
Structural and Sensitivity Analysis
for the Primal and Dual Problems

in the Physical and Material Spaces

Dissertation

DANIEL MATERNA





Structural and Sensitivity Analysis
for the Primal and Dual Problems

in the Physical and Material Spaces

von der Fakultät Architektur und Bauingenieurwesen
der Technischen Universität Dortmund

zur Verleihung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von
Dipl.-Ing. Daniel Materna

Dortmund, November 2009



Kontakt:
Dipl.-Ing. Daniel Materna
Numerische Methoden und Informationsverarbeitung
Fakultät Architektur und Bauingenieurwesen
Technische Universität Dortmund
August-Schmidt-Str. 8, D-44227 Dortmund
Email: daniel.materna@tu-dortmund.de
URL: www.bauwesen.uni-dortmund.de/nmi

Prüfungskommission:
Vorsitz: Prof. Dr.-rer. nat. Bernhard Middendorf
1. Gutachter: Prof. Dr.-Ing. Franz-Joseph Barthold
2. Gutachter: Prof. Dr.-Ing. Friedel Hartmann

Tag der Einreichung: 13.07.2009
Tag der mündlichen Prüfung: 06.11.2009



Abstract

The present work is concerned with a complete and consistent representation of structural
and sensitivity analysis for the primal and dual problems in structural mechanics. A complete
description means that besides classical changes in the physical space (displacement space)
also changes in the material space (geometry or design space) are allowed. This point of
view yield a complexity of eight problems in structural mechanics. Based on a variational
approach, these eight problems are completely derived in a continuous and finite element
formulation for the model problem of nonlinear elasticity.

The above mentioned formulations are applied to mesh optimization (r-adaptivity) and shape
optimization problems. First of all, in the framework of a complete primal problem, classical
global r-adaptive mesh optimization strategies are considered and different error measures
are introduced. Thereafter, a novel goal-oriented r-adaptive mesh optimization algorithm is
proposed, in which the finite element mesh is optimized in such a way, that a chosen quantity
of interest can be computed with high accuracy. Furthermore, shape optimization problems
are investigated and the coherence to configurational mechanics is demonstrated.

Moreover, error estimators and improvement algorithms for first-order sensitivity relations
are derived. Novel theorems for exact sensitivity relations for the state and a chosen quantity
of interest are presented. These results are the basis for error estimators and for any improve-
ment algorithms of design sensitivity relations. All of the required higher-order variations of
the weak form of equilibrium are explicitly derived for shape design sensitivities. The ef-
ficiency and reliability of the error estimators and improvement algorithms are verified by
means of numerical examples.



Kurzfassung

Die vorliegende Arbeit befasst sich mit der vollständigen und konsistenten Darstellung der
Struktur- und Sensitivitätsanalyse für die primalen und dualen Probleme in der Strukturmecha-
nik. Unter Vollständigkeit wird hier verstanden, dass neben den klassischen Veränderungen
im physikalischen Raum (Verschiebungsraum) auch Veränderungen im materiellen Raum
(Geometrie- oder Designraum) zulässig sind. Diese Betrachtungsweise führt zu einer Kom-
plexität von acht Problemen in der Strukturmechanik. Basierend auf einem variationellen
Zugang werden diese acht Probleme in der Arbeit vollständig kontinuierlich und diskret für
das Modellproblem der nichtlinearen Elastizitätstheorie hergeleitet.

Die obigen Formulierungen werden anschließend auf Netzoptimierungsprobleme (r-Adapti-
vität) und Formoptimierungsprobleme angewendet. Zunächst werden im Rahmen eines voll-
ständigen primalen Problems klassische globale r-adaptive Netzoptimierungsstrategien be-
trachtet und verschiedene Fehlermaße für r-Adaptivität eingeführt. Anschießend wird ein
neuer zielorientierter r-adaptiver Netzoptimierungsalgorithmus entwickelt, mit dem ein gege-
benes FE-Netz derart verbessert wird, dass eine gewählte Zielgröße möglichst genau berech-
net werden kann. Ferner werden Formoptimierungsprobleme betrachtetet und die Beziehung
zur Konfigurationsmechanik aufgezeigt.

Des Weiteren werden Fehlerschätzer und Verbesserungsalgorithmen für Sensitivitätsbezie-
hungen 1. Ordnung hergeleitet. Hierbei werden neue Theoreme für eine exakte Darstellung
von Design-Sensitivitätsbeziehungen des Verschiebungsfeldes sowie für eine gewählte lokale
Zielgröße formuliert. Diese bilden den Ausgangspunkt für Fehlerschätzer und Verbesserungs-
algorithmen von Design-Sensitivitäten. Die hierfür benötigten höheren Variationen der schwa-
chen Form des Gleichgewichts werden explizit für Formänderungen des materiellen Körpers
bestimmt. Die Effizienz und Zuverlässigkeit der Fehlerschätzer und Verbesserungsalgorith-
men wird anhand numerischer Beispiele verifiziert.
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Chapter 1

Introduction

This chapter gives an introduction and motivation for the present work. The state
of the art in this topic as well as open problems are stated. Furthermore, the goals
as well as the structure of this work are presented.

1.1 State of the art and motivation

Physical problems are solved nowadays using numerical methods such as the finite element
method. For the most problems a fixed initial or reference configuration is assumed and the
considered problem is solved in order to find the corresponding state function, i.e. the de-
formed configuration under given prescribed loads. The solution of the problem with respect
to the state is termed as structural analysis. The finite element formulation is based on varia-
tional or weak formulations of the considered boundary value problem (BVP) or initial value
problem (IVP). The solution of a given nonlinear variational problem requires variations with
respect to the state function or generally speaking variations in the physical space.

In some problems the requirement of a fixed initial or reference configuration is abandoned,
i.e. the material configuration is allowed to change. A classical field is structural optimization
such as shape or topology optimization, in which the initial configuration is changed in order
to minimize a chosen objective functional under given constraints, see e.g. [13, 29, 58] and
the references therein for an overview. The shape of the material configuration is described
in an abstract sense by a design function. The variation of objective functionals and PDE-
constraints due to variations in the design or material configuration is termed as variational
design sensitivity analysis. The variations are required in order to solve the optimization
problem using nonlinear programming algorithms. Proposed originally in [25], design sen-
sitivity analysis has been largely developed in the last decades, see e.g. [27, 28, 104] for a
widely overview with many references on this topic. The change in the state function and the
objective functional due to design variations or variations in the material configuration are
investigated. The solution of the sensitivity problems requires variations with respect to the
design function or generally speaking variations in the material space.

1



2 Introduction

Apart from structural optimization and sensitivity analysis other fields are concerned with
variations in the material configuration. Configurational changes are studied in the field of
configurational mechanics or mechanics in the material space and the so-called configura-
tional or material forces or material residuals are used in the context of material inhomo-
geneities as well as any kinds of material defects, see e.g. the monographs [48, 60, 74] for
an overview. Configurational mechanics as a branch of continuum mechanics is concerned
with processes in which simultaneous deformation and configurational changes of a body
take place. Configurational mechanics is also referred to as Eshelbian mechanics, which hon-
ors Eshelby’s work associating the concept of material or configurational force on a material
defect with the change of the overall energy of the system with respect to a displacement in
the material space of such defects [39, 40].

