M-Trees [CPZ97] are secondary storage height balanced access methods. They or-
ganize data objects by creating partitions where set of objects are bounded by ball
regions (see Section 2.3.2 ).

Data objects and references to real data records are stored in leaf nodes, whose
structure is defined exactly as described in Section 3.3.1.

Internal nodes contain references to child nodes along with their bounding regions.

In M-Trees bounding regions are ball regions defined as follows:
Rz’ = B (Ou TZ')

where O; is a reference objects, or routing object, used as center of the region and r;
is the radius of the ball region.

The ball region B(O;, r;) associated with the node N; covers all regions associated
with the nodes belonging to the sub-tree whose root is N; and all objects contained
in the leaf nodes of the sub-tree. That is, if R = B(O,r) is a region associated with
any node of the sub-tree, then d(0;,0) + r < r;. If O is any object belonging to a
leaf nodes of the sub-tree, then d(O;, 0) < r;. See Figure 3.5 for an example.

When a new object O should be inserted, the tree is traversed choosing in each
level the child node that needs the minimum expansion (possibly no expansion) to
contain the new object. In case of ties, the node associated with a region with the
closest center is chosen. Finally the node is added to a leaf node. If it is full, it is split
in two. Two new objects are chosen as centers of the two new regions, associated with
the old and new node. Objects are distributed in the two nodes and their regions are
defined by using the previously chosen centers and the distance from the centers to

the farthest object in each node as corresponding radii. There are several strategies
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Figure 3.5: M-Trees structure example, supposing that the maximum number of
entries in a node is two

that can be used to chose the two new representatives and to distribute objects in
the two nodes. From various experiments, the authors say that the best strategy is
trying a split that minimizes the maximum of the covering radii obtained. Notice
that a split in a leaf node needs an insertion in the parent node. In case also the
parent node is full then it has to be split too and the split can be propagated up to
the root of the tree, as in B-Trees (see Section 3.4.1) and R-Trees (see Section 3.4.3).

As in R-Trees, regions of M-Trees may overlap and objects are stored in only one
leaf node. A variation of the original design of the M-Trees that tries to minimize the
overlap between regions are the Slim-Trees [TTSF00]. The basic structure of Slim-
Trees is the same of the M-Trees. However, they use a new splitting algorithm based
on Minimal Spanning Tree, a new algorithm to chose the most appropriate child node

during insertion that leads to higher storage utilization, and a ”Slim-down” algorithm
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to be used in a post-processing step to reduce the sizes of the ball regions thus their

overlaps.
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Chapter 4

Proximity of ball regions in metric
spaces

4.1 Introduction

The approximate similarity search algorithm, whose details are presented in Section
6.9 of next chapter, is based on an estimation of the quantity of objects shared by
the query region and data regions: data regions that are judged to share few objects
with the query region are discarded. To this aim, this chapter deals with the problem
of estimating, given two arbitrary ball regions defined in a metric space, the amount
of objects contained in their intersection. Large overlap between regions not always
implies that several objects are shared by them. In fact, the number of objects con-
tained in the intersections depends on the distribution of objects in the space. There
may be regions with a large intersection and few objects in common, but also regions
with a small intersection and many objects in common, which happens when the
intersection covers a dense area of the data space. In this chapter, this phenomenon,
called the proxzimity of regions, is analyzed and techniques for its quantification are

proposed.

71
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The problem of region proximity in vector spaces was studied in [KF92] to declus-
ter nodes of R-trees [Gut84] for parallelism. In this chapter proximity measures are
developed for general metric spaces, which naturally subsumes the case of vector
spaces. Techniques that satisfy the following criteria are proposed: (1) the proximity
is measured with sufficient precision; (2) the computational cost is low; (3) it can be
applied to different metrics and data sets; (4) storage overheads are moderate.

The problem of the proximity of regions is analyzed using a probabilistic approach.
After a discussion about the computational difficulties of the proximity measurement,
heuristics to compute it in an effective and efficient way are proposed. An extensive

validation was performed to prove the quality of the proposed approaches.

4.2 Formal definition of proximity

In some existing applications, such as [CPZ97, TTSF00] where proximity was used to
obtain a better organization of access methods’ structure, a simplified measurement of
the proximity between two ball regions was used. We refer to this simplified version
as the trwial proximity. Specifically, the trivial proximity is computed through a

function, linearly proportional to the overlap of the regions, which can be generalized

as follows.
0 if rp + 1y < d(Oyg, Oy)
X (B(0,,,), B(Oy,my)) = {2000 it max(r,,r,) < min(ry,r,) +d(O,, O,)

2-min(rg,ry)

m otherwise

(4.2.1)
Equation 4.2.1 sets the proximity to 0 when two ball regions do not overlap. Oth-

erwise, the proximity is proportional to the regions’ intersection. The values are
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normalized to obtain proximity values in the range [0,1]. The proximity is 1 when
both regions include all objects, that is when their radii are equal to the maximum

distance d,,.

Although the trivial proximity measure is simple to compute, it is not accurate

because it does not take into account the distribution of objects in the space.

The issue of proximity is far more complex. Intuitively, the proximity of two ball
regions should be a value proportional to the amount of objects that simultaneously
occur in both of the regions. Accordingly, using a probabilistic approach, we may
define the proximity X (B(Oy,75), B(Oy,1y)) of ball regions B(Oy,74), B(Oy,1y) as

the probability that a randomly chosen object O € D appears in both regions, i.e.

X(B(Oy,12), B(Oy, 1)) = Pr{d(0,0,) < 1, Ad(O,0,) < 1,} (4.2.2)

Note that the proximity cannot be quantified by the amount of space covered by the
regions’ intersection. Due to the lack of space coordinates in general metric spaces,

such a quantity cannot be determined.

Our aim is to use proximity to design an approximate similarity search algorithm
that discard data regions with small probability of sharing objects with the query re-
gion. As discussed and proved in Section 6.9, high accuracy of proximity measurement
is fundamental for high precision of the approximate similarity search algorithm. In
fact our experiments give evidence that results obtained using the trivial proximity are
far less accurate than results obtained using the proximity measurements developed

in this thesis.
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4.3 Application considerations

Several practical applications may benefit from the measurement of the proximity

between two regions, for example:

Region splitting Static regions are not typical and the evolution process in storage
structures is regulated by specific split strategies. When a region R splits, two
new regions, say R, and R,, are created. One way of splitting a region may
be more advantageous than another — the content of a region can typically
be split in several ways. When a large number of objects is contained in the
intersection of two new regions (i.e. their proximity is high), the probability
of accessing both regions during query execution is also high, assuming query
objects have the same distance distribution as the data objects. For example,
consider Figure 4.1a where regions R; and Rq, resulting from a split, cover the
shared area of a cluster of objects. Queries ); and ()2 access only one region,
while )3 access both regions. However, respecting the assumption that query
objects have the same distance distribution as the data objects, queries like ()3
are far more frequent than ), or (), so this partitioning is not very beneficial.

Proximity can be used to detect such situations and to determine a good split.

Allocation When a new region is created, it must be placed in the storage system.
In such a situation, region proximity measures can be used to determine the
most suitable storage bucket for the new region. The strategy is different for
single and multiple (independent) disk systems, where parallel processing can
be supported. If parallel disks are available, buckets with a high probability of

simultaneous access (that is buckets whose corresponding regions have a high
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Figure 4.1: Use of the proximity measure for region splitting (a), the allocation of
objects on disks (b), and approximate similarity search (c)
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proximity) should not be put on the same disk, i.e. they should be declustered
for parallel access. In a single disk environment, buckets with a high probability
of being accessed together should be placed as close as possible, i.e. clustered.
Consider the example in Figure 4.1b, where regions R; and Ry (R3 and Ry)
have a high proximity. On the other hand, proximity between R; and R3 ( R2
and R4) is low. The consequence is that R; and Re (R3 and R4) should either
be put on different disks, in the case of multiple disks, or they should be placed

as close as possible, on a single disk system.

Approximate similarity search The proximity measure can also be useful for ap-

proximate similarity search algorithms to prune regions with a small probability
of containing qualifying objects, that is data regions with a small proximity to
the query region. Exact similarity search algorithms access all buckets whose
bounding regions overlap the query region. However, even if the query region
overlaps a data region, no or few data objects may appear in the intersection,
i.e. the proximity between the query region and the data region is small. The
result is that even though all data regions are accessed, few of them actually
contain qualifying data objects (few regions have a non empty intersection with
the query region). Many accesses are thus actually void and could be saved
if the proximity is used as a condition for pruning. In Figure 4.1c, it can be
seen that, although the query region () intersects regions Ri, Ro and Rs3, the
intersection with R; and R3 is empty and thus it is not necessary to access

these regions.

One of the approximate similarity search methods developed in this thesis imple-

ments this idea. Results obtained with this method out-performs those obtained
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with the other three methods. Full details of approximate similarity search by

using proximity are given in Section 6.9.

4.4 Computational issues

To precisely compute proximity according to Definition 4.2.2, the knowledge of dis-
tance distributions with respect to the regions’ centers is required. Since any object
from M can become a region’s center, such knowledge is not likely to be obtained.
However, as discussed in Section 2.3.4 we can assume that, when the index of homo-
geneity of viewpoints is close to one, the distance distribution is (practically) inde-
pendent of the centers themselves and depends on the distance between the regions’
centers instead. This also implies that all pairs of regions with the same radii and con-
stant distance between centers have on average the same proximity, no matter what
their actual centers are. Consequently, we can approximate the proximity of two re-
gions, whose distance between centers is dg,, with the overall prozimity Xq,, (rz,ry) of
any pairs of regions having radii r, and r,, and whose distance between centers is dg,.
Specifically we define the overall proximity as the following conditional probability

[HPST1):
X4, (rz,1my) =Pr{d(0,0x) <71, Ad(O,0y) <71, | d(Ox, Oy) = dyy}, (4.4.1)

where O, Oy, and O are random objects.

The overall proximity X4, (rg,7,) is defined as the probability that a random
object O belongs to the regions with random centers O, and Oy, and radii r, and
Ty, given that the distance between centers O, and Oy is dg,.

The proximity of two ball regions B(O,, r;) and B(O,, r,) such that dy, = d(O,, Oy)
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is therefore approximated as follows:
X(B(Og,72), B(Oy,1y)) = Ky (T2, 7y)-

Now, let us consider the way how Xg,, (74, 7,) can be computed. Let X,Y and Dxy
be continuous random variables corresponding, respectively, to distances d(O, Oy),
d(0,0y), and d(Ox, Oy). The joint conditional density fxy|pyy(%,y|dsy) is the
probability! that distances d(O, Oy) and d(O, Oy) are, respectively, z and y, given

that d(Ox, Oy) = dyy. Then, Xy, (r4,7,) can be computed as

Xa, (royry) = / / T Doy (@, ylday)dyda (4.4.2)
0 0

Unfortunately, an explicit form of fxy|py, (¢,¥|dzy) is unknown. In addition, com-
puting and maintaining joint conditional densities as discrete functions would result
in a very high number of values. The function depends on three arguments so that
the required storage space is O(n?), provided n is the number of samples used for
each argument. This makes the approach totally unacceptable.

We propose to compute the proximity measure by using an approximation of
fx¥\Dxy (2, Y|dsy), designated as f|,  (2,y]dsy), that is expressed in terms of the
joint density fxy (z,y). Note that fxy(x,y) is simpler to determine than fx y|p,, (2, y|dgy).
We can observe that X and Y are independent — if we know the distance between
O and Oy, this does not affect the distance between O and Oy, unless we add some
additional information as for instance the distance between Oy and Oy. Therefore,
by definition, we have that

fxv(z,y) = fx(z) - fr(y)-

LAs also stated in Section 2.3.4, we are using continuous random variables so, to be rigorous,
the probability that they take a specific value is by definition 0. However, in order to simplify the
explanation, we slightly abuse the terminology and use the term probability to give an intuitive idea
of the behavior of the density function being defined.
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Given the definition of the random variables X and Y, it is also easy to show that
fx(d) = fr(d), so we can omit the name of the random variable and substitute them
with the overall distance density f(d) (see Section 2.3.4). Therefore the joint density

is defined as:
fxy(z,y) = f(z) - f(y).

From a storage point of view, such an approach is feasible. The problem re-
mains how to define an accurate transformation that produces the joint conditional
density from the joint density. To achieve this we propose some heuristics and we
prove through experimentation that they are very accurate. This is the topic of next

sections.

4.5 Heuristics for an accurate measurement of the
proximity

Given a metric space M = (D, d) and two objects O, and Oy of D with d(O,,0,) =
dqy, the space of possible distances z = d(0, O,) and y = d(O, O,), measured from
an object O € D, is constrained by the triangular inequality, i.e. z 4+ y > dy,
T+ dygy >y, and y+ dyy > z (see Section 2.3.1). Figure 4.2 helps to visually identify
these constraints. In the gray area, called the bounded area, the triangular inequality
is satisfied, while in the white area, called the external area, the triangular inequality
is not satisfied, so an object O with such distances to O, and O, does not exist in D.

In general, fxy|pyxy(%,yldsy) # fxv(z,y), because the joint density fxv(z,y)
gives the probability that the distances d(O, Ox) and d(O, Oy) are z and y, no matter

what the distance is between Ox and O,. The difference between the two densities
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Bounded area

yt+d,, =X

External area

Y

dy, X

Figure 4.2: Area bounded by the triangular inequality

is immediately obvious when we consider the metric space postulates. Accordingly,
Ixy|Dxy (2, Y|dzy) is 0if 2, y, and dyy do not satisfy the triangular inequality, because
such distances cannot simply exist. However, fxy(z,y) is not restricted by such a
constraint, and any pair of distances < d,, is possible. To illustrate this, Figure 4.3
shows the joint conditional density fxy|p,, (z,y|dsy) for a fixed d,, and the joint
density fxy(z,y). Note that the graph of the joint conditional density has values
greater than zero only in the bounded area, and that quite high values are located
near the edges, while the joint density has values greater than zero also outside the
bounded area. The graphs in Figure 4.3 are obtained using the two dimensional

uniformly distributed data set UV described in Section 2.5.

4.5.1 Definition of the heuristics

Previous observations form the basis for the heuristics we propose to obtain the

approximate joint conditional density f;’;ﬁ’TDXY (z,y|dzy) by means of the joint density.
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The intuitive idea can be outlined as follows:

Given dyy, collect values of fxy(z,y) for © and y from the external area

and put them inside the bounded area.

When distances z, y, and d, satisfy the triangular inequality, the value of ;”QDXY (z,y|dzy)

depends on the specific strategy used to implement the previous idea, otherwise,

appr

XY Dy (z,y|dyy) = 0. In this way, the integral over the bounded area is 1. This is

the basic assumption of any probabilistic model that would be violated if the joint
densities were simply trimmed out by the triangle inequality constraints.

We have tried four different implementations of this heuristic, varying the strategy
applied to move density values. Figure 4.4 provides a visual representation of the
methods, where the circles represent the joint density function, while the arrows
indicate directions in which the necessary quantities are moved from the external

area to the bounded area. The strategies can be briefly characterized as follows.

Orthogonal approximation Collect values of fxy(z,y) outside the bounded area
and accumulate them on top of the corresponding constraint following a direc-

tion that is orthogonal to the constraint.

Parallel approximation Collect values of fxy(x,y) outside the bounded area and
accumulate them on top of the corresponding constraint following a direction

that is parallel to the axis.

Diagonal approximation Collect values of fxy(z,y) outside the bounded area and
accumulate them on top of the corresponding constraint following a direction

that always passes through d,,.
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Normalized approximation Collect values of fxy(z,y) outside the bounded area
to obtain a linear coefficient that modifies (increases) densities inside the bounded

area.

