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Abstract: In Self-designing clinical trials, confidence intervals are derived for the differ-

ence and the ratio of normal means, where the results of the independent study stages are

combined using the weighted inverse normal method. The confidence intervals always hold

the predefined nominal confidence level. During the course of the Self-designing trial, the

sample sizes as well as the number of study stages can be determined simultaneously in a

completely adaptive way. Self-designing may be considered as the limit case of adaptive

group sequential designing of O’Brien and Fleming type when the full significance level is

shifted to the last stage. We consider the effect measures difference and ratio of normal

means, where the latter has not yet been considered in group sequential trials so far.

Concrete rules are derived for updating sample sizes and assigning weights to the stages

of the trial. The clinical trial may be originally designed either to show non-inferiority

or superiority. But, in each interim analysis, it is possible to change the planning from

showing non-inferiority to showing superiority or vice versa. The performance of the Self-

designing and the resulting confidence intervals are demonstrated in real-data examples

for both considered effect measures showing both kinds of switching during an ongoing

trial.

Keywords: Adaptive planning; Confidence interval; Learning rule; Ratio of means; Self-

designing; Switching between non-inferiority and superiority; Weighted inverse normal

method.

1 Introduction

In a clinical examination, the common effect measures for comparing a new agent to a

standard agent with regard to (at least) non-inferiority are the difference of means and the

ratio of means. Provided the standard agent is well known and stable in different popula-

tions, the suitable measure is the difference of means. Otherwise, the scale invariant ratio

1Address correspondence to Joachim Hartung, Department of Statistics, Dortmund University of

Technology, 44221 Dortmund, Germany; E-mail: hartung@statistik.tu-dortmund.de
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Figure 1: Examples of final 95%-confidence intervals for different study results.

of means is the preferred effect measure. In the analysis, the confidence interval approach

is of particular attractiveness, see e. g. EMEA (2000). From that guideline we also take

over the graphical illustration of switching from non-inferiority over to superiority, see

Figure 1.

The theoretical background for switching between non-inferiority and superiority is

discussed, for example, by Bauer and Kieser (1996) and Brannath et al. (2003). Practi-

cally this means that the position of the confidence interval determines the kind of result

of the study, independently of the question whether originally the study was planned as

non-inferiority or superiority trial.

In classical group sequential trials, the repeated confidence interval approach intro-

duced by Jennison and Turnbull (1984, 1989) may be applied for constructing confidence

intervals on the parameter of interest. For adaptive clinical trials, several proposals for

constructing a confidence interval exist for various kinds of flexible designs, see, for in-

stance, Lehmacher and Wassmer (1999), Liu and Chi (2001), Brannath, Posch, and Bauer

(2002), Brannath, König, and Bauer (2003), Frick (2002), Proschan, Liu, and Hunsberger

(2003), and Hartung and Knapp (2006).

In the following, we consider flexible adaptive group sequential trials in the sense that,

besides the adaptive choice of the sample sizes for the different stages, the number of

stages can be either fixed in advance or can be determined also in an adaptive way, the
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latter approach named Self-designing as introduced by Fisher (1998), Shen and Fisher

(1999).

In the Self-designing approach of group sequential trials, one decides adaptively after

each interim-analysis during the course of the study whether exactly one or at least two

further study stages will be performed by use of the unblinded results of all the already

conducted interim-analyses. The Self-designing trial ends when the (finite) variance of

an a priori fixed final test statistic is used up. Hartung (2001) derives Self-designing

rules where the weighted inverse normal method is used for combining the p-values of

the independent study stages. Simultaneously the weights and the sample sizes can be

chosen adaptively. Considering the adaptive extension of O’Brien and Fleming (1979)

designs, Self-designing can be viewed as the limit case when the needed level attained of

the last stage reaches the full overall significance level, see Hartung (2006). It should be

mentioned, that in spite of its practical importance, the effect measure ratio of means is

not considered in group sequential trials until now.

In a Self-designing trial, Cheng and Shen (2004) construct a confidence interval for

the mean difference of two normal variates, where the variance parameter is assumed

to be known. As in Shen and Fisher (1999), the sequence of possible sample sizes is

fixed in advance and just the weights assigned to the stages of the trial are really chosen

adaptively. For unknown variance, Cheng and Shen (2004) give an approximate solution.

Extending the proceeding of Hartung (2001, 2006) to the combination of parameterized

p-values, we will derive exact confidence intervals for both effect measures, difference

and ratio of normal means, with unknown variance parameter. Moreover, a confidence

interval for the variance parameter will also be derived. For both effect measures, suitably

combined learning rules provide an effective chance to choose both sample sizes and

weights simultaneously in an adaptive way. In our approach, we consider t-statistics

involving the unknown parameter and combine them using the weighted inverse normal

method from meta-analysis, see Hedges and Olkin (1985) or Hartung, Knapp, and Sinha

(2008). The confidence intervals are defined implicitly and, for the determination of the

boundaries, nonlinear equations have to be solved, whose solutions are unique.

In each interim analysis we may decide in the planning between non-inferiority and

superiority. Based on conditional error functions, we derive concrete rules for adaptive

designing, ranging from fixed prior information based planning over just updating of

variances up to completely data based planning. Our proceeding is a conditional power

approach, as applied at least implicitly, for instance, by Proschan and Hunsberger (1995),
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Denne (2001), Liu and Chi (2001), Proschan, Liu, and Hunsberger (2003) in two-stage

adaptive designs, and by Shen and Fisher (1999), Hartung (2000, 2001, 2006), Hartung

and Knapp (2003, 2006), Cheng and Shen (2004) in the context of Self-designing clinical

trials.

The outline of the paper is as follows. In Section 2, the basics for a Self-designing study

of comparing normal outcomes are summarized. The construction of a confidence interval

for the mean difference is described in Section 3. Section 4 contains the adaptive planning

for sample sizes and weights when the mean difference is the parameter of interest. More-

over, the switching of the planning between non-inferiority and superiority is addressed.