Furthermore, the theory of configurational mechanics is used in computational mechanics.
An interesting application is the optimization of finite element meshes (r-adaptivity) based
on the minimization of the material residual or configurational forces on the mesh nodes, see
e.g. [2, 20, 66,77, 80,101]. The resulting mesh is optimal with respect to the global energy of
the primal problem. The mesh optimization problem has a long tradition. First steps for the
optimization of finite element meshes based on a discrete formulation of energy minimization
were outlined for instance in [23,24,41,75]. The overall energy is minimized with respect to
the state and the position of the nodes. The best mesh is defined as the one associated with the
lowest potential energy. In fact, the authors obtained the same discrete indicators for mesh
optimization like the above mentioned approach from configurational mechanics, but they
have not called them material or configurational forces. In the context of sensitivity analysis
these error indicators can be termed as the sensitivity of the energy with respect to changes of
the nodal point positions. Hence, different communities use merely different designations for
the same quantities.

Therefore, both shape sensitivity analysis and configurational mechanics deal with changes
in the material configuration. Techniques known from shape sensitivity analysis can be used
to obtain the relations from configurational mechanics if the overall energy of the problem is
chosen as objective functional [6, 65, 66, 69]. For instance, in the particular case of fracture
mechanics, if crack propagation is understood as a shape change, the expression of the energy
release rate can be obtained through the shape derivative of the total potential energy [8,100].
In the context of topological-shape sensitivity analysis this was investigated in [83].

Furthermore, changes in the material configuration are concerned in the context of the inverse
motion problem, in which the deformed configuration and Cauchy traction are given and
the undeformed configuration has to be calculated. Methods for formulating such inverse
deformation problems in elasticity were initially proposed in [26,93] and later on investigated
for instance in [44, 45, 57, 61, 96].

In many theoretical and practical situations only certain quantities of interest have to be com-
puted, such as pointwise stresses and displacements or average stresses at some given material
point. Well-known duality techniques can be used in order to compute such quantities. The
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original problem is referred to as the primal problem and the solution obtained from the struc-
tural analysis is termed as primal solution. A dual or adjoint problem has to be formulated for
a given primal problem with respect to the chosen quantities of interest. The solution of the
dual problem yields the corresponding dual or adjoint solution, which is the basis for duality
techniques. In the context of structural mechanics such duality techniques are well-known as
Betti’s principle or reciprocity relation [49, 51]. The concept of duality is more general and
not restricted to mechanical problems and interpretations. Dual problems and dual solutions
are essential within goal-oriented error analysis and mesh optimization techniques in order
to minimize the discretization error within numerical methods, see e.g. [4, 11, 37, 88]. Fur-
thermore, in recent years the goal-oriented techniques have been used for combined model
and discretization error analysis and adaptive algorithms, see e.g. [18,84,95] for an overview.
Modeling error is a part of the error due to the natural imperfections in abstract models of
actual physical phenomena. In the context of structural optimization and sensitivity analysis
such duality techniques are known as adjoint sensitivity method [27,28]. In fact, all those dif-
ferent terms are used synonymously for duality techniques. Hence, dual problems and dual
solutions play an important role within different fields.

In summary, it can be stated that different fields are concerned with changes in the physi-
cal and material spaces but they are usually disconnected from each other. For a complete
description of a variational problem with respect to possible changes in the physical and
material spaces both variations have to be considered. Furthermore, additional to the primal
problem also a dual problem corresponding to a chosen quantity should be considered. In the
context of the above mentioned changes in the material configuration and sensitivity analy-
sis it would be also of interest to study configurational changes for the dual problem itself.
Therefore, the goal is to establish a complete description of the primal and dual problems
with respect to structural analysis and sensitivity analysis in the physical and material spaces.

1.2 The goal and the structure of this work

In the present work a general framework for structural analysis and variational sensitivity
analysis of the primal and dual problems is presented. A complete description of the primal
and dual problems with respect to variations in the physical and material spaces is proposed.

A variational problem can be investigated with respect to changes in the physical space (varia-
tions in the state) and with respect to changes in the material space (variations in the design),
which yield the physical and material problems. The solution of both problems is part of
structural analysis. Furthermore, sensitivity analysis can be obtained for the physical and ma-
terial problems. The same can be performed for the dual problem corresponding to a quantity
of interest. Hence, a complete description has a complexity of eight problems, i.e.

structural & sensitivity × primal & dual × physical & material
analysis problems spaces .
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All these problems will be considered in the present work and with this complexity in mind,
a problem formulation can be labeled as complete. Furthermore, in the context of sensitivity
analysis it is also of interest to study the error of design sensitivity relations.

The work can be divided into three parts. The following summary outlines the main goals.

1. The first main goal is to establish a general and complete framework for the primal and
dual problems in linear and nonlinear elasticity. The structural analysis and the variational
sensitivity analysis of the primal and dual problems are investigated.

• Structural and sensitivity analysis of the primal problem.
A complete and consistent continuous and finite element formulation for variations
in the physical and material spaces will be proposed, i.e. all variations are performed
with respect to the state and the design.

• Duality techniques in the physical and material spaces.
The concept of duality as well as a general framework for dual problems in the physi-
cal and material spaces will be presented. In addition to the classical dual physical
problem also a dual material as well as a dual formulation for the coupled physical
and material problem will be derived.

• Structural and sensitivity analysis of the dual problem.
In the same manner as for the primal problem, a complete and consistent continuous
and finite element formulation for variations in the physical and material spaces will
be proposed.

2. The second main goal is to apply the derived relations to representative problems which
are based on energy minimization principles.

• Development of global and goal-oriented r-adaptive mesh optimization algorithms
based on sensitivity relations in the physical and material spaces. Furthermore, error
measures in the context of r-adaptivity will be studied.

• The coherence of mechanics in the material space and structural optimization will be
presented. As a particular application, the shape optimization problem in the context
of configurational mechanics will be investigated.

3. The third main goal is to investigate the reliability and accuracy of design sensitivities.
In particular, error analysis and improvement of variational sensitivity relations are con-
sidered.

• Exact sensitivity relations for the state and a chosen quantity of interest based on
exact integral remainder representations will be derived. A theorem for error analysis
of sensitivity relations has to be developed.

• Based on the exact representation an improvement algorithm for sensitivity relations
is proposed, which yields an improved solution of the change in the state as well as
a quantity of interest due to changes in the design.
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The above summary reflects moreover the structure of the work. In particular, the work is
divided into eleven chapters. Chapter 2 is concerned with some fundamental mathematical
preliminaries and notations, which are used within this work. Subsequently, the underlying
mechanical relations as well as important variations in the physical and material spaces are
introduced in Chapter 3.

A complete framework for the primal problem is presented in Chapter 4. Firstly, an energy
functional is introduced and all variations are performed with respect to the state and the
design. Furthermore, the corresponding finite element formulations are derived. This yields a
complete description of the primal problem with respect to possible changes in the physical
and material spaces.

Chapter 5 is concerned with duality relations in the physical and material spaces. The general
concept of duality is introduced and applied to the physical and material problems. This is
based on an optimal control approach, which yields the framework for general variational
problems.

