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Abstract: Within the framework of the EPR Gedankenexperiment we show
that quantum mechanics is not incomplete but nonlocal and holistic. The attempt
to use this quantum non-locality for the transmission of superluminal signals is
exposed to serious objections which are based on very general theorems. However,
we show that one of the theorems is equivalent to the impossibility of superlumi-
nal signals. Hence, the question whether superluminal EPR signals are possible
can not be decided in this way.
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1 Introduction

The present paper is concerned with three quite general problems of quantum sys-
tems consisting of two subsystems that are not separable (cf. Peres 1996). First,
we investigate the question, whether the entanglement of the subsystems pro-
vides a new kind of quantum holism (Esfeld 1999) which is unknown in classical
physics. We show that in the EPR-Gedankenexperiment (Einstein/Podolsky/
Rosen, 1935) in the version of Bohm and Aharonov (Bohm/Aharonov, 1957)
the entanglement of the subsystems does not imply incompleteness � as Einstein
conjectured � but non-locality and a new kind of holism which is based on the ob-
jective un-decidedness of properties of the subsystems (Busch/Lahti/Mittelstaedt
1992, Mittelstaedt 1998b). Second, we investigate the problem whether the non-
local correlations, which can be tested by experiment, allow for the transmission
of signals. Non-locality implies in this case that the signals, if they exist, are
instantaneous and hence superluminal. However, there are strong arguments
against superluminal signals which would violate Einstein causality (d'Espagnat
1984; d'Espagnat 1989, especially p. 94; d'Espagnat 1994, pp. 117, 145, 352;
de Muynck 1984; Mittelstaedt/Stachow 1983; Schlieder 1969). � Finally, we an-
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alyze these arguments and show that the micro-causality condition of relativistic
quantum �eld theory excludes entanglement induced superluminal signals but
that this condition is justi�ed by the exclusion of superluminal signals. Hence,
we are confronted here with a vicious circle, and the question whether there are
superluminal EPR-signals cannot be answered in this way.

2 Entanglement and quantum holism

2.1 The EPR-BA-Gedankenexperiment

In the EPR-Gedankenexperiment in the version of Bohm and Aharonov (Bohm/
Aharonov, 1957) we consider two di�erent spin 1/2 systems S1 and S2 (e.g. proton
and neutron) with Hilbert spaces H1 and H2, respectively, and assume that the
compound system S = S1 + S2 is in the pure state

Ψ(S) =
1√
2

(
ϕ(1)

n ⊗ ϕ
(2)
−n − ϕ

(1)
−n ⊗ ϕ(2)

n

)
. (1)

Here we denote the spin observables with respect to the systems S1 and S2 by
σ1(n) and σ2(n), respectively, where the spin direction is described by a unit
vector n (in the Poincaré sphere, Mittelstaedt 1998b). The eigenstates are then

given by ϕ
(1)
±n and ϕ

(2)
±n and ful�l the eigenvalue equations (with eigenvalues sk =

±1)

σk(n)ϕ
(k)
±n = ±ϕ

(k)
±n . (2)

for k = 1, 2. If S is in the pure state Ψ(S) given by Eq. (2), the subsystems S1

and S2 are said to be in the �reduced� mixed states W1 and W2, respectively (cf.
appendix A �Reduced mixed states�).
The observables σ1(n) and σ2(n) can also be written as observables A1(n) and
A2(n) of the compound system S = S1 + S2

A1(n) := σ1(n)⊗ 1l2 and A2(n) := 1l1 ⊗ σ2(n) . (3)

A measurement of the observable A1(n), say, transforms in a �rst step (pre-
measurement) the state operator W = P [Ψ] of the compound system S - where
P [Ψ] denotes the projection operator onto Ψ - into a mixed state W ′(A1(n), W )
and leads in a second step (reading) to the measurement results µ{σ1(n)} and
µ{σ2(n)} of the two spin observables.
There is a strong correlation between the measurement results of the spin observ-
ables such that

µ{σ1(n)} = ±1 ⇔ µ{σ2(n)} = −± 1 (4)

holds. This means that if A1(n) was measured with the result s1 = +1, say, then
a measurement of A2(n) will lead with certainty to the result s2 = −1. If the
second measurement refers to an observable A2(n

