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Abstract

Toxicologists have been increasingly using a class of models to describe a

continuous response in the last few years. This class consists of nested nonlinear

models and is used for estimating various parameters in the models or some mean-

ingful function of the model parameters. Our work here is the first to address

design issues for this popular class of models among toxicologists. Specifically

we construct a variety of optimal designs under model uncertainty and study

their properties for estimating the critical effective dose (CED), which is model

dependent. Two types of optimal designs are proposed: one type maximizes

the minimum of efficiencies for estimating the CED regardless which member in

the class of models is the appropriate model, and (ii) dual-objectives optimal

design that simultaneously selects the most appropriate model and provide the

best estimates for CED at the same time. We compare relative efficiencies of

these optimal designs and other commonly used designs for estimating CED. To

facilitate use of these designs, we have constructed a website that practitioners

can generate tailor-made designs for their settings.

Keyword and phrases: compound optimal design, critical effect size, local

optimal design, maximin optimal design, model discrimination, robust design.

2



1 Introduction

This paper addresses design issues for dose response studies in toxicology when the

main outcome is continuous and it is not known a priori which model is an appropriate

one to use. Under this situation, one may consider a class of plausible models within

which we believe lies an adequate model for fitting the data at hand. The issues of

interest are how to design to select the ’best’ model from the class and at the same time

to estimate the critical effective dose (CED) efficiently. The estimated CED is the dose

that toxicologists use to estimate the dose that will result in a user-specified change

in the continuous outcome after accounting for background noise. The user-specified

change in the continuous outcome is usually expressed in terms of the critical effective

size (CES), which is somewhat analogous to specifying ’alpha’ in hypothesis testing in

statistical inference.

Ideally, we want the design to be able to identify the correct model from the postu-

lated class of models and also provide an efficient estimate for the CED, which is a

function of the parameters in the identified model. In this paper, it is further assumed

for simplicity that there is only one independent variable, the dose level. The design

space is the range of dose levels of interest where the researcher selects the dose levels

to observe the outcome. Throughout, we assume all design issues have to be decided

in advance of the study and so sequential designs are not considered.

By design, the researcher has to select the number of dose levels from the design space

to observe the continuous outcome, decide where these dose levels are and the number

of replicates at each of these dose levels. Here the design space is the range of dose

levels that the researcher wants to include in the study. We further generalize the de-

sign problem to one for finding continuous designs, meaning that we now view designs

as probability measures on the design space. Continuous designs were proposed by
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Kiefer in the late 1950s and have been shown to be much more amendable to analyti-

cal description and study than exact design. In our setup, we assume the total number

of observations N for the whole study is pre-determined by cost or time and contin-

uous designs are implemented by naturally rounding the possibly non-integer number

of observations required at each dose to an integer number, subject to the number of

observations at each dose sum to N .

Here is a simple illustration of a continuous design on the design space [0, 25]. Let

ξ be a continuous design that takes half the observations at dose level 5 and half at

dose level 20. We denote this design by writing ξ = {5, 20; 1/2, 1/2}; the first part

denotes the two dose levels and the latter part denotes the corresponding proportion

of observations to be taken at each of the dose levels. In the terminology of optimal

design literature, the dose levels of the design ξ are called support points and the corre-

sponding proportions are called weights. If N = 20, this implies the continuous design

ξ takes 10 observations at dose level 5 and 10 observations at dose level 20. If N = 25,

the same continuous design ξ can either take 12 observations at dose level 5 and 13

observations at dose level 20, or alternatively, 13 observations at dose level 5 and 12

observations at dose level 20. An optimal (continuous) design is one that maximizes or

minimizes a given optimality criterion over all designs on the design space. Further de-

tails and motivations for working with continuous designs are given in the voluminous

collection of papers by Kiefer and edited by Brown, et al. (1985). Optimal rounding

procedures to convert a continuous design to an exact design for implementation are

given in Rieder and Pukelsheim (1992).

Addressing design issues invariably requires model assumptions that specify how the

mean outcome relates to the independent variable. Usually a specific functional form

is assumed either from experts’ opinions or from the science of the problem, see Gaylor
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and Chen (1993), Catalano et al. (1993), Slob and Pieters (1998), Oscar (2004),

Moerbeek, Piersma and Slob (2004), among many others. When it is problematic

to specify a single model to describe the functional relationship between the mean

outcome and the dose level, a common strategy is to work with a class of plausible

nested models assumed to include the ’true’ model. This class of models is usually

arrived at after consultation with experts in the area. As an illustration, consider a

simple class of nested models widely used in the study of enzyme kinetics. The class

consists of just two models: the well known Michaelis-Menten and the Emax-model.

The former is frequently employed in biochemistry and is described by

E(Y ) =
ax

b + x
.

Here Y is the velocity of the enzyme kinetics and x is the concentration of the substract.

The two parameters are a and b with the latter often referred to as the Michaelis-Menten

constant. A more flexible model to study enzyme kinetics is the Emax model defined

by

E(Y ) =
axh

b + xh
.

The extra parameter h in the Emax-model permits the shape of the response curve

to be skewed and takes on different steepness as the concentration of the substract is

varied. The challenges here from the design perspective are that we do not know at

the onset which one of these two models is a more suitable model to use and it is well

known that an optimal design can be very sensitive to model assumptions. If one con-

siders the Michaelis-Menten alone, the optimal design for estimating the parameters a

and b in this model does not allow one to estimate the parameter h in the Emax model

and, if one assumes the Emax model holds, the optimal design for estimating all the

three parameters h, a and b may be inefficient for only estimating a and b should the

Michaelis-Menten model prove to be a more appropriate model. Such design problems

are important and arise frequently in practice across disciplines. To our knowledge,
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only a couple of papers have tried to address such design questions seriously. A main

reason for lack of research in this area is that there are serious technical difficulties

involved, especially for nonlinear models.

