Yataglass: Network-level Code
Emulation for Analyzing
Q Memory-scanning Attacks

Makoto Shimamura (1),
Kenji Kono (1,2)

(1) Dept. of Information and Computer Science, Keio Univ., Japan
(2) CREST, Japan Science and Technology Agency

g Remote code Injection attack

| Allows attackers to execute their arbitrary shellcode

» Various vulnerabilities can be exploited
o Stack overflow, Heap overwrite, Format string attack etc...

| Security researchers analyze shellcode to develop
countermeasures

» Static disassembly is widely used

| Attackers can thwart static disassembly

» Encryption
o encrypts shellcode body

» Obfuscation
o inserts junk bytes between instructions

g Network-level code emulator

| Emulate the execution of shellcode

»e.g.) Spector [Borders, et al. *07]
p extracts system functions issued by shellcode

| Advantage

» Never thwarted by encryption and obfuscation
o Encrypted shellcode is decrypted during execution
o Obfuscation cannot hide the presence of system call invocations

Malicious message Emulation Analysis result

Instruction pointer sock = accept()
dup2(0,sock)
Shellcode ‘ dup2(1.500K)

execve(““/bin/sh”)

Typical application of
network-level code emulator

4

| Analyze shellcode collected by honeypots

» Honeypot is a decoy host that collects malicious
network traffic

o Allows us to collect a lot of shellcode for various servers
» Many anti-virus vendors, security research institutes
have their honeypots
| Network-level code emulators extract executed
Instructions and system calls of collected shellcode
» The result is used for...

o Behavior-based virus detection of anti-virus software
o Restoring compromised servers from damage

VQ{ Memory-scanning attack

| Memory-scanning attack can evade network-level
code emulators

» Uses instructions in the victim process, that are outside
shellcode, as a part of shellcode

| Current network-level code emulators cannot analyze
shellcode of this style

» No emulator uses the victim’s memory for emulation

Scans the victim’s memory for a RET instruction
call \

Shellcode > RET

Address space of
the victim process

Stack region return Code region

")v Why not use the victim’s
2 Mmemory |mage?

I Using the victim’s memory 1image 1s cumbersome

» In particular, when that honeypots collect shellcode...

o The analyst must prepare memory images of possible targeted
software and their various versions

o No real victim process exists if the honeypot is low-interaction
honeypot

I Itis better to analyze shellcode without victim
process’s memory

» Enables us to analyze the shellcode collected by
honeypots with less burden

» No need to prepare many memory image

gProposal . Yataglass

| A network-level code emulator that allows us to
analyze memory-scanning attack

» Infers instructions outside shellcode that a memory-
scanning shellcode scans for

I Victim’s memory 1image 1s not required

» Enables us to analyze memory-scanning attack
effectively

Shellcode scans the victim’s memory for the

))) inst ti f the shellcode’
instructions outside the shellcode instructions from the shclicode:s

scanning instructions

e Vv

Shellcode I Inferred instructions outside shellcode

‘ Yataglass infers the scanned

A return

r{ Scanning loop

A scanning loop scans the victim’s memory for
Instructions

» Example : scans for a RET instruction (0xC3)

1: mov edi, ADDR (An addr. of the victim proc.)
2: LOOP: Inc edi | Scanning loop
3: cmpb [edi], OXC3 for ‘RET’

4. jne LOOP

5: call edi # Uses the found RET

6: CONTINUE: # Shellcode continues

| VYataglass infers what instructions are scanned for
» Infers the instructions from the exit-condition of the
scanning loop

» In this example, EDI register points to a RET instruction when
the control exits from the scanning loop

g Symbolic execution

| Toinfer the scanned-for instructions, Yataglass uses
symbolic execution

| Symbolic execution executes a program without
concrete values
» Values are regarded as symbols
» Operations are done symbolically

» A result of an operation is expressed as a new symbol
that contains operator and operands

Instruction sequence Symbolic execution
mov eax, INPUT1 eax = X < Asymbol for unknown INPUT1

mov ebx, INPUT2 ebx =Y &= Asymbol for unknown INPUT2
add eax, ebx eax = (X +Y)

Rwn

Inferring scanned-for instructions
g by symbolic execution

Yataglass forks if an unknown symbol is used as a predicate of

conditional branch

» Executes both branch with appropriate constraints

» The instance of Yataglass which exits from the loop has
appropriate conditions to exit from the scanning loop