Note that proximity, measured by using the faI;II)TDXY (z,y|dyy) defined accord-

ing to the first three methods, Orthogonal, Parallel, and Diagonal, can also be
obtained directly from the joint density fxy(z,y). In fact, instead of computing
fa%elTny (z,y|dsy) and integrating it, the same result can be obtained by integrating
directly fxy(z,y) in the gray marked area, as illustrated in Figure 4.4: to simulate
the gathering of values of fxy(z,y) outside the bounded area, required to obtain
fapl”'

XY Dy (z,y|dyy), the integration is performed in the external area, covered by the

gray marked areas, as well. Specifically we have the following,

Xapp?(rw,ry / / fap;;)’TlDXy T y|dwy)dyd;p =

bz (d:cy T 77'y) b% (wydwy T 77'y)
= / / fxy (2, y)dydz (4.5.1)
0 b

2 (®,dey Tz ry)

In the following, we simplify the terminology by omitting the dg,, 7, r, parame-
ters in the integration bounds and use only the symbols by(), b, (z) and b2(x). The
integration bounds b,(), b, (z), and b2 (x) are functions that are specific for each ap-
proximation method. In particular, b,() gives the integration range along the z axis,
while b, (z) and b2(z) form the lower and upper bounds of the gray area along the y
axis for a specific z. A detailed definition of these integration bounds is given in next
subsection.

The Normalized technique is even more simple because we only integrate in the
bounded area restricted by the region radii (see the gray marked area in Figure 4.4)

and we multiply the result by the normalization coefficient
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Diagonal Normalized

Figure 4.4: The four heuristics proposed to compute region proximity
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NC(dy) = 1/(1 — E(dgy)), (4.5.2)

where E(d,,) is the integral of fxy(z,y) over the external area.

Integration bounds

In this section we formally define the bounding functions b,, b,(z) and b2(x) of the
four approximation methods described above. Even though the graphical represen-
tation of the integration areas seems to be easy and clear, its formalization is not
straightforward, because several special cases should be taken into account to obtain
the correct behaviour. Notice that in our simplified formalisation of the problem, the
function fxy(z,y) can assume arguments outside the range [0, d,,]. In those cases we
suppose that the returned value is 0.

We decompose the problem in subcases that can be considered separately — see
Figure 4.5 as a convenient graphical reference. First, we distinguish two different
cases: (i) 7, < dgy and (ii) r, > dg,. In these two situations, we identify some
intervals along the z axis.

In case (i), we identify these three intervals:
L I =[0,dgy — 1),
2. I} = [dgy — 7y, min(dgy + 1y, 73)), and
3. I = [min(dgy + 7y, Tz), dm]-
In case (ii), we identify other three intervals:

1. I = [0,min(ry — dey,7z)),
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2. I = [min(ry — dyy, 7)), min(dyy + 7y, 72)), and

3. Iél = [mzn(dwy + Ty, Tw); dm]-

Using the intervals defined above, we define the upper bound b7 (z). First consider
case (i) r, < d. When z € I{, since the regions do not intersect (that is d,—r, > r,),
the proximity is 0 (see Figure 4.5-a3) so the upper bound b2(z) is 0 too. Otherwise,
the upper bound is the straight line, which is specific for a method used, passing
by point A shown in Figure 4.5-(a; and ap). We call a(z) that straight line. When
z € I, the upper bound is always equal to r,. When z € I3, the upper bound is
the minimum between the two, method specific, straight lines passing respectively,
by point By and By. We call b(z) the straight line passing by B; and ¢(z) the one
passing by Bsy. Figures 4.5-(a; and ag) show two different situations. In the first case,

the minimum is b(z), in the other case, the minimum is ¢(z).

Now consider case (ii) r, > d,,, that is there is always an intersection between
the two regions. When z € I}, the upper bound is the minimum between the two,
method dependent, straight lines passing, respectively, by point A; and A;. We call
d(z) the line passing by A; and e(x) the one passing by A,. Figures 4.5-(by and b)
show two different situations. In the first case the minimum is e(z), while in the
other case the minimum is d(z). When z € I, the upper bound is always equal to
ry. Since If is defined exactly as I3, the same arguments apply as can be seen in

Figures 4.5-(b; and by).

More formally, b2(x) can be defined as follows:
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4 (
it d,, — 1y <
alw) WMoy =121y e
0 elsewhere i
< if ry < dgy
Ty ifx €I
by () = 4 [ min(b(z), o(2)) if v € I (4.5.3)
min(d(z),e(x)) ifz eI
§ Ty ifzell elsewhere
| | min(b(z),c(z)) fzelf

where a(x), b(z), c(x), d(z), and e(x) are defined for the individual approximation

methods as follows.

Let us now specifically define the integration bounds b.(), b, (z), and b2 (x) for each
specific approximation method, using previous observations.

In the Orthogonal method, to define b2(x), that is the upper bound of the in-
tegration area, the required straight lines a(x), b(x), c(z), d(z), and e(z) are the

following:

a(z) =2-ry—dgy+x
b(z) =2 -1y+dy —x
c(z) =21y —dy — 2
dz) =2-1p+dgy —x

e(z) =21y —dy —x

The lower bound b, (z) of the integration area is defined as

dopy —2 -1, +2 d,,—71, <71

0 elsewhere

0 elsewhere
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Case (i) ry <y

Y
T
y<=x+d,y
Y>=X-Oyy
Oy B,
Y=ty X
Ty A By
—>
dy e doy X
1 [ e I's o
< < >ie >
when dy+ ry<ry
Y, (1)
dn—
y<=x+yy
y>=X-Chy
dy
Y>= Gy X
Ty A By
B,
Il
dy I dm“ X
Mgy [P I i
-« pe > >
when dy+ ry>ry
Y ()
dn—
y<=x+0y,
dx‘/
r
’ ¥>=dy %
yo=xedy
+—>
T dy A X

whendy - r>ry
(%)

Figure 4.5: Cases to be taken into

Case (i) ry=dyy:

A
dn—
y<=xtd, /
B,
B
Ty
Oy
¥>= dy X
y>=xdy
Il
d, [ dn
R 1", O T
< >
when dy+ ry<r,and rr-dy,
3 (by)
A
..
Y<=XtOyy
A,
Ty B
dy
)
a
"y < 1”5 >t 1”3 >:
when diy+ ry=r,and 1,2 -y
v (b2)
dn
y<=xtehy
|
dn

(b3)

when ry <ry-Oyand dhy - 1<y

account when defining bounding functions
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That is, when r, is smaller than d,,, and r, is such that d,, — r, < 7, the lower
bound is the straight line y = « + dgy, — 2 - 7, passing by point B — see Figure 4.5-bs.
In all other cases the lower bound is 0.

Last, we need to define b,, that is the range of the integration. If r, is smaller
than d,, the integration is made in the interval [0,7;], otherwise in the interval
[0, min(ry, )], where r; and 7o are such that, respectively, b(r;) = 0 and ¢(r) = 0.

We can make it explicit as follows:

b — Tw if rg <dgy
¢ min(2 -1y + dgy, 21y — dygy) i1y > dyy

To define bZ(x) for the Parallel method, we use again the outline of equation 4.5.3

and define a(z), b(x), c(z), d(z) and e(x) as follows:

b,(z) is always 0 so:

Last, b, is defined as follows:

b :{ Ty iy <dgy

dp 71y >dgy
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That is, if r, is smaller than d,,, then the integral is made in the interval [0,7,],
otherwise in the interval [0, dp,].

To define b7(z) for the Diagonal method, we use again the layout of equation 4.5.3

and define a(z), b(x), c(z), d(z) and e(x) as follows:

a(z) =
T T
o) = —— v T g
() =ty —dy T A, —d, ¢
_ _Tw Ty Ty dwy
C(IE) dm_rw v dm_rw dm
A, — Ty

Bounding functions b, (z) and b, for the Diagonal method are defined exactly the

same as for the Parallel method so we make no further discussion on them.

Last, we have to consider the Normalized method. Because of the different nature of
this method, also the definitions of the bounding functions have a different layout. In
particular, there is not need for extending the integration area, so just the intersection
between the original constraints (z < r, and y < r,) of the integration area and the

triangular inequality constraint are needed. The result is the following:

bwzrw

bgl,(x) = |z — dwy|

b2 () = & + dgy
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4.5.2 Computational complexity of the heuristics

The computational cost of Equation 4.5.1 is clearly O(n?), where n is the number of
samples needed for one integration. Since one of our major objectives is efficiency,

such a cost is still high. However, we can transform the formula as follows:

bz () bz ()
/ / fxv(z,y)dydx —/ / y)dydx =
b b

= f() (F(by(z)) — F(b,(2)))dx (4.54)

0

Provided that density f(d) and distribution F'(d) functions are explicitly maintained
in the main memory, Equation 4.5.4 can be computed with complexity O(n). This
assumption is realistic even for quite high values on n, so the computational com-
plexities of the Orthogonal, Parallel and Diagonal methods are linear. As far as the
Normalized method is concerned, we can see that the normalization coefficient, de-
fined by Equation 4.5.2, is not restricted by specific region radii, thus it only depends
on dgy. Such information can also be maintained in the main memory. Consequently,

the computational complexity of the Normalized method is also O(n).

4.6 Validating the approaches to the proximity mea-

sure

In this section, we investigate the accuracy of the proposed approaches to computing
the proximity. Before presenting the simulation results, we first describe the evalua-

tion process and define comparison measures.
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4.6.1 Experiments and comparison measures

We computed the actual prozimity X g;;ual(rw, ry) for all data sets described in Section
2.5 as follows. We uniformly chose 100 values of dyy, 75, and 7, in the range of possible
distances. The proximity X gg;“al (1, y) was computed for all possible combinations of
the chosen values. To accomplish this task, we found for each d, 400 pairs of objects
(O, 0y), i.e. the centers of the balls, such that |d(Og, Oy) — dsy| = 0. For each pair
of objects, we used the predefined values of r, and r, to generate ball regions. Then,
we only considered pairs of intersecting regions, because non intersecting balls have
0 proximity and no verification is needed. For each pair of balls, we counted the
number of objects in their intersection. The actual proximity was finally obtained
by computing the average number of objects in the intersection for each generated
configuration of dy,, 7, and r, and by normalizing (dividing by the total number of
objects in the data set) such values to obtain the probability.

We did not consider distances d, of very low densities, because it was not possible
to compute the actual proximity with sufficient precision — the data sets contained
only very few objects at such distances.

Once the actual proximity was determined, we computed the approximate prox-
imity for the same values of dgy, 7y, and r,. The comparison between the actual
and the approximate proximity was quantified for each possible configuration as the

absolute error

e(rw,Ty, dwy) = |X¢(;§;ual(rwvry) - Xg:fT(rmry”

An alternative way to evaluate our approaches would be to use the relative error,
defined as the ratio of the absolute error and the actual proximity. However, our

choice for the absolute error can be justified as follows. Suppose that the actual
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proximity is almost 0 (e.g. 107°), while the approximate proximity is exactly 0. In
this case, the relative error is 1, i.e. we have a high error. Consider now the opposite
case where the actual proximity is zero, and our approximation is 107°. In this
case, the relative error is co. However, given the meaning of proximity (see Section
4.1 and Section 4.3), and considering previous examples, we can say that such an
approximation is good, because it almost produces the correct results. For example,
when it is applied for approximate similarity search, as discussed in section 6.9, regions
can be safely pruned if the proximity is 10~® because, statistically, only one object in
100,000 can be lost. This means that the absolute error is a more objective measure,
i.e. more suitable for our purposes.

Given the large number of results, we summarized them by computing the average
error €, (dzy) for all pairs of radii at a given distance between the centers, and the
average error e, (ry,m,) for all distances between the ball centers at a given pair of
radii, specifically:

€u(day) = AVgrer, (€(rx, Ty, day))
and

€,(T2,Ty) = AvGa,, (€(74, Ty, dxy)).

In a similar way, we computed the variance of the error for a given distance dg,:

€, (doy) = VaTrer, (€(rx, Ty, dzy))

The evaluation of ¢, is used to measure the average error of approximations for specific
distances between the ball centers. However, ¢, alone is not sufficient to correctly
judge the quality of the approximation. In fact, it is obtained as the average error for

all possible values of r, and r, so that some peculiar behaviors may remain hidden.
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In this respect, the stability of the error must also be considered. For this purpose,
we computed the variance €/ . Note that high average errors and small variances may
also provide good approximations. To illustrate this, suppose that we want to use
the proximity to order (rank) a set of regions with respect to a reference region. The
ranking results obtained through the actual and approximate proximity may turn out
to be identical even though €, is quite high. In fact, when the variance of error is very
small, it means that the error is almost constant, and the approximation somehow
follows the behavior of the actual proximity. In this case, it is highly probable that
the approximated proximity increases (or decreases) according to the trend of the
actual one, thus guaranteeing the correct ordering.

On the other hand, €}, represents the average error from a different point of view
and complements ¢,. It is determined for a given pair of radii (r,r,) by varying dg,.
This measure offers a finer grained view on the error behavior, since the average is

only computed varying the distance dg,.

4.6.2 Discussion on the experimental results

For all data sets, the actual proximity was compared with our techniques and the
trivial proximity (defined by Equation 4.2.1). Figures 4.6, 4.7, and 4.8 presents
the average error ¢, and its variance ;. Note that all the approximation methods
outperform the trivial one, and the error of the trivial method may even be one order
of magnitude higher. The same holds for the variance of the errors. For all the
proposed techniques, €/ is one order of magnitude smaller than the value obtained
with the trivial technique. This implies that the trivial proximity may provide results

that significantly differ from the actual proximity. In addition, the proposed methods
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HV2 dataset: average error
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HV2: Trivial method
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Figure 4.10: Comparison between the errors of the trivial method and the parallel
method given r, and r, in HV2
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UV: Trivial method
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Figure 4.11: Comparison between the errors of the trivial method and the

method given 7, and 7, in UV
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provide very good and stable results. They have a small variance as well as small
errors, so that they can be reliably used in practice.

Although there is not a clear winner among the proposed methods, the Parallel
methods gives the best results in the most frequently used range of distances. If we
compare the proposed methods for the UV data set, we can see that the Parallel
method provides good and stable results. The quality of this method deteriorates,
both in terms of €, and ¢, for high values of dg,, which are not likely to occur in
practice. Here the best results are obtained through the Normalized method. In the
HV1 and HV2 data sets we can see again that the Parallel method provides the best
performance, though the differences with respect to the other techniques described
are even less significant.

Consider now the average error for a given pair of radii eZ. For the sake of simplic-
ity, we only compare €, for the Parallel and the trivial method. The results are shown
in Figures 4.9, 4.10, and 4.11. As an additional confirmation of the observation that
we have made for ¢, and ¢, the error €, for our approximations is again significantly
smaller than the one measured for the trivial method. In particular, the error of the
trivial method is always quite high, while for a substantial range of r, and r, values,

the error of the Parallel method is close to 0.
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Chapter 5

Approximate similarity search

5.1 Introduction

Similarity searching has become fundamental in a variety of application areas, in-
cluding multimedia information retrieval, data mining, pattern recognition, machine
learning, computer vision, computational biology, data compression, and statistical
data analysis. Though a lot of work has been done to develop structures able to
perform similarity search fast, results are still not satisfactory, and much more in-
vestigation is needed. Accordingly, approximate similarity search has emerged as a
relevant research topic. The idea of this promising approach is that a high improve-
ment of efficiency can be obtained at the price of some controlled imprecision in the
results of a query. In the following first an introduction to the issue of approximate
similarity search is given, then some of the most promising approaches proposed so

far are described.
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5.2 Approximate similarity search issues

As discussed in Chapter 3, in order to increase efficiency, tree-based access methods
create a partition of searched data set, and bound elements (set of objects) of such
partition in regions [Gut84, BKK96, BO97, CPZ97, BO99, TTSF00]. Each node
of the tree corresponds to a set of objects. Consider the example in Figure 5.1.
The partition contains three subsets, distinguished respectively by white, black, and
gray points. The subset corresponding to white points is bounded by region R,
the subset corresponding to black points is bounded by region R9, and the subset
corresponding to gray points is bounded by region R3. When a similarity query
should be processed, only nodes bounded by regions overlapping the query region
should be accessed, saving a lot of disk accesses and distance computations.

However, access methods typically suffer from the so called dimensionality curse
problem. It has been observed that, when the number of dimensions of a data set is
greater than 10-15, performance of access methods decreases and a linear scan over
the whole data set would perform better [ BGRS99, WSB98|. One consequence of the
dimensionality curse is that the probability of overlaps between the query and data
regions is very high and the execution of a similarity query may require to access
many of the data regions loosing the advantage of any indexing structure what so
ever. Indeed all data regions that overlap the query region must be accessed. For
instance, in Figure 5.1, the query region overlaps regions R;, R2 and R3 so all of
them should be accessed to answer to the query.