′) with a di�erent spin direction
n′ 6= n, then one can no longer predict the result s′2 = −1 with certainty. In
this case quantum mechanics provides the probability p12(n,−n′) = 1

4
(1 + n · n′)
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Figure 1: Compound system S with state Ψ and subsystems S1 and S2. The
observers B1 and B2 can measure observables of the subsystems S1 and S2, re-
spectively. R is the distance between B1 and B2.

for measuring the n-spin on system S1 and the (−n)-spin on S2, and hence the
conditional probability p(n,−n′) = 1

12
(1 + n · n′) for obtaining the (−n′)-spin on

system S2 if the n-spin was measured on system S1.

Generally, quantum measurements are performed by observers who are equipped
with measurement apparatuses. Here we consider two observers B1 and B2 and
apparatuses M1 and M2 for measurements of the observables σ1(n) and σ2(n)
respectively. We will assume here, that the compound system has a large exten-
sion and that the subsystems S1 and S2 as well as the observers B1 and B2 have
a macroscopic distance R. In the experiments of Aspect/Gangier/Rogier (1982)
the distance R is about 14m. More recent experiments of Gisin et al. (2000) work
with distances of about 10 kilometers (Fig. 1).

The state Ψ(S) of the compound system S1 + S2 is an entangled state. This
means that Ψ(S) is not separable. Generally, a pure state Ψ(S) of a system S
consisting of two subsystems S1 and S2 is called separable, if Ψ(S) can be written
as a tensor product Ψ(S) = Ψ1 (S1)⊗Ψ2 (S2) with pure states Ψ1 (S1) ∈ H1 and
Ψ2 (S2) ∈ H2. If the compound system S is in a mixed state W , (tr(W ) = 1),
then the state W is called separable if it can be written as W =

∑
i piW

1
i ⊗W 2

i

where W 1
i and W 2

i are mixed states of the subsystems S1 and S2, respectively (cf.,
e.g., Peres 1996). The special case that W = P [ϕ] is a pure state is contained in
this more general de�nition of separability.
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2.2 The EPR-incompleteness argument

On the basis of this Gedankenexperiment, which can also be realized by photons,
the EPR argument can be derived if the following two principles are taken for
granted.

1. The principle of reality R := R1 → R2, i.e. �if R1 then R2�, where

(R1) �the value Ai of an observable A can be determined without changing

the system S�

(R2) �a property P (Ai) which corresponds to this value of A pertains to the

system S�.

2. The principle of locality L := L1 → L2, i. e. `if L1 then L2�, where

(L1) �two systems cannot interact with each other�

(L2) �a measurement with respect to one system cannot change the other

system�.

If after the preparation of the state Ψ(S), the systems S1 and S2 are separated
into distant regions of space, then the systems cannot interact with each other.
Hence the premise L1 of the locality principle is ful�lled, and thus the conclusion
L2 is valid. This means that the measurement of σ1(n) cannot change S2 in
any way. However, since the result s1 of the σ1(n) measurement determines the
value s2 = −s1 of the observable σ2(n), the premise R1 of the reality principle
is ful�lled. Hence we obtain the conclusion R2 which means that the value s2 of
σ2(n) pertains to the system S2 after the preparation.
Since these arguments can be applied to spin observables σ1(n) and σ2(n) with
arbitrary directions n, it follows that for any direction n the value s2 of σ2(n)
pertains to system S2 after the preparation of Ψ(S). This means that the observ-
able σ2(n) can be weakly objecti�ed with respect to the mixed state W2(S2) of the
subsystem S2, or that the mixed state W2(S2) admits an ignorance interpretation

with respect to the states ϕ
(2)
n and ϕ

(2)
−n (cf. Busch/Lahti/Mittelstaedt 1992).

Einstein was convinced that on the basis of this result he could demonstrate at
least the incompleteness of quantum theory, even if he could not question its va-
lidity (Bohr, 1949). The argument reads as follows: On the one hand, the value
of σ2(n) is objectively determined even if the observer does not know it. On
the other hand, quantum mechanics does not allow to determine this value and
provides only probabilities for the values of σ2(n). Hence, quantum mechanics is
incomplete since it does not describe the full reality (Einstein/Podolsky/Rosen,
1935). However, this latter conclusion is not correct.

