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Kernel Rootkits
 a program runs in kernel space to take 

fundamental control of a computer system, 
without authorization by the system’s owners and 
legitimate. 

 Joanna Rustkowska classified three types of kernel 
rootkits.

1)Type I: modifying static kernel objects.

2)Type II: modifying dynamic kernel objects.

3)Type III: VMM, SMM and other hardware-based 
rootkits. 



How are malicious code inserted to 
the kernel ? 

 Loadable kernel module (LKM) or driver (most of 
Linux and Windows rootkits  are implemented in this 
way). 

 /dev/mem, /dev/kmem and \Device\PhysicalMemory 
(But modifying kernel memory through them has 
been disabled in recent Linux and Windows versions).

 Exploiting the vulnerabilities of benign kernel code 
(like buffer overflows).



Rootkit Detection
 Signature-based rootkit detection and kernel integrity 

verification are two generic rootkit detection 
approaches, and many research works have been 
focused the second one.

 Kernel integrity verification has following limitations:

1) It is infeasible to verify all the states of dynamic kernel 
objects.

2)It cannot cope with non-integrity-violation rootkits, 
e.g., some type III rootkits and confidentiality-
violation rootkits. 



A Confidentiality-violation Rootkit. 



Rootkit Prevention 
 Only authenticated/authorized LKMs/drivers are 

allowed to be loaded and executed in the kernel 
(Microsoft’s driver code signing, NICKLE and 
SecVisor).

 However, no authentication/authorization authority 
can assure the goodness of a driver/LKM.  VeriSign just 
sells the certificate to customers and doesn’t check the 
driver code to be signed at all. 

 This approach also cannot handle a large number of 
legacy drivers/LKMs, Windows XP and 32-bit Vista 
doesn’t enforce the code driver signing in default.



DARK
 DARK aims to assure the goodness of a LKM/driver 

that computer users don’t trust, while it is useful to 
them.

 It combines the program monitoring with the rootkit
identification techniques. The suspicious kernel code 
is monitored and its interactions with the rest of 
kernel are checked against a group of well-selected 
security policies. 

 DARK is built based on Qemu/Kqemu and its program 
monitoring is achieved through on-demand 
emulation.



On-demand Emulation



Design
 Use one feature of OS’s virtual memory 

management subsystem. 
 Set present bits in page table entries of the LKM’s 

code to 0.
 Page fault exception is generated when the VM 

attempts to run the LKM code.
 The VMM intercepts and interprets the exception 

and switches to emulation mode.
 The emulator sets those present bits to 1 and runs 

the LKM code along with DARK’s security policy 
checking. 



Implementation
 Reuse the existing demand emulation framework 

of Qemu/Kqemu.

 Instrument Linux kernel’s sys_init_module and 
sys_delete_module functions in kernel/module.c , 
and the VM issues the 0x90 and 0x91 software 
interrupt to VMM.

 Add DARK’s business logics to V-2-E and E-2-V 
control code of Qemu/Kqemu.

Modify Linux module loader (insmod.c) to store a 
module’s text range in its module descriptor.



Security Policy 
 They are manually created based on expert knowledge.

 The basic rule format is as below:

Subject Operation Object Action

Module X Read, 
Write, Call

Hardware 
Objects, 
Kernel 
Objects

Alarm, 
Reject



ID NAME OPERATION

GLOBAL 

VARIABLE OR 

FUNCTION

DATA TYPE ACTION DYNAMIC OPTIONAL

1
Console TTY 

Buffer
Read console_table tty_struct Alarm No No

2 Exception Table Write __start___ex_table Exception_table_entry Alarm No No

3 GDT table Write gdt_table Array Reject No No

4 IDT table Write idt_table Array Reject No No

5 Kernel Text Write _text - Reject No No

6 MM List Write init_task mm_struct Alarm Yes No

7 Module List Write module_list Module Alarm Yes No

8 Module Text Write module_list - Reject Yes No

9 Netfilter Hooks Call nf_register_hook - Alarm No Yes

10 Page Table Write init_task - Reject Yes No

11
Proc Dir Entry 

List
Write proc_root proc_dir_entry Alarm Yes No

12
Proc Inode Ops 

List
Write proc_root Proc_inode_operation Alarm Yes No

13
Proc File Ops 

List
Write proc_root Proc_file_operation Alarm Yes No

14
PTM TTY 

Buffer
Read ptm_table tty_struct Alarm Yes No

15
PTS TTY 

Buffer
Read pts_table tty_struct Alarm Yes No

16
Socket Buffer 

List
Read skbuff_head_cache sk_buff Alarm Yes Yes

17 Syscall Table Write sys_call_table Array Reject No No

18 Task List Write init_task task_struct Alarm Yes No

19 Segment Write init_tss Array Reject No No



DARK System Rules



Policy Enforcement
 Kernel rules are organized as two hash tables.

 The LKM code is monitored at the code translation of 
Qemu, and the cached code is not inspected again, 
which significantly improves the performance.

 External kernel memory accesses and function 
invocations can optionally be logged to a local file.  



Security Evaluation
 Total 18 Linux rootkits are available for the evaluation: 

17 are collected from the Internet; one is written by 
myself.

 We can’t find any type III rootkit that works in the 
testing system. 

 20 benign modules are selected from Linux source for 
false positive evaluation.

 All rootkits have been detected and blocked by DARK; 
only 1 benign module causes an alarm. 



ROOTKIT

FUNCTION

TYPE

HIT KERNEL RULE

ACTI

ONHID PE REE REC NEU
Load Operation

Adore X X I 17 18 Reject

Adore-ng X X X II 7, 12, 13 18 Alarm

Adore-ng (hidden) X X X II 7*, 12, 13 18 Alarm

Darklogger X II 15 Alarm

Exception X X I 2 18 Reject

Fileh-lkm X I 17 Reject

Hookstub X I 4 18 Reject

Hp X X II 18 Alarm

KIS X X I 17 Reject

Knark X X X I 17 18 Reject

Linspy2 X I 16 Reject

Nfsniffer X II 9 16 Alarm

Nushu X II 16 Alarm

Pizzaicmp X II 9 16 Alarm

Prrf X X II 11, 12, 13 18 Alarm

Sebek X I 7, 17 Reject

Srootkit X I 5 Reject

Vlogger X I 17 14 Reject

Vlogger (local) X II 1 Alarm



Performance Evaluation
Target LKM is iptable_filter.

Three systems: VMM-only, DARK and 
DARK-CS.

Three benchmarks: bonnie, iperf, lmbench.

When iptable_filter is excuted, DARK has 
about 10% performance penalty.



Sequential Output Sequential Input Random

Per Char Block Rewrite Per Char Block Seeks

K/sec %CPU K/sec %CPU K/sec %CPU K/sec
%CP

U
K/sec %CPU /sec

%CP

U

VMM
8528±

233
64±3

12755±1

425
45±5

19082±1

490
53.0±3

15805±2

301
75±4

1292

92
71±2

3515±1

908
84±4

DARK

-CS

8038±

345
61±5

11715 1

379
41±6

17402±1

834
48.2±2

16860±2

004
80±5

1302

66
74±4

4969±1

759
85±2

DARK
8168±

405
67 6

13949±1

106
43±5

18742±2

046
49.8±2

14480±2

720
73±7

1254

93
72±4

5117±1

254
83±4

Bonnie Test Result



VM as Server (M/sec) VM as Client (M/sec)

TCP UDP TCP UDP

VMM-only 21.8±1.2 1.05±0.1 26.8±2.3 1.13±0

DARK-CS 19.73±0.5 1.01±0 23.99±1.4 1.08±0.1

DARK 19.60±0.6 1.00±0.1 24.05±1.0 1.08±0.1

Iperf Test Result



Future Work
 Continually refine the policy rules to accommodate 

new rootkit attacks. 

 Tweak the tradeoff between performance and security: 
selectively enabling or disabling on-demand 
emulation based on certain conditions, e.g., current 
system load, virtual CPU usage and bandwidth usage. 

 Port DARK to Kernel-based Virtual Machine (KVM) 
that supports hardware virtualization extensions such 
as Intel’s VT-x and AMD’s AMD-V.