» Yataglass terminates execution if the same loop is executed to

prevent path explosion

Instruction sequ
mov edi, X

LOOP: inc edi
cmpb [edi], OxC3
jne LOOP

call edi

ence Symbolic execution
edi = X (An addr. of the victim proc.)

edi=(X+1)
Compared *(X+1) with OxC3
Set constraint [edi] == 0xC3

Jump to [edi] == RET

=

~

g More complicated scanning

I Using multiple constraints to find an instruction

LOOP:

Instruction sequeng

mov edi, X

Inc edi

cmpb [edi], OXC2
jle LOOP

cmpb [edi], OxC4
jge LOOP

call edi

e Symbolic execution
edi = X (An addr.of the victim proc.)

edi=X+1

Compared *(X+1) with OxC2
Set constraint [edi]>0xC2
Compared *(X+1) with OxC4
Set constraint [edi]<OxC4

([edi]>0xC2) && ([edi]<O0xC4)
-> [edi] == 0xC3 (‘RET)

Experiment: Analysis of
memory-scanning attacks

¢

Obtained seven
MilwOrm

I Inserted memory-scanning code to the shellcode

Compared execution result with Spector [Borders, et al., ‘07]
» Spector is one of the state-of-the art network-level code emulator

realworld shellcode from SecurityFocus and

Source Target Obtained from Yataglass Spector
tsig.c bind SecurityFocus v x
7350wurm.c wu-ftpd MilwOrm v X
rsync-expl.c rsync SecurityFocus v X
73500wex.c wu-imap MilwOrm v X
OpenFuck.c Apache SecurityFocus v X
sambal.c Samba SecurityFocus v X
cyruspop3d.c Cyrus-pop3d MilwOrm v X

gAnalysis result of real shellcode

| Analyzed shellcode for B/O vuln. in samba 2.2.7

that incorporates memory-scanning code

| Yataglass extracted a list of system calls issued by
the shellcode and that of executed instructions

Issued system calls

SOCK1=socket(2,1,6)
listen(SOCK1,{2,61360,0},16)
SOCK2=accept(SOCK1,0)
close(SOCK1)
dup2(SOCK2,0)
dup2(SOCK2,1)
execve(“/bin//sh”,“/bin//sh™)

Executed instructions (snippet)

push esi
push ebp
jmp edi
pop ebp
ret

popa

int 0x80

Analysis result of real shellcode
(cont.d)

v

| We manually analyzed the shellcode by
Injecting it into the target server and tracing
Instructions with GDB

P accepts a network connection from the attacker
by socket(), listen() and accept()

» redirects the stdin/out to the connection by
dup2()
P executes /bin/sh by execve()

| Confirmed the result generated by Yataglass

g Limitations

| Yataglass cannot infer instructions if the shellcode scans
for a value in a range
» pop instructions ranges from 0x58 to Ox5F regarding registers
o pop eax=0x58, pop ebx=0x59, ... pop edi = OX5F
» Shellcode may use a scanning loop that accepts all pop
Instructions followed by ret instruction

o e.g.) save all registers, push garbage value, call the scanned pop and
ret, and then restore registers

» Solution: fork() with assuming one of the possible values
Yataglass cannot infer instructions when shellcode scans
for a function signature

» Shellcode may scan for the first several bytes of fopen() to
Invoke it

» \We think signature-based inference is useful

g Related work

I Spector [Borders, et al. *07]
» Uses symbolic execution to extract behaviors of shellcode
» Can be evaded by memory-scanning attacks
| Detection of decryption behavior in polymorphic shellcode
using emulation [Polychronakis, et al. *06]
» Counts payload reads followed by GetPC code
» Can be evaded by memory-scanning attacks
o But we can easily apply Yataglass’s technique to this emulator
| Pol¥m8r?hic worm detection based on static analysis [Kruegel,
et al. ’05

» Extracts possible control flows inside payloads and finds a match
between extracted control flows in multiple streams

» Yataglass extracts detailed behavior of shellcode used by worms

g Summary

I Memory-scanning attack
» Uses instructions of the victim process as a part of shellcode
» Evades current network-level code emulators

| Proposed Yataglass to analyze memory-scanning attacks

» Infers the scanned-for instructions with symbolic execution

» Successfully analyzed memory-scanning shellcode without
victim process’s memory image

| Future work
» Automatic defense against shellcode
» Automatic recovery from the damage of shellcode

