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Chapter 1

Introduction

Computer vision has become an important and growing field of research in recent years. While
related applications are manifold, especially human-machine interaction is an important part of
nearly all technical devices and as such has received a lot of research attention. Generally, the
interaction should be intuitive and comfortable in order to be accepted by the user and potential
customers. Computer vision is one of the key techniques to realize user-friendly interfaces
as for example gesture recognition because it enables a natural and wireless interaction by
observing the user’s gestures. The user does not need to learn the handling of specific input-
devices such as mouse or keyboard and is free to move. He can simply use his arms or his
hands to intuitively interact with the machine.

Computer vision systems normally consist of a whole pipeline of image processing opera-
tions in order to extract the required information from video images. This work is dedicated to
one of the first processing steps, the so calledsegmentationof images. Usually, segmentation
denotes the distinction between different parts of an image, for instance different objects in a
scene. Gonzalez and Woods in [GON92] wrote:

”Segmentation subdivides an image into its constituent parts or objects.” (p. 413).

Depending on the specific goal of respective applications, the segmentation results are utilized
to distinguish between relevant and irrelevant image content. Consequently, the amount of
image data that has to be processed in further processing steps is reduced enormously. In the
context of human-machine interaction, segmentation often denotes the recognition and sepa-
ration of humans within natural environments. More generally, this task is often referred to as
”figure/ground” separation [BAL82]. Since the beginning of image processing and computer
vision, segmentation and especially figure/ground separation has been and still is an important
part of nearly any image processing application. Based on the regions of interest that have
been determined by the segmentation phase, further processing steps may follow, which for
instance extract more detailed information.

As one of the first processing steps, image segmentation is crucial for the performance
of the whole application because further processing steps have to rely on the results of the
segmentation phase and consequently on their quality. Thus, Gonzalez and Woods recommend
in [GON92]:

”[...] considerable care should be taken to improve the probability of rugged seg-
mentation.” (p. 413).
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6 Chapter 1: Introduction

In order to achieve a stable segmentation, most systems have a couple of restrictions. For in-
stance, the background, in front of which the segmentation is performed, may not be allowed
to consist of arbitrary colors. Furthermore, many systems need specific expert knowledge,
e. g., about the appearance of objects, at least at the start of the system to work properly.
Despite these aspects, computer vision systems are strongly depending on illumination condi-
tions. Especially varying illumination may cause severe trouble for the segmentation phase.
As a consequence, many approaches are only suitable for indoor applications.

Basically, there are two different approaches to figure/ground separation. The first ap-
proach utilizes some kind of a priori knowledge about objects and their appearance. The
second needs information about the background and determines objects by subtracting the
known background from current images. Background subtraction has the advantage that as-
sumptions about the appearance of objects, e. g., about skin color or markers that have to be
worn, do not have to be made. A disadvantage, however, is that background changes caused,
e. g., by varying illumination conditions have to be distinguished from actual objects. More-
over, the background itself is required to be static for this approach. Nevertheless, background
subtraction seems to be preferable because it allows for more flexible applications and does
not depend on appearance.

In this work, a framework for typical image segmentation tasks in applied computer vision
systems is presented. Basically, our approach is based on background subtraction and extracts
contour pixels of objects of interest in front of known background. It extends previous tech-
niques and tries to overcome typical problems as for instance changing illumination. Back-
ground subtraction approaches are based on the assumption that changes only occur where
new objects have moved into the scene. However, often this assumption is problematic be-
cause several disturbing effects as for example changing illumination conditions may also lead
to severe changes in the image. Moreover, sometimes the background may slightly change, for
instance a chair may be moved or a door may be opened. In order to cope with these effects
and to distinguish between them and actual objects, we employ a multi-level segmentation
structure. It consists of different processing levels which are intended to overcome these ty-
pical problems. As a consequence of the background subtraction approach, our segmentation
system is restricted to scenarios, in which video cameras are mounted at fixed positions. The
background that can be seen by the cameras is required to be more or less static, i. e., moving
objects are not allowed except of the objects of interest. As these circumstances occur very of-
ten in applied computer vision, we consider this restriction to be not too constrictive. However,
our system is not applicable in the context of robot vision systems, in which robots augmented
with cameras autonomously navigate through their environment. But even in a scenario with
fixed cameras, the background is not totally static and may change within one or more parts of
the image from time to time, for example a chair may be moved. By integrating fuzzy logic
and pattern recognition methods, these permanent changes in the background are recognized
by our system, if they endure for a predefined time. Moreover, formerly learned situations can
be recalled, if it is appropriate. This is the reason, why we relax the restriction of a ”static” to a
”more or less static” background. Due to the multi-level segmentation approach, the system is
able to cope with varying illumination conditions smoothly. Noise and other disturbing influ-
ences as for example aliasing effects of the cameras can be removed almost completely. These
are key problems of many segmentation techniques. Internal feedback mechanisms between
the different processing levels within the multi-level structure allow for a continuous learning
and updating of background knowledge and enable the system to autonomously adapt to chan-
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ging background content and varying illumination conditions. The multi-level segmentation
system is explained in chapter 2.

Our segmentation algorithm aims at finding pixels constituting the contour of the objects
of interest in the image. The obtained contour pixels usually do not yield a closed contour
in the sense of a4- or 8-neighborhood relationship of pixels, which would easily lead to a
complete spatial separation of different objects. Normally, the contour contains a lot of gaps,
so further processing steps are necessary to close these gaps and to obtain a closed contour.
This is a typical problem for almost every segmentation algorithm. Within our segmentation
framework, we present a new approach to polygonal contour approximation that is adjustable
as far as the accuracy of the approximation is concerned and that works in realtime. The
contour approximation allows a strict distinction between background regions and the objects
of interest. Moreover, the shape is considered to be an important feature of objects, so the
determined contour may be incorporated within further pattern recognition processing steps.
Our new approach to polygonal contour approximation is introduced in chapter 3. Finally,
chapter 4 is dedicated to examples of applications. In chapter 5, a summary and a conclusion
is drawn. Fuzzy logic methods are utilized to cope with the typical fuzziness in image pro-
cessing systems, which results from noise and other disturbing influences. Moreover, fuzzy
rule bases are utilized for classification purposes. Thus, a brief course in fuzzy logic is given
in appendix A.

1.1 Survey of the System

In order to compare the introduced multi-level segmentation system with the state of the art,
we first of all present a brief survey of the system, so the relevant fields of research become
obvious.

The usage of the presented segmentation system can be divided into two different phases:

• An initial learning phaseand

• theapplication phase.

During the initial learning phase, the system analyzes the background and acquires information
about it. During the application phase, the system has sufficient knowledge to perform the
segmentation task.

The system utilizes a hierarchical multi-level processing approach to yield the segmenta-
tion results. One of the key ideas of the system is to have feedback mechanisms enabling each
processing stage to control and adjust the underlying processing stages. Thus, the system has
the following sequence of processing:

1. Low-Level Processing Stage
The low-level processing stage performs a pixelwise classification of the image content.
For this purpose, color and edge information of current video images is stored in fuzzy
knowledge bases and compared with the initially learned background content. As a
result, contour pixels are determined which ideally belong exclusively to new objects.
The details are explained in section 2.1. However, sometimes pixels are classified as
”foreground”, although they actually belong to the background.
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Figure 1.1: For each mid-level box, different low-level knowledge bases are administrated in order to cope with

different background content.

2. Mid-Level Processing Stage
The goal of the mid-level processing stage is the independent determination of back-
ground regions. Consequently, wrongly classified pixels in these regions can be masked
out. For this purpose, the image area is subdivided in small rectangular boxes. In ad-
dition to the information which is available pixelwise for each box from the low-level
segmentation, further similarity measures are employed that are able to detect changes
in the box area compared to the initially learned background. As a result, each box is
classified either as ”background” or ”foreground”. The details of the similarity measures
and the employed fuzzy pattern recognition system are explained in section 2.2.

Moreover, several low-level knowledge bases can be administrated for each box area
in order to cope with different background content. The system is able to determine
automatically which low-level knowledge base should be used for the respective image
content. In the case of a permanent change in the background, new color and edge know-
ledge bases are initialized and added to the set of already existing low-level knowledge
bases. The reoccurrence of a previously learned background can be recognized facilita-
ting the access of respective knowledge bases. This scheme is illustrated in figure 1.1.

3. High-Level Processing Stage
During the high-level processing stage, application-dependent knowledge is incorpo-
rated to determine the presence and position of a foreground object. For this purpose,
the objects within the image are determined as connected components of ”foreground”
boxes as classified by the mid-level processing stage. Properties of the expected fore-
ground objects such as their size, their shape, or just the number of objects can be
incorporated in order to determine the final objects of interest and to remove further
dispensable or wrongly classified foreground pixels. The high-level processing stage is
explained in section 2.3.

4. Feedback Mechanisms
The results of the high-level processing stage are passed back to the mid-level stage,
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Figure 1.2: Principal structure of the segmentation system.

where parameters are adapted or changed depending on the results. The mid-level pro-
cessing stage chooses suitable low-level knowledge bases or instantiates new knowledge
bases, if appropriate. The low-level processing stage finally performs the pixelwise de-
termination of contour pixels of the recognized objects. Moreover, information about
the determined background regions is learned adaptively and integrated into the know-
ledge bases in order to maintain sufficient knowledge about the background. The details
of this technique are explained in section 2.4.

The processing stages and their interfaces are illustrated in figure 1.2. In chapter 2, the
processing stages are explained in more detail.

1.2 State of the Art

The definition and the meaning of ”segmentation” differs depending on the respective publi-
cation and its context. Mostly, segmentation denotes the distinction of relevant and irrelevant
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image content, for example the separation of a person from the background in video images.
A good survey of early used techniques is given in [HAR85] from 1985. More recent surveys
can be found in [SKA94] or [SON98]. In this work, segmentation denotes the figure-ground
separation as described in [BAL82].

The interaction of humans with machines and computers gains more and more interest. A
significant part of interest is dedicated to the analysis of human gestures and motion. Gene-
rally, systems for sensing and processing of movement can be divided inactive sensingand
passive sensing[MOE01]. Active sensing employs devices, which are attached to the subject
of interest or its surroundings. These devices generate or receive specific signals, which are
used for the recognition process. Active sensing normally allows for simple processing and is
especially suited for well controlled environments. Passive sensing incorporates mainly natu-
ral signal sources such as visual light or more generally other electromagnetic wavelengths.
The usage of markers which are attached to the subject of interest is an exception that may
simplify the segmentation and recognition process [MOE01]. Computer vision techniques can
be considered as one of the key approaches to passive sensing. The attachment of markers on
the one hand may be inconvenient or on the other hand impossible depending on the respec-
tive applications. Realizing a stable and reliable recognition of the objects of interest, which
is moreover convenient and does not require any manually performed adjustments, is thus an
important aspect for computer vision systems.

In a recent work, Moeslund and Granum [MOE01] have reviewed more than 130 publica-
tions on computer vision-based human motion capture systems. Our system is not restricted
to the recognition of humans, which is subject of the survey, but can be utilized successfully
for this kind of applications as shown in chaper 4, where several applications of our system are
presented. Moreover, most of the problems which are related to the segmentation of humans
are applicable for the segmentation of arbitrary objects of interest as well, at least, if a back-
ground subtraction approach is utilized. Within the survey, the following typical assumptions
related to appearance are listed in ranked order according to their frequency. As far as the
environment is concerned:

1. Constant lighting

2. Static background

3. Uniform background

4. Known camera parameters

5. Special hardware

As far as the subject of interest is concerned:

1. Known start pose

2. Known subject

3. Markers placed on the subject

4. Special colored clothes

5. Tight-fitting clothes
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Considering these assumptions, our system is independent of most of these aspects. We
explicitly take into consideration that the lighting may change during the application of our
system. The assumption ”static background” applies to our approach. However, we aim at
minimizing any negative impact of this restriction by allowing and automatically recognizing
permanent changes. Our system does not have to know any camera parameters, the image data
is taken as it is. Features of the background are extracted and learned automatically. We do
not require any ”special hardware” as for instance IR-cameras. Assumptions concerning the
objects can be specified optionally, for example the number of expected objects or assumptions
about their size. The assumption ”known start pose” is not applicable for our system because
we do not perform any pose estimation, for which this assumption could be necessary. It is
partly the same for ”markers placed on the subject”. On the one hand, the system does not
need any markers to determine the user in front of the background, on the other hand, our
system does not interpret the user itself in the sense of determining the position of for example
the hand, the head or the shoulders. Principally, there are no assumptions as far as the clothes
of the user are concerned. However, depending on the subsequent application, for example the
recognition of pointing arm gestures as presented in section 4.2, it may be necessary that the
user wears ”tight-fitting clothes”. For the determination of the position of the user in front of
the background – the result of our system – it is not required.

In their survey [MOE01], Moeslund and Granum identify mainly two approaches to figure-
ground segmentation in computer vision systems: the use oftemporalor the use ofspatial
data. They introduce two subclasses for the temporal data case, namelysubtractionandflow.
Subtraction generally means the performance of a kind of pixelwise subtraction of images,
either of consecutive images or of a static background image from current video images. If
the scene is static – a property that is mostly assumed for this approach – a background image
can be recorded and used as a reference image for the subtraction [NAK98]. The continuous
updating of the background image data is also a common approach and is mostly realized
using statistical approaches, e. g., [HAR98, AZA96]. The second subclass, namelyflow, aims
at identifying coherent motion of points or features between image frames. Because of the
obvious membership of our approach to the first subclasssubtraction, we do not go into details
of the second subclass.

The distinction between different levels of image processing are very common in computer
vision systems. Ballard and Brown in [BAL82] characterize high-level processes ascognitive
processes, geometric models, goalsandplans. Moreover, they wrote

”Goals and knowledge are high-level capabilities that can guide visual activities,
and a visual system should be able to take advantage of them.” (p. 2)

As low-level capabilities they name

”[...] for example, our ability to extractintrinsic imagesof ”lightness”, ”color”
and ”range”.” (p. 3)

However, Ballard and Brown consider segmentation, the figure/ground discrimination, as a
mere low-level processing capability, while our system also incorporates high-level knowledge
in order to solve the segmentation task. Background subtraction is also treated as a filtering
method in the context of ”early processing”. Marr in [MAR82] developed a model for the
decomposition of visual processing into subsequent feed-forward steps, including low, inter-
mediate and high-level stages. Moreover, he presented a rough correspondence between these
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stages and areas in the human cortex. However, a sharp distinction between low, intermediate
and high-level functionalities is difficult and even the assumption of a hierarchical organiza-
tion of the human perception of vision is questionable because partial outputs from low-level
processes initiate high-level processes, and, vice versa, the outputs of high-level processes feed
back to influence the low-level processing [MCC86, LEE98].

According to this notion, systems forimage retrievalhave been designed, which employ
multi-level structures. For example, a multi-level segmentation approach is used in [DUY01]
and [XU00], where the authors try to narrow the gap between low-level features such as color
or shape information and the semantic level, which models the way how people describe ob-
jects. A multi-level approach is applied in order to find and merge homogeneous regions as far
as color properties are concerned. However, this method is intended to be employed in image
retrieval systems and is not at all comparable to our approach because segmentation itself aims
at finding and separating objects in arbitrary scenes and images in this context.

The gap between low-level, maybe even pixelwise obtained information and high-level
knowledge and concepts has to be narrowed by nearly all computer vision-based applica-
tions. In [KIL94], which presents an architecture for an adaptive video-based traffic sensor,
the low-level processing is followed by the determination of primitives such as lines or regions.
Afterwards, the high-level processing stage performs a scene interpretation in order to detect
and track cars on a highway. In our context, the work of Kilger [KIL94] is especially inter-
esting because within his image processing concept an adaptive regulation of parameters is
performed, for example parameters of the segmentation stage like the threshold are regulated
adaptively. The segmentation is performed as background subtraction using a reference image
that is continuously updated in the recognized background regions.

Adaptive regulation of parameters and adaptiveness to changing image content in general
is an important aspect for computer vision systems. Especially in the 1950’s and 1960’s, a lot
of research has been done in the field of adaptive regulation. In his survey, Weber [WEB71]
characterizes three typical properties of an adaptive system:

1. Identification
Continuous measurement of the current state of the system.

2. Decision
Comparison of the real state of the system as measured by the identification and the
desired state, and a decision and choice of appropriate actions in order to reach the
desired state.

3. Modification
Modification of the regulator based on the decision that has been made in the decision
phase.

Adaptiveness plays an important role in computer vision systems, mostly justified by chan-
ging illumination conditions. Significant improvements with adaptive approaches have for
instance been realized in [TIA98] where outdoor video images are processed for plant detec-
tion. Compared to a static segmentation approach, the number of correctly classified object
pixels improved between 26.9 and 54.3 % under different weather conditions. ThePFinder
system [AZA96, WRE95] adaptively updates background statistics in order to keep track of
changes. Fuzzy logic has found particular interest in recent years as far as image processing
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[BEZ99, TIZ98], adaptive control [KAN94], or ”intelligent” systems in general [YAG92] are
concerned. Fuzzy logic enables the specification of rule bases using linguistic terms and is
thus especially suited for transforming human decision making processes into algorithms. A
brief introduction in fuzzy logic is presented in appendix A.

Our segmentation system requires a more or less static background. For computer vi-
sion systems, we consider this restriction as unproblematic because video cameras are often
mounted at specific fixed positions. However, because of this reason our system is not appli-
cable in the field of robot vision, where video cameras are integrated in robots, which move
through their environment.

A lot of research in recent years has been focused on segmentation in the context of the ISO
MPEG-4 standardization where moving objects can be coded separately from the background
within the video stream [MPEG4]. A survey on recent techniques as far as coding-oriented
segmentation is concerned can be found in [NER98]. Because of the specific field of applica-
tion, the extraction of the moving object has not to be as exact as it may be required within
computer vision applications. Moreover, these techniques often incorporate motion estimation
and consequently depend on the quality of the results of this estimation and their underlying
models. Thus, segmentation algorithms in the context of the MPEG-4 standardization are not
comparable to our approach.

Another large field of research is the field ofimage understanding, i. e., the recognition
of objects within images, which is closely related to the field ofimage indexingand image
retrieval from large databases. In these kinds of applications, segmentation mostly aims at
detecting boundaries between different objects and second at recognizing objects, for exam-
ple for indexing purposes. As far as image retrieval is concerned, comprehensive surveys
of the state of the art can for example be found in [HUA97, RUI99]. Proposed segmenta-
tion algorithms in this context for instance use color segmentation including clustering based
on histograms [PUZ99], minimum volume ellipsoids, fuzzy c-means or Gibbs random field
(GRF) modeling in a Bayesian framework, to name just a few. A detailed review on gray and
color image segmentation methods can be found in [PAL93]. In order to achieve meaningful
results, color- and edge-based segmentation results are combined in this context as well. In
[SAB97], a method for color image segmentation and edge linking is proposed. The basic idea
is to identify contiguous regions by color segmentation and to split and merge regions. Then,
a consistent and reasonable result is obtained referring to the edge map. This method is not
intended to segment moving objects and the segmentation time for one image is specified ”a
few minutes”. Because of the often insufficient reliability of just one approach, combinations
of different segmentation techniques are widely spread in literature. For instance, the combi-
nation of color and shape information has been employed for the mere retrieval of image data
from large-volume image databases [JAI96]. In [DUB93], good results were achieved by com-
bining edge detection and a split-and-merge paradigm with motion segmentation in order to
find driving cars. The combination of color and texture features has also been used to improve
the segmentation and boundary detection in natural images [KUB98].

Within the mid-level processing stage of our system, the similarity between initially learned
background and current video images for box-sized regions is determined. This task seems to
be closely related to typical image retrieval functions because the similarity between images
has to be determined for indexing and retrieval purposes as well. However, the specific aim is
different. While image retrieval applications try to recognize objects, even if they are partly
occluded or twisted, we aim at recognizing even small changes, which may indicate the en-
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trance of a foreground object into the box region. Because of this reason, publications from
this field of research cannot be applied in our context. An extensive review on measures of
similarity for different fields of application is presented in [COX95]. A survey on distance-
based functions such asHausdorff-based or theroot of the mean square errordistance, which
are utilized for image comparison purposes, is presented in [DIG99]. A general introduction
to pattern recognition can be found in [DUD00].

Because of the variety of known segmentation methods and in order to compare the intro-
duced system to known techniques, a concentration on methods which have similar require-
ments and methods is reasonable:

• static background

• automatic learning of background information

• segmentation of moving object in front of known background

• adaptive to changes in background

• suitable for interaction purposes

• combination of color and edge information

• multi-level structure.

In [BIC94], the segmentation task is identical. A statistical approach on object and back-
ground probability is utilized to perform the segmentation. In contrast to our approach, the
color distribution is calculated for the whole background [BIC94] or at least for squares of the
image [DUB93], whereas our technique collects color information for each pixel separately.
A closely related work to [BIC94] can be found in [AZA96] and [WRE95]. The described
PFinder andSPFindersystems model the scene as a set of distinct classes. The person is
represented as a set of connected blobs, having a spatial and color Gaussian distribution as
well as a support map that indicates for each pixel to which class it belongs. Adaptiveness
is realized by recursively updating the background statistics. In contrast to our approach, this
technique collects information about the color distribution of the foreground objects as well.
This approach may be problematic, if the appearance of objects changes often. Moreover, ob-
jects consisting of several different colors may be difficult to model. InPFinderandSPFinder,
the classification of pixels is done by measuring distances in the color space accomplished by
spatial priors, as for example the spatial neighborhood of pixels, and connectivity constraints
of the blobs. Because of the statistical approach, these systems may not be able to handle
changes that do not fit into the statistical assumptions, even if they have occurred before and
thus could be known. As a consequence, we should utilize a more flexible technique that
is able to store detailed color information and to administrate several different background
situations.

In some computer vision applications, the segmentation phase is intended to find skin co-
lored regions, which can be interpreted for example as face or hand regions [SAX96, STA95,
TER98]. However, in the context of pattern recognition, which often follows the segmentation
phase, the segmentation may already be part of the feature extraction, for example by working
out areas of human skin color. Thus, segmentation, although performed in almost every image
processing system, depends heavily on the respective application and its specific realization.
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For this kind of systems, our segmentation system may be utilized for localization purposes.
Afterwards, the search for human skin color may be performed within the prelocalized areas
nonetheless, but this is not part of our framework.

1.3 Contribution

In section 1.2, we have shown that substantial effort has been spent to cope with the fi-
gure/ground separation problem since the beginning of computer vision. However, the con-
crete techniques and methods have always been adapted to state of the art computational power
and capabilities. Kilger [KIL94] first of all determines the number of processing instructions,
which can be spent for each pixel in order to realize the recognition of cars in video images at
a sufficient frame rate. In 1994, he calculated 11 instructions per pixels for a state of the art
Intel i486DX CPU (25 MHz) and deduced that segmentation under these circumstances is a
difficult task, which it certainly is.

Considering a typical PC equipment in 2002 with an Intel Pentium IV easily topping
2.5 GHz and main memory of approximately 1 GB and more, the technical possibilities of
standard hardware have enormously improved and as far as it can be foreseen today, they are
going to continuously improve in future. The presented system tries to exploit the capabilities
of current hardware and offers the user a technique that provides reliable results with as less
restrictions as possible in a convenient manner.

The aim to obtain reliable results is achieved by extending the well-known background sub-
traction method in different ways. Instead of keeping just one reference background image,
our system introduces a new methodology to store and recall voluminous histogram and edge
information for each pixel separately. Fuzzy logic techniques are utilized in order to admi-
nistrate and apply the collected knowledge. A second, so called mid-level processing stage is
introduced that subdivides the image area in rectangular boxes. A pattern recognition system
is employed to detect changes in the box areas partly independent of the first processing stage.
The presented similarity measures are designed to be insensitive against changing illumina-
tion conditions. One of the basic concepts of the system is to collect information about slight
changes in the same knowledge base and about severe changes in separate knowledge bases.
Having several knowledge bases for each box area, an appropriate one for current situations is
chosen by the pattern recognition system on the basis of the similarity measures.

The multi-level structure enables the incorporation of application-dependent knowledge
concerning the aim of segmentation. The usage and installation of the system itself is simple
and convenient. Due to the self-learning approach, the cameras just have to be mounted at the
desired positions, the system then automatically acquires necessary background information
and is able to perform the figure/ground discrimination already after a few seconds. By incor-
porating adaptive control mechanisms, the system is able to automatically adjust parameters
and thus to improve continuously. The unpleasant restriction of having a static background is
considerably weakened by allowing and automatically recognizing permanent changes in the
background. Former situations are stored and can be recalled, if this is appropriate. Further
restrictions such as a uniform background or users wearing specific clothes are not required.

Besides this new interpretation of a multi-level segmentation system, a new approach to
polygonal contour approximation is introduced that works in realtime and is adjustable as far
as the accuracy is concerned. Moreover, we will show that our approach works geometrically
more exact than other state of the art algorithms.
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1.4 Scenarios of Application

The scenarios, for which we consider the segmentation system to be suitable, can be characte-
rized by the following assumptions. As a major requirement, the background is expected to be
more or less static. As we have already explained in section 1.2, this restriction is considerably
weakened by allowing and automatically recognizing permanent changes in the background.
However, the cameras have to be mounted at fixed positions. Consequently, zooming, moving,
or rotating of the cameras is not allowed during the application phase. Otherwise, a new initial
learning phase has to be started or the system must be given a short while until the permanent
background change is recognized automatically.

The segmentation itself, i. e., the determination of contour pixels of foreground objects,
is realized as a kind of background subtraction between current video images and learned
background content. In order to work properly, the foreground objects have to differ from
the background. However, incorporating several color channels, it is rather unlikely that large
parts of a foreground object are nearly identical to the background. Nevertheless, in front of a
uniformly colored background a uniformly colored object may not be recognized sufficiently
well as far as the mid-level similarity measures are concerned. As a second aspect, the seg-
mentation also incorporates edge information, enabling the system to partly eliminate failures
of the color segmentation or vice versa. Nevertheless, the edge segmentation may partly fail,
if the contrast of the video images is low, for example because of a dimmed illumination.
Another reason for insufficient results of the edge segmentation may be a smooth gradient be-
tween foreground object and background, causing a gradient-based edge operator not to detect
any edge at all. This may be the case, when objects move very fast leading to a blurred appea-
rance in the image. Both color and edge segmentation are intended to supplement each other
in order to achieve reliable and stable results. Nevertheless, the above listed aspects have to be
taken into consideration because the occurrence of one or more of these aspects may lead to
failures in the segmentation system.

