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Abstract

Research in combining of economic forecasts made by several institutes on

the same economic variable has focused on estimation using mainly regres-

sion based methods, hoping that the combined forecast will be improved by

incorporating the expert opinions of the institutes. We provide confidence

intervals on the combined forecast using analysis of variance techniques. A

scoring of the individual institutes is proposed by taking into account the

historical performance of the institutes in forecasting the quantity in ques-

tion. It is remarkable that no information is needed about the individual

precision or the variance of the forecasts.

Key words: Combining information; Expert opinion; Heteroscedastic variances.
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1 Introduction

Consider the situation where one has several forecasts on the same quantity,

e. g. several economic research institutes forecast an important economic

variable. This situation is the rule in many econometric applications. Interest

is now in combining the individual forecasts to improve the accuracy of the

forecast. Since by way of combining several forecasts one takes into account

several expert opinions, one expects a better performance of the combined

forecast. The most popular models and methods for the combination are

regression based. However, it is rarely observed that the simple average of

the individual forecasts is beaten by more sophisticated methods, see Clemen

and Winkler (1986). As Chatfield (2001), section 4.3, points out, it is quite

difficult to estimate the variances of the individual predictions which are

needed as the weights in a weighted combination of the forecasts, and as

a consequence, confidence and prediction intervals are hard to derive, see

Chatfield (2001), section 4.3. Thus using a simple average of the predictions

is an easy and common way to avoid these difficulties in practice.

Different methods of combining forecasts in the context of GNP forecasts

from four major econometric models are applied by Clemen and Winkler
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(1986). Klapper (1999) discusses rank–based techniques for combining fore-

casts. A review on combining predictions is provided by Clemen (1989) and

Granger (1989). However, despite its practical importance, there is little

known about confidence intervals on the combined forecast in this crucial

area.

In this paper, we cope with the thorny task of combining the information from

different sources and give several confidence intervals on the combined fore-

cast which are of approximate nature. The confidence intervals are derived

using analysis of variance as a main tool. It is notable that for construct-

ing the confidence intervals, we do not have to expect that each forecast is

accompanied by its precision or variance. For illustration, the confidence

intervals are applied to German economic data. Some simulation results on

the properties of the confidence intervals are also provided.
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2 A statistical model for combining forecasts

We consider the following model

yi ∼ N(µ, αi), (2.1)

where yi denotes the forecast of the i–th institute and the forecasts are inde-

pendent, and µ represents the true unknown quantity, i = 1, . . . , K, K > 2.

We assume that each individual forecast yi follows a normal distribution.

But this assumption is not restrictive, at least asymptotically, because, in

general, the forecasting techniques provide normally distributed quantities

since the estimators are of least–squares or maximum likelihood type. We

want to emphasize that we do not assume that the institutes use the same

technique or method to forecast the variable in question, and we also do not

assume that the precisions or the variances of the forecasts are known. Such

an information may not be available in practice, simply because it is rarely

reported. The variances αi of the forecasts are assumed to be heteroscedastic

to reflect the different ability and quality of the institutes in providing, more

or less, precise forecasts.

Since there is no information available on the precision or variance of each

individual forecast, the situation we consider is rather non–standard, and
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thus, makes the already difficult task of combining forecasts more challenging.

Confidence intervals and tests on the variance components are discussed in

a related heteroscedastic ANOVA model by Hartung and Argaç (2002 a, b).

We estimate the mean µ by a weighted average of the individual forecasts yi,

y =
K∑

i=1

b2
i · yi, (2.2)

where b2
i denotes the weight which is given to the i–th institute by some

scoring process. We assume that the weights are normed

K∑
i=1

b2
i = 1, (2.3)

and we also assume that b2
i < 1/2, that is we exclude the possibility that one

particular institute dominates the rest. However, the assumption that the

weights b2
i are less than 0.5 does not mean that we assume away the possibility

that one institute predicts better than the rest; if there is one institute that

always forecasts much better than all others, then one need not combine

the predictions. But there is some practical evidence that the combination

of forecasts gives better prediction results than the individual forecasts, see

Chatfield (2001), section 4.3. If we choose the weights as b2
i = 1/K, then we

obtain the simple average of the predictions as a special case.
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Consider now the following quadratic form