2.3 The EPR contradiction

Ignorance interpretation of the mixed state W2(S2) is not in accordance with
quantum mechanics for the following reason. Assume that σ2(n) is weakly ob-
jecti�ed with respect to the system S2 in the state W2. Then we can attribute
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a value s2 ∈ {1,−1} of σ2(n) to the system S2 in the mixed state W2 such that
this value s2 pertains to the system with probability p = 1

2
.

This conclusion means that the observable A2(n) = 1l1 ⊗ σ2(n) is weakly objec-
ti�ed with respect to the compound system S in the pure state Ψ. This implies
that probabilities for values of an observable B of the compound system S must
be calculated by means of the mixed state

WΨ =
1

2
P [ϕ(1)

n ⊗ ϕ
(2)
−n] +

1

2
P [ϕ

(1)
−n ⊗ ϕ(2)

n ] . (5)

Hence, for the test observable

B (n′,n′′) := σ1 (n′)⊗ σ (n′′) =
∑
i,k

BikPik (n′,n′′) (6)

with the notation

Pik (n′,n′′) := P
[
ϕ

(1)
in′ ⊗ ϕ

(2)
kn′′

]
with i, k ∈ {1, 2} , (7)

the probabilities of the eigenvalues B++ = B−− = 1 and B+− = B−+ = −1 read

pΨ (Bik) = tr{WΨPik (n′,n′′) . (8)

For the special choices of Ψ, A, WΨ and B it follows

pΨ (Bik) = tr{P [Ψ]Pik (n′,n′′)} =
1

4
(1−Bik (n′ · n′′)) (9)

= tr{WΨ · Pik (n′,n′′)} =
1

4
(1−Bik (n · n′) (n · n′′)) , (10)

Hence the condition Eq. (8) of weak objecti�cation (value attribution) assumes
for all values Bik the special form

n′ · n′′ − (n · n′) (n · n′′) = 0 . (11)

Since this equation is violated in quantum mechanics except for a few special
triples (n,n′,n′′), it follows that weak objecti�cation of A and hence ignorance
interpretation of W2 is in general not compatible with quantum mechanics. This
contradiction between the consequences of the principles R and L and quantum
mechanics is the content of the EPR-paradox. It should be mentioned that from
condition (11) one can easily derive the inequalities

|n′ · (n− n′′) | ≤ n · (n− n′′) ,

|n′ · (n + n′′) | ≤ n · (n + n′′) . (12)

Triples of vectors (n,n′,n′′) that ful�l these inequalities satisfy Bell's inequalities
in accordance with quantum mechanics. However, for arbitrary triples of vectors
(n,n′,n′′) Bell's inequalities contradict quantum mechanics. For more details
about the validity domain of Bell's inequalities in quantum mechanics we refer to
the literature (Mittelstaedt 1998b, pp. 101-102 and Busch et al. 1992).
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2.4 Resolution of the EPR contradiction � non-locality

A measurement of σ1(n) on the system S1 corresponds to a measurement of
A1(n) = σ1(n) ⊗ 1l2 on the compound system S. According to the theory of
quantum measurements in the sense of von Neumann (1932), in the �rst step of
the measuring process the state W = P [Ψ] of S is transformed into a mixture of

states Γ (WL) = {ϕ(1)
n ⊗ ϕ

(2)
−n, ϕ

(1)
−n ⊗ ϕ

(2)
n }, and in a second step the result s1 is

read by the observer. Hence a measurement of σ1(n) on S1, i.e. of A1(n) on S,
(with or without reading) induces a change of the initial state W2 of S2 into a

mixture of states Γ (W2) = {ϕ(2)
n , ϕ

(2)
−n}, irrespective of the spatial distance of the

systems S1 and S2.
One could think again of two observers B1 and B2 separated by a large distance
R, where B1 measures σ1(n), and B2 measures σ2(n). It is obvious that under
these conditions the locality principle L is untenable. Even if �two systems cannot

interact with each other � and thus L1 is ful�lled, a measurement with respect to
one system can change the other one in such a way that some observable is
objecti�ed, in disagreement with L2. A relaxation of the locality principle which
is in accordance with the measuring process is then given if L is weakened into
the relaxed principle of locality

(L′) L1 → L′
2

with

(L′
2) �a measurement with respect to one system can change the other one at most

such that some observable is objecti�ed on this system�.