During the high-level processing stage, foreground objects are determined as connected
components of ”foreground” boxes. In order to work properly, we expect objects – as far as
there is more than one object – to appear disjunctively, i. e., occlusions are not recognized
by the system. Otherwise, the system may not be able to distinguish between several objects
and identify them as one. For the high-level processing stage, the distance criterion between
objects which has to be met to guarantee that they are not recognized as one object is provided
by the neighborhood relationship of boxes and consequently the size of the boxes. As far as
the contour approximation algorithm presented in chapter 3 is concerned, we mathematically
analyze the connectivity/disconnectivity criteria in section 3.7.

Another important aspect for our system is the expectation of certain movements of the
foreground objects. A still object that does not move for a predefined time is supposed to be
a permanent change of the background and is learned as ”background”. Consequently, it will
not be segmented in subsequent images until it moves again. However, the predefined time
may be chosen with respect to the scenario, so the behavior of objects can be anticipated.



Chapter 2

Multi-Level Segmentation System

In this chapter, our multi-level approach to segmentation is introduced. The system consists of
three processing levels: the low-level, the mid-level and the high-level processing stage, which
are discussed in detail.

The basic approach to segmentation of our system is to perform an extended kind of sub-
traction between a known background and current video images. A brief survey of the system
was given in section 1.1. The usage of several processing stages is principally optional. Thus,
the system may consist of either the mere low-level, the low-level and the mid-level or all
the processing stages. The basic segmentation task, the determination of foreground pixels by
analyzing differences between the known background and current video images, is performed
by the low-level processing stage. Thus, the low-level stage, if applied separately, can be em-
ployed to perform the segmentation task as well [LEU01]. The low-level processing stage is
principally comparable to the well-known background subtraction approach that is based on
the subtraction of a known reference image from current video images. However, our low-level
approach is a combination of both edge and color based segmentation, leading to significantly
more stable results than just one single segmentation approach would provide. Moreover, the
low-level segmentation utilizes color and edge knowledge bases that are able to store extensive
background knowledge, increasing the limited possibilities of a reference image enormously.

Additionally, the mid-level processing stage can be appended to reconsider the results of
the low-level stage by applying pattern recognition mechanisms to rectangular box-sized image
regions. While the low-level processing stage works pixelwise, the mid-level stage analyzes
the box-sized areas and performs an autonomous comparison between known background and
current image content. Thus, the mid-level processing stage identifies foreground object re-
gions and misclassified pixels in recognized background regions can be masked out. Moreover,
the pattern recognition system is utilized to administrate different background content. If a per-
manent change within the background is recognized by the system, the knowledge bases of the
former background content are stored and new knowledge bases are instantiated for the current
content. Due to the mid-level pattern recognition mechanisms, formerly learned background
content is recognized and respective knowledge bases can be recalled.

As a further improvement, the high-level processing stage can be applied after the mid-level
stage in order to reconsider the results of the mid-level stage based on application-dependent
knowledge. Finally, feedback mechanisms are an important aspect of the system, which allow
for a continuous adaptation of the parameters and an improvement of the results. The low-level
processing stage is explained in section 2.1, the mid-level processing stage in section 2.2, and
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the high-level processing stage in section 2.3. The feedback mechanisms are discussed in sec-
tion 2.4. In section 2.5, an evaluation of the results is performed. The suitability of our system
for multi-threaded execution is discussed in section 2.6 and the results of the segmentation
system are summarized in section 2.7.

2.1 Low-Level Processing Stage

The low-level processing stage performs a pixelwise classification of the image. For this pur-
pose, both color and edge information are utilized. In order to cope with slight changes in the
illumination, we developed afuzzy color knowledge basethat is able to store detailed histogram
information of background colors for each pixel separately. An advantage of this approach is
the possibility to continuously update background color information for the recognized back-
ground regions during the application phase of the system without losing previously acquired
background knowledge. This method realizes a steady adaptiveness to slight changes, which
may be caused for example by changing illumination conditions.

Thefuzzy edge knowledge basestores average edge information of the background for each
color channel and each pixel separately. In order to yield a final segmentation result, the in-
termediate results which are provided pixelwise by the knowledge bases are combined. Fuzzy
logic methods are utilized in order to cope with the typical fuzziness in digital image data.
The segmentation itself is realized as a kind of background subtraction, both for color and
edge information. Due to the detailed information about the background, which is provided
by the knowledge bases, the algorithm is able to determine changes within the image that are
interpreted as a moving object. The combination of color and edge segmentation yields more
reliable results than only one approach could provide because two different kinds of informa-
tion are utilized to obtain the result. As a consequence of the usage of edge segmentation,
the algorithm determines contour information of the foreground objects instead of contiguous
areas. However, we do not consider this aspect to be disadvantageous because contiguous areas
can be easily determined based on a closed contour, for instance by polygon filling [FOL94].

As already mentioned, several knowledge bases may be utilized for the same image area
in order to cope with different background content that may occur during a long period of
usage. However, slight changes within the color values that may result from varying illumi-
nation can be stored in one color knowledge base. In the case of a severe change, new color
and edge knowledge bases are additionally instantiated by the mid-level processing stage (see
chapter 2.2).

2.1.1 Color-Based Segmentation

We propose afuzzy color knowledge basethat is able to store an extensive amount of color
histogram information for each pixel separately.

Definition 2.1.1 (Fuzzy color knowledge base)

A color spaceis a setQ of NK-tuples with fixedNK . A discrete imageI is defined
by a function:

q : (x, y) 7−→ Q (2.1)
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with
(x, y) ∈ N0 × N0, 0 ≤ x < w, 0 ≤ y < h

where

w, h ∈ N : width and height of the image counted in pixels

A color valueq(~p) = (q1(~p), ..., qNK
(~p)) ∈ Q of a pixel~p = (x, y) consists ofNK

color channels, which may haveNW different discrete values.

A fuzzy color knowledge basefor I andQ is defined byNK arraysC~p,i containing
NW entries of valuesµ ∈ [0, 1] (with i = 1, ..., NK). C~p,i(j) refers to thej-th entry
of color channeli for pixel ~p (j = 0, ..., NW − 1) and is considered to be a fuzzy
membership value concerning the semantic property ”is background color”.

As an example forQ, theRGB color spaceQRGB is given by a set of3-tuples:

QRGB = {(r, g, b) | r, g, b ∈ {0, ..., 255} }.

A color valueq(~p) = (q1(~p), ..., qNK
(~p)) ∈ Q is learned by the rule

C~p,i(qi(~p)) = min(C~p,i(qi(~p)) + σ, 1) (2.2)

with
σ ∈ [0, 1] : controlling parameter

~p : pixel position~p = (x, y) with 0 ≤ x < w and0 ≤ y < h
NK ∈ N : number of color channels

i : color channel withi ∈ {1, ..., NK}.
The parameterσ affects the impact of a single occurrence of a color on the knowledge base.

During the learning phase, a sufficient number of iterations of learning has to be performed
in order to train the color knowledge base and to acquire sufficient information about the back-
ground. Figure 2.1 shows an example of learning for the RGB color space at a specific pixel
position. For the currently occurring RGB color values, denoted asr, g andb, the correspon-
ding entries are increased, depicted by the black boxes. The membership degrees are saturated
at the maximum membership degree of 1 as it is the case in the figure for theB-channel.

A previously trained color knowledge base can be employed to perform a pixelwise fuzzy
classification of a current video imageI. For this purpose, the membership values of the
semantic property ”is background color”, which are provided by the fuzzy color knowledge
base, are used to calculate the membership values of the semantic property ”is foreground
color” by employing a fuzzy ”not” operator. The membershipµc(~p) of a color q(~p) =
(q1(~p), ..., qNK

(~p)) ∈ Q for a specific pixel~p to the property ”is foreground color” is obtained
by looking up the corresponding array entries:

µc(~p) = 1− min
i=1,...,NK

C~p,i(qi(~p)) (2.3)

This method is illustrated in figure 2.2, again for the RGB color space. The currently
occurring color values, denoted byr, g and b, are looked up in the knowledge base for the
respective pixel position. The entries for the different color channels are combined using a
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Figure 2.1: Schematic example of learning for RGB color space. Black boxes denote amount of increment, the

membership degrees are saturated at the maximum membership degree 1 (B-channel).

Figure 2.2: Classification of current color values with fuzzy color knowledge base.
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(a) Original video image (b) Color-segmented visualization

Figure 2.3: Example of visualization. The original image (a) is color segmented and the result is visualized as

gray-level image in (b).

fuzzy and-operator as for example themin-function. The final result for the respective pixel
is the membership degree denoted by the gray box in figure 2.2.

Applying µc(~p) to every pixel~p ∈ I yields a fuzzy segmentation ofI. In order to remove
noise in the fuzzy results, we propose the usage of anaveraging thresholdfilter that averages
the membership values of a pixel~p and of the pixels~pi of the 8-neighborhood of~p. The
calculated average membership value is compared to a threshold and the membership value
µcolor(~p) is determined by

µcolor(~p) =


0 : 1

9
µc(~p) + 1

9

8∑
i=1

µc(~pi) ≤ υc

µc : 1
9
µc(~p) + 1

9

8∑
i=1

µc(~pi) > υc

(2.4)

whereυc ∈ [0, 1] is used as a threshold parameter.
Alternatively, for the removal of noise and small, most probably wrong classified pixel

areas aMedianfilter or morphological operators, e. g., an erosion followed by a dilation, may
be applied. For illustration purposes, the result of the fuzzy classification of an imageI can be
transformed into a gray-level image. For example, an8-bit gray-level image can be obtained
by multiplying the fuzzy membership valuesµcolor(~p) by 255 (see figure 2.3). In order to
obtain reliable segmentation results, the fuzzy color classification results are combined with
the edge segmentation explained later.

It has to be taken into account that color values that have been learned once may lose their
correctness over time. Noise and other influences may accumulate small membership values in
the array entries, which may grow to large and interfering membership values over a long time
of application. Thus, after a certain number of iterations of learning the following formula is
applied:

∀~p = (x, y) with 0 ≤ x < w, 0 ≤ y < h; ∀i = 1, ..., NK ; ∀j = 0, ..., NW − 1 :

C~p,i(j) = max(0, C~p,i(j)− ρ) (2.5)

whereρ ∈ [0, 1]. Similar to the parameterσ in formula (2.2), the value ofρ regulates the speed
of aging and dropping of the acquired knowledge. The aging of color knowledge is illustrated
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Figure 2.4: Aging of knowledge. Each entry is decreased by the given amountρ (depicted as gray boxes).

Figure 2.5: Example of color knowledge base for one color channel with two significant intervals of high mem-

bership degrees.

in figure 2.4. From each entry in the knowledge bases, a defined amount is subtracted, depicted
by the gray boxes.

We consider our approach to be more flexible than statistical approaches because com-
pletely arbitrary situations can be learned. For instance, a background pixel that is affected by
varying illumination and mainly changes between two colors can be handled sufficiently well.
The situation is illustrated as an example for one color channel in figure 2.5. The well-known
background subtraction approach which determines the average and the standard deviation of
color values would have problems to cope with such a situation because the average color value
is not within the intervals of background colors in this example, but between the two peaks.
So the average color will be classified as background by the statistical approach, although it
does not belong to the background. Our approach to simply store occuring background colors
is able to cope with such a situation by providing high membership degrees only for known
colors.

As already mentioned in chapter 1.3, we try to exploit the possibilities of state of the art
hardware resources. For example, a fuzzy color knowledge base for an image size of192×144
pixels,NK = 3 color channels andNW = 256 different color values requires approximately
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(a) Original video image (b) Edge-filtered image

Figure 2.6: Example of application ofSobeledge detection operator.

20 MB of memory. Keeping in mind that we intend to maintain several knowledge bases in
order to cope with permanent background changes, a multiple of 20 MB of memory is required
for the color knowledge bases. Moreover, increasing the image size to384 × 288 leads to a
requirement of 81 MB of memory for just one knowledge base for each pixel.

2.1.2 Edge-Based Segmentation

Basically, the edge-based segmentation works out foreground edges by a subtraction of known
background edges from current video images. For this purpose, first of all edges in video
images have to be determined.

There are a lot of well-known methods for edge detection in the field of image processing
[GON92]. Good results have been achieved by using gradient-based filter functions like the
Sobelor theLaplacianoperator. Such an edge operator is applied to each of theNK color
channels of an image separately, providingNK edge valuese(~p) = (e1(~p), ..., eNK

(~p)) for
every pixel~p = (x, y). In order to abstract from any specific edge filtering method, we assume
ei(~p) ∈ [0, 1] (with i = 1, ..., NK). ei(~p) is considered to be a fuzzy membership value of
the semantic property ”is edge”. An edge valueei(~p) = 0 indicates that there is no edge at
pixel position~p in color channeli, while ei(~p) = 1 denotes the maximum edge value. Such a
general representation can be achieved by scaling. If the edge operator for example yields the
discrete values̃ei(~p) ∈ {0, ...,M} ⊂ N, the formula

ei(~p) =
1

M
ẽi(~p) (2.6)

will perform the transformation into the required interval[0, 1]. An example of application of
an edge detection operator (in this case theSobel-operator) is shown in figure 2.6.

As already mentioned, the edge-based segmentation is realized as a background subtraction
approach comparable to the color-based segmentation. During the initial learning phase, edge
knowledge is collected. Afterwards, during the application phase, the contour of foreground
objects can be determined by subtracting known background edges. Moreover, there may be
background edges that are occluded by foreground objects leading to significant differences at
these pixel positions as well. In order to determine contour pixels of foreground objects, we
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store and maintain two types of information for each pixel in so calledfuzzy edge knowledge
bases. First, we calculate the average edge values for each color channel of each pixel during
the initial learning phase. Second, an indicator for the existence of an edge in the surroundings
of each pixel is determined. During experimental tests, we have found that the existence
of edges in the surroundings of a pixel under consideration is an important aspect because
existing edges tend to change their appearance considerably when the illumination conditions
are unstable. We maintain information about this aspect in order to cope with such effects.
Background edge information is collected in a fuzzy edge knowledge base:

Definition 2.1.2 (Fuzzy edge knowledge base)

Let widthw and heighth, measured in pixels, be the size andNK the number of
color channels of the input images.

Then afuzzy edge knowledge baseis defined by a set of functions

ēi : (x, y) −→ [0, 1] (2.7)

whereēi(~p) is the average edge value of color channeli at position~p = (x, y)
(with i = 1, ..., NK and 0 ≤ x < w, 0 ≤ y < h). ēi(~p) is determined by
averaging during the initial learning phase and may be continuously adapted by,
e. g., the calculation of the running average. Moreover,

η : (x, y) −→ [0, 1] (2.8)

is an indicator for the existence of an edge in the surroundings of pixel~p = (x, y).
The indicator functionη is defined by:

η(~p) = max{max{ēi(~p), max
j=1,...,8

ēi(~pj)}| i = 1, ..., NK} (2.9)

where~pj are the surrounding pixels of~p concerning the8-neighborhood relation-
ship of pixels.

The acquisition of the average background edges during the initial learning phase is rea-
lized by averaging the edge values of theNS sample imagesIj for every pixel~p and color
channeli separately (withi = 1, ..., NK andj = 1, ..., NS):

ēi(~p) =
1

NS

NS∑
j=1

ei,j(~p) (2.10)

whereei,j(~p) is the edge value of color channeli in the sample imageIj at the pixel position~p.
The classification of current video images during the application phase is performed by

comparing the edge knowledge base to the current edge valuese(~p) = (e1(~p), ..., eNK
(~p)).

In order to classifiy current imagesI, we have developed the following fuzzy membership
function for the semantic property ”is foreground edge”:

µe(~p) = 1− 1

1 + 1
NK

[α + β(1− η(~p))2]
NK∑
i=1

(ēi(~p)− ei(~p))2

(2.11)
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where

ei(~p) : current edge value of color channeli at position~p
ēi(~p), η(~p) : edge knowledge as provided by edge knowledge base

NK : number of color channels
α, β ∈ R : controlling factors.

Briefly described, the fuzzy membership functionµe sums up the differences between
learned background edges and current edge values and divides it by the number of color chan-
nelsNK . The term

α + β(1− η(~p))2 (2.12)

is a function that provides a controlling factor with respect to the determined existence of
known background edges. If a background edge exists in the surroundings of pixel~p, the
resulting factor will be small. On the contrary, the factor will be large, if a background edge
does not exist in this area.

In order to remove noise, an averaging threshold filter as explained in section 2.1.1 is
applied to the fuzzy classified edge membership valuesµe(~p):

µedge(~p) =


0 : 1

9
µe(~p) + 1

9

8∑
i=1

µe(~pi) ≤ υe

µe : 1
9
µe(~p) + 1

9

8∑
i=1

µe(~pi) > υe

(2.13)

whereυe ∈ [0, 1] is used as a threshold parameter. Alternatively, amedian filtermay be
utilized for this purpose. The membership functionµedge yields a second fuzzy membership
value for every pixel~p ∈ Ic. Both membership functions,µcolor (see section 2.1.1) andµedge,
semantically describe foreground object properties.

2.1.3 Combination of Fuzzy Knowledge

In the previous sections 2.1.1 and 2.1.2, two independent fuzzy knowledge bases have been
introduced, which provide the membership functionsµcolor andµedge for each pixel~p of a
current imageI. The membership functions semantically describe the foreground object pro-
perties ”is foreground color” and ”is foreground edge”, respectively. In order to combine both
results, a fuzzy ”and” operator, e. g., themin-function is employed (see appendix A). Thus,
for every pixel~p a fuzzy result concerning the semantic property ”is foreground” is yielded by
calculating

µforeground(~p) = min(µcolor(~p), µedge(~p)). (2.14)

For some applications, a two-valued segmentation result may be necessary. This is achieved
by a defuzzification of the fuzzy results. For this purpose, the averaging threshold filter is mo-
dified:

~p −→


0 : 1

NN
[µforeground(~p) +

NN−1∑
i=1

µforeground(~pi)] ≤ υa

1 : 1
NN

[µforeground(~p) +
NN−1∑

i=1

µforeground(~pi)] > υa

(2.15)
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where

~pi : surrounding pixels of~p that fulfill the8-neighborhood relationship
NN : number of pixels in the8-neighborhood (may be less than eight)

υa ∈ [0, 1] : threshold parameter.

2.1.4 Learning and Continuous Updating

Our technique is intended to be adaptive to slight changes in the background. Especially the
color knowledge base is able to store a large amount of histogram information for each pixel
separately. Thus, it is possible to add further color information to the knowledge base during
the application phase, when background regions are determined. As briefly explained in sec-
tion 1.1, the low-level processing stage gets a feedback from the mid-level stage containing
the information at which pixel positions the current image content has to be learned as ”back-
ground” and at which positions the current image content is ”foreground”. In the recognized
background areas the current colors are learned and incorporated into the color knowledge
base as explained in section 2.1.1.

The edge knowledge base is not able to store different edge values per pixel, but only the
average edge value for each color channel. However, the background is required to be static,
so edge values are not likely to change completely. Nevertheless, edge values slightly change
under varying illumination. Thus, it is advantageous to adapt the fuzzy edge knowledge base
during the application phase. For this purpose, the learned background edge valuesēi(~p) are
adapted to current edge valuesei(~p) (with i = 1, ..., NK) using the running average:

ē′i(~p) = γei(~p) + (1− γ)ēi(~p) (2.16)

with γ ∈ [0, 1]. ē′i(~p) denotes the new entry of the edge knowledge base that replacesēi(~p).
The parameterγ regulates the impact of the current edge values whereγ = 0 corresponds to
”no effect” andγ = 1 replaces̄ei(~p) with ei(~p). Each time the edge knowledge base is updated
with current edge values, the indicator functionη is updated as well. If a significant change of
a large area of the image is detected, new instances of color and edge knowledge bases will be
created for these regions. This mechanism is controlled by the mid- and high-level processing
stage and explained in section 2.4.

2.1.5 Supplementary Image Processing

During experimental evaluations, we have found that some supplementary image processing
operations are useful in order to increase the reliability and overall performance of the seg-
mentation. Basically, we need two different input sources, namely a color image and an edge-
filtered image. In order to yield a smooth color image, we apply amedianfilter to the original
input image that smoothes the image and removes noise. For the determination of the edge-
filtered input image, we apply a combination of differentSobeloperators [GON92], namely
the horizontal, the vertical, and the diagonal filter kernels in order to yield as much edge in-
formation as possible. Afterwards, we apply aGaussianlow-pass filter operator in order to
smooth the edge image. The averaging threshold filters are controlled by the parametersυc,
υe, υa, α, andβ as explained in equations (2.4), (2.13) and (2.15) and the classification mem-
bership function in equation (2.11). Depending on the specific application, it is not possible to
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specify universally valid optimal values for these parameters. The quality of any choice can
only be evaluated with respect to the classification quality in specific applications. However,
good results have been achieved withα = 10, β = 90, υe = 0.6, υc = 0.7 andυa = 0.

2.1.6 Examples of Application

Because of the variety of known segmentation techniques, it is rather difficult to compare
them to our introduced approach. In principle, both the color and the edge segmentation are
comparable to the common background subtraction approach. Our technique supplements this
approach by enabling the storage of a large amount of color values, which are weighted with
respect to the quantity of their occurrence. In this section, we aim at briefly demonstrating and
illustrating the capabilities of the introduced segmentation approach. An extensive evaluation
of the whole segmentation system is performed in section 2.5.

The video images have a size of192 × 144 pixels and the RGB color space was chosen
(NK = 3, NW = 256). The knowledge bases were trained withNS = 80 sample images
during the initial learning phase. After this training, some interaction was performed in front
of the camera. During this interaction, the fuzzy color knowledge base was continuously
trained on the identified background regions. The parameterσ, introduced in equation (2.2),
which controls the speed of learning as far as the color knowledge base is concerned, was set
to σ = 0.18.

In figure 2.7, the segmentation task is to find and determine the position and the contour of
the user’s hand. The result of the segmentation is taken as input for theZyklophand posture
classification system that is explained in chapter 4.3. As can be seen in figure 2.7(a), the back-
ground (in this case an office desk) is allowed to consist of arbitrary things. The exemplary
image was taken after 350 images. In figure 2.7(b) and (c), the edge knowledge base is visuali-
zed, in (b) the averaged edge values in the R-, G- and B-color channels and in (c) the maximum
edge value in the surroundings of each pixel. In figure 2.7(e), the result of the application of
functionµe (see equation (2.11)) is illustrated. Afterwards, it is filtered using the averaging
threshold filter, which is shown in (f). Dark colors indicate low, and bright colors high mem-
bership degrees. In figure 2.7(g) and (h), the color segmented result (see equation (2.3)) and
the filtered color segmentation result are shown, respectively. Finally, the results of the edge
and the color segmentation (figure 2.7(f) and (h)) are combined in (i). Figure 2.7(j) shows the
final result of segmentation. An approximated contour, superimposed in yellow, is calculated
for the determined foreground object pixels using the contour approximation algorithm that is
presented in chapter 3. Moreover, an enlarged convex hull for the foreground pixels is deter-
mined. Outside the hull polygon, the color and edge knowledge bases are adaptively trained
on the current image content (indicated by the darkened area in the image). As can be seen in
figure 2.7(h), the color segmentation wrongly classifies a small area of pixels above the user’s
hand. Due to the combination of color and edge segmentation, these faults can be corrected.

In figure 2.8, another example of application is illustrated. As can be seen in figure 2.8(f)
and (h), both the edge and the color segmentation provide faulty results. The edge segmenta-
tion misclassifies a few pixels on the right of the user’s hand and the color segmentation yields
several wrongly classified pixels. However, the combination of color and edge segmentation
in figure 2.8(i) eliminates the misclassifications, leading to good results in figure 2.8(j).

The second key benefit of our approach, the adaptiveness to slight changes in the back-
ground colors, is illustrated in another example (figure 2.9). There are already changes in the
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(a) Original (b) Learned background edges (functionē)

(c) Maximum edge values (functionη) (d) Current edge image

(e) Differences in edge values (functionµe) (f) Filtered edge result (functionµedge)

(g) Color-segmented image (functionµc) (h) Filtered color result (functionµcolor)

(i) Combination of color and edge results (j) Final result, contour approximation (in yellow)

Figure 2.7: Example of application of low-level processing stage.

background colors when a foreground object enters the scene, which may be related to auto-
matic adjustments of the camera. The image in figure 2.9(a) was recorded immediately after
the arm was moved into the scene. The result of color segmentation is illustrated in (b) and as
can be seen, it is of poor quality. The recorded series consists of 547 images and after comple-
tion, the series is repeated from the beginning with the trained knowledge bases. During the
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(a) Original (b) Learned background edges (functionē)

(c) Maximum edge values (functionη) (d) Current edge image

(e) Differences in edge values (functionµe) (f) Filtered edge result (functionµedge)

(g) Color-segmented image (functionµc) (h) Filtered color result (functionµcolor)

(i) Combination of color and edge results (j) Final result, contour approximation (in yellow)

Figure 2.8: Misclassifications of both the edge and the color segmentation, in (f) and (h), are eliminated due to

the combination of both methods, shown in (i).
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(a) Original (b) Color segmented image, first run

(c) Color segmented image, second run (d) Result of segmentation

Figure 2.9: Example for improvement of color segmentation due to continuous adaptiveness.

second run of the series, the color segmentation of the same input image provides considerably
better, although not perfect results, as illustrated in figure 2.9(c). However, the combination of
color and edge segmentation, which has been performed both during the first and the second
run, yields a sufficient result as shown in 2.9(d).