u2
ib = b2

i ·

(
yi −

K∑
j=1

b2
j · yj

)2

, (2.4)

which can be interpreted as a weighted quadratic deviation of each individual

forecast from the weighted average of the individual forecasts of each insti-

tute. Let βi = b2
i · αi, and one can derive explicitly the important moments

of the quadratic form u2
ib (Hartung, Böckenhoff and Knapp 2003),

E(u2
ib) = (1− 2 · b2

i ) · βi + b2
i ·

K∑
j=1

b2
j · βj =: ei(b, β), (2.5)

var(u2
ib) = 2 · ei(b, β)2, (2.6)

Cov(u2
ib, u

2
jb) = 2 · b2

i · b2
j ·

(
K∑

k=1

b2
k · βk − βi − βj

)2

=: 2 · eij(b, β)2. (2.7)

We need to estimate the variance of the combined forecast and of each in-

dividual forecast, and for this purpose we use quadratic functions of the

individual forecasts as estimators. The variance of the combined forecast

is estimated with an unbiased positive (PSD–MINQUE) variance estimator
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which is given by, see also Hartung, Böckenhoff and Knapp (2003),

v̂ar(y)psd =
1

1 +
∑K

k=1

b4
k

1− 2b2
k

·
K∑

i=1

b2
i

1− 2b2
i

· u2
ib (2.8)

=
K∑

i=1

di · u2
ib. (2.9)

The estimator of the variance of each forecast is derived as a positive mini-

mum biased variance estimator (PSD–MINQMBE)

α̂i =

∑K
j=1 u2

jb +
∑K

j=1 dj · u2
jb∑K

j=1 b2
j · α̃j

· α̃i, (2.10)

where

α̃i =
1

b2
i

· (1− b2
i )

2

(1− b2
i )

4 + b4
i

∑
j 6=i b

4
j

· u2
ib. (2.11)

Note here also that both estimators are given explicitly, see Hartung, Böckenhoff

and Knapp (2003) for a detailed derivation of the estimators. Under suitable

conditions these estimators are consistent, exist always and are unique. It

is remarkable and surprising that the variance of the combined forecast can

be unbiasedly estimated without any information about the variances of the

individual forecasts! Note that for the results obtained above, we have not
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made use of the normality assumption. The only assumption needed up to

now is the existence of the first and second moments of the predictions. Es-

sentially, the normality assumption is only needed for deriving the confidence

intervals.

We will construct the confidence interval using a pivotal quantity, and for this

purpose we have to determine the distribution of the variance estimators. We

will approximate the distribution of the variance estimators by suitable χ2–

distributions using moment matching, see Satterthwaite (1946) and Patnaik

(1949). This leads to

ν ·
K∑

i=1

di · u2
ib/E(

K∑
i=1

di · u2
ib)

appr∼ χ2
ν , (2.12)

where

ν = 2
[E(
∑K

i=1 di · u2
ib)]

2

var(
∑K

i=1 di · u2
ib)

. (2.13)

Now, this gives us the following pivot (nominator and denominator are nearly

independent)

y − µ√∑K
i=1 di · u2

ib

appr∼ tν , (2.14)

where

ν =

{∑K
i=1 di · ei(b, β)

}2

∑K
i=1 d2

i · ei(b, β)2 +
∑K

i=1

∑K
j=1

i6=j

di · dj · eij(b, β)2
. (2.15)
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In practice, the unknown quantities have to be replaced by estimators, and

here we use β̂i = b2
i · α̂i.

Now, we are in the position to derive the confidence intervals which are of

course of approximate nature only.

I1 : y ∓ tν;1−α/2 ·

√√√√ K∑
i=1

di · u2
ib, (2.16)

I2 : y ∓ u1−α/2 ·

√√√√ K∑
i=1

di · u2
ib, (2.17)

I3 : y ∓ tK−1;1−α/2 ·

√√√√ K∑
i=1

di · u2
ib. (2.18)

The first interval is the approximate interval derived using the t–distributed

pivot, the second version is obtained if one replaces the quantile of the t–

distribution with the quantile of the standard normal distribution for large

degrees of freedom. The last version is obtained if one ignores the het-

eroscedastic variances in calculating the degrees of freedom ν. The approx-

imate degrees of freedom ν might become too small, and hence we used

max(ν, 2) as the degrees of freedom instead of ν in all the computations in
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the next sections, since we assume that the number of predictions exceeds

two.