A general strategy to address such design issues is to work with experts in the area and

first identify a class of plausible modes that will most likely include the true model.

The plausible models within this class should be nested allowing one to be built upon

another; typically this means the ’largest’ model has the largest number of parameters

and the next ’largest’ model is obtained from the ’largest’ one by specifying one or

more parameters equal to some user-selected fixed values. In our above illustration,

our class of plausible models consists of the Emax and Michaelis-Menten models and

it is clear that when h = 1, the Emax-model reduces to the Michaelis-Menten model.

Once this class is identified, one works assuming the largest model holds. In our illus-

tration, one seeks an efficient design to estimate h in the Emax model as accurately as

possible and at the same time also have efficient estimates for the parameters a and

b when the Michaelis-Menten model holds. Dette, Melas and Wong (2005) addressed

this particular design problem and provided details.

The motivation for this work comes from repeated proposals recently in the toxicology

literature to use a class of models to study a continuous outcome in toxicological studies

[Moerbeek, Piersma and Slob (2004), Piersma et al. (2002), Woutersen et al. (2001),

Slob (2002)]. In all these papers, the interest was only in estimation problems and so

they did not consider design issues. As is typical in such publications, the rationale for

the design employed in the study is not explained. Here are a few examples of designs

used in toxicological studies and their outcomes. In Piersma et al. (2002), rats were

prenatally exposed to diethylstilbestrol and the design had 16 animals in each of the

10 dose groups at 0, 1.0, 1.7, 2.8, 4.7, 7.8, 13, 22, 36 and 60 mg/kg body weight per
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day. In Woutersen et al. (2001), rats were exposed to Rhodorsil Silane in a 28-day

toxicity study and 3 designs were employed: the first one had 10 rats in each of the

7 dose groups (7x10 design) and the second had 5 rats in each of the 7 dose groups;

the 7 dose groups were 0, 50, 150, 300, 450, 600 and 750 mg/kg body weight/day. The

third had 10 rats in each of the 4 dose groups at 0, 50, 150 and 450 mg Rhodorsil

Silane/kg body weight/day. There were many continuous outcomes in each of these

studies. In Piersma et al. (2002), they included maternal body weight on gestation

day 21, maternal serum estradiol concentration at gestation day 21, weights of fetuses

at gestation day 21, immunological responses such as IgG and IgM to sheep red blood

cell challenge and pup weights at days 1 and 21. In Woutersen et al. (2001), their main

goals were to estimate various critical effective doses; these are doses that will result in

a user-specified level of toxicity found in rats over the background noise. Outcomes of

main interest were responses in haematology and clinical chemistry. In the discussion

section, we comment on the performance of these designs.

In this paper, we develop optimal designs for identifying an appropriate model within

the class of models and also at the same time provide reliable estimate for the critical

effect dose (CED) using the selected model. The CED is a popular measure among

toxicologists to estimate the dose level that will result in a user-specified anticipated

change in the continuous outcome beyond the background noise. Design issues are al-

ways difficult to address and we begin first by considering local optimal designs because

they are the easiest to construct for nonlinear models (Chernoff, 1953). These designs

require the user to supply nominal values of the model parameters before the optimal

design can be constructed. Nominal values represent the best guess for the true values

of the set of parameters and are usually obtained either from prior similar experiments

or experts’ opinion. When model assumptions are mis-specified, it is well known that

the resulting local optimal design can lose substantial efficiency. To overcome this
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risk, we propose maximin optimal designs that have been shown to be robust to mis-

specification of model assumptions in other settings , see for example, Biedermann,

Dette and Pepelyshev (2006) and Dette et al. (2008). These maximin optimal design

maximizes the minimum efficiency regardless which model in the class of models is the

appropriate model. As such, these optimal designs provide some protection against

picking a wrong model from the postulated class. In addition, we construct compound

optimal design to account for the dual objectives of discriminating models and at the

same time want the design to deliver a user-specified level of efficiency for estimating

the CED.

In section 2, we describe the class of nonlinear models and the design criterion for

estimating CED. We describe relationships among models in the class and provide

local optimal design for estimating the CED for each member in the class. We also

show how an optimal design constructed for a specific setup can be used to deduce the

optimal design under another setup where assumptions on the design space and model

parameters are different. In section 3, we construct maximin optimal designs and com-

pound optimal designs for toxicology studies and assess their robustness properties to

model mis-specification and their effectiveness for discriminating between models and

estimating CED at the same time. We also compare performance of selected uniform

designs that are intuitively appealing to practitioners. These designs take equal num-

ber of observations over a set of equally spaced dose levels. In section 4, we discuss

four practical issues. First, we construct and compare corresponding optimal designs

for log-normally distributed outcomes, which is another popular assumption used by

toxicologists. Secondly, we investigate efficiencies of several designs used by toxicol-

ogists. Thirdly, we perform a simulation study to assess how our optimal designs

perform in a real example with a relatively small sample size. Finally, we introduce

the reader to our design web site that the reader can use freely to generate a variety
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of optimal designs for a broad range of models frequently used in the biological sciences.