Given this inefficiency problem other techniques are being investigated. Here we
discuss the approzimate similarity search approach [AMNT98, PAL99, CP00], that

has recentely emerged as important research issue. The idea behind approximate
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Figure 5.1: Partitions, data regions, and query regions

similarity search is that queries are processed faster at the price of some imprecision
in the results. The approximation is obtained by relaxing some constraint at the basis

of "exact” similarity search algorithms.

Approximate similarity search is also encouraged by other observations. It can be
noticed that the nature of the similarity based search process is intrinsically interac-
tive. Users, typically, issue several similarity queries, to the search system, eventually
reusing results of current queries to express new ones. For instance, the user may
start using an initial image, to search for similar ones, then uses images returned by
the query to issue new similarity search queries. In this case, efficient execution of
elementary queries is even more important and users may accept some imprecision, in
the temporary results, at the price of faster responses. Furthermore, some controlled
imprecision in the result of a similarity search query may not be noticed by users or
will be accepted when the increase in performance obtained is high. In fact, similarity
is an intuitive and subjective measurement. People, for instance, judge the similarity

between two images differently. However, this subjectivity is lost when similarity is
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defined by a mathematical formula.

5.3 Survey of existing approaches to approximate
similarity search

In the following, we present a short survey of the most important approaches to the
approximate similarity search in order to highlight our contribution. Approaches to
approximate similarity search can be classified into two broad categories [FTAAO1]:
(1) approaches able to reduce the size of data objects, and (2) approaches able to
reduce the data set that needs to be examined. In the following we discuss these two
categories. Specifically, approaches belonging to the second one will be treated more

deeply since the techniques that we propose in this thesis belong to it.

5.3.1 First category: approaches able to reduce the size of

data objects

The first category is mainly based on dimensionality reduction. Typically linear-
algebraic methods such as Karhunen-Loeve Transformation (KLT) [Fuk90], Discrete
Fourier Transform (DFT) [OS89], Discrete Cosine Transform (DCT) [Kai85], or Dis-
crete Wavelet Transform (DWT) [Cas96] are used. All these methods assume that a
few dimensions are enough to retain the most important information regarding the
represented data objects so the other dimensions can be simply ignored.

Another approach in this category is the VA-file [WSB98], also introduced in
Section 3.2.1. It reduces the size of multidimensional vectors by quantizing the original

data objects. In this approach, nearest neighbor search is performed in two steps. In
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the first step, the approximated vectors are scanned identifying candidate vectors. In
the second step, the found candidates are visited in order to find the actual nearest
neighbors. A modification to VA-files was proposed in [FTAAQ0], where the creation
of a VA-file is improved by first transforming the data using KLT in a more suitable
domain. Though the improvement of such techniques is significant, they only work
for vector spaces.

An interesting approach also falling in this category, which can also be applied
to non vector data, is the FASTMAP [Fal96]. It supposes to have n objects and an
N x N distance matrix. FASTMARP tries to project these objects in a dim dimensional
vector space, by only using the information given by the distance matrix, in such a
way that distances are preserved. Of course, Euclidean distance between points in the
vector space approximates the real distance between objects defined in the matrix.
The quality of the approximation depends on the number of dimensions of the target
vector space and on the specific distance matrix. The idea behind FASTMAP is to
project objects on a specific line passing by two pivot objects in a dim dimensional

vector space. A special heuristic is used to carefully select the two pivot objects.

5.3.2 Second category: approaches able to reduce the data

set that needs to be examined

Algorithms of the second category use strategies to reduce the data set that needs to
be examined. These can be further classified depending on the specific strategy used

to achieve their goal:

Relaxed branching strategies This strategies can be used with access methods

based on hierarchical decomposition of the space. Their aim is not to access
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regions when they are not likely to contain desired results, or when access would
only marginally improve the existing results. In this case, an approximate

pruning condition is used to decide if a region should be accessed or not.

Early termination strategies In this case, search algorithms are prematurely stopped
when current result is judged to be satisfying the approximation requirements.
This strategies uses a stop condition to decide if it is time to stop the algorithm
— the search terminates as soon as the chances for obtaining significantly better
results become low. Here the hypothesis is that after some steps of search it-
eration, good approximation is obtained while further improvement is of minor

importance and consume most of the total search costs.

Our algorithms for approximate similarity search belongs to this category since
they aim at reducing the portion of the data set needed to be examined in order to
find the result. Two of them use relaxed branching strategies, the other two adopt
early termination strategy. Accordingly, they relay on an accurate definition of either
a pruning condition or a stop condition respectively.

In the following we discuss more in details some of the most authoritative ap-

proaches belonging to this category.

5.3.3 Approximate nearest neighbors searching using BBD
trees
Suppose to have a set of points DS in a dim dimensional vector space and a query

object O4. Let Oy be the nearest neighbor of O,, and O4 some other object in the

searched collection. Given € > 0, provided that 0 < d(On,0,) < d(O4,0,), O4 is an
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(1+€)-nearest neighbor of O, if

d(O4,0y)
— =< 1l+e
d(On,O,) —

That is, O4 is within relative error € of the true nearest neighbor. This idea can
be generalized to the case of the j-th nearest neighbor of O, for 1 < j < n, where
n is the size of the database. Using respectively Oﬂl and Of\, to designate, the j-th
approximate and nearest neighbor, the constraint should be modified as follows

0L00 _ .,
d(Oy;Oq) ~

If this constraint is satisfied, Oﬂl is called the (1+€)-j-approzimate nearest neighbor of
O,

The algorithm proposed in [AMNT98], given a data set DS represented in a vector
space with distances measured using functions of the Minkowski family, and given a
query object O, guarantees to find an (1+¢)-approximate nearest neighbor of O, in
O(logn) time. Alternatively, when k-nearest neighbors search is considered, the algo-
rithm guarantees to find k£ (1+¢)-k-approximate nearest neighbors' of O, in O(klogn)
time. The parameter € can be used to control the tradeoff between efficiency and qual-
ity of the approximation. The higher €, the higher the performance, the higher the
error.

This algorithm uses as underlying indexing structure a so called balanced box-
decomposition (BBD) tree that is a variant of a quad-Tree [Sam95] and is similar
to other balanced structures based on box-decomposition [BET95, Bes95, CK95].

Specifically, this structure is based on a hierarchical decomposition of the space where

INotice that also one of the techniques proposed in this thesis is designed in such a way that it
returns k (14€)-k-approximate nearest neighbors, see Section 6.6 and [ZSAR9S|.
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a) b)

Figure 5.2: Possible regions in a BBD tree: a) dim-dimensional rectangle and b) set
theoretic difference of two rectangles.

regions are represented by nodes of a tree that has O(logn) height. Each node of the
tree is associated with a region and points to other nodes. Regions associated with
nodes pointed by the same parent node do not overlap each other. There are two
types regions in a BBD tree. A region can be a dim-dimensional rectangle or the set
theoretic difference of two rectangles, one enclosed within the other, as depicted in
Figure 5.2 respectively by picture a) and b). These rectangles are fat, in the sense
that the ratio between the longest and the shortest sides is bounded. The tree has
O(n) nodes and it can be built in O(dim - n - logn) time, where n is the size of the
data set. Each region associated with a leaf node contains a single object. The set of

leaf regions defines a partition of the space.

The nearest neighbor algorithm on this data structure is intuitively defined as
follows. Given a query object Oy, the tree is traversed and the leaf node associated
with the region containing the query is found. Given the properties of the BBD trees,
the leaf node is found in O(logn) and there is only one leaf node that contains it. At
this point, a priority search is performed by enumerating leaf regions in increasing
order of distance from the query object. The distance from an object O to a region

is computed as the distance of O to the closest point that can be contained in the
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region. When a leaf region is visited, the distance of the associated object from O, is
measured and the closest point seen so far is recorded. Let us call O4 such a current
closest point. The algorithm stops when current leaf region is such that its distance
is larger than d(O,, O4), that is, the current region cannot contain objects whose
distance from the query object is shorter than that of O4. Since all remaining leaf
regions are farther than current region, it means that O4 is the nearest neighbor to

0,.

The approximate nearest neighbor algorithm uses a stop condition to prematurely
stop the search algorithm. Specifically, the algorithm stops as soon a the distance
to the current leaf region exceeds d(O,4, 04)/(1 + €). It is easy to show that in
these circumstances O4 is a (1 4 €)-approximate nearest neighbor. To clarify the
behavior of the exact and approximate nearest neighbor search algorithms consider
Figure 5.3. Data objects are represented by black spots. Each object is included in a
rectangular region associated with a leaf node. Each region is identified by a number
assigned incrementally according to the distance of the region from the query object
O,. Thus, region 1 is the closest to O, in fact it contains O, while region 10 is the
farthest. The search algorithm starts from region 1 to collect the potential nearest
object to O4. In the figure, we suppose that region 3 was accessed and object O4
was found as the current closest object. The circumference in the figure has in fact
radius equal to d(Oy, O4). The exact algorithm would continue accessing regions that
overlap the circumference and it would stop after accessing region 10, which contains
the exact nearest neighbor. The approximate algorithm, on the other hand, would
access only regions that overlap the dotted circumference, which has a radius equal

to d(Og4,04)/(1 + €). Therefore it would stop after accessing region 8, missing the
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Figure 5.3: Overview of the approximate nearest neighbors search algorithm using
BBD trees

exact nearest neighbor.

The priority search can be performed in O(logn) times the number of regions that
are visited, by using an auxiliary heap. Let m be the number of regions visited, m has
an upper bound depending only on dim and e, for any Minkowski metric, defined as
[1+ 6dim/e]|¥™. This bound arises from the maximum number of disjoint dim-cubes
of diameter €¢/3 that can intersect a dim-ball region of radius 1. Since the upper
bound can be considered a constant, provided that dim and € are fixed, the algorithm

finds the (1 + €)-approximate nearest neighbor in O(logn) time.

The algorithm can be easily extended to the case of £ nearest neighbors. In fact,
in this case the current & closest objects are recorded and the algorithm stops when
the distance of the current k-th closest object O is such that d(O,, O%)/(1 +¢). In
this case O is a (1+¢)-k-approximate nearest neighbor. In this algorithm, the upper
bound for the number of accessed regions m is 2k + [1 + 6dim/e]%™. Therefore,

provided that dim and e are fixed, the algorithm finds the (1 4 €)-k-approximate
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nearest neighbor in O(klogn) time.

Notice that upper bound m does not depend on the size of the data set n. However,
it depends exponentially on dim so this algorithm can be practically used only on
vector spaces with a small number of dimensions, e.g. in the range from 2 to 20.
This algorithm can only be used in case of data represented in a vector space with
distances measured by using Minkowski metrics. In particular, it cannot be used in

case of data represented in a generic metric space.

5.3.4 Approximate range searching using BBD trees

The use of BBD trees, briefly described in previous section, was also exploited to de-
sign an approximate range search algorithm. This approach was proposed in [AM95].
Let us suppose to have a data set DS of objects defined in a dim dimensional vector
space, and to use a function of the Minkowski family to measure distances among
objects. Let us also suppose to have a range query range(O,,r,) defined by the
ball region B(O,,7,). Typically, the goal of a range query is to retrieve the set of
objects of DS included in B(O,,7,). Alternatively, in some cases one may just need
to count the number of objects that qualify for the range query or, more generally,
we may suppose that objects of DS have been assigned a weight, and the goal is to
compute the accumulated weight weight(range(O,,r,)) of the objects that qualify
for the query. Retrieving the set of objects included in a range query has in general
a cost higher than counting them, however in this work only the counting version of
the problem was considered.

The exact range search algorithm returns the exact weight of the result set, while

the approximate range search algorithm returns a weight that approximates the real
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weight of the actual result set. The idea of this approximation technique is to consider
range queries as fuzzy range queries. In a fuzzy range query objects that are ”close”
to the boundary of the query may or may not be included in the count.

Given a range query defined by the ball region B(O,,,), and given a real value
€ > 0, regions B~ (O,,7,/(1 +€)) and BT(O,, 7, - (1 + €)) can be defined. Regions B~
and BT have the same center of B, however, their radius is respectively reduced or
increased of a factor 1+¢. In the following, for sake of simplicity, by using B~, B, and
BT we also refer to the set of objects of DS respectively included by these regions.

The value weight(R*), where R* C DS, is a legal answerto an (1+¢)-approzimate

range query when

B~ CRAC B .

That is, all objects of B~ should be included, all objects of DS \ BT should not be
included, and objects of BT \ B~ may or may not be included.

Notice that this approach allows for false dismissals and false hits. In fact, when
some objects of B\ B~ are not included false dismissals occur, while when some
objects of BT \ B are included false hits occur.

Range queries can be answered by using search algorithms on BBD trees. Let us
first consider the exact range search algorithm. We suppose that, given a node N of
a BBD tree, the value weight(N), defined as the sum of the weights of all objects
included in the region associated with N, is also registered in the node N, so no
access to children is required to compute it. In the following, by using N we also refer
to the set of objects contained in node N. Given a range query range(QO,,7,), the
exact range search algorithm traverse the BBD tree counting the weight of objects

inside B(Og4,7,) as follows. The algorithm starts from the root node of the tree and
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initialize a global variable count to 0. Given a node N; of the tree the algorithm does

the following:
(a) if NV; C B add weight(N) to count; Stop.
(b) if N;N B =0 do nothing; Stop.

(c) if IV; is a leaf node check if the associated object is included in B, and in that

case add its weight to count; Stop.

(d) if N; is an internal node, recursively consider all its children and add the weights

respectively obtained.

The behaviour of this algorithm is sketched in Figure 5.4a). If the region associated
with the current node is included in B, its weight is immediately considered, since
it is stored in the node, without accessing its children. Therefore, in the figure, the
weight of R, is immediately considered. If the region associated with the current
node is outside the query region, as R3 in the figure, it is immediately discarded. In
the other cases, the specific children are accessed. Therefore, children of the node
corresponding to region R, are accessed.

This algorithm can be slightly modified to answer to an (14¢)-approximate range

query using an approximate pruning condition as follows:
(a) if N; C Bt add weight(N) to count: Stop.
(b) if N;N B~ =0 do nothing; Stop.

(c) if IV; is a leaf node check if the associated object is included in B, and in that

case add its weight to count; Stop.
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a) b)

Figure 5.4: Range queries using BBD tree: a) exact behaviour and b) approximate
behaviour
(d) if N; is an internal node, recursively consider all its children and add the weights

respectively obtained.

The behaviour of the approximate algorithm is sketched in Figure 5.4b). If the
region associated with the current node is included in BT, its weight is immediately
considered without accessing its children — false hits may occur, since objects outside
the query region B may be counted. In the figure, the weight of R, is consequently
immediately considered. If the region associated with the current node is outside the
region B~ and not included in B*, as R3 in the figure, it is immediately discarded
— false dismissals may occur, since objects inside B may be missed when they are
outside B~. In the remaining cases, children of the corresponding node are accessed.
Thus, in the figure, children of the node corresponding to region R, are accessed.

The complexity of the search algorithm is proven to be O(logn+ (1/¢)%™) and the
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lower bound of the maximum number of nodes visited is logn + (1/€)¥™~!. Notice
that for values of € smaller that 1, the complexity increases exponentially with the
number of dimensions.

The algorithm as it is, can only be used to count (compute weight of) objects that
qualify for an approximate range query. Specifically, it cannot be used to retrieve
the set of objects qualifying for the approximate range query. In fact, in order to
obtain that, leaf nodes should always be accessed, since leaf nodes are the only nodes

containing pointers to real objects.

5.3.5 Approximate nearest neighbors searching using angle
property

In [PAL99, PL99] an original technique for reducing the number of node accessed
during nearest neighbors searching is proposed. The main novelty of this technique
consists in the use of the angle between objects contained in a ball region, defined
in a vector space, and a query object, with respect to the center of the ball region
as shown in Figure 5.5. Exploiting this angle, some heuristics to decide whether a
region should be accessed or not are proposed. This technique was applied to SS-
Trees [WJ96], however it can be applied to all access methods for vector spaces that
partition the space, bound elements of the partition with ball regions, and organize
regions hierarchically.

