
Makoto Shimamura (1),
Kenji Kono (1,2)

(1) Dept. of Information and Computer Science, Keio Univ., Japan

(2) CREST, Japan Science and Technology Agency

Yataglass: Network-level Code

Emulation for Analyzing

Memory-scanning Attacks

Remote code injection attack

▌ Allows attackers to execute their arbitrary shellcode

►Various vulnerabilities can be exploited

◘ Stack overflow, Heap overwrite, Format string attack etc…

▌ Security researchers analyze shellcode to develop
countermeasures

►Static disassembly is widely used

▌ Attackers can thwart static disassembly

►Encryption

◘ encrypts shellcode body

►Obfuscation

◘ inserts junk bytes between instructions

Network-level code emulator

▌ Emulate the execution of shellcode

►e.g.) Spector [Borders, et al. ‟07]

◘ extracts system functions issued by shellcode

▌ Advantage

►Never thwarted by encryption and obfuscation

◘ Encrypted shellcode is decrypted during execution

◘ Obfuscation cannot hide the presence of system call invocations

Analysis resultMalicious message

Shellcode

Instruction pointer

Emulation

sock = accept()

dup2(0,sock)

dup2(1,sock)

execve(“/bin/sh”)

Typical application of

network-level code emulator

▌ Analyze shellcode collected by honeypots

►Honeypot is a decoy host that collects malicious
network traffic

◘ Allows us to collect a lot of shellcode for various servers

►Many anti-virus vendors, security research institutes
have their honeypots

▌ Network-level code emulators extract executed
instructions and system calls of collected shellcode

►The result is used for…

◘ Behavior-based virus detection of anti-virus software

◘ Restoring compromised servers from damage

Memory-scanning attack

▌ Memory-scanning attack can evade network-level
code emulators
►Uses instructions in the victim process, that are outside

shellcode, as a part of shellcode

▌ Current network-level code emulators cannot analyze
shellcode of this style
►No emulator uses the victim‟s memory for emulation

RET

call

return

Shellcode
Address space of

the victim process

Scans the victim‟s memory for a RET instruction

Stack region Code region

Why not use the victim‟s

memory image?

▌ Using the victim‟s memory image is cumbersome

►In particular, when that honeypots collect shellcode…

◘ The analyst must prepare memory images of possible targeted
software and their various versions

◘ No real victim process exists if the honeypot is low-interaction
honeypot

▌ It is better to analyze shellcode without victim
process‟s memory

►Enables us to analyze the shellcode collected by
honeypots with less burden

►No need to prepare many memory image

Proposal：Yataglass

▌ A network-level code emulator that allows us to
analyze memory-scanning attack
►Infers instructions outside shellcode that a memory-

scanning shellcode scans for

▌ Victim‟s memory image is not required
►Enables us to analyze memory-scanning attack

effectively

Inferred instructions outside shellcode

call

return

Shellcode

Shellcode scans the victim‟s memory for the

instructions outside the shellcode

Yataglass infers the scanned

instructions from the shellcode’s

scanning instructions

Scanning loop

▌ A scanning loop scans the victim‟s memory for
instructions
►Example： scans for a RET instruction (0xC3)

1: mov edi, ADDR (An addr. of the victim proc.)

2: LOOP: inc edi

3: cmpb [edi], 0xC3

4: jne LOOP

5: call edi # Uses the found RET

6: CONTINUE: # Shellcode continues

Scanning loop

for „RET‟

▌ Yataglass infers what instructions are scanned for
►Infers the instructions from the exit-condition of the

scanning loop

►In this example, EDI register points to a RET instruction when
the control exits from the scanning loop

Symbolic execution

▌ To infer the scanned-for instructions, Yataglass uses
symbolic execution

▌ Symbolic execution executes a program without
concrete values
►Values are regarded as symbols

►Operations are done symbolically

►A result of an operation is expressed as a new symbol
that contains operator and operands

Instruction sequence
mov eax, INPUT1

mov ebx, INPUT2

add eax, ebx

Symbolic execution
eax = X

ebx = Y

eax = (X + Y)

A symbol for unknown INPUT1

A symbol for unknown INPUT2

Inferring scanned-for instructions

by symbolic execution

▌ Yataglass forks if an unknown symbol is used as a predicate of
conditional branch
► Executes both branch with appropriate constraints

► The instance of Yataglass which exits from the loop has
appropriate conditions to exit from the scanning loop

► Yataglass terminates execution if the same loop is executed to
prevent path explosion

