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Abstract: In all empirical or experimental sciences, it is a standard approach to present

results, additionally to point estimates, in form of confidence intervals on the parame-

ters of interest. The length of a confidence interval characterizes the accuracy of the

whole findings. Consequently, confidence intervals should be constructed to hold a de-

sired length. Basic ideas go back to Stein (1945) and Seelbinder (1953) who proposed

a two-stage procedure for hypothesis testing about a normal mean. Tukey (1953) addi-

tionally considered the probability or power a confidence interval should possess to hold

its length within a desired boundary. In this paper, an adaptive multi-stage approach is

presented that can be considered as an extension of Stein’s concept. Concrete rules for

sample size updating are provided. Following an adaptive two-stage design of O’Brien

and Fleming (1979) type, a real data example is worked out in detail.

Keywords: Power of a confidence interval, Length of a confidence interval, Adaptive

sample size planning, Multi-stage confidence interval, Group sequential trial

1 Introduction

The outcome of an experiment may be described by a normally distributed random vari-

able X with unknown mean µ and unknown variance σ2. Based on n independent repli-

cations of the experiment, the parameters µ and σ2 are estimated and, being of main

interest, a confidence interval on µ is derived. For a predefined confidence level, the

length of the confidence interval stands for the accuracy of the whole estimation process.

Therefore, it is an old problem to construct confidence intervals of a desired length. Stein

(1945) provided a two-stage procedure, where the sample size of the second stage is based

on the results of the first stage. Given some prior information on σ2, Seelbinder (1953)

showed how to choose the sample size of the first stage.

A question now is what is the probability to achieve such a confidence interval planned

for a desired length. This problem was considered, for instance, in Hsu (1989) and already
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Tukey (1953), mentioned by Hsu (1989), proposed to construct confidence intervals of

given confidence level which had the desired length with a certain probability. Brown

(1995) discussed the confidence level of the confidence interval on σ2 from a first stage

with regard to its use in the sample size planning for a second stage.

In the present paper, we use the dual relation between hypotheses testing and con-

fidence intervals in order to provide confidence intervals of predefined confidence level

which will have a length within some desired boundary with a required probability or

power. Extending the two-stage concept of Stein (1945), we consider a multi-stage ap-

proach based on adaptive group sequential designs, see Hartung (2006). In doing so, the

information from previous stages is used not only for planning the sample size for the

next stage but also for computing the confidence intervals in the present stage. The con-

fidence intervals are determined implicitly by combining parameterized p-values, see Cox

and Hinkley (1974), obtained in the several stages. As combination method for the p-

values, we apply the inverse normal method well known in meta-analysis, see for instance

Hartung, Knapp, and Sinha (2008).

The outline of the present paper is as follows: In Section 2, one-stage confidence

intervals of desired length and power for a normal mean are presented when a reliable

estimate of the variance is known in advance. In Section 3, an adaptive group sequential

approach is described which yields multi-stage confidence intervals for a normal mean of

predefined level. These intervals are nested, so that their lengths are decreasing when

the number of stages increases. In Section 4, maximum likelihood estimators of µ and σ2

are presented. These estimators are median unbiased. In Section 5, adaptive planning

is considered with respect to the desired length and power. We give concrete rules for

sample size updating. In Section 6, the homogeneity of the means underlying the different

stages of the trial is tested. In Section 7, a real data example, following an adaptive two-

stage design of O’Brien and Fleming (1979) type, is worked out in detail. Further, some

approximate formulas, helpful for computational purposes, are presented in connection

with the example. Some additional comments are given in Section 8.
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2 A Confidence Interval of Desired Length and Power

when a Reliable Estimate of σ2 is Known

Let X be a normally distributed random variable with mean µ and variance σ2 > 0, X̄ be

the sample mean of n ≥ 2 independent and identically distributed random variables, and

S2 be the sample variance, succinctly X ∼ N (µ, σ2), X̄ ∼ N (µ, σ2/n), and (n−1)S2/σ2 ∼
χ2
n−1, where χ2

ν stands for the χ2-distribution with ν degrees of freedom.