The construction of a confidence interval for the variance parameter is discussed in Sec-

tion 5, and in Section 6, an example is considered in which the methods presented so far

are illustrated. Section 7 contains the construction of a confidence interval when the ratio

of normal means is the parameter of interest. Moreover, some considerations of adaptive

planning in this situation are discussed. In Section 8, the methods of the previous section

are illustrated in an example. Finally, some concluding remarks are given, where also

point estimation of the considered effect measures is addressed.

2 Basic principles for a Self-designing study of com-

paring normal outcomes

Let xE and xC be independent normally distributed random variables with mean µE in an

experimental group E and mean µC in an (active) control group C with common variance

σ2 > 0, that is, succinctly

xE ∼ N (µE, σ2) and xC ∼ N (µC , σ2) . (1)

A comparative study is carried out consecutively in a number of, say k, independent

stages, denoted by stg(1), . . . , stg(k). In the i-th stage, i = 1, . . . , k, let us observe the

responses xEij, j = 1, . . . , nEi ≥ 2, and xCij, j = 1, . . . , nCi ≥ 2, where nEi and nCi are

the sample sizes in the respective groups. The observed mean difference measure in stg(i)

is

yi =
1

nEi

nEi∑
j=1

xEij − 1

nCi

nCi∑
j=1

xCij = x̄Ei − x̄Ci, i = 1, . . . , k. (2)
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The variance parameter σ2 is estimated in the i-th stage by the pooled estimator

s2
i =

1

nEi + nCi − 2

(
nEi∑
j=1

(xEij − x̄Ei)
2 +

nCi∑
j=1

(xCij − x̄Ci)
2

)
, i = 1, . . . , k, (3)

which follows a scaled χ2-distribution with nEi + nCi − 2 degrees of freedom, that is,

(nEi + nCi − 2)
s2

i

σ2
∼ χ2(nEi + nCi − 2). (4)

The variance of yi is estimated in the i-th stage by

v̂ar(yi) =

(
1

nEi

+
1

nCi

)
s2

i , (5)

and yi and s2
i are stochastically independent, i = 1, . . . , k.

Let us assign a positive normed weight wi > 0 to each stage i, i = 1, . . . , k, with
∑k

i=1 wi = 1. Based on considerations in Fisher (1998), Shen and Fisher (1999), Hartung

(2001, 2006), and Cheng and Shen (2004), the sample sizes as well as the weights may

be chosen in a completely adaptive way. All the information of the unblinded data of

previous stages can be used to choose simultaneously the sample size and the weight for

the next stage. Let stg(0) denote a priori information and external restrictions, we express

the adaptive choice of sample sizes and weights as

ni = n̂{i− 1} = n̂{stg(0), stg(1), . . . , stg(i− 1)}, ni = nEi + nCi, (6)

and

wi = ŵ{i− 1} = ŵ{stg(0), stg(1), . . . , stg(i− 1)}, (7)

where wi ≤ 1− wΣ(i− 1), wΣ(i) =
∑i

j=1 wi, wΣ(0) = 0, wΣ(k) = 1, wi > 0, i = 1, . . . , k.

Note that the number k of performed stages is random and will be realized during the

course of the sequential trial in dependence of the choice of weights. Of course, k has to be

finite (almost surely), and for practical reasons, k should be bounded by some reasonable

constant. Introducing a minimum weight, say wmin, 0 < wmin < 1, for a realized stage,

we obtain the boundary as k ≤ 1/wmin. A minimum sample size, say nmin, may also be

introduced, so that

ni ≥ nmin ≥ 4 and wi ≥ wmin > 0, i = 1, . . . , k. (8)

The use of minimum weight and minimum sample size leads to useful termination condi-

tions of the whole trial and can adjust some non-practicable suggestions of the (automatic)

learning rules for choosing ni and wi discussed in later sections.

5



3 A confidence interval for the mean difference

With an a priori defined non-inferiority bound ∆0 ≥ 0, we are interested in testing

H0,∆ : µE ≤ µC −∆ versus H1,∆ : µE > µC −∆ , 0 ≤ ∆ ≤ ∆0, (9)

at a prescribed level α, 0 < α < 1/2. The alternative hypothesis H1,∆ means (∆−)non-

inferiority for 0 < ∆ ≤ ∆0, and, for ∆ = 0, superiority of E with regard to C.

Let ϑ = µE − µC denote the difference of means, which can be unbiasedly estimated

by yi in stg(i), i = 1, . . . , k, see (2). For the i-th stage, let us define the t-statistic

Ti(ϑ) =
yi − ϑ√

(1/nEi + 1/nCi) s2
i

∼ t(nEi + nCi − 2) , (10)

that is, for the true parameter ϑ, the statistic Ti(ϑ) follows a (central) t-distribution with

nEi + nCi − 2 degrees of freedom.

Let Ft(ν) denote the cumulative distribution function of a t-variate with ν degrees of

freedom, then it holds, for the 1− p-value,

Ft(nEi+nCi−2)(Ti(ϑ)) ∼ U(0, 1), i = 1, . . . , k, (11)

where U(0, 1) stands for the uniform distribution in the unit interval. Then, we have

zi(ϑ) = Φ−1[Ft(nEi+nCi−2)(Ti(ϑ))] ∼ N (0, 1) , i = 1, . . . , k, (12)

with Φ−1 the inverse of the standard normal distribution function Φ. Although sample

sizes and weights may be chosen adaptively as described in (6) and (7), the final combining

statistic follows a specified test distribution, that is,

Zk(ϑ) =
k∑

i=1

√
wi zi(ϑ) ∼ N (0, 1) , with wΣ(k) =

k∑
i=1

wi = 1, (13)

see Fisher (1998), Shen and Fisher (1999), and Hartung (2001).