With these duality relations at hand, a novel complete framework for the dual problem is
proposed in Chapter 6. In the same manner as for the primal problem, an energy functional
of the dual problem is introduced and all variations are performed with respect to the dual
solution and the design. The resulting residuals and tangent forms are the basis for sensitivity
relations of the dual solution itself. Subsequently, the corresponding complete finite element
formulations are derived.

A direct application of the complete framework for the primal problem is r-adaptive mesh
optimization, which is presented in Chapter 7. The nodal coordinates in the domain and the
nodal coordinates in tangential direction on the boundaries are chosen as design variables and
the primal energy is minimized with respect to the state and the nodal coordinates. The lowest
potential energy of the primal problem yields the smallest discretization error on the current
mesh. Furthermore, different error measures in the context of r-adaptivity are introduced
and investigated. The potential of such r-adaptive algorithms is demonstrated by means of
selected examples. The mesh can be optimized with respect to the overall energy of the primal
problem.

Moreover, a novel goal-oriented r-adaptive mesh optimization algorithm is proposed in Chap-
ter 8, which is based on the variational framework of the dual problem. The goal is to optimize
the mesh in such a way, that a chosen quantity of interest can be computed with high accuracy.
The error in a quantity of interest depends on the error in the corresponding dual solution.
With this in mind, the mesh has to be optimized with respect to the dual solution. This is
based on the simultaneous minimization of the primal and dual energy functionals.

Chapter 9 deals with the coherence of configurational mechanics and structural optimization.
Both disciplines are concerned with changes in the material configuration but they use merely
different designations for the same quantities. In particular, the shape optimization problem is
considered and the relations to configurational mechanics are highlighted and demonstrated
by means of numerical examples.
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A novel error representation for sensitivity analysis is presented in Chapter 10. This is based
on an exact integral remainder within the Taylor expansion. The remainder can be computed
explicitly based on higher-order variations of the considered residual. With this at hand, an
improvement algorithm for the sensitivity of the state is proposed. Furthermore, an exact
sensitivity relation for quantities of interest is derived. This exact relation is the basis for an
estimator of the change in the quantity of interest due to changes in the design.

Finally, Chapter 11 summarizes and discusses the present work and gives an outlook on future
research topics.

A summary of important variations in the physical and material spaces, explicit formulations
for selective model problems as well as some details on the numerical implementation are
given in the appendices.

Some parts of this thesis are submitted or already published in peer-reviewed journals and
conference proceedings as part of this doctoral thesis, see [65–73]. These references are also
stated in the respective chapters.



Chapter 2

Preliminaries and notations

This chapter deals with some fundamental mathematical preliminaries and no-
tations. The general concepts of variation, linearization and derivation are intro-
duced, which are frequently used terms within this work.

2.1 Notation

In order to distinguish between vectors, tensors of different order and matrices the following
notation is introduced.

Scalars and scalar functions are represented by nonbold symbols in italic shape, e.g.A,S, a, s
or Γ,Σ, γ, σ.

Let {g1, g2, . . . , gn} be the basis vectors of a given vector space. Then, we write vectors by
using boldface letters in italic shape, e.g. A = Aigi or a = aigi with the components Ai

and ai, respectively.

Second-order tensors A = Aijgi ⊗ gj or a = aijgi ⊗ gj are written with bold-faced roman
letters with the components Aij and aij , respectively. Fourth-order tensors are indicated with
a hollowed Roman font, i.e. for instance A = Aijklgi⊗ gj ⊗ gk ⊗ gl. Bold-face calligraphic
letters are used for sixth-order tensors, i.e.

A = Aijklmngi ⊗ gj ⊗ gk ⊗ gl ⊗ gm ⊗ gn.

Furthermore, non-standard tensors of eighth-order are introduced and written using bold-
faced Fraktur font letters, e.g.

A = Aijklmnopgi ⊗ gj ⊗ gk ⊗ gl ⊗ gm ⊗ gn ⊗ go ⊗ gp

with the components Aijklmnop.

Finally, matrices are symbolized by bold-faced sans-serif letters in italic shape, e.g.A = [Aij ]
or a column matrix a = [ai].

7
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2.2 Directional derivative, variation and linearization

Within this work the concepts of variation and linearization are frequently used terms. The
notation and some important relations are briefly introduced. For details about the fundamen-
tals of variational calculus see the standard textbooks, e.g. [16, 42, 63].

2.2.1 Directional derivative and variation

Let a(v;η) be a semilinear form, i.e. nonlinear with respect to the variable v ∈ V and
linear with respect to all arguments on the right of the semicolon, and let J(v) be a possible
nonlinear functional. Both are defined on a Hilbert space V , i.e.

a : V × V → R,

J : V → R.

We require that a(·; ·) is at least twice continuously differentiable. Then, the first and second
directional derivatives with respect to v in directions {µ,κ} ∈ V are introduced as

a′v(v;η,µ) := lim
ε→0

1

ε
[ a(v + εµ;η)− a(v;η) ] =

d

dε
a(v + εµ;η)

∣∣∣∣
ε=0

,

a′′vv(v;η,µ,κ) := lim
ε→0

1

ε
[ a′v(v + εκ;η,µ)− a′v(v;η,µ) ]

=
d

dε
a′v(v + εκ;η,µ)

∣∣∣∣
ε=0

.

Remark 2.1 Note that for a fixed v̂ the operator a′v(v̂;η,µ) is a bilinear form, i.e. linear
with respect to η and µ. Furthermore, the operator a′′vv(v̂;η,µ,κ) is a trilinear form, i.e.
linear with respect to {η,µ,κ}.

Furthermore, if J(·) is a differentiable functional on V , the following notation is used for the
Gâteaux derivatives

J ′v(v;η) := lim
ε→0

1

ε
[ J(v + εη)− J(v) ] =

d

dε
J(v + εη)

∣∣∣∣
ε=0

,

J ′′vv(v;η,µ) := lim
ε→0

1

ε
[ J ′v(v + εµ;η)− J ′v(v;η) ] =

d

dε
J ′v(v + εµ;η)

∣∣∣∣
ε=0

.

Remark 2.2 Note that for a fixed v̂ the term J ′v(v̂;η) is a linear form, i.e. linear with respect
to η, and J ′′vv(v̂;η,µ) is a bilinear form, i.e. linear with respect to η and µ.
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Higher-order derivatives yield multilinear forms defined as above in a straightforward man-
ner, e.g. a′′′vvv(v̂;η,µ,κ, ξ) or J ′′′vvv(v;η,µ,κ).

The directional derivative corresponds to the variation or sometimes called variational deriva-
tive of a functional J(·). In classical textbooks of mechanics and variational calculus this is
often written using the δ symbol, i.e. the first variation of J(·) with respect to v is written as
δvJ(v; δv) or δvJ(v)(δv), in which δv ∈ V . In fact, it holds true that

δvJ(v; δv) = J ′v(v; δv)

and both notations are used within this work.

2.2.2 Partial-, total partial and total variation

The semilinear form a(·; ·) and the functional J(·) can also depend on a second nonlinear
function s ∈ S , i.e. we consider the forms a(v, s; ·) and J(v, s), respectively, in which S is
a Hilbert space.