Denote µ0 a comparison value and ∆ > 0 an equivalence margin that is used here as

an accuracy parameter for the length of the confidence interval. The length of the interval

should be less than 2∆. We are interested in hypotheses testing for noninferiority with

regard to µ0, that is,

H0,L : µ = µ0 −∆ versus H1,L : µ > µ0 −∆, (1)

and for nonsuperiority with regard to µ0, that is,

H0,U : µ = µ0 + ∆ versus H1,U : µ < µ0 + ∆. (2)

Each test will be performed at level α, 0 < α < 1/2.

It holds

T0(µ) =
√
n
X̄ − µ
S

∼ tn−1, (3)

that is, for the true parameter µ, the pivotal statistic T0(µ) follows a central t-distribution

with n − 1 degrees of freedom. Let tn−1;1−α denote the (1 − α)-quantile of the tn−1-

distribution, then the lower (1− α)-confidence interval on µ is given as

I0,L(µ) = [µL,∞) , µL = X̄ − S tn−1;1−α/
√
n, (4)

where µL solves T0(µL) = tn−1;1−α. The null hypothesis H0,L is rejected in favor of the

alternative H1,L in (1), if

T0(µ0 −∆) > tn−1;1−α = T0(µL), or equivalently µL > µ0 −∆. (5)

Note that T0(µ) is a (strictly) monotone decreasing function in µ.

With the upper (1− α)-confidence interval on µ, that is,

I0,U(µ) = (−∞, µU] , µU = X̄ + S tn−1;1−α/
√
n, (6)

we reject H0,U in favor of H1,U in (2), if

T0(µ0 + ∆) < −tn−1;1−α = T0(µU), or equivalently µU < µ0 + ∆. (7)
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Let us assume that a reliable estimate, say s2
0 > 0, of σ2 is known in advance. Then,

conditioned on this assumption, the power of the test at µ = µ0 should be 1−β, 0 < β < 1,

in test problem (1) or (2). Note that µ − (µ0 − ∆) is equal to ∆ for µ = µ0 in test

problem (1). Then for testing H0,L versus H1,L using T0(µ0−∆) from (3), the sample size

n should be chosen as

n ≥ n0 = f0(α, β) :=
[max {0,Φ−1(1− α) + Φ−1(1− β)}]2

∆2/s2
0

, (8)

where Φ−1 is the inverse of the standard normal distribution function Φ. Note that we

have used the normal sample size spending function in (8) for ease of presentation.

In the same way, we can proceed in test problem (2). Note that (µ0 + ∆)− µ is equal

to ∆ for µ = µ0 in this test problem and we obtain the same sample size formula as in

(8) for testing H0,U versus H1,U.

For n ≥ n0 and conditioned on s2
0 = σ2, both null-hypotheses will be rejected if µ = µ0

with probability or power 1− 2β, 0 < β < 1/2, implying

µ0 −∆ < µL ≤ µU < µ0 + ∆ (9)

with µL and µU from (4) and (6). This means, the two-sided (1− 2α)-confidence interval

I0(µ) = [µL, µU ] has length µU − µL < 2∆ with (conditional) power 1 − 2β for n ≥ n0.

Note that µ0 has not to be explicitly known for constructing the interval I0(µ).

3 Multi-stage Confidence Intervals

The trial, with the underlying outcome variable X, is carried out consecutively in a

number of independent stages, say K. In the i-th stage, i = 1, . . . , K, we observe the

sample mean X̄i of the ni ≥ 2 responses, the sample variance S2
i , and define the pivotal

t-statistic

Ti(µ) =
√
ni

X̄i − µ
Si

∼ tni−1. (10)

For combining the pivotal statistics, we apply the inverse normal method known from

meta-analysis, see for instance Hartung, Knapp, and Sinha (2008).

