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Abstract Various consistency proofs for the kernel density estimator have been developed over the last
few decades. Important milestones are the pointwise consistency and almost sure uniform convergence
with a fixed bandwidth on the one hand and the rate of convergence with a fixed or even a variable
bandwidth on the other hand. While considering global properties of the empirical distribution functions
is sufficient for strong consistency, proofs of exact convergence rates use deeper information about the
underlying empirical processes. A unifying character, however, is that earlier and more recent proofs
use bounds on the probability that a sum of random variables deviates from its mean.
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1 Introduction

For more than 50 years, mathematical statistics has been dealing with the problem of efficiently estimat-
ing the probability density function of continuous random variables from a random sample. In 1956, M.
Rosenblatt proposed a kernel-based estimator with the basic idea of looking at the difference quotient
of the empirical distribution function. This idea is still in use; it was and is a topic of scientific research,
see e.g. Härdle (1991), Hall and Marron (1995) or Wand and Jones (1995). Over the years, the principle
of kernel-based estimation has been transferred, for example, to regression estimation (e.g. Nadaraja
1964 or Watson 1964), survival analysis (e.g. Diehl and Stute 1988 or Marron et al. 1996) or the theory
of jump processes (e.g. Schäbe and Tiedge 1995).

In this survey article, we compare different proofs of (different types of) consistency in terms of
their historical development. Several important articles have exerted a major influence on this field
of research. The first is an article by E. Parzen from 1962, proving pointwise consistency for the first
time. In 1965, E.A. Nadaraja demonstrated almost sure uniform convergence, for which he needed the
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concept of bounded variation. About two decades later, W. Stute obtained in 1982 some valuable results
on convergence rates of the estimator, depending on the sample size, kernel and true density. He did
not just look at global properties of the empirical distribution function as did the other authors before,
but considered local properties of empirical processes instead. Another generalized empirical process
approach was proposed in 2005 by U. Einmahl and D.M. Mason. They proved almost sure convergence
in a situation in which the bandwidth is not fixed, but may randomly vary within a small interval. They
used sophisticated mathematical techniques from other fields such as topology basing on papers by M.
Talagrand, and considered aspects like measurability.

2 Consistency

2.1 Weak consistency

We consider a probability space (Ω,A,P) and i.i.d. random variables Xi : Ω → Rd, 1 ≤ i ≤ n, d ≥ 1,
distributed as X, with Lebesgue-density f and distribution function F . Let d = 1 in the subsections
2.1, 2.2 and 3.1, if not stated otherwise.

The empirical distribution function Fn : R×Ω → [0, 1] is defined by

Fn(x, ω) :=
1
n

n∑
i=1

I(−∞,x](Xi(ω)).

Because of the strong law of large numbers, Fn converges almost surely, i.e. with probability 1, to F .
With the theorem of Glivenko and Cantelli, the convergence is uniform.

Following Parzen, a heuristic approach to estimating the density entails considering the difference
quotient of Fn and using it as an estimator fn of the density for a sufficiently small hn:

fn(x, ω) :=
Fn
(
x+ hn

2 , ω
)
− Fn

(
x− hn

2 , ω
)

hn
. (1)

Above and in the entire paper, (hn)n∈N is a null sequence. In order to generalize the approach, let

K(x) := I[− 1
2 ,

1
2 )(x).

The estimator in (1) can then be written as an integral of 1
hn
K
(
·
hn

)
with respect to Fn which is an

average of Dirac point measures δXi . Thus, integration with respect to Fn is obtained by evaluating the
integrand at Xi:

fn(x, ω) =
1
hn

∫ ∞
−∞

K

(
x− y
hn

)
dFn(y, ω) =

1
nhn

n∑
i=1

K

(
x−Xi(ω)

hn

)
. (2)

It is useful to consider other nonnegative kernel functions K in (2), especially continuous kernel
functions. This guarantees that fn is nonnegative and continuous as a finite sum of nonnegative and
continuous functions. In the present paper, we let the assumptions on the kernel functions depend on
the situation. In practice, however, the choice of K is of minor interest for the estimation, see Wand
and Jones (1995, p. 31).

Parzen looks at the expected value and variance of the estimator at a fixed point x ∈ R. Since f is a
Lebesgue-density, we have

∫
R |f(x)|dx = 1 <∞, i.e. f ∈ L1(R). Parzen assumes that K is a real-valued,

Borel-measurable function with supy∈R |K(x)| =: ||K||∞ <∞, i.e. K ∈ L∞(R). In addition, K ∈ L1(R)
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and hence, also K ∈ L2(R). We assume limx→∞ |xK(x)| = limx→∞ |xK2(x)| = 0.
With these assumptions, at each point of continuity x of f

lim
n→∞

E(fn(x)) = f(x)
∫ ∞
−∞

K(y)dy.

In order to obtain asymptotic unbiasedness, the integral of the kernel function over y must be 1. This
assumption holds for the whole paper.

For finite n, E(fn(x)) is the convolution of f and 1
hn
K( ·hn ), or, by substitution z = x−y

hn
,
∫∞
−∞K(z)f(x−

zhn)dz.
Parzen also calculates the asymptotic variance of the density estimator. At each point of continuity x

of f ,

lim
n→∞

nhnV ar(fn(x)) = f(x)
∫ ∞
−∞

K2(y)dy =: k <∞. (3)

This means that the asymptotic variance is proportional to f(x). One needs more restrictive assumptions
on (hn)n∈N for consistency than for asymptotic unbiasedness: With

(A1) limn→∞ nhn =∞

we ensure that the variance tends to 0 for n → ∞. Thus, there is a trade-off between controlling the
bias and controlling the asymptotic variance.

Theorem 1 (Weak consistency) Let the assumption (A1) hold. Then, at each point of continuity x
of f , the estimator fn(x) is weakly consistent, i.e. for each ε > 0

lim
n→∞

P(|fn(x)− f(x)| > ε) = 0.