The continuous distribution functions Ft(νi)(·) and the inverse distribution function

Φ−1(·) are (strictly) monotone increasing functions in their arguments. The pivotal statis-

tic Ti(ϑ) from (10) is monotone decreasing in ϑ, implying that Φ−1(Ft(νi)(Ti(ϑ)) is mono-

tone decreasing in ϑ. Hence, the whole function Zk(ϑ) is monotone decreasing in ϑ.

So we can define the following confidence interval on ϑ,

CI(ϑ) =
{
d ∈ IR | Φ−1(α) ≤ Zk(d) ≤ Φ−1(1− α)

}
= [ ϑL , ϑU ] (14)
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where ϑL and ϑU are the unique solutions of the equations:

Zk(ϑL) = Φ−1(1− α) and Zk(ϑU) = −Φ−1(1− α).

The confidence coefficient of CI(ϑ) is 1− 2α, 0 < α < 1/2. Since the solutions in (14) are

unique, they can easily be found iteratively using standard statistics software packages.

Let us now apply the confidence interval to the test problem (9). We decide, at level

α, for the alternative H1,∆, ∆ ∈ [0 , ∆0], if −∆ lies below CI(ϑ), and we do not reject

H0,∆0 , if CI(ϑ) covers −∆0, more succinctly, with ϑL from (14),

if −∆ < ϑL , then reject H0,∆,

if −∆0 ≥ ϑL , then stay with H0,∆0 .
(15)

Let us briefly consider the case that the variance parameter is known in advance, say

σ2
0. Then the statistic (10) becomes the z-statistic

Ti,0(ϑ) =
yi − ϑ√

1/nEi + 1/nCi σ0

=
yi − ϑ

σ(yi)
∼ N (0, 1). (16)

With zi(ϑ) = Φ−1(Φ(Ti,0(ϑ))) = Ti,0(ϑ), Zk(ϑ) in (13) becomes Zk,0(ϑ) =
∑k

i=1

√
wiTi,0(ϑ) ∼

N (0, 1). Equating now Zk,0(ϑ) = ±Φ−1(1 − α) and solving for ϑ yields the (1 − 2α)-

confidence interval on ϑ

CI0(ϑ) =

[
k∑

i=1

√
wiyi/σ(yi)∑k

h=1

√
wh/σ(yh)

± Φ−1(1− α)∑k
h=1

√
wh/σ(yh)

]
. (17)

This interval is also considered, in a different presentation, by Cheng and Shen (2004).

Replacing σ2
0 by the observed values s2

i leads to approximate z-statistics in (16) and an

approximate confidence interval in (17). Note that the combined test statistics of Fisher

(1998) and Shen and Fisher (1999) are also special cases of the general weighted inverse

normal combining statistics, see Hartung (2006).

4 Adaptive planning for sample sizes and weights

The confidence interval CI(ϑ) in (14) results after k−1 interim analyses based on the un-

blinded data. In case an unexpected favorable parameter constellation has been observed

up to stage j and provided that wΣ(j) < 1, this may lead to considerations to switch

from showing non-inferiority to showing superiority, and so the trial is then continued

by further planning with ∆ = 0. Conversely, originally planned as a superiority trial, a
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first interim analysis may reveal that an unexpected large number of subjects would be

required. So, in case of an active control, one may decide to switch from showing supe-

riority to showing non-inferiority, and to reduce the sample size of the rest of the trial

by choosing some ∆ > 0 in the further planning. Note that also in this situation, a non-

inferiority bound ∆0 should have been defined at the beginning of the study, see also the

discussion in the guideline EMEA (2000). In the following, we present some learning rules

for choosing the sample sizes and the weights adaptively with the possibility of switching

in the planning between non-inferiority and superiority. Moreover, we chose two real-data

examples to demonstrate that both kinds of switching may occur during ongoing trials in

a quite natural way, see Sections 6 and 8.

For predefined type I and II error rates α, 0 < α < 1, and β, 0 < β < 1, respectively,

let us consider, for ease of presentation, the approximate normal sample size spending

function. Two steering parameters uj and vj will be introduced for each stage j in order

to cover a wide range of reasonable updating possibilities, whose realization would then

depend on a given concrete situation. We plan with equal sample sizes for both groups at

each stage. Based on information up to stage j, an estimate Aj(∆) > 0 of the standardized

mean difference (ϑ + ∆)/σ may be assumed, where Aj(∆) is defined below. The power is

considered at the point ϑ + ∆ = σAj(∆) in the alternative H1,∆. For testing H0,∆ from

(9) by use of a t-test of level α at stage j + 1, a power of 1− β is approximately reached

when the total sample size for both groups at stage j + 1 is chosen as

fj(α, β, ∆) =
4 [max{0 , Φ−1(1− α) + Φ−1(1− β)}]2

Aj(∆)2
, j = 0, 1, . . . , k, (18)

with

Aj(∆) = uj

j∑
i=1

ñi∑j
h=1 ñh

(
yi + ∆

si

)
+ (1− uj)

µE0 − µC0 + ∆

vj s(j) + (1− vj) s0

> 0, ∆ ≥ 0,

s(j) =

(
j∑

i=1

ni − 2∑j
h=1 nh − 2j

s2
i

)1/2

, ñi =
2

1/nEi
+ 1/nCi

,

ni = nEi
+ nCi

, 0 ≤ uj ≤ 1, u0 = 0, and 0 ≤ vj ≤ 1, v0 = 0

where µE0 − µC0 + ∆ > 0 denotes a predefined value from the alternative H1,∆ at stg(0),

for instance, an a priori guess, and s2
0 > 0 a supposed value for σ2. An unrealistic small

value in (18) may be replaced by some reasonable sample size, for instance, by nmin from

(8).