Let Ftν denote the cumulative distribution function of a t-variable with ν degrees of

freedom, then it holds, for the 1− p-value,

Ftni−1 (Ti(µ)) ∼ U(0, 1), i = 1, . . . , K, (11)
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where U(0, 1) stands for the uniform distribution in the unit interval. Consequently, we

have

Φ−1
[
Ftni−1 (Ti(µ))

]
∼ N (0, 1), i = 1, ..., K. (12)

Since the stages are assumed to be independent, we can define the combining pivotal

statistic

Zj(µ) =

j∑
i=1

Φ−1
[
Ftni−1 (Ti(µ))

]
∼
√
j N (0, 1), j = 1, . . . , K. (13)

Generally, let Y1, . . . , YK be mutually independent N (0, 1)-distributed random vari-

ables. Then, given level α, 0 < α < 1/2, positive critical values cv1, . . . , cvK may be

defined by the following probability condition:

P

(
j∑
i=1

Yi ≤ cvj for all j = 1, ..., K

)
= 1− α, (14)

see Hartung (2006).

Using critical values cvj defined by (14), we get the following probability statements

for the combination statistic (13),

Pµ (Zj(µ) ≤ cvj for j = 1, . . . , k ≤ K)

≥ 1− α for k < K,

= 1− α for k = K.
(15)

Using (15), we define the lower confidence sets on µ as

CIk,L(µ) = {µ̃ | Zj(µ̃) ≤ cvj for j = 1, ..., k} , k = 1, . . . , K, (16)

and the confidence coefficient of CIk,L(µ) is at least 1− α and exactly 1− α for k = K.

The functions Φ−1(·) and Ftni−1(·) used in Zj(µ) are (strictly) monotone increasing

in their arguments. The pivotal statistic Ti(µ) from (10) is monotone decreasing in µ,

implying that Φ−1[Ftni−1(Ti(µ))] is monotone decreasing in µ. Consequently, the functions

Zj(µ), j = 1, . . . , K, are monotone decreasing in µ. Thus, for k = 1, . . . , K, CIk,L(µ) can

be represented as an interval,

CIk,L(µ) = [µk,L,∞) (17)

where µk,L = max{µL(1), ..., µL(k)} and

µL(j) solves Zj (µL(j)) = cvj, j = 1, ..., k. (18)

Note that the solutions in (18) are unique and can easily be found iteratively using

standard statistical software.
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The null-hypothesis H0,L from (1) will be rejected, at level of at most α, in favor of

H1,L at stage j, j ≤ k ≤ K, if

Zj(µ0 −∆) > cvj = Zj (µL(j)) , or equivalently, µ0 −∆ < µL(j) ≤ µk,L. (19)

Thereby, we used that Zj(µ) is monotone decreasing in µ. Note that µ0 is not assumed

to be known.

In a similar way, we define the upper confidence sets

CIk,U(µ) =
{

˜̃µ | −cvj ≤ Zj(˜̃µ) for j = 1, . . . , k
}
, k = 1, . . . , K, (20)

which have confidence coefficients of at least 1 − α and exactly 1 − α for k = K. For

k = 1, . . . , K, the interval representation is given by

CIk,U(µ) = (−∞, µk,U] , (21)

where µk,U = min{µU(1), ..., µU(k)} and

µU(j) solves Zj(µU(j)) = −cvj, j = 1, . . . , k. (22)

The null-hypothesis H0,U from (2) will be rejected, at level of at most α, in favor of H1,U

at stage j, j ≤ k ≤ K, if

Zj(µ0 + ∆) < −cvj = Zj(µU(j)), or equivalently, µ0 + ∆ > µU(j) ≥ µk,U. (23)

The two-sided confidence intervals on µ, defined as the intersection of the intervals

(17) and (21), that is,

CIk(µ) = CIk,L(µ) ∩ CIk,U(µ) = [µk,L, µk,U] , (24)

are nested, that is,

CIk+1(µ) ⊂ CIk(µ), k = 1, ..., K − 1, (25)

and have confidence coefficients of at least 1− 2α, 0 < α < 1/2. Note that the length of

CIk decreases when k increases, k = 1, ..., K.