Proof We consider the mean square error of fn(x), MSE(fn(x)) = V ar(fn(x)) + (Bias(fn(x)))2. The
estimator fn(x) is asymptotically unbiased and so, limn→∞(Bias(fn(x)))2 = 0. With (3), we have
limn→∞ V ar(fn(x)) = limn→∞

k
nhn

= 0. Hence, fn(x) is consistent in the quadratic mean and hence
weakly consistent. �

We will see later on, that for proving strong consistency or for proving convergence rates even more
assumptions are necessary.

For assertion (3), one can even relax the assumption of continuity; with results from differentiation
theory (see Wheeden and Zygmund 1977, p. 100-109) this holds for Lebesgue-almost any x, as long as∫∞
−∞K2(x)dx is finite.

Note that we have proved pointwise, but not uniform consistency in probability. Using Fourier
analysis, Parzen showed uniform consistency in probability under the assumption limn→∞ nh2

n =∞.

2.2 Strong consistency

To the best of our knowledge, in 1965, Nadaraja was the first researcher to formulate a theorem dealing
with the almost sure uniform convergence of the kernel density estimator. This constituted progress over
Parzen, who did not deal with almost sure convergence. We need the additional assumption of bounded
variation for the kernels.

Definition 1 (Total variation) The total variation of a real-valued function u on a closed interval
[a, b], a, b ∈ R, is defined as

V ba (u) := sup
P∈P

nP−1∑
i=0

|u(xi+1)− u(xi)|,
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where the supremum is taken over the set P = {P = {x0, . . . , xnP } : P is partition of [a, b]}. It is a
parameter for the local oscillation behavior of a function. If V ba (u) <∞, u is of bounded variation. If u
is defined for the entire R, we define

V∞−∞ := sup
a≤b

V ba .

Definition 2 (Almost sure uniform convergence with fixed bandwidth) The kernel density
estimator (2) converges almost sure uniformly to f on R with bandwidth hn if

lim
n→∞

sup
−∞<x<∞

|fn(x)− f(x)| =: lim
n→∞

||fn − f ||∞ = 0

holds with probability 1. Hence,

P(ω ∈ Ω| lim
n→∞

||fn − f ||∞ 6= 0) = 0.

With the theorem of Glivenko and Cantelli, Fn always converges uniformly to F . For the uniform
convergence of the kernel density estimator fn to f , we need more assumptions, including the concept
of bounded variation:

(B1) The kernel K is a right-continuous function.
(B2) K is of bounded variation.
(B3) lim|x|→∞K(x) = 0.
(B4) f is a uniformly continuous density function.
(B5)

∑∞
n=1 exp(−γnh2

n) <∞ for every γ > 0.

The concept of bounded variation is needed to ensure that the kernel does not fluctuate excessively.
For assumption (B5), the assumption limn→∞ nh2

n =∞ that Parzen needed for uniform consistency in
probability is not sufficient: If you choose hn so that

nh2
n = log log n,

then exp(−γnh2
n) = (logn)−γ and the series summing this does not converge.

The assumption lim|x|→∞K(x) = 0 is new, because it does not strictly follow from K ∈ L1(R).
In fact, it is possible to construct a continuous and bounded function K with

∫
R K(x)dx = 1 so that

lim sup|x|→∞K(x) = 1. K is a jagged function the serrations of which have a height of 1 and which,
for |x| → ∞, become so small that the area below is 1. We can think of serrations with a length of(

1
2

)|x| which lie around the numbers x ∈ Z, |x| ≥ 1. Otherwise, the function equals 0. The integral of
the function is 1, i.e. the value of the geometric series

∑
n≥1

(
1
2

)n.
The uniform continuity of K (see Einmahl and Mason 2005, p.1393) is sufficient for the assumption

lim|x|→∞K(x) = 0.

Theorem 2 (Almost sure uniform convergence with a fixed bandwidth) Under the assump-
tions (B1) - (B5) the kernel density estimator (2) uniformly converges almost surely on R.

The basic idea behind proving the almost sure uniform convergence is the consideration of the
(suitably scaled) sequence of random variables (||fn(x) − f(x)||∞)n∈N. Firstly, we apply the triangle
inequality for norms, i.e.

||fn − f ||∞ = ||fn − E(fn) + E(fn)− f ||∞ ≤ ||fn − E(fn)||∞ + ||E(fn)− f ||∞.

It is sufficient to prove that both summands in the last expression tend to 0 for n→∞. The first sum-
mand is stochastic, the second one deterministic. The convergence proof of the deterministic component
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(the bias) is much easier, but we need assumptions about f , namely uniform continuity, which are not
necessary for the convergence of the stochastic component. On the other hand, the first summand re-
quires assumptions about the kernel, namely bounded variation, which are not necessary for the bias
convergence.

We now prove Theorem 2, concentrating on the stochastic part: For the convergence of the stochastic
component, we need the Borel-Cantelli lemma. Assume that we wish to show that, for P-almost any
ω ∈ Ω, the limit superior of the sequence of random variables Bn := (||fn(x) − E(fn(x))||∞)n∈N is
bounded from above by a number. With Borel-Cantelli, we have to show that, for any ε > 0,∑

n≥1

P(Bn ≥ ε) <∞.

In the following, we show how to get a suitable inequality for P(Bn ≥ ε) to achieve this. Write

Bn = sup
−∞<x<∞

∣∣∣∣ 1
hn

∫ ∞
−∞

K

(
x− y
hn

)
dFn(y)− 1

hn

∫ ∞
−∞

K

(
x− y
hn

)
dF (y)

∣∣∣∣ .
We apply integration by parts to both integrals. Formally, the integrand is the function K

(
x−·
hn

)
.