2.2 Mid-Level Processing Stage

For the mid-level processing stage, the image area is subdivided in small rectangular box areas.
Basically, the mid-level processing stage extends the idea of background subtraction to box-
sized larger regions. For example, we used12 × 9 boxes on images with a size of192 × 144
pixels. For each of the boxes, a pattern recognition system is trained, which extracts features
of the box regions during the initial learning phase. Wrongly classified pixels of the low-
level processing stage can be eliminated by identifying foreground and background regions
autonomously. Consequently, box regions which have been recognized as background can be
masked out. As an important aspect, the change detection or similarity measures introduced
in this section are intended to be largely independent of changing or varying illumination
conditions. Moreover, the mid-level processing stage is able to administrate different low-
level knowledge bases for each box area separately. This enables the segmentation algorithm
to cope with permanent changes in the background by instantiating new low-level knowledge
bases for the respective box areas. If the old background situation reoccurs, the system is able
to recognize this and will use the formerly learned knowledge bases again. This methodology
was illustrated in figure 1.1 in chapter 1.1 and is realized by utilizing the pattern recognition
system.

In the next sections, we introduce the change detection measures (section 2.2.1), propose
a rule-based classification method (section 2.2.2), evaluate the measures’ performance em-
pirically (section 2.2.3), and explain the application of the mid-level processing stage in the
overall context (section 2.2.4).
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2.2.1 Change Detection Measures

In this section, five change detection measures are proposed. The background is observed and
typical features of the background are extracted during the initial learning phase. Afterwards,
the detectors are able to measure the similarity between the initially learned content and current
video images. The definition of the detectors is general and they are intended to be applied for
each box area separately. As a result, a fuzzy membership value that describes the degree of
membership to the semantic property ”is background” is obtained for each box area.

2.2.1.1 Edge-Based Mutual Similarity Measure

The first detector does not work on color values, but on edge information within the image
data, which is obtained by applying an edge detection operator as explained in section 2.1.2.
In order to abstract from any specific edge operator, we assume the results of an edge filtering
algorithm to be edge valuesei(~p) ∈ [0, 1], wherei ∈ {1, ..., NK} denotes the color channel and
~p the pixel under consideration. Exemplary methods to achieve such a general representation
are explained in section 2.1.2.

One major aspect of using edge information for similarity comparisons is the desire for
an illumination independent measure. However, edge information also depends on varying
illumination conditions because a bright illumination leads to larger edge values than a dark
illumination. In order to have a similarity measure that is able to cope with these influences,
a mutual comparison scheme for the edge values is introduced. LetNP denote the number of
pixels under consideration. In order to measure the mutual difference between theNP pixels,
a featureNP ×NP -matrixM is used, whose elements are defined by

mij = max
k=1,...,NK

ek(~pi) − max
k=1,...,NK

ek(~pj) (2.17)

Learning Phase

During the initial learning phase, anNP × NP -matrix R is calculated for each box area se-
parately. For each imageIt (with t = 1, ..., NT ) occurring during the learning phase, a corre-
sponding feature matrixM t is determined by analyzing the box area under consideration. The
matrixR is calculated as:

R =
1

NT

NT∑
t=1

M t (2.18)

Averaging the differences between the edge values of a sequence ofNT image frames yields
the matrixR. For the elementsrij of R the equations

rij = −rji (2.19)

and
rij = 0 with i = j (2.20)

hold. Thus, it is sufficient to calculate only either the upper or the lower triangular matrix.
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Application Phase

During the application phase, the similarity between the current video imageIt and the initially
learned images is measured by comparing the mutual differencesM t between the edge values
of It andR. The membership value to the semantic property ”similar” is calculated as

µreledgesim(M t) =
1

1 + δ1
ND

NP∑
i=1

NP∑
j=i+1

(mij − rij)2

(2.21)

where

mij : elements of the current feature matrixM t

rij : elements of averaged differences matrixR
ND : number of elements in the triangular matrix,ND = 1

2
NP (NP + 1)

δ1 ∈ R : controlling factor.

Adaptive Update

Realizing the unstableness in digital video images over time raises the question of adaptiveness
as far as the membership function is concerned. Updates of the feature matrixR with current
feature matricesM t should be performed only ifM t represents the background and not an
object which occasionally moved in the foreground. Otherwise wrong image content is learned
as background. In order to avoid this, the system relies on five detectors and a fault-tolerant
fuzzy rule-based classification process (section 2.2.2).

The centroid matrixR can be updated with a current feature matrixM t+1 to Rt+1 by
applying the following formula:

Rt+1 =
t ·Rt + M t+1

t + 1
(2.22)

The introduced detectorµreledgesim may work very well and reliably, if the observed back-
ground area contains a lot of edge pixels and if differences between them are noticeable.
Nevertheless, this detector may partly fail, if the observed area is smooth because a smooth
foreground object may not be recognized.

2.2.1.2 Mean Color Similarity Measure

Realizing the problem that absolute values, both color or edge values, are heavily depending on
the illumination conditions, we also propose a mutual color measure that additionally describes
the structure of the considered box area.

The box area itself is subdivided in arbitrary parts. In each part, the mean color value of
each color channel is determined and the difference to the mean color values of the other parts
is calculated. The determined differences are employed to measure the similarity between
current and initially learned images. We usually subdivide the box areas in four equally sized
quarters. Figure 2.10 illustrates the idea for the subdivision in quarters. For themean color
similarity measure, the differences of the mean color values in the quarters are calculated and
considered as feature. The arrows indicate the differences which are calculated for the upper
left part of the box area.
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Figure 2.10: Example ofmean color similarityapplication. The box area is subdivided in four equally sized

quarters. The mean color values for each color channel in each quarter are calculated, here for color channel1.

The differences between theck,i are measured as indicated by the arrows for the first, upper left quarter.

Learning Phase

During the learning phase,NT images are used to calculate the averaged differences. For each
of the NK color channels, a feature matrixRk (with k = 1, ..., NK) is required. Averaging
the color values in theNA partsAi of the box areas yields the mean color valuesct

k,i (with
i = 1, ..., NA andt = 1, ..., NT ) for each of theNK color channels. Moreover, the color values
are transformed into the interval[0, 1], soct

k,i ∈ [0, 1] holds. This transformation can easily be
achieved by scaling.

The differences between the box area parts are determined and averaged for all theNT

images of the learning phase. This results in theNA × NA matricesRk whose elementsrk,ij

are calculated as:

rk,ij =
1

NT

NT∑
t=1

ct
k,i − ct

k,j (2.23)

where
rk,ij : elements of the averaged difference matrixRk

ct
k,i : mean color value of color channelk in areaAi in framet.

NT : number of frames during the learning phase.

Similar to the edge-based mutual similarity measure introduced in section 2.2.1.1, the fol-
lowing equations hold for the elementsrk,ij of Rk:

rk,ij = −rk,ji (2.24)

and

rk,ij = 0 for i = j. (2.25)

Thus, it is sufficient as well to calculate either the upper or the lower triangular matrix for this
detector.
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Application Phase

During the application phase, a current imageIn and more specific the current box area can
be compared to the initially learned box areas. For that purpose, the current average color
valuescn

k,i in each partAi of the box area (withi = 1, ..., NA) and for each color channelk =
1, ..., NK are calculated again. The current feature matricesMk are determined analogously
to the learning phase:

mk,ij = cn
k,i − cn

k,j (2.26)

The similarity between the initially learned image content and the current image content can
be measured with the following fuzzy membership function:

µmeancolsim(M1, ...,MNK
) =

1

1 + δ2
ND

NK∑
k=1

NA∑
i=1

NA∑
j=i+1

(
mk,ij−rk,ij

2
)2

(2.27)

where

mk,ij : elements of the current feature matrixMk

rk,ij : elements of averaged differences matrixRk

ND : number of elements under consideration,ND = 1
2
NKNA(NA + 1)

NA : number of box areas
NK : number of color channels under consideration

δ2 ∈ R : controlling factor.

High membership degrees ofµmeancolsim denote a high similarity between the initially learned
background and the current image content and vice versa. As experiments have shown, this
detector is indeed rather insensitive to changing illumination conditions. Its robustness is
discussed in more detail in section 2.2.3.

An adaptive update of the initially learned centroid matricesRk can be performed analo-
gously to formula (2.22) presented in section 2.2.1.1.

2.2.1.3 Mean Edge Similarity Measure

The mean color similarity measure introduced in the previous section 2.2.1.2 is a rather general
approach to image content comparison. Thus, we propose to use the same detector with color
edge images as input. Such an edge image can be easily derived from the original image by
applying an edge operator such as the Sobel or the Prewitt operator [GON92]. This approach
is principally similar to the edge-based mutual similarity measure (see section 2.2.1.1), except
for the fact that the edge values are averaged for a larger part of the box area and that an
arbitrary number of color channels can be taken into consideration. Averaging the edge values
for a larger part of the box area seems to be reasonable because aliasing effects may cause
edges to move for some pixels around their originally determined position.

Due to the identical structure of the detector (only the input image is altered), we do not
repeat the formulas and refer to section 2.2.1.2 for details. The similarity is measured by

µmeanedgesim(M1, ...,MNK
) =

1

1 + δ3
ND

NK∑
k=1

NA∑
i=1

NA∑
j=i+1

(
mk,ij−rk,ij

2
)2

(2.28)

whereδ3 ∈ R is a controlling factor.
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2.2.1.4 Sum of Foreground Edges Measure

As already explained in section 2.1, the low-level segmentation performs a color and an edge
segmentation, which are based on calculating differences between the initially learned back-
ground and current video images. As a result, the edge segmentation returns for each pixel
~p = (x, y) a fuzzy membership valueµe(~p) ∈ [0, 1] to the semantic property ”is foreground
edge” (equation (2.11)). Taking into account the semantic notion of ”is foreground edge”, high
membership degrees denote a foreground edge, while low membership degrees indicate that
there is no edge at pixel position~p. Thus, a simple change detector sums up the determined
foreground edges within the box area.

The basic function for the determination of foreground edges was introduced in equa-
tion (2.11) and contains a controlling factor function as shown in equation (2.12). Experimen-
tal results have proven that this controlling factor function is well suited for the determination
of foreground edge pixels. However, we obtained better results for the purposes of a simila-
rity measure with a fixed factor instead, regardless of how edgy the background is. Thus, we
modify equation (2.11) slightly to:

µẽ(~p) = 1− 1

1 + 1
NK

αf

NK∑
i=1

(ēi(~p)− ei(~p))2

(2.29)

where
ei(~p) : current edge value of color channeli at position~p
ēi(~p) : edge knowledge as provided by edge knowledge base
NK : number of color channels

αf ∈ R : fixed controlling factor.

The foreground edge detection measure first of all determinesµẽ(~p) for all theNP pixels~p

of the image area under consideration. Then a feature vector~M = (µẽ(~p1), ..., µẽ(~pNP
))T is

used to measure the similarity to initially learned background images:

µedgesum( ~M) =
1

1 + δ4
NP

NP∑
i=1

µẽ(~pi)2

(2.30)

with δ4 ∈ R as a controlling factor. High membership values ofµedgesum denote a similar
or even identical box area content to the initially learned content, whereas low membership
values denote a significant change within the box area.

This detector does not require any additional handling during the initial learning phase
because the necessary collection of background edge information is already done within the
low-level processing stage.

2.2.1.5 Sum of Foreground Pixels Measure

Analogously to thesum of foreground edgesmeasure, we propose a detector that measures the
number of foreground pixels, which have been determined by the color segmentation within
the low-level processing stage (section 2.1.1). As a result of the color segmentation, a fuzzy
membership valueµc(~p) ∈ [0, 1] to the semantic property ”is foreground color” is returned for
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each pixel~p = (x, y) (equation (2.3)). Thus, a simple change detector sums up the determined
foreground pixels within the box area. Let the box area consist ofNP pixels, then a feature
vector ~M = (µc(~p1), ..., µc(~pNP

))T can be used to measure the similarity to initially learned
background images:

µcolorsum( ~M) =
1

1 + δ5
NP

NP∑
i=1

µc(~pi)2

(2.31)

with δ5 ∈ R as a controlling factor. High membership values ofµcolorsum denote a similar
or even identical box area content to the initially learned content, whereas low membership
values denote a significant change within the box area.

This detector does not require any additional handling during the initial learning phase
because the necessary collection of background color information is already done within the
low-level processing stage.

2.2.2 Framework for the Classification Process

So far we have introduced five different similarity measures which reflect the similarity be-
tween a current image and known background for each box area separately. In this section, we
present a fuzzy rule-based classification method that allows the incorporation of an arbitrary
number of fuzzy detector results. Realizing the strong dependency of each box on the respec-
tive background content, we supplement each detector with two reliability indicators. The first
reliability indicator gives information about the reliability of high membership degrees of the
detector, i. e., the reliability of a ”background” classification. Vice versa, the second reliability
indicator provides information about the reliability of low membership degrees of the detector,
i. e., a ”foreground” classification. Due to this approach, we are able to take into account the
possibly different applicability of each detector to the respective box content.

2.2.2.1 Fuzzy Rule Base for Evaluation

In order to have a common basis for the evaluation of the obtained results, we specify a fuzzy
logic rule base that is able to take into account the results of the similarity measures on the one
hand and the reliability indicators of the detectors on the other hand. Moreover, this approach
enables the evaluation of an arbitrary number of detectors. It can be extended easily for further
similarity measures, which may be developed in future work.

Letµi with i = 1, ..., ND denote the fuzzy membership functions of the similarity measures
we have defined so far, whereND is the number of detectors. Then we introduce two fuzzy
reliability indicatorsµi,bgr andµi,fgr for each detector. High membership degrees ofµi,bgr

indicate a high reliability of a ”background” (bgr) classification of detectori. Analogously, a
high membership degree ofµi,fgr indicates a high reliability of a ”foreground” (fgr) classifica-
tion of detectori. In the context of the feedback mechanisms, the reliability indicators will be
continuously manipulated, if poor classification results of respective similarity measures for
specific box areas are noticed by the high-level processing stage. The details concerning this
aspect are explained in section 2.4.

In order to interpret the results of the detectors with respect to their reliability indicators
and to find a final classification result, we utilize a fuzzy rule base, which is designed fol-
lowing human notions of the decision making process. A brief course into fuzzy logic and the
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Figure 2.11: Fuzzy sets of the linguistic terms for the similarity measures.

Figure 2.12: Fuzzy sets of the linguistic terms for the resulting fuzzy sets.

evaluation of fuzzy rule bases is made in appendix A. First of all, the measured similarities are
interpreted in linguistic terms using the fuzzy setsvery low, low, middle, highandvery high.
A possible definition of these fuzzy sets is illustrated in figure 2.11. We use the same ten rules
for each detector (see table 2.1), which are mapped onto the resulting fuzzy setsµi,r. For these
resulting fuzzy sets, the linguistic termsvery low, low, mid low, mid high, highandvery high
are used (see figure 2.12).

This rule base is applied for each detector. For the inference, we use themin-function and
for the aggregation within the evaluation of one detector themax-function. Thus, we get a
resulting fuzzy setµi,r for each detector. TheND differentµi,r are aggregated with the sum-
function in order to weigh the preliminary results equally. For the logic operatorsand, orand
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IF µi = very high AND µi,bgr = (high OR very high)
THEN µi,r = very high

IF µi = high AND µi,bgr = (high OR very high)
THEN µi,r = high

IF µi = (high OR very high) AND µi,bgr = (high OR middle)
THEN µi,r = high

IF µi = (high OR very high) AND µi,bgr = (low AND NOT very low)
THEN µi,r = middle high

IF µi = (middle AND NOT low) AND µi,bgr = (high OR very high)
AND µi,fgr = (low OR very low)

THEN µi,r = middle high
IF µi = (middle AND NOT high) AND µi,fgr = (high OR very high)

AND µi,bgr = (low OR very low)
THEN µi,r = middle low

IF µi = (low OR very low) AND µi,fgr = (low AND NOT very low)
THEN µi,r = middle low

IF µi = (low OR very low) AND µi,fgr = (high OR middle)
THEN µi,r = low

IF µi = low AND µi,fgr = (high OR very high)
THEN µi,r = low

IF µi = very low AND µi,fgr = (low OR very low)
THEN µi,r = very high

Table 2.1: Fuzzy rule base for the decision making process.

not, the standard functions are used as introduced in appendix A. We take thecenter of area
approach for the defuzzification and use0.5 as threshold to obtain a two-valued result. The
classification result for the box area under consideration is ”background”, if the defuzzified
result is above0.5, or ”foreground”, if the defuzzified result is below0.5.

The classification is performed for each box area by the mid-level processing stage. Pixels
which have been misclassified as ”foreground pixel” by the low-level processing stage can
be masked out in recognized ”background” box regions. Due to the identification of ”back-
ground” areas, the adaptive learning process of the low-level processing stage can be con-
trolled. The details of this part of the feedback mechanisms are explained in chapter 2.4.
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(a) Static background (b) Example of interaction

(c) Static background (d) Example of interaction

Figure 2.13: (a) and (b): Example images for first test area (white) with edgy background; (c) and (d) second

area with smooth background.

2.2.3 Evaluation of Detectors

During the introduction of the change detectors in the equations (2.21), (2.27), (2.28), (2.30)
and (2.31), the parametersδ1, δ2, δ3, δ4 andδ5 were used as controlling factors. These parame-
ters have to be specified in order to be used within applications. We performed an empirical
evaluation to find suitable settings for the parameters and to test their applicability. A typi-
cal scene has been observed by a camera for 24 hours. After each minute, the current image
was saved leading to a large set of images with various illumination conditions. Rather and
completely dark images were not used for the empirical evaluation. Afterwards, a person per-
formed some typical interaction movements in front of the camera, for example the arm and/or
the hand were moved into the image area under consideration or the user simply stood in front
of the camera while moving his arm.

We chose two different box areas, one with a rather smooth and monotone background and
one with an edgy background (see figure 2.13), and empirically determined suitable parameter
settings for these box areas, using the following box sizes and image metrics:

• 192× 144 pixels image size,8× 8 pixels box size

• 192× 144 pixels image size,16× 18 pixels box size

• 384× 288 pixels image size,8× 8 pixels box size
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• 384× 288 pixels image size,16× 16 pixels box size

• 384× 288 pixels image size,32× 32 pixels box size

• 768× 576 pixels image size,16× 16 pixels box size

• 768× 576 pixels image size,32× 32 pixels box size

• 768× 576 pixels image size,64× 64 pixels box size

These combinations of metrics seem to be reasonable as far as the relationship between box
size and image size is concerned.

Our first aim was to determine a suitable set of parametersδi, which on the one hand
assigns high membership values to the semantic property ”is similar” for the first part of the
recorded images containing the static background under varying illumination conditions, and
on the other hand assigns low membership values to the second part of images containing an
interacting person in front of the area under consideration.

As we have already found for the low-level processing stage, the existence and appearance
of edges in the background areas under consideration are important aspects for the successful
application of our classification methods. Moreover, some of the change detection measures
such as themean edge similarityor thesum of foreground edgesdirectly take changes within
the edge values into consideration. As a consequence, the parameterization of the classifica-
tion functions should be chosen with respect to the number of edges in the background. If a
lot of edges exist in the background, most probably a small change is sufficient to cause low
membership degrees of the similarity measures. On the contrary, if the background contains
only few or even no edges, probably a larger change will be necessary to lead to low member-
ship degrees that signal a foreground object. In order to cope with this obvious relationship,
we try to determine two separate optimal parameter settings for both of our evaluation series
illustrated in figure 2.13. However, first of all we need a measure for the edginess of the image
area under consideration. For this purpose, we propose a simple threshold analysis that counts
the number of edges above a predefined threshold:

µedginess =
1

NP

NP∑
i=1

ω(~pi) (2.32)

whereω is

ω(~p) =

 0 : max
i=1,...,NC

ēi(~p) < υs

1 : max
i=1,...,NC

ēi(~p) ≥ υs
(2.33)

with

υs ∈ [0, 1] : threshold parameter
NP : number of pixels of box area under consideration
NC : number of color channels

ēi(~p) : average edge value in color channeli at pixel~p (see chapter 2.1.2).

The detectors were trained during the initial learning phase with 80 images. Adaptive up-
dates of the detectors during the application phase were not performed. Thus, each frame of
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the different background situations is evaluated only on the basis of the initially learned back-
ground knowledge. The number of available video frames for each of the situations is shown
in table 2.2. After some trial executions of the classification process, the parameter settings
shown in table 2.3, 2.4, 2.5, and 2.6 were found to be suitable. In order to generalize the found
parameter settings, we assume a linear interpolation for the parameter domainµedginess ∈ [0, 1]
as shown in figure 2.14. As already explained, we neither adaptively updated the knowledge
bases, nor the trained mid-level detectors during this evaluation. However, while this is reaso-
nable as far as the first four similarity measures are concerned, it does not make sense for the
fifth sum of foreground pixelsmeasures whose recognition capabilities depend on the low-level
color knowledge bases (see section 2.1.1). Continuous updating with current image content
is essential for this detector. Because of this reason, this is the only similarity measure, for
which updating is performed during this evaluation. Suitable parameters, which have been
found during the evaluation, are illustrated in table 2.7. As it could be expected, thesum of
foreground pixelsmeasure in equation (2.31) does not depend on the edginess of the area under
consideration because it works on color information only. Thus, it is not necessary to change
this parameter.

Due to the fuzziness of the membership functions, the presented parameter settings may be
modified slightly without changing the results noticeably. Applying this parameter setting to
our test series yields the results shown in table 2.8. In order to evaluate each similarity measure
separately, we assume a simple threshold defuzzification scheme. Membership values with
µi ≤ 0.5 lead to the result ”is foreground” and membership valuesµi > 0.5 to ”is background”.
The semantic property ”is background” is identical with the property ”is similar” in this case
because we measure the similarity between the initially learned background and current video
images, assuming that similar images correspond to ”background”.

Additionally, it has to be kept in mind that the classification results are fuzzy. For this anal-
ysis, the results have been defuzzified using a threshold. In some cases, classification results
may have been counted as wrong, although the fuzzy classification result may have been rather
close to the applied threshold. Thus, the fuzzy classification may already imply an uncertain
classification which is lost after applying the threshold because it is not employed within this
analysis. If only a rather small part of the considered box area is covered by a foreground ob-
ject, the decline in the membership values may be not severe enough to drop the membership
values below the threshold. Although the tendency may be correct, the two-valued classifica-
tion result may be wrong in our analysis. In order to incorporate the different fuzzy results
for the determination of a final classification result, we have presented a general framework in
section 2.2.2.1, which is based on a fuzzy rule base. Moreover, reliability indicators can be
maintained, which influence the weighting of the similarity measures with respect to their for-
mer classification performance. For these series, we set the reliability indicators to1.0 for all
the detectors and did not influence them during execution in order to determine the quality of
the fuzzy classification process itself. The overall results of the fuzzy rule base classification
are shown in table 2.9. Depending on the metrics of both the boxes and the image, the amount
of correctly classified images is between 97.8% and 99.9%. Comparing the final classifica-
tion result to its associated similarity measure results shows that the correctness rate of the
final result is usually well ahead of the different similarity measure results. Only for an image
size of384 × 288 pixels and a box size of16 × 16 pixels, thesum of foreground pixelsmea-
sure is slightly better than the final result (98.5% compared to 98.1%). Despite this case, the
fuzzy rule base provides better classification results than the respective similarity measures,
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Number of Frames image size box size smooth edgy

different background situations192× 144 8× 8 2163 1097
person in front of background 192× 144 8× 8 185 1377
different background situations192× 144 16× 16 2163 1097
person in front of background 192× 144 16× 16 185 1413

different background situations384× 288 8× 8 1291 1291
person in front of background 384× 288 8× 8 240 435
different background situations384× 288 16× 16 1291 1291
person in front of background 384× 288 16× 16 307 514
different background situations384× 288 32× 32 1291 1291
person in front of background 384× 288 32× 32 383 619

different background situations768× 576 16× 16 1291 1291
person in front of background 768× 576 16× 16 243 439
different background situations768× 576 32× 32 1291 1291
person in front of background 768× 576 32× 32 304 503
different background situations768× 576 64× 64 1291 1291
person in front of background 768× 576 64× 64 389 562

Table 2.2: Number of available image frames for each situation.

Empirically determined δ1

image size box size δ1 edgy δ1 smooth

192× 144 8× 8 50 2000
192× 144 16× 16 70 120
384× 288 8× 8 40 2750
384× 288 16× 16 28 400
384× 288 32× 32 23 400
768× 576 16× 16 60 5000
768× 576 32× 32 25 600
768× 576 64× 64 30 800

Table 2.3: Determinedδ1 for different metrics and background situations.

which are used as input for the rule base. The fuzzy rule based approach is obviously able to
compensate wrong results of the similarity measures in many cases.

We have shown that the introduced similarity measures can be parameterized successfully.
They are applicable to a wide range of different image and box metrics. Moreover, we have
shown that the fuzzy rule based classification is a reasonable approach for the evaluation of
the similarity measures and yields good overall classification results. An in-depth analysis
of the classification results in the context of the whole segmentation system is presented in
chapter 2.5.3.
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Empirically determined δ2

image size box size δ2 edgy δ2 smooth

192× 144 8× 8 1000 3500
192× 144 16× 16 3500 5000
384× 288 8× 8 2000 100000
384× 288 16× 16 12000 30000
384× 288 32× 32 35000 30000
768× 576 16× 16 6000 120000
768× 576 32× 32 10000 50000
768× 576 64× 64 50000 30000

Table 2.4: Determinedδ2 for different metrics and background situations.

Empirically determined δ3

image size box size δ3 edgy δ3 smooth

192× 144 8× 8 500 20000
192× 144 16× 16 1500 2875
384× 288 8× 8 250 25000
384× 288 16× 16 600 15000
384× 288 32× 32 1600 10000
768× 576 16× 16 600 90000
768× 576 32× 32 900 90000
768× 576 64× 64 4000 120000

Table 2.5: Determinedδ3 for different metrics and background situations.

Empirically determined δ4

image size box size δ4 edgy δ4 smooth

192× 144 8× 8 5 1000
192× 144 16× 16 7 30
384× 288 8× 8 4.5 1500
384× 288 16× 16 4.5 600
384× 288 32× 32 6 130
768× 576 16× 16 7 500
768× 576 32× 32 5.5 800
768× 576 64× 64 7.5 1000

Table 2.6: Determinedδ4 for different metrics and background situations.
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Empirically determined δ5

image size box size δ5 edgy/smooth

192× 144 8× 8 5
192× 144 16× 16 5
384× 288 8× 8 5
384× 288 16× 16 3
384× 288 32× 32 3
768× 576 16× 16 3
768× 576 32× 32 3
768× 576 64× 64 3

Table 2.7: Determinedδ5 for different metrics, independent of background situation.