2 Model Uncertainty and CED-Optimality

Moerbeek, Piersma and Slob (2004), Woutersen et al. (2001), Piersma, et al. (2002)

and Slob (2002) proposed and used the following class of models in several toxicological

studies. The authors showed with justifications that the class of models is sufficiently

flexible to accommodate typical continuous outcomes of interest in toxicological studies.

For each of these models defined on the given design space [0, T ], Y is the response

and t is the dose level; all parameters in the mean response are components of the

px1-vector parameter θ .

(2.3) E(Y ) = ae−bt with a > 0, b > 0,

(2.4) E(Y ) = ae−btd with a > 0, b > 0, d ≥ 1,

(2.5) E(Y ) = a(c− (c− 1)e−bt) with a > 0, b > 0, c ≥ 0,

(2.6) E(Y ) = a(c− (c− 1)e−btd) with a > 0, b > 0, c ≥ 0, d ≥ 1.

This class consists of models nested within one another, where ’smaller’ models can

be obtained from the ’largest’ model by setting specific parameters in the ’largest’

model equal to specific values. For each t ∈ [0, T ], an observation Y is recorded and

all observations are assumed to be independent normally distributed with the same

variance, say σ2 > 0, and the expectation of Y observed at t is given by

E[Y ] = η(t, θ)

9



where η(t, θ) is one of the functions (2.3)-(2.6). In what is to follow, we suppress the

p-dimensional parameter θ in η(t, θ) for simplicity when there is no confusion, and

similarly for other notation such as f(t, θ) and g(θ) defined below.

In toxicological studies with a continuous outcome, the benchmark response is usually

expressed in terms of a critical effect size (CES). This is the amount that we expect

the percent change in the average level of the outcome compared with the background

noise. In practice, CES is user-specified and traditionally set equal to 0.05 or 0.10. For

a given mean response η(t) and a user-selected CES, the critical effective dose CED is

calculated from

CES = −η(CED)− η(0)

η(0)

if η(t) is a decreasing function. All our functions η(t) defined in (2.3)-(2.6) are decreas-

ing.

The parameters in the above models may or may not all have meaningful interpre-

tations, but frequently a re-parametrization of the mean function or working with a

function of the model parameters has a practical meaning. By inverting the above

functions, such as the mean function in (2.6), it is straightforward to show that

CED = CED(b, d, c) =

(
− ln c−1+CES

c−1

b

) 1
d

.

The corresponding expressions for CED for other models can be directly deduced by

setting c = 0 for models (2.3) and (2.4) and by setting d = 1 for models (2.3) and (2.5).

Thus the CED is the dose that results in a percent change in the mean response relative

to the background noise and the magnitude of the anticipated change is specified by

the critical effect size (CES).
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To estimate the confidence interval for CED for a specific model using design ξ, one

uses the delta method to obtain its asymptotic variance and then find a design to

minimize it. Specifically, we have

Var(ĈED) ≈ σ2

N
Φ(ξ)

where

Φ(ξ) = gT (θ)M−(ξ, θ)g(θ), and g(θ) =
∂ CED

∂θ
.

For the vector of the parameters θ = (a, b, d, c)T the local CED-optimal design

minimizes the function Φ(ξ) by choice of the design ξ. The matrix M(ξ, θ) in the above

expressions is the information matrix for the specific model η(t) using an arbitrary

design ξ and M−(ξ, θ) is a generalized inverse of M(ξ, θ). We call a design nonsingular

if its information is nonsingular; otherwise it is a singular design. For a specific model

η, let f(t, θ) = ∂η(t,θ)
∂θ

and recall that the information matrix is given by

M(ξ, θ) =

∫ T

0

f (t, θ)fT (t, θ)dξ(t).

The corresponding regression vectors f(t, θ) for different models are

f (2.3)(t, θ) = f(t, a, b) = (e−bx,−ate−bt)T ,

f (2.4)(t, θ) = f(t, a, b, d) = (e−btd ,−atde−btd ,−abtd ln(t)e−btd)T ,

f (2.5)(t, θ) = f(t, a, b, c) = (c− (c− 1)e−tb, a(c− 1)te−tb, a(1− e−tb))T ,

f (2.6)(t, θ) = (c− (c− 1)e−btd , a(c− 1)tde−btd , a(c− 1)td ln(t)be−btd , a(1− e−btd))T .
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and the corresponding vectors g(θ) are

g(2.3)(θ) = g(a, b) =

(
0,

ln(1− CES)

b2

)T

g(2.4)(θ) =

(
0,− 1

db

(
− ln(1− CES)

b

) 1
d

,− 1

d2

(
− ln(1− CES)

b

) 1
d

ln

(
− ln(1− CES)

b

))T

g(2.5)(θ) =

(
0,

ln c−1+CES
c−1

b2
,

1− c−1+CES
c−1

b(c− 1 + CES)

)T

,

g(2.6)(θ) =


0,− 1

db

(
− ln c−1+CES

c−1

b

) 1
d

,− 1

d2

(
− ln c−1+CES

c−1

b

) 1
d

ln

(
− ln c−1+CES

c−1

b

)
,

(
− ln c−1+CES

c−1

b

) 1
d 1− c−1+CES

c−1

d(c− 1 + CES) ln c−1+CES
c−1




T

.

The next five technical results provide analytical descriptions and properties of lo-

cal CED-optimal design for each model. The first one shows that local CED-optimal

design does not depend on the value of the parameter a, and the next four results

describe the structure of the local CED-optimal designs for the four nonlinear models

(2.3)-(2.6). We provide an illustrative proof of our results for model (2.3) only; the

arguments for the other models are similar. For our class of models, the results also

show how optimal design for a particular design setting can be deduced from another

design setting by only considering values of b and T. Our technical justifications use a

celebrated geometric result called Elfving’s theorem which is widely discussed in design

monographs, such as in Pázman (1986, p.71) or Pukelsheim (1993, p.50). We provide

only proofs for Lemma 2.1 and 2.2; the rest are similar.