The proposed heuristics are justified by the following three properties of data sets

represented in high dimensional vector spaces:

Pri: As dimensionality rises, the points that are bounded by a ball region become

almost equidistant from the center of the ball region.
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Figure 5.5: Angle between objects contained in a ball region and a query object with
respect to the center of the ball region

Pry: As dimensionality increases, the radii of the, smaller, child ball regions grow
nearly as large as the radius of the larger parent ball region, thus also their

centers tend to be close each other.

Pr3: Given a set of points within a bounding ball region and some query point in
the vector space, the angle between the query point and each point in the ball

region falls inside a decreasing interval of angles around /2.

Let us discuss in detail the proposed heuristics. Exact nearest neighbors search
algorithms access all regions that overlap the current query region. The proposed
heuristics uses an approximate pruning condition to decide whether a region should

be accessed or not.
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In [PAL99] they propose to access a region if one of the following conditions is

true:
C1: The corresponding node is an internal node.
C5: The current query region includes the center of the region’s parent

Cs: The center of the region resides in the half of the parent ball region closer to the
query object (that is the angle between the center of the region and the query

object, with respect to the center of the parent’s ball region is smaller than

7/2).

Condition C; forces all internal node to be examined. This is justified because in
SS-Trees much of the performance degradation in nearest neighbor searching is due
to the accesses to the leaf nodes. Properties Pry, Pry and Prs suggest that in high
dimensional vector spaces, objects reside close to the border of their bounding region,
and in particular since child regions tend to be as large as their parent, objects are
close to the border of the parent region. In addition these objects fall close to a 90
degree angle with a given query object. Therefore as suggested by Figure 5.6 regions
whose center are in the half ball region closer to O, as required by condition Cjs,
are more likely to contain qualifying objects. Finally Cy; was proposed to avoid cases
where applying C5 can be harmful since several qualifying objects may be missed.
In order to check C5 the evaluation of the angle between the query region and
the region’s center, with respect to its parent’s center is needed. If the angle is acute
then the region’s center is in the half of the parent region closer to the query region.
Deciding if the angle is acute, obtuse, or right can be done by using the dot product.

Let us suppose that the query region O, is (v{,...,v%,,), the region’s center O, is
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00,

Figure 5.6: Objects belonging to children whose center is in the closest half of the
parent node are more likely to contain nearest neighbors

(vf,...,0}m), and its parent’s center O, is (vf,...,v%, ). Then, the dot product
O, - O;lo, of O, and O,., with respect to O, is computed as follows:
q P q p

dim

04+ Orlo, =) (vf = o) (v] — of)

1

When [Oy - O,]o, > 0 the angle is acute. If [0, - O,]o, < 0 the angle is obtuse.
Finally, if [O, - O,]o, = 0 the angle is right.

In [PL99] the previous pruning conditions were improved. In fact, the zone where
is more likely to find qualifying objects according to properties Pri, Pry, and Prs,
is close to the border of the data region, and forms an angle of about 90 degree with

the query object, with respect to the region’s center. Let suppose to indicate by 6
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Figure 5.7: If the query region does not intersect promising portions of the data
region, this is discarded.

the expected angle of the promising zone. If the angle o obtained considered the
intersection between the two regions and the line passing from their centers, with
respect to the data region’s center, is higher than 6 then the region is accessed,
elsewhere it is discarded. Figure 5.7 sketches this situation. Notice that when 6 is set

to 0 all regions overlapping the query region are accessed.

These methods can only be applied to nearest neighbors search in vector spaces.
The first version of the proposed approach cannot be tuned to trade performance
with quality of results, while the second allows one to use the angle 6 as a threshold

to decide when regions can be discarded.
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5.3.6 PAC nearest neighbor searching

In [CP00] an approach for Probably Approzimately Correct nearest neighbor search
in metric spaces is proposed. The idea is to bound the error on the distance of
the approximate nearest neighbor so that an (14€)-approximate nearest neighbor is
found, similarly to the technique using BBD trees, see [AMN*98] and Section 5.3.3. In
addition, the proposed algorithm may prematurely stop when the probability that the
current approximate nearest neighbor is not an (1+¢)-approximate nearest neighbor
is below a user defined threshold 6. In this proposal the approximation is controlled
by two parameters. The e parameter is used to specify the upper bound on the desired
relative error on the distance of the approximate nearest neighbor. The § parameter
is used to specify the degree of confidence that the ¢ upper bound is not exceeded.
Notice that if § is set to zero, the proposed algorithm stops when the resulting object
is guaranteed to be a (1+¢)-approximate nearest neighbor. Values of § greater than
zero may return an object that is not an (14€)-approximate nearest neighbor. On
the other hand, when ¢ is set to zero, d controls the probability that the retrieved
object is not the real nearest neighbor. Of course, when both € and § are set to zero,
the exact nearest neighbor is always found.

More formally, let O, be the query object, On the exact nearest neighbor, and
O#% the approximate nearest neighbor found. Let ¢, the actual error on distances,

that is
__d(0,08) _
act d(Oq, ON)

The proposed approximate nearest neighbor algorithm retrieve a (1+¢)-approximate

1.

nearest neighbor with confidence d. That is, the retrieved object is such that

Pr {€gt > €} < 4.
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These ideas were applied to the algorithm for searching the nearest neighbor to a
query object in M-Trees [CPZ97]. Therefore this method is not limited to the case of
data represented in vector spaces, but data represented in a generic metric space can
be searched using this approach.

The authors observe that a similarity search process can be conceptually split in

two phases.

Locating In the first phase the search algorithm locates the object that will be

returned

Stopping The second phase, the longest one, is used to determine that the object

retrieved is in fact the correct one

Accordingly the two approximation parameters € and ¢ are used respectively to
control how the object should be located, and when the algorithm should stop.

Let us see how this two actions are accomplished. The nearest neighbor search
algorithm for M-Trees recursively access data regions (nodes) of the tree starting from
the root nodes. When the query region, defined by the query object and the distance
of the current nearest object found, and a data region overlap, the data region is
accessed. The overlap test here is relaxed so that (14-€)-approximate nearest neighbor
are considered. This relaxed overlap test was inspired by the technique proposed in
this thesis, see Section 6.6 and [ZSAR98]. The exact algorithm stops when no more
overlapping regions are found. The proposed algorithm, on the other hand, stops
when the probability that the effective error does not exceed € is smaller than d. This

stop condition is obtained using Go,(z), the distribution of the nearest neighbors of
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O, with respect to a specific data set DS of size n, defined as follows [CPZ98a]:
Go,(z) =Pr{30 € DS : d(0,,0) <z} =1— (1 — Fp (x))".

As previously stated, the algorithm should stop when Pr {e, > €} < d, where €4 is

the actual relative error on distances. That is when

Pr{30 € DS : d(0,, 04)/d(0,,0) — 1> €} =
= Pr {30 € DS : d(0,,0) < d(0,08)/(1+€¢)} <6

and this correspond to check if
Go,(d(0g, 0R) /(1 +€)) < 6.

This algorithm can be used for generic metric spaces and its performance is good,

however it is limited to the case of just a single nearest neighbor search.



Chapter 6

Four new techniques for
approximate similarity search in
metric spaces

6.1 Introduction

In this chapter we discuss and propose new techniques for approximate similarity
search. These approaches offer a high improvement of efficiency at the price of in-
precision in the results. Our investigation focuses on approximate similarity search
of data represented in metric spaces. As previously stated, this also includes the
more specific case of vector spaces, thus our techniques can also be applied to them.
We suppose that tree-based access methods for metric spaces, as for examples M-
Trees [CPZ97] or Slim-Trees [TTSF00], are used to improve performance of similarity
search queries. The techniques that we propose can be easily applied to these access
methods by modifying their (exact) similarity search algorithms. Our results show

that inprecision can be effectively controlled still guaranteeing high performance.

125
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6.2 Overview of the approaches

We have investigated four new techniques for approximate similarity search. They
are based on specific definitions for the approximate pruning or stop conditions (see
Section 5.3.2). Specifically, two of these approximation techniques work for nearest
neighbor queries and use a stop condition as approximation strategy. The other
two techniques work both for nearest neighbor and range queries and use a pruning

condition as approximation strategy.

First method The first technique of approximate similarity search uses a user de-
fined parameter as an upper bound on the relative error between the distances
of the query object from the objects retrieved by the exact algorithm and the
distances of the query object from the objects retrieved by the approximate
algorithm. The approximate similarity search algorithm decides which nodes of
the tree can be pruned, even if their bounding regions overlap the query region,
guaranteeing that the obtained relative error on distances does not go above
the specified upper bound. This method was defined both for nearest neighbor

and range queries and its details are discussed in Section 6.6.

Second method The second technique of approximation retrieves k approximate
nearest neighbors of a query object by returning k£ objects that statistically
belong to the set of the n (n > k) exact nearest neighbors of the query object.
The value n is specified by the user as a fraction of the whole data set. The
approximate similarity search algorithm stops when it determines, by using the
overall distance distribution (see Section 2.3.4), that the current £ retrieved

objects belong to the specified fraction of the objects nearest to the query. This
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method was defined for nearest neighbor queries only and it is discussed in

Section 6.7.

Third method The third type of approximation is based on the pragmatic obser-
vation that similarity search algorithms on tree structures are defined as an
iterative process where in each iteration the result, that is the set of objects
retrieved, is improved until no further improvement is possible. In case of k
nearest nearest neighbor queries, at each iteration the current k£ retrieved ob-
jects are nearer than those of the previous iteration. This can be made explicit
measuring the distance between the current k-th object and the query objects.
This distance decrease at each iteration and it can be noticed that it decreases
rapidly in the first iterations then it slows down and remains almost stable for
several iterations before the similarity search algorithm stops. The approxi-
mate similarity search algorithm exploits this behaviour and stops the search
algorithm when the distance decreasing of the current k-th object seems to be
stopping. In this case a user defined value is used as a threshold to decide when
the distance decreasing can be considered to be stopping. This method was
defined for nearest neighbor queries only and its description is given in Section

6.8.

Fourth method The fourth technique uses the proximity measure, discussed in
Chapter 4, to decide which nodes of the tree can be pruned, even if their bound-
ing regions overlap the query region, guaranteeing a low probability to loose
qualifying objects. In fact, when the proximity of a region, bounding a tree’s
node, and the query region is small, the probability that qualifying objects are

found in their intersection is small. A user specified parameter is used as a
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Method | Range queries | NN queries | Approx. strategy
First yes yes pruning condition
Second no yes stop condition
Third no yes stop condition
Fourth yes yes pruning condition

Table 6.1: Characteristics of the approximation methods

threshold to decide if a node should be accessed or not. When the proximity
is below the specified threshold the node is not accessed. This method was
defined both for nearest neighbor and range queries and we discuss it in details

in Section 6.9.

A summary of the main features of the proposed approximation methods is given
in Table 6.1.

All four techniques of approximation were experimentally tested on real and syn-
thetic data sets, and their efficiency was compared. The results obtained are encour-
aging, and efficiency improvement of even two orders of magnitude has been achieved.
In other words, whereas a precise similarity search may take several minutes, in an
approximated search this can be reduced to seconds, while the precision of approxi-
mation typically remains quite high. Consider as a preliminary illustrative example
Figure 6.1. It presents search results for 10 nearest neighbors of query objects Oy
and Oyq, separately for the exact (NN) and the proximity based approximate algo-
rithms (ANN) a proximity threshold of 0.01 in HV1 (see Section 2.5) data set. For
each retrieved object, the object identifier (OID) and its distance from the query
are reported. Objects that are simultaneously found by the exact and approximate
algorithms are typed in bold. The last column reports the costs needed to execute

the queries as the number of tree node reads. If we consider the first three objects
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OID| OID | OID | OID | OID | OID | OID | OID | OID | OID

Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Dist | Cost

Oul NN | 7083 | 1561 | 7079 | 2843 | 8849 | 7077 | 6755 | 7035 | 2830 | 257 | 1465
1298.2 13124 1329.35 1359.44 1362.76 1366.64 1376.8 1390.41 1404.95 1409.77

ANN| 2843 | 7035 | 257 522 | 1206 | 839 567 | 1590 | 205 1069 | 1!
1359.44 1390.41 1409.77 1453.15 1517.73 1521.83 1549.45 1591.93 1631.66 1675.41

O42 NN | 3493 | 8623 | 1139 | 3494 | 4902 | 3954 | 3504 | 4010 | 8608 | 7255 | 1503
1o12.21 1032.24 1062.61 1063.53 L 113131 1220.31 1233.08 1238.64 1250.13

ANN]| 3494 | 3504 | 636 | 1046 | 902 520 696 480 | 1286 | 1227 | 15
1063.53 1220.31 1389.44 1389.88 1441.54 1495.74 1508.13 1597.27 L6l1.6 1615.37

Figure 6.1: Comparison between the 10 nearest neighbors obtained by the precise
and the proximity based approximate algorithms for two specific queries, using 0.01
as proximity threshold in the HV1 data set.

in the approximate response to 0,1, we can see that these objects are in the precise
response on positions four, eight, and ten. However, the cost of the approximate
algorithm is only 11 while that of the exact one is 1465. In a similar way, the first
two approximate results of query O,y correspond, respectively, to objects in positions
four and seven in the exact response. The cost of the approximate algorithm is 15

while the exact search needs 1503 tree node reads, i.e. disk accesses.

In the following, we first outline the generic approximate similarity search algo-
rithms for range and nearest neighbor queries used to implement the four approxi-
mation techniques (Section 6.3), we define the performance measures for objectively
comparing the proposed techniques (Section 6.4), we describe the testing environment
(Section 6.5), we give the details of the four approximation techniques and we discuss

the obtained results (Sections 6.6, 6.7, 6.8, 6.9).
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6.3 Generic approx. similarity search algorithms

In this thesis we propose four techniques for approximate similarity search. This
section discusses the generic approximate range and nearest neighbors algorithms
that can be used to support them. These algorithms are obtained by modifying
Algorithms 3.3.1 and 3.3.2 for exact similarity search on tree-based access methods
discussed in Section 3.3.2. Since we define techniques that can be used in generic
metric spaces, we suppose that nodes, of the tree structure, are associated with ball
regions (see Section 2.3.2), however the algorithms are still simplified and generic, not
strictly related to any specific implementation. The pseudo-code of the algorithms
for approximate similarity range queries and approximate nearest neighbors queries

are respectively presented in Algorithms 6.3.1 and 6.3.2.

The difference between the four approximation techniques that we propose rely
on the specific definition of the pruning or stop condition. Accordingly the approx-
imation can be controlled by two different approximation parameters. The approxi-
mation parameter x, is used by the stop condition strategy, while the approximation
parameter z, is used by the pruning condition strategy. Of course, the specific mean-
ing of these two parameters and their use strictly depend on the specific techniques
used to implement the stop or the pruning condition. The generic pruning condition
Prune(Rgy, R4, zp) takes as arguments the query region R, a data region R, and the
approximation parameter z,. It returns true when the pruning strategy determines
that the node covered by the data region can be pruned according to the approxima-
tion parameter z,. The generic stop condition Stop(RS,, =) takes as arguments the

current result set RS, (the set of qualifying objects found up to the current iteration)



131

and the approximation parameter z,. It returns true when the stop strategy deter-
mines that the current result set satisfies the approximation requirements, according
to the approximation parameter x,.

When the Prune function is defined as an overlap test and the Stop function is
defined to be always false, the algorithms have the behaviour of the exact similarity
search algorithms. In the other cases, it may happen that some nodes, which contain
qualifying results, are pruned or that the algorithm is stopped before all results were

found. Therefore, false dismissal can occur.

The thresholds z, and z, are used to tune the trade-off between the efficiency
and effectiveness. Values corresponding to high performance give a less effective
approximation, because more qualifying objects may be dismissed. Values that give
very good approximations correspond to more expansive query execution since few
node’s accesses are discarded.

In all approximation techniques proposed, when z; and z, are set to zero, exact

similarity searches are performed.

6.3.1 Generic approximate range search algorithm

Our approximate range search algorithms use only the pruning condition strategy,
so they only depend on the z, approximation parameter. The generic definition of
the approximate range search algorithm is given in Algorithm 6.3.1. The algorithm
takes as input values the query region, composed of the query object O, and the

query radius 74, and the approximation parameter z,. It returns the set of objects!

!The range search algorithm presented in Section 3.3.2 returns a set of pairs (p;, O;). Here for
simplicity we omit the pointers p; to the records.
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Algorithm 6.3.1. Range
Input: query object Oy; query radius ry; approximation parameter z,.
Output: response set range® (Og, ).

