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Abstract

The analysis of crossover designs assuming i.i.d. errors leads to
biased variance estimates whenever the true covariance structure is not
spherical. As a result, the OLS F-Test for treatment differences is not
valid. Bellavance et al. (Biometrics 52:607-612, 1996) use simulations
to show that a modified F-Test based on an estimate of the within
subjects covariance matrix allows for nearly unbiased tests. Kunert
and Utzig (JRSS B 55:919-927, 1993) propose an alternative test that
does not need an estimate of the covariance matrix. However, for
designs with more than three observations per subject Kunert and
Utzig (1993) only give a rough upper bound for the worst-case variance
bias. This may lead to overly conservative tests. In this paper we
derive an exact upper limit for the variance bias due to carry-over for
an arbitrary number of observations per subject. The result holds for
a certain class of highly efficient carry-over balanced designs.

Key words: bias, correlated errors, crossover designs, fixed effects
model, upper limit, variance estimation

1 Introduction

In a crossover design each subject receives multiple treatments. Data from
crossover designs are often analyzed with a linear model that includes direct
treatment effects, carry-over effects, subject effects and order effects. If we
assume i.i.d. errors, in matrix notation we have the model

Y = 1npµ+ Pα + Uπ + Tτ + Fρ+ ε, E(ε) = 0, Cov(ε) = σ2Inp. (1)
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Here, Y = (y11, . . . , ynp)
T is the vector of observations and yij the observation

on subject i at period j, i = 1, . . . , n, j = 1, . . . , p. There are a general mean,
µ, fixed effects for subjects, α = (α1, . . . , αn)T and fixed effects for periods
(order effects) π = (π1, . . . , πp)

T . P = In ⊗ 1p and U = 1n ⊗ Ip denote the
corresponding design matrices. The vectors of direct and residual (carry-
over) treatment effects are given by τ = (τ1, . . . , τt)

T and ρ = (ρ1, . . . , ρt)
T

respectively. We assume that there is no residual effect in period 1. We
denote the corresponding design matrices for direct and carry-over effects by
T and F . The vector of errors, ε = (ε11, . . . , εnp)

T , follows a distribution with
finite second moments. The errors are i.i.d. with variance σ2 > 0. If we
allow for correlated errors, we get

Y = 1npµ+ Pα + Uπ + Tτ + Fρ+ ε, E(ε) = 0, Cov(ε) = |Σ = In ⊗ S. (2)

Here, we assume that the within subjects covariance matrix S ∈ IRp×p is the
same for all subjects. So (1) is a special case of (2) where S = σ2Ip.

It is well known that the analysis of crossover designs assuming i.i.d. er-
rors leads to biased variance estimates whenever the true covariance structure
is not spherical. As a result of this, ordinary least squares (OLS) F-Tests for
treatment differences are no longer valid. If S were known, GLS estimates
could be used. Bellavance et al. (1996) compare several alternatives to the
OLS F-Test based on estimates of S. Along with Correa and Bellavance
(2001) and Chen and Wei (2003) they conclude from simulation studies that
a modified F-Test based on an approximation by Box (1954) yields nearly
unbiased and reasonably powerful tests for treatment effects, see also Jones
and Kenward (2003)[p.262].

For studies with few subjects the estimates of S may be unreliable, thus
leading to biased tests. Therefore Kunert and Utzig (1993) do not estimate
S. They analyze the worst-case performance of treatment estimates under
(1) when in fact (2) holds and then correct the corresponding test statistics
for the worst-case bias. This is achieved by dividing the F-Statistic by the
maximum of the ratio of the variance of a treatment contrast in (2) and
the expected value of the estimated variance, where the variance estimate is
computed assuming (1).

However, for designs with more than three observations per subject Kunert
and Utzig (1993) do not give a sharp upper bound for the worst-case sce-
nario. This leads to overly conservative tests whenever the covariance matrix
is close to spherical.

The next section details this approach and introduces some useful nota-
tion for computing the worst-case scenario. In section 3 we derive an exact
upper limit for the variance bias due to carry-over for an arbitrary number
of observations per subject.
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2 The upper bound for the variance quotient

by (Kunert and Utzig, 1993)

A crossover design is a block design d with t treatments and n subjects as
blocks. Each block is of length p. Let Λt,n,p the set of such designs. As
in Kunert and Utzig (1993) we will restrict our attention to a subset Λ∗t,n,p
of designs suitable for analysis under (1). Also, as the above authors point
out, it suffices to assume p > 2, since the variance estimates are unbiased for
p = 2 regardless of S.

Definition 1. A block design d is called totally balanced, if it fulfills the
following conditions.

(i) d is a balanced block design with t ≥ p, i.e. the number of subjects
that receive treatments i and j is the same for all pairs of treatments
i 6= j and each treatment is administered to each subject at most once.

(ii) The number of subjects that receive treatments i and j during the first
p− 1 periods is the same for all i 6= j.

(iii) d is uniform on the periods, i.e. each treatment appears in each period
exactly n/t times.

(iv) d is neighbor balanced, i.e. each treatment is preceded by every other
treatment equally often but is never preceded by itself.