Moreover, if both null-hypotheses in (1) and (2) are rejected at some stages j1, j2 ≤
k ≤ K and µk,L ≤ µk,U, then by (19) and (23), it holds

µ0 −∆ < µk,L ≤ µk,U < µ0 + ∆. (26)

Consequently, the length of the two-sided interval CIk(µ) is

µk,U − µk,L < 2∆. (27)

Depending on the choice of α, it may occur that µk,U < µk,L, so that the interval CIk is

empty. For interpreting such an event, let us refer to Section 6.
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4 Point Estimation of µ and σ2

The combination statistic Zj(µ) from (13) is N (0, j)-distributed with mode and median

0. The maximum likelihood (ML)-estimator µ̂ML(j) of the mean µ at stage j is given by:

µ̂ML(j) solves Zj(µ̂ML(j)) = 0, j = 1, ..., K. (28)

The solution in (28) is unique. Sometimes, such an estimator is also called pseudo ML-

estimator.

The global p-value at stage j is

pG(j) = 1− Φ
(
Zj(µ)/

√
j
)
, j = 1, . . . , K, (29)

and solving (29) for µ such that pG(j) = 1/2 yields µ̂ML(j) as solution. Since Zj(µ) is

monotone in µ,

µ̂ML(j) is median unbiased, j = 1, . . . , K, (30)

see Cox and Hinkley (1974, p. 273), that is, the ML-estimator µ̂ML(j) lies with equal

probability as well below the parameter µ as above µ.

Recall that the variance estimator S2
i at stage i, i = 1, . . . , K, is a scaled χ2-distributed

random variable, that is, (ni − 1) S2
i /σ

2 ∼ χ2
ni−1. In analogy to (11), we obtain

Fχ2
ni−1

(
(ni − 1)

S2
i

σ2

)
∼ U(0, 1), i = 1, . . . , K,

where Fχ2
ni−1

denotes the distribution function of a χ2
ni−1-variable. Like in (13), it holds

for the combining statistic up to stage j

ZV
j (σ2) =

j∑
i=1

Φ−1

[
Fχ2

ni−1

(
(ni − 1)

S2
i

σ2

)]
∼ N (0, j), j = 1, . . . , K. (31)

Moreover, ZV
j (σ2) is monotone decreasing in σ2 > 0. Consequently, the ML-estimator

σ̂2
ML(j) of σ2 at stage j is given by:

σ̂2
ML(j) solves ZV

j

(
σ̂2
ML(j)

)
= 0, j = 1, ..., K. (32)

Again, σ̂2
ML(j) is a median unbiased estimator for σ2.
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5 Adaptive Sample Size Planning to Attain the De-

sired Power

Let fj(α, β) denote the sample size spending function from (8) at stage j, 1 ≤ j ≤ K− 1,

when s2
0 is replaced by some estimate S(j)2 of σ2 based on information of the stages

0, 1, . . . , j, where stage 0 stands for prior information. For example, S(j)2 may be chosen

as the ML-estimate σ̂2
ML(j) from (32), or as the pooled estimate up to stage j given by

σ̂2
Pool(j) =

1∑j
h=1 nh − j

j∑
i=1

(ni − 1) S2
i .

Recall now from (14) the event

A :=

{ h∑
i=1

Yi ≤ cvh for all h = 1, ..., K

}
,

and let us consider the event for an arbitrary, but fixed stage j

B :=

{ h∑
i=1

Yi ≤ cvh for all h = 1, ..., j − 1 and

j−1∑
i=1

Yi +
K∑
i=j

Yi ≤ cvK

}
.

Clearly, the probability of event B is larger than of event A. Moreover, collapsing
∑K

i=j Yi,

which is N (0, K − (j − 1))-distributed, to Yj and giving all the remaining weight to Yj,

we obtain{ h∑
i=1

Yi ≤ cvh for h = 1, ..., j − 1, and

j−1∑
i=1

Yi +
√

(K − (j − 1)) Yj ≤ cvK

}

⊃
{ h∑
i=1

Yi ≤ cvh for all h = 1, ..., K

}
. (33)

Consequently, if we decide after stage (j − 1) to omit the interim analyses j up to

