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Motivation

Software installation: more attractive entry 
point for malware than remote exploits

Provides highest privileges needed to

Plant rootkits/trojans

Hide deep in the system

Contemporary OSes don’t restrict any actions 
performed during installation

Existing techniques for untrusted code security  
have largely ignored the installation phase
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Assumptions and Goals

Basic assumption: Mechanisms available for 
differentiating benign and untrusted software

 Untrusted software: from untrusted sources, may be 
malicious

 Benign software: from well known sources, non-
malicious

Goal: Enable end-to-end life-time defenses 
against untrusted software

 Develop policies and enforcement techniques at 
install/uninstall phases

 Incorporate existing confinement solutions at 
execution phase
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Secure Installation: Requirements

Security: Untrusted software

 should not interfere with benign software

 must always run inside a user-specified sandbox

 should be securely uninstallable at any time

Usability

 Installation or operation of benign software should not 
be restricted in any way

 Almost all (non-malicious) untrusted software should 
install successfully

 Diverse installation mechanisms to be supported

 Software package managers (rpm, dpkg, …)

 Self-installing executables

Tarballs
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Threat Model

Threats in three phases:

 Installation phase

Execution phase

Solutions already exist, e.g., sandboxing

Our goal is to ensure that untrusted code is always 
run within an administrator-specified sandbox

Uninstallation phase

Higher-level goal of malware

Exploit higher level of privilege during 
install/uninstall phases

Execute code outside of sandbox
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Install-time Threats

Attack avenues
Perform malicious actions by running scripts

Modify files used by benign packages
Existing benign packages

Benign packages installed in the future

Embed attacks in its own files

Compromise the integrity of package database

Contents Scripts Requires ConflictsProvides ……
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Uninstall-time Threats

Perform malicious actions

Compromise package database integrity

Remove files belonging to other packages

Leave behind files after uninstallation

Cause errors during uninstall
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Approach Overview

 Initial installation in a 
virtual environment

Policy checking

Commit/abort 

Secure execution 
phase

Secure uninstallation 
phase
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Initial Installation Phase

Need to verify integrity of updates made to 
critical data, e.g., RPM database

Two basic alternatives
Access control policies: eager enforcement, not easy to 

determine safety of each update

Alcatraz, a safe execution environment
 Installation in an isolated environment identical to host OS state

 Permits system to go through unsafe states, as long as the end 
state is “safe”

 State-based policies are strictly more powerful as compared 
to “enforceable policies” 

 Supports commit/abort of results observed within Alcatraz

 Note: Rerunning installation after policy check is unsafe

 Supports diverse installation mechanisms
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Commit/Abort Phase

Policy verification success  commit

Policy verification failure  abort

Commit/Abort functionality is provided by 
Alcatraz

Changes are made to make sure untrusted 
software run inside a user-specified sandbox
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Secure Execution Phase

Works with diverse confinement mechanisms

 Policy-based access control

 Isolated execution

All untrusted files (and execution results) stay within a 
Secure file container (SFC)

 Dynamic information-flow

Label the files belonging to untrusted packages, prevent 
information flow from them into integrity-critical files

SSI creates wrappers for untrusted 
executables/libraries to ensure the use of 
confinement mechanisms
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Policy Checking Phase

Provide higher level policy primitives to ease 
development of application-independent policies
 Can reference package contents and dependencies

 State (and history) based policies
Allow modification of F into F’ such that their diff matches a 

specified regular expression

 Action attribution to provide safe exceptions to policies
Easier to say that ldconfig is safe rather than to define 

permissible changes to ld.so.cache

Rationale similar to that of DTE, but our implementation 
leverages Alcatraz to achieve the same effect without OS-
support for type enforcement

Result: One policy for most untrusted software, 
plus another policy for benign software
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Untrusted Package Installation Policy

No unsafe non-file operations

 Based on Alcatraz policies with a few exceptions

No changes to files belonging to benign apps

 Untrusted installation can only modify/delete files 
belonging to untrusted packages

Protect the integrity of package database

 Modifications must be consistent with the files actually 
copied to the system

 Should not change database entries corresponding to 
other packages

Grant exceptions based on attribution

 ldconfig, …
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Benign Packages Installation Policy

Benign packages should not depend on 
untrusted packages

No policy enforced during uninstallation 
time
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Evaluation

We have implemented SSI 

 On Linux CentOS 4.1

 Based on Alcatraz tool

We have performed installations in SSI

 Malicious packages (~10)

Real-world/crafted, blocked the installations on policy 
violations

 Non-malicious untrusted packages (~100)

 freshrpms/ATrpms, successfully installed

 Benign packages (~40)

CentOs repository, successfully installed
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Defeating Malware Using SSI

Real-world Rootkits

Bobkit, tuxkit, lrk5, portacelo

Modified files belonging to benign packages (ls, 
du,…)

Fake patch from Redhat

Created a privileged user with no passwd

“Malicious” rpm package

Crafted rpm package which overwrote glibc and 
gcc
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Performance Evaluation

SSI Installation Overhead
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Related Work

 Software Installation approaches
 Checkinstall [Eduardo+04]: not for security
 RPMShield [Venkat+02]: not general
 SoftwarePot [Kato+02]: not compatible with existing 

installation methods

 DTE [Boebert+85], SELinux, and Sandboxing
 Appropriate for confining untrusted software during runtime
 Not very convenient during installation

 Every operation needs to be safe
 Difficulty in policy development

 Information flow based approaches to preserve integrity
 PPI [Sun+08], UMIP [Li+07], SLIM [Safford+05]

 Complement with SSI 

 Back to the future [Hsu+06]
 Recovery needed, availability affected 
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Conclusion

Software installation is an attractive vector 
for malware attacks

SSI addresses this problem by securing 
installation process
Work seamlessly with execution confinement 

techniques to “remove gaps in armor” 

Support a diversity of installation mechanisms

Develop high-level policy framework to reduce 
manpower needed for app-specific policies

Evaluation shows our approach is effective and 
practical



Stony Brook University 22

Questions?
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Realizing Safe Installations

Built over Safe Execution Environment (SEE)
 logically isolates outputs of SEE processes from others  

At the end of installation, check conformance to  
state-based policies to ensure safety
 Package database modifications to be consistent with 

state changes observed during installation

 File accesses to be consistent with trust level of package
Untrusted packages can't interfere with benign apps

 Trojans/rootkits prevented from automatically starting up

 Prevent some rootkit-like actions
 e.g., attempt to impersonate a trusted program

Abort installation if policy violated