Now, we have to specify the weights b2
i , the crucial part in assessing the

institutes’ performance. We suggest the following choice of the weights:

b2
i =

∑L
j=1

(
yij − yw

j

)−2∑K
i=1

∑L
j=1

(
yij − yw

j

)−2 , (2.19)

where yij denotes the forecast of the i–th institute for some economic variable

in the j–th time period or year and yw
j denotes the true realized value in the

j–th time period or year. Hence, each institute is scored taking into account

its historical performance in forecasting in the last L time periods or years.

We consider quadratic deviations of each forecast from the true value. When

choosing the time periods, subject matter knowledge should be taken into

consideration.

Note that we have assumed that b2
i < 0.5. This assumption may be violated

in practice, for example if one forecast is close to the true value of the variable

in one of the L time periods. Thus, a modification of the weights is needed

to guarantee b2
i < 0.5. For this purpose, choose a strictly positive constant θ

with 0 < θ < 0.5−1/K, and then consider the following procedure to modify
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the weights which guarantees b2
i < 0.5:

b2
i =



b2
i , if b2

i < 0.5− θ

0.5− θ , for i = i0 with b2
i0

= max
j=1,...,K

{b2
j |b2

j < 0.5− θ}

(0.5 + θ) · b2
i /
∑K

j=1
j 6=i0

b2
j , for i ∈ {1, . . . , K} \ {i0}

This procedure gives b2
i < 0.5 − θ for all i = 1, . . . , K. If not, then replace

θ by θ/2 and start the procedure again. If the index i0 is not unique, we

choose the largest one. Possible choices for θ are θ = 1/K2 or θ = 1/K3.

3 Data analysis

We applied the confidence intervals to German economic data. We used

the data on GDP from seven major economic research institutes from 1984–

1996, see Table 1. For the first forecast, that is for 1987, we used the data

from 1984–1986 to score the institutes. We give the weights b2
i in Table 2,

the variance estimators α̂i in Table 3, and finally, the combined forecast y,

the confidence intervals I1, I2 and I3 at the nominal level of 95% and the

true values of the GDP variable for every year in Table 4. From Table 2,
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it is obvious that the fifth institute performs best through the whole period

compared to the other institutes, the second best institute is the third insti-

tute. The second institute improves its performance in the period 1993–1996

considerably.

4 Monte Carlo results

Since the intervals we constructed are of approximate nature, we conducted

a simulation experiment to check their validity with respect to the actual

confidence coefficients and lengths of the proposed confidence intervals. We

considered K = 7 and K = 14 institutes. In the first scenario, the weights

b2
i are chosen to be equal (b2

i = 1/7, i = 1, . . . , 7), in a second scenario the

weight of the first institute is large compared to the other weights which

are chosen to be equal (b2
1 = 0.49, b2

i = 0.51/6, i = 2, . . . , 7), and finally,

the weights are chosen to be almost equal (b2
i = 0.49/3, i = 1, 2, 3 and

b2
i = 0.51/4, i = 4, . . . , 7). The variances of the individual forecasts are

homoscedastic and heteroscedastic. We paired small variances with small

weights and small variances with large weights, see Table 5. The simulation

scheme for K = 14 follows the pattern of the simulations for K = 7 institutes.
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We draw samples from the normal distribution and from a centered χ2–

distribution, i. e. χ2
νi
− νi, with a few degrees of freedom to cover also the

case of non–normal observations. The degrees of freedom of the centered

χ2–distribution were chosen in such a way that the variances are the same

as in the corresponding case with normal data.

The number of repetitions in the simulations is 10000. We provide the em-

pirical confidence level of the intervals at the nominal level of 95% and the

corresponding widths of the confidence intervals, see Tables 6–9.