If we make use only of the relaxed locality principle L′ = L1 → L′
2, then the

paradox mentioned disappears since from L′
2 we can no longer derive the premise

R1 of the reality principle. Hence we can neither deduce R2 nor the weak ob-
jecti�cation relation (11) nor Bell's inequalities (12). However, the price for this
consistency is very high: The weak locality principle allows for some �objecti�ca-

tion at a distance�, a nonlocal in�uence on a physical system, the dynamics of
which is completely unknown.
The EPR paradox and its resolution lead to two important consequences for
the interpretation of quantum mechanics, non-locality and holism. Since the
locality principle, which was conceived by Einstein, turned out to be untenable
in quantum mechanics, non-locality must be considered as a basic structure of
this theory. In the EPR-Gedankenexperiment the compound system S which
is composed of the subsystems S1 and S2 is in the entangled state Ψ (S1 + S2).
Even if the interaction between the systems is turned o� and if their spatial
distance becomes very large and macroscopic the compound system will remain
in the entangled state and will never become separable. There is no element in
the dynamics of the system S which leads to a decoherence of the entangled state
Ψ(S).
On the basis of this non-locality argument it becomes obvious that the state
Ψ(S) can never be decomposed into a tensor product Ψ(S) = Ψ1 (S1) ⊗ Ψ2(S2)
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of states Ψ1 ∈ H1 and Ψ2 ∈ H2, and that the subsystems S1 and S2 can only be
described by the reduced mixed states W1(S1) and W2(S2), respectively. More-
over, the entanglement of Ψ(S) implies that the mixed states W1(S1) and W2(S2)
do not admit ignorance interpretation. This means that it is not possible to at-
tribute values of the observables σ1(n) and σ2(n) to the subsystems S1 and S2

respectively, even if the compound system is in a pure state Ψ(S) which provides
maximal information about the system S and in particular about the value of the
S-observable σ = A1 + A2.
Hence, we are confronted here with a rather strange situation: The observer
possesses a maximal knowledge of the total system S = S1+S2 but the subsystems
S1 and S2 can only be described incompletely by the mixed states W1 and W2.
In particular, the knowledge of the reduced mixed states W1 and W2 does not
allow to determine the state Ψ(S) of the compound system. This situation in
which the knowledge about the compound system is more than the sum of all
information about the subsystems is usually called holism. Note, however, that
in quantum mechanics the holism is further strengthened, since for an observer
who knows the state Ψ(S) the properties of the subsystems S1 and S2 are not
only subjectively unknown but objectively undecided.

3 Non-locality and superluminal signals

3.1 EPR - communication

Prior to the measurement of the observables A1(n) and A2(n) the compound
system S is in the pure state W = P [Ψ], and the subsystems S1 and S2 are in
the mixed states

W1 =
1

2
P

[
ϕ(1)

n

]
+

1

2
P

[
ϕ

(1)
−n

]
, W2 =

1

2
P

[
ϕ(2)

n

]
+

1

2
P

[
ϕ

(2)
−n

]
. (13)

A Lüders measurement (cf. Appendix B) of A1(n) = σ1(n) ⊗ 1l2 transforms W
into WL (A1(n), W ) and the mixed states W1 and W2 into the mixtures of states
Γ (W1(n)) and Γ (W2(n)), respectively, which admit an ignorance interpretation.
Hence a measurement of σ1(n) at the subsystem S1 by the observer B1 induces
the objecti�cation of the observable σ2(n) of the subsystem S2 (in distance R)
and hence the transition from mixed state W2 to the mixture of states Γ (W2(n)).
Therefore, the question arises whether this �objecti�cation at a distance� can be
used by observer B1 for transmitting a signal to the other observer B2. The
sender B1 (Alice) of the one-bit signal would use the alternative (measurement
of σ1-no measurement) and the receiver B2 (Bob)

1 would receive the message by
the alternative mentioned (Fig 2).
The observer B1 (Alice) cannot send a signal to B2 (Bob) by performing a single

measurement of σ1(n). If B1 obtains the measurement result µ (σ1(n)) = 1, say,
then B2 will obtain with certainty the result µ (σ2(n)) = −1. However, this
result does not contain any useful information about B1. If B2 (Bob) measures

1This terminology is adopted from communication theory.
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Figure 2: The observer B1 (sender) tries to send a signal to B2 (receiver). A σ1(n)-
measurement by B1 induces a σ2(n)-objecti�cation which must be recognized by
B2.