Lemma 2.1 A local CED-optimal design does not depend on a.

Proof. The statement follows from the fact that an optimality function have a form

Φ(ξ, θ) = a2−2pΦ(ξ, θ̃)

where (a, θ̃T ) = θT ∈ Rp and p is the number of parameters.
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Lemma 2.2 Let u∗ ≈ 1.278 be a unique solution of equation e−u = u− 1. For model

(2.3) a local CED-optimal design does not depend on a and CES and is given by

{
0, u∗/b;

e−u∗

1 + e−u∗ ,
1

1 + e−u∗

}

if T > u∗/b ; otherwise it is given by

{
0, T ;

e−bT

1 + e−bT
,

1

1 + e−bT

}
.

Proof. By Elfving’s theorem, there exists a representation

vg = w∗
1f(t∗1)− w∗

2f(t∗2)(2.7)

for some v ∈ R and gT M−(ξ∗)g = 1/v2. Moreover, points of optimal design lie on the

boundary of Elfving set. Thus, t∗1 = 0. For large enough values of T , the point f(t2)

belongs to the boundary if t2 is small; otherwise it does not. The crucial value of t2 is

a solution of the equation

f ′2(t2)
f ′1(t2)

=
f2(t2) + f2(0)

f1(t2) + f1(0)
.

Straightforward calculation shows that t∗2 = u∗/b. From the equation for the first

coordinate of (2.7), we determine directly the weights w∗
1 and w∗

2 for the optimal

design.

Lemma 2.3 For model (2.4), the local CED-optimal design has one of three possible

forms. It is either given by 2-point singular design

{
0, CED;

1− CES

2− CES
,

1

2− CES

}

if the parameter b is small enough, or it has the form

{0, t∗2, t∗3; w∗
1, w

∗
2, w

∗
3}

if t∗3 < T ; otherwise it takes the form

{0, t∗2, T ; w∗
1, w

∗
2, w

∗
3}.
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Moreover, for 3-point optimal designs, we have

t∗i (b, d, T ) = Tt∗i (bT
d, d, 1), w∗

i (b, d, T ) = w∗
i (bT

d, d, 1).

t∗i (b, 1, 1) = (t∗i (b, d, 1))d , w∗
i (b, 1, 1) = w∗

i (b, d, 1).

For a 3-point optimal design, Elfving theorem implies that the weights of the optimal

design are solutions of the equation

(g
...f(t∗3)− f(0)

...f(t∗3) + f(t2))(v, w1, w2)
T = f(t∗3)

with t2 = t∗2 and 2nd point t∗2 is a solution of ∂v/∂t2 = 0 where

v = v(t2) =
det(f(t∗3)

...f(t∗3)− f(0)
...f(t∗3) + f(t2))

det(g
...f(t∗3)− f(0)

...f(t∗3) + f(t2))
.

There is no explicit solution for model (2.4) but is an explicit solution for model (2.5).

Lemma 2.4 For model (2.5), the local CED-optimal design has one of two forms. It

is either given by 2-point singular design

{
0, CED;

1− CES

2− CES
,

1

2− CES

}

if the parameter b is small enough or c is large enough; otherwise, it has the following

form

{0, t∗2, T ; w∗
1, w

∗
2, w

∗
3},

where

t∗2 = t∗2(b, c, T ) =
1− (1 + bT )e−bT

b(1− e−bT )
.

Moreover, for 3-point optimal designs, we have

t∗i (b, c, T ) = Tt∗i (bT, c, 1), w∗
i (b, c, T ) = w∗

i (bT, c, 1),

points t∗i (b, c, T ) do not depend on c.
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Lemma 2.5 For model (2.6), the local CED-optimal design has one of two form. It

is either a singular 2-point design given by

{
0, CED;

1− CES

2− CES
,

1

2− CES

}

if the parameter b is small enough or c is large enough; otherwise it has the form

{0, t∗2, t∗3, T ; w∗
1, w

∗
2, w

∗
3, w

∗
4}.

Moreover, for 4-point optimal designs, we have

t∗i (b, d, c, T ) = Tt∗i (bT
d, d, c, 1), w∗

i (b, d, c, T ) = w∗
i (bT

d, d, c, 1),

t∗i (b, 1, c, 1) = (t∗i (b, d, c, 1))d , w∗
i (b, 1, c, 1) = w∗

i (b, d, c, 1)

and points t∗i (b, d, c, T ) do not depend on c.

Tables 1 and 2 show local CED-optimal designs for each of the four models when

CES = 0.05 and selected values for b and T . As is described in the above results, the

local CED-optimal design may be a singular 2-point design for models (2.4)-(2.6) or a

saturated design where the number of points equal to the number of model parameters.