1. Enter pointer to the root node into PR; empty range®»(Og,rq).
2. While PR # 0, do:
3.  Extract entry N from PR.
Read N.
If N is a leaf node then:

For each O; € N do:

If d(Oq, O;) < rq then O; — range®(Oy,ry).

If N is an internal node:

For each child node N, of N, bounded by region B.(O;,r;) do:

© L N ot

10. If ~Prune(B(Oq,rq), Bc(0j,7;), xp) then insert pointer to N, into PR.
11. End

range® (0,4, 7,) = {Of, 04, ..., O{1} where O} are the objects retrieved by the algo-

rithm and [4 is the number of objects retrieved.

The main differences of the approximate range search algorithm with respect to
the exact range search algorithm (see Algorithm 3.3.1) can be seen at Steps 8, 9 and
10. The exact range search algorithm, in fact, simply checks if the data region overlaps
the query region. On the other hand, the approximate range search algorithm, if the
extracted node is an internal node (Step 8), checks the approximate pruning condition.
Each pointed node is inserted in PR, to be examined in the next iterations, if the
pruning condition is false (Steps 9 and 10). Therefore, the approximate range search
algorithm, depending on the definition of the approximate pruning condition, may
discard some nodes even if they contain qualifying objects. Of course, a good pruning

condition should suggest to discard nodes only when the chances that they contain
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qualifying objects are very low.

6.3.2 Generic approximate nearest neighbors search algo-

rithm

The approximate nearest neighbors algorithms may use both stop and pruning con-
dition strategies so it depends on both z, and z, approximation parameters. The
generic algorithm for approximate nearest neighbors search takes as input values the
query object O, the number of neighbors required £, and the approximation param-
eters z, and z,. It returns the set of objects? nearest®:(0,, k) = {Of, 04, ..., 04}
where Of! are the objects retrieved by the algorithm. The generic approximate nearest
neighbors search algorithm is defined by Algorithm 6.3.2.

The main differences of the approximate nearest neighbors search algorithm with
respect to the exact nearest neighbors search algorithm (see Algorithm 3.3.2) can be
seen at Steps 4, 8 and 11 of Algorithm 6.3.2. At Steps 4 and 11 the approximate
pruning condition is used instead of the simple overlap test, as discussed for the ap-
proximate similarity range search algorithm. In addition, at Step 8, the approximate
stop condition is used: if the stop strategy determines that the approximate result
set satisfies the approximation requirements, according to the x; parameter, then the
algorithm stops before the natural end, eventually missing other qualifying objects.
The approximate stop condition, is accurate if it is able to stop the algorithm when

the current result set is a good approximation of the exact result set.

2As we also said for the approximate range search algorithm, differently from the algorithms
presented in Section 3.3.2, for simplicity we omit the pointers p; to the real data.
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Algorithm 6.3.2. Nearest neighbors
Input: query object O4; number of neighbors k; approximation thresholds z, and z,.

Output: response set nearest® (0, k).

1. Enter pointer to the root node into PR, fill nearest®*s(0,, k) with k (random)
objects; determine r4 as the max. distance in nearest® (O, k) from O,.

2. While PR # (), do:
Extract the first entry N from PR. Suppose that N is bounded by region B(O;, r;).
If ~Prune(B(Ogy,rq), B(O;,1;),xp) then read N, go to 2 otherwise.

3

4

5. If N is a leaf node then:
6 For each O; € N do:

7

If d(Oy, 0;4) < rq then update nearest®:%s (0O, k) by inserting O; and removing
the most distant from Oy; set ry as the max. distance of objects in nearest™>%s (O, k)
from O,.

8. If Stop(nearest®™ % (Oy, k), x,) exit.

9. If N is an internal node:
10. For each child node N, of N bounded by region B.(O;,r;) do:

11. If ~Prune(B(Oq,rq), Bc(0j},7;), zp) then insert pointer to N, into PR.
12. Sort entries in PR with increasing distance to O,.
13. End

6.4 Efficiency and accuracy measures

Assessing the quality of an approximate similarity search algorithm involves the mea-
surement of the improvement of efficiency achieved and the accuracy of the approxi-

mate results.

Of course, the improvement of efficiency alone is not sufficient to assess the per-
formance of the approximate similarity search algorithms, because of the natural
tradeoftf between the efficiency and effectiveness. In fact, high improvement of effi-

ciency typically results in low accuracy of the approximate results. The performance



135

improvement by using approximate algorithms is obtained at the cost of degrading
the quality of retrieval, because some of the objects of the exact query response set
may not be included in the approximate one. A good approximate algorithm should
be able to provide reasonable accuracy with a high improvement of efficiency with re-
spect to the exact algorithm. Therefore, we also need some measurements to evaluate
the quality of the approximate similarity search algorithms.

In the following we discuss these two aspects and we define the corresponding

measures.

6.4.1 Efficiency

Approximate similarity search algorithms were introduced since some applications
need responses to similarity query faster than what offered by exact similarity search
algorithms. The Improvement of Efficiency, I E measures how much faster an approx-
imate similarity search algorithm is than the corresponding exact similarity search
algorithm. The improvement of efficiency is defined as

I — cost(oper)

= ———+ 6.4.1
cost(oper4) ( )

where cost is a function that gives the number of tree nodes accessed during query exe-
cution, oper is either range(O,, r,) or nearest(O,, k), and oper* corresponds to the
approximate versions. Alternatively, costs could be defined as the number of distance
computations performed during the query execution, but experiments demonstrate
that the number of nodes accessed and the number of distance computations are

linearly correlated.
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6.4.2 Accuracy

We believe that, depending on the two types of similarity queries, nearest neighbor
and range search, the quality of approximation should be evaluated from two different

points of view:

Nearest neighbor queries: in the case of nearest neighbor queries, a useful infor-
mation is the difference between the position of an object in the approximate
result set and the position of the same object in the exact result set with respect
to the query. This helps to judge how many objects were dismissed because of
the approximation. For instance, when the first approximate nearest neighbor
is the 20-th object in the exact ordering, it means that 19 objects were lost, by

the approximation.

Range queries: in the approximate range search algorithms that we propose, false
hits never occur so the approximate result set is always a subset of the exact
result set. Therefore, it is useful to consider the percentage of objects of the
exact result set that are also present in the approximate set. For instance, in
the case when the exact result set contains 200 objects, while the approximated
one contains 150, the percentage is 150/200 = 0.75, that is 75% of the exact

result set was retrieved.

According to the previous observations, we define and use in our experiments two
measurements to assess the quality of approximation. The first one, called error on
the position, EP, is used to determine the discrepancy between the position occupied
by objects in the approximate and exact sets of nearest neighbors. The second mea-

surement, called number of exact results, NE, is used to determine the percentage of
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objects shared by the exact and approximate result sets of range queries.

In order to provide a more formal definition of these measurements, we need
the following notation. Given a metric space M = (D,d), we intend to support
similarity search (range and nearest neighbor) queries on a set DS C D of n ele-
ments. The exact range search retrieves the set range(O,, ;) = {01, Os, ... O;} with
! < n, and d(0,,0;) < d(O,,0;), for i < j. The approximate range search search
algorithm retrieves the set range™(Oy,r,) = {Of,04,...0,}, where I, < | and
d(Og4, Of) > d(O,, O;). In our approximate range search we have that range® (0, 7,)
C range(Oy,1,), since false hits never occur. The nearest neighbors search re-
trieves k objects nearest(Oy, k) = {O1, Os,... Ok} with d(O,, O;) < d(Oy, O;), for
1 < j. The approximate nearest neighbors search algorithm also retrieves k objects,
nearest®™ % (0, k) = {04, 04,...04}, where d(O,, O) > d(O,,0;). We can now
provide a definition of EP and NE.

EP: To compute EP we first consider EP; as the position error of the i-th object O
of the approximate set. It is computed as the difference between the position
of the object in the exact result set and the approximated one, divided by the
cardinality of the whole data set (otherwise, this measurement would depend
on the size of the data set considered). It is easy to show that the position of
object Of! in the exact result set nearest(O,, k) is #(range(O,, d(O,, Of))).

Therefore, the position error for the i-th approximate object is

#(range(oqv d(Otn 0;4))) — 1

Bh= #(DS)

The position error EP is obtained as the average of the position errors of all
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objects in nearest®*s (0, k)

k
. EP,
EP — Zz:l )

. (6.4.2)

NE: To compute NE we have to obtain the percentage of objects of the exact result
set that are included in the approximate result set. This is simply the number of
objects contained in range® (O, r,) divided by the number of objects contained

in range(O,, )
#(range® (O, 7y))

NE = i range(0,,1))

(6.4.3)

It is worth noting that in other works [AMNT98] the measurement used was the
relative error on distances. This gives the percentage of error on the distance from
the query object of the approximate result with respect to the exact result. For the

nearest neighbor search it is defined as

_ 4U04,0q) —d(On,0q) _ d(04,0q)
d(On,Oq) d(Ow,0q)

where O 4 is the approximate nearest neighbor, Oy is the real nearest neighbor, and
Og is the query object. This measurement can be easily generalized to the case of
k-nearest neighbors search and range queries.

However we believe this measurement not to be suitable to objectively asses the

quality of an approximate similarity search algorithm for three reasons:
i) It does not give an idea of the number of object missed.
ii) In case of high dimensional vector spaces it tends to give good results in any case.

iii) Results obtained using different data sets might not be directly compared.
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Figure 6.2: The relative distance error is not a reliable measure of the approximation
accuracy. Even though the relative distance error is small, almost all objects are
missed by the approximate search algorithm.

Let us discuss these three points. i) the relative error on distances gives the
percentage of error on the distance of the approximate result with respect to the
exact result. However, it does not give any suggestion on the amount of objects
missed by the approximate algorithm, since it does not take into account distribution
of distances. Let suppose that the distance between the first and the second nearest
neighbor is large. Let also suppose that the approximate search algorithm misses
the first nearest neighbor and returns the second. In this case the relative error
on distances is high even if just one object was missed. Vice versa, suppose that
relative error on distance is small, but distances of the approximate nearest neighbor
O4 and the exact nearest neigbor Oxn from Og are such that almost all remaining
objects are included in between, as depicted in Figure 6.2. In this case the small

relative error is misleading since all objects are in fact missed. ii) in high dimensional
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vector spaces all objects tend to have similar distances. It is easy to show that as a
consequence of the central limit theorem [HPST71], the peak of the distance density
tends to move toward high values of distances as the number of dimensions increases.
For illustration consider again Figure 6.2. The consequence is that the relative error
on distances tend to be smaller anyway, since the farthest object is always relatively
close to the nearest object. iii) the relative error on distances does not take into
account the range of distances of the specific data set considered and its distance
distribution. A particular relative error, considered to be large in a certain data set,
might be considered negligible in a data set where the range of distances is much

larger, or distances are distributed differently.

6.5 Experimentation settings

We have implemented the proposed approximate similarity search algorithms in the
M-tree [CPZ97| framework. The approximate similarity search algorithms replaced
the original search algorithms of an existing C++ implementation of M-Tree — the
original M-tree code is available from http://www-db.deis.unibo.it /research/Mtree/.

Data sets UV HV1 and HV2, described in Section 2.5, were used as the test-
bed. We executed similarity range queries with radii such that the smallest and the
largest radii retrieved approximately between 1% and 20% of objects in the data sets.
Nearest neighbors queries were executed varying k between 1 and 50.

For every obtained configuration, various values of =, and z, were tested. The
used values depend on each specific approximation strategy and are specified later,
when the strategies themselves are defined. In order to reduce statistical errors, each

approximation parameter was tested for 50 different query objects, using the same
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radius in case of range queries, or the same £ in case of nearest neighbor queries.

Query objects were not part of the data set, but followed the same data distribution.

Average values were computed for NE, EP, and the improvement of efficiency
IE. For range queries we provide graphs where we show how IE depends on the
approximation parameters, how IE depends on NE and how NE depends on the
approximation parameters. For nearest neighbor queries we provide graphs where we
show how IE depends on the approximation parameters, how IE depends on EP

and how EP depends on the approximation parameters.

6.6 Method 1: Approximate similarity search us-

ing relative error of distances

To improve efficiency of similarity search algorithms, access methods for metric spaces
partition the searched data and bound such elements of the partition by ball regions.
Regions are then hierarchically stored in nodes of a tree. Search algorithms find
qualifying objects by only accessing nodes corresponding to regions that overlap the
query region. In fact, regions that overlap the query region may potentially contain
objects that are also covered by the query regions, while regions that do not overlap

the query region can be discarded.

Given a query region B(O,4,r,) and a data region B(O;,r;), the simplest overlap
test, to decide if the data region (the corresponding node of the tree) should be
accessed, is to check if the distance between the centers of the regions is smaller or

equal than the sum of their radii as follows
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d(Oq, Oz) < rg+ri. (661)

In M-trees [CPZ97], as discussed in Section 3.4.4, this test is further improved.
Let B(O,,rp) be the parent region of B(O;,1;), so that the region B(O,,r,) cov-
ers B(O;,r;), and the node corresponding to B(O,,,) is accessed before the node
corresponding to B(O;,7;). The overlap test in Equation 6.6.1 is not needed to be
performed, and the data region can be immediately pruned, when the difference be-
tween the distance of O, from O, and the distance of O; from O, is greater than the

sum of the radii r, and r;, that is when

|d(Oy,0,) — d(O4,0,)| > ry + . (6.6.2)

Note that, in M-trees it is possible to store in the node the distance d(O;, O,)
of the object O, from each entry (from the centers O; of the corresponding covered
regions). Moreover, the distance d(O,, O,) between the parent object O, and the
query object O, is computed when the node is accessed, before accessing its entries.
Therefore, previous test in Equation 6.6.2 allows the search algorithm, in some cases,
to discard a region without even computing the distance between its center and the
query object d(Oy, 0;).

These two pruning tests can be conveniently modified to obtain approximate sim-
ilarity search algorithms, based on an approximation in the pruning condition, where
the result set is constrained by a user-defined relative error of distances €. The idea

to obtain this is the following.

Let Oy be the nearest neighbor of 04, and O4 some other object in the searched
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collection. Obviously, provided 0 < d(On, O,) < d(Oy4, O,), the equation

d(O4,0,)

SAVA e
dO0n, 0, 7€

defines that the distance from O, to O4 is (1 + €) times the distance from O, to Oy.
Now assume that Oy4 is the approzimated nearest neighbor of O,. In such case, €
represents the relative error of the distance approximation, obtained considering O 4
as the nearest neighbor of O, instead of Oy.

Using the relative error of the distance approximation € as an upper bound we
can define an object O4 to be an (1+¢)-approzimate-nearest-neighbor [AMNT98] of
object Oy, if its distance from O, is within a factor of (1 + ¢) of the distance of the

true nearest neighbor Oy, that is when

d(O4,0y)
—— < 1+e
d(On,0q) —

This idea can be generalized to the case of the j-th nearest neighbor of Oy, for
1 < j < n, where n is the size of the database. Using respectively O’A and Of\, to

designate, the j-th approximate and the nearest neighbors, the constraint should be

modified as follows
m <l+e
(O, Oq)
If this constraint is satisfied, Oﬂl is called the (1+€)-j-approzimate nearest neighbor of
O,. However, even if d(Oy, 0%,) is unique for a given Oy, there may be several objects
in the database which, when considered as OZ‘, satisfy the previous equation. This
means that the candidate set for approximate results is not necessarily singular. In

the limit case, d(Q, 0%) = d(Q, O%) or even 0% = O%.

To see how the search pruning tests of M-trees can be relaxed by respecting a
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relative distance error €, let us consider another form of Equations 6.6.2 and 6.6.1 as

follows:

<1 (6.6.3)

and

Id(op,oq)—tzq(oi,op)l—n <1 i[Oy, Og) = d(0:, Op) | =ri > 0 (6.6.4)
false elsewhere

Looking at these fractions, the numerators specify, the distance to the k-th nearest
neighbor of O, discovered so far, in case of £ nearest neighbors search, or the maximum
accepted distance from Oy, in case of range search. In case of k nearest neighbors
search, provided the search has not finished, this distance can also be considered as
the distance to the current approximate neighbor. The denominators, on the other
hand, put the lower bounds (using the corresponding information about distances at
hand) on possible nearest neighbors in the region B(O;,r;) with respect to O,. In
other words, the denominators represent the minimum distance that an object in the
given region might have, with respect to O,. Naturally, if the lower bounds (i.e. the
denominators) are higher than the current radius of Oy, the region considered cannot
contain any qualifying object and therefore can be ignored in the search from this
point on.