σ2(n) then he will obtain in any case one of the values ±1 and it does not matter
whether or not B1 has performed a σ1(n)-measurement. It would matter if B2

were in the position to measure the probabilities p(+1) and p(−1) of the two
values +1 and −1, but this is not possible by means of a single measurement.
It would be possible if, after the σ1(n)-measurement, the state of S2 could be
cloned such that an ensemble of identically prepared states could be measured.
However, according to an important theorem (Wootters/Zurek, 1982) in quantum
mechanics a single state cannot be cloned.

If B1 performs a series of σ1(n)-measurements then she will obtain a sequence
of measurement results µ{σ1(n)} = ±1 with probabilities p(±1) = 1

2
. However,

irrespective of the special result ±1, any σ1(n)-measurement (without reading)
transforms the state W = P [Ψ] of S1+S2 into the Lüders mixture WL (A1(n), W )
and the mixed state W2 of S2 into the mixture of states Γ (W2(n)), which admits
an ignorance interpretation. B1 could try to use this objecti�cation at a distance
for sending a signal (of one bit) to B2. There are two possibilities for B1: She
can either perform a series of σ1(n)-measurements or she does not perform any
measurement at all. The other observer B2 (Bob) has then to �nd out whether or
not B1 has made a series of measurements by measuring an observable A2 (n′) =
1l1 ⊗ σ2(n

′) (with n′ 6= n) many times. On the basis of the measurement results
obtained in this way Bob can calculate expectation values. If the expectation
values of A2 (n′) with respect to W and WL (A1(n), W ) are di�erent then B2 can
decide whether or not B1 has made a series of σ1(n)-measurements, � and in this
way receive a one bit signal from B1.
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3.2 Locality condition and quantum causality

There is an important argument which shows that the two expectation values
cannot be distinguished and that consequently quantum correlations cannot be
used for the transmission of superluminal signals. The argument is very general
and holds in quantum logic (Mittelstaedt, 1983) as well as in quantum �eld
theory (Schlieder, 1969). However, it is based on assumptions which are partly
hypothetical and not completely settled. � In the Minkowskian space-time M we
consider a quantum system S with state W which refers to the entire space-time
(Heisenberg state), and two �nite regions R1 ⊂ M and R2 ⊂ M with a space-
like distance, denoted here by R1 ≈ R2. Furthermore, we consider two local
observable algebras A1 = A1 (R1) and A2 = A2 (R2), the elements of which are
measurable in R1 and R2, respectively, by two local observers B1 and B2 whose
world lines are shown in Fig. 3. The causal future of R1 and R2 is denoted here
by J+ (R1) and J+ (R2), respectively.
For two local observables A1 ∈ A1 and A2 ∈ A2 in quantum �eld theory one
usually assumes as an axiom the locality condition (L)

If A1 ∈ A1 (R1) and A2 ∈ A2 (R2) and R1 ≈ R2, then [A1, A2] = 0 . (L)

This means that two observables which are measurable in space-time regions
with space-like distance commute in quantum mechanics. The justi�cation of
this locality condition will be discussed later.
Next, we consider a quantum system S with the state operator W and two observ-
ables A1 and A2. If the spectral decomposition2 of A1 reads A1 =

∑
k Ak

1P
(
Ak

1

)
,

then a Lüders measurement (cf. Appendix B) of A1 (without reading) transforms
the state W of S into the Lüders mixture

WL (A1, W ) =
∑

k

P
(
Ak

1

)
WP

(
Ak

1

)
. (14)

The expectation values of the observable A2 before and after the pre-measurement
of A1 is then given by the expressions

〈A2, W 〉 = tr{A2 ·W} , 〈A2, WL〉 = tr{A2 ·WL} , (15)

which are, in general, di�erent. However, if the observables A1 and A2 commute,
then the expectation values would be equal and vice versa. This is the content
of Lüders' theorem

[A1, A2] = 0 ⇔ ∀W : 〈A2, W 〉 = 〈A2, WL〉 . (TL)