(v) The number of subjects that receive treatments i during the first p − 1
periods and that receive treatment j in the last period is the same for
all i 6= j.

Let Λ∗t,n,p the set of totally balanced designs for given t, n, p.

Note that a totally balanced design does not exist for every t, n, p. Ex-
amples of totally balanced designs include the designs proposed by Patterson
(1952) and Williams (1949).

In (1) we are interested in estimating contrasts ψ = `T τ of direct treat-
ment effects, where ` = (`1, . . . , `t)

T ∈ Rt and
∑

i `i = 0. Without loss of
generality we restrict our attention to standardized contrasts, i.e.

∑
i `

2
i = 1.

Let ψ̂ = `T τ̂ an OLS estimate of ψ = `T τ under (1).
Let ωA = ω(A) = A(ATA)−AT the projection matrix on the column

span of A and ω⊥A = ω⊥(A) = I − ω(A). Here, A− is any generalized
Inverse of A. We denote a partitioned matrix by A = [A1, . . . , An] and define
Qn = ω⊥(1n) = In − 1

n
1n1Tn , the centering matrix of rank n− 1.
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If d ∈ Λ∗t,n,p, then we have information matrices

Cd = T Tω⊥[P,U,F ]T = cdQt,

Cd11 = T Tω⊥[P,U ]T = cd11Qt,

Cd12 = T Tω⊥[P,U ]F = cd12Qt,

Cd22 = F Tω⊥[P,U ]F = cd22Qt,

where

cd =
n(p− 1)

t− 1

(
1− t

p(pt− t− 1)

)
,

cd11 =
n(p− 1)

t− 1
,

cd12 =
−n(p− 1)

p(t− 1)
,

cd22 =
n(p− 1)(pt− t− 1)

p(t− 1)t
,

cf. Kunert and Utzig (1993).
We denote by E1 and E2 expected values under (1) and (2) respectively.

Analogous notation is applied for variances, estimated variances and covari-
ances. The BLUE for ψ in (1) equals ψ̂ = `TC−d T

Tω⊥[P,U,F ]Y . By construction

ψ̂ is unbiased in (1), i.e. E1(ψ̂) = ψ. If (2) holds, ψ̂ is unbiased, too, as

E2(ψ̂) = E2
1

cd
`TT Tω⊥[P,U,F ]

(
[P,U, F ](αT , βT , ρT )T + Tτ + ε

)
=

1

cd
`TCdτ + E2

(
1

cd
`TT Tω⊥[P,U,F ]ε

)
=

cd
cd
`T τ + 0

= ψ.

In (1) an unbiased estimate of σ2 is σ̂2 = 1
cf
Y T
d ω
⊥
[P,U,F,T ]Y , where

cf = np− 2t− n− p+ 3

is the degrees of freedom for the error term. For a standardized contrast ψ
we then have var1(ψ̂) = σ̂2`TC−d ` = σ̂2/cd.

Kunert and Utzig (1993) require that the treatment labels be randomized.
Obviously, if we randomize any starting design d0 ∈ Λ∗t,n,p, the randomized
design d is also totally balanced. Randomization of treatment labels means
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that ` becomes random. The results above still hold for randomized designs,
as they do not depend on the choice of `. Under randomization, standardized
contrasts have the same variance, irrespective of the choice of `.

With the notation S̃ = QpSQp and the upper left element of S̃ equal to
s11, Kunert and Utzig (1993) get

E2 v̂ar1(ψ̂) =
1

cdcf

{
(n− 1)tr (S̃)− n

cd22

(
tr (S̃)− (t− 1)s11/t

)}
−t− 1

cf
var2(ψ̂),

where

var2(ψ̂) =
n

(t− 1)c2d
tr

(
S̃ − 2γV T S̃ + γ2V T S̃V − 1

t
γ21Tp V

T S̃V 1p

)
(3)

and γ = cd12/cd22 = −t
pt−t−1

.
Here,

V =

[
0 0
Ip−1 0

]
.

Note that T = [T T1 , . . . , T
T
n ] and F = [V T T1 , . . . , V T

T
n ].

Definition 2. For fixed (t, n, p)T ∈ N3 let d ∈ Λ∗t,n,p, the treatment labels in
d randomized, S ∈ Rp×p nonnegative definite (n.n.d.) and S the set of n.n.d.
matrices in Rp×p.

The variance quotient kt,n,p is defined by

kt,n,p(S) =
var2(ψ̂)

E2 ˆvar1(ψ̂)
. (4)

The maximum k∗t,n,p of the variance quotient with respect to S ∈ S is
called Kunert-Utzig constant, i.e.

k∗t,n,p = max
S∈S

kt,n,p. (5)

Any matrix that maximizes the variance quotient is called worst-case co-
variance matrix.