8



Let us comment the role of the two steering parameters uj and vj, 0 ≤ uj ≤ 1 and

0 ≤ vj ≤ 1. By choosing uj = 0 and vj = 0, we get a purely prior information based

sample size plan with respect to the parameters. The choice uj = 0 and vj > 0 leads to

adaptive plans that only use updated variances, where s(j)2 is the pooled estimator of σ2

up to stg(j). Such kind of updating is used, for instance, in Denne and Jennison (2000)

and references cited therein. For uj = 1, involving ñi, the harmonic mean of realized

sample sizes, the term Aj(∆) is a short-cut version of the meta-analytical combination

of standardized mean differences as discussed, for instance, in Hedges and Olkin (1985)

and Hartung and Knapp (2001). Putting uj = 0, when the first sample based estimate

in Aj(∆) is below the second one, gives priority to the second term as a lower bound.

The reverse choice of uj covers a situation considered in a two-stage-trial by Liu and

Chi (2001), and Proschan, Liu, and Hunsberger (2003), who also discuss the role of the

standardized mean difference in updating sample sizes.

Let us assume that up to stg(j − 1) we have determined sample sizes and weights

where wΣ(j − 1) < 1, by planning with ∆1, . . . , ∆j−1 ∈ [0, ∆0] and at stg(j) we want to

plan with ∆j, that is, we have in mind to reject H0,∆j
, ∆j ∈ [0, ∆0], see (9). With the

realized sample sizes nEi
and nCi

, i = 1, . . . , j − 1, j ≥ 2, and defining Z0(−∆j) = 0, we

compute the combination statistic up to stg(j − 1), see (12),

Zj−1(−∆j) =

j−1∑
i=1

√
wi zi(−∆j) , j ≥ 1. (19)

Supposed we want to obtain a significant result at the next stage by assigning the full

remaining weight 1− wΣ(j − 1) to this stage. Then, by use of the projected p-value, say

p̂j,m, the following combination statistic

Zj,m(−∆j) = Zj−1(−∆j) +
√

1− wΣ(j − 1) Φ−1[1− p̂j,m], j ≥ 1, (20)

should attain the critical value Φ−1(1− α), that is,

p̂j,m = 1− Φ
[(

Φ−1(1− α)− Zj−1(−∆j)
) /√

1− wΣ(j − 1)
]
, j ≥ 1. (21)

This projected p-value is gained with the (conditional) power 1−β at ϑ+∆j = σAj−1(∆j) >

0 by choosing the sample size for the next stage j according to (18) as

mj = mj(β) = fj−1(p̂j,m, β, ∆j), j ≥ 1. (22)

In the above procedure, the full weight is used up and stage j is the last one. In case

estimates of parameters involved in the trial may not have been stabilized yet, only a part
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of mj(β) should be used as sample size nj, that is nj = εj mj(β), with 0 < εj ≤ 1. The

remaining weight after stage (j − 1) is also divided proportionally to assign the weight

wj = εj (1− wΣ(j − 1)) at stage j, that is, summarized,

wj = εj (1− wΣ(j − 1)), nj = εj mj(β), nEj = nCj ≈ nj/2, j ≥ 1. (23)

The choice of wj means a proportional partition of the remaining variance of the final

N (0, 1)-test distribution.

Choosing a smaller power (1− βj), a possible choice of εj is provided by

εj = εj(βj) =
mj(βj)

mj(β)
, mj(βj) = fj−1(p̂j,m, βj, ∆j), β ≤ βj < 1, j ≥ 1. (24)

Note that βj is only a lower bound of the type II error rate in stage j as long as wj <

1−wΣ(j−1). A similar basic idea is discussed by Hartung (2001) and applied in a 3-stage

Self-designing clinical trial with normal outcomes in Hartung (2006).

The pivotal element εj of steering the whole Self-designing process may also be defined

in a more direct way. From stage (j − 1) we have the p-value pj−1 = pj−1(−∆j−1) =

1 − Ft(nj−1−2)(Tj−1(−∆j−1)) based on nj−1 observations. Before realizing stage (j − 1),

upon the information up to stage (j − 2), we can compute the significance level αj−1,

which our test statistic should reach in stage (j − 1) with probability 1− β, that is,

αj−1 = x where x solves: nj−1 = fj−2(x, β, ∆j−1), j ≥ 2. (25)

Comparing this expected value with the observed value, we come to new learning rules

for nj and wj by the following choice of the pivot εj as

εj = ε∗j = rRel

(
1− |αj−1 − pj−1|

αj−1 + pj−1

)
for j ≥ 2, (26)

where rRel denotes some relaxation factor, 0 < rRel ≤ 1.

In the extreme cases, when pj−1 tends to 1, whereas αj−1 is small, or when pj−1 tends

to 0, the pivot ε∗j comes near 0. This has the consequence, that nmin and wmin would

be taken for the next stage, see the detailed rules given below. A cautious choice of the

relaxation factor is rRel = 1/2, which even in the ideal case, when αj−1 = pj−1, suggests to

take only a half of the remaining weight 1−wΣ(j−1) and sample size mj(β), respectively,

for the following stage. For j = 1, we may choose ε∗1 as ε1(β1) from (24).

Incorporating the minimum sample size and minimum weight introduced in (8), we

can formulate the suitably combined learning rules for updating sample sizes and weights
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as follows: Assume that up to stage j − 1, j ≥ 1, there holds

ni ≥ nmin, wmin ≤ wi, i = 1, . . . , j − 1, and wΣ(j − 1) =

j−1∑
i=1

wi ≤ 1− wmin, (27)

and let εj be defined, for instance, by (24) or (26), then, using (22), calculate the weight

function

Wj = max

{
wmin , [1− wΣ(j − 1)] max

(
εj,

nmin

mj(β)

)}
, (28)

and set the weight wj and the sample size nj of the next stage j as follows:

wj =

{
Wj , if 1−Wj − wΣ(j − 1) ≥ wmin,

1− wΣ(j − 1) , otherwise, and put j = k,
(29)

and

nj = max

{
nmin ,

wj

1− wΣ(j − 1)
mj(β)

}
. (30)

The choice of wj in (29) and nj in (30) guarantees the conditions in (27) for all stages and

thus, in particular, the upper boundary for the number of performed stages is 1/wmin.