K − 1, we can assign the remaining weight
√
K − (j − 1) to the next final stage and

build the next test statistic according to (13) as

Zj,K(µ0 −∆) = Zj−1(µ0 −∆) +
√

(K − j + 1) Φ−1
[
Ftnj−1 (Tj(µ0 −∆))

]
, (34)

where Zj,K(µ0 − ∆) ∼
√
K N (0, 1) under H0,L from (1), j = 1, ..., K, and Z0 = 0. The

test statistic Zj,K(µ0−∆) has to be compared with the K-th critical value cvK in testing

H0,L from (1).
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Note that the p-value of testing H0,L at stage i by use of Ti(µ0 −∆) is given as

pi = pi(µ0 −∆) = 1− Ftni−1 (Ti(µ0 −∆)) , i = 1, ..., K. (35)

Assume that, after stage (j − 1), in a next stage we want to reach cvK by use of the final

test statistic

Ẑj,K(µ0 −∆) = Zj−1(µ0 −∆) +
√

(K − j + 1) Φ−1 (1− p̂j,K(µ0 −∆)) , (36)

then the projected p-value p̂j,K(µ0 −∆) of the next trial part should be

p̂j,K(µ0 −∆) = 1− Φ
[
(cvK − Zj−1(µ0 −∆)) /

√
(K − j + 1)

]
. (37)

Conditioned an S(j − 1)2, an estimate of σ2, a power of 1− β in testing H0,L from (1) is

reached for µ = µ0 when the sample size of the next final stage is chosen at least as

Mj,L(µ0 −∆) := fj−1 (p̂j,K(µ0 −∆), β) , (38)

where fj−1 (p̂j,K(µ0 −∆), β) is the sample size from (8) with α replaced by the projected

p-value p̂j,K(µ0 −∆).

Similarly, we derive for testing H0,U from (2) the projected p-value

p̂∗j,K(µ0 + ∆) = 1− Φ
[
(−cvK − Zj−1(µ0 + ∆)) /

√
(K − j + 1)

]
. (39)

Whereas H0,L from (1) will be rejected when the α-level of the next final stage, say αj,K ,

satisfies αj,K ≤ p̂j,K(µ0 − ∆), the null-hypothesis H0,U from (2) will be rejected when

αj,K ≤ 1 − p̂∗j,K(µ0 + ∆). So conditioned on S(j − 1)2, a power of 1 − β in testing H0,U

from (2) is reached for µ = µ0 when the sample size of the next final stage is chosen at

least as

Mj,U(µ0 + ∆) := fj−1

(
1− p̂∗j,K(µ0 + ∆), β

)
. (40)

Consequently, both null-hypotheses in (1) and (2) will be rejected with (conditional)

power of at least 1− 2β, 0 < β < 1/2, for µ = µ0 if the sample size of the next final stage

is chosen at least as,

Mj(µ0) = max {Mj,L(µ0 −∆),Mj,U(µ0 + ∆)} . (41)

In case we do not want to finish the trial in this way and have in mind the originally

planned K−(j−1) further stages, we will choose the sample size of stage j proportionally

as

nj = nj(µ0) =
Mj(µ0)

K − j + 1
, j = 1, ..., K, (42)
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which is a (slightly) conservative choice according to (33), and use cvj in (18) and −cvj
in (22) to compute the confidence interval CIj(µ) from (24). Note that the sample size in

each stage should be at least 2.

Especially for j = 1, we obtain the projected p-values p̂1,K = 1 − Φ(cvj/
√
K) and

1− p̂∗1,K = Φ(−cvj/
√
K) = p̂1,K . Consequently we get the starting sample size of our trial

as

n1 = M1/K (43)

where, see (8),

M1 =

(
cvK√
K

+ Φ−1(1− β)

)2

s2
0/∆

2,

with 0 < β < 1/2 and s2
0 > 0 is a prior guess of σ2.