By construction, the variance quotient does not depend on d for fixed
t, n, p, it does not depend on ` and equals 1 if S = σ2Ip. If for S the variance
quotient is less than 1, we overestimate the true variance of τ̂ . Tests based
on τ̂ will tend to be conservative in this case. If, however, kt,n,p(S) > 1 then
we underestimate the true variance and our tests get anti-conservative.
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Definition 3. For fixed (t, n, p)T ∈ N3 let

kvt,n,p =



(
(t−1)cd(u(z2+z+1)+v)
fn(w(z2+z+1)−γz2−r) −

t−1
cf

)−1

, if p = 3(
(t−1)cdu
fn(w−γ) −

t−1
cf

)−1

, if p = 4(
(t−1)cdu
fn(1−γ)2 −

t−1
cf

)−1

, if p ≥ 4

We define the Kunert-Utzig bound kut,n,p by

kut,n,p =

{
kvt,n,p, if kvt,n,p > 0
∞, else.

.

Here u = n− 1− n/cd22, v = n
cd22

t+1
2t

, w = 1 + γ2, r = γ2 t+1
2t

and

z =
1

γu

(
−γ(u+ v)− ru− vw −

√
(−γ(u+ v)− ru− vw)2 − γu(ru+ vw)

)
.

We now have

Theorem 1 (Kunert and Utzig, 1993). Whenever k∗t,n,p exists, k∗t,n,p ≤ kut,n,p.

Table 1 shows some values of the Kunert-Utzig bound. In the discussion,
we compare those to the values derived from the exact limit.

If we want to estimate the variance of a contrast estimate in (2) we
may multiply the estimate v̂ar1(ψ̂) by kut,n,p. Then, on average we will not

underestimate the true variance of ψ̂ by wrongly assuming (1) since for any
S it holds that

E2

(
v̂ar1(ψ̂)

)
kut,n,p ≥ E2

(
v̂ar1(ψ̂)

)
k∗t,n,p

≥ E2

(
v̂ar1(ψ̂)

)
kt,n,p(S)

= var2(ψ̂).

3 The maximization of the variance quotient

We start by computing the numerator and denominator of the variance quo-
tient (4). We will then get to a representation of the maximization problem
(5) as an eigenvalue problem that has a solution for every totally balanced
design.

The first lemma allows us to decompose a projection matrix on the column
span of a partitioned matrix. We use this lemma repeatedly in the following
proofs.
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p = 3
m t 3 4 5 6 7 10 100
1
2 1.80 1.77 1.75 1.74 1.73 1.71 1.68
4 1.51 1.49 1.47 1.46 1.46 1.45 1.43
6 1.48 1.45 1.44 1.43 1.43 1.42 1.40

1000000 1.44 1.41 1.40 1.39 1.39 1.38 1.36
p = 4

m t 3 4 5 6 7 10 100
1 ∞ ∞ ∞ ∞ 84.90 18.80
2 2.11 2.10 2.09 2.08 2.07 2.04
4 1.80 1.78 1.78 1.77 1.76 1.74
6 1.74 1.72 1.71 1.71 1.70 1.67

1000000 1.65 1.63 1.62 1.61 1.60 1.58
p = 5

m t 3 4 5 6 7 10 100
1 3.37 3.29 3.24 3.16 2.99
2 1.96 1.96 1.96 1.95 1.93
4 1.79 1.78 1.78 1.77 1.76
6 1.75 1.74 1.74 1.73 1.72

1000000 1.68 1.68 1.67 1.66 1.65
p = 6

m t 3 4 5 6 7 10 100
1 2.01 2.00 1.98 1.94
2 1.65 1.64 1.64 1.63
4 1.56 1.56 1.56 1.55
6 1.54 1.54 1.54 1.53

1000000 1.51 1.51 1.50 1.49
p = 7

m t 3 4 5 6 7 10 100
1 1.65 1.64 1.62
2 1.49 1.48 1.48
4 1.44 1.44 1.43
6 1.43 1.42 1.42

1000000 1.40 1.40 1.40
p = 10

m t 3 4 5 6 7 10 100
1 1.32 1.32
2 1.28 1.28
4 1.26 1.26
6 1.26 1.26

1000000 1.25 1.25
p = 100

m t 3 4 5 6 7 10 100
1 1.02
2 1.02
4 1.02
6 1.02

1000000 1.02

Table 1: The Kunert-Utzig bound kut,n,p, for the comparison of t treatments
in n = mt blocks of length p.
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Lemma 1. Let A = [A1, A2] a partitioned matrix. Then

ωA = ωA2 + ω(ω⊥A2
A1) and

ω⊥A = ω⊥A2
− ω(ω⊥A2

A1).

Proof. Let C = AT1 ω
⊥
A2
A1. Then

(ATA)− =

[
C− −C−AT1A2(A

T
2A2)

−

−(AT2A2)
−AT2A1C

− (AT2A2)
− + (AT2A2)

−AT2A1C
−AT1A2(A

T
2A2)

−

]
is a generalized inverse ofATA. From this it follows that ωA = A(ATA)−AT =
ωA2 + ω(ω⊥A2

A1).

Let Qp,t = Ip − 1
t
1p1

T
p , then

Lemma 2.
var2(ψ̂) =

n

(t− 1)c2d
tr
(
AdS̃

)
,

where Ad = Ip − γ(V + V T ) + γ2V Qp,tV
T .