3 Maximin CED-optimal Design and Compound

Optimal Design

The local optimal design for estimating CED depends on the assumed model and the

nominal values of the model parameters. When the nominal values are mis-specified,

local optimal designs can lose substantial efficiency. This problem is further com-

pounded when there is model uncertainty. This implies that local optimal designs

while potentially useful as a starting point, are unlikely to be adequate for practical
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Table 1: Local CED-optimal designs for model (2.3) and for model (2.6) with d = 1,

c = 0 on the design space [0, T ] for various values of the parameter b and CES = 0.05.

model (2.3) model (2.6)

T b t1 t2 w1 w2 t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 1 0.475 0.525 0 0.513 0.487 0.513

1 0.5 0 1 0.377 0.623 0 0.103 0.487 0.513

1 1.0 0 1 0.269 0.731 0 0.113 0.596 1 0.388 0.479 0.097 0.036

5 0.1 0 5 0.377 0.623 0 0.513 0.487 0.513

5 0.5 0 2.557 0.218 0.782 0 0.430 2.482 5 0.337 0.463 0.141 0.058

5 1.0 0 1.278 0.218 0.782 0 0.277 1.718 5 0.316 0.454 0.159 0.071

Table 2: Local CED-optimal designs for model (2.4) with d = 1 and for model (2.5) with

c = 0 on the design space [0, T ] for various values of the parameter b and CES = 0.05.

model (2.4) model (2.5)

T b t1 t2 t3 w1 w2 w3 t1 t2 t3 w1 w2 w3

1 0.1 0 0.513 0.487 0.513 0 0.513 0.487 0.513

1 0.5 0 0.305 1 0.378 0.515 0.106 0 0.459 1 0.353 0.532 0.115

1 1.0 0 0.251 1 0.344 0.511 0.145 0 0.418 1 0.317 0.554 0.129

5 0.1 0 1.523 5 0.378 0.515 0.106 0 2.293 5 0.353 0.532 0.115

5 0.5 0 0.672 4.507 0.305 0.462 0.233 0 1.553 5 0.261 0.593 0.146

5 1.0 0 0.336 2.253 0.305 0.462 0.233 0 0.966 5 0.232 0.613 0.155

implementation. However, local optimal designs are useful as a first step to construct-

ing more versatile and robust designs to model assumptions. We now discuss two
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design strategies that utilize local optimal designs.

The maximin approach of designing a study provides an alternative that can be ap-

pealing [see Dette (1995), Müller (1995) and Müller and Pázman (1998) among others].

Procedurally, one first considers the efficiency of a design for estimating the CED rela-

tive to each of the models; among these relative efficiencies, the maximin CED-optimal

design is the one that maximizes the minimum of these relative efficiencies. Technically,

for a fixed θ we call the design that maximizes

min{eff(2.3)
CED(ξ, θ), eff

(2.4)
CED(ξ, θ), eff

(2.5)
CED(ξ, θ), eff

(2.6)
CED(ξ, θ)}

over all designs on the design space a maximin CED-optimal design, where CED-

efficiency (for each model) is given by

effCED(ξ) =
minξ̃ Φ(ξ̃)

Φ(ξ)
.

The last ratio is obviously a number between 0 and 1 and represents the reduction in

sample size from use of the optimal design compared with using the design ξ for the

same level of precision for estimating CED. For example if effCED(ξ) = 0.5, the design

ξ needs to be replicated twice to obtain an CED estimate as accurate as the estimate

from the local optimal design for estimating CED. As expected, maximin optimal de-

signs are difficult to find and defy analytical description. In particular, no closed form

formulae are available. They have to be found numerically and several maximin opti-

mal designs are shown in Table 3 for selected values of b and T with their efficiencies

relative to the local CED-optimal designs for models (2.3)-(2.6).

In practice, maximin CED-optimal designs are found by first maximizing the optimality

criterion within the class of all 4-point designs on the given design space. This is because

4 points are required for CED estimation in all models (2.3)-(2.6). The optimization is

performed with the NelderMead algorithm in the matlab package. After the optimal
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4-point design is found, we next search for the optimal design within the class of all 5

points designs, and repeat the procedure, each time increase the number of points by

unity, until no reduction in the criterion value is observed.

Table 3: Maximin CED-optimal designs for models (2.3)-(2.6) on the design space

[0, T ] for various values of the parameter b with d = 1, c = 0 and CES = 0.05 and their

efficiencies.

T b t1 t2 t3 t4 w1 w2 w3 w4 eff(2.3)
CED eff(2.4)

CED eff(2.5)
CED eff(2.6)

CED

1 0.1 0 0.513 1 0.417 0.296 0.287 0.686 0.686 0.686 0.692

1 0.5 0 0.183 0.612 1 0.299 0.228 0.231 0.242 0.597 0.636 0.597 0.597

1 1.0 0 0.170 0.594 1 0.261 0.217 0.288 0.234 0.615 0.615 0.615 0.615

5 0.1 0 0.914 3.059 5 0.299 0.228 0.231 0.242 0.597 0.636 0.597 0.597

5 0.5 0 0.820 2.451 5 0.237 0.292 0.350 0.121 0.655 0.655 0.655 0.655

5 1.0 0 0.529 1.545 5 0.236 0.366 0.326 0.072 0.639 0.639 0.639 0.673

3.1 Multiple-objective Optimal Designs

In practice, designs have several objectives in mind. There are interests in estimating

various parameters in the model and frequently not all are of equal interest. For in-

stance in the Michaelis-Menten model, the Michaelis-Menten constant b is clearly of

much greater interest than the constant a. This means that the design should pro-

vide much more accurate estimate for the parameter b (the primary objective) than

the parameter a (secondary objective). In this case, one may require that the design

deliver at least 90% efficiency for estimating b and subject to this constraint devote

the rest of the resources to estimating a. This is an example of a constrained optimal

design discussed seminally in Stigler (1971), Studden (1982) and Lee (1988), where
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they considered homoscedastic polynomial models. Such optimal designs are easy to

motivate and interpret but usually they are difficult to find. When the objectives can

be expressed as convex functionals of the information matrix, Cook and Wong (1994)

proposed finding dual-objective optimal designs indirectly by first finding compound

optimal designs.