Figure 2.14: The parametersδi are calculated by linear interpolation of the empirically determined parameters.
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Relative Edge-based Similarity Measure

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 98.4 % 99.9 % - -
384× 288 96.9 % 96.9 % 94.7 % -
768× 576 - 96.5 % 98.2 % 96.5 %

Mean Color Similarity Measure

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 87.6 % 97.9 % - -
384× 288 97.8 % 97.4 % 97.9 % -
768× 576 - 96.8 % 98.1 % 98.2 %

Mean Edge Similarity Measure

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 98.1 % 98.0 % - -
384× 288 96.0 % 97.6 % 96.5 % -
768× 576 - 95.4 % 95.9 % 98.4 %

Sum of Edges Similarity Measure

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 98.8 % 98.7 % - -
384× 288 97.5 % 96.0 % 95.6 % -
768× 576 - 95.8 % 96.4 % 95.3 %

Sum of Foreground Pixels Similarity Measure

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 98.1 % 98.5 % - -
384× 288 96.7 % 98.5 % 98.0 % -
768× 576 - 97.4 % 97.6 % 97.9 %

Table 2.8: Classification results for the different similarity measures.

Final Classification Results

Correctly Classified in [%] 8× 8 boxes 16× 16 boxes 32× 32 boxes 64× 64 boxes

192× 144 99.0 % 99.9 % - -
384× 288 98.6 % 98.1 % 99.7 % -
768× 576 - 97.8 % 98.2 % 99.4 %

Table 2.9: Final classification results yielded by fuzzy classification framework.
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Figure 2.15: For each mid-level box, different low-level knowledge bases are administrated in order to cope with

different background content.

2.2.4 Application of the Mid-Level Processing Stage

Within the segmentation process, the mid-level processing stage is used for two purposes. On
the one hand, the current image content is compared to known background content enabling
the recognition of foreground objects as large differences. On the other hand, foreground boxes
are constantly observed as far as their dynamics and mobility is concerned. This is achieved
by feeding a low-level knowledge base and a set of mid-level parameters with the content of
the foreground box. In subsequent video frames, the pattern recognition is not only used to
detect whether the box contains known background again, but also to measure the similarity
of the formerly learned foreground box content with the current foreground content. A high
similarity of learned foreground content and current content indicates that the object – as far
as the respective box area is concerned – has not moved. This is an important feature for the
tracking component, which is described in chapter 2.3.2, because it enables the recognition of
permanent changes. If a box is classified as ”foreground” again and the similarity to formerly
learned foreground content is low, the low-level knowledge base and the mid-level parameters
are reset and newly initialized with the current content. Because of the continuous changes
which are caused by a moving foreground object, it is not reasonable to maintain or store
such short-dated information for longer time. If indeed a permanent change in the background
is recognized by the subsequent processing stages, the low-level knowledge bases and mid-
level parameters trained so far can simply be added to the set of background knowledge bases
without any further training steps. This scheme is illustrated in figure 2.15.

The mid-level processing stage is able to classify the image content in order to find fore-
ground objects in front of known background. Due to the automatic recognition of permanent
changes, the amount of known background is extended by the system itself. Another major
advantage of this approach is the considerable reduction of some of the typical problems of
image processing. Especially, the influence of noise or aliasing effects of the cameras can be
masked out nearly completely. Practical evaluations have shown that the mid-level processing
stage is able to sufficiently cope with severely changing illumination conditions as well. For
example the recognition remained stable, even if the light was switched on or off. This is
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usually a difficult situation for segmentation algorithms based on background subtraction be-
cause the image colors change considerably in this case. An analysis and evaluation of the
whole segmentation system is presented in chapter 2.5.

A further advantage of the mid-level processing stage is that its output is a reduced set
of data. For example, we subdivided a192 × 144 = 27648 pixels large image area into
12 × 9 = 108 box areas. Compared to the results of the low-level processing stage, the
information, which has to be handled, is reduced to0.3% of the original data set. However,
the computational effort to calculate the five similarity measures and to perform the fuzzy
classification process for several knowledge bases and each box area separately requires a
state of the art processor as explained in chapter 1.3.

2.3 High-Level Processing Stage

During the high-level processing stage, application-dependent knowledge is utilized to finally
determine the objects of interest and to recognize possibly wrong classification results of the
mid-level processing stage. The results of the mid-level processing stage – the boxes are
classified either as foreground or as background – are employed to determine objects within
the video images as connected components of foreground boxes. Based on given parameters
as for instance the maximum number of expected foreground objects or their size, superfluous
objects can be neglected. A typical example is illustrated in figure 2.16. In (a), the original
video image is shown, in (b) the result of the mid-level processing stage. The person on the
left is recognized as connected component of foreground boxes. For illustration purposes, the
image data of the foreground boxes is replaced by the contour information which is provided
by the low-level processing stage. Moreover, there are two wrongly classified foreground
boxes in (b) on the right, indicated by yellow boxes. The high-level processing stage is able to
utilize application-dependent knowledge, in this case for instance the expected size of objects,
to identify the wrong classifications. Consequently, the results of the low-level segmentation
are masked out in the wrongly classified box areas. Subsequent processing stages do not have
to cope with these faults because they are recognized within the segmentation.

Moreover, the high-level processing stage contains a tracking component, which tries to
track and follow objects over time. Based on this information, the visibility of objects is set
and permanent background changes are recognized. Superfluous objects (as in the example)
are observed and masked out as long as they do not fulfill the criteria.

2.3.1 Application-dependent Knowledge

Depending on the application, the aim of segmentation may be different. The high-level pro-
cessing stage tries to benefit from these application-dependent aspects to identify the final
objects of interest. Further objects which are possibly superfluous or may result from wrong
classification results are masked out for subsequent processing steps.

An important aspect of the high-level processing stage is the fact that – after the pixelwise
classification during the low-level processing stage and the box-wise classification during the
mid-level processing stage – we are now classifying objects. As mentioned above, objects
within the image are determined as connected components of foreground boxes. The following
properties of these objects, together with application-dependent knowledge, are utilized in the
high-level processing stage:
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(a) Original image (b) Result of mid-level processing stage

Figure 2.16: Example of mid-level processing stage results. The person on the left is recognized as connected

component of foreground boxes. For illustration purposes, the original image is replaced with the low-level

contour segmentation in (b). The wrongly classified foreground boxes in (b) on the right (indicated by yellow

boxes) can be recognized as ”wrong” by the high-level processing stage, for instance because of their size. As a

consequence, the results of the low-level processing stage are masked out in these box regions.

• Number of Foreground Objects
A first important aspect is the number of the expected foreground objects. If, for in-
stance, just one foreground object is expected to be in front of the camera, further objects
can be neglected. The treatment of superfluous objects is explained in section 2.3.2.2.

• Size of Foreground Objects
Another feature of the expected foreground objects is their size. In the high-level pro-
cessing stage, a minimum number of foreground boxes of which an object has at least
to consist can be specified. Objects consisting of fewer boxes, which are consequently
of a smaller size, can be neglected and are made invisible. Thus, they do not disturb
further processing steps of subsequent applications. Moreover, a minimum object size
can be specified for the detection of wrong classification results. Objects consisting of
less boxes than this given size are considered not to be objects at all, but wrong classi-
fications of the mid-level processing stage. As a result, such an object is not only made
invisible, but is immediately learned as background. Additionally, it may be specified
that this rule is not applied for objects located on the border of the image because in
many applications objects of interest may enter the video image from one of the bor-
ders. In this case, it is not reasonable to learn such objects immediately as background,
so this case can explicitly be excluded.

• Shape of Foreground Objects
A complicated feature of objects is their shape. However, because of the fact that the
objects are approximated using rectangular boxes the shape of the objects, which may
be derived from the connected components of foreground boxes, is not meaningful at
all. Nevertheless, depending on the expected foreground objects, the system can make
use of the fact that objects appear as contiguous areas, which especially do not contain
any holes. In that case, boxes possibly classified as ”background” can be recognized as
”foreground” nonetheless.



2.3. High-Level Processing Stage 49

Using this application-dependent knowledge enables the high-level processing stage to ex-
tract the final aim of segmentation, if more than the expected number of objects is found.
Furthermore, small detected objects, which may arise from faulty low-level or mid-level clas-
sification results, can be removed.

2.3.2 Tracking of Objects

While the operations we have described so far are applied to each video image separately, the
tracking component of the high-level processing stage incorporates features which occur due
to the time coherence of subsequent image frames. The tracking component also works on the
mid-level results and thus has to deal with a small number of box classification results as well.
The main task of the tracking component is the tracking of objects from frame to frame. More-
over, the decision which objects are visible and which are invisible is made by the tracking
component. Additionally, the tracking of objects allows the observation of their behavior over
time. This information may be utilized on the one hand to detect permanent changes in the
background, for instance caused by an object moving in the background. On the other hand,
the knowledge about the behavior over time allows the improvement of segmentation results.
For instance, a box that belonged to an object for a significant time may have been classified
wrongly, if it is suddenly recognized as ”background”, while the rest of the object did not move
and is still ”foreground”. Thus, the tracking component is a reasonable supplementation of the
segmentation approach introduced so far and improves the overall results by considering time
coherent features.

2.3.2.1 Features of Objects

An important feature of the tracking component is thedynamicsof objects, which is provided
by the pattern recognition of the mid-level processing stage. As explained in chapter 2.2.4,
foreground boxes are constantly learned into separate low-level knowledge bases and mid-
level similarity measures. This mechanism allows the comparison of current with former fore-
ground box content. A high similarity to formerly learned foreground content indicates little
mobility and may be a hint for a permanent background change. The dynamics of an objecti
is determined as:

di =
1

s

s∑
j=1

(1− µj,fgr) (2.34)

where

s : size of object, counted in boxes
µj,fgr : fuzzy similarity to learned foreground inj-th box of object.

Large membership degrees ofdi indicate a dynamically moving object, while low membership
degrees indicate a more or less static object. The tracking component stores the last position
of the object, i. e., the boxes that belong to the object. Moreover, for each object box the
information is stored, how often the box has belonged to the object, calculated as running
average over the last preceding images.
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2.3.2.2 Determination of Visibility

In order to be visible for subsequent applications, objects have to consist of a predefined mi-
nimum number of boxes, which is an application-dependent parameter of the high-level pro-
cessing stage. Smaller objects are simply masked out and made invisible. Moreover, the
visibility of objects is limited by the specified maximum number of visible objects, which is
another parameter of the high-level processing stage that is largely application-dependent. If
more objects of sufficient size are detected than allowed, the high-level processing stage has to
decide which of these objects are visible and which not with respect to the maximum number
of visible objects. In this case, the likeliness of visibility is determined for each object by a
weighted formula that takes into consideration the dynamics, the size, the age of the object
and the number of frames since when the object has already been visible. The visibilityvi of
objecti is determined by:

vi = υ1 · di + υ2 · s + υ3 · a + υ4 · f (2.35)

where
di : dynamics of object (equation (2.34))
s : current size of object, counted in boxes
a : age of object (i.e. number of frames since first appearance)
f : number of frames since the object is visible
υj : weighting factor of aspects withj = 1, ..., 4.

The application of equation (2.35) provides an indicator for the choice which objects should be
made visible and which not. Those objectsi with the largest visibility indicatorsvi are chosen
as visible, whereas the rest – as far as there are more objects than the maximum allowed
number – is made invisible. We experienced good results with the weighting factorsδ = 0.2,
υ1 = 0.2, υ2 = 0.25, υ3 = 0.15 andυ4 = 0.4.

2.3.2.3 Detection of Permanent Background Changes

For the detection of permanent background changes, the dynamics of objects obviously plays
an important role again. Static objects are likely to show no dynamics at all, especially when
their static behavior can be observed for a longer time. The calculation of the dynamics of an
objecti at timet is explained in equation (2.34). In order to take into consideration the amount
of time the object remains static, we measure the preceding dynamicsdt

i of objecti at timet,
which is averaged over time (t > 0):

dt
i = δ · di + (1− δ)dt−1

i (2.36)

For t = 0, the dynamicsd0
i is set to:

d0
i = di (2.37)

where
δ : weighting factor of current and preceding dynamics
di : current dynamics of objecti, see equation (2.34).

The decision, whether a detected object is a permanent background change or an object of
interest, is made depending on the current dynamicsdi, the preceding dynamicsdt

i and the
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numbern of frames since when the object has remained static. Using the thresholdsυdi
, υdt

i

andυn, a permanent change is recognized, if the following conditions are fulfilled:

di > υdi
∧ dt

i > υdt
i

∧ n > υn (2.38)

Each time the current dynamicsdi of an object is below the specified threshold (di < υdi
), the

object most probably has moved and thus is not a permanent change in the background. In this
case, the countern is set to0 again. Good results have been achieved withδ = 0.2, υdi

= 0.7
andυdt

i
= 0.7. In order to be independent of the actual calculation time for one image frame,

we chooseυn with respect to the actual number of processed frames per second. Thus,υn

corresponds to the number of seconds during which the object remains static. Depending on
the subsequent application, ten to fifteen seconds should be a good choice forυn.

2.3.2.4 Improvement of Segmentation Results

The tracking component collects information about the position, the preceding positions, the
dynamics and the preceding dynamics of objects. Besides the detection of permanent back-
ground changes, as explained in section 2.3.2.3, this information can also be utilized to observe
the behavior of objects. For instance, if a rather static behavior of an object is detected, most
probably the same boxes as in preceding images will belong to the object again. As a con-
sequence, a box that is classified as ”background”, but has belonged to the object during the
preceding images, is reconsidered. For this purpose, the median classification result of the
mid-level processing stage of the neighboring boxes, to which the box under consideration is
finally set, is determined. That means, if the box that is supposed to be classified wrongly
is surrounded by ”foreground” boxes, it will be set to ”foreground” as well. Otherwise, the
”background” classification is kept. Due to this mechanism, possibly wrongly classified boxes
are identified by incorporating knowledge about the behavior of objects and their time coherent
features.

2.3.3 Results of High-Level Processing Stage

The high-level processing stage yields a set of results and directives for the subsequent feed-
back mechanisms (section 2.4). The mid-level processing stage distinguishes between the
classes ”background” and ”foreground”, which are provided as input for the high-level pro-
cessing stage. Depending on the results, which are obtained using the described methods, the
classes of the boxes may be modified by the high-level stage.

In addition to the ”background” and ”foreground” classification, we introduce two new
classes, namely ”border” and ”new background”. We classify boxes as ”border” that are neigh-
boring to a ”foreground” box (considering only the4-neighborhood relationship). The usage
of a ”border” class is reasonable because small parts of a foreground object may stick out
into neighboring boxes, which may have been classified as ”background” because the change
within their area is not severe enough. The introduction of the ”border” class is partly a result
of the empirical evaluation, which has shown that small differences in the image content may
lead to a small decline in the change detection measures only (see section 2.2.3). The ”border”
class allows the algorithm to perform a specific handling of these boxes possibly classified
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wrongly. For example, the content of these ”border” boxes may not be considered for lear-
ning. If a permanent change in the background is detected, the high-level processing stage will
classify these boxes as ”new background”.

Depending on the evaluation of the visibility calculation, the high-level processing stage
provides information for each foreground box, whether it is visible, i. e., the low-level pro-
cessing stage is advised to work out object pixels. Otherwise, it is invisible, which means
that the box area is masked out eliminating possibly wrongly classified pixels of the low-level
stage.

In order to track the dynamics of objects, which is achieved by learning the foreground
content in separate knowledge bases, it is important to reset the low-level knowledge bases and
mid-level parameters of the pattern recognition system, when the object moves. This directive
is obtained during the evaluation, whether the object is a permanent background change as
explained in section 2.3.2.3. Depending on this evaluation, the high-level processing stage
decides to either reset or not to reset the foreground box content learned so far. Resetting
these knowledge bases is not problematic because the observation of moving objects provides
short-dated information, which is not reasonable to store for a longer time.

2.4 Feedback Mechanisms

Performing a classification for each box as described in section 2.2 yields an assignment of
either ”background” or ”foreground” to each box as a result of the mid-level processing stage.
However, the high-level processing stage provides an extended set of classification results and
further directives that may be even contradictory to the mid-level results. In this section, we
present methods that, on the one hand, solve possible conflicts of the results and, on the other
hand, aim at improving the segmentation process for subsequent images.

2.4.1 Adaptive Learning

Basically, we have to distinguish between eight different combinations of the mid- and high-
level processing stage. The results of the mid-level processing stage are either ”background” or
”foreground”. Additionally, the high-level assignments ”background”, ”foreground”, ”border”
and ”new background” have to be considered as explained in section 2.3. The possible com-
binations are illustrated in figure 2.17. For each of the eight possible combinations (indicated
by arrows in figure 2.17), a separate treatment of the respective box content is performed:

• ”Background” and ”Background”
Fortunately, both mid-level and high-level processing stage consider the box content to
be background in this case. Consequently, the mid-level change detectors are adaptively
updated with the current box content. The currently active low-level knowledge bases
are advised to learn the color and edge information of the box (see chapter 2.1). If
the low-level processing stage has determined foreground object pixels, these wrongly
classified pixels would be removed.

• ”Background” and ”Foreground”
The mid-level processing stage wrongly classified the current box content as ”back-
ground”. A new instance of mid-level change detectors is generated and initially learned
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Figure 2.17: There are eight possible combinations of mid- and high-level classification results.

with the current box content. Furthermore, new low-level knowledge bases are created
and trained on the current content. The parameters of the old mid-level detectors are
stored together with the old low-level knowledge bases in order to be reactivated in the
case that the old background situation occurs again.

Depending on the directive whether the box content is visible foreground or not, the low-
level processing stage is advised to work out foreground contour pixels of the object.

• ”Background” and ”Border”
This combination of classification results is not necessarily a contradiction because the
current box is only neighboring to a ”foreground” box. Small parts of a foreground
object may or may not stick out into the box under consideration. As a consequence,
the low-level processing stage is advised not to work out foreground object pixels and
both the mid-level parameters and the low-level knowledge bases are not trained on the
current box content in order to avoid learning of any wrong content.

• ”Foreground” and ”Foreground”
In this case, the high-level processing stage supports the classification of the mid-level
processing stage. In the case that the current box has been ”background” so far, new
instances of mid-level change detectors and low-level knowledge bases are created and
initialized with the current box content.

If the box has been ”foreground” before, the additional information provided by the
high-level stage, whether the object is dynamic and moving or whether the object re-
mains static, is considered. In the case that the object has remained static, the low-level
knowledge bases and mid-level parameters, which have been instantiated for the fore-
ground box content, are learned into the existing data base. Otherwise – the object has
moved – the knowledge bases and parameters are reset and newly initialized. Then the
current content is learned into the knowledge bases.

Depending on the directive, whether the box content is visible foreground or not, the
low-level processing stage is advised to work out foreground contour pixels of the object.
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• ”Foreground” and ”Background”
The decision to classify the current box content as ”foreground” was wrong. Conse-
quently, the detectors have been too sensitive to possible changes. In order to adapt the
parameters and the knowledge bases, the current image data is learned more intensively.

• ”Foreground” and ”Border”
The ”border” classification indicates that the high-level processing stage has modified
the original class ”foreground” to ”background”, which has become ”border” because of
its spatial neighborhood to other foreground boxes. However, the usage of the ”border”
class indicates that it is quite difficult to correctly classify the border regions between
object and background. Thus, neither parameters are adapted nor any content is learned.
The low-level processing stage is advised, not to work out any object pixels.

• ”Foreground” and ”New Background”
The high-level processing stage has decided that the object, to which the box under
consideration belongs, is a permanent change in the background. Thus, the low-level
knowledge base together with the trained mid-level parameter setting is added to the
set of background knowledge bases. The low-level processing stage is advised, not to
work out any object pixels. In subsequent images, the object should immediately be
recognized as ”background”.

2.4.2 Adjustment of Parameters

During experimental tests, we have experienced a large dependency between existing back-
ground edges and potential segmentation failures. We have already taken this effect into
consideration as far as the low-level edge segmentation is concerned (see section 2.1.2) by
introducing the functionη(~p) that reflects existing background edges in the surroundings of
pixel ~p. Because of the same effect, we parametrize the mid-level similarity measures diffe-
rently with respect to the edginess of the respective box area (see section 2.2.3). For the same
reason, we adjust the filter parameterυe of equation (2.13) in section 2.1.2 to the edginess of
the respective box area. Basically, we distinguish two different cases, either the background
box area is smooth and does not contain any edge at all, then a low thresholdυe is chosen, or
the area contains background edges, then a higher threshold is applied.

Considering the different combinations of mid-level and high-level results, we are able
to deduce some information about the mid-level classification results. As explained in sec-
tion 2.2.2, we use five different similarity measures, which are combined to a final result using
a fuzzy logic rule base. Depending on the respective case, one or more of the detectors may
have provided a poor classification result. We use the high-level results in order to reconsider
the reliability indicators of the similarity measures. The indicators of those detectors, which
have provided a wrong classification result, are decreased, while the others are increased. For
subsequent classifications, this method helps improving the classification results due to the
inclusion of the reliability indicators within the fuzzy rule base.

When a detector provides poor classification results over a long period of time, its para-
meters are presumably not chosen sufficiently well. Each of the presented fuzzy membership
functions in section 2.2.1 is influenced by a controlling factorδi (with i = 1, ..5). Principally,
the influence of the parameters is identical for each membership function. A large value of
δi tends to result in lower membership degrees of the respective membership function, while
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a small value ofδi tends to result in larger membership degrees. In section 2.2.3, we have
manually determinedδi as a result of empirical evaluations. While the determined parame-
ters work fine for the empirical testing, it is unlikely that they are universally valid. Thus, a
more general approach for the determination of the controlling factors is appropriate. As a
part of the feedback mechanisms, we employ the reliability indicators, which are utilized and
maintained for the determination of an overall result of the mid-level processing stage (see
section 2.2.2.1). The indicatorsµi,bgr andµi,fgr reflect the classification quality of each si-
milarity measure, both for low membership degrees (µi,fgr) and for high membership degrees
(µi,bgr). For the adaptive manipulation of the controlling factors, we consider the reliability
indicators and possible disproportions between them. If for one and the same similarity mea-
sure the reliability indicatorµi,bgr for high membership degrees is rather low andµi,fgr for low
membership degrees is rather high, the controlling factor is obviously not chosen sufficiently
well. In this exemplary case, the classification quality can be improved by increasingδi be-
cause a low reliability indicatorµi,bgr indicates that the box content has often been classified as
”background”, although it has been ”foreground”. Increasingδi should adjust this imbalance
by leading to lower membership degrees of the similarity measure.

Going into more detail, we continuously perform the adaption of parameters after a pre-
defined amount of frames. We compare the reliability indicatorsµi,fgr andµi,bgr for each
similarity measurei. If |µi,fgr − µi,bgr| > θ holds, the controlling factorδi is manipulated
considering two cases. Ifµi,fgr < µi,bgr, then

δi = [1− (µi,bgr − µi,fgr) · ι] · δi (2.39)

Vice versa, ifµi,fgr > µi,bgr, then

δi = [1 + (µi,fgr − µi,bgr) · ι] · δi (2.40)

whereθ ∈ [0, 1] is a threshold specifying the maximally allowed difference betweenµi,fgr

andµi,bgr before the controlling factorsδi are manipulated, andι ∈ R is a factor that regu-
lates the impact which indicates how much the controlling factors are increased or decreased,
respectively.

2.5 Evaluation of the Segmentation Process

In this chapter, we have introduced a multi-level segmentation approach with internal feedback
mechanisms so far. We have described a lot of ideas and methods to improve the segmentation
process. In this section, an objective evaluation is taken in order to underline the performance
of the system.

2.5.1 Necessity of the Multi-Level Approach

Principally, the low-level processing stage offers a segmentation approach that is able to per-
form the determination of foreground object pixels as a kind of background subtraction ap-
proach. Thus, a legitimate question is, why we still need a multi-level segmentation approach?
On the one hand, there are some qualitative capabilities that are related to the possibilities
of the utilized pattern recognition. Due to the mid-level and high-level recognition capabili-
ties, the system is able to detect permanent changes in the background. Moreover, different
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(a) Original video image

(b) Low-level segmentation only (c) Resulting faulty contour approximation

(d) Multi-level segmentation (e) Resulting correct contour approximation

Figure 2.18: Typical example for improvements due to multi-level approach.

low-level knowledge bases can be administrated and background knowledge can be stored
and recalled for several situations. This is a qualitative advantage over common background
subtraction approaches. On the other hand, there are also quantitative improvements of the
segmentation process as far as the final segmentation results are concerned. Due to the au-
tonomous determination of foreground areas by the mid- and high-level processing stage, the
low-level segmentation is only applied to image regions, where foreground objects are actu-
ally located. Thus, recognized background regions are directly masked out for the low-level
segmentation making failures on the pixel level in these regions impossible.

A typical example for the improvements related to the multi-level approach is shown in
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figure 2.18. The failures of the low-level segmentation in figure 2.18(b) are avoided due to the
multi-level approach in (d). The image was taken out of an application that enables interaction
with back-projection walls using arm gestures. This system is explained in detail in chapter 4.
The application of the contour approximation algorithm (see chapter 3) produces an outlier
in figure 2.18(c) because of the wrongly classified pixels below the arm of the user. The
subsequent application which determines the pointing direction of the arm may be negatively
affected by the outlier. This problem is avoided due to the better results of the multi-level
segmentation in figure 2.18(d) and (e).