Proof. The trace of a product of matrices is invariant under cyclical permu-
tation. Then,

tr

(
V T S̃V − 1

t
1Tp V

T S̃V 1p

)
= tr

(
V TQpSQpV −

1

t
1p1

T
p V

TQpSQpV

)
= tr(QpV Qp,tV

TQpS)

and since trV T S̃ = tr S̃V , we can plug in (3) to get

var2(ψ̂) =
n

(t− 1)c2d
tr
(
QpQpS − γQp(V + V T )QpS + γ2QpV Qp,tV

TQpS
)

=
n

(t− 1)c2d
tr
(
Qp{I − γ(V + V T ) + γ2V Qp,tV

T}QpS
)

=
n

(t− 1)c2d
tr(QpAdQpS)

=
n

(t− 1)c2d
tr(AdS̃),

where Ad = Ip − γ(V + V T ) + γ2V Qp,tV
T .

For the expected variance we have

Lemma 3.
E2 ˆvar1(ψ̂) =

n

c2dcf
tr
(
BdS̃

)
,

where Bd = ( cd(n−1)
n
− 1)Ip + γ(V + V T + pV Qp,tV

T ).
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Proof. Note that σ̂2 = 1
cf
Y T
d ω
⊥
[P,U,F,T ]Y , E2Y = 1npµ + Pα + Uβ + Tτ + Fρ

and Cov2Y = |Σ . Since the column space of [P,U, T, F ] includes 1np it holds
that

E2 v̂ar1(ψ̂) =
1

cd
E2 σ̂

2

where

E2σ̂
2 =

1

cf

(
tr (ω⊥[P,U,F,T ] |Σ ) + (E2Y )Tω⊥[P,U,F,T ](E2Y )

)
(6)

=
1

cf
tr (ω⊥[P,U,F,T ] |Σ ).

We now compute tr (ω⊥P,U,F,T |Σ ). Since

ω⊥P = Inp − (In ⊗ 1p)(In ⊗ p)−(In ⊗ 1Tp ) = In ⊗Qp

we get
ω⊥PU = (In ⊗Qp)(1n ⊗ Ip) = 1n ⊗Qp.

With Lemma 1 it follows that

ω⊥[P,U ] = ω⊥P − ω(ω⊥PU) = Qn ⊗Qp.

Again applying Lemma 1 we have

ω⊥[P,U,F ] = ω⊥[P,U ] − ω(ω⊥[P,U ]F )

= (Qn ⊗Qp)− (Qn ⊗Qp)F
(
F T (Qn ⊗Qp)F

)+
F T (Qn ⊗Qp)

= (Qn ⊗Qp)−
1

cd22

(Qn ⊗Qp)FF
T (Qn ⊗Qp).

This implies

ω⊥[P,U,F,T ] = ω⊥[P,U,F ] − ω(ω⊥[P,U,F ]T )

= ω⊥[P,U,F ] − ω⊥[P,U,F ]T (T Tω⊥[P,U,F ]T )+T Tω⊥[P,U,F ]

= ω⊥[P,U,F ] −
1

cd
ω⊥[P,U,F ]TT

Tω⊥[P,U,F ],

because (T Tω⊥[P,U,F ]T )+ = Qt/cd, 1Tt T = 1Tnp and the columns of ω⊥[P,U,F ] sum
to zero.

Now

tr (ω⊥[P,U,F ] |Σ ) = tr ((Qn ⊗Qp) |Σ )− 1

cd22

tr
(
(Qn ⊗Qp)FF

T (Qn ⊗Qp) |Σ
)

= tr
(
Qn ⊗ S̃

)
− 1

cd22

tr
(
F T (Qn ⊗ S̃)F

)
.
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Also, for totally balanced designs we have
∑n

i=1 Ti = n
t
1p1

T
t . Thence,

F T (Qn ⊗ S̃)F = [T T1 V
T , . . . , T Tn V

T ](Qn ⊗ S̃)[T T1 V
T , . . . , T Tn V

T ]T

=

{
[T T1 V

T S̃, . . . , T Tn V
T S̃]− 1

n
1Tn ⊗

n∑
i=1

T Ti V
T S̃

}
[T T1 V

T , . . . , T Tn V
T ]T

=
n∑
i=1

(
T Ti V

T S̃V Ti

)
− 1

n
(
n

t
1t1

T
p V

T S̃V )
n

t
1p1

T
t

and since TiT
T
i = Ip,

tr
(
F T (Qn ⊗ S̃)F

)
= tr (nV T S̃V − n

t
1p1

T
p V

T S̃V )

= n tr (V Qp,tV
T S̃).

It follows that

tr (ω⊥[P,U,F ] |Σ ) = (n− 1)tr (S̃)− n

cd22

tr (V Qp,tV
T S̃).

Similar computations show that

tr (ω⊥[P,U,F ]TT
Tω⊥[P,U,F ] |Σ ) = tr (T Tω⊥[P,U,F ] |Σ ω⊥[P,U,F ]T )

= tr
(
(T T − γQtF

T )(Qn ⊗Qp) |Σ (Qn ⊗Qp)(T − γFQt)
)

= n tr (S̃)− 2nγ tr (Qp,tV
T S̃) + nγ2 tr (Qp,tV

T S̃V ).