Moreover, the full power 1− β is reached latest in stage j = k, conditioned on ϑ + ∆k =

σAk−1(∆k) > 0.

5 A confidence interval on the variance parameter

Let Fχ2(ν) denote the distribution function of a χ2-variate with ν degrees of freedom. With

the χ2-statistics from (4), we have in analogy to (11)

Fχ2(ni−2)

(
(ni − 2)

s2
i

σ2

)
∼ U(0, 1), ni = nEi + nCi, i = 1, . . . , k, (31)

leading to the combination statistic

ZV
k (σ2) =

k∑
i=1

√
wi Φ−1

[
Fχ2(ni−2)

(
(ni − 2)

s2
i

σ2

)]
∼ N (0, 1),

k∑
i=1

wi = 1, (32)

which is monotone decreasing in σ2 > 0.

Often the predefined confidence level for the variance parameter is lower than the one

for the outcome measure. So, let us denote the confidence level for the variance by 1−2κ,

0 < κ < 1/2. With the unique solutions of the equations

ZV
k (σ2

L) = Φ−1(1− κ) and ZV
k (σ2

U) = −Φ−1(1− κ),
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we build the (1− 2κ)-confidence interval

VCI(σ2) = [σ2
L, σ2

U ]. (33)

Since often descriptions of the standard deviation are preferable, we simply take the square

root of the boundaries in VCI and denote the resulting confidence interval on σ by VCI1/2.

6 An example for the effect measure difference of

means showing switching from non-inferiority to

superiority

Let us consider a clinical examination in which a new agent in an experimental group E

is compared to a control group C. The response variables are assumed as (essentially)

normally distributed. Let the parameter of interest ϑ be the difference of means, say

ϑ = µE−µC , and for both groups a common variance σ2 is assumed. In such a controlled

clinical trial concerning patients with acne papulopustulosa, Lehmacher and Wassmer

(1999) discuss an adaptive 3-stage group sequential test of Pocock (1977) type, which

led to an early stop for superiority of E with respect to C after the second stage at the

one-sided overall significance level of α = 0.005. The response variable is the reduction of

bacteria (after 6 weeks of treatment) from baseline, examined on agar plates and measured

as log CFU / cm2, CFU: colony forming units. We have taken over the parameter estimates

as presented in Table 1. The non-inferiority margin may be predefined as ∆0 = 0.1.

The test level is also chosen as α = 0.005 and the power as 1− β = 0.80. Each stage

is planned with equal sample sizes in both groups. Planning with ∆1 = 0.1 for showing

non-inferiority, we get the prior guess A0(∆1) = 0.9 using the prior guesses of ϑ and σ

from Table 1. With the critical value Φ−1(0.995) = 2.576, we obtain the total sample size

for a one-stage trial using (18),

m1 = f0(0.005, 0.2, 0.1) = 57.6.

Note that, for the superiority test with ∆ = 0, we would calculate the total sample size

as 73.

It was intended to start with a (1/3)m1, but by randomizing medications in blocks of

size 6, the first sample was chosen to have the size n1 = 24, that is, ε1 = n1/m1 = 0.4 = w1,

see (23). The trial starts and we obtain y1 = 1.549 and s1 = 1.316, leading to the small
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Table 1: Self-designing two-stage clinical trial concerning patients with acne papulopus-

tulosa: Data and confidence intervals on the treatment difference ϑ = µE − µC and on

the standard deviation σ.
Adaptive Adaptive Treatment Standard p-value

Stage sample size weight difference deviation pi(−∆)

0 — — 0.8 1.0 pi(−0.1) pi(0)

1 24
√

0.4 = 0.63 1.549 1.316 0.0028 0.0043

2 12
√

0.6 = 0.77 1.580 1.472 0.0381 0.0463

Confidence interval on

µE − µC σ

[ 0.231 , 2.894 ] [ 1.157 , 1.797 ]

Confidence level: 1− 2α = 0.99 Confidence level: 1− 2κ = 0.90

p-value p1(−0.1) = 0.0028. Consequently, we decide to switch in the planning over to

showing superiority. That means, we choose now ∆2 = 0.

At first we have to compute Z1(−∆2) =
√

0.4 Φ−1(1 − 0.0043) = 1.66 and then the

projected p-value, see (21),

p̂2,m = 1− Φ[(2.576− 1.66)/
√

0.6] = 1− Φ[1.18],

leading to, see (22), with ∆2 = 0,

m2 =
4 [1.18 + 0.84]2

(1.549 / 1.316)2
= 11.7.

We put uj = 1 in (18) because the prior guesses turned out as too cautious. So it was

decided to finish the trial by assigning the full remaining weight to the second stage,

w2 = 0.6, and to choose the sample size n2 = 12.

By the results of the second stage, see Table 1, we obtain

Z2(0) = 0.63 · 2.63 + 0.77 · 1.68 = 2.95 > 2.576,

and equating Z2(ϑ) to 2.576 and to −2.576 gives the lower and upper bound, respectively,

of the 99%-confidence interval CI(ϑ), that is, CI(ϑ) = [0.231, 2.894], see also Figure 2 for

a graphical display.

For the confidence interval on the variance and the standard deviation, respectively,

we choose κ = 0.05 and obtain VCI(σ2) by equating

ZV
2 (σ2) =

√
0.4 Φ−1

[
Fχ2(22)

(
22 · 1.3162

σ2

)]
+
√

0.6 Φ−1

[
Fχ2(10)

(
10 · 1.4722

σ2

)]
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Figure 2: Construction principle of the final 99%-confidence interval for the difference of

means µE − µC in the real-data example from Section 6.

to±1.645. The solutions are VCI(σ2) = [1.339, 3.228] so that the resulting 90%-confidence

interval on σ is given as VCI1/2(σ) = [1.157, 1.797].