The main result is that, in general, the intervals I1 and I3 are conservative

for normal data and can become slightly liberal in case of the centered χ2–

distribution; the confidence interval I2 also attains acceptable levels, but

might become too liberal for non–normal data when the weights b2
i are chosen

to be equal or nearly equal and the variances αi are homoscedastic. For K =

14 institutes, we obtained similar results as for K = 7 institutes concerning

the empirical confidence coefficients and widths of the confidence intervals,

see Tables 8 and 9.
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Table 1: The forecasts of seven economic institutes on GDP (1984–1996).

Institute

Year 1 2 3 4 5 6 7

1984 2.00 2.25 2.50 2.00 2.50 1.30 2.00

1985 2.00 2.25 2.00 2.00 3.00 2.10 2.75

1986 3.00 3.00 3.00 3.00 3.00 3.00 3.25

1987 1.50 2.25 3.00 3.00 2.00 2.20 3.00

1988 1.00 1.00 2.50 2.00 1.50 1.60 1.50

1989 2.50 2.25 2.50 2.00 2.50 1.70 2.50

1990 3.50 3.00 3.00 3.00 3.00 2.80 3.20

1991 3.50 3.25 3.50 3.00 3.50 2.70 3.00

1992 1.00 1.50 1.50 2.00 2.50 2.20 1.80

1993 −1.00 −0.50 0.00 0.50 0.00 0.90 0.50

1994 −0.50 1.00 1.00 1.00 0.00 0.50 0.40

1995 2.00 3.00 3.50 3.00 3.00 3.84 2.80

1996 1.00 1.75 1.70 2.50 2.00 2.50 2.40
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Table 2: The weights b2
i for the GDP data.

Weights

Year b2
1 b2

2 b2
3 b2

4 b2
5 b2

6 b2
7

1987 0.036 0.069 0.332 0.036 0.343 0.033 0.151

1988 0.040 0.067 0.241 0.028 0.466 0.048 0.111

1989 0.040 0.067 0.241 0.028 0.464 0.048 0.111

1990 0.042 0.068 0.240 0.029 0.460 0.048 0.112

1991 0.044 0.069 0.240 0.030 0.458 0.049 0.112

1992 0.082 0.067 0.248 0.029 0.432 0.043 0.099

1993 0.061 0.173 0.300 0.028 0.304 0.034 0.101

1994 0.063 0.173 0.299 0.028 0.303 0.034 0.100

1995 0.063 0.173 0.298 0.029 0.302 0.034 0.100

1996 0.167 0.154 0.264 0.026 0.268 0.030 0.090

Table 3: The variance estimators α̂i for the GDP data.

Variance estimators

Year α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7

1987 0.894 0.069 0.369 0.192 0.464 0.089 0.245

1988 0.401 0.424 0.779 0.068 0.091 0.009 0.040

1989 0.005 0.034 0.007 0.177 0.013 0.532 0.006

1990 0.212 0.001 0.002 0.001 0.003 0.054 0.031

1991 0.015 0.015 0.023 0.128 0.040 0.433 0.152

1992 0.911 0.205 0.304 0.001 0.635 0.050 0.028

1993 0.905 0.257 0.005 0.288 0.005 0.866 0.335

1994 0.963 0.262 0.351 0.192 0.434 0.001 0.016

1995 1.161 0.011 0.271 0.008 0.015 0.507 0.091

1996 0.738 0.001 0.010 0.466 0.075 0.470 0.395
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Table 4: Results of the data analysis of the GDP data.

Confidence bounds Confidence

Year True Value Forecast Lower bound Upper bound Interval

1.117 3.934 I1

1987 1.9 2.525 1.884 3.167 I2

1.724 3.326 I3

0.758 2.654 I1

1988 3.7 1.706 1.274 2.138 I2

1.167 2.245 I3

2.155 2.706 I1

1989 3.3 2.430 2.305 2.556 I2

2.274 2.587 I3

2.891 3.177 I1

1990 4.7 3.034 2.969 3.099 I2

2.953 3.115 I3

2.891 3.855 I1

1991 3.7 3.373 3.153 3.593 I2

3.099 3.647 I3

0.191 3.740 I1

1992 1.6 1.966 1.157 2.774 I2

0.957 2.975 I3

−0.409 0.303 I1

1993 −1.7 −0.053 −0.274 0.169 I2

−0.329 0.224 I3

−0.732 1.782 I1

1994 2.4 0.525 −0.047 1.098 I2

−0.190 1.240 I3

2.345 3.844 I1

1995 1.9 3.095 2.753 3.436 I2

2.668 3.521 I3

1.064 2.496 I1

1996 1.4 1.780 1.454 2.106 I2

1.373 2.187 I3
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Table 5: Sample design (K = 7).