Because of the bijective linear map y → x−y
hn

, K
(
x−·
hn

)
has the same total variation as K. Especially, it

is of bounded variation. The first summands vanish, because we have assumed that lim|x|→∞K(x) = 0.
Hence,

Bn = sup
−∞<x<∞

∣∣∣∣ 1
hn

∫ ∞
−∞

(F (y)− Fn(y−)) dK
(
x− y
hn

)∣∣∣∣
≤ ||Fn(x−)− F (x)||∞

1
hn
V∞−∞(K) = ||Fn(x)− F (x)||∞

1
hn
V∞−∞(K).

The last equation follows from the fact that we consider the supremum over all x ∈ R and because of the
right-continuity of Fn (see definition). Accordingly, we have reduced the contribution of the stochastic
component to the maximum distance between the empirical and the theoretical distribution function.
Using the inequality of Dvoretzky et al. (1956), using Massart’s constant (Massart 1990), it holds for
arbitrary λ > 0:

P
(
||Fn(x)− F (x)||∞ >

λ√
n

)
≤ 2 exp(−2λ2). (4)

With the above upper limit of Bn we finally achieve, for any arbitrary ε > 0,

P(Bn > ε) ≤ P
(
||Fn(x)− F (x)||∞ > εhn

1
V∞−∞(K)

)
≤ 2 exp(−2ε2(V∞−∞(K))−2nh2

n) = 2 exp(−βnh2
n),

where β := 2ε2(V∞−∞)−2 is finite and deterministic.

With the assumptions of the theorem, specifically (B5), the series over P(Bn > ε) converges. There-
fore, as described in the paragraph on the Borel-Cantelli lemma, the limit superior of the sequence of
random variables (Bn)n∈N is smaller than or equal to ε with probability 1. Since ε was arbitrary, the
limit superior is 0. Since the sequence is nonnegative, the limit inferior and therefore the limit must also
be 0. �

Remark The idea for proving the convergence of the bias is similar to Parzen’s idea of showing the
pointwise asymptotic unbiasedness and the variance of the kernel density estimator. For the convergence
of the bias, we need no other assumption about the bandwidth than it is a null sequence.
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3 Rates of convergence with advanced empirical process techniques

Comparable to Nadaraja, several authors provided similar results about the almost sure uniform con-
vergence. However, a general problem with many approaches was that the theorems did not take the
form of f and K into account. The researchers were able to obtain results on the convergence itself, but
not on the rates of convergence. The reason is that the examination of the behavior of fn was reduced
to the global examination of Fn and F , and moreover to the supremum norm of their distance, so that
information was lost.

3.1 Rates of convergence with local properties of the empirical process

Stute found an improvement in 1982, by describing exact rates using local properties of empirical
processes. The major progress attributable to him was that he provided a local study of the empirical
process (i.e. of global properties of empirical distributions) in order to study F locally in terms of f .
With this, he achieved precise convergence rate results on a bounded interval J := (a, b), a < b. The
reason for this restriction, as we will see, is that on the entire J , the density must be above a certain
threshold m > 0: In his limit results, Stute uses a standardizing factor

√
f(x) in the denominator with

which he gets precise limit results. Stute considers kernels with bounded support and focuses on the
stochastic part.

Definition 3 (Empirical process) For a set G of Borel-measurable functions g : Rd → R, the empir-
ical process αn(g) is defined by

αn(g(·)) :=
1√
n

(
n∑
i=1

g(Xi)− nEg(X1)

)
.

Stute refines the empirical process to the distribution functions on R, i.e. for x ∈ R he studies
αn(I(−∞,x](·)) =

√
n(Fn(x) − F (x). The first step is to explore the example of the uniform empirical

process, i.e. of γn(x) =
√
n(F̄n(x)− x) for x ∈ [0, 1], where F̄n is the empirical distribution function of

random variables that are uniformly distributed on [0, 1]. For uniform distribution, we have F (x) = x.
It is well known that the example can be generalized to distributions with a positive density. The
positivity f(x) > 0 implies a strictly monotonously increasing, and hence invertible, F . Thus, with the
fundamental theorem of statistics (see Büning and Trenkler 1994, p. 52), F (Xi) is distributed uniformly
on [0, 1]. We can conclude that Fn(x) = F̄n(F (x)) and that

√
n(Fn(x)− F (x)) =

√
n(F̄n(F (x))− F (x)) = γn(F (x)).

Instead of studying the (total) variation of the kernel, as in the previous section, Stute studies the
oscillation modulus ωn of γn that describes the local oscillation behaviour of the uniform empirical
process.

Definition 4 (Oscillation modulus) For an h ∈ R+
0 , the oscillation modulus ωn of the uniform

empirical process γn is defined by

ωn(h) := sup
|y−x|≤h

|γn(y)− γn(x)|.

Stute makes slightly different assumptions on the bandwidth, compared to Parzen or Nadaraja.
Specifically, for n → ∞ Assumption (A1), nhn → ∞, is maintained. In addition, it is assumed that
− log hn
nhn

→ 0 (A2) and − log hn
log logn →∞ (A3). Assumption (A2) states, similarly to (A1), that hn does not
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converge to 0 too fast. Assumption (A3) urges hn to converge sufficiently fast to 0. Interestingly, the
former condition (B5), or nh2

n →∞, becomes obsolete.
An important result is a lemma about a uniform convergence of the oscillation modulus. This is an

important step in studying the local behavior of F and thus the form of f .