In other words, for commuting observables A1 and A2, the expectation value of
A2 does not depend on whether or not A1 was measured before.
We will now combine the locality condition L with the Lüders' Theorem (TL). If
we are given a system S with state W and local observables A1 and A2 which

2For the sake of simplicity we restrict the considerations here to (sharp) observables with a
discrete spectrum.
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Figure 3: Space-time regions R1 and R2 in the Minkowski space with space-like
distance, observers B1 and B2 and their world lines. J+ (R1) and J+ (R2) are the
causal futures of R1 and R2, respectively.

are measurable in space-time regions R1 and R2, respectively, with space-like
distance, then the locality condition (L) implies the commutativity of A1 and A2.
Furthermore, by means of Lüders' Theorem (TL), we �nd

∀W : 〈A2, W 〉 = 〈A2, WL (A1, W )〉 . (16)

Hence, for regions R1 and R2 with space-like distance, an observer B2 cannot
distinguish by measurements of A2 in R2 whether or not another observer B1

has made a Lüders measurement of A1 in R1. Consequently, for regions R1 and
R2 with space-like distance an observer B1 in R1 cannot send a superluminal
signal (with velocity vS > c) to another observer B2 in R2 by measuring or not
measuring the observable A1 ∈ A1 (R1). This result is expressed by the quantum
causality condition (CQ)

R1 ≈ R2 ⇒ ∀W : (〈A2, W 〉 = 〈A2, WL (A1, W )〉) . (CQ)
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Figure 4: The quantum causality condition prevents the transmission of (vS > c)
signals from R1 to R2.

Applied to the EPR- communication problem we �nd that B1 (Alice) cannot send
a superluminal signal to B2 (Bob) by measuring (or not) the spin-observable σ1(n)
(Fig. 4).
This no-go theorem for superluminal signals that are based on EPR correlations is
often called the �no-signalling theorem� and considered as a fundamental principle
that excludes superluminal signals of the kind mentioned (Redhead/Riviere 1997
and Redhead 1999). However, there are still some problems of the justi�cation
of this �theorem�. We will discuss these questions in the following subsection 3.3.

3.3 Locality and superluminality

The described way of reasoning against superluminal signals is based on the
locality condition

(L) If A1 ∈ A1 (R1) and A2 ∈ A2 (R2) and R1 ≈ R2, then [A1, A2] = 0

There are two kinds of justi�cations for this condition (L). The �rst one is based
on quantum �eld theory, the second one, which will not be considered here, on
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relativistic quantum logic (Mittelstaedt/Stachow, 1983). The two ways of reason-
ing are, however, not independent from each other and, what is more important,
not independent of the problem discussed here. The �rst argument, which was
formulated by Schlieder (1969), justi�es the condition (L) by its consequences for
quantum measurements, in particular by the exclusion of superluminal signals:
Since without the locality condition (L) the two observables were � in general �
incommensurable, Lüders' theorem could not be applied to the EPR situation.
Hence, the two expectation values 〈A2, W 〉 and 〈A2, WL (A1, W )〉 would be di�er-
ent and superluminal signals between regions R1 and R2 with space-like distances
would become possible. Since signals of this kind are not in accordance with spe-
cial relativity, the locality condition (L) must be presupposed in order to avoid a
violation of relativity and quantum causality (CQ).
For Lüders measurements ML, which ful�l the Lüders theorem (TL), the locality
condition (L) implies quantum causality (CQ).

(TL) ⇒ ((L) ⇒ (CQ)) . (17)

Indeed, from (L), (TL), and (CQ), we get

R1 ≈ R2
(L)⇒ [A1, A2] = 0

(TL)⇒ ∀W : (〈A2, W 〉 = 〈A2, WL (A1, W )〉) . (18)

If there were an independent proof of (L) from �rst principles, then the implica-
tion (17) would indeed lead to a justi�cation of (CQ) � and thus to an exclusion
of (vS > c) quantum signals. Here, however, the locality condition is not de-
rived from �rst principles but justi�ed by its consequence to exclude superluminal
quantum signals, i e. by the implication

(TL) ⇒ ((CQ) ⇒ (L)) . (19)

Using again Eqs. (L), (TL) and (CQ), the implication (19) can easily be obtained
by