Given two convex optimality criteria, it is tempting to consider a convex combination

of the two criteria, which is also convex. This implies that for each λ between 0 and

1, one can straightforwardly find the compound optimal design ξλ that minimizes the

convex combination. We next construct the efficiency plot that graphs the two ef-

ficiencies of ξλ versus values of λ between 0 and 1. Cook and Wong (1994) showed

that the efficiency of ξλ under the primary criterion is always monotonically increasing

and the efficiency under the secondary criterion is always monotonically decreasing.

This is not surprising because resources have to be compromised for attaining the dual

objectives. The slopes in the plots show how competitive the two objectives are, with

steep slopes representing that much of one type of efficiency has to be given up in ex-

change for attaining more of the other efficiency. To relate compound optimal designs

to constrained optimal designs, one uses the efficiency plots to arrive at a meaningful

choice of λ. Specifically, the desired constrained optimal design is found by first draw-

ing a horizontal line across the plot at the desired efficiency level sought for under the

primary criterion, say 90% as in the above illustration. We then note the value of λ,

say λ∗, that corresponds to the point where this horizontal line meets the (increasing)

efficiency plot for the primary criterion and conclude that ξλ∗ is the sought constrained

optimal design. Details and theoretical explanation, along with worked out examples

and illustrative efficiency plots are given in Cook and Wong (1994), Zhu, Zeng and

Wong (2000), and Zhu and Wong (2000). See also Imhof and Wong (2000) where effi-

ciency plots were used to find maximin optimal design in nonlinear models.
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The advantage of the setup just described is that the researcher is in full control; he or

she decides which is the primary criterion and sets the efficiency level required under

the first criterion. This represents the level he or she is willing to compromise on the

two objectives. Clearly, this method also works when all criteria are concave instead

of convex, in which case we seek to maximize rather than minimize each criterion.

The procedure just outlined can also be extended to find multiple-objective optimal

designs; in our problem at hand, we set design criteria for discriminating between each

pair of models and for CED estimation. Specifically, for a fixed θ we call the design

that maximizes

min{eff(2.3)
CED(ξ, θ), eff

(2.4)
CED(ξ, θ), eff

(2.5)
CED(ξ, θ), eff

(2.6)
CED(ξ, θ),

eff(2.4)−(2.3)(ξ, θ), eff(2.5)−(2.3)(ξ, θ), eff(2.6)−(2.5)(ξ, θ), eff(2.6)−(2.4)(ξ, θ)}

over all designs on the design space a maximin compound design where eff(M1)−(M2)(ξ, θ)

is an efficiency of design ξ for discrimination two models M1 and M2. Such designs are

efficient for CED estimation and discrimination. Selected maximin optimal designs are

shown in Table 4 and their efficiencies for estimating CED under each model and for

discriminating between pairs of models are shown in Table 5.

Our proposed maximin compound designs still depend on nominal values of the pa-

rameters. One could incorporate this uncertainty of the nominal values in a compound

optimality criterion. We refer the reader to Biedermann, Dette and Pepelyshev (2006),

Dette et al. (2008) for details but note that our small scale investigation showed that

maximin optimal designs are not sensitive to small changes in the nominal values of

the parameters in the models considered here.
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Table 4: Maximin compound designs for models (2.3)-(2.6) on the design space [0, T ]

for various values of the parameter b with d = 1, c = 0 and CES = 0.05.

T b t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 0.173 0.622 1 0.361 0.152 0.281 0.205

1 0.5 0 0.183 0.612 1 0.299 0.228 0.231 0.242

1 1.0 0 0.170 0.594 1 0.261 0.217 0.288 0.234

5 0.1 0 0.914 3.059 5 0.299 0.228 0.231 0.242

5 0.5 0 0.698 2.398 5 0.186 0.225 0.298 0.291

5 1.0 0 0.639 1.899 5 0.147 0.267 0.240 0.347

Table 5: CED-Efficiencies and efficiencies of discrimination of maximin compound

designs for models (2.3)-(2.6) on the design space [0, T ] for various values of the pa-

rameter b with d = 1, c = 0 and CES = 0.05.

CED efficiency efficiency of discrimination

T b (2.3) (2.4) (2.5) (2.6) (2.4)-(2.3) (2.5)-(2.3) (2.6)-(2.5) (2.6)-(2.4)

maximin compound design

1 0.1 0.610 0.620 0.620 0.610 0.622 0.651 0.610 0.694

1 0.5 0.597 0.637 0.597 0.597 0.678 0.634 0.720 0.737

1 1.0 0.615 0.615 0.615 0.615 0.643 0.626 0.743 0.803

5 0.1 0.597 0.637 0.597 0.597 0.677 0.634 0.720 0.737

5 0.5 0.605 0.633 0.605 0.605 0.697 0.605 0.716 0.813

5 1.0 0.456 0.456 0.596 0.474 0.456 0.456 0.527 0.517

4 Discussion

This closing section has four purposes aimed at the practitioners. The first purpose

is to address distributional assumption on the error terms; in particular we construct
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optimal designs under the assumption of log-normality and compare results obtained

under the normality assumption. Secondly, we discuss efficiencies of designs used by

toxicologists relative to our proposed optimal designs. The third purpose is to evaluate

how well our maximin optimal designs perform in practice using a small simulation

study. The final purpose is to draw attention to our design web site where many types

of optimal designs for several models can be generated under user-specified settings.