Lemma 1 (Convergence of the oscillation modulus) Let J be a subinterval of [0, 1] and bandwidth
hn fulfill Assumptions (A1)-(A3). Then, for arbitrary 0 < c1 ≤ c2 <∞ it holds P-almost surely

lim
n→∞

sup
c1hn≤y−x≤c2hn;x,y∈J

|γn(y)− γn(x)|√
2(y − x)(− log hn)

= 1. (5)

In addition, P-almost surely

lim
n→∞

ωn(hn)√
2hn(− log hn)

= 1. (6)

Remarks The proof of (5) consists of two parts: Firstly, one shows that the limit superior of the
sequence of random variables is smaller than or equal to 1. Then, one shows that the limit inferior is
larger than or equal to 1. Since the limit superior is always larger than or equal to the limit inferior, the
proof is complete. The proof of the limit-inferior part uses the technique of poissonization. The basic
idea is that

√
nγn, apart from the standardization and for fixed x, is a centered Poisson process, under

the condition that there are n observations at time 1. The Poisson probabilities appearing in the proof
are then compared with the normal distribution.

The proof of the limit-superior part uses an exponential inequality for the probability that ωn(h)√
h

becomes large. Both proofs use the Borel-Cantelli lemma.
As in proof of (6), the limit superior and the limit inferior are analyzed separately. The result for

the limit inferior follows from (5) by choosing c1 = c2 = 1. The result for the limit superior is proved
similarly to that for the limit superior used in (5).

From (5) by substituting y := F (y) and x := F (x), with the mean value theorem for differentiation,
an analogous result follows for the empirical process αn(I(−∞,x](·)). To this end, we introduce two new
assumptions:

(C1) f is uniformly continuous on J = (a, b) ⊂ R, a < b.
(C2) 0 < m ≤ f(x) ≤ m? <∞ for all x ∈ J .

It is interesting to note that, later in the 1980s, H. Schäfer proved convergence rates for Lipschitz-
continuous f , which is a stronger property than the uniform continuity (Schäfer 1986). However, Schäfer
extended the scope from density estimation in the setup of independent and identically distributed
observations to survival analysis and a variable bandwidth. Recently, Weißbach (2006) followed-up on
this with a yet broader scope, but the same techniques, in order to increase the applicability to survival
analysis. The variable bandwidth is the subject of the next section.

Lemma 2 (Convergence of the empirical process) Let the assumptions (A1)-(A3),(C1) and (C2)
hold. Let ξx,y be an arbitrary point between x and y. Then, it holds for arbitrary 0 < c1 ≤ c2 < ∞
P-almost surely

lim
n→∞

sup
c1hn≤y−x≤c2hn;x,y∈J

|αn(I(−∞,y](·))− αn(I(−∞,x](·))|√
2(y − x)f(ξx,y)(− log hn)

= 1.

Theorem 3 With the assumptions (A1)-(A3),(C1) and (C2), the rectangular kernel satisfies P-almost
surely

lim
n→∞

sup
x∈Jε

√
nhn√

2(− log hn)
|fn(x)− E(fn(x))|√

f(x)
= 1.
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Proof With Lemma 2, we directly obtain a result about the convergence rate of the stochastic component
of the rectangular kernel density estimator with kernel K(x) = I[− 1

2 ,
1
2 )(x). This is simple, because the

rectangular estimator (in contrast to estimators with more complicated kernels) works directly with the
empirical distribution function. In this context, Lemma 2 gives a convergence result. At first, we choose
c1 = c2 = 1 and ξx,y = x+y

2 . With the definitions of fn and E(fn), we then obtain

1 = lim
n→∞

sup
y−x=hn;x,y∈J

|αn(I(−∞,y](·))− αn(I(−∞,x](·))|√
2(y − x)f

(
x+y

2

)
(− log hn)

= lim
n→∞

sup
y−x=hn;x,y∈J

√
n
|Fn(y)− F (y)− Fn(x) + F (x)|√

2hnf
(
x+ hn

2

)
(− log hn)

= lim
n→∞

sup
x∈J,x+hn∈J

√
n√

2hn(− log hn)
|Fn(x+ hn)− Fn(x)− (F (x+ hn)− F (x))|√

f
(
x+ hn

2

)
= lim
n→∞

sup
x∈Jε

√
nhn√

2(− log hn)
|fn(x)− E(fn(x))|√

f(x)
.

For an arbitrary ε > 0, Jε is defined by Jε = (a+ ε, b− ε). We need an ε > 0, because we consider x+hn

in the third step of the calculation. For a finite n, x or x + hn (because of hn > 0) need not lie in J ,
merely because x+ hn

2 lies in J . On the other hand, ε may become arbitrarily small for limn→∞ hn = 0.
�

The rectangular kernel is surely not an ideal estimator in practice, because fn(x) is not continuous
in general, even if the true density is uniformly continuous. To overcome this, Stute obtains results for
more general kernels, based on the results on the empirical process. He does this in several steps, at first
by considering step functions like

K(x) :=
m∑
i=1

aiI[di,di+1)(x)

for a finite m, nonnegative real numbers ai, 1 ≤ i ≤ m and∞ < d1 < d2 < . . . < dm+1. For such kernels,
the convergence result is similar to the result for the rectangular kernel, and can be proved similarly.

Corollary 4 With the assumptions (A1)-(A3),(C1) and (C2), and for a step-function kernel P-almost
surely

lim
n→∞

sup
x∈Jε

√
nhn√

2(− log hn)
|fn(x)− E(fn(x))|√

f(x)
=

√√√√ m∑
i=1

(K(di))2(di+1 − di).

The next step is the extension to kernels with bounded variation. Consider the following assumptions:

(C3) K(x) = 0 outside a bounded interval [r, s), where K(r) = 0.
(C4) F is Lipschitz-continuous on an interval J = (a, b), a < b, with Lipschitz-constant m? <∞.