In all, we have

tr (ω⊥P,U,F,T |Σ ) = tr

({
(n− 1)Ip −

n

cd22

(V Qp,tV
T )

}
S̃

)
− n
cd

tr
({
Ip − 2γQp,tV

T + γ2V Qp,tV
T
}
S̃
)

=
n

cd
tr
(
B̃dS̃

)
,

where B̃d = ( cd(n−1)
n
− 1)Ip + γ(V + V T )− ( cd

cd22
+ γ2)V Qp,tV

T . If we plug in

cd, cd12 and cd22 we see that pγ = −( cd
cd22

+ γ2) and thus B̃d = Bd. The result

now follows from (6).

From Lemmas 2 and 3 we immediately get a new representation of the
variance quotient.
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Theorem 2. The variance quotient (4) equals

kt,n,p(S) =
cf
t− 1

tr (QpAdQpS)

tr (QpBdQpS)
,

where Ad = Ip − γ(V + V T ) + γ2V Qp,tV
T and Bd = ( cd(n−1)

n
− 1)Ip + γ(V +

V T + pV Qp,tV
T ).

We transform the above expression by applying the spectral decomposi-
tion of S. Since S =

∑p
i=1 λisis

T
i it holds that

kt,n,p(S) =
cf
t− 1

tr (QpAdQp

∑p
i=1 λisis

T
i )

tr (QpBdQp

∑p
i=1 λisis

T
i )

(7)

=
cf
t− 1

∑p
i=1 λis

T
i QpAdQpsi∑p

i=1 λis
T
i QpBdQpsi

.

We maximize kt,n,p(S) by choosing the worst-case covariance matrix S.
Note that we cannot simply apply the Rayleigh-Ritz theorem (see e.g. Horn
and Johnson (1985)[p.176]) to solve this problem since (7) involves a quotient
of sums and QpBdQp is not positive definite (p.d.). The next lemma shows
how to compute the maximum.

Lemma 4. Let A, B and S n.n.d., where A1p = B1p = 0 and rg(B) = p−1.
Then

tr (AS)

tr (BS)
≤ λ∗,

where λ∗ is the largest eigenvalue of B+A. Let v an eigenvector of B+A
corresponding to λ∗. Then equality holds for S = vvT .

Proof. Let U = [u1, . . . , up] where up = 1p/
√
p. Then there is a spectral

decomposition UTBU = D, where D is a diagonal matrix with diagonal
elements γ1, . . . , γp, where γ1 ≥ . . . ≥ γt−1 > 0 and γp = 0 are the eigenvalues
of B. Here, UTU = UUT = Ip. If we define

W =


1√
γ1

0
. . .

1√
γp−1

0 1

UT ,

then W−1 exists, the last row of W equals 1p/
√
p and it holds that

WBW T =
[
Ip−1 0

0 0

]
.
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We want to compute

λ∗ = max
S∈S

tr (AS)

tr (BS)
,

where S is the set of n.n.d.matrices. SinceW is invertible, SW = W T−1
SW−1

is a n.n.d. matrix and for any n.n.d. matrix SW there is an S, such that
SW = W T−1

SW−1, i.e.

S = {SW = W T−1
SW−1 : S ∈ S}.

Thence we may write tr (AS) = tr (AW TW T−1
SW−1W ) = tr (AW TSWW )

and it follows that

λ∗ = max
SW∈S

tr (AW TSWW )

tr (BW TSWW )
.

Now

tr
(
BW TSWW

)
= tr

(
WBW TSW

)
= tr

([
Ip−1 0

0 0

]
SW

)
.

Also, A1p = 0 and

WAW T =
[
W1AW

T
1 0

0 0

]
=
[
Ip−1 0

0 0

]
WAW T

[
Ip−1 0

0 0

]
,

where W T [W T
1 , 1p/

√
p]. This implies that the maximum is achieved in a

subset of the n.n.d. matrices, i.e.

λ∗ = max
S∈S∗

tr (WAW TS)

tr (S)
,

where S∗ = {S ∈ Rp×p : S =
[
S∗ 0
0 0

]
andS∗ ∈ Rp−1×p−1 isn.n.d.}. Now

for S ∈ S∗ we have a spectral decomposition
∑p−1

i=1 λixix
T
i , where λi ≥ 0,

xTi xi = 1, xTi xj = 0∀ j 6= i and each xi is of the form xi = [xi1, . . . , xip−1, 0]T .
This implies

λ∗ = max
tr (
∑p

i=1 λixix
T
i WAW T )∑p

i=1 λi
= max

λix
T
i WAW Txi∑p

i=1 λi
.