2.5.2 Comparison to Common Background Subtraction

A common background subtraction approach works on gray-level images [BAL82]. During
an initial learning phase, the static background has to be presented to the system. The simplest
background model assumes that the gray-level values of each pixel vary independently, accor-
ding to normal distribution. Similar to our approach, the mean gray-level valueg(~p) at each
pixel position~p is calculated during the learning phase:

m(~p) =
1

NS

NS∑
t=1

gt(~p) (2.41)

whereNS > 0 is the number of sample images andgt(~p) ∈ [0, 1] is the gray-level value in the
background image at timet at pixel~p. Moreover, the standard deviation at each pixel position
is determined:

σ(~p) =

√√√√ 1

NS

NS∑
t=1

(gt(~p)−m(~p))2 (2.42)

During the application phase, the segmentation is performed by considering the gray-level
values of the pixels, the learned mean values, and the determined standard deviations:

f(~p) =

{
0 : |m(~p)− g(~p)| ≤ υs · σ(~p)
1 : |m(~p)− g(~p)| > υs · σ(~p)

(2.43)

whereυs ∈ R, υs > 0 is a threshold parameter. The threshold functionf classifies the
current input pixels into ”foreground” and ”background” depending on their similarity to the
learned background images. Often, background subtraction approaches are combined with
adaptive learning mechanisms (e. .g. [WRE95, KIL94]). For the described approach, the gray-
level values are updated using the running average for the recognized background areas. We
have implemented such a common background subtraction approach using the Open Computer
Vision Library [OCV02] in order to compare its performance and results to our system. In
order to remove noise, we additionally apply an averaging threshold filter that is used for our
segmentation approach as well (see equation (2.4) in section 2.1.1). Moreover, we realized an
adaptive updating of recognized background regions by calculating an enlarged convex hull
polygon for the detected foreground object pixels. Outside this convex hull, the mean gray-
level values are updated using the running average.

First of all, we experienced some difficulties to specify a suitable threshold parameter
υs that, on the one hand, yields a sufficient amount of foreground object pixels and, on the
other hand, suppresses as much noise as possible. While the common background subtraction



58 Chapter 2: Multi-Level Segmentation System

(a) Original video image

(b) Common background subtration (c) Resulting faulty contour approximation

(d) Our low-level segmentation approach (e) Resulting contour approximation

Figure 2.19: Typical example for better performance in comparison to common background subtraction.

approach worked sufficiently well for some scenarios, it nevertheless failed almost completely
in other scenarios as for instance illustrated in figure 2.19. The scenario is difficult because the
background colors change significantly, when the person enters the scene. These changes are
most probably related to the slight shadow the user is casting. Moreover, the contrast of the
images is quite low, so some parts of the user’s dark clothing appear to be identical to parts of
the background regions. As can be seen in figure 2.19(b), the threshold cannot be increased
because some parts of the user are already masked out. However, there are large parts of
the background regions that are segmented as foreground on the lower right of the image.
While our low-level approach (figure 2.19(d) and (e)) does not work perfect all the time –
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Figure 2.20: Typical image of evaluated series.

some frames contain failures as for instance shown in figure 2.18(b) – it nevertheless performs
considerably better than the common background subtraction approach. The application of
the multi-level segmentation improves the overall performance of our introduced approach as
shown in section 2.5.1.

2.5.3 Objective Classification Quality

In section 2.2.3, we have empirically determined a suitable parameter setting for the mid-level
box classification. The classification process and the employed feature extraction methods are
working well, if they are efficiently parametrized. However, the linear interpolation of the
parameter domain as proposed in section 2.2.3 has not been evaluated yet. In order to test the
introduced classification process, we took a series of images, which has been recorded in front
of a back-projection wall. Using the segmentation system for the figure/ground separation,
a system was realized that enables the interaction of users with a back-projection wall using
arm gestures. This system is explained in more detail in chapter 4. The sequence consists of
1162 images showing a user who points at the wall with his arm. On the application level, the
mouse cursor on the back-projection wall is set to the position the user is aiming at. During
the initial learning phase, 80 images showing the mere background were employed for the
self-learning process. While recording the series, the electric light was switched off leading
to a severe change in the illumination conditions. The images have a size of192× 144 pixels
and are subdivided in12 × 9 box areas. An exemplary image is shown in figure 2.20. In
order to have an objective measure, we classified2/3 of the box areas of all images manually.
Four columns on the right of the image area have not been classified manually because of the
mirroring effect of the back-projection wall as can be seen in figure 2.20 on the right. On the
one hand, the mirrored arm is something we do not intend to find as far as the application level
is concerned. On the other hand, its appearance is a severe change in the learned background
that should be detected by our method. For the evaluation of the classification process, it is not
important at all. Thus, we concentrate on the2/3 of the image area on the left.

We applied the mid-level pattern recognition system to the test series and compared the
results of the pattern recognition to our manually determined results. We counted as ”wrong”,
if a foreground box was labeled as ”background” and vice versa. Based on this information, we
examined the impact of the continuous adaptiveness of low-level knowledge bases and mid-
level parameters and of the reliability indicators of the fuzzy rule base classifications. First
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Figure 2.21: Classification error rates in dependency of improving methods. First run without adaptive updates

and without influencing reliability indicators, second run with adaptive updates, third run with adaptive updates

and reliability indicators, fourth run after applying high-level processing stage.

of all, we ran the test series with neither adaptive learning nor influencing of the reliability
indicators. The average of the error rates for all the box areas under consideration was 0.33%.
(see figure 2.21). Depending on the box area, the error rate of the mid-level classification
results was between 0.0% and 3.49% in the respective box area. For the second run of the test
series, we activated the adaptive learning of identified background content (see section 2.1.4)
and the adaptive updating of the mid-level parameters (see section 2.2.1). Because of the
definition of thesum of foreground edgesandsum of foreground pixelssimilarity measures
– these measures take directly into consideration the low-level results - these steps are not
analyzed separately. The overall error rate averaged out at 0.22% (see figure 2.21). Compared
to the first run, this is a decrement of wrong classifications of 32.3%. Depending on the box
area, the error rate was between 0.0% and 3.23% for respective box areas. For the third run,
we activated both the adaptive learning and the influencing of the reliability indicators for
the classification process (see section 2.2.2). While the maximum error rate for the different
box areas did not improve – still between 0.0% and 3.23% – the overall error rate slightly
decreased to 0.21% (see figure 2.21). Compared to the second run, this is an improvement of
further 8.0% and to the first run of 37.6%.

While the comparisons so far have taken into consideration the mid-level classification re-
sults, we finally analyze the high-level results as well. Within the high-level processing stage,
application-dependent knowledge such as size or shape is utilized to find wrong classification
results of the mid-level stage. As we have described in section 2.3, the high-level processing
stage has an extended set of classification results. For instance, a ”border” class is introduced
that indicates the neighborhood of the box under consideration to a foreground object. For
the evaluation of the high-level processing stage, we have counted an error, if a ”background”
box was classified as ”visible foreground” and if a ”foreground” box was classified as ”back-
ground”. Thus, a ”border” classification was not counted as wrong. Following this scheme,
there was exactly one wrong classification result in the whole series, averaging out an error rate
of 0.0013% of all classification results (see figure 2.21). This result indicates that especially
border boxes are inclined to be wrongly classified. Consequently, it seems to be reasonable
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(a) (b) (c)

Figure 2.22: Wrongly classified pixels are presumably close to the identified main object.

to treat ”border” boxes separately, for example by learning their content neither as foreground
nor as background.

However, interpreting these promising results does not mean that the segmentation results
are perfect. Merely the mid-level and high-level classifications are correct, or at least more
or less correct as far as the ”border” boxes are concerned. Nevertheless, the pixelwise seg-
mentation performed in the low-level processing stage may work out wrong foreground pixels
within the ”visible foreground” boxes. An example is illustrated in figure 2.22. The box
area below the arm of the user is principally classified correctly as ”visible foreground”, but
some pixels of this box are classified wrongly as foreground pixels (figure 2.22(b)). This may
lead to an inaccurate contour approximation (chapter 3), shown superimposed in yellow in
figure 2.22(c). The fact that wrong pixels can mainly be found close to the objects of interest
may be considered as an advantage.

Summarizing the results of this objective comparison allows the conclusion that 99.79%
of the classification results of our pattern recognition system have been identical to the human
classifications. Moreover, the introduced mechanisms which realize a continuous adaptiveness
to current circumstances lead to significant improvements of the classification results. More-
over, we have analyzed a sequence of 1162 images only. Considering the fact that most of the
improving methods are conceived for a long time of application, the benefits of these methods
may be even more significant than it has become obvious in our relatively short test sequence.

2.5.4 Analysis of Knowledge Bases

During the mid-level processing stage, several low-level color and edge knowledge bases may
be instantiated for a box region, if a permanent change in the background is detected. The
pattern recognition system of the mid-level stage administrates these knowledge bases and
recognizes known background situations by choosing appropriate knowledge bases. However,
the color knowledge bases are able to store detailed histogram information for each pixel of a
box region separately in order to cope with slight changes and varying illumination. Thus, we
analyze the necessity to have several knowledge bases by exploring the content of the color
and edge knowledge bases. As a matter of fact, our multi-level segmentation system requires
a significant amount of memory for the knowledge bases (see chapter 1.3). Thus, it is difficult
to examine the color knowledge bases for every pixel in detail because an image consisting
of 192 × 144 pixels already requires at least 27648 color knowledge bases. Moreover, if a
permanent change in the background is detected, the instantiation of new knowledge bases for
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Figure 2.23: A typical image of the parking lot.

one16×16 pixel large box area will require additional 256 color knowledge bases. Therefore,
it is nearly impossible to examine the necessity of several knowledge bases in detail. As a
consequence, we illustrate the impact of the mid-level processing stage for an example that
was taken from the parking lot surveillance application (see chapter 4.4). The parking lot
surveillance is an outdoor application that has to cope with the typical illumination changes
which occur, e. g., because of moving clouds. A typical image of the parking lot is shown in
figure 2.23.

The application was executed for approximately 16 hours for this analysis. During this
time, 811001 images were processed. The size of the box regions is16 × 16 pixels and the
RGB color space is used. On average, 5.8 knowledge bases were instantiated for each box
region, the maximum was 21 knowledge bases. The decision of the mid-level processing stage
to instantiate new low-level knowledge bases depends both on the results of the color and of the
edge segmentation. Because of this reason, we illustrate the average edge values of the edge
knowledge base for a typical box region, for which the average of six knowledge bases was
instantiated. In figures 2.24(a) – 2.29(a), an enlarged clipping of the different edge knowledge
bases is illustrated for the16 × 16 pixels large box area under consideration. The content of
the edge knowledge base has been shown for a complete image in figures 2.7(b) and 2.8(b) on
page 28 and 29. Moreover, the color knowledge bases for an exemplary pixel of the box region
are shown as a typical example in (b), (c) and (d) of the figures 2.24–2.29.

As can be seen in the figures 2.24 – 2.29, the average edge values of the knowledge bases
are more or less significantly different. Only the fourth and the fifth edge knowledge base
seem to be quite similar in figure 2.27 and 2.28, but the size of the disc in figure 2.27 is a
bit larger than in figure 2.28. The visualization of the color knowledge bases illustrates the
fuzzy membership degrees of the color values of theR, G, andB-channel to the linguistic
term ”is background” for the exemplary pixel position (see chapter 2.1.1). As can be seen, the
intervals of high membership degrees, which denote background colors, are small. Thus, fore-
ground object colors just have to differ slightly in order to be recognized by the segmentation
algorithm. Considering the first three color knowledge bases, the necessity of using different
color knowledge bases becomes obvious because the intervals of high membership degrees
are completely different. Summarizing this content in just one knowledge base would lead to
severe disadvantages. On the one hand, a large interval of high membership degrees limits
the recognition of foreground colors because colors within the interval will be recognized as
background and are consequently not recognized correctly, if they occur within a foreground
object. On the other hand, color knowledge may disappear because of the aging process (see



2.5. Evaluation of the Segmentation Process 63

(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.24: First edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).

(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.25: Second edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).
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(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.26: Third edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).

(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.27: Fourth edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).
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(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.28: Fifth edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).

(a) Average edge values. (b) R-channel

(c) G-channel (d) B-channel

Figure 2.29: Sixth edge knowledge base in (a) and corresponding color knowledge base for one pixel as an

example in (b), (c) and (d).
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chapter 2.1.1) after a permanent change in the background. As a consequence, the learned
color knowledge would be lost and unavailable, if a known situation reoccurs. Due to our
approach to have several knowledge bases in combination with a pattern recognition system,
the system is able to store and to administrate completely different background content and
to recall this knowledge, if former situations reoccur. The last three color knowledge bases
show similar intervals for all the color channels. However, as already explained, this is just
the visualization for one out of 256 pixels of the box region. As indicated by the average edge
values in figure 2.27, 2.28 and 2.29, the content of the background has more or less signifi-
cantly changed, although the color values of the exemplary pixel under consideration may not
be affected.

Although a detailed analysis of the thousands of color knowledge bases is not possible,
the example illustrates the necessity and the advantages of the approach. Both color and edge
knowledge bases show significant differences, underlining the importance of using several
knowledge bases.

2.5.5 Evaluation on Application-Level

In section 2.5.2, we have shown that our combination of color- and edge-based segmentation,
referred to as low-level segmentation, performs better than the common background subtrac-
tion approach that uses a dynamic reference image with mean gray-level values and the stan-
dard deviation. Moreover, we have demonstrated in section 2.5.3 that the results of the mid-
level processing stage are almost identical to human classifications, averaging out at 99.79%
identical classifications. In section 2.5.4, we have demonstrated the necessity and benefits
of having several knowledge bases in order to administrate completely different background
content.

Unfortunately, it is not possible to compare the performance of our approach to other state
of the art methods we have surveyed in chapter 1.2 because none of them is available as
open source. Nevertheless, in order to show the capabilities of our approach, we analyze the
performance of our system in more detail on the application level in chapter 4 on the basis of
very different applications, comprising for instance both indoor and outdoor environments.

2.6 Performance Improvements due to Parallelization

Experiments have shown that the presented segmentation system requires remarkable compu-
tational power (see chapter 1.3) in order to achieve a frame rate of 15-20 frames per second
(fps), which may be considered as realtime. On a Pentium-III 1100 MHz system, the frame
rate of our system is approximately 7-9 fps. However, dual processor systems have become
more and more popular and moreover affordable in recent years. Due to the subdivison of the
image area into boxes within the low- and mid-level processing stage, the system is highly
suitable for parallel computing. Thus, we have implemented the system as multithreading so-
lution that is able to principally distribute the computational effort onn threads, which may
consequently run onn processors. However, only the low- and mid-level processing stage are
suitable for parallelization. The final evaluation of the obtained results within the high-level
processing stage has to be performed singlethreaded before learning in the mid- and low-level
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Figure 2.30: Multithreading structure for multiprocessor systems.

stage can be executed multithreaded again. This structure is illustrated in figure 2.30. Com-
pared to the singlethreaded execution of the segmentation system, the frame rate improved to
approximately 12-14 fps on a Dual Pentium-III 1100 MHz system.

2.7 Summary of Segmentation Approach

We have presented a three-level architecture for segmentation based on background subtrac-
tion. The low-level processing stage works pixelwise and determines contour pixels of fore-
ground objects. The mid-level processing stage subdivides the image area in small rectangular
box-shaped regions. For each box region, a pattern recognition system is trained that allows
the administration and recognition of different background content. The features of the pat-
tern recognition system are designed to be insensitive against varying illumination conditions.
The mid-level processing stage determines foreground regions, in which contour pixels of the
objects are worked out, and background regions, in which possibly wrongly classified pixels
of the low-level processing stage are masked out. Moreover, additional similarity measures
can be incorporated easily into the classification process due to the fuzzy rule-based classi-
fication process. The high-level processing stage builds objects as connected components of
foreground boxes. Based on the objects found, application-dependent knowledge is applied in
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Low-level Equation Impact
σ (2.2) learning in color knowledge base
υc (2.4) filter parameter for color segmented results
ρ (2.5) aging of color knowledge

α, β (2.11) classification of edge values
υe (2.13) filter parameter for edge segmented results
υa (2.15) filter parameter for combined results
γ (2.16) adaptive learning of edge knowledge

Mid-level Equation Impact
δ1 (2.21) edge-based mutual similarity measure
δ2 (2.27) mean color similarity measure
δ3 (2.28) mean edge similarity measure
δ4 (2.30) sum of foreground edges measure
δ5 (2.31) sum of foreground pixels measure

High-level Equation Impact
υ1, υ2, υ3, υ4 (2.35) determination of visibility

δ (2.36) dynamics of objects over time
υdi

, υdt
i
, υn (2.38) detection of permanent background change

Feedback Equation Impact
θ, ι (2.39), (2.40) adjustment of parameters

Figure 2.31: Parameters of the multi-level segmentation approach.

(a) Video image (b) Result of segmentation

Figure 2.32: Exemplary result of application.

order to remove objects which do not fit the criteria of a subsequent application. Moreover,
the high-level processing stage decides which objects are visible or invisible and whether a re-
gion previously classified as object is a permanent change in the background. Finally, internal
feedback mechanisms are employed to continuously adapt to slight changes in the background
and to adjust parameters.

During the definition of the multi-level segmentation system, we have introduced several
parameters, which are summarized in tabular 2.31. Besides these parameters, application-
dependent knowledge such as the size of objects or their expected number (see chapter 2.3.1)
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may be incorporated.

In figure 2.32, an example of application of the multi-level segmentation system is illu-
strated. The original video image is shown in figure 2.32(a), the result in figure 2.32(b). The
recognized object, in this case the person, is found as connected component of foreground
boxes. For illustration purposes, the original image content of the foreground boxes is re-
placed by the result of the low-level processing stage. The ”border” boxes are indicated by a
darkened box area. Recognized background regions are not changed in figure 2.32(b). Fur-
ther processing steps, as for example the polygonal contour approximation that is explained in
chapter 3, can be applied based on this result.
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Chapter 3

Polygonal Contour Approximation

The contour is considered to be one of the most important features of an object. There are a
lot of techniques in applied machine vision systems, which rely on contour information, such
as object localization, recognition, and classification, to name just a few. A common approach
to the calculation of contour pixels of an object in a digital image is spatial edge detection. A
variety of edge detection operators such as theSobelor thePrewitt operator can be found in
[GON92]. Unfortunately, these methods are normally affected by discontinuities within the
edge pixels. Thus, an edge linking algorithm has to be applied as a second step in order to
obtain a closed contour in, e. g., the sense of 8-neighborhood of pixels. Another important
aspect in this context is the detection of connected components. The algorithm has to decide,
which pixels belong to one object and which pixels belong to different objects. The calculation
of closed boundaries of objects is important for the determination of regions and can also be
employed for pattern recognition purposes [SON98].

This chapter focuses on this second processing stage of an already preprocessed video
image. We assume that the first step has already performed a segmentation, which has found
pixels of the object contour. This is for example the result of the multi-level segmentation
system presented in chapter 2. We propose a new method for the derivation of a complete
polygonal contour from this information. A very simple solution for this purpose is the calcu-
lation of the convex hull polygon of the given set of object pixels. The convex hull polygon
encloses the object pixels and is able to close even large gaps within the boundary of objects.
However, as a severe disadvantage of the convex hull polygon, concave parts of objects are
not approximated sufficiently. We propose a rather simple, but intriguingly powerful approach
to contour approximation, based on the calculation of convex hull polygons for subdivided
parts of the object pixels. The convex hull polygons and their intersection points are merged
into a graph-based structure, which is employed to derive approximated boundaries of the sets
of input pixels. Due to this approach, even concave parts of objects are approximated with
adjustable accuracy in realtime. Moreover, the algorithm does not need any prior knowledge
about the structure of an object in order to work properly. The determination of the num-
ber of objects within the image as well as the grouping of pixels is performed automatically,
based on the assumption of the maximum length of contour gaps. The relationship between
the choice of parameters and the ability of the algorithm to close gaps of respective lengths
is analyzed theoretically. The application of the proposed method is independent of the pre-
sented multi-level segmentation system and works with other segmentation approaches due to
an abstraction of input data as well.

In section 3.1, we briefly survey the state of the art as far as contour approximation methods
are concerned. The scenarios of application for our algorithm are explained in more detail in
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section 3.2. In section 3.3, we define a common starting basis in order to make our approach
independent from specific preprocessing operations. The detection and grouping of different
objects is explained in section 3.4. Algorithms for the determination of the approximated hull
polygon are given in section 3.5. In section 3.6, we report on problems which result from the
discretization of pixel positions and propose methods to solve them. In section 3.7, we analyze
mathematically the influence of the parameters of our algorithm on the ability to close gaps in
the contour and to distinguish between different objects within the image. For the integration
of time coherence, an additional algorithm is introduced in section 3.8. In section 3.9, we
present some examples of application of our contour approximation algorithm. Finally, we
compare our results to other state of the art algorithms in section 3.10.

3.1 State of the Art

Often, edge-based segmentation approaches are utilized to determine boundaries and borders
of objects in video images. However, the results of typical edge detection operators are nor-
mally not suitable for the immediate derivation of a closed boundary because the found contour
pixels do not automatically yield a closed contour in the sense of a 4- or 8-neighborhood rela-
tionship of pixels. In gray-level images, on the one hand discontinuities in the edge image may
affect the proper identification of boundaries. On the other hand, any kind of thresholding that
is applied to the edge values may lead to gaps in the boundaries of objects because weak edges
may be eliminated. Thus, further supplementary processing steps have to be appended in order
to combine separated edge segments and to yield a closed contour. Moreover, the found edge
segments have to be grouped to objects. For this purpose, a decision has to be made, in which
case the distance between edge segments is large enough to assign those segments to the same
instead of separated objects.

There are several well-known techniques which deal with these problems. Basically, these
methods differ on the one hand in the strategy that leads to the final border construction and
on the other hand in the amount of prior information that is integrated into the process (com-
pare [SON98], p. 134-176). First of all, edge segments have to be determined. A common
approach isedge thresholdingthat is applied to edge magnitude images. This approach is
based on the assumption that noise and other disturbing influences lead to non-significant
edge values, which can be removed by simple thresholding. However, the basic problem is to
find a global appropriate threshold providing a result which is neither ”over-thresholded” nor
”under-thresholded” [KUN87]. A more sophisticated approach isthresholding with hystere-
sis that employs a lower and an upper threshold, which are chosen according to an estimated
signal-to-noise ratio [CAN86]. Borders which have been determined by one of these methods
are often missing important parts or may be affected by noise. Taking into consideration the
spatial neighborhood and context of edges may improve the edge detection results. For in-
stance, a weak edge between two strong edge pixels is most probably also a part of an edge
segment. Techniques following this scheme are normally refered to asedge relaxationme-
thods [ROS76, HAN90, HAN78]. While these edge relaxation methods try to close gaps of
the detected edges, they do not guarantee to yield closed boundaries of objects. An approach
that is more comparable to our technique isborder tracing. Common border tracing tech-
niques require a preprocessing of the video images that has already determined contiguous
regions within the image that have been labeled respectively. Based on these regions, the
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border is traced pixelwise, for instance by clockwise searching for neighboring edge pixels
[PAV77]. This approach is very similar to our introduced technique. However, border tra-
cing is only applicable, if a closed boundary around objects or more generally around regions
already exists. Thus, the main advantage of our approach is its ability to close gaps and to ap-
proximate the contour of objects which may have been segmented incompletely. Other border
tracing methods work directly on gray-level images and try to find paths of high-gradient edge
pixels [DUD76, BAL82]. The usage of graph structures is also a very common approach in
border detection methods. Often, additional knowledge such as known starting or end points
of the boundary is required for these approaches [MAR72, NIL82]. Moreover, graph-based
approaches are often based on spatial edge directions and vertices of the graph are neighbo-
ring pixels, so the required input data is different compared to our approach. As an advantage,
general problem-solving methods for graph structures such as cost minimization algorithms,
can be applied. However, often discontinuities in the edge images require heuristics in order to
close small gaps [SON98]. An extensive survey of border detection and contour approximation
methods can be found in [SON98]. Because of the close relationship between the extraction of
contour pixels and the linking of the found edge pixels, these topics are often treated together,
e.g [SAB97]. A well-known approach to contour approximation problems areactive contour
modelsor so-called ”snakes” [KAS88]. Snakes are defined as energy-minimizing splines and
are matched as a deformable model to an image with respect to energy minimizing functions.
An important aspect for the application of snakes is the existence of a priori knowledge or
some kind of image understanding process that specifies a starting position and then pushes
the snake towards an appropriate result. Snake-line solutions work well and have been ana-
lyzed and improved continuously. For the realization of active contours, fast algorithms have
been proposed [WIL92]. We present a comparison of our approach to active contours based
on thegreedysnake algorithm [WIL92] and thegradient vector flowsnake [XU97, XU02] in
section 3.10.

Another well-known approach in the context of contour approxiamtion are Hough trans-
forms which are often used for the detection of straight lines, circles or ellipses [HOU62].
Hough transforms are well suited for combining separated edge segments. However, the ob-
tained result is not necessarily suitable as contour approximation for arbitrary objects. Never-
theless, the results of a Hough transform may be utilized for the initialization of active contour
models [LAI94]. A relatively simple method to determine an approximated closed contour of
a given set of pixels is the calculation of the convex hull polygon [PRE85]. The convex hull
polygon closes even large gaps within the edge segments of objects. However, as a severe dis-
advantage, concave parts of objects are approximated insufficiently. Our algorithm extends the
capabilities of the convex hull polygon, so even concave objects are approximated sufficiently.

3.2 Scenarios of Application

Our contour approximation algorithm is able to approximate the contour of a given set of ob-
ject pixels. This requires the determination of these object pixels during some preprocessing
operations, for example by using a background subtraction approach as introduced in chap-
ter 2. In additon, there are further possible input sources. For instance, a human hand can
be segmented using skin color information. Then the shape of the hand can be approximated
using the introduced approach. Such a process normally requires some kind of thresholding
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to finally distinguish between object and background pixels. As already shown in section 3.1,
discontinuities in edge images are a common problem in this context because weak edges may
be eliminated by thresholding operations leading to gaps in the boundaries. The algorithm
introduced here is not suitable to supplement the edge detection process in video images in
general. It is applicable only, if sets of object pixels are already isolated. Based on these iso-
lated sets of pixels, an approximated closed contour for the objects is determined. Moreover,
the algorithm expects a two-valued input image and cannot utilize gray-level edge images.
Thus, some kind of thresholding has to be performed before applying our approach.