The partial derivative or partial variational derivative with respect to v and s are written in
form of

a′v(v, s;η,µ) =
d

dε
a(v + εµ, s;η)

∣∣∣∣
ε=0

,

a′s(v, s;η,ψ) =
d

dε
a(v, s+ εψ;η)

∣∣∣∣
ε=0

,

J ′v(v, s;η) =
d

dε
J(v + εη, s)

∣∣∣∣
ε=0

and J ′s(v, s;ψ) =
d

dε
J(v, s+ εψ)

∣∣∣∣
ε=0

,

in which {η,µ} ∈ V and ψ ∈ S . In the same manner, the second and mixed variations are
indicated as above by (·)′′vv , (·)′′ss or (·)′′vs.

The total directional derivative or total variation is written as

J ′ = J ′v(v, s;η) + J ′s(v, s;ψ) or δJ = δvJ(v, s;η) + δsJ(v, s;ψ).

Furthermore, in many cases the function v depends directly on s, i.e. v = v(s). It is important
to distinguish between the total partial derivative Ds(·) and the explicit partial derivative
∂s(·) = ∂(·)/∂s of a quantity (·) with respect to a variable s [35]. The total partial derivative
of a function F(s) := F (v(s), s) with respect to s and the explicit partial derivative are
connected by the relation

DsF(s) · ds =
∂F

∂s
· ds+

∂F

∂v
· ∂v
∂s

ds.
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By virtue of

dv =
∂v

∂s
ds

we have

DsF(s) · ds =
∂F

∂s
· ds+

∂F

∂v
· dv = F ′(v, s, ds, dv).

Hence, the total partial derivative DsF with respect to s can be transformed to the total
derivative F ′ and vice versa, i.e. DsF(s) · ds = F ′(v, s, ds, dv). This is of interest in order
to eliminate dv and to obtain only a dependency on ds.

2.2.3 Increment, variation and linearization

Within this work, it is important to highlight the distinction between an increment ∆vJ and
the variation δvJ of a functional J .

Definition 2.1 Let J(v) be a functional defined on some normed space. Then,

∆vJ(v;∆v) := J(v +∆v)− J(v)

is the increment of J corresponding to the increment ∆v in the variable v.

In general ∆vJ(v;∆v) is a nonlinear functional. A Taylor expansion yields

∆vJ(v;∆v) = J(v +∆v)− J(v) = J ′v(v;∆v) + r(v, ∆v)

= δvJ(v;∆v) + r(v, ∆v),

where the remainder r(v, ∆v) is quadratic in ∆v and given as

r(v;∆v) :=

∫ 1

0

J ′′vv(v + λ∆v;∆v, ∆v) (1− λ) dλ.

The increment can be separated in a linear part and a nonlinear integral remainder. The linear
part is the directional derivative J ′v(v, ∆v) or variational derivative δvJ(v, ∆v), i.e.

J ′v(v;∆v) =
d

dε
J(v + ε∆v)

∣∣∣∣
ε=0

= δvJ(v, ∆v).

Definition 2.2 Let J(v) be a differentiable functional defined on some normed space. Then,
the variation δvJ is the principal linear part of the increment ∆vJ(v;∆v), i.e.

δvJ(v;∆v) := ∆vJ(v;∆v)− r(v;∆v).
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In the limit case we have

r(v;∆v)→ 0 as ||∆v|| → 0.

Hence, for small changes ∆v we have δvJ(v;∆v) ∼= ∆vJ(v;∆v).

The functional J can also depend on a second nonlinear function s. In this case the partial
increments due to ∆v and ∆s are given in form of

∆vJ(v, s;∆v) := J(v +∆v, s)− J(v, s) = J ′v(v, s;∆v) + rv(v, s;∆v)

∆sJ(v, s;∆s) := J(v, s+∆s)− J(v, s) = J ′s(v, s;∆s) + rs(v, s;∆s)

where

rv(v, s;∆v) :=

∫ 1

0

J ′′vv(v + λ∆v, s;∆v, ∆v) (1− λ) dλ,

rs(v, s;∆s) :=

∫ 1

0

J ′′ss(v, s+ λ∆s;∆s, ∆s) (1− λ) dλ.

Finally, in case of infinitesimal changes are considered it is called variation δJ and if finite
changes are studied then it is called increment ∆J . This distinction is important within error
analysis of sensitivity relations, see Chapter 10.

Furthermore, the linearization of a given functional J(v) in the direction ∆v is written in
form of

J(v +∆v) = J(v) +DvJ(v) ·∆v +O.
The term O denotes the remainder which is usually neglected. Therefore, only the abstract
symbol O is used instead of an explicit expression of the remainder when linearization takes
place.

2.2.4 Linear and nonlinear arguments in functionals and tangent forms

Different kind of functionals and tangent forms are investigated within this work. In order to
distinguish between linear and nonlinear arguments the following notation with comma and
semicolon is used. In general, arguments on the right hand side of a semicolon are the linear
arguments. Let v and s be nonlinear arguments as well as η and µ are linear functions. Then,
the semilinear form a(v, s;η) and its partial variation a′v(v, s;η,µ) are nonlinear in v and s
but linear in η and µ, respectively.

The same holds true for functionals. Let J(v, s) be a nonlinear functional in v and s. Then,
the partial variations J ′v(v, s;η) and J ′′vv(v, s;η,µ) are linear in η and µ, respectively.

Furthermore, sometimes a third nonlinear function z can appear and a second semicolon
is used in order to indicate this. For instance, the functional G∗(v, s; z; ·) and its variation
G∗s
′(v, s; z; ·, ·) are nonlinear is v, s and z but linear in all arguments on the right of the

second semicolon.





Chapter 3

Variations in the physical and material spaces

This chapter is concerned with some fundamental mechanical relations in the
physical and material spaces. In the present work, changes in the deformed con-
figuration as well as in the initial or reference configuration are investigated.
Therefore, important variations in the physical and material spaces of kinemat-
ical quantities, energy functionals and stresses are stated. These different kinds
of variations are required in the following chapters.

3.1 Kinematics

The present section represents a brief summary of fundamental relations of the underlying
geometrically exact kinematic framework. Further details can be found in the standard text-
books, for instance [17, 55, 64, 87]. Moreover, a kinematic framework based on an intrinsic
formulation in local coordinates has been presented in [5,7,9]. Some parts of the kinematical
descriptions are based on this formulation.

3.1.1 The physical and material motion problems

We consider an open bounded material body with an undeformed reference configuration
ΩR ⊂ E3 with a piecewise smooth, polyhedral and Lipschitz-continuous boundary Γ = ∂ΩR
such that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, where ΓD denotes the Dirichlet boundary and ΓN

the Neumann boundary, respectively. The corresponding deformed (current) configuration
is denoted by Ωt ⊂ E3. The deformation of the material body from ΩR into a deformed
configuration Ωt is given by the nonlinear mapping

ϕ :

{
ΩR × It → Ωt ⊂ E3

(X, t) 7→ x = ϕ(X, t)
. (3.1)

13
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Ωt

ϕ(X)

F

xX

ΩR

(a) Physical or direct motion problem

f

Φ(x)

xX

ΩR Ωt

(b) Material or inverse motion problem

Figure 3.1: Physical and material motion problems

Here, ϕ maps the material particle X from the reference configuration ΩR to the spatial
coordinates x in the deformed configuration Ωt for any fixed time t ∈ It, see Fig. 3.1a. We
use in this work for the gradient of a vector field (•) with respect to x andX the notation

grad(•) := ∇x(•) and Grad(•) := ∇X(•). (3.2)