7 A confidence interval for the ratio of means and

adaptive planning

Let us assume that the independent random variables xE and xC , introduced in Section 2,

have positive means, µE > 0 and µC > 0. The same should hold for the observed means,

x̄Ei > 0 , x̄Ci > 0 , i = 1, . . . , k. The parameter of interest considered now is the ratio of

means,

λ =
µE

µC

, 0 < λ < ∞.

Let ∆0 ≥ 0 be again a non-inferiority margin, we test

Hr
0,∆ : λ ≤ 1−∆ versus Hr

1,∆ : λ > 1−∆, 0 ≤ ∆ ≤ ∆0, ∆0 < 1, (34)

at a given level α, 0 < α < 1/2, where Hr
1,∆ means superiority when ∆ = 0, otherwise

(∆−)non-inferiority of E with regard to C.

14



Following an idea of Fieller (1940), see also Finney (1964), let us introduce the statistics

x̄i(λ) = x̄Ei − λ x̄Ci ∼ N
(

0 ,

(
1

nEi

+
λ2

nCi

)
σ2

)
, i = 1, . . . , k, (35)

and the t-statistics for i = 1, . . . , k,

T r
i (λ) =

x̄i(λ)

σ̂(x̄i(λ))
=

x̄Ei − λ x̄Ci√
(1/nEi + λ2/nCi) s2

i

∼ t(ni − 2), ni = nEi + nCi, (36)

where s2
i is the pooled variance estimator from (3).

Suppressing the subscript i and putting Q = ((1/nE + λ2/nC) s2)1/2, we get the

derivative

d

dλ
T r(λ) =

− x̄C Q− (x̄E − λ x̄C) Q−1 s2 λ/nC

Q2

=
− x̄C Q2 − (x̄E − λ x̄C) s2 λ/nC

Q3

=
− (x̄C/nE + λ x̄E/nC) s2

Q3
< 0, for λ > 0.

Hence T r(λ) is monotone decreasing for positive λ. So, we obtain the final weighted

inverse normal combination statistic

Zr
k(λ) =

k∑
i=1

√
wi Φ−1

[
Ft(ni−2)(T

r
i (λ))

] ∼ N (0, 1), wΣ(k) = 1 , (37)

which is monotone decreasing in λ, λ > 0.

Defining

T r
i (∞) =

−x̄Ci√
s2

i /nCi

= lim
λ→∞

T r
i (λ) and T r

i (0) =
x̄Ei√
s2

i /nEi

, i = 1, . . . , k, (38)

and herewith Zr
k(∞), Zr

k(0), we have the following boundaries for Zr
k(λ),

Zr
k(∞) = inf

λ>0
Zr

k(λ) < Zr
k(λ) < sup

λ>0
Zr

k(λ) = Zr
j (0), 0 < λ < ∞. (39)

In analogy to (14), we can formulate the confidence interval on λ as follows,

CIr(λ) = [λL , λU ] , (40)

where λL solves Zr
k(λL) = Φ−1(1− α) if Zr

k(0) > Φ−1(1− α), otherwise set λL = 0,

and λU solves Zr
k(λU) = −Φ−1(1 − α) if Zr

k(∞) < −Φ−1(1 − α), otherwise set λU = ∞.

The unique solutions of (40) can again easily be found iteratively by standard statistics

software packages. The confidence coefficient of CIr(λ) is 1− 2α.
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For w1 = 1 = k, solving the equations implied by (40) explicitly, we get a formal

representation of Fieller‘s well-known confidence interval for the ratio of means, see Fieller

(1940), Finney (1964).

In the test problem (34), we proceed as follows at level α, 0 < α < 1/2:

if 1−∆ < λL, then reject Hr
0,∆,

if 1−∆0 ≥ λL, then stay with Hr
0,∆0

.
(41)

In the following, we present some considerations on learning rules for adaptively chosen

samples sizes and weights in the present context. Planning with equal sample sizes in the

two groups and suppressing the subscript i, we set nE = nC = M , ξ = µE − (1 −∆)µC

for a fixed ∆ ∈ [0 , ∆0], and x = xE − (1−∆)xC . Then

x ∼ N (
ξ, σ(x)2

)
and x̄ ∼ N

(
ξ,

1

M
σ(x)2

)
, (42)

where σ(x)2 = (1 + (1−∆)2)σ2.

For given type I and II error rates α and β, respectively, testing the point hypotheses

H∗
0 : ξ = 0 versus H∗

1 : ξ = ξ∗ > 0

by

T r
0 (1−∆) =

√
M

x̄

σ(x)
∼ N (0, 1) under H∗

0, (43)

the required sample size M has to be chosen (one-sample formula) as follows,

M =
[max{0 , Φ−1(1− α) + Φ−1(1− β)}]2

(ξ∗/σ(x))2 . (44)

At stg(0), let s2
0 > 0 be an assumed value for σ2 and ξ∗ = µE0 − (1 − ∆)µC0 > 0 be

a chosen value in the alternative Hr
1,∆, then the sample size n = 2M for both groups is

obtained by the sample size spending function g0(α, β, ∆) defined by

g0(α, β, ∆) = 2
[max{0 , Φ−1(1− α) + Φ−1(1− β)}]2

B0(∆)2
, (45)

where

B0(∆) =
µE0 − (1−∆) µC0

s0

√
1 + (1−∆)2

> 0.