Assumption (C4) is less strong than that of the uniform continuity of f , because the uniform continuity
of f implies the continuous differentiability of F . Stute’s result is

Lemma 3 With the assumptions (A1)-(A3),(B1), (C3) and (C4), for each ε > 0

lim sup
n→∞

√
nhn

−2 log hn
sup
x∈Jε
|fn(x)− E(fn(x))| = C,

where the constant C satisfies C ≤
√
m?(s− r)V sr (K) with the total variation V sr (K) <∞.
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Proof We again apply the technique of partial integration, however, now distinctly different as compared
to Nadaraja. Since global properties of empirical processes do not apply here, we use local properties as
presented in Lemma 1 and 2. At first, for a fixed x ∈ Jε, y must lie within the interval (x−shn, x− rhn]
so that K

(
x−y
hn

)
can be different from 0. In addition, for a fixed x ∈ Jε with the definition of the

Lebesgue-Stieltjes integral:
∫ x−rhn
x−shn dK

(
x−y
hn

)
= K(r)−K(s) = 0 and thus

∫ x−rhn

x−shn
(Fn(x− rhn)− F (x− rhn))dK

(
x− y
hn

)
= 0.

This is necessary to work with the standard empirical process αn(I(−∞,x](·)) later on. For a fixed x ∈ Jε,
we get

fn(x)− E(fn(x)) =
1
hn

∫
R
K

(
x− y
hn

)
dFn(y)− 1

hn

∫
R
K

(
x− y
hn

)
dF (y)

= − 1
hn

∫
(x−shn,x−rhn]

(Fn(y−)− F (y)− [Fn(x− rhn)− F (x− rhn)])dK
(
x− y
hn

)
.

Now, Fn(y−) ≤ Fn(y) and the distance between y and x−rhn in the interval (x−shn, x−rhn] is smaller
than or equal to (s − r)hn. With the definition of the empirical process, the integrand (multiplied by
√
n) is smaller than or equal to

sup
|y−x|≤(s−r)hn,x,y∈J

|αn(I(−∞,y](·))− αn(I(−∞,x](·))| = sup
|y−x|≤(s−r)hn,x,y∈J

|γn(F (y))− γn(F (x))|.

As in Theorem 3, we need a small ε > 0 as a buffer for x, so that x− shn and x− rhn can potentially
be in J .
On J , we have |F (a)− F (b)| ≤ m?|a− b| and thus, the integrand is smaller than or equal to
ωn(m?(s− r)hn). In summary, we have the inequality√

nhn sup
x∈Jε
|fn(x)− E(fn(x))| ≤ (hn)−

1
2ωn(m?(s− r)hn)V sr (K). (7)

With (6), it follows that the expression√
nhn

2(− log(m?(s− r)hn))
sup
x∈Jε
|fn(x)− E(fn(x))|

is P-almost surely finite, because of the appropriately scaled ωn(m?(s − r)hn) (even ≤ V sr (K)). The
theorem follows from the fact that − log(m?(s− r)hn) and − log(hn) have the same limiting behavior.
�

Remarks The Borel-Cantelli lemma is used indirectly, because it is used for proving the results for the
oscillation modulus.
The finiteness of the Lipschitz-constant of F is necessary for proving the finiteness of the limit superior
of the sequence. The condition is fulfilled if the density is bounded.
In the lemma, the supremum is taken over x ∈ Jε, but the lemma also holds for x ∈ R, if one assumes that
F is Lipschitz-continuous on R. However, for the following corollary, the restriction on Jε is necessary.

If F ′ = f is uniformly continuous on J , we can calculate C explicitly. The basic idea is to split the
kernel into the sum of two functions, where one is a step function. By combining Corollary 4 and Lemma
3, we obtain
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Corollary 5 With the assumptions of Corollary 4 and Lemma 3, it holds P-almost surely

lim
n→∞

√
nhn

−2 log hn
sup
x∈Jε

|fn(x)− E(fn(x))|√
f(x)

=
(∫ s

r

K2(y)dy
) 1

2

.

Note that in contrast to Lemma 3, this corollary gives a precise limit result.
The results cannot be extended to the entire R, because of the value f(x) in the denominator. In the
tails, the kernel estimator is in the domain of attraction of a Poisson and not of a normal law. If one
excludes f(x), however, the limit results would be imprecise.

In the course of our discussion, the bandwidth was identified as the main obstacle to applications. One
attempt to reduce the impact of the bandwidth on performance was to allow the bandwidth to depend
on the point of estimation x. For example, in the 1970s Wagner used a nearest-neighbor bandwidth
(Wagner 1975). However, even with the fixed bandwidth, the need to select the bandwidth hn for a
fixed sample size n even impelled Parzen (1962) to propose a rule. The idea was to let the bandwidth
depend on the data. Weißbach et al. (2008) combined both concepts to achieve good performance in
(medical) practice. However, the property of the bandwidth to vary now with respect to more than
the sample size raises the question of how such variable bandwidths affect the consistency of the kernel
estimate.

As the above results can be extended to the multivariate case, similarly, see e.g. Stute (1984), the
development has turned to a simultaneous analysis, which is taken up in the next section.

3.2 Rates of convergence with an inequality by Talagrand

From a mathematical point of view, the usefulness of a bandwidth that depends not only on n, but also
on the point x, and furthermore on the data, was found by Stute while studying the mean square error
(Stute 1982a):

MSE(fn(x)) = V ar(fn(x)) + (Bias(fn(x)))2

=
f(x)
nhn

∫ ∞
−∞

K2(y)dy + h4
n(f ′′(x))2

(
1
2

∫ ∞
−∞

y2K2(y)dy
)2

.

For a larger f(x), hn should become larger, so as to reduce the variance and hence the error. There
is a wide range of data-adaptive bandwidth selectors with the aim of minimizing the mean integrated
square error. For instance, Silverman (1986, p.45) assumed a Gaussian distribution, Hall (1978) started
using cross-validation and Hall et al. (1991) concluded that plug-in estimation is optimal. Einmahl and
Mason (2005), however, do not look at a specific method, but aim at obtaining a general result about
the almost sure uniform convergence of the kernel density estimator, if the bandwidth varies within an
interval [an, bn]. In this section, we consider, as did Einmahl and Mason, the multivariate estimation on
Rd with the Borel σ-field Bd.