In the same manner, we use for the divergence operators the notation

div(•) := ∇x · (•) and Div(•) := ∇X · (•). (3.3)

The deformation gradient, i.e. the tangent map of ϕ from the material tangent space TXΩR
to the spatial tangent space TxΩt as well as its Jacobian J are given by

F : TXΩR → TxΩt with F := Gradϕ and J := det F. (3.4)

The displacement at a time t ∈ It is the vector field

u(X, t) = ϕ(X, t)−X. (3.5)

The corresponding displacement gradient is given as

H = Gradu. (3.6)

Furthermore, we assume that the deformation is bijective, sufficiently smooth and that J > 0,
such that there exists the inverse deformation mapping

Φ :

{
Ωt × It → ΩR ⊂ E3

(x, t) 7→ X = Φ(x, t)
, (3.7)

see Fig. 3.1b. The corresponding deformation gradient f and its Jacobian j are given by

f : TxΩt → TXΩR with f := gradΦ and j := det f . (3.8)

The deformation gradients and Jacobians are related by

f = F−1 and j = J−1. (3.9)
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Figure 3.2: Enhanced kinematics

3.1.2 Enhanced kinematics

The above introduced kinematical settings in ΩR and Ωt can be enhanced by using the intrin-
sic formulation [82]. In the context of design sensitivity analysis this was proposed in [5,7,9].
Following the intrinsic concept, a given manifold can be described locally using an intrinsic
coordinate system defined on an independent continuous parameter space ΩP with local co-
ordinates Θ. Without going into detail, this leads to two fundamental mappings, a design
dependent local reference placement mapping

κ :

{
ΩP × Is → ΩR ⊂ E3

(Θ, s) 7→ X = κ(Θ, s)
(3.10)

and a time dependent local current placement mapping

µ :

{
ΩP × It → Ωt ⊂ E3

(Θ, t) 7→ x = µ(Θ, t)
(3.11)

for any fixed time t ∈ It and any design s ∈ Is, see Fig. 3.2. Here, s is used as a general
scalar (time-like) design variable, which parameterizes in an abstract sense the material body
in the reference configuration ΩR, i.e. ΩR = ΩR(s). The corresponding tangent maps

K : TΘΩP → TXΩR and M : TΘΩP → TxΩt (3.12)
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as well as their Jacobians are given by

K := GRADκ JK := det K (3.13)

M := GRADµ JM := det M, (3.14)

where GRAD(•) := ∇Θ(•). With these mappings, the deformation map ϕ (3.1) and its
tangent map can be written in the form

ϕ = µ ◦ κ−1 and F = Gradϕ = MK−1 (3.15)

and for the inverse mapping Φ (3.7) follows

Φ = κ ◦ µ−1 and f = gradΦ = KM−1, (3.16)

respectively. The difference vector between the reference and current placements is the dis-
placement u = x−X , which can be written in terms of the local mappings κ and µ as

u = µ(Θ, t)− κ(Θ, s). (3.17)

Overall, K,M and F are used to perform pull back and push forward transformations be-
tween ΩR, Ωt and ΩP .

3.1.3 The generalized state and design functions

Within the above introduced kinematical framework different functions can be considered as
the state function, i.e. the primary unknown of the problem. This can be the deformation ϕ
or the displacement field u. Furthermore, using the intrinsic formulation also the mapping µ
can be chosen as primary unknown.

Therefore, the generalized state function v ∈ V is introduced in an abstract sense. The space
V denotes a Hilbert space of states. The state function v can be the deformation ϕ, the dis-
placement field u or the local current placement mapping µ depending on what is chosen as
primary unknown.

The local reference placement mapping is parameterized by a time like design parameter s,
i.e. X = κ(Θ, s). With this in mind, in an abstract sense a generalized design function or
control function s ∈ S is introduced. The space S denotes a Hilbert space with all admissible
design or control functions. Hence, the design function specifies the current reference con-
figuration ΩR, i.e. ΩR = ΩR(s). The design function s can be the inverse deformation Φ(x)
for a given fixed Ωt or it can be the local reference placement mapping κ.

With these definitions, a quantity (·), which depends on the state variable v and the design
variable s is denoted by (·)(v, s). The partial variations of (·)(v, s) with respect to v and s are
denoted by (·)′v and (·)′s, respectively. In the same manner, the second and mixed variations
are indicated by (·)′′vv , (·)′′ss or (·)′′vs, see Section 2.2.
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Remark 3.1 (Generalized state function vs. deformation and displacement) The general-
ized state function v can be the deformationϕ or the displacement field u depending on what
is chosen as primary unknown. For the classical spatial motion problem with a fixed refer-
ence configuration ΩR this distinction is not necessary, because the variations with respect
to ϕ and u lead to the same results, i.e. we have δϕ = δu for a fixed X . For instance,
the deformation gradient F can be written as a function of ϕ or u, i.e. F̄(ϕ) = Gradϕ or
F̃(u) = I + H. The variations of the deformation gradient F with respect to ϕ and u yield
the same result, but the variations with respect to X are slightly different, see Section 3.2.1.
Therefore, it is important to distinguish between ϕ and u for problems where variations of
the reference configuration ΩR are allowed. It is necessary to introduce a generalized state v
in order to obtain a general description. Furthermore, the distinction is also important within
sensitivity analysis, see Section 4.3.4.

3.2 Variations of kinematical quantities

Variations of kinematical quantities with respect to changes in the physical and material
spaces are considered. The reference configuration depends in an abstract sense on a design
or control function s. Therefore, the variations with respect to the reference configuration are
indicated as (·)′s. The state function can be ϕ or u and (·)′ϕ and (·)′u is used, respectively.

Let V and S be Sobolev spaces for the state and the design, which are defined as

V := {η ∈ [W 1,p(ΩR)]3 : η = 0 on ΓDu
}, (3.18)

S := {ψ ∈ [W 1,p(Ωt)]
3 : ψ = 0 on ΓDs} (3.19)

with p ≥ 2. Here, ΓDu
denotes the Dirichlet boundary for the state and ΓDs

is the corre-
sponding design boundary. Additionally, some other geometrical or side constraints may be
defined for the design function s.

3.2.1 Variations of gradients

The variations of the gradients can be easily obtained using the tangent mappings K and
M from Section 3.1.2. This is based on a multiplicative decomposition of the deformation
gradients F and f = F−1 using the local mappings K and M, i.e. by using (3.15) and (3.16),
respectively. For instance, F = MK−1 and the total variation is given as

δF = δMK−1 + Mδ[K−1]. (3.20)

Using the relation1δ[K−1] = −K−1δKK−1 we obtain

δF = δMK−1 −MK−1δKK−1 = Grad δϕ− F Grad δΦ, (3.21)
1The variation of an inverse tensor A−1 can be computed using the identity AA−1 = I. The variation
δ(AA−1) = δAA−1 +Aδ[A−1] = δI = 0 yields δ[A−1] = −A−1δAA−1.
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where the partial variations are identified as

δϕF = Grad δϕ δΦF = −F Grad δΦ. (3.22)

A complete list of variations and more details are given in Appendix A.