4.1 Distributional assumptions

Sometimes toxicologists prefer to assume the continuous outcomes are log-normally

distributed, see for example, Slob (2002). The dose-response model is fitted on the

log-scale, where both the model and the data are log-transformed. After fitting the

model, the model and the data may be back-transformed to the original scale for pur-

poses of plotting and interpretation. We now show how our method can be extended

to accommodate the log-normality assumption to find optimal designs.

It suffices to note here that we now assume logarithm of different observations are

independent with the same variance, say σ2 > 0, and have expectation

E[ln Y ] = ln η(t, θ)

where η(t, θ) is one of the 4 functions listed at the beginning of Section 2. Proceeding

as in Section 2, one obtains an expression for the CED and the asymptotic variance of

the estimated CED. The key difference is that the information matrix is now given by

M̃(ξ, θ) =

∫ T

0

f̃ (t, θ)f̃T (t, θ)dξ(t)

where f̃(t, θ) = 1
η(t,θ)

∂η(t,θ)
∂θ

.
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It follows that the vector f̃(t, θ) for each model is now different from the one under

normality assumption in Section 2. However, the vector g(θ) for each model remains

the same whether we assume the errors are normally or log-normally distributed. The

next few tables display selected maximin CED-optimal designs (Table 6), maximin

compound optimal designs (Table 8) under log-normal assumption and their efficien-

cies. From Tables 3 and 6, we observe that the maximin optimal designs obtained

under the normality and log-normality assumptions do not appear to be substantially

different. The same is observed for maximin compound designs in Tables 4 and 7.

Table 6: Maximin CED-optimal designs for models (2.3)-(2.6) with lognormality as-

sumption on the design space [0, T ] for various values of the parameter b with d = 1,

c = 0 and CES = 0.05 and their efficiencies.

T b t1 t2 t3 t4 w1 w2 w3 w4 eff
(2.3)
CED eff

(2.4)
CED eff

(2.5)
CED eff

(2.6)
CED

1 0.1 0 0.513 1 0.430 0.289 0.281 0.691 0.691 0.691 0.691

1 0.5 0 0.196 0.638 1 0.334 0.224 0.221 0.221 0.620 0.655 0.620 0.620

1 1.0 0 0.195 0.655 1 0.326 0.202 0.240 0.232 0.636 0.636 0.636 0.636

5 0.1 0 0.982 3.191 5 0.334 0.224 0.221 0.221 0.620 0.655 0.620 0.620

5 0.5 0 1.188 3.485 5 0.334 0.198 0.238 0.231 0.643 0.643 0.643 0.643

5 1.0 0 1.450 3.758 5 0.347 0.204 0.239 0.211 0.644 0.644 0.644 0.644

4.2 Efficiency of commonly used designs

Now we discuss efficiencies of designs described in Section 1 relative to our proposed

optimal designs. Recall that these are some of the types of designs commonly used

by toxicologists in practice. Specifically, designs and nominal values of parameters are
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Table 7: Maximin compound designs for models (2.3)-(2.6) with lognormality assump-

tion on the design space [0, T ] for various values of the parameter b with d = 1, c = 0

and CES = 0.05.

T b t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 0.176 0.628 1 0.374 0.155 0.271 0.200

1 0.5 0 0.196 0.638 1 0.334 0.224 0.221 0.221

1 1.0 0 0.199 0.659 1 0.325 0.202 0.242 0.232

5 0.1 0 0.981 3.191 5 0.334 0.224 0.221 0.221

5 0.5 0 1.174 3.469 5 0.322 0.199 0.241 0.238

5 1.0 0 1.357 3.683 5 0.312 0.206 0.250 0.233

Table 8: CED-Efficiencies and efficiencies of discrimination for compound optimal

designs for models (2.3)-(2.6) on the design space [0, T ] with lognormality assumption

and various values of the parameter b with d = 1, c = 0 and CES = 0.05.

CED efficiency efficiency of discrimination

T b (2.3) (2.4) (2.5) (2.6) (2.4)-(2.3) (2.5)-(2.3) (2.6)-(2.5) (2.6)-(2.4)

maximin compound design

1 0.1 0.614 0.622 0.627 0.614 0.628 0.648 0.614 0.688

1 0.5 0.620 0.655 0.620 0.620 0.675 0.628 0.721 0.727

1 1.0 0.636 0.636 0.636 0.636 0.645 0.636 0.707 0.753

5 0.1 0.620 0.655 0.620 0.620 0.675 0.628 0.722 0.727

5 0.5 0.643 0.643 0.643 0.643 0.649 0.643 0.678 0.730

5 1.0 0.640 0.640 0.640 0.640 0.644 0.640 0.662 0.729
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Table 9: CED-Efficiencies and efficiencies of discrimination for designs used by toxi-

cologists for models (2.3)-(2.6) with lognormality assumption on the design space [0, T ]

for various values of the parameter b, d and c and CES = 0.05 where M∗ is the minimal

efficiency of maximin compound design.