The algorithm is able to recognize different objects, if there is a sufficiently large distance
between them. More exact information about this aspect as far as the parameterization and
the size of the distance is concerned is deduced mathematically in section 3.7. However, our
algorithm is not able to determine or to detect any kind of occlusion of objects. The detection
of different objects is based on the spatial neighborhood of object pixels only. Our approach is
based on the calculation of convex hull polygons within smaller box-shaped image areas. The
chosen size of the boxes is essential for the capability of the algorithm to close gaps of specific
lengths. On the one hand, a small box size leads to a closer approximation of the boundaries,
but, on the other hand, larger gaps may not be closed. In this case, the determined contour cuts
into the object. A larger box size leads to a more inexact contour approximation, but larger
gaps are more likely to be closed. An automatic determination of box size parameters would
be preferable in order to yield optimal results for arbitrary input images. However, this would
require some kind of image understanding process or prior knowledge about the objects, which
we do not assume to have. The relationship between the chosen box size and the capability of
the algorithm to close gaps is analyzed theoretically in section 3.7.

3.3 Starting Basis and Goal

The application of our algorithm requires some preprocessing operations, which ideally yield
a large amount of object pixels, for instance the multi-level segmentation system introduced
in chapter 2 may be applied. However, the application of our contour approximation algo-
rithm does not depend on any specific preprocessing method. In order to have a common
starting basis and to abstract from any specific segmentation algorithm, we assume a general
representationf of an input image, which assigns a binary number to every pixel(x, y):

f : (x, y) −→
{

1: pixel belongs to an object
0: affiliation of pixel is unclear

(3.1)

The definition of equation (3.1) explicitly takes into account that a ”0” as input value does
not necessarily imply that the pixel belongs to the ”background”. On the contrary, such a
pixel may either belong to a weak edge that has been removed by some kind of thresholding
operation, to one of the objects or indeed to the background. Figure 3.1 shows an image of a
punch on a desk, which has been segmented by our system. As can be seen, the contour of
the punch has not been found completely. A canonical approach such as border tracing is not
applicable because the4- or 8-neighborhood relationship of pixels cannot be utilized for the
determination of a closed contour.

The specific task of our algorithm is to approximate the boundaries of an arbitrary number
of foreground objects represented byf(x, y) = 1 for every pixel~p = (x, y). The result of
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(a) Exemplary input image (b) Segmented image

Figure 3.1: Exemplary video image (a) and required input for contour approximation (b).

an execution of the algorithm is a set of closed polygonal chains (CPC), exactly one for each
foreground object. The closed polygonal chains are represented by a list of pixel positions.
Succeeding positions in the list denote an edge segment. The last and the first element of the
list finally close the polygonal chain. The CPCs should meet the following requirements:

1. The CPCs are closed.

2. Each polygon encloses the whole foreground object. As a consequence, each pixel(x, y)
with f(x, y) = 1 lies within the polygon and none lies outside. The pixels of the CPC
are considered to belong to the object.

3. The CPCs close small gaps within the contour of the objects, which may be caused by
faulty or inaccurate segmentation results.

4. The CPCs should not enclose too many background pixels.

Requirement 4 is rather subjective because of the unclear affiliation of the ”0” input pixels.
As a matter of fact, the requirements 1, 2, and 3 are fulfilled by the convex hull polygon
of the set of foreground edge pixels. The calculation of the convex hull polygon is a well-
known approach to shape representation and description, see for example [SON98], and can
be calculated inO(N log N) time, whereN is the number of points. For algorithms and run-
time considerations see for example [PRE85]. Nevertheless, the main disadvantage is that
non-convex foreground objects and, accordingly, concave parts of foreground objects are not
approximated sufficiently, in contrast to requirement 4. Thus, we propose a suitable way to
combine the advantages of the convex hull properties with the ability to approximate non-
convex objects and thus fulfilling all the requirements of a sufficient contour approximation.
This is also the reason, why the punch has been chosen as an exemplary input object: It is a
rather concave object. As we will show in our comparison in section 3.10.2, our requirement 2
is a particular problem for snake-based algorithms because they tend to cut off parts of the
objects.

The basic idea of our algorithm is to subdivide the image area into two layers of rectangular
grids of boxes as shown in figure 3.2. Every box in the first layer is overlapped by four boxes
of the second layer and vice versa, except for the smaller border boxes from the second layer
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(a) First layer of boxes (b) Second layer of boxes

Figure 3.2: Two overlapping box grids (a) and (b) are utilized to subdivide the image area.

Figure 3.3: The intersection areasAi of the box layers have an almost identical size. The first layer is depicted

in black, the second in gray.

(see figure 3.2). The placement of the second layer of boxes is intended to be symmetrical, so
the resulting intersection areasA1, A2, A3 andA4 have an almost identical size (see figure 3.3).
We have relaxed this requirement to ”almost identical” because truncation effects may lead to
small differences in the sizes. We use the following notations for the size of the boxes (counted
in pixels):

• NB,hor: horizontal width of boxes

• NB,ver: vertical height of boxes

• NO,hor: horizontal width of overlapping intersection area of boxes

• NO,ver: vertical height of overlapping intersection area of boxes

In figure 3.4, the punch is used as exemplary input again, with both layers of boxes super-
imposed. We require neighboring to have a common border line within the same layer. As a
consequence, object pixels located on a border line are considered for operations within both
boxes. LetH1, H2 be the number of horizontal boxes andV1, V2 the number of vertical boxes
for layer 1 and 2, respectively.H2 andV2 depend on the parameters of the first layer:

H2 = H1 + 1 and V2 = V1 + 1.
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Figure 3.4: Exemplary input image with box layers superimposed. The first layer is shown in bright gray and

second layer in dark gray.

Figure 3.5: Convex hull polygons (yellow) of both layers superimposed on the original image.

In summation, there are
NB = H1 · V1 + H2 · V2 (3.2)

different boxes.

The central idea of our approach is to calculate the convex hull for all the pixelsf(x, y) = 1
of the input image (see equation (3.1) at the beginning of this section) in each of theNB boxes
in both layers separately. If the convex hull contains less than three points, the box will be
treated as empty. As a result, this method yields a large number of convex CPCs that are
shown superimposed in figure 3.5. The convex CPCs approximate the concave object rather
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well as far as the ambient boundary is concerned (the example image has a size of384 × 288
pixels and the box size is32× 32 pixels). For our algorithm, only the points and the implicitly
given edges of the so foundNB convex hull polygons are important leading to a reduction
of the total number of foreground pixels under consideration. Our algorithm determines the
ambient boundary of the object by calculating intersection points of neighboring convex hull
polygons and tracing the boundary in either clockwise or counterclockwise order around the
object. The details are explained in the following sections where we present algorithms for the
detection of disjoint objects and for the derivation of an approximated contour of the detected
objects.

3.4 Grouping and Detection of Disjoint Objects

First of all, we determine which areas of the image (represented as boxes) belong to the same
foreground object. We simplify this problem by considering our previously defined boxes
instead of separate pixels. Two boxesi andj are considered to belong to the same foreground
object, if at least one foreground pixel is situated in their intersection area. This can be realized
using aUnion-Finddata structure. The Union-Find data structure represents sets of elements.
Its operation ”Find” returns the set, to which an element belongs. The ”Union” operation
replaces two existing sets with their union. In our case, the elements are boxes. Initially, every
box defines its own set. During execution of the algorithm, sets of boxes will be merged into
one set, if two of its boxesi andj have at least one foreground pixel belonging to the same
foreground object, i. e., there is at least one foreground pixel in their intersection area. In
algorithm 1, the Union-Find data structure is utilized to yield sets of boxes. After execution of
the algorithm, each set of boxes covers exactly one foreground object. For more information
about the Union-Find data structure see for example [AHO82].

Algorithm 1 Find disconnected foreground objects
Generate a set for each boxi (i = 1, ..., NB) that contains a convex CPC.
for each boxi with 1 ≤ i ≤ NB do

for each boxj that shares an intersection areaAI with box i do
if there is at least one foreground pixel withinAI then

perform aUnionoperation for the sets of boxi andj.
end if

end for
end for
Let N be the number of sets (i.e. objects)
for each object1 ≤ i ≤ N do

Assign object numberi to each box of seti.
end for

3.5 Determination of Approximated Hull Polygon

Running the algorithm presented in section 3.4 determines the number of foreground objects
in the image and assigns an object number to each box. Boxes that do not belong to any
foreground object are marked as background.
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(a) Neighboring boxes in first layer (b) Intersecting boxes in second layer

Figure 3.6: Neighboring boxes of the same layer (a) and of the respective other layer (b), which have to be

considered for intersection points with the current box (black).

The following algorithm approximates the contour of exactly one object. Further objects
are processed in the same manner. Without loss of generality, we assume to find a clockwise
circulation around the object and that the calculated convex hull CPCs are available as a list
of points in clockwise order as well. The counterclockwise case can be treated analogously.
In order to find a contour approximation for an object, we first need two arbitrary starting
points~p0 and~p1 belonging to the contour. These points can be found by calculating the convex
hull of the whole object and choosing two arbitrary succeeding points as~p0 and~p1. For this
purpose, only the points of the already determined convex CPCs of the object are used. The
point ~pa = ~p1 is taken as starting position for the circulation around the object and~pb = ~p0 is
assumed to be a predecessor of~pa.

The following steps are repeated until~p1 is reached again as current position: The current
position~pa is added to the listL of ambient hull points. For~pa, the boxesbx are determined, in
which ~pa occurs. For each boxbx that contains~pa, the succeeding point~px of the convex hull
for this box is taken. The straight line~pa~px is considered to be possibly part of the ambient
hull. But at first, it is determined, whether there are intersection points~pi of ~pa~px and another
convex hull line of one of the neighboring boxes. If an intersection point~pi is found, it will be
inserted into both hull polygons and~px is set to~px = ~pi. In order to find intersection points,
the hull polygons of the neighboring boxes of the same and of the respective other layer have
to be considered. See figure 3.6 for the boxes under consideration.

In figure 3.7, an example is shown. The current positions may for example be~pb = (1) and
~pa = (4). Then~px = (3) is chosen as one of the next possible points. But first it is determined,
whether there are intersection points~pi on~pa~px. Such a point~pi (encircled in the figure) indeed
exists because of the intersection of~pa~px and(5)(7). Thus,~px = ~pi is set.

Having determined and inserted possible intersection points into the CPCs, the clockwise
angleϕx between~pb~pa and each~pa~px for each boxbx is calculated. The point~pn = ~px with
the smallest angleϕx is taken as next ambient hull point of the approximated contour. Then
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Figure 3.7: Determination of intersections points of CPCs (encircled).

~pb = ~pa and~pa = ~pn is set. These steps are repeated until~p1 is reached again as current
position. In order to clarify this method, it is summarized in algorithm 2.

Algorithm 2 Find object contour
Calculate convex hull of the whole set of CPCs of the boxes belonging to the foreground
object.
Take two arbitrary succeeding points~p0, ~p1 of this convex CPC (w.l.o.g. in clockwise order)
as starting line with~pa = ~p1 and~pb = ~p0.
repeat

Append~pa to the listL of points for the ambient CPC.
for each boxbx that contains~pa do

Determine succeeding point~px of ~pa in hull CPC of boxbx.
repeat

Find possible intersection points~pi of ~pa~px with hull lines of neighboring boxes.
Insert~pi in hull CPCs.
Set~px = ~pa.

until all intersection points are found.
Redetermine succeeding point~px of ~pa.
Calculate clockwise angleϕx by regarding~pb, ~pa and~px as a triangle.
Find the vertex~pn = ~px that has the smallest angleϕx.

end for
Set~pb = ~pa and~pa = ~pn.

until ~pa = ~p1

Return listL of contour points

The algorithm yields a listL of points that define the final approximated hull polygon as
a CPC for the object under consideration. By always choosing the smallest possible angle, it
is ensured that only ambient points are added to the list, otherwise the graph would not have
been constructed properly.
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Summarizing our technique leads to algorithm 3, which yields as result the number of
recognized foreground objects and determines a list of contour points as CPC for each object.

Algorithm 3 Contour approximation
Find and determine numberN of disconnected foreground objects (algorithm 1)
for 1≤ i ≤ N do

Find object contour (algorithm 2)
Store returned list of contour pixels asLi

end for
returnN andL1, ..., LN

3.6 Problems Resulting from Discretization

In this section, some problems are treated, which result from the discretization of pixel posi-
tions, especially of the calculated intersection points. These intersection points are generally
rounded to discrete pixel positions simplifying the determination of the ambient hull signifi-
cantly. Unfortunately, under unfavorable conditions the discretization may lead to problems, if
two lines of the same hull polygon intersect. That may be the case after rounding and inserting
an intersection point. Similarly, it is possible that the insertion of a rounded intersection point
violates the clockwise order of a CPC. Both cases may lead to a deadlock in the algorithm,
when calculating the ambient circulation around the object. In order to cope with this severe
problem, two additional methods are incorporated in the algorithm. First, we examine after
each insertion of intersection points, whether the new line segments intersect with one of the
other line segments of the current CPC. In this case, this additional intersection point will be
inserted into the CPC. Second, the CPC of this box is recalculated with respect to the required
clockwise order, which may have been violated because of the insertion.

Another problem caused by the discretization may be an intersection point laying at a
position that would have been reached from the previous position during therepeat-loop of
the algorithm, if the point had existed before. In this case, if the new point meets the smallest
angle condition, the algorithm may choose it as ambient hull point, leading to a deadlock, as
well. In order to cope with this problem, the current position is removed from the list of the
approximated contour points and the algorithm recalculates the angles of the previous position.
If appropriate, a new contour point may be chosen.

3.7 Performance Analysis

The convex hull computed for a locally restrained area within an image has the property to
close small gaps in the contour of an object. This property is considered to be important
and was required in section 3.3 because image preprocessing most probably does not provide
closed boundaries of objects as explained in section 3.1. Our approach to calculate the convex
hull in box-shaped areas limits the edge-linking capabilities of the convex hull, if a gap in the
boundary is incidentally located on the border between two boxes. In order to illustrate this
problem, figure 3.8 shows an enlarged clipping of figure 3.4.
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Figure 3.8: Gaps in the contour located between boxes (right arrow) are found by an overlapping box.

The convex hull polygon of the upper left box (in bright gray) closes the first gap (indi-
cated by left arrow) very well, but is not able to close the second gap (right arrow) that is
located between the upper left and the upper right box. Our concept to have a second layer of
symmetrically offset boxes solves this problem. The gap is closed by the lower middle box
of the second layer (in dark gray) because the convex hull calculated for this box provides a
CPC closing the gap. Keeping this idea in mind, the close relationship between the handling
of gaps and the disjointness of objects becomes obvious. In order to gain some reliable infor-
mation about the behavior of our technique depending on the chosen box size, the parameters
NB,hor, NB,ver, NO,hor andNO,ver are analyzed. These parameters and the given image size
automatically lead to the number of boxesH1, V1, H2 andV2.

Figure 3.9: Extreme cases for the recognition of connected components

We have to point out that the position of a contour gap has a certain influence as far as
its detection and handling by our method is concerned. If for example only the foreground
pixels (4) and (5) in figure 3.9 are given, none of the boxes will produce a hull line closing the
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gap because these points do not appear in the same box. If the points (4) and (5) are shifted
one pixel position to the left or to the right, the gap will be closed. Thus, the behaviour of our
algorithm depends on the position of both the boxes and the foreground objects in relation to
each other. In order to illustrate the relationship, the extreme cases are analyzed. For example,
for two points laying on the same horizontal position the minimum distance required to ensure
that these points are not connected isNB,hor (see points (1) and (2) in figure 3.9). Generalizing
this rule for two points with arbitrary positions yields:

Disconnectivity Criterion

The distance

Ddisconnect =
√

NB,hor
2 + NB,ver

2 (3.3)

is the minimum distance between two points~p1 and~p2 for which ~p1 and~p2 are
considered to be disjoined. Two disconnected objectsO1 andO2 will be recog-
nized as two objects by the algorithm, if for two arbitrary points~p1 ∈ O1 and
~p2 ∈ O2 the condition

||~p1 − ~p2|| > Ddisconnect (3.4)

holds.

See points (1)-(2) in figure 3.9 as an example. The opposite point of view leads to the

Connectivity Criterion

The distance
Dconnect = min(NO,hor, NO,ver) (3.5)

is the maximum distance between two points~p1 and~p2 for which ~p1 and~p2 are
considered to belong to the same object. An objectO will be recognized as one
object, if the distance between an arbitrary point~p1 ∈ O and its closest neighbor
~p2 ∈ O is

||~p1 − ~p2|| ≤ Dconnect. (3.6)

See points (3)-(4) in figure 3.9 as an example. Taking into account theConnectivityandDis-
connectivity Criterion, it is possible to predict the behavior of the algorithm. Nevertheless, for
distancesd with

Dconnect < d < Ddisconnect (3.7)

the result, whether a gap is closed or not, is not predictable because it depends on the position
of the object relative to the box layers.

In order to measure the calculation time, the algorithm was applied to a series of 950 images.
The series was taken from the interaction application which is presented in chapter 4.2, an
exemplary image is shown in figure 4.2 on page 104. The contour approximation algorithm
was applied to the images of the sidewards camera. Images showing merely the background
were left out for this evaluation. Each image had a size of192 × 144 pixels and was tested
for NB = 413 (NB,hor = NB,ver = 12) andNB = 636 (NB,hor = NB,ver = 10) boxes. The
number of boxes is the crucial factor and not the size of the image as far as the calculation
time of the algorithm is concerned. The whole number of pixels within each box area has to
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be considered only once, namely during the calculation of the convex hull polygon of this box
area. Afterwards, the number of points of the convex hull polygons is the decisive factor as
far as the calculation time is concerned. Thus, the calculation time of our algorithm is largely
independent of the actual image size, but depends on the chosen box size and the resulting
number of boxes.

Measured value 413 boxes 636 boxes

Contour points 76.6 97.2
Considered points 205.7 270.9
Intersection points 15985.4 20120.9
Calculation time 0.026 s 0.032 s

Table 3.1: Performance forNB = 413 andNB = 636 boxes.

For each image, the number of points in the returned contour approximation list, the num-
ber of considered points for the result list, the number of calculated intersection points, and
the calculation time1 were determined, which are shown in table 3.1. While the number of
calculated intersection points is impressive, the algorithm works for both parameter settings in
realtime and thus can be considered to be suitable for interaction applications.

3.8 Time Coherence

Principally, the introduced contour approximation algorithm may be applied both to still and to
live video images. The algorithms presented so far utilize one input image only. Thus, in live
video applications, every image is processed as a still image, neglecting additional informa-
tion about previously determined object boundaries. In chapter 4, where several examples of
application are presented, the segmentation may sometimes provide faulty results, which lead
to outliers of the contour approximation. An example of an outlier is illustrated in figure 4.9(b)
on page 109. As we have shown in section 3.7, the calculation time of our approach allows for
realtime applications, in which objects move relatively slow, leading to slight changes from
frame to frame only. For this kind of applications, we have developed a further algorithm
which incorporates time coherence and leads to smoothed approximation results over time. As
a consequence, sporadic outliers of the approximated boundaries are significantly reduced.

Basically, the smoothing algorithm maintains a second boundary for each object that is the
result of previous smoothing operations. After the first appearance of an object, this second
boundary is initialized with the current boundary. In each new frame, the contour approxima-
tion algorithm 3 (see section 3.5) is applied and the obtained boundaries are combined with
the second, preceding boundary polygon. We assume that both boundary polygons are given
as listsLp andLq of succeeding edge points. This is exactly the result of the presented con-
tour approximation algorithm. The determination of a current smoothed boundary polygon
L′

p is performed as illustrated in figure 3.10. Let the dotted, upper polygon (points depicted
by stars and enumerated as~p1, ..., ~pn) denote the former boundaryLp of preceding frames,

1On a Pentium-III 700 MHz based system, considering the contour approximation algorithm without any
previous segmentation only.
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and the second, lower polygon denote the current polygonLq (enumerated as~q1, ..., ~qn). As
can be seen, the current polygonLq has an outlier at the bottom, in comparison to the former
smoothed polygonLp. Both polygonal chains are illustrated in figure 3.10(a). The arrows
depict the clockwise orientation of the polygonal chains, which are provided by the contour
approximation algorithm.

Beginning with the first element~q1 of the current boundary, the closest neighbor of the
former boundaryLp is determined on the basis of the Euclidean distance. For initialization
purposes, the whole listLp of points has to be considered. In our example, the corresponding
point for~q1 is ~p1. The algorithm starts with~pa = ~p1 and~qb = ~q1 and stores the new smoothed
boundary inL′

p. The following steps are repeated: First, the closest neighbor of~qb in Lp is
determined. For this purpose, not the whole listLp is considered (as for the initialization), but
just those successors of~pa, for which the distance to~qb becomes smaller. The stop condition
for this loop is reached, when the distance of a successor is larger than the distance of its
predecessor to~qb. If ~pa is the last element in the list,~pa is set to the first element ofLp. We
denote the closest successor of~pa to ~qb with ~pbest. Between~qb and ~pbest a line segment is
constructed and~qb is shifted along~qb~pbest according to a predefined factorγ:

~rb = ~qb + γ · (~pbest − ~qb) (3.8)

with ~rb, ~qb, ~pbest ∈ R2 andγ ∈ [0, 1[. The choice ofγ influences the impact of the current
boundary on the smoothed polygon. Large values ofγ (within the interval[0, 1[) lead to a
low influence, i. e., the smoothed polygon slowly adapts to the current boundary. Low values
of γ lead to a minor smoothing effect,γ = 0 immediately duplicates the current boundary
as smoothed result. In figure 3.10(b), the line segments between the elements ofLq and their
closest neighbor inLp are indicated by the dashed lines. In figure 3.10(c), the new positions
which result from the shifting operation are illustrated. The shifted position~rb is added to the
list L′

p. Moreover~pa = ~pbest is set and~qb is set to its successor. The loop is repeated until~qb

does not have a successor and the end of listLq is reached. In our example, the resulting
smoothed boundary polygon is illustrated in figure 3.10(d) as thick line. As can be seen in the
example, the outlier can partly be compensated by our smoothing algorithm. However, while
γ is approximately0.5 in the example, a largerγ would smooth the boundary considerably
better. Figure 3.10 is just an illustration and is not based on exact calculations.

While our smoothing algorithm works well, if the approximated contour polygons move
and change slightly, it may fail, if a fast or sudden movement of the objects in the image
takes place. For this purpose, we propose an analysis of the current boundary polygon and
the calculated smoothed boundary. In the case of a sudden movement, we newly initialize
the smoothed boundary with the current contour approximation to react to significant changes
in time. In order to decide whether to keep the smoothed contour or to simply duplicate the
current contour and to take it as a new starting basis for subsequent images, we average the
distances between the corresponding points of the current and smoothed contour and apply
a threshold. The whole smoothing algorithm is shown as algorithm 4. Some examples of
application of the smoothing algorithm are illustrated in section 3.9.
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(a)

(b)

(c)

(d)

Figure 3.10: Smoothing of approximated contour.
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Algorithm 4 Smoothing Algorithm
Input: Approximated contour polygonLq

if Lp is empty, i. e., first appearance of boundarythen
Initialize Lp with current boundary polygonLq.

else
Set~qb to the first element~q1 of list Lq.
Determine closest neighbor~pa for ~qb by considering all the elements ofLp.
repeat

rbest = ∞.
repeat

Set~pi = ~pa.
Calculate Euclidean distancer between~qb and~pi.
if r < rbest then

Setrbest = r and~pbest = ~pi.
else

Stop condition for this loop is met.
end if
Set~pi to its successor. If the end ofLp is reached, set~pi to the first element ofLp.

until Stop condition has been met.
Construct a line segment~pbest~qb and determine new position~rb by shifting~qb along this
segment according to predefined factorγ (see equation (3.8)).
Add ~rb to list L′

p of smoothed boundary polygon.
Sum up shifted distance between~qb and~rb in rshift.
Set~pa = ~pbest.
Set~qb to its successor.

until End of listLq is reached, i. e.,~qb does not have a successor.
Average out shifted distanceravg by dividing rshift by the number of points inLq.
if ravg < rthreshold then

TakeL′
p as new smoothed boundary polygon.

else
TakeLq as new boundary polygon for initialization purposes.

end if
end if
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3.9 Examples

In order to demonstrate the capabilities of our polygonal contour approximation algorithm,
some examples with different parameters are presented. Each example is represented by two
images, the input image with the box layers superimposed and the resulting image with the ori-
ginal image and the calculated ambient hull polygon (in white) superimposed. For an analysis
of the impact of different choices for the box sizeNB,hor andNB,ver, the punch is used as an
example in figure 3.11. On the left, the presegmented input image and on the right the original
image with the approximated contour as result is shown. The first example in (a) and (b) uses
a width and height ofNB,hor = NB,ver = 32 pixels andNO,hor = NO,ver = 16. As a result, for
these parametersDconnect is determined as

Dconnect = min(NO,hor, NO,ver) = 16.

This means that even in the worst case szenario as far as box boundaries and object position
are concerned gaps within the contour of the foreground objects will be closed, if they are not
larger than 16 pixels.Ddisconnect is calculated with the maximum appearing sizes

Ddisconnect =
√

322 + 322 ∼= 45,

which means that the distance between arbitrary points of two objects has to be at least
45 pixels to ensure that these objects are not recognized as one. The algorithm already yields
promising results for these parameters as can be seen in figure 3.11(a) and (b) . The contour
approximation can be improved by decreasing the size of the boxes toNB,hor = NB,ver = 16
in figure 3.11(c) and (d). Nevertheless, at the lower left side of the object a small piece of
the punch is not enclosed. A close look at the input image (c) shows that the contour gap
at this position is responsible for this behaviour. As a matter of fact, the results of the con-
tour approximation algorithm depend on the quality of the presegmented input images. In
figure 3.11(e) and (f), the size of the boxes has been decreased toNB,hor = NB,ver = 11.
Here, the contour gaps of the input image (e) are too large to be closed. Thus, the algorithm is
not able to approximate the object’s contour correctly.

In figure 3.12, two objects with only a small distance between them are shown (with
NB,hor = NB,ver = 19). The determined contour polygons approximate the objects very
well. Moreover, the algorithm correctly recognizes two separate objects because there is no
box which contains pixels of both objects.