Let z the eigenvector corresponding to the largest eigenvalue ρ of WAW T .
Then by the theorem of Rayleigh-Ritz (see e.g. Horn and Johnson (1985)[p.176])
∀xi : xTi WAW Txi ≤ ρ and thus λ∗ ≤ ρ. There are matrices S for which
equality holds because the largest eigenvector ofWAW T is equal to [z1, . . . , zt−1, 0]T

since
WAW T =

[
W1AW

T
1 0

0 0

]
.
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Note that WAW T and W TWA have the same eigenvalues. Therefore ρ
is the largest eigenvalue of

W TWA = U


1
γ1

. . .
1

γp−1

1

UTA

= U


1
γ1

. . .
1

γp−1

0

UTA

= B+A,

as UT = [u1, . . . , up]
T with up = 1p/

√
p, i.e. uTpA = 0 and B+ = UTD+U .

It is easy to see that v = W T z is an eigenvector of B+A to the eigenvalue
ρ = λ∗.

We want to apply this lemma with QpAdQp in place of A and QpBdQp

in place of B. Therefore, we must show that the assumptions in Lemma 4
hold.

Lemma 5. Let A = QpAdQp. Then A is n.n.d. and A1p = 0.

Proof. Note that QpAQp is n.n.d., if there is a matrix L, such that QpAQp =

LLT . Let L = Qp(I − γV )(I − (
1+
√

1−p/t
p

)1p1
T
p ). Then LLT = QpAQp. As

Qp = ω⊥1p
, it is obvious that A1p = 0.

One can show that B = [Ip, 0]ω⊥[P,U,F,T ][Ip, 0]T . This does imply B n.n.d.

But we also need to show that rg(B) = p− 1 to apply Lemma 4. To achieve
this, we use a theorem on diagonally dominant matrices.

Definition 4. A matrix A ∈ Rn×n is called strongly diagonally dominant, if

aii >
n∑

j=1
j 6=i

|aij| ∀ i = 1, . . . , n.

Here, aij is the element in the (i, j) position of A.

For the proof of the following lemma, we refer to Horn and Johnson
(1985)[p. 349].
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Lemma 6. Let A ∈ Rn×n symmetric and strongly diagonally dominant.
Then A is p.d.

Lemma 7. The matrix Bd of Lemma 3 is p.d. for any d ∈ Λ∗t,n,p.

Proof. Note that

V Qp,tV
T =


0 0 0 · · · 0
0 t−1

t
−1
t
· · · −1

t

0 −1
t

. . . . . .
...

0
...

. . . . . . −1
t

0 −1
t
· · · −1

t
t−1
t

 .

Therefore

Bd =



b11 γ 0 0 · · · 0
γ b22 γ(1− p

t
) −γp

t
· · · −γp

t

0 γ(1− p
t
)

. . . . . . . . .
...

0 −γp
t

. . . . . . . . . −γp
t

...
...

. . . . . . . . . γ(1− p
t
)

0 −γp
t

· · · −γp
t

γ(1− p
t
) b22


.

Here,

b11 =
cd(n− 1)

n
− 1,

b22 =
cd(n− 1)

n
− 1 + γp

t− 1

t

This leads to the following inequalities. Bd is strongly diagonally domi-
nant, if

(a) b11 > |γ| for the first row

(b) b22 > |γ|+ |γ(1− p
t
)|+ (p− 3)|−γp

t
| for the second row

(c) b22 > 2|γ(1− p
t
)|+ (p− 4)|−γp

t
| for rows 3 to (p− 1) (if p > 3)

(d) b22 > |γ(1− p
t
)|+ (p− 3)|−γp

t
| for the last row.

Since |γ| > 0, (d) holds if (b) holds. Because of |γ| + |−γp
t
| = −γ(1 + p

t
) <

−γ(1 − p
t
) = |γ(1 − p

t
)|, (c) holds, if (b) holds. Finally, as b22 < b11 (a)

holds, if (b) holds. Thus, it suffices to show (b), regardless of the number of
periods.
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Now |γ| + |γ(1 − p
t
)| + (p − 3)|−γp

t
| = −γ − γ(1 − p

t
) − (p − 3)γp

t
=

−γ{2+(p−4)p
t
}. For any totally balanced block design we have n = mt and

since t ≥ p we can substitute t by p+ r, where r ∈ N ∪ {0}. If we now plug
in γ and cd, we may express (b) in terms of the design related parameters m,
p and r. Straightforward calculations show that (b) holds, if for f : R3 → R

f(m, p, r) = mp5 + (2mr − 2m− 4)p4 + (mr2 − 4mr − 6r −m+ 9)p3

+(−2mr2 − 2r2 −mr + 7r + 2m− 2)p2

+(−r2 + 3mr + 2r − 3)p+mr2 − r
> 0,

at the appropriate values of m, p, r.
For the partial derivative of f with respect to m we have

∂f

∂m
(m, p, r) = p5 + (2r − 2)p4 + (r2 − 4r − 1)p3 + (−2r2 − r + 2)p2 + 3rp+ r2

= p2{(p− 2)r2 + (2p2 − 4p− 1)r + (p− 2)(p2 − 1)}+ 3rp+ r2

≥ p2{r2 + (2p− 1)r + (p2 − 1)}+ 3rp+ r2

> 0,

since p ≥ 3. Thus, whenever f(m0, p, r) > 0 then f(m1, p, r) > 0 for any
m1 > m0.