In applications, we use the following algorithm in a trial planned for at most K stages:

We start with n1 observations, n1 from (43), and compute the first confidence interval

CI1. When the length of CI1 is below 2∆, we finish the trial. Otherwise, we apply the

above proceeding for the stages j ≥ 2 until that stage k when the length of CIk is the first

time below 2∆. Then we can finish the trial because all confidence intervals computed so

far possess a confidence coefficient of at least 1− 2α, see Section 3. Not later than stage

k = K, we will receive a two-sided confidence interval CIk(µ) with confidence coefficient

of at least 1−2α, see (24), which with (conditional) probability or power of at least 1−2β,

0 < β < 1/2, will have the desired length below 2∆, see (27).

In the sample size planning for stage j, j ≥ 2, we use the median unbiased ML-estimate

µ̂ML(j − 1) of µ from stage (j − 1), see (28). These estimators are used for calculating

the projected p-values p̂j,K , see (37), and p̂∗j,K , see (39), so that in (42), we finally get

nj = nj(µ̂ML(j − 1)), j = 2, . . . , K. The power in (38) and (40) will then be conditioned

on S(j − 1)2 and µ̂ML(j − 1) for j = 2, . . . , K. Note that these estimates are used only

for planning the sample sizes, but not for computing the confidence intervals.

Further, we may formally define the p-values, see (11), as suiting to the null-hypothesis

that µ is the true parameter, see Cox and Hinkley (1974, p. 221). So we may apply

the general result that under the null-hypothesis p-values preserve their distribution and

independence (for continuous null-distributions) when sample sizes are chosen adaptively

in a consecutive way, see Brannath, Posch, and Bauer (2002). Since all our procedures

are based on these p-values, all our statements remain valid when sample sizes are chosen

adaptively as demonstrated in this section, see also Hartung (2006).
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6 Homogeneity of the Means in the Different Stages

Let us consider the extended model that we allow the parameters µ and σ2 to be different

in each stage , say µi and σ2
i in stage i, so that it holds for the sample means

X̄i ∼ N
(
µi,

σ2
i

ni

)
, i = 1, . . . , K. (44)

Since X̄i and the sample variance S2
i are stochastically independent unbiased estimators

of µi und σ2
i , respectively, the pivotal t-statistic Ti(µi), see (10), is tni−1-distributed,

i = 1, . . . , K. Further, the combination statistic up to stage j, see (13),

Zj(µ1, . . . , µj) =

j∑
i=1

Φ−1

[
Ftni−1

(
√
ni

X̄i − µi
Si

)]
, j = 1, . . . , K, (45)

is N (0, j)-distributed.

Denote m′ = (m1, . . . ,mk) the transposed of a vector m in Rk, then by (14), the

k-dimensional confidence region, k = 1, . . . , K,

CRk = {m ∈ Rk | −cvj ≤ Zj(m1, . . . ,mj) ≤ cvj, for j = 1, . . . , k} (46)

covers (µ1, . . . , µk)
′ with probability of at least 1 − 2α, 0 < α < 1/2. Note that CRk is

not empty for all α ∈ (0, 1/2), since the observed vector (x̄1, . . . , x̄k)
′ lies always in CRk.

When we assume that the parameters µi are really identical, say µi = µ for i = 1, . . . , k,

then the k-dimensional parameter (µ, . . . , µ)′k is covered by CRk, or, in other words,

(µ, . . . , µ)′k ∈ CRk with probability of at least 1 − 2α. But this is equivalent to µ ∈ CIk

with probability of at least 1− 2α, where CIk is introduced in (24). Thus, if CIk is empty

for a common confidence level 1−2α, this will speak against the assumption of an identical

mean µ over the first k stages. This can formally be stated as a test on homogeneity of

the means.

In testing

H0,hom(k) : µ1 = . . . = µk versus H1,hom(k) : µi1 6= µi2 (47)

for some i1, i2 ∈ {1, . . . , k}, k = 2, . . . , K, the homogeneity hypothesis H0,hom(k) will

be rejected at level of at most 2α, if the two-sided confidence interval CIk(µ) from (24)

is empty. If H0,hom(k∗) is rejected, then also H0,hom(k) will be rejected for k∗ ≤ k ≤ K.