R1 ≈ R2

(CQ)
⇒ ∀W : (〈A2, W 〉 = 〈A2, WL (A1, W )〉) (TL)⇒ [A1, A2] = 0 . (20)

Hence, taking together Eqs. (17) and (19), it follows that under the assumption
of Lüders measurements the principles (L) and (CQ) are equivalent (cf. also
de Muynck 1984). This means that the present way of reasoning for quantum
causality (CQ) must not be considered as a proof of this principle but rather
as a petitio principii : On the one hand locality implies quantum causality but
on the other hand quantum causality is used as an argument for justifying the
locality condition. Consequently, entanglement-induced superluminal quantum
signals cannot be excluded in this way (Mittelstaedt, 1998a). � It is a very
remarkable result that the equivalence of (L) and (CQ), which is demonstrated
here for observables corresponding to self-adjoint operators (or projection valued
measures), is not restricted to this kind of (sharp) observables. Indeed, in a recent
paper (Busch, 1999) the same equivalence was found to be also valid for unsharp
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observables represented by positive operator valued (POV) measures. Hence, our
argument holds very general.

Summarizing these results we �nd that the locality principle (L) is not suited to
exclude superluminal EPR-signals and to justify quantum causality (CQ), since
the locality principle itself is justi�ed by quantum causality. For this reason,
the question of whether EPR-correlations can be used for superluminal signals,
cannot be answered in this way.

4 Conclusion

A careful analysis of the EPR-Gedankenexperiment shows that quantum mechan-
ics is not incomplete but nonlocal in a very speci�c weak sense. This non-locality
is based on the quantum mechanical entanglement of the subsystems which are
not strictly separable. The weak non-locality allows for some kind of objecti�ca-
tion at a distance but presumably not for an action at a distance in the classical
sense. Hence, entanglement-induced instantaneous and thus superluminal signals,
which would violate Einstein causality, are not possible at �rst glance.

However, a more detailed investigation of this no-go argument for superluminal
signals � the �no - signalling theorem� � shows that it is based on the micro-
causality axiom of relativistic quantum �eld theory which is usually justi�ed
by the exclusion of superluminal signals. Hence, the no-signalling theorem and
the axiom of micro-causality are equivalent. Consequently, we are confronted
here with a petitio principii, and the question whether there are entanglement-
induced superluminal signals cannot be answered in this way. It is important to
note that this argument holds for the most general kind of observables in quantum
mechanics.

A Reduced mixed states

If a compound system S = S1 + S2 is prepared in a pure state

Ψ(S) =
1√
2

(
ϕ(1)

n ⊗ ϕ
(2)
−n − ϕ

(1)
−n ⊗ ϕ(2)

n

)
(21)

with orthonormal eigenstates ϕ
(1)
n and ϕ

(2)
−n, then the reduced mixed states of the

subsystems S1 and S2 are

W1 =
1

2
P

[
ϕ(1)

n

]
+

1

2
P

[
ϕ

(1)
−n

]
=

1

2
1l1 , (22)

W2 =
1

2
P

[
ϕ(2)

n

]
+

1

2
P

[
ϕ

(2)
−n

]
=

1

2
1l2 , (23)

where by P [ϕ] we denote the projection operator onto ϕ.
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B Lüders measurement

Let A be a discrete and non-degenerate observable A =
∑

i Aiϕi with eigenvalues
Ai and eigenstates ϕi such that we have the eigenvalue equation Aϕi = Aiϕi.
The simplest kind of measurement of the observable A in a given state ϕ that is
not an eigenstate, transforms the preparation ϕ into the mixture

W (ϕ, A) =
∑

i

|(ϕi, ϕ)|2P [ϕi] . (24)

If A is degenerate, and can be expressed as A =
∑

i AiP (Ai) =
∑

i Ai

∑
k P

[
ϕk

i

]
,

where P (Ai) is the projection operator that projects onto the subspace which
belongs to the eigenvalue Ai , then the measurement of A in the state ϕ transforms
the preparation ϕ into the mixture

WL(ϕ, A) =
∑

i

(ϕ, P (Ai) ϕ) P (Ai) . (25)

This mixed state is called �Lüders mixture� and the measurement that leads to
a Lüders mixture is called �Lüders measurement�.
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