We now differentiate between 5 distinct cases. We will either show that
diagonal dominance holds or, in case it does not hold, Bd is p.d. nevertheless
or that the case is irrelevant because there is no totally balanced design for
this case.

(i) m = 1, p = 3 and r ≥ 0

(ii) m ≥ 2, p = 3 and r ≥ 0

(iii) m = 1 , p = 4 and r ≥ 0

(iv) m ≥ 2, p = 4 and r ≥ 0

(v) m ≥ 1, p ≥ 5 and r ≥ 0

Case (i). A necessary condition for the existence of a neighbor balanced
design is that (n−1)p/(t(t−1)) = 3/t be a natural number. This only holds
for t = 3. However, there is no totally balanced design for n = t = p = 3. So
this case is irrelevant for the proposition.
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Case (ii). Here, f(2, 3, r) = −r2 +14r+36 < 0 für r = 17. However, note
that if

B∗d = (2r + 5)(3r + 6)

[
2 0 0
0 3 0
0 0 2

]
Bd

[
2 0 0
0 3 0
0 0 2

]
is p.d. ist, then Bd is also p.d. It is easy to show that B∗d is strongly diagonally
dominant.

Case (iii). Note that f(1, 4, r) = −3r2 − 13r − 12 < 0 for any r ≥ 0. A
necessary condition for d to be neighbor balanced is that (n−1)p/(t(t−1)) =
4/t be a natural number. This is only true for t = 4, i.e. r = 0. For
n = t = p = 4 we see that Bd is p.d. by numerical computation of the
eigenvalues. Other values of r are irrelevant in this case.

Case (iv). Straightforward calculations show that f(m, 4, r) ≥ f(2, 4, r) >
0.

Fall (v). Again, straightforward algebra shows that in this case f > 0.

Lemma 8. Let d ∈ Λ∗t,n,p. Then B = QpBdQp is n.n.d. with rank p− 1 and
it holds that B1p = 0.

Proof. B is n.n.d. since Qp is n.n.d. and Bd is p.d., i.e. rk(Bd) = p. Also,
rk(Qp) = tr (Qp) = p − 1. Since Bd exists, rk(Qp) = rk(B−1

d BdQp) ≤
rk(BdQp) ≤ rk(Qp), thence rk(BdQp) = rk(Qp) = p − 1. On the other
hand there is an L, such that Bd = LLT since Bd is p.d. This implies that
rk(BdQp) = rk(LLTQp) ≤ rk(LTQp) = rk((LTQp)

TLTQp) = rk(QpLL
TQp) =

rk(QpBdQp) ≤ rk(BdQp) and therefore rk(B) = rg(QpBdQp) = p − 1. Fi-
nally, B1p = QpBdQp1p = 0.

We can now state our main result.

Theorem 3. Let d ∈ Λ∗t,n,p and in (2) let |Σ = In⊗S, where S is a covariance
matrix. Let A = Qp{I − γ(V + V T ) + γ2V Qp,tV

T}Qp and

B = Qp{( cd(n−1)
n
− 1)Ip + γ(V + V T + pV Qp,tV

T )}Qp. Let v an eigenvector
of B+A with respect to the largest eigenvalue λ∗ of B+A. Then

kt,n,p(S) ≤ cf
t− 1

λ∗ for anyS and

kt,n,p(S) =
cf
t− 1

λ∗ forS = vvT ,

i.e. the Kunert-Utzig constant of Definition 2 is given by k∗t,n,p =
cfλ
∗

t−1
.

Proof. Lemmas 5 and 8 show that the prerequisites for Lemma 4 hold. We
can now apply Lemma 4 to the representation of the variance quotient (4)
in Theorem 2.
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We can easily compute the limit limn→∞ k
∗
t,n,p.

Corollary 1. In Theorem 3 let λ∗A the largest eigenvalue of A and S = vvT

the worst-case covariance matrix. Then

kt,∞,p(S) = lim
n→∞

kt,n,p(S) =
λ∗A

1 + γ
p

.

Proof. With λ∗ the largest eigenvalue of B+A we have that kt,n,p =
cf
t−1
λ∗ is

the largest eigenvalue of ( t−1
cf
B)+A. Note that A does not depend on n and

remember that cf = n(p− 1)− 2t− p+ 3 and γ = −t
pt−t−1

. This implies

t− 1

cf
B = Qp

(
(t− 1)

{
cd(n− 1)

cfn
− 1

cf

}
Ip +

(t− 1)γ

cf
(V + V T + pV Qp,tV

T )

)
Qp

−→
n→∞ Qp

({
(t− 1) lim

n→∞

cd
cf

}
Ip

)
Qp

= (t− 1) lim
n→∞

cd
cf
Qp.

Here,

(t− 1) lim
n→∞

cd
cf

= (t− 1) lim
n→∞

n(p− 1)

n(p− 1)− 2t− p+ 3

1− t
p(pt−t−1)

t− 1

= 1 +
γ

p
,

thus limn→∞
t−1
cf
B = (1 + γ

p
)Qp. This implies that limn→∞( t−1

cf
B)+A =

QpA/(1 + γ
p
) = A/(1 + γ

p
).