The deformation gradient F can be written as a function of ϕ or u, i.e. F̄(ϕ) = Gradϕ or
F̃(u) = I + H, where H = Gradu. The total variation of the deformation gradient reads

F̄′(ϕ, δϕ, δΦ) = Grad δϕ− F Grad δΦ

= Grad δu−H Grad δΦ

= F̃′(u, δu, δΦ) = H′(u, δu, δΦ)

(3.23)

for all {δϕ, δu} ∈ V and δΦ ∈ S, whereas the relation δx = δX+δu has been used. Hence,
both formulations can be considered. The partial variations are given as F̄′ϕ = Grad δϕ and
F̄′s = −F Grad δΦ as well as F̃′u = Grad δu = H′u and F̃′s = −H Grad δΦ = H′s,
respectively. The partial variations with respect to s are different but the total variations yield
the same results.

Finally, using the generalized state v we obtain

F′(v, δv, δΦ) = Grad δv −GradvGrad δΦ (3.24)

and hence the partial variations

F′v = Grad δv, (3.25)

F′s = −GradvGrad δΦ. (3.26)

3.2.2 Variations of strains

In the same manner, the variations of strain measures can be obtained by using the above
described technique. The Green-Lagrange strain tensor

E :=
1

2
(FTF− I) (3.27)

is considered within this work. The strain tensor can be expressed in terms of ϕ or u. Let
{η, λ} ∈ V and {ψ, χ} ∈ S be admissible variations.
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Then, the partial variations of E with respect to v and s are obtained as

E′v(v,η) = sym{FT Gradη}, (3.28)

E′s(v,ψ) = − sym{FT Gradv Gradψ}, (3.29)

E′′vs(v,η,ψ) = − sym{GradψT GradvT Gradη + FT Gradη Gradψ}, (3.30)

E′′vv(η,λ) = sym{GradλT Gradη}, (3.31)

E′′ss(v,ψ,χ) = sym{GradχT GradvT GradvGradψ

+ FT GradvGradχGradψ

+ FT GradvGradψGradχ}. (3.32)

Note that due to symmetry, it holds true that E′′vs(v,η,ψ) = E′′sv(v,ψ,η).

If the deformation ϕ is chosen as unknown, i.e. v = ϕ, the strain tensor E is written in terms
of ϕ as Ē(ϕ) = 1

2 (GradϕT Gradϕ− I). The partial variations are given as

Ē′ϕ(ϕ,η) = sym{FT Gradη}, (3.33)

Ē′s(ϕ,ψ) = − sym{FTF Gradψ}, (3.34)

Ē′′ϕs(ϕ,η,ψ) = − sym{GradψT FT Gradη + FT Gradη Gradψ}, (3.35)

Ē′′ϕϕ(η,λ) = sym{GradλT Gradη}, (3.36)

Ē′′ss(ϕ,ψ,χ) = sym{GradχTFTF Gradψ + FTF GradχGradψ

+ FTF GradψGradχ}. (3.37)

On the other hand, if the displacement field u is chosen as unknown, i.e. v = u, the strain
tensor E is written in terms of u in form of Ẽ(u) = 1

2 ((I + Gradu)T (I + Gradu) − I).
Finally, the corresponding partial variations are obtained as

Ẽ′u(u,η) = sym{FT Gradη}, (3.38)

Ẽ′s(u,ψ) = − sym{FTH Gradψ}, (3.39)

Ẽ′′us(u,η,ψ) = − sym{GradψT HT Gradη + FT Gradη Gradψ}, (3.40)

Ẽ′′uu(η,λ) = sym{GradλT Gradη}, (3.41)

Ẽ′′ss(u,ψ,χ) = sym{GradχTHTH Gradψ + FTH GradχGradψ

+ FTH GradψGradχ}, (3.42)
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where H = Gradu. The partial variations with respect to u and ϕ yield the same results,
regardless of which is chosen as unknown, i.e.

Ē′ϕ = Ẽ′u and Ē′′ϕϕ = Ẽ′′uu. (3.43)

But the partial variations with respect to s are different, i.e.

Ē′s 6= Ẽ′s and Ē′′ss 6= Ẽ′′ss and Ē′′ϕs 6= Ẽ′′us. (3.44)

In the formulations with respect to ϕ, the displacement gradient H is replaced by F. But it
can be easily proved that the total variations of both descriptions are the same, i.e.

Ē′ = Ē′ϕ + Ē′s = Ẽ′u + Ẽ′s = Ẽ′. (3.45)

This is based on the same arguments as shown for the deformation gradient in (3.23). This
demonstrates that the introduction of the generalized state v is useful, because the description
in ϕ or u can be directly obtained from the formulation in v.

In same manner, higher-order variations of E can be derived. A complete list is given in
Appendix A.2.

3.3 Variations of energy terms

Variations of energy terms with respect to the state and the design are required within this
work. A hyperelastic material is considered, i.e. it is assumed that a strain energy function
WR exists. Let C be the internal energy of a hyperelastic body. The energy can be written in
terms of ϕ or the inverse deformation Φ, i.e.

C(ϕ) =

∫
ΩR

WR(F) dΩ or Ĉ(Φ) =

∫
Ωt

Wt(f) dΩ, (3.46)

where WR(F) and Wt(f) = j(f)WR are the strain energy functions in ΩR and Ωt, respec-
tively. Both functionals express the same physical quantity, i.e. C(ϕ) = Ĉ(Φ). The partial
variations are given as

C ′ϕ =

∫
ΩR

P : Grad δϕ dΩ =

∫
Ωt

σ : grad δϕdΩ, (3.47)

Ĉ ′s =

∫
Ωt

p : grad δΦdΩ =

∫
ΩR

Σ̄ : Grad δΦ dΩ, (3.48)

where

P :=
∂WR

∂F
and p :=

∂Wt

∂f
. (3.49)
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Here, P denotes the first Piola-Kirchhoff stress tensor and p is the counterpart of the inverse
motion problem. Furthermore, σ = J−1PFT is the Cauchy stress tensor and

Σ̄ := WRI− FT
∂WR

∂F
= WRI− FTP (3.50)

is the well-known energy momentum or Eshelby tensor [39, 40], which is the Piola transfor-
mation of the two-point tensor p, i.e. Σ̄ = j−1pfT . For a detailed discussion about the direct
and inverse problems and their duality see e.g. [26, 35, 57, 61, 74, 93, 96].

The total variation of the internal energy can be written as

C ′ =

∫
ΩR

[ P : Grad δϕ+ Σ̄ : Grad δΦ ] dΩ (3.51)

=

∫
ΩR

[ P : Grad δu+ Σ̃ : Grad δΦ ] dΩ, (3.52)

whereas δx = δX + δu has been used. Here, we inserted the displacement u in (3.50) and
obtained an energy momentum tensor in terms of the displacement field, i.e.

Σ̃ := WRI−HT ∂WR

∂F
= WRI−HTP, (3.53)

which is a modified version of the tensor Σ̄. These tensors are related by

Σ̄ = Σ̃−P. (3.54)

Both Eq. 3.51 and Eq. 3.52 express the same amount of energy change, i.e. the same total
change of the internal energy due to variations δX and δx or δu. The formulation in u is
used in fracture mechanics and is called Newton-Eshelby tensor, see e.g. [90, 96].