In order to modify these tests to the case of approximate search, that is when

€ > 0, the lower bounds can be relaxed by the relative factor € in the following way.

Tq
— <1 .6.
d(Oi,Oq)—Ti< +e€ (665)

and
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Figure 6.3: The region B(O;,7;), its parent region B(O,,7,), the query region
B(Oy,74), and the reduced query region B(O,,7,/(1 + €))

Too oo < 1+e if [ d(0p,0,) — d(0i,0,) | =1 > 0

(6.6.6)
false elsewhere
Naturally, relaxing these tests in the above way can never increase the similarity
search costs, because both the number of distance computations and the number of
node reads can only be reduced. In fact, relaxing the pruning tests corresponds to
use a smaller query region B(O,,7,/(1 + €)), instead of the original query region, as

shown in Figure 6.3.

Let us call ePrune(B(Oy,714), B(O;,7;),€) the approximate pruning test defined
in Equation 6.6.5 and ePrePrune(B(Og4,14), B(O;,7;),€) the one defined in Equation

6.6.6. The pruning condition of Algorithms 6.3.1 and 6.3.2 is defined as follows:
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Prune(B(Oy,1q), B(O;,73),xp) = if ePrePrune(B(Oy,14), B(O;,7:), xp)
return irue
else
return ePrune(B(Oy,r,), B(O;, i), Tp)
This method uses only the pruning condition, therefore the stop condition is always

false:

Stop(RS,, zs) = false

We have tested this method both with range and nearest neighbor queries. The

obtained results are discussed in the next section.

6.6.1 Results

Results of the tests performed by using the relative distance error based approximate
similarity search algorithms are sketched in Figures 6.4, 6.5, and 6.6 for range queries
and in Figures 6.7, 6.8, and 6.9 for nearest neighbor queries.

Using this approximation technique, the threshold z, is interpreted as the upper
bound on the relative error of the distances in the approximate result set with respect
to the exact result set. In these experiments we ranged the threshold in the interval
between 0 and 8. The approximation threshold z, for the stop condition was not
used, since the stop condition is always false.

A first general observation on the obtained results is that no high improvement
of efficiency is obtained with this method. The approach tends to saturate before

than valuable improvement of efficiency is obtained. In fact, even if high values of
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Figure 6.4: Improvement of efficiency (IE) as a function of the proximity threshold

(z,) and the fraction of exact results (NE). Range queries, HV1 data set.
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Figure 6.6: Improvement of efficiency (IE) as a function of the proximity threshold

(z,) and the fraction of exact results (NE). Range queries, UV data set.
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Figure 6.7: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV1 data set.
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Figure 6.8: Improvement of efficiency (IE) as a function of the proximity threshold
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152

UV - NN search

1.04
/._./.,_./.—H
1.035

r./.,.a/'
1.03

/ k=1
1.025 /' -3

1.02

0 -+ k=10

1.015 - o K=50
1.01

IE

1.005 -
1 T T T 1
0 2 4 6 8
Threshold
UV - NN search
1.04

PP S i
1.035

1.03 “rkr'
1.025 )/./ k=1
" - k=3

1.02 -4 k=10
1.015 zgp““ o ke50
1.01
1.005 r
1 \ \ \ \ \ \

0 0.001 0.002 0.003 0.004 0.005 0.006
EP

IE

UV - NN search

0.006

0.005

0.004 // k=1
- k=

0.003 / - tzio

0.002 - k=50

0.001 f N

EP

Threshold

Figure 6.9: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, UV data set.



153

the threshold are used, no considerable improvement is achieved. The graphs show
that the best results where obtained in the HV2 data set, with range queries, where
the approximate range search was executed only five time faster than the exact range

search.

Another observation is that there is not evidence of a common trend in the different
data sets that we have used. In fact, in case of range queries, the graphs relating
NE with IE show that in HV1 performance degrades when the radius of the query
increases, while in HV2 and UV performance degrades when the radius decreases.
On the other hand, in case of nearest neighbors queries, the graphs relating E P with
IE show that in HV1 and HV2 performance degrades when £ increases, while in
UV performance degrades when k decreases. This means that in order to tune the
algorithms, to optimize performance, a deep knowledge of the used data set should

be obtained, and no general guidelines can be exploited.

Let us consider specifically the behavior of range queries. In HV1, the best results
where obtained when the radius was small. For instance, when the query radius was
1800, a query was executed on average 1.9 times faster with NE = 0.2, that is 20%
of objects retrieved by the exact search were found by the approximate search. In
HV2, the best results were obtained when the radius was large. In fact, when the
query radius was 1.092, improvement of efficiency was 3.7 with a value of the the NE
measure of 0.2. In case of the UV data set, again, the best results were obtained
when the radius was large. In fact, when the query radius was 1300, improvement of

efficiency was 1.2 and the NFE measure was 0.2.

Let us now consider results of nearest neighbors queries. In HV1, the best results

where obtained when k was small. In fact, when k& was 1, queries were executed
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on average 1.43 times faster, with EP = 0.0001, that is, since HV1 contains 10000
objects, the approximate nearest neighbor was on average in the 2-nd position. In
HV2, again the best results were obtained when k£ was small. In fact, with k£ set to
1, improvement of efficiency was 1.6 with a value of the the £ P measure of 0.00005,
that is, in almost all cases the real nearest neighbor was found. Finally, in case of the
UV data set the best results were obtained when k£ was large. In fact, with £ set to
50, improvement of efficiency was 1.027 and the E'P measure was 0.001.

Notice the dependence between the threshold and the NE measure in Figures
6.4, 6.5, and 6.6. NE can be directly controlled by the approximation parameter,
independently of the radius of the query. However this property cannot be observed
for the nearest neighbors query. In fact, it can be noticed in figures 6.7, 6.8, and 6.9,
that, with the same value of z,, when k is set to 50 the error on the position is on

average much higher than using smaller values for k.

6.7 Method 2: Approximate similarity search us-

ing distance distribution

As discussed in Section 6.3.2, the k-nearest neighbors search algorithm obtains the
final result set by improving iteration after iteration a current result set, say RS..
In fact, in every iteration, if a new object O is found whose distance from the query
object Oy is shorter than that of some of the objects in RS,, then the k-th object Oy
in RS, is removed and O is inserted in RS.,.

The idea at the basis of the approximate similarity search technique discussed in

this section is to stop the search algorithm when the objects of RS, belong to a user



155

specified fraction of the closest object to the query object O,. As an example, let
us suppose that the considered data set DS contains 10000 objects and that objects
01, Og,...,010000 € DS are ordered with respect to their distance from the query
objects O,. If the user chooses 1/200 (that is 0.5% ) as the wanted fraction, then the
algorithm should stop as soon as all objects in RS, belong to the set {O1, O, ..., O5}
of the 50 closest objects to O, (since 10000/200 = 50).

The previous idea can be realized by using a probabilistic approach and exploiting
the overall distance distribution (see Section 2.3.4) of the objects of the considered
metric space. Let suppose that we have a metric space M = (D, d). The distribution
function Fp,(z) (the distance distribution relative to O;, or the O;’s viewpoint) gives
the probability that chosen a random object O from D, its distance from O; is smaller
than z, that is Fp,(z) = Pr{d(0;, O) < z}.

Let us suppose that our data set DS C D contains a sample of n objects of D
selected in such a way that for any O;, belonging to DS, its distance distribution
Fo,, computed considering the objects of DS only, is the same than that computed
considering all objects of D?. According to this, Fp,(z) represents the fraction of
objects in DS for which the distance to O; is smaller than or equal to z. In fact,
since the number of objects in DS is n, then the expectation is that n- Fp,(z) objects

should have a distance to O; not greater than x.

Let us now consider the k-nearest neighbor search algorithm and the current
result set RS, obtained at a certain intermediate iteration. Let O be the current

k-th object in RS, and d(O,, OF) its distance from O,. As a consequence of previous

3This can be generally considered true when the number of objects of the data set is large. In
these cases we can suppose that the data set characterizes the entire metric space which it belongs
to (see Section 2.3.4).
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Figure 6.10: An estimation of the fraction of the objects closest to O, whose distances
from O, are smaller than d(O,, OF), can be obtained by using Fo,_(z).

discussions, we have that Fo_ (d(O,, OF)) corresponds to the fraction of objects in
DS whose distances from O, are smaller than or equal to d(O,, OF), see Figure 6.10.
Since all other objects in RS, have a distance from O, smaller or equal than d(O,, OF)
(since OF is the k-th object), then all objects in RS, are included in that fraction.
For instance, when Fp_(d(O,, OF)) = 1/200, RS, is expected to be included in the
set corresponding to the 0.5% of the objects closest to O,,.

This behavior can be exploited to obtain an approximate nearest neighbor search
based on a stop condition. In fact, here the user can specify the value of the approxi-
mation parameter x, corresponding to the wanted fraction, and the stop condition is

defined as follows:

StOp(RSC,IES) = FOq (d(0q7 Of)) < @
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where OF is the k-th object in RS.,.

Of course, since the stop condition may only stop the algorithm 6.3.2 earlier, it
might only reduce the cost with respect to the exact similarity search. However, when
zs < Fop,(d(Oy, O%)), where O% is the exact k-th nearest neighbor, no improvement
is obtained and the exact similarity search is performed. In particular, when z, =0
the exact similarity search is always performed.

So far, we have assumed that the distribution function Fp, is known. However
computing and maintaining this information for any possible query object is totally
unrealistic — query objects are not known a priori. A solution is to use, instead of
Fo,, the overall distance distribution defined as F'(z) = Pr{d(0O;,03) < z}, where
O; and O; are random objects of DS. In fact, as discussed in Section 2.3.4, F' can
be reliably used in these cases as a substitute of any Fp,, given the high index of
homogeneity of viewpoints in typical data sets. Furthermore, obtaining F' does not
present hard problems since it should be computed only once in O(n?), where n is
the size of the considered data set.

The resulting stop condition uses the overall distance distribution F' and is con-

sequently defined as follows:

StOp(RSC,:Es) = F(d(0q7 Of)) < T

The pruning condition performs the usual exact overlap test, since this approxi-

mation method is only based on a stop condition:

Prune(B(Og,14), B(O;, 1), 2p) = d(Oy, 0;) > 14 + 131

where, of course, the parameter z, is not used.
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6.7.1 Results

Results of the tests performed using the approximation method that exploits distance

distribution are shown in Figures 6.11, 6.12 and 6.13.

The approximation threshold x, specified by the user, is interpreted as the fraction
of the objects closest to the query which the current result set should belong to when
the algorithm is stopped. Here the approximation threshold ranges in the interval
between 0 and 0.07 (that is a fraction corresponding to 7% of the objects closest to
the query). The approximation threshold z, for the pruning condition is not used, as

we said previously.

A general observation is that the approximate algorithm degrades its performance
when the number of objects retrieved increases. In fact when k is set to one, the
improvement of efficiency almost arrives up to 800 (that is almost three orders of

magnitude), while when % is set to 50 the improvement of efficiency arrives up to 45.

Very good results were obtained with HV1 and HV2, even though HV1 gave the
best performance. With these two data sets, on average, improvement of efficiency up
to 2 orders of magnitude was obtained, still maintaining good quality search results.
However, in UV was difficult to obtain improvements comparable with the other two
data sets. For instance, in HV1 the approximate algorithm can find the nearest
neighbor 423 times faster with £EP = 0.004. This means that, if the exact algorithm
needs 7 minutes to find the nearest neighbor, the approximate algorithm needs only
one second to find an approximate nearest neighbor that is, on average, the 40-th
(out of 10000) actual nearest neighbor. In HV2, the approximate nearest neighbor
can be found on average 100 times faster with an error on the position of 0.004. On

the other hand, in the UV data set the nearest neighbor can be found only 45 times
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Figure 6.11: Improvement of efficiency (I E) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV1 data set.
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Figure 6.12: Improvement of efficiency (I F) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV2 data set.
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Figure 6.13: Improvement of efficiency (I E) as a function of the derivative threshold
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faster with EP = 0.004.

Figures 6.11, 6.12, and 6.13 show also the dependency between the approximation
threshold and the EP measure. All curves are close enough to allow the user to
control the quality of the approximation almost independently of k. Notice also that,
since the dependency is almost linear, the user can linearly control the quality of
approximation using the threshold parameter. However the improvement of efficiency,
as we said before, strictly depends on the value of k. So, while the user might ignore
k to control the quality of approximation by using the approximation parameter, she
should also consider the value of £ when she wants to control the improvement of

efficiency.

6.8 Method 3: Approximate similarity search us-
ing the slowdown of distance improvement

The algorithm for nearest neighbors search (Algorithm 6.3.2) builds the result set
through several iterations. In every iteration a new current result set can be obtained
by improving the one resulting from the previous iteration. In fact, in every iteration
some of the k£ current nearest objects, found in previous iterations, are possibly re-
placed by new nearest objects found in current iteration. This improvement can be
observed as a reduction of the distance d(Og, O,) of the k-th current object Oy from
the query object. In fact, distances of the new objects found from the query object
are shorter than distances of the replaced objects.

Let us define d" (iter) as follows

do® (iter) = d(Oy(iter), 0,) /dm
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where Og(iter) is the k-th object in the iter iteration and d,, is the maximum distance
in the considered data set. d9¢"(iter) is the function representing the normalized®
distance of the current k-th object from the query object O, at the iteration iter. As
an example, Figure 6.14 shows the graph of dgq’k(iter) for a 3 nearest neighbors search
in data set HV1 for a particular query object. Considering this figure we can make
some observations. On several iterations, the algorithm is not able to improve the
current result set since no better objects are found. In fact, dgq’k(iter) mainly assumes
constant values in consecutive iterations. The iterations where an improvement of the
current result set is obtained are a minority of the whole iterations. It can also be

noticed that the improvement is very fast in the first iterations of the algorithm, then

“Different data sets have different range of distances. By the normalization, obtained by dividing
the actual distance by d,,, the function is defined in a range that does not depend on the particular
data set used.
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it slows down and almost no improvement, or negligible improvement, occurs after a

certaln iteration.

We exploit this behavior of the nearest neighbors search algorithm to define a new
approximate similarity search algorithm. The idea here is to stop the similarity search
algorithm before the natural end, when the improvement slows down below a certain
threshold specified by the user. Given the nature of this approximation technique, it
cannot be applied to the range search algorithm.

Unfortunately, dgq’k(iter) is a function that is not known a priori, in fact, its
values become available as the search algorithm proceeds. In addition, as previously
observed, it is a piecewise constant function, that is, there are portions where it is
rigorously constant. Therefore, it cannot be directly used to effectively infer when
improvement slows down. For instance, its derivative would be 0 as soon as in some
consecutive iterations no improvement occurs, which may also happen when the al-
gorithm is very far from the final result. To solve these problems we compute, as the
algorithm proceeds, a regression curve, say regq(iter), which approximate dgq’k(iter),
and we use it for deciding if the algorithms should be stopped. When the derivative
regl(iter) of regy(iter) is above® the user specified (negative) threshold z;, in corre-
spondence of the current iteration, the algorithm stops. The parameter x is used to
control the tradeoff between approximation quality and performance improvement.
Of course, small absolute values of x, result in bad performance but high approxima-
tion quality, since the algorithm might stop close to the natural end. Large absolute
values of z,, on the other hand, result in high performance and bad quality, since

the algorithm may stop too early, when the current result set is not close to the final

SNote that regg(iter) will be defined to be monotonically decreasing so it will always have a
negative derivative



165

result set. When the threshold is set to 0 the algorithm behaves as the exact nearest

neighbors search, since the regression curve is defined in such a way that it has never

a positive derivative.