Instead of the normal test statistic T r
0 (λ) from (43), the t-statistic T r

i (λ) from (36) is

used at the i-th stage of the trial and so g0(α, β, ∆) delivers approximate, lower values

for the desired sample sizes. For ease of presentation, we further consider only a purely
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sample based updating, say by gj(·, β, ∆), j ≥ 1, and a mixture between g0 for exclusively

prior information based sample size planning, and gj, j ≥ 1, can be arranged in the

same kind as demonstrated in Section 4, see (18). We estimate the standardized mean

difference, under the alternative Hr
1,∆, in the denominator of (44) at stage j by combining

the estimates of stg(1) up to stg(j) weighted by the harmonic means of the realized sample

sizes in the stages. We obtain

gj(α, β, ∆) = 2
[max{0 , Φ−1(1− α) + Φ−1(1− β)}]2

Bj(∆)2
, j = 1, . . . , k, (46)

where

Bj(∆) =

j∑
i=1

ñi∑j
h=1 ñh

x̄Ei − (1−∆)x̄Ci

si

√
1 + (1−∆)2

> 0 , ñi =
2

1/nEi + 1/nCi

.

If Bj is not positive, gj may be replaced by a part of g0, or the trial is not continued with

the specified non-inferiority margin ∆ in mind. An unrealistic small value in (45) or (46)

may be replaced, for instance, by nmin from (8).

The test statistic for (34) is Zr
k(1−∆), see (37). Assume that up to stg(j−1) we have

gained Zr
i (λ) =

∑i
h=1

√
wh zr

h(λ), with zr
h(λ) = Φ−1

[
Ft(nh−2) (T r

h(λ))
]
. Then, in analogy

to (21), we derive the projected p-value for stg(j) as

p̂r
j,m = 1− Φ

[(
Φ−1(1− α)− Zr

j−1(1−∆)
) /√

(1− wΣ(j − 1))
]

, j ≥ 1, (47)

which as in (22), (23) yields the needed sample size and weight for stg(j) as, see (45),

(46),

nj = εj mr
j(β) and wj = εj (1− wΣ(j − 1)), 0 < εj ≤ 1, (48)

where mr
j = mr

j(β) = gj−1(p̂
r
j,m, β, ∆), nEj = nCj ≈ nj/2, j = 1, . . . , k. The power is

conditioned on µE − (1 − ∆)µC = Bj−1(∆)σ
√

1 + (1−∆)2 > 0. The pivotal learning

element εj can be chosen in an analogue manner as in (24) and (26). Taking into account

a minimum weight and sample size at each stage, see (8), the suitably combined learning

rules of (29) for updating sample sizes and weights can be carried over.

8 An example for the ratio of means showing switch-

ing from superiority to non-inferiority

Let us consider a clinical trial, one of the authors was concerned with as a biometrical

advisor. A new (E) and a standard drug (C), two different inhalers, for treating patients
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Table 2: Self-designing clinical trial treating patients with asthma bronchiale for the

effect measure ratio of means λ concerning a lungs functioning parameter (FEV1): Data,

confidence interval on λ with confidence coefficient 0.95, and combined test statistics.

Sample Data (in `) Confidence interval Combined

Stage size Weight on on test

i ni
√

wi µE µC σ λ = µE/µC statistics

0 — — 2.75 2.50 0.75 1−∆0 = 0.90 Zr
i (1.0) Zr

i (0.9)

1 128
√

1/3 2.67 2.55 0.81 0.482 1.563

2 56
√

2/3 2.70 2.56 0.87 [ 0.951 , 1.162] 0.971 2.997

with asthma bronchiale are compared with respect to a lung function parameter named

FEV1: forced expiratory volume in 1 second, measured in liter (`). The ratio of means

is the common outcome measure in that application. A nearly normed non-inferiority

margin for the clinical parameter is ∆0 = 10%. The type I and II error rates of the trial

are chosen as α = 0.025 and β = 0.10, respectively. The two treatment groups are equally

sized at each stage and the drugs are equally randomized within blocks of size 8. The

investigators were optimistic so that the trial starts with an attempt to show superiority

(∆ = 0). The first weight is scheduled as w1 = 1/3 or ε1 = 1/3.

The critical value is 1.96 and, with the assumed prior information from Table 2, we

compute by (45) for a one-stage trial 378 patients to be observed (with ∆ = 0). Using (48)

we obtain n1 = 126 and choose n1 = 128 because of the randomization scheme. With the

observed data, see Table 2, we obtain Zr
1(1) = 0.48. We recognize that the prior guesses

of the parameters were too optimistic for that study population with respect to the new

drug. So we use in the planning for the next stage only the observed values of stg(1),

especially as they are based on a relatively large number of patients. So, with ∆ = 0,

we get p̂r
2,m = 0.035, B1(0) = 0.105, and, for mr

2 with ∆ = 0, we calculate a number of

1736 patients to be observed at the next stages for the chance of showing superiority. So

the decision was made to stay with showing non-inferiority being sufficient for regulatory

concerns.

Planning with ∆ = ∆0 = 0.10, we compute Zr
1(0.90) = 1.56, p̂r

2,m = 0.31, B1(0.10) =

0.344 and by (46) for the total size of the remaining stages mr
2 = 53. It was decided to

finish the trial after the second stage, so the final sample size is n2 = 56 because of the

randomization scheme. The combination statistic is Zr
2(λ) =

√
1/3 zr

1(λ) +
√

2/3 zr
2(λ),

see (37). Equating Zr
2(λ) to ±1.96 and solving for λ leads to the confidence interval,
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CIr(λ) = [0.951 , 1.162], on the ratio λ, which lies clearly above 0.90. Further, with

zr
2(0.90) = 1.76, we calculate the final test value, Zr

2(0.90) = 0.58 · 2.70 + 0.82 · 1.76 =

3.01 > 1.96, confirming significant non-inferiority.

9 Final remarks

Confidence intervals on the effect measures difference and ratio of means are derived by

combining parameterized t-statistics via the weighted inverse normal method. Assigning

consecutively different weights to the stages, the number of stages is determined during the

ongoing trial. Suitably combined learning rules are derived for simultaneously updating

sample sizes and weights. The consequence is an effective controlling of the clinical trial,

see also Fisher (1998) for general considerations in that direction.