Therefore, in terms of the generalized state v we can introduce the generalized energy-
momentum tensor in form of

Σ(v) := WRI−GradvT
∂WR

∂F
= WRI−GradvTP. (3.55)

Let η ∈ V andψ ∈ S be admissible variations. The variations of a functional F =
∫

ΩR
(·) dΩ

with respect to v ∈ V and s ∈ S in terms of the reference configuration are given as

F ′v(v,η) =

∫
ΩR

(·)′v(v,η) dΩ,

F ′s(v,ψ) =

∫
ΩR

(·)′s(v,ψ) + (·) Divψ dΩ =

∫
ΩR

(·)′s(v,ψ) + (·)I : Gradψ dΩ.
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For the internal energy (3.46) we have

C ′v(v,η) =

∫
ΩR

P : Gradη dΩ, (3.56)

C ′s(v,ψ) =

∫
ΩR

Σ : Gradψ dΩ

=

∫
ΩR

−GradvTP : Gradψ +WRI : Gradψ dΩ.

(3.57)

Hence, the partial variations of the strain energy WR with respect to v and s are identified as

(WR)′v(v,η) =
∂WR

∂F
: F′v(v,η) = P : F′v(v,η) = P : Gradη

= FS : Gradη = S : FT Gradη

= S : E′v(v,η)

(3.58)

(WR)′s(v,ψ) =
∂WR

∂F
: F′s(v,ψ) = P : F′s(v,ψ) = −P : GradvGradψ

= −FS : GradvGradψ = −S : FT GradvGradψ

= S : E′s(v,ψ)

(3.59)

where

S := F−1P = J F−1σF−T (3.60)

is the symmetric second Piola-Kirchhoff stress tensor.

Finally, the variations of the internal energy in (3.56) and (3.57) can be equivalently expressed
in terms of S and the partial variations of E, i.e.

C ′v(v,η) =

∫
ΩR

S : E′v(v,η) dΩ, (3.61)

C ′s(v,ψ) =

∫
ΩR

S : E′s(v,ψ) +WRI : Gradψ dΩ. (3.62)

3.4 Variations of stresses

In the above section the first and second Piola-Kirchhoff stress tensors P and S have been
introduced. The variations of both stress tensors with respect to v and s are given by

P′v(v,η) =
∂P

∂F
: F′v(v,η) = A : F′v(v,η) = A : Gradη, (3.63)

P′s(v,ψ) =
∂P

∂F
: F′s(v,ψ) = A : F′s(v,ψ) = −A : GradvGradψ, (3.64)
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S′v(v,η) =
∂S

∂E
: E′v(v,η) = C : E′v(v,η) = C : FT Gradη, (3.65)

S′s(v,ψ) =
∂S

∂E
: E′s(v,ψ) = C : E′s(v,ψ) = −C : FT GradvGradψ, (3.66)

where A and C are the so-called first and the second elasticity tensor, respectively, see e.g.
[64]. Both fourth-order tensors are given as usual in form of

A :=
∂P

∂F
=
∂2WR

∂F ∂F
and C :=

∂S

∂E
=
∂2WR

∂E ∂E
. (3.67)

Within this work also higher-order variations with respect to changes in the physical and
material spaces are considered. Furthermore, all variational formulations in the following
chapters are written in terms of the second Piola-Kirchhoff stress tensor S and the variations
of the strain tensor E instead of P and F. Therefore, only higher-order variations with respect
to S are considered. The same can be performed in a straightforward manner for higher-order
variations of P.

To achieve this, the variations of C with respect to v and s are required. These terms are
obtained in form of

C′v(v,η) =
∂C
∂E

: E′v(v,η) = D : E′v(v,η), (3.68)

C′s(v,ψ) =
∂C
∂E

: E′s(v,ψ) = D : E′s(v,ψ), (3.69)

where the sixth-order tensor D is introduced as

D :=
∂C
∂E

. (3.70)

Furthermore, the variation of D results in

D′v(v,η) =
∂D
∂E

: E′v(v,η) = E : E′v(v,η), (3.71)

D′s(v,ψ) =
∂D
∂E

: E′s(v,ψ) = E : E′s(v,ψ), (3.72)

where the eighth-order tensor E is defined by

E :=
∂D
∂E

. (3.73)

Finally, using the above variations of C the second and mixed variations of S are given by

S′′vv(v,η,λ) = C : E′′vv(η,λ) + E′v(v,η) : D : E′v(v,λ), (3.74)

S′′ss(v,ψ,χ) = C : E′′ss(v,ψ,χ) + E′s(v,ψ) : D : E′s(v,χ), (3.75)

S′′vs(v,η,ψ) = C : E′′vs(v,η,ψ) + E′v(v,η) : D : E′s(v,ψ), (3.76)

S′′sv(v,ψ,η) = C : E′′sv(v,ψ,η) + E′s(v,ψ) : D : E′v(v,η). (3.77)
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Note that due to symmetry S′′sv(v,ψ,η) = S′′vs(v,η,ψ). Furthermore, variations of S up to
third-order are required. For instance, the variation S′′′vvs reads

S′′′vvs(v,η,λ,ψ) = C : E′′′vvs(η,λ,ψ) + E′′vv(η,λ) : D : E′s(v,ψ)

+ E′′vs(v,η,ψ) : D : E′v(v,λ) + E′v(v,η) : D : E′′vs(v,λ,ψ)

+ E′v(v,η) : E : E′s(v,ψ) : E′v(v,λ), (3.78)

where E′′′vvs is given in (A.34). Different other higher-order variations of S can be performed
in the same way.

Explicit specifications of P, S, C and A as well as the non-standard tensors D and E for a
Neo-Hookean material are given in Appendix B.1.



Chapter 4

Structural and sensitivity analysis of the primal
problem

The present chapter deals with variational balance laws and variational sensi-
tivity analysis in the physical and material spaces for the primal problem. The
balance laws are derived from an energy functional. Sensitivity relations for the
primal physical and material problems are investigated, which are based on an in-
variant requirement of the considered variational problem. Furthermore, explicit
formulations for the complete variational and discrete relations are derived.

4.1 Introduction

Variational methods are a common approach to derive balance laws in elasticity. The classical
physical residual is given as the first variation of the energy functional of the primal problem
with respect to the deformation, see e.g. [64]. The variation of the energy with respect to
configurational changes leads to the material residual or weak form of the configurational
or material force equilibrium, see for instance the monographs [48, 60, 74]. In the context
of Arbitrary Lagrangian-Eulerian (ALE) formulations this was investigated for instance in
[2, 61].

The variational approach is an elegant way to express a mathematical physical theory, which
does not involve dissipative processes. But configurational variations are not restricted to
elastic problems and variational approaches. Inelastic problems play an important role in
many fields, e.g. elastic-plastic fracture mechanics, see e.g. [97] for an overview of different
approaches and applications. In this work a pure variational setting for elasticity is considered.
The extension to inelastic problems is addressed to future work.

In addition, the energy functional is an interesting objective functional in structural optimiza-
tion, e.g. shape and topology optimization [14,32]. The minimization of the energy is directly
related to the minimization of the compliance of the system or equivalently to the maximiza-
tion of the stiffness. In this context, it is of interest to study the sensitivities of the governing
variational equations.