This method is only based on the stop condition so the pruning condition performs

the usual (exact) overlap test to discard a node only when its bounding region does

not overlap the query region:

Prune(B(Og4,1,), B(O;,13:),p) = d(Oy, 0;) > 14 + 1

The stop condition, on the other hand, iteration after iteration, refines the regres-

sion curve and checks if the derivative of the regression curve, on the current iteration,

is above the approximation threshold:

Stop(RS,, xs) =

if this is the first iteration
set iteration =1
else
set iteration = iteration + 1;
let Oy be the k-th element of RS,;
compute regy(iter)
using the new point (iteration, d(Oy, O,))
in addition to the points previously used;
if iteration ==
return false
else

return (reg)(iteration) > x;);

The mathematical details about the computation of the regression curve regy(iter),

which approximates the trend of the improvement of distances, is discussed in next
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subsection.

6.8.1 Approximating the improvement of distances by a re-

gression curve

The function ds,** (iter) cannot be directly used to decide when the search algorithms
can be stopped, since it is a discrete piecewise constant function. However, dgq’k (iter)
has a shape that can be effectively approximated by a continuous function. We
obtain such an approximation by performing the linear regression [Hal52] of points
of dgq’k (iter) using the method of the discrete least squares approximation [BFR78).

Let us suppose that we know the values of a discrete function f(i) when ¢ =
Z1,...,z;. Then, we can chose n (n < j) real functions ¢, (3), ..., ¢, () to obtain, as a

linear combination, a regression curve (i) that approximate f(7):

() = ¢t - p1(1) + oo + ¢ - (1)

The least squares method says that ¢}, ..., ¢/, should be chosen such that ¢(c}, ..., c},),

defined as follows, is minimum:

¢(Clv PP Cn) = Z (Z Cs QDS(IEZ') - f(%))

i=1 s=1

Let us see how this can be applied to our problem. Let us suppose that search
algorithm arrived at iteration j. This means that we have the pairs (i, dy"" (i)), for
1 < < j, where i corresponds to the i-th iteration and d ** (i) to the distance of the
k-th object from the query in the i-th iteration. These points can be used to obtain

. . Ogk /-
a regression curve that approximate d;"" (iter).
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In our case the regression curve is obtained by using two real functions ¢, (i) and
©2(i). The specific definition of ¢ (i) is discussed later, while @o(i) = 1. Therefore,

our regression curve regq(iter) has the following form:

regq(iter) = @(iter) = ¢y - @1 (iter) + ¢y

According to the least square approximation method we should find ¢} and ¢, such

that ¢(c, c,), defined as follows, is minimum:
13 -2

J
(1, c2) Z(Cl o1 (i +C2—d0‘“())2

=0

It can be easily shown that if ¢;(4) is chosen such that ¢;(¢) > 0 when 1 <4 < j,
then ¢(cy, ¢2) is minimum when its partial derivatives are equal to 0. This corresponds

to find ¢} and ¢, as a solution to the following:

2 = 2 (o, T, 20) + & XL, 01) = XL, e Dd(0)) = 0
c1,C j - . j O,k
6¢>(8612, =2 (Cl i) + e — 30 dy (i )) 0

that is

YL e@dt0) - (XL 4 0) (XL e)
i XL, 26) ~ (Shy o)

!
€ =

and

(SLd2*6) (SL920) - (L e 0d @) (3L, @)
i XL, 260) ~ (SLied)

Notice that the number of iterations j, might be so high that computing regq4(iter)

/]
Cy =

might be inefficient. However, here we used an optimization. As we said previously,
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Figure 6.15: Trend of d5**(iter), when k is 3 in HV1, and two possible regression
curves.

dgq’k(iter) is constant for several consecutive iterations. Therefore, instead of using all
points, regq(iter) can be computed by only using points where the value of dgq’k (iter)
changes. Specifically, regy(iter) is computed using a set of points obtained as follows.
Let i be the current iteration and (i, d""*(s)) the last point added to the set of points.
At iteration i 4 1, if do®* (i) = d5°"(i + 1), then the point (,d>**(i)) is replaced by
(i+1, d9""(i+1)), elsewhere, the point (¢, d5"" (7)) is maintained and (i+1, do** (i+1))
is added to the list of points. This reduces enormously the number of points to be

considered, maintaining a good approximation of dgq’k(iter).

We still have to discuss the definition of function ¢;(z). Its choice depends on
the peculiar properties of dgq’k(iter). In fact, different choices of (i) might give

different approximation qualities depending on their capability of miming the trend
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of dgq’k(iter). Given the typical shape of dgq’k(iter), we have tried the hyperbola, that
is 1(7) = 1/i and the logarithm, that is 1 (7) = log(7). Figure 6.15 shows graphically
d9“* (iter) and the two resulting approximations. We have used both choices in the
approximate similarity search algorithm, and the average behaviour was practically
the same in both cases. In fact, both choices gave almost overlapped results in term

of IE and EP, even tough different ranges of the threshold parameters z; had to be

used. Next subsection presents the obtained results.

6.8.2 Results

We have tested the the approximate similarity search algorithm with the slow-down of
distance improvement, by obtaining the regression curve through both the logarithm
and the hyperbola as a definition for ¢,(z). As previously anticipated, the obtained
results were practically the same, so here we only discuss those obtained by using
the logarithm. The same observations hold also for the other possibility considered.
Results are summarized in Figures 6.16, 6.17 and 6.18.

In these experiments the approximation threshold x, is interpreted as a threshold
on the derivative of regy(iter), the curve that approximate the trend of distance of
the current k-th object from the query object. The approximation threshold ranges
in the interval between 0 and -0.004. When the derivative of regy(iter), in the current
iteration, is above the specified threshold, the algorithm stops. The approximation
threshold z, for the pruning condition is not used, since the pruning condition per-
forms the exact overlap test.

A first general observation is that, even if the improvement of efficiency might

arrives up to two orders of magnitude, the approximation threshold x; is not easy



170

HV 1 - NN search

- k=1
& k=3
-4« k=10
-o- k=50
0 -0,001 -0,002 -0,003 -0,004
Threshold
HV 1 - NN search
200
180
160
120 . +kel
W 100 | a = k=3
= a0 A -+ k=10
| ra -o- k=50
60 ya
40 /[
20 ﬁ‘/
O T T T T 1
0 0,02 0,04 0,06 0,08 0,1
EP
HV 1 - NN search
- k=1
& k=3
-4 k=10
-o- k=50

0 -0,001 -0,002 -0,003 -0,004
Threshold

Figure 6.16: Improvement of efficiency (I E) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV1 data set.
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Figure 6.17: Improvement of efficiency (I F) as a function of the derivative threshold
(z5) and the position error (EP). Nearest neighbor queries, HV2 data set.
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Figure 6.18: Improvement of efficiency (I E) as a function of the derivative threshold
(zs) and the position error (EP). Nearest neighbor queries, UV data set.
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to be used to control the tradeoff between performance and effectiveness, when the
number of retrieved objects k is varied. For instance in HV1, given a fixed threshold,
the best improvement of efficiency where observed for k¥ = 3, then £k = 1, £ = 10,
and, finally, £ = 50. That is, the improvement of efficiency depends on k but the
corresponding relationship is not trivial. However, the error on the position EP,
with the exception of data set UV, is almost directly proportional to k. In fact EP

degrades as k increases when the approximation threshold is fixed.

Let us now discuss more in details the obtained results. An improvement of
efficiency up to 2 orders of magnitude was obtained, maintaining a relatively good
quality search results. In fact, in HV1 the nearest neighbor can be obtained on average
190 times faster, with EP = 0.023. Performances obtained for HV1 and HV2 are
comparable, even though slightly better results are obtained for HV2. However, in UV
results are clearly worse. The approximate algorithm can find the nearest neighbor 60
times faster with £P = 0.006 in HV1 and EP = 0.005 in HV2. This means that, for
instance in in HV1, the approximate nearest neighbor is, on average, the 60-th nearest
neighbor (out of 10000). However, when the precise search takes 1 minute to compute,
the approximated result is obtained in 1 second. Similar relationships between HV1
and HV2 can be observed also for other values of k. On the other hand, in the
UV data set, using the same range of approximation threshold, the improvement of
performance arrives only up to one order of magnitude and the results where typically
worse than in the other data sets. In fact, in UV, the nearest neighbor was found
13 times faster with EP = 0.0025, while in HV1 and HV2 the nearest neighbor was

found with the same value of EP respectively 30 and 40 times faster.
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6.9 Method 4: Approximate similarity search us-

ing the region proximity

Access methods for metric spaces partition the searched data, and bound element of
the partition by ball regions. In order to find qualifying objects, search algorithms
should access all nodes of the tree corresponding to regions that overlap the query
region. All regions that overlap the query region may potentially contain objects that
are also covered by the query regions. Search algorithms might ignore all regions that
do not overlap the query region in order to be more efficient, since accessing a node
(corresponding to a region) has a high cost. However, notice that when a data region
and the query region overlap with each other, there is no guarantee that objects are
included in their intersection. In fact depending on the data distribution, it may
happen that the intersection covers a portion of the space containing very few objects
(or no objects at all). Therefore, some of the data regions that overlap the query
region may not contain searched data, and some regions are more likely to contain

the query response than the others.

In Figure 6.19, it can be seen that, although the query region () intersects regions
R1, Re and Rg, the intersection with R, and R3 is empty and thus it is not necessary

to access these regions.

Proximity between ball regions, discussed in Chapter 4 may help to handle this
situation. In fact, as defined by Equation 4.2.2, proximity of two regions is the
probability that objects can be found in their intersection. The idea here is to use the
proximity to decide when data regions should be accessed to find qualifying objects,

in fact, the higher the proximity, the more ”interesting” the regions.
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Figure 6.19: Overlap between the query region and data regions: not all data regions
that overlap the query region share objects with it.

This idea constitutes the basis for the approximate similarity search by using
proximity. In fact, approximated results are obtained by considering, in the similarity
search algorithms, only regions with proximity greater than a certain threshold, say
Zp, 1.e. regions in which the probability of containing a qualifying object is greater
than z,. The approximation threshold z, is specified by the user and can be used
to control the approximation. High values correspond to high performance but bad
quality. Small values corresponds to low performance but high quality. When z,, is
set to 0, an exact similarity search is performed, since proximity is greater than 0 as

soon as two regions overlap.

Approximate range search and approximate nearest neighbor search, which use
this specific strategy, can be obtained from Algorithms 6.3.1 and 6.3.2 by defining

the pruning condition and the stop condition as follows.

The pruning condition Prune(B(Oy,r,), B(O;,1i), zp) is defined as
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Prune(B(Og,7q), B(Oi,73),xp) = X(B(Oy,74), B(Oi, 7)) < zp (6.9.1)

The stop condition on the other hand is always false:

Stop(RS,, zs) = false

The proximity X (B(Oy,r,), B(O;,7;)) between the query region and the selected
data regions was computed using the parallel heuristic, described in 4.5, which proved

to be the more precise among the ones tested.

6.9.1 Results

Results of the experiments using the proximity based approximate similarity search
algorithms are summarized in Figures 6.20, 6.21 and 6.22 for range queries and in
Figures 6.23, 6.24 and 6.25 for nearest neighbor queries.

In these experiments the approximation threshold z,, is interpreted as the prox-
imity threshold. When the proximity of the query region and a data region is below
the specified threshold, the data region is discarded. The proximity threshold ranges
in the interval between 0 and 0.06. The approximation threshold z, for the stop
condition is not used, since the stop condition is always false.

The results show that the best improvement of efficiency is achieved when the size
of the result set is small. The number of retrieved objects is explicitly specified for
the nearest neighbors queries, but is quite difficult to control by specifying a range.
Note that the response sets for our range queries contains on average more than 100
objects (1% of 10,000). In fact, the approach offers better performance for nearest

neighbors queries with small £ rather than for the range queries.
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Figure 6.20: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, HV1 data set.
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Figure 6.21: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the fraction of exact results (NE). Range queries, HV2 data set.
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Figure 6.23: Improvement of efficiency (I E) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV1 data set.
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Figure 6.24: Improvement of efficiency (IFE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, HV2 data set.
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Figure 6.25: Improvement of efficiency (IE) as a function of the proximity threshold
(z,) and the position error (EP). Nearest neighbor queries, UV data set.
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Let us now consider the range queries more closely. The improvement of efficiency
decreases when the query radius grows. In all data sets, the improvement obtained
is less than one order of magnitude. As expected, IF increases as the NFE measure
decreases. Note that we do not report results for NE = 0. Results seem to be better
for the HV1 data set rather than the HV2 and UV data sets. In HV1, for instance,
when the query radius is 2200, a query can be executed on average 6.5 times faster,
with NE = 0.2, that is 20% of objects retrieved by the exact search were found by
the approximate search. When the HV2 data set is used, results are slightly better in
terms of an improvement of efficiency, however the N E measure returns worse results
than for the HV1 data set. In fact, improvement of efficiency higher than 3 typically
results in VE close to 0. For all radii considered, when the improvement of efficiency
is 6.5, the NE measure is about 0.05. In case of the UV data set it was not possible
to obtain improvement of efficiency higher than 1.4. In fact, when the approximation
parameter was chosen a little bit larger suddenly the number of retrieved objects was

0. Next sub-section gives an explanation for this behaviour.

In the case of nearest neighbor queries, results are much better. In fact, an im-
provement of efficiency up to 2 orders of magnitude was obtained, still maintaining
good quality search results. There is no significant difference between HV1 and HV2,
even though slightly better results are obtained for HV1. However, in UV was again
difficult to obtain improvements comparable with the other data sets. For instance,
the approximate algorithm can find the nearest neighbor in HV1 60 times faster with
EP = 0.0005. This means that the approximate nearest neighbor is on average actu-
ally the 5-th nearest neighbor. However, provided the precise search takes 1 minute

to compute, the approximated result is obtained in 1 second. If the requirements
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regarding precision are not so high, the approximate algorithm can perform much
faster. For example, a 300 times faster approximate search implies an error in posi-
tion EP = 0.003. In this case, the approximate nearest neighbor is the 30-th actual
neighbor, but even queries which would require 5 minutes to get precise results, can
be performed through approximation in 1 second. On the other hand, in the UV data
set the nearest neighbor can be found 60 times faster with EP = 0.008. That is, the

approximate nearest neighbor is the 80-th nearest neighbor.

Notice the dependency between the proximity threshold and the EP measure in
Figures 6.23 and 6.24. All curves are almost overlapped and this suggests that it is
possible to control the effectiveness by using the threshold parameter, independently
of the value of £. In addition, since the dependency is almost linear, it means that
the user can linearly control the quality of approximation using the threshold param-
eter. However, in UV this linear dependency is less marked, see Figure 6.25, and no
profitable dependency between the threshold and NE can be observed in case of the

range queries, see Figures 6.20, 6.21, and 6.22.

We have also tested our approach to approximate similarity search by substitut-
ing the probabilistic proximity with the trivial one, defined by Equation 4.2.1. Not
only did much higher values of approximation threshold have to be used, but also the
performance of approximated queries with respect to trivial proximity was system-
atically worse. When the same values of efficiency are considered, it is evident that
the quality of approximation for the probabilistic approach is much higher than for
the trivial approach. For example, see Figure 6.26 where the error on the position

E P and improvement of efficiency I E are related for k = 10, separately for HV1 and
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HV2 data sets. In HV1, IE increases almost linearly with EP for the probabilis-
tic approach, while IE is almost constant up to values of EP = 0.01 and then it
increases slowly. In HV2, again, I E increase almost linearly with EP for the proba-
bilistic approach, while I'E is almost constant up to EP = 0.04 and then it increases,
but more slowly than in HV1. For example, when EP = 0.01, the probabilistically
approximated query performed 70 times faster than the precise query and about 25
times faster than the approximated query with the trivial proximity. Such behavior

was identical both for HV1 and HV2.

6.9.2 Further observations

When the query radius is small, the query response set can become empty, even for
small values of the proximity threshold. Though it might look strange, the explanation
is easy and provisions can be made to avoid such situations to happen.