CED efficiency efficiency of discrimination

b c d M∗ (2.3) (2.4) (2.5) (2.6) (2.4)-(2.3) (2.5)-(2.3) (2.6)-(2.5) (2.6)-(2.4)

design 0, 0.5, 1.5, 3, 4.5, 6, 7.5 (in 100mg/kg scale), T = 7.5

0.04 1 0 0.597 0.492 0.504 0.563 0.361 0.558 0.579 0.594 0.666

0.06 1 0 0.616 0.492 0.517 0.570 0.419 0.558 0.579 0.594 0.666

0.09 1 0 0.628 0.492 0.526 0.574 0.464 0.558 0.579 0.594 0.665

design 0, 0.5, 1.5, 4.5 (in 100mg/kg scale), T = 7.5

0.04 1 0 0.597 0.217 0.375 0.185 0.551 0.245 0.057 0.126 0.032

0.06 1 0 0.616 0.217 0.348 0.165 0.497 0.245 0.053 0.121 0.028

0.09 1 0 0.628 0.217 0.331 0.150 0.375 0.245 0.047 0.114 0.024

design 0, 0.5, 1.5, 4.5 (in 100mg/kg scale), T = 4.5

0.04 1 0 0.607 0.602 0.526 0.398 0.548 0.681 0.498 0.370 0.294

0.06 1 0 0.596 0.602 0.566 0.406 0.517 0.681 0.493 0.364 0.286

0.09 1 0 0.612 0.602 0.590 0.406 0.490 0.681 0.485 0.356 0.274

design 0, 1.0, 1.7, 2.8, 4.7, 7.8, 13, 22, 36, 60 , T = 60

0.10 1 0 0.638 0.380 0.491 0.352 0.360 0.493 0.328 0.346 0.257

0.10 .5 0 0.613 0.380 0.440 0.352 0.478 0.488 0.328 0.613 0.640

0.04 .5 0 0.609 0.380 0.411 0.449 0.360 0.488 0.417 0.610 0.641

0.10 1 .9 0.614 0.380 0.491 0.417 0.319 0.493 0.529 0.551 0.265
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taken from Woutersen et al. (2001) and Piersma et al. (2002). We list their various ef-

ficiencies in Table 9 relative to our optimal designs constructed under the log-normality

assumption. Generally, the efficiencies of these designs are low for estimating CED or

for discriminating between competing models in the stipulated class. They range from

as low as 2% to mostly below 50%, and in a couple of instances about 67% for model

discrimination. We see that in nearly all cases the minimal efficiency of the maximin

compound design is greater than the efficiencies of the designs used by toxicologists.

Additional calculation not shown here also reveals that the efficiencies of maximin com-

pound designs are higher than the corresponding efficiencies of the used designs by at

least on 10%. This means that any confidence interval for CED constructed from the

maximin optimal design is at least on 10% shorter than those from the used designs. In

many cases the improvement is even more substantial. We also compare performance

of these used designs with optimal designs constructed under the normality assumption

and the over trend is quite similar.

4.3 Performance of maximin optimal design in practice

All our optimal designs were found under a large sample assumption. These optimal

designs minimize the asymptotic variance of the estimated CED obtained via the delta

method. For this reason it is important to investigate the superiority of the optimal

designs for sample size observed in practice. The purpose here is to briefly compare

variances of the estimated CED from the maximin CED-optimal design and a design

used by toxicologists in a real example with a relatively small sample size.

In Piersma et al. (2002), rats were prenatally exposed to diethylstilbestrol and the im-

plemented design ξu had 6 animals in each of the 10 dose groups at 0, 1.0, 1.7, 2.8, 4.7,

7.8, 13, 22, 36 and 60 mg/kg body weight per day. This means that we have 60 observa-

26



tions on the design space [0, 60]. The maximin CED-optimal design ξmm for b = 0.1, d =

1, c = 0 has four dose levels and is given by {0, 5.2, 15.4, 60; 14/60, 21/60, 19/60, 6/60}.

We simulate data with a = 1 and σ = 0.05 and several values of parameters b, d and

c with 1000 replicates in each simulation. In Table 10 we report simulated normalized

variances of the estimated CED from the two designs under normality assumption. It is

reassuring that we observe that in all the cases considered here, the variance obtained

from the maximin optimal design ξmm is consistently smaller than the variance obtained

from the design ξu used in practice. This implies that use of our proposed designs can

save experimental cost for toxicologists and more importantly, in reducing the number

of animals required in the study. In addition, unlike designs used by toxicologists, our

designs are based on firm statistical considerations.

Table 10: Simulated normalized variance of CED for several true values of parameters.

b d c Var(ĈED) with ξmm Var(ĈED) with ξu

0.10 1.0 0.0 3.77 5.56

0.10 0.5 0.0 172.1 250.3

0.06 0.5 0.0 1821.0 3011.2

0.10 1.0 0.2 13.84 20.81

0.10 1.0 0.9 1850.4 3106.8

4.4 A design web site for practitioners

We conclude this paper with a reference to our web site where algorithms for gen-

erating optimal designs in this paper will be implemented very shortly. We believe

that to facilitate use of optimal design ideas in practice, design tools should be readily

available to practitioners. We thank the National Institute of General Medical Sci-
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ences for funding the construction and maintenance of the site. This site is housed at

http://www.optimal-design.org/ and visitors can generate a variety of optimal designs.

We expect that algorithms used to generate the optimal designs in this paper will be

available on this site shortly.

Presently, the site contains a list of models commonly used in the biological sciences,

along with information and references on optimal design issues. The visitor selects an

appropriate model, an optimality criterion and inputs parameters for the design prob-

lem. The generated design is displayed, and when appropriate, is also accompanied

by a plot of the directional derivative of the optimality criterion. Depending on the

features exhibited in this plot, we may or may not confirm the optimality of the gen-

erated design over all designs on the design space. This site also calculates efficiencies

of user-supplied designs so that practitioners can easily compare their designs with the

optimum and make an informed decision whether to stray away from the optimum and

if so by how much. For space considerations, we omit further discussion and refer the

reader to our web site. We hope that the site will promote use of optimal design ideas

in practice.
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