In section 3.3, we underlined the independence of the contour approximation algorithm
from specific preprocessing operations. Especially, it is not necessary to employ the intro-
duced multi-level segmentation system (chapter 2) for the determination of foreground object
pixels. In figure 3.13(a) the set of object pixels was determined by the dedicated search for
skin color in the normalized RGB color space. This is a common approach for skin color
detection, see for instance [YAN98]. In order to remove noise and wrongly classified pixels,
the color segmented image has been postprocessed with subsequent morphologicalerodeand
dilateoperations [GON92], leading to figure 3.13(a). The image has a size of192×144 pixels,
the box metric was chosenNB,hor = NB,ver = 9. Despite the postprocessing with morpholo-
gical operators, the determined hand region contains some smaller gaps, which are for instance
caused by the ring the user wears and wrongly classified pixels. Although the gaps are not too
large, they impair techniques like border tracing (see section 3.1). The result of the applica-
tion of the introduced contour approximation approach is shown in figure 3.13(b). As can be



3.9. Examples 89

(a)NB,hor = NB,ver = 32 pixels (b) Resulting contour approximation

(c) NB,hor = NB,ver = 16 pixels (d) Resulting contour approximation

(e)NB,hor = NB,ver = 11 pixels (f) Resulting contour approximation

Figure 3.11: Example for the effects of different box sizes. Promising results can be seen in (a) and (b), which

can be improved by decreasing the size of the boxes in (c) and (d). The contour gaps will not be closed anymore,

if the size of the boxes is decreased once more in (e) and (f). The relationship between the box size and the length

of contour gaps is theoretically analyzed in section 3.7.
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(a) Input image (b) Resulting contour approximation

Figure 3.12: Example for two objects with small distance between them.

(a) Input image (b) Resulting contour approximation

Figure 3.13: Input image resulting from dedicated search for skin color.

seen, the calculated boundary closes the gaps sufficiently well and yields a very good contour
approximation.

In section 3.8, we have presented a smoothing algorithm that is able to utilize time cohe-
rence, which may, for example, be important in live video applications. For this kind of ap-
plications, the image and consequently the object boundaries are expected to change slightly
from frame to frame. Thus, sporadic failures within the segmentation stage, which lead to
sudden outliers of the contour approximation, can be smoothed significantly with the intro-
duced algorithm. As an example of application, we apply the smoothing algorithm to a series
of images, which was taken from an interaction application (see chapter 4.2). In this appli-
cation, the pointing direction of the user’s arm is determined. Within the series, the light is
switched off leading to some faulty segmentation results (see figure 4.4 on page 105). In fi-
gure 3.14 and figure 3.15, the impact of a sudden occurence of an outlier on the smoothed
contour is illustrated. Both figures illustrate eight succeeding images, before the occurence
of the outlier in (a) and afterwards in (b)-(h). The smoothing factor is set toγ = 0.8 in fi-
gure 3.14, and toγ = 0.9 in figure 3.15. The blue polygon depicts the current, the yellow
polygon the smoothed boundary. As can be seen in both figures, the smoothing algorithm is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.14: Example of application of the smoothing algorithm. The smoothing factor is set toγ = 0.8, the

blue polygon depicts the current approximated contour and the yellow polygon depicts the smoothed contour.

In (a), the current and the smoothed contour are more or less identical until the light is switched off in (b). As

can be seen, the smoothed contour is slowly adapting to the outlier above the user’s arm in (c)-(f) until it finally

becomes more or less identical in (g) and (h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: The smoothing factor is set toγ = 0.9 and applied to the same series of images as shown in

figure 3.14. Again the blue polygon depicts the current approximated contour and the yellow polygon depicts

the smoothed contour. As can be seen in (b)-(h), the smoothed contour adapts significantly more slowly to the

outlier. Thus, in (h) the smoothed result is more ore less identical to figure 3.14(c).
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able to compensate sudden occurences of outliers sufficiently well. Depending on the chosen
smoothing factorγ, the smoothed boundary adapts faster or more slowly to the current contour
approximation.

3.10 Comparison to Other Approaches

In order to evaluate the introduced contour approximation approach, we compare the results
of our algorithm to other approaches. In section 3.10.1, we apply both the convex hull and
our algorithm to some exemplary images and demonstrate the improvements of our method,
which is also based on calculating convex hull polygons. In section 3.10.2, we use the same
exemplary images for a comparison to the active contour models (”snakes”) based on the
greedy snake algorithm and the gradient vector flow snakes.

3.10.1 Convex Hull

Because of the close similarity of our approach to the calculation of the convex hull poly-
gon, we present some examples of application in order to underline the improvements of our
technique as far as the contour approximation capabilities are concerned. For each example,
we calculate both the convex hull polygon and an approximated contour with the introduced
approach. As an indication for the capabilities of the contour approximation, we count the
number of pixels of the enclosed areas. In figure 3.16, three examples of application are il-
lustrated. In the first row (figure 3.16(a), (b) and (c)), a tea pot is shown. The image size is
192 × 144 pixels, the box size is11 × 11 pixels. The set of input pixels for our algorithm is
shown in (a). The convex hull polygon in (b) encloses an area of 13867 pixels, compared to
12007 pixels of our approach in (c). The enclosed area is consequently shrunken to 86.6% of
the convex hull area.

In figure 3.16(d), (e) and (f), the punch is shown again. The image has a size of384× 288
pixels, the chosen box size is11× 11 pixels. The set of input pixels is shown in (d). The area
enclosed by the convex hull polygon in (d) consists of 35957 pixels, compared to 20019 pixels
yielded by the introduced approach in (e). The determined object area is shrunken to 55.7% of
the convex hull size.

In figure 3.16(g), (h) and (i), a teddy bear is taken as exemplary object. The image has
a size of384 × 288 pixels, the chosen box size is24 × 24 pixels. The set of input pixels is
illustrated in (g). The convex hull polygon in (h) encloses an area of 46608 pixels, compared
to 42740 pixels yielded by our approach in (i). The enclosed area could be shrunken to 91.7%
of the convex hull area.

As a proof of quality, the visual inspection of the results in figure 3.16 may be considered.
Depending on the amount of concave parts of the input objects, the enclosed object area could
be shrunken (between 55.7% and 91.7% of the convex hull polygon size) without cutting off
parts of the object.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16: The set of input pixels is shown on the left. The convex hull polygon in the middle, superimposed

in yellow, does not approximate concave parts of the objects sufficiently. Our introduced approach approximates

the contour much better on the right.
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3.10.2 Active Contours

Active contour models or so called ”snakes” have been introduced in [KAS88] and evolved
enormously since then. The original work [KAS88] currently yields 898 citations in the Re-
searchIndex [RES02]. A snake is a controlled continuity spline which is typically influenced
by image forces and external constraint forces. The image forces attract the snake to salient
image features such as lines or edges, the external constraint forces may be directed by some
higher level image understanding mechanism. Snakes are defined by an energy function re-
flecting these forces. An approximated contour is determined by minimizing the energy func-
tional. Let v(s) = (x(s), y(s)) denote the snake points, then the energy functional can be
written as

E∗
snake=

1∫
0

Esnake(v(s))ds =

1∫
0

(
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))

)
ds (3.9)

whereEint represents the internal energy of the snake due to bending,Eimagereflects the
image forces andEcon the external constraint forces. For our comparison, we utilize the
greedy algorithm [WIL92], which is provided as open source in C++ in the Open Computer
Vision Library [OCV02] and thegradient vector flow(GVF) snake, which is provided as
MatLab source code [MAT02, XU02] by the authors of [XU97]. The quantity being minimized
by the greedy algorithm is

Esnake=

∫ (
α(s)Econt+ β(s)Ecurv + γ(s)Eimage

)
ds (3.10)

whereEcont, weighted by the factorα(s), denotes ”continuity” and is a first-order term which
makes the snake act like a membrane.Ecurv denotes ”curvature” and is weighted by the
factorβ(s). Curvature is derived as second-order term and makes the snake act like a thin plate.
Both Econt andEcurv correspond toEint in equation (3.9). TheEimageterm is the same
as in equation (3.9). External constraints are not included in [WIL92]. The parametersα, β
andγ are utilized to balance the relative influence of each of the terms. The greedy algorithm
itself works iteratively and examines the neighborhood for each point in order to find a new
location providing the smallest value for the energy term. For details of the specification of the
different terms see [KAS88, WIL92]. Basically, the GVF snake introduces an external force
that overcomes the problem of poor convergence to concave parts of objects of active contour
models [XU97]. The gradient vector flow is computed as a diffusion of the gradient vectors of
the image, forcing the active contours into concave parts of objects.

For our comparison, we use the same input images as in section 3.10.1. The segmenta-
tion has already been performed by our multi-level segmentation approach (chapter 2), so a
two-valued image is given as input for both the greedy and the GVF snake algorithm shown
in figure 3.17(a), 3.18(a) and 3.19(a). The choice of the parameters –α, β, γ and a spatial
neighborhood of pixels, which limits the maximal movement of a snake point per iteration,
for the greedy algorithm [WIL92] andα, β, γ andκ for the GVF snake [XU97, XU02] – is
important for the approximation performance of the snake algorithm. In order to have an ini-
tialization for the snake, we calculate an enlarged convex hull polygon of the input image for
the greedy snake algorithm. Moreover, we interpolate additional snake points between larger
line segments of the convex hull polygon. Both the initial contour and the resulting snake are
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(a) (b)

(c) (d)

Figure 3.17: Input image in (a). Application of greedy snake algorithm to the tea pot image in (b) and the GVF

snake in (c). The result of our approach is shown in (d).

shown superimposed in yellow in the examples, the points of the snake are depicted by blue
dots. For the initialization of the GVF snake, we use an ellipsoid which encloses the object.
The resulting GVF snake is superimposed on the original image for the comparison.

The results for the first example – the tea pot – are shown in figure 3.17. In (a), the input
image for the algorithm is shown, which has been obtained by our multi-level segmentation
algorithm. The input image has a size of192×144 pixels and the initial snake contour consists
of 32 points. The application of the greedy snake algorithm with a neighborhood of11 × 11
pixels,α = 0.1, β = 0.2, andγ = 1.0 yields the result shown in (b) after 16 iterations. The
application of the GVF snake is illustrated in (c) withα = 0.05, β = 0, γ = 1 andκ = 0.5.
The contour approximation achieved by our algorithm is shown in (d). As can be seen, the
results of the active contour algorithms are quite good for the chosen parameter settings. The
greedy snake algorithm in (b) slightly cuts into the object on the right and has problems to
approximate the concave parts of the object on the upper left. The GVF snake approximates
the concave parts of the tea pot very accurately in (c). Nevertheless, it cuts more clearly and
more often into the object. The result of our approach is somewhere in between in (d). Our
approximated contour neither cuts into the object, nor is the approximation of the concave part
of the tea pot on the upper left and the upper right as exact as the GVF snake in (c).

The second exemplary image – the punch – consists of384×288 pixels. Again, the greedy
snake and the GVF snake algorithm are applied to the input image in figure 3.18(a). For the
greedy snake algorithm, the parametersα = 0.1, β = 0.1, γ = 0.8 yield the contour illustrated



3.10. Comparison to Other Approaches 97

(a) (b)

(c) (d)

Figure 3.18: Input image in (a). Application of greedy snake algorithm to the tea pot image in (b) and the GVF

snake in (c). The result of our approach is shown in (d).

in (b) after 28 iterations. The application of the GVF snake algorithm withα = 2, β = 0,
γ = 1 andκ = 2 is shown in (c), the result of our approach in (d). As can be seen, the greedy
snake algorithm completely fails as far as the approximation of the concave part of the punch
is concerned in (b). The GVF snake approximates the punch very well in (c), but cuts slightly
into the object on the left and at the bottom right. The results of our approach in (d) are very
similar to the GVF snake. Yet, our contour does not cut into the object in (d).

In figure 3.19, the teddy bear is used as input image again. The initial snake contour
consists of 49 points. Figure 3.19(b) shows the greedy snake algorithm after 22 iterations, the
applied parameters areα = 0.1, β = 0.1, γ = 0.8 and a neighborhood of15 × 15 pixels.
In (c), the settingα = 2, β = 0, γ = 1.0 and κ = 2 were chosen for the GVF snake
algorithm. In comparison to our approach in (d), the results of both the greedy and the GVF
snake algorithm are rather similar. The GVF snake performs bettern than the greedy snake as
far as the approximation of the concave parts of the teddy bear on the right are concerned. Yet,
the GVF snake more clearly cuts into the object on the left. Again, the results of our approach
and of the GVF snake are very similar. Once more, our contour approximation does not cut
into the object.

Summarizing the results of the comparion of our approach to active contour models, we
have shown that our algorithm provides considerably better results than the greedy snake al-
gorithm because of the significant problems of the greedy snake as far as the convergence to
concave boundaries is concerned (especially in figure 3.18). This is a well-known problem in
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(a) (b)

(c) (d)

Figure 3.19: Input image in (a). Application of greedy snake algorithm to the tea pot image in (b) and the GVF

snake in (c). The result of our approach is shown in (d).

literature and possible solutions and improvements have been discussed, e. g., the gradient vec-
tor flow snake [XU97]. The results of the GVF snake and our approximation are very similar
as shown in the examples. However, our algorithm provides a contour that does not cut into the
object which is the case in every example for both the greedy and the GVF snake. Moreover,
the snake algorithms have to be extensively parametrized in order to yield meaningful results.
Our algorithm requires just one assumption, namely about the maximum length of possible
contour gaps.

However, the snake approach is more flexible than our algorithm. While our approach
requires a presegmented set of input data for which an approximated contour is determined,
the snake algorithm is applicable on original video images, which may be strongly affected
by noise, as well. Misclassified pixels of the segmentation stage, which lead to outliers in
the contour approximation of our approach, will presumably not disturb the snake algorithm.
Nevertheless, the contour approximations yielded by the snake algorithms are not as geome-
trically exact as our approach. This seems to be especially disadvantageous, when the input
data is a clear set of object pixels as it is the case in our scenario. In order to make our al-
gorithm more robust against sporadic outliers, we are able to incorporate time coherence (see
section 3.8) to smooth the approximated contours. Another advantage of active contour mo-
dels is their ability to profit by any kind of higher level knowledge which may be available in
other scenarios of application and which should direct the snakes to better results [COH91]. A
comparison of the required calculation time of each of the approaches is difficult because the
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greedy snake algorithm provides considerably worse results than our approach and the GVF
snake is available as MatLab source code only [MAT02, XU02]. Thus, a direct comparison
of the required calculation time of the GVF snake and our algorithm which works in realtime
(see section 3.7) is not possible.

As a conclusion, we see the following main advantages of our approach. The paramete-
rization of our approach is considerably simpler and comes across vividly. Snakes have to
be extensively parameterized, otherwise the results of the approximation may be poor. Our
algorithm is based on geometrical calculations which is a completely different approach to
contour approximation. The visual inspection of the results indicates that our algorithm works
geometrically more exact than the snake algorithm by not cutting off parts of the objects as far
as the assumption about the maximum length of contour gaps is correct. If a clear set of input
data is given, geometrically exact results are required, and the results have to be obtained in
realtime, our algorithm may be preferable against snake-based algorithms.
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Chapter 4

Applications

In order to test and to evaluate the introduced framework for segmentation purposes in com-
puter vision systems, we incorporated the system in different applications. In chapter 4.2, we
present an interaction system for a back-projection wall with arm gestures. In chapter 4.3, we
integrate our system in theZyklophand posture recognition system for prelocalization pur-
poses. Finally, we use our framework for a parking lot surveillance in chapter 4.4. While the
arm gesture and hand posture recognition are more or less indoor applications, the parking lot
surveillance has to cope with outdoor illumination conditions, which are significantly more
unstable and, thus, more difficult to cope with.

4.1 Evaluation of Segmentation Performance

As explained in chapter 2.5, it is rather difficult to compare and to evaluate the achievements
and benefits of our approach with other state of the art approaches because these are normally
not available as open source code. Thus, we demonstrate the capabilities of our multi-level
segmentation approach on the basis of typical applications. As an important aspect, we like
to emphasize that the parameters of the low-level and mid-level processing stage are the same
for all the presented applications. Only the high-level processing stage, which incorporates
application-dependent features, is configured using knowledge about the application and the
goal of segmentation, for example the expected size of objects. By considering the different
types of applications, it becomes evident that the self-learning and adaptation methods con-
tribute enormously to a reliable and stable segmentation system that is moreover comfortable
to use.

For each of the applications, we have recorded series of video images enabling us to eva-
luate the results on a per frame basis. As a measure of quality, we consider the visual in-
spection of the results of the polygonal contour approximation (see chapter 3). Failures in the
multi-level segmentation system will likely lead to insufficient contour approximations, which
probably disturb further processing steps on the application level. For instance, there may be
wrongly classified pixels, which belong to the background and should not have been found by
the segmentation. In this case, the contour approximation most probably will not approximate
the contour of the objects sufficiently well. As a consequence, one or more outliers of the
approximated contour become obvious. In our point of view, outliers are the main problem as
far as failures in the segmentation system are concerned. The aim of the interaction applica-
tion presented in section 4.2 for instance is to derive the pointing direction of the user’s arm.
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Outliers of the contour approximation are thus a far more severe problem than a cut off finger
or an approximation that slightly cuts into the user’s arm as far as this application is concerned.
This aspect, of course, is a matter of parameterization. Depending on the subsequent appli-
cation, a shift of the noise filtering parameters could be advantageous. On the one hand, the
objects (in this case the user) are more likely to be completely segmented as a consequence.
On the other hand, it has to be taken into account that outliers then become more likely. For
the arm gesture application, we consider an avoidance of outliers to be preferable. For the
hand posture recognition, it may be more important not to cut off fingers of the segmented
hand. However, in order to show the capabilities of our approach, we did not change the pa-
rameters for the respective application. Thus, we use the same parameters, which have been
mentioned in the respective chapters, for each of the applications. As a consequence, a slight
cut into the foreground objects of the contour approximation is not judged as an error of the
segmentation system. In chapter 3.8, we have presented a smoothing algorithm for this kind of
applications that is able to smooth the determined contour polygons based on time coherence.
This algorithm significantly reduces the negative impact of outliers as shown in chapter 3.9.
However, in order to evaluate the capabilities of the multi-level segmentation system itself, we
do not apply the smoothing algorithm here. In cases of permanent changes, we will evaluate
the capabilities of our algorithm to recognize and to adapt to such a situation and, moreover,
to recall respective knowledge, when a formerly learned situation reoccurs.

4.2 Interaction with Arm Gestures

As a first example of application which employs the segmentation framework, a computer-
vision-based interaction system is presented that enables natural interaction with a back-
projection wall.

4.2.1 Introduction

Video projection is in widespread use for multimedial presentations in classrooms and at con-
ferences. It also plays an important role in group meetings for visualization purposes. Usually,
interaction is performed at a standard keyboard/mouse computer the screen content of which
is additionally directed to a video beamer. This type of interaction limits the possibilities of
group meetings because the interaction has to be performed at the computer, although it would
be more natural to interact directly at the back-projection wall. For that purpose, special dis-
plays augmented with sensors have been developed such as the SmartBoard [STR94]. Another
recent development is to use classical laser pointers by capturing the laser point on the projec-
tion screen by video cameras. Versions for front- and back-projection have been implemented
based on that idea [KIR98, WIS01].

Another step further is the user pointing directly to the projection wall, without any addi-
tional pointing tool. The idea is to observe the user with video cameras in order to recognize
his arm and to calculate the three-dimensional pointing direction of the arm. There has been
and is an increasing number of projects concerning tracking of the human body such as the
Pfinder andSpfinderof the MIT [AZA96, WRE95] for human-computer interaction. Most
of the projects emphasize on the recognition of symbolic static or motion gestures while the
precise determination of locations or directions is less often treated. Examples concerning
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pointing areVisualization SpaceandDream Spaceby IBM [IBMDS, IBMVS]. These systems
and others define the pointing direction by a line connecting the head and the hand of the
pointing arm. According to our experience, the postures that have to be performed to hit the
desired goal are somewhat unnatural and thus inconvenient. Another approach is to use a
computer-internal kinematic 3D-model of the human body, which is controlled by the user
by mapping body features recognized in the camera images to features of the model. Then
the arm direction of the model can be taken as the desired pointing direction [HOC99]. The
advantage of the model-based approach is its robustness. Its precision, however, still depends
on the precision of the 3D-information acquired from the images.

One basic idea of our solution is to define a slightly restricted scenario of pointing to the
wall. In our opinion, this scenario is still natural and does not restrict the user too much.
Our system uses two standard video cameras, under the ceiling and sidewards, which observe
the space in front of the back-projection wall. The user directly interacts with the graphical
user interface by pointing with his stretched arm to the wall. The arm has to be in a defined
region of about 1 to 1.5 meters of depth in front of the wall. Further dynamic objects such as
other parts of the body of the user are not allowed in this region. Typically, the cursor of the
application is displayed at the intersection of the pointing line with the wall and can freely be
moved by moving the arm. Further instructions, for example initiating a mouse button click,
can be given by natural voice commands using a wireless headset microphone.

4.2.2 Usage of Segmentation Framework

In order to detect the presence and the position of the user and especially the arm of the user,
the segmentation system is utilized. After the determination of the pointing arm within the
video images, further processing steps have to be performed. For the transformation into
three-dimensional world coordinates, a camera calibration technique has to be applied and
the pointing direction has to be calculated. These steps are described in detail in [LEU01].
The segmentation framework is utilized within the interaction system to perform the first pro-
cessing steps, namely to work out contour pixels of the user. We recorded different series
of images in front of different back-projection walls. The first and the second series were
recorded in front of the back-projection wall that is shown in figure 4.1.

All the series were recorded in an indoor environment. Nevertheless, the first and the
second scenario are affected by large windows which are causing varying illumination con-
ditions. Moreover, shadows are casted by further persons in the room, which do not appear
in front of the camera. On the one hand, these conditions are unfavorable. But on the other
hand, their impact is realistic as far as actual applications are concerned. The third scenario is
recorded in a mere indoor environment without any windows.

4.2.3 First Scenario

The first series contains 1162 images with a size of192×144 pixels. The initial learning phase
was performed with 80 images. For the mid-level processing stage, the image was subdivided
in 12 × 9 box areas. The high-level processing stage was adjusted to extract exactly one
object with the minimum size of five boxes. Some exemplary video images of both cameras,
sidewards and under the ceiling, are shown in figure 4.2.



104 Chapter 4: Applications

Figure 4.1: User interacting with back-projection wall. Two cameras observe the arm of the user. The mouse

cursor is moved to the position the user is aiming at.

(a) Sidewards camera (b) Ceiling camera

Figure 4.2: Exemplary video images of first scenario.

After the initial learning phase, the segmentation system works perfectly and provides good
results for two different users. A typical example is illustrated in figure 4.3. After 605 frames,
the electric light is switched off leading to a considerable change in the illumination conditions,
while a user is interacting with the system. As a consequence, the left boundary of the picture
frame on the left becomes visible. The situation is illustrated in figure 4.4.

However, when the user’s arm is not near the picture frame, the mid- and high-level pro-
cessing stage correctly classify the area as ”background”, so the changes in the color and edge
values are learned into the low-level knowledge bases quickly. Altogether, we counted nine
frames as ”false”, whereas the example in figure 4.4 is one of the worst results. Moreover, we
could not find any further unfavorable effects which are related to the illumination change. In
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(a) Result of segmentation (b) Result of contour approximation (blue)

Figure 4.3: Excellent results after the initial learning phase.

(a) Average edge values in edge knowledge base (b) Edges in current image

(c) Result of segmentation (d) Faulty contour approximation (blue)

Figure 4.4: After switching off the electric light, the left boundary of the picture frame becomes visible, indicated

by arrows in (a) and (b). The differences are detected by the low-level segmentation in (c) and lead to a faulty

contour approximation in (d).
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(a) Result of segmentation (b) Result of contour approximation (blue)

Figure 4.5: Excellent results after automatically adapting to changed background situation.

(a) Result of segmentation (b) Result of contour approximation (blue)

Figure 4.6: Perfect segmentation results for the images of the ceiling camera.

chapter 3.8, we have presented a smoothing algorithm, which is able to compensate the sudden
occurrence of outliers based on time coherence. We have applied the presented algorithm to
this situation in chapter 3.8. In figure 3.14 and figure 3.15 on the pages 91 and 92 the results
of the smoothing algorithm are illustrated. As can be seen, the quality of the results can be im-
proved significantly by the smoothing algorithm. However, we do not take into consideration
the smoothed results for this evaluation in order to show the basic capabilities of the introduced
segmentation approach. After the changed background is visible for a short time, the system
adapts to the changes, so the results are good again, illustrated in figure 4.5.

As an overall result, there were nine out of 1082 images (or 0.8%) – the images of the initial
learning phase are not counted – the results of which were not sufficient at all, leading to a
correctness rate of 99.2%. The results for the ceiling camera were even better, the segmentation
delivered very good results for the entire series. The segmentation system did not produce any
outlier during the whole series leading to very good results of the contour approximation.
An example of application is shown in figure 4.6. However, in some images the contour
approximation cuts slightly into the arm of the user, as illustrated in figure 4.7. In the sense of
our correctness definition, we do not count these inaccuracies as errors because the subsequent
application is not affected. The more or less smooth background seems to be advantageous as
far as the varying illumination conditions are concerned. Thus, the correctness ratio is 100%.
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(a) Result of segmentation (b) Result of contour approximation (blue)

Figure 4.7: In some images, the contour approximation cuts slightly into the user’s arm. The subsequent appli-

cation is not affected by such inaccuracies.
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4.2.4 Second Scenario

The second series of images was recorded in front of the same back-projection wall. This
series consists of 3782 images, 80 images are employed for the initial learning phase. Again,
a sidewards camera and one under the ceiling is employed to observe the arm gestures of the
user (compare figure 4.1). However, the setup was slightly changed. As a consequence, the
back-projection wall is not seen by the sidewards camera anymore. The scenario is slightly
more complicated because further persons in the room sometimes cast shadows that lead to
changes in the background. Sometimes, these changes are significant enough to lead to wrong
classification results as for instance illustrated in figure 4.8.