If, in addition, t→∞, it is easy to see that γ → −1/(p−1) and Qp,t → Ip.
This implies

lim
t→∞

lim
n→∞

A/(1+
γ

p
) =

p(p− 1)

p(p− 1) + 1
Qp

(
Ip +

1

p− 1
(V + V T ) +

1

(p− 1)2

[
0 0
0 Ip−1

])
Qp.

This means that limt→∞ limn→∞A/(1 + γ
p
) is close to Qp for large p and

therefore
lim
t→∞

lim
n→∞

lim
p→∞

k∗t,n,p = 1.

Table 2 shows some values of the Kunert-Utzig limit k∗t,n,p. Note that k∗t,n,p
is only defined for totally balanced designs. However, we can numerically
compute the eigenvalues of B+A to get a would-be value of k∗t,n,p, if a totally
balanced design existed for a given choice of t, n, p. Such values are included
in Table 2 for convenience.
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p = 3
m t 3 4 5 6 7 10 100
1
2 1.80 1.77 1.75 1.74 1.73 1.71 1.68
4 1.51 1.49 1.47 1.46 1.46 1.45 1.43
6 1.48 1.45 1.44 1.43 1.43 1.42 1.40
∞ 1.44 1.41 1.40 1.39 1.39 1.38 1.36

p = 4
m t 3 4 5 6 7 10 100
1 5.09 4.51 4.20 4.01 3.71 N/A
2 1.61 1.61 1.60 1.60 1.59 1.58
4 1.49 1.48 1.48 1.47 1.47 1.46
6 1.47 1.46 1.45 1.45 1.44 1.43
∞ 1.44 1.43 1.42 1.42 1.41 1.40

p = 5
m t 3 4 5 6 7 10 100
1 1.96 1.93 1.92 1.89 1.83
2 1.49 1.49 1.49 1.49 1.48
4 1.43 1.42 1.42 1.42 1.41
6 1.41 1.41 1.40 1.40 1.39
∞ 1.39 1.38 1.38 1.38 1.37

p = 6
m t 3 4 5 6 7 10 100
1 1.61 1.60 1.59 1.56
2 1.41 1.41 1.41 1.40
4 1.37 1.37 1.36 1.36
6 1.36 1.35 1.35 1.35
∞ 1.34 1.34 1.33 1.33

p = 7
m t 3 4 5 6 7 10 100
1 1.46 1.45 1.44
2 1.35 1.35 1.34
4 1.32 1.32 1.31
6 1.31 1.31 1.31
∞ 1.30 1.30 1.29

p = 10
m t 3 4 5 6 7 10 100
1 1.27 1.27
2 1.24 1.23
4 1.22 1.22
6 1.22 1.22
∞ 1.21 1.21

p = 100
m t 3 4 5 6 7 10 100
1 1.02
2 1.02
4 1.02
6 1.02
∞ 1.02

Table 2: The Kunert-Utzig constant k∗t,n,p, for the comparison of t treatments
in n = mt blocks of length p.
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4 Discussion

Note from Table 2 that k∗t,n,p is decreasing in all three design parameters.
The constant converges rather rapidly with increasing n. If the number of
periods is very large (e.g. p = 100), the constant is close to 1. That means the
mean underestimation of the variance is very small even for the worst-case
covariance matrix. However, crossover designs with such a large number of
periods are rarely, if at all, used in practice. Applications in pharmaceutical
research will often deal with 3 or 4 treatments with as few periods. In this
case the correction factor for the approach by Kunert and Utzig (1993) is
roughly 1.4 – 1.6. Sensory studies in the food industry may easily have 10
treatments with blocks of length 10. Here the correction factor for the worst-
case covariance matrix will still be around 1.25. If we would not correct for
this bias, we might get seriously biased test results.

Inspection of Tables 1 and 2 shows that, especially for medium sized p, the
exact limit k∗t,n,p is noticeably smaller as the upper bound kut,n,p. This means
that the maximum overestimation of the variance is smaller for p > 3 than
would be expected from Kunert and Utzig (1993). For a neighbor balanced
Latin Square with t = n = p = 4 the Kunert-Utzig bound is infinite. In
fact, the upper limit k∗t,n,p equals 5.09. Practically more relevant crossover
designs with p = 4 or p = 5 and m > 1 have a corresponding upper limit
that is about 20 − 30% lower than the upper bound. If in such a case the
covariance structure were far from worst-case, application of the exact limit
in the approach by Kunert and Utzig (1993) will lead to significantly less
conservative tests.

In fact, it is possible to show that the variance quotient is identical to the
correction factor of Box (1954) that is applied in the approach of Bellavance
et al. (1996). However, Box (1954) also corrects the degrees of freedom in the
F-Test. As this is not done in the approach of Kunert and Utzig (1993), their
approach might even lead to anti-conservative tests if the exact Kunert-Utzig
constant k∗t,n,p is used and if the covariance matrix is close to worst-case.
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