Instruction sequence
1: mov edi, X

2: LOOP: inc edi

3: cmpb [edi], 0xC3

4: jne LOOP

5: call edi

Symbolic execution
edi = X (An addr. of the victim proc.)

edi = (X + 1)

Compared *(X+1) with 0xC3

Set constraint [edi] == 0xC3

Jump to [edi] == RET

More complicated scanning

▌ Using multiple constraints to find an instruction

Instruction sequence
1: mov edi, X

2: LOOP: inc edi

3: cmpb [edi], 0xC2

4: jle LOOP

5: cmpb [edi], 0xC4

6: jge LOOP

7: call edi

Symbolic execution
edi = X (An addr.of the victim proc.)

edi = X + 1

Compared *(X+1) with 0xC2

Set constraint [edi]>0xC2

Compared *(X+1) with 0xC4

Set constraint [edi]<0xC4

([edi]>0xC2) && ([edi]<0xC4)

-> [edi] == 0xC3 („RET‟)

Experiment: Analysis of

memory-scanning attacks

▌ Obtained seven realworld shellcode from SecurityFocus and
Milw0rm

▌ Inserted memory-scanning code to the shellcode

▌ Compared execution result with Spector [Borders, et al., „07]
► Spector is one of the state-of-the art network-level code emulator

Source Target Obtained from Yataglass Spector

tsig.c bind SecurityFocus

7350wurm.c wu-ftpd MilwOrm

rsync-expl.c rsync SecurityFocus

7350owex.c wu-imap MilwOrm

OpenFuck.c Apache SecurityFocus

sambal.c Samba SecurityFocus

cyruspop3d.c Cyrus-pop3d MilwOrm





























Analysis result of real shellcode

▌ Analyzed shellcode for B/O vuln. in samba 2.2.7
that incorporates memory-scanning code

▌ Yataglass extracted a list of system calls issued by
the shellcode and that of executed instructions

SOCK1=socket(2,1,6)

listen(SOCK1,{2,61360,0},16)

SOCK2=accept(SOCK1,0)

close(SOCK1)

dup2(SOCK2,0)

dup2(SOCK2,1)

execve(“/bin//sh”,“/bin//sh”)

Issued system calls Executed instructions (snippet)

…

push esi

push ebp

jmp edi

pop ebp

ret

popa

int 0x80

…

Analysis result of real shellcode

(cont.d)

▌ We manually analyzed the shellcode by
injecting it into the target server and tracing
instructions with GDB

►accepts a network connection from the attacker
by socket(), listen() and accept()

►redirects the stdin/out to the connection by
dup2()

►executes /bin/sh by execve()

▌ Confirmed the result generated by Yataglass

Limitations

▌ Yataglass cannot infer instructions if the shellcode scans
for a value in a range
►pop instructions ranges from 0x58 to 0x5F regarding registers

◘ pop eax=0x58, pop ebx=0x59, … pop edi = 0x5F

►Shellcode may use a scanning loop that accepts all pop
instructions followed by ret instruction

◘ e.g.) save all registers, push garbage value, call the scanned pop and
ret, and then restore registers

►Solution: fork() with assuming one of the possible values

▌ Yataglass cannot infer instructions when shellcode scans
for a function signature
►Shellcode may scan for the first several bytes of fopen() to

invoke it

►We think signature-based inference is useful

Related work

▌ Spector [Borders, et al. ‟07]
► Uses symbolic execution to extract behaviors of shellcode

► Can be evaded by memory-scanning attacks

▌ Detection of decryption behavior in polymorphic shellcode
using emulation [Polychronakis, et al. ‟06]
► Counts payload reads followed by GetPC code

► Can be evaded by memory-scanning attacks
◘ But we can easily apply Yataglass‟s technique to this emulator

▌ Polymorphic worm detection based on static analysis [Kruegel,
et al. ‟05]
► Extracts possible control flows inside payloads and finds a match

between extracted control flows in multiple streams

► Yataglass extracts detailed behavior of shellcode used by worms

Summary

▌ Memory-scanning attack
►Uses instructions of the victim process as a part of shellcode

►Evades current network-level code emulators

▌ Proposed Yataglass to analyze memory-scanning attacks
►Infers the scanned-for instructions with symbolic execution

►Successfully analyzed memory-scanning shellcode without
victim process‟s memory image

▌ Future work
►Automatic defense against shellcode

►Automatic recovery from the damage of shellcode