While the segmentation worked reliably most of the time, in rare cases failures occured. For
instance, a couple of pixels classified wrongly lead to an outlier of the contour approximation
in figure 4.9. Evaluating the whole series of 3702 images, we counted 41 images or 1.1% with
poor segmentation results (as for example shown in figure 4.9). In seven images or 0.19%
of the series a non-existing object was provided by the segmentation. Counting both of these
effects averages out an error rate of 1.3%. Consequently, for 98.7% of the entire series the
segmentation provided good results as for instance shown in figure 4.10. Again, the results of
the ceiling camera are slightly better because of the favorable background. A typical example
of application is shown in figure 4.11.

During the series, a chair is moved into the scene. The chair is not seen by the side-
wars camera because it is beneath the camera. The permanent change of the background is
recognized by the segmentation system. Afterwards, the chair does not affect the system’s
performance. An exemplary image is shown in figure 4.12. The user’s arm above the chair is
segmented correctly. The segmentation works reliably, both for initially learned background
content and adaptively learned further content. Some time later, the chair is moved slightly to
the left. Immediately, the former background content is recognized at the old position of the
chair, avoiding faulty segmentation results. The chair is not recognized as permanent back-
ground change as long as the user is moving close to the chair because both are recognized as
one object (see figure 4.13). The permanent change at the new position of the chair is recog-
nized when the distance between the user and the chair is large enough for a short while. Then,
the segmentation provides good results both at the old and at the new position of the chair as
shown in figure 4.14.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.8: In rare cases, casted shadows are recognized wrongly as object.
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(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.9: A couple of pixels classified wrongly lead to an outlier on the right of the user.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.10: For 98.7% of the series the segmentation provides good results.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.11: The segmentation works well, even though the contrast is weak because of a dimmed illumination.
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(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.12: The chair which is moved into the scene is recognized as permanent background change. The

segmentation performance is not affected.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.13: The chair is not recognized as permanent background change as long as the user is moving near the

chair and both are recognized as one object.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.14: After the recognition of the permanent change at the new position, the segmentation provides good

results, both at the old and at the new position of the chair.
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(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.15: The chair is moved out of the scene. The former background content is recognized leading to

continuously good results of the segmentation.

Finally, the chair is moved out of the scene. Again, the former situation is recognized
immediately, leading to continuously good results of the segmentation as shown in figure 4.15.
Although shadows are casted visibly on the floor, there are no sharp edges. Thus, outliers
rarely occur. Nevertheless, there were 26 images of the ceiling camera with an imperfect
contour approximation, averaging out an error rate of 0.7% of all images or a correctness rate
of 99.3%.



112 Chapter 4: Applications

Figure 4.16: Back-projection wall in a mere indoor environment without any windows.

4.2.5 Third Scenario

The third series was recorded in front of another back-projection wall and consists of 1288
images. The back-projection wall is located in a mere indoor environment without any win-
dows. The scenario is shown in figure 4.16.

The segmentation results for the sidewards camera do not contain any fault. As expected,
the indoor environment provides better basic conditions, 100% of the series of the sidewards
camera were segmented correctly. A typical example of segmentation is shown in figure 4.17.
The results for the ceiling camera are also very good, a typical example is shown in figure 4.18.
The markers on the floor do not have anything to do with our application. They are utilized for
calibration purposes of a magnetic motion tracking device. We did not remove the markers for
our system in order to show that the segmentation is able to cope with arbitrary background
situations.

During the series, not seen by the sidewards camera, a chair is moved into the scene, illu-
strated in figure 4.19. The chair is segmented as foreground object for a short while. Because of
its static character, the permanent background change is recognized by the pattern recognition
system. New low-level color and edge knowledge bases are added for the box areas containing
the chair. Afterwards, the segmentation is not affected by the chair and provides good results
for the user’s arm above the chair as shown in figure 4.20. When the chair is moved out of
the scene again, the boxes which show the former background content completely are imme-
diately classified as ”background”. This effect is illustrated in figure 4.21. During the series,
we counted 13 images with minor outliers of the kind illustrated in figure 4.22, leading to an
error rate of 1.1% or consequently to a correctness rate of 98.9%.
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(a) Result of segmentation (b) Result of contour approximation (blue)

Figure 4.17: The results of the sidewards camera do not contain any fault.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.18: The results of the ceiling camera are also very good.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.19: The chair is recognized correctly as foreground object for a short while.
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(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.20: After a short while, the chair is recognized as permanent background change, the segmentation

results are not affected.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.21: When the chair is moved out of the scene again, the former background is recognized immediately

for these boxes which show the former background completely.

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.22: In rare cases, the contour approximation contains minor outliers.
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Figure 4.23: Typical interaction environment for the hand gesture recognition systemZyklop.

4.3 Zyklop - Hand Posture and Gesture Recognition

As a further example of application, we integrated the introduced multi-level segmentation
approach into the existing hand posture and gesture recognition systemZyklop, which has
been presented and extensively discussed in [KOH01].

4.3.1 Introduction

The hand posture recognition inZyklop has been realized as a computer-vision-based ap-
proach. Typically, a video camera is mounted above a table and observes a locally restricted
area on the table in which hand postures can be performed. The system is able to recognize
previously trained hand postures reliably, while the training itself is a rather convenient pro-
cess. The hand postures which are intended to be recognized byZyklophave to be shown to
the system only a few times. A typical scenario for the application ofZyklopis illustrated in
figure 4.23.

On the application side,Zyklophas been utilized successfully to control, for example, the
visualization softwareGeomView[GEO01] or the internet browser softwareNetscape Navi-
gator [NET01]. Moreover, in theHome AOMproject [HOM00], which was funded by the
European community,Zyklophas been integrated into a framework of multi-modal interac-
tion software that enables easy communication and interaction with typical household devices
such as television and video cassette recorders, washing machines, or shutters for elderly or
disabled people. Figure 4.24 shows a typical set of hand postures which can be used for the
interaction withZyklop.

4.3.2 Segmentation inZyklop

In a first release ofZyklop [STA95], the segmentation was realized histogram-based with a
global threshold. The video images are acquired from the camera in the YUV color model,
which is customary in Germany. The image consists of three planes of color information: The
Y-channel contains the lightness, color is represented in a two-dimensional coordinate system
with the axes U (blue-yellow) and V (red-green). Due to the fact that skin color contains



116 Chapter 4: Applications

Figure 4.24: Typical set of hand postures which may be used for the interaction withZyklop.

a significant amount of red and that within the YUV color model the U- and V-channel are
theoretically independent of lightness, the V-channel was chosen as a basis for segmentation.
Typically, a uniformly colored background whose colors are significantly different in compari-
son to skin color is chosen. Then, the histogram of the V-channel shows two significant peaks,
one for the background regions and one for skin color. The local minimum between both peaks
is chosen as threshold for the separation between background and human skin color. Based
on the determined skin regions, further processing steps are performed in order to obtain, for
example, contour information of the hand.

Basically, this segmentation approach works sufficiently well for a lot of situations. How-
ever, the segmentation fails considerably under certain circumstances, especially when for
example a window is somewhere near the cameras or the illumination is not evenly spread
across the interaction area. The failing of the segmentation stage is especially annoying be-
cause the recognition of hand postures itself works very reliably. In order to test and to evaluate
our multi-level segmentation system, we supplemented the histogram- and threshold-based
segmentation method inZyklopby our approach. For this purpose, we perform a prelocali-
zation of the user’s hand in the interaction environment. In the prelocated image areas, as
provided by our multi-level segmentation approach, the histogram-based search for skin color
is performed. Moreover, integrating our approach allows for the interaction in arbitrarily com-
posed surroundings. The existingZyklopis normally applied with a uniformly colored back-
ground in order to avoid disturbances which may result from background colors that are similar
to skin color. Applying our segmentation method for prelocalization purposes eliminates this
problem.

4.3.3 First Scenario

In the first scenario, the camera watches a table desk that is covered with a lot of different
things. The interaction area is located directly near a window. Nevertheless, the segmentation
worked very well for the first series, which consists of 547 images, and did not produce any
outlier. Typical examples of application are shown in figure 4.25.
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(a) Result of segmentation (b) Result of contour approximation (yellow)

(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.25: The prelocalization of the user’s hand works very well for the entire series.

However, in some images a finger is cut off by the contour approximation. This may
lead to classification failures in theZyklopsystem. Because of the fact that in a subsequent
processing stage skin color is identified in the images, it seems to be reasonable to change
the parameterization of our system. As a consequence, the prelocalization could be performed
more sensitively. This may negatively influence the occurrence of outliers as far as the contour
approximation is concerned. However, outliers would not harm the overall result in this context
because the final aim of segmentation, i. e., the user’s hand, is detected independently within
the approximated contour. Moreover, the finger tips are rather small in the video image, which
means that they do not differ significantly from some parts of the background. Thus, the
limitations of a background subtraction approach may be reached in this scenario.

A typical example of an inaccurate contour approximation is shown in figure 4.26. Two
fingers are cut off by the contour approximation. With respect to our primary goal of avoiding
outliers of the approximated contour, explained in section 4.1, we do not count these effects as
errors. The visual inspection of the results has shown that outliers of the contour approximation
do not occur during the test series.

4.3.4 Second Scenario

For the second scenario, the camera is oriented into the corner of the office. The user can
perform hand gestures above his office desk towards the camera. The recognition performance
is very good, insufficient contour approximations do not occur during the 1261 images of the
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(a) Result of segmentation (b) Result of contour approximation (yellow)

Figure 4.26: In rare cases, finger tips may be cut off by the contour approximation.

(a) Result of segmentation (b) Result of contour approximation (yellow)

(c) Result of segmentation (d) Result of contour approximation (yellow)

Figure 4.27: The segmentation worked perfectly for the second scenario.

series. Thus, we have a correctness rate of 100%. Some typical examples of application are
shown in figure 4.27.
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4.4 Parking Lot Surveillance

While the first and the second example are examples of indoor applications, we have suc-
cessfully integrated our multi-level segmentation approach into an outdoor application that
observes a parking lot as well. Parking lot surveillance is a common application in the field
of computer vision, e. g, [IVA98, RIG00]. Outdoor applications are normally considered to be
more difficult than indoor applications because changing and varying illumination conditions
are more severe. For instance, moving clouds and suddenly appearing or disappearing sun
light may considerably affect the segmentation process.

The goal of the parking lot surveillance is to observe the parking lot and to save images to
the hard disk that contain one or more foreground objects. The determined foreground objects
are moreover depicted by an approximated contour. For this example of application, the system
has run for approximately 67 hours, including two nights, without being influenced manually.
When the system was started, during the initial learning phase, the parking lot was quite full.
Consequently, these cars have been learned as background and their disappearance leads to the
recognition of foreground objects at their former position for a short while. Afterwards, the
permanent change is detected and the actual background is learned.

After running the system for approximately 67 hours, we evaluated the results of the
recorded video images. First of all, it can be summarized that only images showing signi-
ficant changes have been saved. None of the images has been recorded because of changing
illumination conditions. The system was able to smoothly cope with every illumination con-
dition, which may have happened during this time. Due to the adaptive learning mechanisms,
even the night time was completed successfully. During the nights, some lanterns have been
switched on. As a consequence, the previously totally dark images suddenly contain ”white
disks”, which are, of course, recognized as foreground objects for a short while until they are
classified as permanent changes (see figure 4.29(b)). We do not judge this behavior as erro-
neous because the sudden appearance of these lights in an absolutely dark environment is a
severe change that is detected correctly by the algorithm.

Because of the lack of comparable surveillance video tapes, we cannot ensure that the
system has really detected every object that may have passed the scene. However, by com-
paring the recorded images from frame to frame, we can prove that the system did not miss a
disappearing or newly arriving car. Such a failure would have become obvious, when, for in-
stance, in succeeding recorded frames suddenly a car is missing. As a consequence, the system
would not have recorded the car while leaving. From this point of view, the system worked
perfectly and detected every appearing and leaving car. Moreover, the examples indicate that
even smaller objects were recognized sufficiently well. For instance, in figure 4.29(d) even a
small cat or rabbit is recognized and tracked correctly.

In order to illustrate and to demonstrate the capabilities of our system, some of the recorded
images are shown in figure 4.28 and 4.29. During the 67 hours of operation, the system
recorded 17433 images. Summarizing the results, the system was still running very well after
67 hours (see figure 4.29(f)). Changing and varying illumination conditions did not cause any
wrong classification result, underlining the importance of the self-learning, adaptive approach
of our system. Moreover, the system obviously did not miss any significant change on the
parking lot. Again, a manual adjustment of parameters has not been performed. The parking
lot surveillance was realized using the same parameter settings that have been used in the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.28: Examples of parking lot surveillance. In (a) and (b), two persons are tracked on the parking lot,

in (c) a leaving car is shown. In (d), the disappearance of the car is detected as object for a short while because the

car was learned as background during the initial learning phase. In (e), another car is leaving. Figure (f) shows a

group of people on the parking lot.

other examples of application, indicating a general applicability of the empirically determined
parameter settings.

Evaluating the recorded images, we have found 210 images with outliers in the contour
approximation, leading to a correctness rate of 98.8% of the recorded images. Assuming an
average frame rate of 10 frames per second, the system was altogether applied to approxi-
mately 2.4 million video images during the 67 hours, leading to an overall correctness rate of
about 99.99%.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.29: Examples of parking lot surveillance. Figure (a) shows the parking lot at 20:30 in the evening

and it is already quite dark. However, the car of the security service is segmented correctly. In (b), the sudden

appearance of the light source is recognized as an object. Figure (c) shows the second day at 11 o’clock in the

morning, the system performs well after running during the night time. Figure (d) shows the sensitivity of the

segmentation system that correctly tracks a little cat or rabbit on the parking lot. Figure (e) shows the third day,

early in the morning when the first car arrives. Finally, the parking lot is full again in (f), each car has been

observed successfully during its appearance on the parking lot.
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More important than the correctness rate is in our opinion the stability the system has shown
as far as this special application is concerned. The system was not affected by any change in
the illumination conditions for about 67 hours including three nights. Typical changes of the
illumination conditions are sunrise, dawn, moving clouds, or total darkness. Moreover, the
segmentation performance after this long time of operation was just as good as immediately
after the initial learning phase, proving the effectiveness of the adaptive learning and feedback
mechanisms.

4.5 Summary of Application Results

We have presented three different types of application in which we successfully integrated both
the multi-level segmentation approach and the polygonal contour approximation algorithm.
The first and the second application can be characterized as indoor applications for interaction
purposes, while the third application is a typical outdoor application. As we have shown
for the different scenarios, our segmentation system works sufficiently well and reliably in
every environment. Due to the automatic adaption to permanent background changes and the
continuous adaption to slight changes in the background, the system is able to cope with any
possible situation. Even in the worst case, i. e., when the background changes completely, the
system is able to recover on its own and to work reliably again. The only condition is a more
or less static background for a short while. This is the basic assumption for the application of
our system, as explained in chapter 1.4.

The correctness rate of the presented applications and their different scenarios with respect
to the interpretation of correctness as explained in section 4.1 is very good. For the first
application, i. e., interaction with arm gestures, we examined three different scenarios with
two different camera views. Summarizing the results of the first application, the correctness
rates are listed in table 4.1.

For the second application, theZyklophand posture recognition system, we found a cor-
rectness rate of 100% in two scenarios. The parking lot surveillance system is obviously
the most difficult scenario as far as the amount and frequency of changing illumination in
such an outdoor application is concerned. However, our segmentation method performed very
well. Based on the total amount of processed video images, we achieved a correctness rate
of 99.99%. Based on the recorded images, the correctness rate is still 98.8%. Especially the
parking lot surveillance has impressively proven that even the long operating time in an out-
door environment with all the illumination changes involved during nearly three succeeding
days and nights did not disturb our system at any time. On the contrary, the performance of the
system after all this time was at least as good as immediately after the initial learning phase,
underlining the effectiveness and stability of the introduced segmentation approach.
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Interaction with Arm Gestures

Correctness Rates sidewards cameraceiling camera

First Scenario 99.2 % 100 %
Second Scenario 98.7 % 99.3 %
Third Scenario 100 % 98.9 %

Table 4.1: Correctness rates of the first application
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Chapter 5

Summary and Conclusion

We have presented a multi-level segmentation system that is based on background subtrac-
tion. For the low-level processing stage, which works pixelwise, we have introduced an im-
proved color- and edge-based segmentation method that performs considerably better than the
well-known standard background subtraction methods as shown in chapter 2.5.2. Due to the
incorporation of fuzzy logic methodologies and the possibility to store and maintain a large
amount of color knowledge for each pixel separately, the low-level processing stage is able to
cope smoothly with varying illumination conditions. The mid-level processing stage brings
in an advanced pattern recognition system the features of which are intended to be insensitive
to changing illumination conditions. Moreover, the mid-level processing stage allows for the
administration of different background image content, and recognizes permanent changes in
the background automatically. It is also able to recall background knowledge, when former
situations reoccur. The high-level processing stage incorporates application-dependent know-
ledge and identifies those objects which fulfill these requirements. An important aspect of the
system are internal feedback mechanisms which allow for a continuous adaptation of parame-
ters and a learning of current background content. In chapter 2.5, we have presented evaluation
results that show significantly good results. Because of the lack of objective comparison possi-
bilities to other state of the art methods, we have tried to show the universal applicability, the
reliability of the segmentation performance, and the overall quality of our system in different
examples of application. Although the scenarios in which our system was employed were very
different – both indoor and outdoor applications – the parameter setting was not changed. Due
to the self-learning and adaptive approach, the segmentation system performed very well in all
of these applications.

Moreover, we have introduced a new approach to polygonal contour approximation in
chapter 3, which extends the capabilities of the convex hull contour approximation. By this
means, concave parts of objects can be approximated sufficiently well. Due to this flexible
contour approximation approach, we are able to derive a closed contour from the determined
object pixels, which are provided by the multi-level segmentation approach. Examples of
application and a performance analysis of the contour approximation method have been pre-
sented in the chapters 3.7, 3.9, and 4. Compared to other state of the art methods, our approach
yields more or less comparable results, which are geometrically more exact. Moreover, our
algorithm works in realtime and its parameterization comes across vividly (see chapter 3.10).

Summarizing the presented results, the introduced segmentation approach is an almost
universally applicable and powerful method for segmentation tasks, which principally allow
background subtraction. As we have shown in chapter 1.2, most systems have a couple of
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restrictions as far as the scenario of application is concerned. We think that our system elimi-
nates or at least reduces a lot of these restrictions considerably. The required scenario for our
system has been described in detail in chapter 1.4.

Future work may be dedicated to the development of further mid-level similarity measures,
which may improve the classification results of this stage. As far as the high-level processing
stage is concerned, a more refined tracking component could be integrated that incorporates
additional knowledge about the behaviour of the expected objects, such as model-based as-
sumptions about their movement or appearance. Due to the multi-level structure of the system,
extensions can easily be incorporated.



Appendix A

A Brief Course In Fuzzy Logic

Fuzzy logic or fuzzy techniques are often employed in this contribution in order to cope with
uncertainty and for decision-making. Thus, some basic notions are introduced in this section.
Comprehensive introductions can be found for example in [KRU93, ZIM87]. For more specific
introductions to decision processes see for example [ZAD75, NEG85].

Fuzzy logic - initiated by Lotfi A. Zadeh in 1965 [ZAD65] - is basically a multi-valued
logic allowing intermediate values between conventional evaluations liketrue / false. The
concept of linguistic terms and variables enables the processing of human notions such as
”pretty warm” or ”slightly cold” on computers. Observations and measurements often cannot
be utilized to strictly distinguish between two classes. For example, the notion ”warm” is dif-
ficult to define. Some people may consider a temperature of above 25 Centigrade as ”warm”.
The application of a threshold will lead to strange results, if for example the temperature is
24.9 Centigrades and is considered as ”cold”, while a temperature of 25.0 degrees Celsius is
considered as ”warm”. Obviously, the same holds for the application of thresholds in the con-
text of image processing. Where is the borderline between slight changes that we do not want
to recognize (for instance because of varying illumination) and between severe changes we do
want to determine (because an object of interest has entered the region under consideration)?
The original statement of Bellman and Zadeh in 1970 about the role of fuzzy sets in decision
analysis was the following and is especially interesting as far as the role of probability theory
in contrast to fuzzy logic (or in this context possibility theory) is concerned:

”Much of decision-making in the real world takes place in an environment in
which the goals, the constraints and the consequences of possible actions are not
known precisely. To deal quantitatively with imprecision, we usually employ the
concepts and techniques of probability theory and, more particularly, the tools
provided by decision theory, control theory and information theory. In so doing,
we are tacitly accepting the premise that imprecision – whatever its nature – can
be equated with randomness. This, in our view, is a questionable assumption.
Specifically, our contention is that there is a need for differentiation betweenran-
domness and fuzziness, with the latter being a major source of imprecision in many
decision processes. By fuzziness, we mean a type of imprecision which is asso-
ciated withfuzzy sets, that is, classes in which there is no sharp transition from
membership to nonmembership. For example, the class ofgreen objectsis a fuzzy
set. So are the classes of objects characterized by such commonly used adjectives
as large, small, significant, important, serious, simple, accurate, approximate, etc.
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Actually, in sharp contrast to the notion of a class or a set in mathematics, most
of the classes in the real world do not have crisp boundaries which separate those
objects which belong to a class from those which do not. In this connection, it is
important to note that, in the discourse between humans, fuzzy statements such as
”John isseveralinches taller than Jim,” ”x is much largerthany,” ”Corporation
X has abright future,” ”the stock market has suffered asharp decline,” convey in-
formation despite the imprecision of the italicized words...” (Bellman and Zadeh
in [BEL70], p. 141)

A.1 Basic Notions and Definitions

The very basic notion of a fuzzy system is thefuzzy set:

Definition A.1.1 (Fuzzy Set) :

LetU be a universe of discourse. Then afuzzy setA of U is a function

µA : U −→ [0, 1]. (A.1)

µA is themembership functionthat maps the universeU to the unit interval[0, 1] andµA(x)
is the degree of membership ofx ∈ U .

In classical set theory the membership of elementsx ∈ U can be defined as a function

U −→ {0, 1} (A.2)

so elementsx ∈ U either belong or do not belong to a set. Fuzzy set theory extends this
definition to degrees of membership. In order to cope with human notions, fuzzy sets often
are designed to reflect linguistic terms such as ”warm”, ”fast” or ”young”. Due to the close
relationship to set theory in general, basic operations for sets such asunionor intersectioncan
be adapted to fuzzy set theory. Zadeh in 1965 [ZAD65] suggested the following concepts,
which are, however, not the only possible way for the extension of classical set theory. For
more detailed introductions into this topic see e. g. [KRU93, ZIM85].

Definition A.1.2 (Intersection Operation) :

Let µA andµB be membership functions of the fuzzy setsA andB. Then the membership
functionµC of theintersectionof A andB is determined as

µC(x) = min(µA(x), µB(x)), ∀x ∈ U. (A.3)

The set theoretic intersection can be interpreted as a logical ”and” operator.

Definition A.1.3 (Union Operation) :

Let µA andµB be membership functions of the fuzzy setsA andB. Then the membership
functionµC of theunionof A andB is determined as

µC(x) = max(µA(x), µB(x)), ∀x ∈ U. (A.4)

The set theoretic union can be interpreted as a logical ”or” operator.
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Definition A.1.4 (Complement Operation) :

Let µA be a membership function of the fuzzy setA. Then the membership functionµB of
thecomplementof A is determined as

µB(x) = 1 − µA(x), ∀x ∈ U. (A.5)

The set theoretic complement can be interpreted as a logical ”not” operator.

These basic operators are used within the multi-level segmentation system.

A.2 Approximate Reasoning

An important field of application for fuzzy logic is approximate reasoning, which can be em-
ployed for instance in control systems [MAM75]. The basic idea is to use the concept of
linguistic variables and the methodology of fuzzy set theory to allow the evaluation of lingu-
istic statements, which are often combined with arule base. The main tools of reasoning in
classical logic are tautologies such as themodus ponens:

(A ⇒ (A ⇒ B)) ⇒ B (A.6)

This rule can be interpreted in the way that there is the premise ”A is true”, the implication ”If
A then B”, and the conclusion ”B is true”. Zadeh in 1973 [ZAD73] proposed two generaliza-
tions of the modus ponens:

1. to allow statements which are characterized by fuzzy sets.

2. to relax the identity of ”B” in the implication and the conclusion.

These modifications are usually referred to as the ”generalized modus ponens” [ZAD73,
ZIM85]. An example of application may be:

Premise : The meal is rather salty.
Implication : If the meal is salty then the eater becomes thirsty.
Conclusion : The eater is rather thirsty.

Zadeh proposed thecompositional rule of inferencefor this type of fuzzy conditional infe-
rence, whereas the most popular approach is the min-max compositional rule of inference. An
important aspect of Zadeh’s approach is the realization of the fuzzy implication function using
themin-function. Decisions are made considering specified rule bases, which consist of IF-
THEN statements and linguistic variables. The evaluation of fuzzy rule bases usually consists
of four steps:

1. Fuzzification: Measured values are mapped onto fuzzy sets.

2. Inference: Implication rules are interpreted.

3. Aggregation: The results of the different rules are combined.

4. Defuzzification: The fuzzy result is mapped onto a crisp result value.
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Figure A.1: Fuzzification of input valuex0 and implication withmin-function.

Figure A.2: Evaluation of second rule.

A very simple example of a rule-base consisting of two rules could be:

IF F1 THEN G1

IF F2 THEN G2

In figure A.1 and A.2, a measured input valuex0 is fuzzified and the implication is realized
using themin-function. The resulting fuzzy sets are shown in figure A.3, the result of the
aggregation using themax-function in figure A.4. For the defuzzification, thecenter of area
(COA) method is often used, in which the centroid of the aggregated fuzzy set (figure A.4) is
determined and mapped onto the universe (on the x-axis) of theGi.

As already mentioned, there are a lot of ways, how fuzzy logic operators as an extension
of two-valued logic can be realized. Another possibility to interpret fuzzy rule bases would

Figure A.3: Resulting fuzzy sets.
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Figure A.4: Result of aggregation using themax-function.

be for example the realization of the implication as multiplication or the aggregation as sum.
For comprehensive and extensive introductions and explanations see for example [ZAD65,
ZAD73, ZAD75, ZIM85, ZIM87, KRU93].
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