i

Design 1 2 3 4 5 6 7

A b2
i 0.143 0.143 0.143 0.143 0.143 0.143 0.143

αi 2 2 2 2 2 2 2

B b2
i 0.143 0.143 0.143 0.143 0.143 0.143 0.143

αi 2 4 6 8 10 12 14

C b2
i 0.49 0.085 0.085 0.085 0.085 0.085 0.085

αi 2 2 2 2 2 2 2

D b2
i 0.49 0.085 0.085 0.085 0.085 0.085 0.085

αi 2 4 6 8 10 12 14

E b2
i 0.49 0.085 0.085 0.085 0.085 0.085 0.085

αi 14 12 10 8 6 4 2

F b2
i 0.163 0.163 0.163 0.128 0.128 0.128 0.128

αi 2 2 2 2 2 2 2

G b2
i 0.163 0.163 0.163 0.128 0.128 0.128 0.128

αi 2 4 6 8 10 12 14

H b2
i 0.163 0.163 0.163 0.128 0.128 0.128 0.128

αi 14 12 10 8 6 4 2
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Table 6: Simulated actual confidence coefficients (%)

and lengths (cursive); normal distribution, K = 7.

Design I1 I2 I3

A 99.7 95.0 98.8

0.48 0.29 0.36

B 99.8 95.1 99.3

1.02 0.57 0.71

C 99.8 98.6 99.6

2.28 1.07 1.33

D 99.8 97.8 99.5

2.38 1.09 1.36

E 99.9 99.3 99.7

6.28 2.80 3.50

F 99.8 96.0 99.6

0.53 0.30 0.38

G 99.9 94.8 98.9

0.94 0.54 0.67

H 99.9 95.4 99.3

1.33 0.64 0.80
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Table 7: Simulated actual confidence coefficients (%)

and lengths (cursive); centered χ2–distribution, K = 7.

Design I1 I2 I3

A 93.2 85.1 92.0

0.64 0.27 0.33

B 99.9 90.8 97.9

1.11 0.55 0.69

C 99.8 98.9 99.6

1.86 0.94 1.17

D 99.9 97.0 98.9

2.09 0.94 1.17

E 99.8 98.6 99.4

5.97 2.76 3.45

F 96.3 84.9 92.0

0.68 0.28 0.35

G 99.4 93.2 98.5

1.04 0.53 0.66

H 99.9 92.1 99.3

1.44 0.63 0.79
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Table 8: Simulated actual confidence coefficients (%)

and lengths (cursive); normal distribution, K = 14.

Design I1 I2 I3

A 98.6 95.2 97.3

0.13 0.10 0.11

B 99.7 96.4 97.9

0.28 0.20 0.23

C 99.9 99.8 99.9

2.39 1.07 1.18

D 99.9 99.2 99.4

2.42 1.08 1.19

E 99.8 99.5 99.7

5.96 2.78 3.07

F 99.3 95.6 97.6

0.15 0.11 0.12

G 99.6 96.2 98.0

0.30 0.21 0.23

H 99.2 95.1 97.7

0.32 0.22 0.25
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Table 9: Simulated actual confidence coefficients (%)

and lengths (cursive); centered χ2–distribution, K = 14.

Design I1 I2 I3

A 92.4 89.5 91.2

0.20 0.10 0.11

B 97.2 92.4 94.7

0.31 0.20 0.22

C 99.8 99.6 99.6

1.99 0.93 1.03

D 99.8 99.4 99.4

1.85 0.90 0.99

E 99.9 99.7 99.9

6.28 2.72 3.00

F 91.8 88.5 90.6

0.20 0.10 0.11

G 97.7 92.8 95.0

0.33 0.21 0.23

H 98.8 93.5 96.0

0.36 0.22 0.24
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