On the other hand, under the model assumption of an identical mean µ underlying the

different stages of the trial, the probability to obtain an empty confidence interval CIk is

bounded by 2α. The same test principle is used by Hartung and Knapp (2003) in deriving

a test on homogeneity of variances of random treatment-by-sample interactions.
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7 A Real Data Example

Let us consider an application one of the authors was concerned with. The effect of a drug

for treating patients with asthma bronchiale is analysed with respect to a lung function

parameter called FEV1, that is, forced expiratory volume in 1 second, measured in liter

(`), and an underlying approximate normal distribution of the outcome can be assumed.

From a small pre-study with selected patients, we have the rough estimates of 2.5` for

the mean and s0 = 0.6` for the standard deviation. A study was planned ’to determine,

with a safety of 90%, the mean with a reliability of 95% within an accuracy of ±0.2`.’

This means in our setting: α = 0.025, β = 0.05, and ∆ = 0.2.

Since larger variances were expected with an extended spectrum of patients, the de-

cision was made in favor of an adaptive two-stage plan of O’Brien and Fleming (1979)

type, see Hartung (2006). Using the combination statistic (13), we get the constant critical

values cv1 = cv2 = 2.797 in (14), see Hartung (2006) or Jennison and Turnbull (2000).

By formula (43), we get the starting sample size of the trial as n1 = 60 using the prior

guess s0 = 0.6. In the first stage, we observed for the mean x̄1 = 2.67` and the standard

deviation s1 = 0.87`, so that equating

Z1(µ) = Φ−1

[
Ft59

(√
60

2.67− µ
0.87

)]
to 2.797 and to −2.797, see (18) and (22), yields the first confidence interval on the mean

as

CI1 = [2.3437`, 2.9963`].

Replacing µ0 by µ̂ML(1) = x̄1, we compute

Z1(µ0 −∆) = Z1(x̄1 − 0.2) = Φ−1

[
Ft59

(√
60

0.2

0.87

)]
= 1.7500

and thus the projected p-value, see (37),

p̂2,2(µ0 −∆) = 1− Φ(2.797− 1.7500) = 0.1476,

and the projected p-value from (39),

p̂∗2,2(µ0 + ∆) = 1− Φ(−2.797 + 1.7500) = 0.8524,

with Z1(µ0 + ∆) = −1.7500.
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Since p̂2,2(µ0 − ∆) = 1 − p̂∗2,2(µ0 + ∆), the sample size of the second and final stage

should be at least, see (42) and (8),

n2 = n2(µ0) = f1(0.1476, 0.05) =
[Φ−1(1− 0.1476) + Φ−1(1− 0.05)]

2

∆2/s2
1

= 137.111.

With n2 = 138 patients in the second stage, we observed the estimates x̄2 = 2.70` and

s2 = 0.81`, and equating

Z2(µ) = Z1(µ) + Φ−1

[
Ft137

(√
138

2.7− µ
0.81

)]
to 2.797 and to −2.797 yields the final confidence interval on the mean as

CI2 = [2.5681`, 2.8081`].

Note that the actual length of CI2 (0.24`) is below the desired accuracy or length of

2∆ = 0.4`.

Instead of solving nonlinear equations to determine the boundaries of the confidence

intervals, we provide some simple approximate solutions in the following. Let us ap-

proximate the central t-distributions involved in the combination statistics by normal

distributions with the same first two moments.

The variance of the tni−1-variate is (ni−1)/(ni−3) and the variance of X̄i is estimated

by S2
i /ni. Let us define weights

wi =

√
(ni − 3) ni
(ni − 1) S2

i

, ni ≥ 4, i = 1, . . . , K, (48)

and thus, the combination statistic Zj(µ) from (13) can be approximated by

ZA
j (µ) =

j∑
i=1

wi(X̄i − µ), j = 1, . . . , K. (49)

Equating ZA
j (µ) to the critical value cvj and to −cvj and solving for µ yield the approxi-

mate boundaries, see (18) and (22), for j = 1, . . . , K,

µAL(j) =

j∑
i=1

wi X̄i∑j
h=1wh

− cvj∑j
h=1wh

and µAU(j) =

j∑
i=1

wi X̄i∑j
h=1wh

+
cvj∑j
h=1wh

. (50)

