/

Shepherding Loadable Kernel
Modules through On-demand
Emulation

Chaoting em Beyah

/ —

Kernel Rootkits

a program runs in kernel space to take
fundamental control of a computer system,
without authorization by the system’s owners and
legitimate.

Joanna Rustkowska classified three types of kernel
rootkits.

Type I: moditying static kernel objects.
Iype II: modifying dynamic kernel objects.

Type III: VMM, SMM and other hardware-based
rootkits.

o

/
~How are malicious code inserted to

the kernel ?

Loadable kernel module (LKM) or driver (most of
Linux and Windows rootkits are implemented in this

way).
/dev/mem, /dev/kmem and \Device\PhysicalMemory

(But modifying kernel memory through them has
been disabled in recent Linux and Windows versions).

Exploiting the vulnerabilities of benign kernel code
(like buffer overflows).

Rootkit Detection

Signature-based rootkit detection and kernel integrity
verification are two generic rootkit detection
approaches, and many research works have been
focused the second one.

Kernel integrity verification has following limitations:

It is infeasible to verify all the states of dynamic kernel
objects.

[t cannot cope with non-integrity-violation rootkits,
e.g., some type III rootkits and confidentiality-
violation rootKkits.

~ A Confidentiality-violation Rootk

User Space

Terminal
Emulator

X Server

g
]
="
[0]
=
g
i
e
| i e
| 5 g
h = 4 _
= | i
m SN
| e) B
| y g m
| 2 5
" | oo
| [~ |
| | B
I P 1
| — "
I|II|II|II|II|II|II|II|II|II|II
_ T
_ . _
I [& |
| 5 = |
I R
| s N & [V
_ E E |
_ ", . e S _
I I

Console tty_struct

Hardware

Keyboard

\ /

/ —

Rootkit Prevention

Only authenticated/authorized LKMs/drivers are
allowed to be loaded and executed in the kernel
(Microsoft’s driver code signing, NICKLE and
SecVisor).

However, no authentication/authorization authority
can assure the goodness of a driver/LKM. VeriSign just
sells the certificate to customers and doesn’t check the
driver code to be signed at all.

This approach also cannot handle a large number of
legacy drivers/LKMs, Windows XP and 32-bit Vista
doesn’t enforce the code driver signing in default.

DARK

DARK aims to assure the goodness of a LKM/driver
that computer users don't trust, while it is useful to
them.

[t combines the program monitoring with the rootkit
identification techniques. The suspicious kernel code
is monitored and its interactions with the rest of
kernel are checked against a group of well-selected
security policies.

DARK is built based on Qemu/Kgemu and its program
monitoring is achieved through on-demand
emulation.

= On-demand Emulation

Usger Space

User Space
Gtiest OS
iy
Guest OS
vir
Ermuifator Emuilator
1
e i, B ... g
Vi VI
Kernel Space Kernel Space

Virtualization to Emulation Emulation to Virtualization

Figure 1: DARK Operation Mode Switch

e A I

/ —_—

Design

Use one feature of OS’s virtual memory
management subsystem.

Set present bits in page table entries of the LKM'’s
code to o.

Page fault exception is generated when the VM
attempts to run the LKM code.

The VMM intercepts and interprets the exception
and switches to emulation mode.

The emulator sets those present bits to 1 and runs
the LKM code along with DARK’s security policy
checking.

/ —

Implementation

Reuse the existing demand emulation framework
of Qemu/Kgemu.

Instrument Linux kernel’s sys_init_module and
sys_delete_module functions in kernel/module.c,
and the VM issues the oxg9o and ox9g1 software
interrupt to VMM.

Add DARK’s business logics to V-2-E and E-2-V
control code of Qemu/Kgemu.

Modify Linux module loader (insmod.c) to store a
module’s text range in its module descriptor.

\ e

/ —

Security Policy

They are manually created based on expert knowledge.
The basic rule format is as below:

Subject |Operation Object |Action

Module X Read, Hardware |Alarm,
Write, Call |Objects, Reject
Kernel

Objects

GLOBAL

ID NAME OPERATION VARIABLE OR DATA TYPE ACTION DYNAMIC %‘I‘:IONAL
FUN e
—
1/}%;31%?\(Read console_table tty struct Alarm No No
2 Exception Table Write __start___ex_table Exception_table_entry Alarm No No
3 GDT table Write gdt_table Array Reject No No
4 IDT table Write idt_table Array Reject No No
5 Kernel Text Write _text - Reject No No
6 MM List Write init_task mm_struct Alarm Yes No
7 Module List Write module_list Module Alarm Yes No
8 Module Text Write module_list - Reject Yes No
9 Netfilter Hooks Call nf_register_hook - Alarm No Yes
10 Page Table Write init_task - Reject Yes No
11 HIES [E;gtEntry Write proc_root proc_dir_entry Alarm Yes No
12 oG Iﬂ?ge s Write proc_root Proc_inode_operation Alarm Yes No
13 Proe E:;f ops Write proc_root Proc_file_operation Alarm Yes No
PTMTTY
14 Buffer Read ptm_table tty struct Alarm Yes No
PTSTTY
15 Buffer Read pts_table tty struct Alarm Yes No
16 SockeLtiSI?uffer Read skbuff_head_cache sk_buff Alarm Yes Yes
17 Syscall Table Write sys_call_table Array Reject No No
18 Task List Write init_task task_struct Alarm Yes No
19 Seament Write init tss Arrav Reiect No No

= i .