The univariate Definition 2 for the fixed bandwidth has to be extended to a multivariate definition,
with a variable bandwidth playing the role of an additional variable, almost like x, that is subject to
the supremum norm.

Definition 5 (Almost sure convergence with variable bandwidth) The kernel density estimator

fn(x) :=
1
nhn

n∑
j=1

K

(
x−Xj

h
1
d
n

)
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converges on Rd almost surely uniformly to f with variable bandwidth hn ∈ [an, bn] if

lim
n→∞

sup
an≤hn≤bn

sup
x∈Rd

|fn(x)− f(x)| =: lim
n→∞

sup
an≤hn≤bn

||fn − f ||∞ = 0

with probability 1.

Even though the definition allows for variability of hn, it has to be admitted that the definition is
quite restrictive. For given n, the bandwidth must be in the interval [an, bn]. This can be achieved for
a bandwidth that varies in x. In contrast, data-adaptive bandwidths depending on X1, . . . , Xn rarely
remain in a fixed interval. The lesson learnt from studying the mean square error, that the bandwidth
should be adapted to f(x), requires an estimation of the density, a priori, with a pilot estimate in order
to obtain a reasonable bandwidth. For instance, the nearest-neighbor bandwidth relies on estimating
the density with the dirac estimator, i.e. with the empirical distribution function, see Dette and Gefeller
(1995). Ideally, Definition 5 should have covered bandwidth sequences that lie only asymptotically in
the desired interval, i.e.

lim
n→∞

P(an ≤ hn ≤ bn) = 1.

Some techniques have even been developed to account for such bandwidth sequences, such as those
with plug-in-estimators from Deheuvels and Mason (2004), or for the nearest-neighbor bandwidth from
Schäfer (1986) and Weißbach (2006). The nearest-neighbor techniques used to prove almost sure uniform
convergence, however, must restrict x to a bounded support. Those techniques are similar to Theorem
2, making use only of the Bennett-Hoeffding inequality, instead of the Smirnov-inequality.

In the following, we restrict ourselves to Definition 5, in order to obtain consistency on the unbounded
support of f .

One can obtain strong consistency with a variable bandwidth also with the methods from W. Stute,
but in the following, we will present the result from 2005 by U. Einmahl and D.M. Mason. We will
shortly come back to Stute in the end of the section.

A key element of the approach is to construct a set of functions, generated by a kernel K and indexed
in x and hn.

K :=

{
K

(
x− ·

h
1
d
n

)
: hn > 0, x ∈ Rd

}
. (8)

The research by Einmahl and Mason was only possible because of earlier research by M. Talagrand
dealing with bounds for the supremum of empirical processes. He chose a more general approach than
Stute, who restricted himself to the empirical process for the set of functions gx(·) = I(−∞,x](·) (indexed
in x). In contrast, Talagrand (1994) considers a general set of functions G and the generalization of
||(Fn(x)− F (x))||∞

||αn||G := sup
g∈G
|αn(g)|.

The inequality of interest, now with a different set of functions as compared to gx(·) = I(−∞,x](·) in (4),
is

rG(λ) := P(||αn||G ≥ λ).

This probability has been studied in various articles. Einmahl and Mason use a result for the subset of
K, where the bandwidth h lies in a specific interval.

The motivation for using Talagrand’s approach for results about kernel density estimation lies in
the fact that the kernel density estimator fn(x) is the (divided by n) sum of suitably scaled kernels,
with random variables as indices. The expected value of the kernel, indexed at the random variables, is
E(fn(x)). Consequently, if we divide ||αn||G by

√
n, for a general set of kernels G, through this inequality
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we achieve an approximation of the stochastic component over all kernels of this set. If, for example,
the point x and the bandwidth varies in a set of kernels, we obtain a bound for the supremum of all
points and all bandwidths. It is then possible to let the bandwidth vary, as Einmahl and Mason prove.

We now define a random variable centering the g(Xi):

Definition 6 (Rademacher-variables) A Rademacher-variable is a discrete random variable εi with
P (εi = −1) = P (εi = 1) = 1

2 .

We wish to introduce a sequence ε1, . . . , εn of independent Rademacher-variables which are indepen-
dent of the X1, . . . , Xn. We consider the expression supg∈G |

∑n
i=1 εig(Xi)| which is similar to ||

√
nαn||G.

Both processes are centered, if we do not use the absolute value. However, the advantage of the sym-
metrization is that we can study this process more efficiently, as we will see below.

It is important to assume the measurability of the expression supg∈G |
∑n
i=1 εig(Xi)| so that its

expected value is well defined. The pointwise measurability of G is sufficient for this purpose. Pointwise
measurability means that we can find a countable subset G0 of G, so that, for each function g ∈ G,
there is a sequence of functions gm of G0 with

lim
m→∞

gm(x) = g(x) ∀x ∈ Rd.

This suffices, because the supremum of a (countable) sequence of measurable functions is measurable
again. For the supremum of uncountable many functions, this is not true in general. Parzen, Nadaraja,
or Stute did not consider this issue.

Einmahl and Mason use a central theorem about the bound of the probability that ||
√
nαn||G

differs considerably from the expected value E(supg∈G |
∑n
i=1 εig(Xi)|). The theorem is basically due to

Talagrand (1994, p. 45). We can imagine this as a generalization of Tchebychev’s inequality. ||αn||G is
measurable, if G is measurable pointwisely.

Lemma 4 (Talagrand) Let G be measurable pointwisely with supg∈G ||g||∞ ≤M <∞,
σ2

G := supg∈G Var(g(X)) <∞ and let A1, A2 be some constants. Then, for each t > 0

P

{
max

1≤m≤n
||αm||G ≥ A1

(
E

(
sup
g∈G
|
n∑
i=1

εig(Xi)|

)
+ t

)}

≤ 2
{

exp
(
−A2t

2

nσ2
G

)
+ exp

(
−A2t

M

)}
.

