
Expanding Malware Defense by

Securing Software Installations

Weiqing Sun, R. Sekar
Stony Brook University

Zhenkai Liang

National University of Singapore

V. N. Venkatakrishnan
University of Illinois at Chicago

Stony Brook University 2

Motivation

Software installation: more attractive entry
point for malware than remote exploits

Provides highest privileges needed to

Plant rootkits/trojans

Hide deep in the system

Contemporary OSes don’t restrict any actions
performed during installation

Existing techniques for untrusted code security
have largely ignored the installation phase

Stony Brook University 3

Assumptions and Goals

Basic assumption: Mechanisms available for
differentiating benign and untrusted software

 Untrusted software: from untrusted sources, may be
malicious

 Benign software: from well known sources, non-
malicious

Goal: Enable end-to-end life-time defenses
against untrusted software

 Develop policies and enforcement techniques at
install/uninstall phases

 Incorporate existing confinement solutions at
execution phase

Stony Brook University 4

Secure Installation: Requirements

Security: Untrusted software

 should not interfere with benign software

 must always run inside a user-specified sandbox

 should be securely uninstallable at any time

Usability

 Installation or operation of benign software should not
be restricted in any way

 Almost all (non-malicious) untrusted software should
install successfully

 Diverse installation mechanisms to be supported

 Software package managers (rpm, dpkg, …)

 Self-installing executables

Tarballs

Stony Brook University 5

Threat Model

Threats in three phases:

 Installation phase

Execution phase

Solutions already exist, e.g., sandboxing

Our goal is to ensure that untrusted code is always
run within an administrator-specified sandbox

Uninstallation phase

Higher-level goal of malware

Exploit higher level of privilege during
install/uninstall phases

Execute code outside of sandbox

Stony Brook University 6

Install-time Threats

Attack avenues
Perform malicious actions by running scripts

Modify files used by benign packages
Existing benign packages

Benign packages installed in the future

Embed attacks in its own files

Compromise the integrity of package database

Contents Scripts Requires ConflictsProvides ……

Stony Brook University 7

Uninstall-time Threats

Perform malicious actions

Compromise package database integrity

Remove files belonging to other packages

Leave behind files after uninstallation

Cause errors during uninstall

Stony Brook University 8

Approach Overview

 Initial installation in a
virtual environment

Policy checking

Commit/abort

Secure execution
phase

Secure uninstallation
phase

Stony Brook University 9

Initial Installation Phase

Need to verify integrity of updates made to
critical data, e.g., RPM database

Two basic alternatives
Access control policies: eager enforcement, not easy to

determine safety of each update

Alcatraz, a safe execution environment
 Installation in an isolated environment identical to host OS state

 Permits system to go through unsafe states, as long as the end
state is “safe”

 State-based policies are strictly more powerful as compared
to “enforceable policies”

 Supports commit/abort of results observed within Alcatraz

 Note: Rerunning installation after policy check is unsafe

 Supports diverse installation mechanisms

Stony Brook University 10

Commit/Abort Phase

Policy verification success  commit

Policy verification failure  abort

Commit/Abort functionality is provided by
Alcatraz

Changes are made to make sure untrusted
software run inside a user-specified sandbox

Stony Brook University 11

Secure Execution Phase

Works with diverse confinement mechanisms

 Policy-based access control

 Isolated execution

All untrusted files (and execution results) stay within a
Secure file container (SFC)

 Dynamic information-flow

Label the files belonging to untrusted packages, prevent
information flow from them into integrity-critical files

SSI creates wrappers for untrusted
executables/libraries to ensure the use of
confinement mechanisms

Stony Brook University 12

Policy Checking Phase

Provide higher level policy primitives to ease
development of application-independent policies
 Can reference package contents and dependencies

 State (and history) based policies
Allow modification of F into F’ such that their diff matches a

specified regular expression

 Action attribution to provide safe exceptions to policies
Easier to say that ldconfig is safe rather than to define

permissible changes to ld.so.cache

Rationale similar to that of DTE, but our implementation
leverages Alcatraz to achieve the same effect without OS-
support for type enforcement

Result: One policy for most untrusted software,
plus another policy for benign software

Stony Brook University 14

Untrusted Package Installation Policy

No unsafe non-file operations

 Based on Alcatraz policies with a few exceptions

No changes to files belonging to benign apps

 Untrusted installation can only modify/delete files
belonging to untrusted packages

Protect the integrity of package database

 Modifications must be consistent with the files actually
copied to the system

 Should not change database entries corresponding to
other packages

Grant exceptions based on attribution

 ldconfig, …

Stony Brook University 16

Benign Packages Installation Policy

Benign packages should not depend on
untrusted packages

No policy enforced during uninstallation
time

Stony Brook University 17

Evaluation

We have implemented SSI

 On Linux CentOS 4.1

 Based on Alcatraz tool

We have performed installations in SSI

 Malicious packages (~10)

Real-world/crafted, blocked the installations on policy
violations

 Non-malicious untrusted packages (~100)

 freshrpms/ATrpms, successfully installed

 Benign packages (~40)

CentOs repository, successfully installed

Stony Brook University 18

Defeating Malware Using SSI

Real-world Rootkits

Bobkit, tuxkit, lrk5, portacelo

Modified files belonging to benign packages (ls,
du,…)

Fake patch from Redhat

Created a privileged user with no passwd

“Malicious” rpm package

Crafted rpm package which overwrote glibc and
gcc

Stony Brook University 19

Performance Evaluation

SSI Installation Overhead

0

50

100

150

200

250

mozilla (binary) gunchess (tar ball) Yahoo Messenger (rpm)

P
e

rc
e

n
ta

g
e

 (
%

)

original

SSI

Stony Brook University 20

Related Work

 Software Installation approaches
 Checkinstall [Eduardo+04]: not for security
 RPMShield [Venkat+02]: not general
 SoftwarePot [Kato+02]: not compatible with existing

installation methods

 DTE [Boebert+85], SELinux, and Sandboxing
 Appropriate for confining untrusted software during runtime
 Not very convenient during installation

 Every operation needs to be safe
 Difficulty in policy development

 Information flow based approaches to preserve integrity
 PPI [Sun+08], UMIP [Li+07], SLIM [Safford+05]

 Complement with SSI

 Back to the future [Hsu+06]
 Recovery needed, availability affected

Stony Brook University 21

Conclusion

Software installation is an attractive vector
for malware attacks

SSI addresses this problem by securing
installation process
Work seamlessly with execution confinement

techniques to “remove gaps in armor”

Support a diversity of installation mechanisms

Develop high-level policy framework to reduce
manpower needed for app-specific policies

Evaluation shows our approach is effective and
practical

Stony Brook University 22

Questions?

Stony Brook University 23

Realizing Safe Installations

Built over Safe Execution Environment (SEE)
 logically isolates outputs of SEE processes from others

At the end of installation, check conformance to
state-based policies to ensure safety
 Package database modifications to be consistent with

state changes observed during installation

 File accesses to be consistent with trust level of package
Untrusted packages can't interfere with benign apps

 Trojans/rootkits prevented from automatically starting up

 Prevent some rootkit-like actions
 e.g., attempt to impersonate a trusted program

Abort installation if policy violated