Furthermore, the approximate median unbiased ML-estimator at stage j, see (28), is given

by

µ̂AML(j) =

j∑
i=1

wi X̄i∑j
h=1wh

, j = 1, . . . , K. (51)
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Note that, in combining the means, the inverse estimated standard errors are used in the

weights and not the inverse estimated variances of the means as known from the standard

estimator of the overall mean in meta-analysis, see for instance Hartung, Knapp, and Sinha

(2008). Weighted means like µ̂AML(j) from (51) are used in the generalized Cochran-Wald

statistics considered by Hartung, Böckenhoff, and Knapp (2003).

In the example, we obtain the weights w1 = 8.7512 and w2 = 14.3966, so that the

approximate confidence intervals on the mean are given as CIA1 = [2.3504`, 2.9896`] and

CIA2 = [2.5678`, 2.8095`]. Note that the approximate confidence intervals are nearly

identical to the exact confidence intervals, especially the final intervals CI2 and CIA2 .

The midpoints of the approximate intervals are approximate ML-estimates of the

mean, that is, µ̂AML(1) = 2.67` in the first stage and µ̂AML(2) = 2.6887` in the second stage.

Whereas the exact µ̂ML(1) is identical to µ̂AML(1), the exact ML-estimate at the second

stage, by equating Z2(µ) = 0 and solving for µ, takes on the value µ̂ML(2) = 2.6886`.

Again, the approximate solution nearly exactly coincides with the exact solution.

The ML-estimates of the variance parameter σ2 are σ̂2
ML(1) = 0.87492 and σ̂2

ML(2) =

0.83672, which are the solutions of, see (32),

ZV
1 (σ2) = Φ−1

[
Fχ2

59

(
59

0.872

σ2

)]
= 0, and

ZV
2 (σ2) = ZV

1 (σ2) + Φ−1

[
Fχ2

136

(
136

0.812

σ2

)]
= 0.

8 Final Remarks

In Section 3, we defined positive one-sided critical values cvj, j = 1, . . . , K, by the

probability condition (14). For a fixed number of stages K and an overall significance

level α, we get an O’Brien and Fleming (1979) design with constant critical values in (14),

say cvj = consOBF (K,α), and a Pocock (1977) design with monotone increasing critical

values given as cvj =
√
j consPO(K,α), j = 1, . . . , K, see Hartung (2006), where also

some of these one-sided critical values are tabulated. Designs with intermediate values of

the critical values are considered, for instance, in Jennison and Turnbull (2000).

Usually, the two-sided critical values at level 2α for the correspondent symmetric two-

sided tests are tabulated in literature. For K ≥ 2, these two-sided critical values are

slightly smaller than the one-sided critical values at level α. At least for α ≤ 0.05, these

two-sided critical values may be used for practical applications, see Jennison and Turnbull

(2000, p. 192).
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We defined the two-sided confidence interval CIk as the intersection of the one-sided

intervals CIk,L and CIk,U , see (24), and the confidence coefficient of CIk is at least 1− 2α.

If we use the critical values of the correspondent two-sided tests at level 2α, we get a two-

sided confidence interval, say CI0k, that is slightly narrower than CIk for K ≥ 2, but has

a confidence coefficient being at least 1− 2α as well. Moreover, CI0
K reaches a confidence

coefficient of exactly 1 − 2α. However, using now the boundaries of CI0
k in our testing

considerations (13) and (23), the test level α cannot be guaranteed. Indeed, no severe

differences are expected for practical applications at least for α ≤ 0.05, see above.

In our presentation, sample sizes n are computed using a normal approximation for

applying a tn−1-variate. Nearly exact values are achieved by correcting the sample size n

with the variance of a tn−1-variate, that is, replacing n by ncorr = n(n−1)/(n−3), n ≥ 4.

The idea behind is the same as in replacing a t-variate by a normal variate with identical

variance.
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