MNAME OPERATION HARDWARE OBJECT ACTION INSTRUCTIONS
BIOS Write BIOS ROM Reject MOV
System Cache Write L1, L2 Cache Alarm INYD, WBINYVD
Control Register Write CRO, CR3, CR4 Reject MOY CRnNn
Debug Register W/rite DB1 - DBE7T Alarm MOV DBEn

10 Port ReadMVrite 10 Ports Alarm IN, OUT
IDT Register W/rite idt register Reject LIDT
GDT Register YWrite GDT Register Reject LGDT
MSR Write MSR Alarm WRMSR
System RAM W/rite System RAM Alarm MOVE
TLE Write TLE Alarm INVLPG
TR Register Wi/rite TR Register Reject LTR

/ T e D pp———

Policy Enforcement

Kernel rules are organized as two hash tables.

The LKM code is monitored at the code translation of
Qemu, and the cached code is not inspected again,
which significantly improves the performance.

External kernel memory accesses and function
invocations can optionally be logged to a local file.

/ —

Security Evaluation

Total 18 Linux rootkits are available for the evaluation:
17 are collected from the Internet; one is written by
myself.

We can't find any type III rootkit that works in the
testing system.

20 benign modules are selected from Linux source for
false positive evaluation.

All rootkits have been detected and blocked by DARK;
only 1 benign module causes an alarm.

FUNCITON HIT KERNEL. RUL/

W’ HID PE REE | REC ——h&u TYPE [OPELCT ASJ :
Adore X X I 17 18 Reject
Adore-ng X X X I T 2708 18 Alarm
Adore-ng (hidden) X X X I FEo12013 18 Alarm
Darklogger X I 15 Alarm
Exception X X I 2 18 Reject
Fileh-lkm X | 17 Reject
Hookstub X I 4 18 Reject
Hp X X 1 18 Alarm
KIS X X | 17 Reject
Knark X X X I 17 18 Reject
Linspy2 X I 16 Reject
Nfsniffer X I 9 16 Alarm
Nushu X 1 16 Alarm
Pizzaicmp X I 9 16 Alarm
Prrf X X | 11,12,13 18 Alarm
Sebek X I 7,17 Reject
Srootkit X I 5 Reject
Vlogger X I 17 14 Reject
Vlogger (local) X I 1 Alarm

R et
S

/V

Performance Evaluation

Target LKM is iptable_filter.

Three systems: VMM-only, DARK and
DARK-CS.

Three benchmarks: bonnie, iperf, Imbench.

When iptable._filter is excuted, DARK has
about 10% performance penalty.

Bonnie Test Result
Sequential Output Sequential Input Random
Per Char Block Rewrite Per Char Block Seeks
0 0]

K/sec %CPU K/sec %CPU K/sec %CPU K/sec A)LCJ: % K/sec %CPU [sec /OLCJ: 3

8528+ 12755+1 19082+1 15805+2 1292 3515+1
VMM 933 64+3 495 45+5 490 53.0+3 301 75+4 92 71+2 908 84+4

DARK | 8038+ 117151 17402+1 16860+2 1302 4969+1
CS 345 61+5 379 41+6 834 48.2+2 004 80+5 66 T4+4 759 85+2

8168+ 13949+1 18742+2 14480+2 1254 5117+1
DARK 405 67 6 106 43+5 046 49.8+2 720 73+7 03 72+4 254 83+4

e — _
Ipert Test Result
VM as Server (M/sec) VM as Client (M/sec)
TCP UDP TCP UDP
VMM-only 21.8+1.2 1.05%0.1 26.8+2.3 1.130
DARK-CS 19.73+0.5 1.01+0 23.99+1.4 1.08+0.1
DARK 19.60%0.6 1.00£0.1 24.05+1.0 1.08+0.1

Future Work

Continually refine the policy rules to accommodate
new rootkit attacks.

Tweak the tradeoft between performance and security:
selectively enabling or disabling on-demand
emulation based on certain conditions, e.g., current
system load, virtual CPU usage and bandwidth usage.

Port DARK to Kernel-based Virtual Machine (KVM)
that supports hardware virtualization extensions such
as Intel’s VT-x and AMD’s AMD-V.