Remarks The formal similarity to Tchebychev’s inequality is that we obtain an upper bound (in a
generalized sense) for the probability that a random variable differs strongly from its expected value.
The rate of distance is given by the parameter t; the upper bound is strongly monotonous, decreasing in
t. Tchebychev’s inequality also requires the second moment to be finite. Talagrand achives this result for
the empirical processes, based on similar results for Gaussian processes. We will point out the connection
later.

For the examination of almost sure uniform convergence, it is important to find the upper bound
for E

(
supg∈G |

∑n
i=1 εig(Xi)|

)
itself. This bound is deterministic and not stochastic. However, we need

more assumptions on the richness of the function set.

Lemma 5 (Bound for the expected value for general empirical processes) Let G be a pointwise
measurable set of bounded functions with the assumptions

1. ∃G : Rd → R with G(x) ≥ supg∈G |g(x)| ∀x ∈ Rd



13

2. E((G(X))2) ≤ ζ2

3. N(ε,G) ≤ Cε−ν for all 0 < ε < 1
4. σ2

0 := supg∈G((g(X))2) ≤ σ2

5. supg∈G ||g||∞ ≤M

for constants C, ν ≥ 1, 0 < σ ≤ ζ, σ0 ≤ M ≤ C2
√
nζ,C2 = (4

√
ν logC1)−1, C1 = max(C

1
ν , e). Let

C3 = C2
1

16ν and A be a constant. Then we have:

E

(
sup
g∈G
|
n∑
i=1

εig(Xi)|

)
≤ A

(√
νnσ2

0 log
(
C1ζ

σ0

)
+ 2νM log

(
C3n

ζ2

M2

))
.

Remark The third condition was not necessary in Talagrand’s inequality for the probability of the
distance from the expected value. For the proof of this moment inequality, it is necessary however.
Being a topological entropy-condition about the kernel set, it must not be too rich.

The conditions discussed in this section must be true only for some subsets of K. Yet, we assume
that they are true for the entire set K. For instance, the entropy condition is true if K(x) = φ(p(x)),
where p is a polynomial in d dimensions and φ is a right-continuous function with bounded variation.
For d = 1, the measurability condition is true whenever K is right-continuous. Because Q is dense in R,
we can choose

K0 :=
{
K

(
x− ·
hn

)
: hn ∈ Q+, x ∈ Q

}
as a subset of K. For d = 1, these are the assumptions about the kernels that Nadaraja and Stute
needed, too.

The conditions guarantee that the generalized empirical process αn converges for n → ∞ against
the Brownian Bridge, a special Gaussian process. Accordingly, it behaves “normally” and thus, the
maximal expected value can be bounded from above. The fact that many empirical processes converge
to Gaussian processes was Talagrand’s motivation.

Einmahl and Mason, in the first instance, consider only the stochastic component, just like Stute.
We introduce the assumptions

(D1) K : Rd → R, K ∈ L∞(Rd) with
∫

Rd K(x)dx = 1.
(D2) f is bounded.
(D3) The assumption of the polynomial covering number holds for (8).
(D4) The pointwise measurability is satisfied for (8).

Theorem 6 (Almost sure uniform consistency with variable bandwidth) With (D1) - (D4)
we have for every c > 0 P-almost surely

lim sup
n→∞

sup
c logn

n ≤hn≤1

√
nhn||fn − Efn||∞√

max(− log hn, log log n)
= K∗(c) <∞.

Proof We outline the proof. Let hn be called h and we introduce two real sequences. For j, k ≥ 0 and
c > 0 define nk = 2k and hj,k = c 2j log(nk)

nk
. The c is fixed, j and k will vary in the proof. Define, in

addition, the kernel set which fulfills the conditions of Lemma 4 and 5:

Kj,k :=
{
K

(
x− ·
h

1
d

)
: hj,k ≤ h ≤ hj+1,k, x ∈ R

}
.
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We obtain two bounds upwards of the expected values of the square kernels. We have

E
(
K2

(
x−X
h

1
d

))
=
∫

Rd
K2

(
x− s
h

1
d

)
f(s)ds

= h

∫
Rd
K2(u)f

(
x− uh 1

d

)
du ≤ h||f ||∞||K||22.

It is important that the density be bounded, so that the former bound can become small for vanishing
h. Furthermore, we get for hj,k ≤ h ≤ hj+1,k

E
(
K2

(
x−X
h

1
d

))
≤ min(κ2, hj+1,k)||f ||∞||K||22

= min(κ2, 2||f ||∞||K||22hj,k) =: min(κ2, D0hj,k) =: σ2
j,k.

Applying the moment inequality with the Rademacher variables, we bound the expression

E

(
sup
g∈Kj,k

(
nk∑
i=1

εig(Xi))

)

and obtain for a large k

E

(
sup
g∈Kj,k

(
nk∑
i=1

εig(Xi)

))
≤ D3

√
nkhj,k log

1
D2hj,k

≤ D3

√
nkhj,k max

(
log

1
D2hj,k

, log log nk

)
=: D3aj,k (9)

with a constant D3 and D2 = D0
ζ2 . The inequality is especially true if the sum starts with nk−1.

On Kj,k,we apply Talagrand’s inequality with M = κ and
supg∈Kj,k

V ar(g(X)) ≤ supg∈Kj,k
E(g(X)2) = σ2

0 ≤ D0hj,k. For each t > 0, we have

P{ max
nk−1≤n≤nk

sup
g∈Kj,k

|
√
nαn(g)| ≥ A1(D3aj,k + t)} ≤ 2

(
exp

(
−A2t

2

D0nkhj,k

)
+ exp

(
−A2t

κ

))
.