It is easy to show that the proximity of two ball regions is smaller than or equal
to the probability that a randomly chosen point belongs to the smaller of the two
regions. Such probability can be approximated by F(r) (see Section 2.3.4), where F'
is the overall distance distribution and r is the radius of the smaller region. Since
for small values of the query radius F'(r,) is very small, the proximity between the
query region and any other region is also small. When z, > F(r,), the pruning
condition prunes every node of the tree. In fact, in this case, proximity between
the query region and any other region is always smaller than z,. Notice that the
result is anyway correct, but empty approximated result is meaningless. In order to
avoid such situations, the relationship between the proximity threshold and the query

radius must be respected.
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Figure 6.26: Comparison of the trivial and probabilistic approximation techniques
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Several strategies can be used to find an appropriate query specification, because
the distance distribution function F' is known. For example, the system can suggest
the smallest threshold that can be specified for a given query radius. Vice-versa, given
a threshold, the system can tell which is the smallest radius that can be used with that
threshold. Another possibility is to have the threshold automatically corrected (nor-
malized) by the system. For instance the pruning condition X (B(O,,r,), B(O;, 1)) <
Tp, can be substituted by X (B(O,, 1), B(Oi,73))/F(r4) < xp, obtaining an automatic
normalization.

This problem is not relevant for nearest neighbors queries. In fact, for this type
of similarity query, the radius of the query region is dynamically changed as the
algorithm proceeds. It is very big at the beginning and it becomes small just towards
the end of query evaluation, so the influence of the threshold on the number of
requested objects is less evident and a response set of k objects is always provided.
However, in case of nearest neighbors queries, this phenomenon has another effect. In
fact, when the dynamic radius of the query region reduces such that z, > F(r,), then
all remaining regions are pruned and, since the queue of pending requests become
immediately empty, the algorithm immediately stops. The result is that, even if this
method is defined as an approximate pruning condition, due to this phenomenon, this

method implicitly acts also as if a stop condition was defined.

6.10 Cross comparisons

Previous sections were devoted to the individual description of the various approxi-
mation methods proposed in this thesis and to the analysis of the experimental results

obtained by testing them. In this section, on the other and, we compare together all
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methods proposed and we discuss their advantages and disadvantages. First a direct
comparison of the performance of the various methods is presented, separately for
range and nearest neighbors search. Then some global considerations not strictly

related to performance are discussed.

6.10.1 Range queries

Figure 6.27 compares the results obtained by executing range queries. Only the first
approximation method, the one based on the relative error on the distances, and the
fourth, the one based on the proximity, are presented, since only these two methods
can be used for range queries. To simplify the presentation, we do not show the
comparison for each radius considered in the tests, but results obtained for only one
radius are shown. In particular the comparison is presented by using the third radius
used in each data set, specifically 2600 in HV1 , 0.9408 in HV2, and 980 in UV. The

graphs in the figure relate the VE measure with the improvement of efficiency /F.

In HV1 the best results are achieved by the fourth method (proximity). In fact,
given any value of NE, the corresponding value of I E is always higher for the proxim-
ity based method than for the other. In HV2 the method based on the relative error
of distances is better. However, for small values of NE, that is when the accuracy
of the approximation is low, the trend of fourth method is to rapidly increase the
performance in term of improvement of efficiency. In UV, again, the best results are
given by the fourth method. In fact, in this case, it offers high values of IE even

when NFE is still high.
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6.10.2 Nearest neighbors queries

Let us now consider the results of executing nearest neighbor queries. Comparisons
are presented in Figure 6.28. All methods can be used to execute nearest neighbor
queries so all methods are compared. Also here for simplicity, as we did for range
queries, we do not show the comparisons for all k£ values that were tested. The
comparison is presented only for £ = 10 in all data sets. The graphs presented relate

the E'P measure with the improvement of efficiency IE.

With exception of the first method (distance error), all methods offer an improve-
ment of efficiency up to two orders of magnitude. The first method offers a very
limited improvement in efficiency. Even using high approximation thresholds high
improvements cannot be obtained. In the graph, the experimental values of this
methods are very close to the origin of the axis and can be barely noticed, given
the higher performance of the other methods. As we said in section 6.6, where the
first method was presented, it immediately saturates and no relevant improvement is
obtained. In HV1 and HV2 the highest performance is offered by the second method
(distance distribution), while in UV the best method is the fourth method (proxim-
ity). In HV1 and UV, the curves of the second and the fourth method, however,
are close to each other, and their performance is definitively better than that of the
third method. In HV2, on the other hand, there is no significant difference among

the performances of all methods.

Looking at the maximum performance obtained by our approximate nearest neigh-
bors search algorithms in the different data sets, we can see that the improvement
of efficiency seems to be more significant for the 45 (that is HV1) rather than the

32-dimensional (that is HV2) vectors. In addition, the improvement in efficiency is
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negligible in case of the 2-dimensional vectors (that is UV). We have also experimented
with other data sets and the general conclusion is that our methods of approximation
for nearest neighbors queries are suitable above all when the precise similarity search
tends to access many data nodes in the supporting tree structure. Such a situation
often happens when the data partitioning results in highly overlapping regions, which
is common for high-dimensional vector spaces. In these cases, the improvement is
typically registered in hundreds, which is not possible to achieve for low dimensional
spaces where even the exact similarity search algorithms are efficient. For this reason,
results with the 2-dimensional UV data set are always worse that those obtained with

the other data sets.

As previously pointed out, no clear relationship between the performance and the
number of retrieved nearest neighbor was found for the first and the third method in
the various data sets. On the other hand, in the second and in the fourth method, per-
formance systematically deteriorates when the number of nearest neighbors retrieved
increases. This can be explained as follows. We can observe that at any specific itera-
tion of the search algorithm the distance of the current k-th nearest neighbor from the
query object increases as k increases. To illustrate this, consider Figure 6.29 which
relates the distance of the current k-th nearest neighbor from the query object and
the number of iteration of the exact nearest neighbors search algorithm, separately
for K = 1,3, and 10. Observe that these distances for £ = 1 are systematically below
those for £ = 3, and these are systematically below those for £ = 10. In case of the
second method, this means that the higher k, the larger F(O,, OF), so more iterations
should be executed before that it goes below the approximation threshold. On the

other hand, in case of the fourth method, at each iteration of the nearest neighbors
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Figure 6.29: Average trend of the distance of the current k-th object from the query
object during the exact nearest neighbor search execution in HV1

algorithm, the query radius is set to the distance between the query and the current
k-th nearest neighbor. This means that a higher k£ systematically results in bigger
query regions. While searching, the set of data regions is fixed so the bigger the query
region, the higher the proximity of specific data and query regions. Consequently, a
systematically higher proximity has a greater chance of exceeding the approximation

threshold, thus more data regions are accessed.

6.10.3 Global considerations

Summarizing, the approximation methods that we have proposed give moderate im-
provement of performance for range queries, while very high improvement is obtained

for nearest neighbor queries. The method that offers the highest performance is the
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second one, however it can only be used for nearest neighbor queries. On the other
hand, the fourth method offers similar, even if slightly worse, results for nearest
neighbors queries, and it can also be used for range queries. The improvement of
performance of the third method also arrives up to two orders of magnitude, but it is
always below that of the other two. The first method can hardly be compared with
the others given its very low performance. The (minor) drawback of the second and
the fourth methods, is that they require to pre-compute, store, and handle distribu-
tion functions (both second and fourth) and density functions (the fourth). However,
as discussed earlier, this overhead can be easily handled. The first and the third
methods do not need any pre-analysis of the data sets and do not require any other
storage overhead, however their performance is worse that that of the other two meth-
ods and they are also more difficult to be used since, as we said when we discussed in
details their results, there is not a clear dependency between the threshold and the
improvement of efficiency in the various data sets, when k£ varies. In conclusion it
appears that the most promising method is the fourth one, since it offers very high
performance for nearest neighbor queries and it also does a good job in case of range

queries.

6.11 Comparison with other techniques

In Section 5.3 we have described the most significant approaches for approximate
similarity search, which belong to the category of algorithms reducing the examined
result set [AM95, AMN'98, PAL99, PL99, CP00]. In this section we make some
performance and qualitative comparisons of our proposed techniques with these tech-

niques.
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Notice that a rigorous performance comparison cannot be assessed by using the
performance figures reported by the articles describing these techniques. In fact, typ-
ically different data sets were used for the specific experiments, different underlying
access methods were used, in some cases the efficiency was measured by consider-
ing the computational complexity in terms of floating point operations, and different
measurements for determining the accuracy were performed. However we are able to
make some informal comparison anyway. For what concerns the efficiency, the im-
provement provided by these techniques is generally lower than that provided by our
techniques. Specifically, no other techniques offer improvement of efficiency analogous
to that offered by our best techniques, namely the second and the fourth proposed
approaches. For what concerns the accuracy, given that some of these methods used
as indication of the accuracy the relative distance error, whose use we have contested
in Section 6.4, we have also performed some preliminary tests using it, to have similar
accuracy figures, and our results confirm that the trade-off between improvement of

efficiency and loss of accuracy is generally more advantageous in our cases.

The behaviour of our algorithms is more general than the other techniques. We
offer wider applicability since our techniques were defined for generic metric spaces
and some of them can be used both for nearest neighbors and range queries. In the

following we discuss specifically the limits of the other techniques.

The technique for nearest neighbor searching using BBD trees (see Section 5.3.3
and [AMNT98]) can only be used with data represented in vector spaces and distances
measured by using functions of the Minkowski family. Its performance depends expo-
nentially on dim. As a consequence the algorithm can be practically used when the

vector space has number of dimensions in the range from 2 to 20. For vector spaces
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with higher dimension this approach suffer from the dimensionality curse.

The technique for approximate range queries using BBD trees (see Section 5.3.4
and [AMO5]), solves the counting version of the range search problem in vector spaces
when distances are Minkowski distances. Specifically it can only be used to count or
compute the weight of objects contained in the result set of an approximate range
query. It does not retrieve the set of objects qualifying for the approximate range
query. The counting problem is generally easier to be addressed than the problem
of obtaining the set of objects qualifying for a range query, since it might be solved
without accessing the, otherwise needed, leaf nodes of the tree, where pointers to real

objects are stored. Performance of this algorithm is moderate.

The techniques based on the angle property (see Section 5.3.5 and [PAL99, PL99])
are only able to answer to nearest neighbors search in vector spaces and Minkowski
distances. The approach described in [PAL99], in its original definition, cannot be
tuned to trade performance with quality of results, in fact it does not use any ap-
proximation parameter that can be used by the user to chose the desired degree
of approximation. The performance obtained by these algorithms is generally low

compared to ours.

The PAC nearest neighbor algorithm (see Section 5.3.6 and [CP00]) can be used in
generic metric spaces. However in its original definition it is limited to the case of just
a single nearest neighbor search and fails to handle both generic nearest neighbors
and range queries. It offers moderate performance, limited to the case of one nearest

neighbor search.

Summarizing, with the exception of the PAC nearest neighbor searching tech-

nique all other techniques can only be used in vector spaces and distances should be
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measured using functions of the Minkowski family. In addition all of them, with the
exception of the technique for approximate range queries using BBD trees, can only
be used for nearest neighbors queries and in some cases just for one nearest neighbor
queries. To the best of our knowledge, there are no techniques that support at the

same time range and nearest neighbor queries in generic metric spaces.
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Chapter 7

Conclusions

In this thesis, we have dealt with the issue of approximate similarity search in metric
spaces. Even though there are several existing access methods that aim at increasing
performance of similarity search, current technologies cannot be considered satisfac-
tory and the issue of approximate similarity search has emerged as a relevant research
topic. This approach offers higher performance at the price of imprecision in the re-

sults.

In its more general definition, similarity search only needs a similarity function
to be defined in order to compare data. Metric spaces are thus very suitable as a
framework for this problem. Contrary to other formalizations (for instance vector
spaces), metric spaces do not pose any restriction on the possible representation
of data. They only require that distance functions satisfy the metric postulates:

symmetry, positiveness, reflexivity, and triangular inequality.

In the thesis we defined four new approaches for approximate similarity search in
metric spaces. In addition, since one of the techniques is based on the measurement
of the proximity of ball regions defined in metric spaces, we have also proposed some

heuristics to compute this proximity efficiently and accurately.
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7.1 Approximate similarity search in metric spaces

We have investigated techniques that relax the problem of similarity search allowing
higher performance to be achieved at the price of some imprecision in the result
sets. Our analysis shows that imprecision can be effectively controlled, while still
guaranteeing very high performance compared to search algorithms on traditional
access methods for similarity search. We conclude that approximate similarity search
may represent a valid solution to the intrinsic inefficiency of the similarity search
problem.

We have proposed and extensively tested four different techniques. All of them
were implemented as search algorithms on M-Tree [CPZ97] access methods. How-
ever, given their generality, applying them to other tree search structures would be
straightforward.

We have specified a number of measurements to assess the tradeoff between the
speedup achieved and the quality of approximation. Experimental results on real-life
data files are very promising, and efficiency improvement of two orders of magnitude
has been achieved for acceptable approximations.

The performance and accuracy of our techniques, especially that of the strategies
based on the exploitation of distance distribution (see Section 6.7) and proximity (see
Section 6.9), are higher than those obtained by other approximate similarity search
techniques proposed in the past (see Section 5.3). In addition our techniques are more
flexible. In fact, they are defined for metric spaces, which also includes the case of
vector spaces, and can be used both for nearest neighbors queries and range queries.
As far as we know, there are no other techniques that can be applied at the same

time to range and nearest neighbors queries. Most existing techniques can only be
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applied to nearest neighbors search, and in some cases to a single nearest neighbor

search.

7.2 Proximity of metric ball regions

We have also proposed techniques for the efficient and effective estimation of the prox-
imity of metric ball regions. The approximate similarity search approach proposed,
that gives the best performance relies on this measurement.

The proximity of two ball regions was formalized, using a probabilistic approach,
as the probability that a random object belongs to the intersection of the two ball
regions. Given the computational difficulty of exactly evaluating the proximity, some
heuristics were defined that relax the original problem in such a way that a very
efficient and accurate estimation was guaranteed.

In accordance with our objectives, the methods proposed are flexible and only
require that the distance functions are metric. The effectiveness of the methods
is high and depends only on the overall distance distribution. The computational
complexity of the techniques proposed is linearly proportional to the granularity of
distance distribution samples, thus it is also applicable at run-time. The storage
overhead for maintaining the distance distribution functions needed are low. Since
our methods only assume the generic metric postulates, our results are automatically
valid for the important class of vector spaces.

We have also shown that the precision of proximity evaluation is determinant for
the accuracy of the approximate similarity search algorithm. In fact, in terms of effi-
ciency and accuracy, the performance of proximity based similarity search algorithms

using a trivial measurement of proximity is much lower than using our approaches.
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7.3 Future directions

Many issues in approximate similarity search remain to be investigated. We have
proposed a general framework that can be used in all applications where data are
represented in a metric space and we have applied some objective measures to assess
the accuracy and efficiency of the approaches proposed. However, different appli-
cations may have different requirements in terms of efficiency and accuracy. For
instance, in image database systems, image similarity is highly subjective and the
image similarity search application has low criticality, therefore missing some images
in the results set is not a big problem. On the other hand, other applications such
as for instance, stock quotes analysis or DNA sequences retrieval, have well defined
ways to measure similarity between objects, and the accuracy of the result set might
have a high impact. Approaches that take into account application considerations
need to be designed using ad-hoc techniques. Their performance should be tested by
using application-driven measures.

Incremental approximation techniques should also be investigated. The techniques
that we have developed cannot incrementally use results obtained in previous queries.
After a query has been processed, if the user wants to refine it (i.e. approximate
less), a new query must be executed using the new approximation parameters, since
it is currently not possible to exploits results obtained in the previous sessions. The
possibility of incrementally reusing previous results would be very important and
useful in highly interactive systems.

It would also be interesting to investigate how approximate similarity search algo-
rithms can be used when processing complex similarity queries involving combinations

of several similarity predicates. This is the case for instance of systems that perform
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multi-feature searches, where similarity with respect to several features is evaluated
at the same time in the same query.

We have also defined techniques for efficient and effective estimation of the prox-
imity between ball regions and we have applied it as a basis for an approximate
similarity search algorithm. However, other applications can benefit from this mea-
surement. As an example, we can consider node allocation strategies, used to decide
what is the best way to allocate nodes on the disk in order to have higher search
performance, or partition strategies, that can be used to decide what is the best way
to partition entries of a node when a split has to be performed. In both cases, the
probability that two regions will be accessed together during query execution can
help to take an optimal decision. This probability can be inferred by using the prox-
imity measurement. Investigating other applications where the measurement of the
proximity can be exploited and refining the techniques for computing it accordingly

would also be an interesting line for future research direction.
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