The impression may arise that Self-designing concepts are a matter more for longer

running studies with many interim analyses. But let us consider a situation where, based

on the available a priori information, a two-stage trial seems to be appropriate. Usually

no surprising positive results are expected in the interim analysis, so that in the most

practical applications, an O’Brien and Fleming (1979) design is chosen, that provides a

greater chance for showing significance at the end of the study than, for instance, the

Pocock (1977) design. However, there is practically no chance to show significance in the

interim analysis. For example, an one-sided O’Brien and Fleming test at overall level

α = 0.025 needs for significance a level attained at the end of the study of 0.024, but

of 0.0026 in the interim analysis. So in that situation, a better choice would be a Self-

designing concept, where the weight for the first stage can be set to 1/2 as in the usual

2-stage O’Brien and Fleming design. Then the full level α is preserved at the end of the

study, but we have the additional option to decide in the interim analysis for at least one

further interim analysis if the observed treatment effects will not satisfy the expectations.

Choosing in advance a 3-stage O’Brien and Fleming design, is not a good idea in the

considered situation, because then, even in the second stage, a low level attained of only

0.007 would be needed for showing significance. So nearly surely, a third stage could not

be avoided. For comparison, the corresponding Pocock design needs a level attained of

0.011 at each of the three planned stages, whereas the Self-designing concept needs just

the full level of 0.025 to be attained at the end of the study after one or more interim

analyses.

Consequently, a Self-designing concept can be a reasonable alternative to classical
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group sequential trials, see also the simulation results reported in Hartung (2006), and

the real-data examples in Section 6 and 8. Moreover, Self-designing can be considered as

the limit case of O’Brien and Fleming designing, when the needed level attained assigned

to the last stage of the trial tends to the full overall significance level, as discussed by

Hartung (2006). That corresponds, in the Wang and Tsiatis (1987) δ-class of group

sequential trials, to the limit case when the design parameter δ tends to −∞. In a non-

adaptive setting, this makes less sense. But in an adaptive approach, interim analyses are

used not only for considering safety concerns of the clinical trial but also for the chance

to reassess the sample size planning, and being not less important, the number of possible

interim analyses has not to be specified in advance anymore.

Besides all these considerations, in spite of its vital practical importance, the effect

measure ratio of means, with the variances of the outcomes assumed to be known or not,

seems not to be considered as well in classical group sequential trials as in their adap-

tive extensions until now, neither for testing non-inferiority nor for deriving confidence

intervals.

Sample sizes n are computed in Sections 4 and 7 through a normal approximation

for applying a t(n − 2)-variate. Nearly exact values are achieved by correcting with the

variance of a t(n−2)-variate, that is, replacing n by ncorr = n(n−2)/(n−4), n ≥ 5, being

relevant for small values of n. The idea behind is the same as in replacing a t-variate by

a normal variate with identical variance. However, computed values usually have to be

modified to take into account the particular randomization scheme applied in a clinical

trial.

Unlike the inverse chi-square (χ2) combination method considered, for instance, by

Bauer and Köhne (1994), Liu and Chi (2001), and Frick (2002) in two-stage designs

and by Hartung (2000) and Hartung and Knapp (2003, 2006) for Self-designing trials,

the inverse normal combination method is symmetric in the sense that positive values of

the t-statistics are accumulated in the same way as negative values. So no direction of

deviations from the null-distribution is preferred, see also Hedges and Olkin (1985, p. 40).

Even when sample sizes and weights of the stages are identical, the results by applying

both combination methods to the same data may differ. For instance, in the real-data

example of Self-designing discussed in Hartung (2006, p. 523), combining by use of the

inverse normal method yields a global p-value (0.0027) that is less than a half of the global

p-value (0.0057) reached by applying the inverse χ2 method to the same observed data

of the three stages when testing for superiority. This tendency is in concordance with
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simulation results which assign a higher mean sample size to the inverse χ2-method in

order to reach the same p-values as the inverse normal method, see Hartung (2006).

Finally let us briefly address point estimation. The combination statistic Zk(ϑ) from

Section 3 is N (0, 1)-distributed with mode and median 0. A maximum likelihood (ML)

estimator ϑ̂ML of the difference ϑ = µE − µC is given as the solution of Zk(ϑ̂ML) =

0. Sometimes, such an estimator is also called pseudo ML-estimator. The global p-

value is pG(ϑ) = 1 − Φ(Zk(ϑ)), and solving the equation pG(ϑ) = 1/2 yields ϑ̂ML as

solution. Hence, noting that Zk(ϑ) is monotone in ϑ, ϑ̂ML is median unbiased, cf. Cox

and Hinkley (1974, p. 273), Liu and Chi (2001). That means, the ML-estimator lies with

equal probability below and above the parameter ϑ. For large sample sizes ni, ϑ̂ML is

approximated by

ϑ̂A
ML =

k∑
i=1

[
yi

√
wi/σ̂(yi)

]/[ k∑

h=1

√
wh/σ̂(yh)

]
,

see (16) and (17), which uses the inverse estimated standard errors instead of the in-

verse estimated variances of the yi’s as known from meta-analysis, see Hartung, Knapp,

and Sinha (2008). Weighted means like ϑ̂A
ML are used in the generalized Cochran-Wald

statistics considered by Hartung, Böckenhoff, and Knapp (2003).

Using ZV
k (σ2) from Section 5 yields the median unbiased ML-estimator σ̂2

ML of σ2

by solving ZV
k (σ̂2

ML) = 0, and via Zr
k(λ) from Section 7, we get the median unbiased

ML-estimator λ̂ML of the ratio λ = µE/µC as the solution of Zr
k(λ̂ML) = 0.
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