Minding this, we bound the probability that the maximal distance between the estimated density and
the expected value of the kernel density estimator is large. For any ρ > max(1, 2

√
D0
A2

) and k ≥ 1, we
define

pj,k(ρ) := P{ max
nk−1≤n≤nk

sup
g∈Kj,k

|
√
nαn(g)| ≥ A1(D3 + ρ)aj,k}

and can show that, for a large k,

pj,k(ρ) ≤ 4(log nk)−
A2
D0

ρ2 .

For this bound the term log log nk in (9) is very helpful.

Let lk := max(j : hj,k ≤ 2). Obviously, lk ≤ nk = lognk
log 2 because for j = nk the sequence hj,k runs to

infinity. It follows:

Pk(ρ) :=
lk−1∑
j=0

pj,k(ρ) ≤ 4
log 2

(log nk)1−
A2
D0

ρ2 .

The series over Pk(ρ) converges, because the exponent of log nk is strictly smaller than −1 and log nk
has size k. This is essential for applying the Borel-Cantelli-Lemma.
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For a small k and nk−1 ≤ n ≤ nk, we can show

Ak(ρ) :=

{
max

nk−1≤n≤nk
sup

c logn
n ≤h≤1

√
nh||fn − Efn||∞√

max(− log h, log log n)
> 2A1(D3 + ρ)

}

⊂

 max
nk−1≤n≤nk

sup
c lognk
nk

≤h≤hlk,k

√
nh||fn − Efn||∞√

max(− log h, log log n)
> 2A1(D3 + ρ)


⊂
lk−1⋃
j=0

{ max
nk−1≤n≤nk

sup
g∈Kj,k

|
√
nαn(g)| ≥ A1(D3 + ρ)aj,k}.

P is a probability measure, so that P(Ak(ρ)) ≤ Pk(ρ). The infinite sum over the right expression
converges, so that the series over P(Ak(ρ)) also converges. The Borel-Cantelli-Lemma now states that
the probability of the limit superior of the set sequence Ak(ρ) is 0. With probability 1, only a finite
number of elements of the in Ak(ρ) formulated sequence of random variables are larger than A1(D3 +ρ).
Consequently, the limit superior of the sequence is finite with probability 1. The exact limit is unknown,
but depends on c. �

Let, for the moment, K∗(c) > 0 and consider the case that we take the supremum over values hn
such that Stute’s assumption (A3) holds. With it, − log hn increases faster than log log n and so

max(− log hn, log log n) = − log hn

for sufficiently large n. Accordingly, Einmahl and Mason’s theorem yields a convergence rate of
√

nhn
− log hn

- this is Stute’s convergence rate. However, the authors did not calculate an exact limit. To obtain this,
it would probably be necessary to include a variance term in the denominator, as Stute did.

A result like Theorem 6 can also be proved with methods that Stute used in his papers. We show this
at first for the rectangular kernel in one dimension, comparably to Theorem 3. For this let an ≤ hn ≤ bn
and F Lipschitz-continuous on R with Lipschitz-constant m∗ <∞. Uniformly in x, we have

|fn(x)− E(fn(x))| = h−1
n n−

1
2

∣∣∣αn(I(−∞,(x+hn
2 )](·))− αn(I(−∞,(x−hn2 )](·))

∣∣∣
= h−1

n n−
1
2

∣∣∣∣γn(F (x+
hn
2

))
− γn

(
F

(
x− hn

2

))∣∣∣∣
≤ h−1

n n−
1
2ωn(m∗hn).

By monotonicity, the last term is further bounded from above by

a−1
n n−

1
2ωn(m∗bn).

If Assumptions (A1)-(A3) are fulfilled for bn, we get with (6) that

ωn(m∗bn) = O(
√
bn(log bn))

and finally

||fn(x)− E(fn(x))||∞ = O(a−1
n n−

1
2 (log bn)

1
2 b

1
2
n ).

With suitable conditions on an and bn the last term then tends to 0.
For general kernels, a result like this follows by adapting the proof of Lemma 3. With the assumptions
of this lemma (with (A1)-(A3) holding for bn), we get uniformly for x ∈ R (see the proof of (7))

|fn(x)− E(fn(x))| ≤ h−1
n n−

1
2ωn(m∗(s− r)hn)V sr (K).
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With the same argumentation as for the naive kernel, we arrive at

||fn(x)− E(fn(x))||∞ = O(a−1
n n−

1
2 (log bn)

1
2 b

1
2
n ).

Note that an identical result like Theorem 6 cannot be proved with this method, anyway, because in
Theorem 6 we have bn = 1. This sequence is not a null sequence and thus does not fulfill the assumptions
of Lemma 3.

4 Summary

In this survey article we compare different proofs for the consistency of kernel density estimators. We
focus on the almost sure convergence, which is stronger than uniform convergence in probability. We see
a clear historical development: While considering global properties of the empirical distribution functions
is enough for strong consistency, proofs of exact convergence rates use deeper information about the
underlying empirical processes. We give a survey on two different empirical process approaches, one by
Stute and one by Einmahl/Mason, the latter being a generalization.

In general, the stochastic component of the error between fn and f is a greater problem than the
deterministic one. We focus on the stochastic component and treat the bias secondarily. For bounding
the stochastic part, i.e. in order to find almost sure bounds of the stochastic process, we especially
need assumptions about the kernels with a recurrent assumption being right-continuity and bounded
variation. Often, we also need boundedness of f . The deterministic component requires assumptions
about the smoothness of f , e.g. uniform continuity.

There is surely considerable potential for more research on the theory of consistency. It would be
useful to consider cases in which the data-adaptive bandwidth lies almost surely in an interval [an, bn]
for a sufficiently large n. The strong consistency result by Einmahl and Mason could be applied in
practice only then. With the described condition of the data-adaptive bandwidth that is less strong, the
consistency result is also useful, but there may still be potential for improvement.
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