Some parts of this chapter are published in [66, 69].
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4.2 Energy minimization and variational balance laws

4.2.1 The energy functional

The model problem of nonlinear elasticity is considered and the attention is restricted to
hyperelastic materials. Let E(v, s) be the total potential energy of a homogeneous elastic
body. The energy depends on the generalized state function v ∈ V and on a generalized
design or control function s ∈ S, which specifies in an abstract sense the current reference
configuration ΩR, i.e. ΩR = ΩR(s). The state function v can be the deformation ϕ or the
displacement field u depending on what is chosen as primary unknown. The space V denotes
the usual Sobolev space of states and S a Sobolev space with all admissible design functions.
The total potential energy of the primal problem is given by

E(v, s) := C(v, s)− F (s;v), (4.1)

where C(v, s) denotes the internal energy (3.46) and F (s; ·) is a functional associated with
the external potential, i.e.

C(v, s) :=

∫
ΩR

WR dΩ (4.2)

F (s;v) :=

∫
ΩR

bR · v dΩ +

∫
ΓN

t̄R · v dΓ. (4.3)

Here, bR are physical body forces per unit volume in the reference configuration and t̄R are
prescribed tractions imposed on the Neumann boundary ΓN. Furthermore, we assume that
v = 0 on ΓD.

The functional F (s;v) is linear in v but nonlinear in s. This is indicated by the semicolon,
i.e. all arguments right from the semicolon are linear. Furthermore, C(v, s) is nonlinear in v
and s.

4.2.2 The primal physical and material residuals

We consider the minimization of the primal energy with respect to v and s. This ends in the
following minimization problem.

Problem 4.1 Find {v, s} ∈ V ×S such that the primal energy functional (4.1) is minimized,
i.e.

E(v, s) = min
{p,r}∈V×S

E(p, r). (4.4)
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The first-order optimality condition reads

E′ = E′v(v, s)(η) + E′s(v, s)(ψ) = 0. (4.5)

We assume that η ∈ V and ψ ∈ S are independent variations. Then, we have to solve the
following variational problem. Find {v, s} ∈ V × S such that{

E′v(v, s)(η)

E′s(v, s)(ψ)

}
=

{
R(v, s;η)

G(v, s;ψ)

}
= 0 ∀ {η,ψ} ∈ V × S. (4.6)

The partial variation of E with respect to v leads to the primal physical residual R : V → R,
which is given by

R(v, s;η) := E′v(v, s)(η) = a(v, s;η)− F (s;η). (4.7)

In the same manner, variation with respect to changes in the design s yields the primal mate-
rial residual G : S → R, which is given as

G(v, s;ψ) := E′s(v, s)(ψ) = b(v, s;ψ)− F ′s(s;v,ψ). (4.8)

The semilinear forms a(v, s;η) and b(v, s;ψ) contain the partial variations of the internal
energy with respect to v and s, i.e.

a(v, s;η) := C ′v(v, s;η), (4.9)

b(v, s;ψ) := C ′s(v, s;ψ), (4.10)

where C ′v(v, s;η) and C ′s(v, s;ψ) are given in (3.61) and (3.62), respectively.

Remark 4.1 The material residual is also referred to as the weak form of the material or
configurational force equilibrium as well as the weak form of the pseudo-momentum equation
[48,60,74]. In the case of a homogeneous elastic body the material residual is the weak form
of the inverse deformation problem. It should be noted, that the material residual can be
the weak form of the direct deformation problem when the role of the spatial and material
coordinates are interchanged. On the other hand, the inverse deformation problem and its
weak form can be obtained by a re-parametrization of the direct deformation problem in
terms of the inverse deformation Φ [44, 45]. For a detailed discussion about the direct and
inverse deformation problem and its duality see for instance [26, 57, 61, 93, 96].

4.3 Variational sensitivity analysis

Variational design sensitivity analysis is a branch of structural optimization, e.g. shape or
topology optimization, see e.g. [27, 28, 58, 104] and the reference therein for an overview.
Variational sensitivity analysis based on a formulation in local coordinates has been pre-
sented in [7, 9]. In general, variations of the material configuration are considered and the
changes of the state variables and the objective functional due to these variations are investi-
gated. The variations are required in order to solve the optimization problem using nonlinear
programming algorithms.
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4.3.1 Sensitivity of the energy functional

The solution of structural optimization problems require the variations of the objective func-
tional and the constraints due to variations in the design. In the context of structural opti-
mization this is termed as design sensitivity analysis. The total variation of a given arbitrary
objective functional I(v, s) is given by

δI = δvI(v, s)(δv) + δsI(v, s)(δs). (4.11)

Within this chapter the primal energy E(v, s) is the objective functional which has to be
minimized with respect to v and s, i.e. the energy minimization problem (4.4) has to be
solved. Therefore, for I = E we have

δE = δvE(v, s)(δv) + δsE(v, s)(δs) = R(v, s; δv) +G(v, s; δs). (4.12)

For a given solution v ∈ V we have R(v, s; δv) = 0. With this, the first part of the above
sensitivity relation vanishes and it remains only the material residual, i.e.

δE = δsE(v, s)(δs) = G(v, s; δs). (4.13)

Therefore, in the context of structural optimization, the material residual or configurational
forces can be interpreted as the sensitivity of the energy with respect to variations in the
design.

Remark 4.2 (Energy release rate) The material residual or configurational forces are di-
rectly related to the well-known J -integral, which is in linear fracture mechanics equal to
the energy release rate G and is defined as the negative variation of E with respect to config-
urational changes, i.e.

J = G = −δsE(v, s)(δs) = −G(v, s; δs). (4.14)

4.3.2 Sensitivity of the physical residual

The following sensitivity analysis is based on an invariant requirement of the physical residual
(4.7) with respect to variations δv and δs. For a given solution {v, s} ∈ V × S of (4.6) we
have R(v, s;η) = 0 ∀ η ∈ V . The total variation of the physical residual reads

R′ = R′v(v, s;η, δv) +R′s(v, s;η, δs) = 0, (4.15)

where the partial variations are given by

R′v(v, s;η, δv) = a′v(v, s;η, δv) (4.16)

R′s(v, s;η, δs) = a′s(v, s;η, δs)− F ′s(s;η, δs). (4.17)
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Note, that R′v = E′′vv and R′s = E′′vs, respectively.

We introduce for the variations of the physical residualRwith respect to v and s the operators

k(v, s;η, δv) := R′v(v, s;η, δv), (4.18)

p(v, s;η, δs) := R′s(v, s;η, δs), (4.19)

where k(v, s; ·, ·) is the well-known tangent physical stiffness operator and we call p(v, s; ·, ·)
the tangent pseudo load operator for the physical problem. Both terms are bilinear forms
k : V × V → R and p : V × S → R.

With these notations the total variation yields the form

R′ = k(v, s;η, δv) + p(v, s;η, δs) = 0 . (4.20)

After rearranging the above terms we can formulate the following sensitivity equation for the
physical problem.

Problem 4.2 Let δŝ ∈ S be a given fixed design variation. Find δv ∈ V such that

k(v, s;η, δv) = −Qp(v, s;η) ∀ η ∈ V, (4.21)

where

Qp(v, s;η) := p(v, s;η, δŝ) = R′s(v, s;η, δŝ) (4.22)

is the pseudo load of the physical problem for the variation δŝ.

This is a variational equation for the sensitivity of the state due to changes in the design. For
a given variation in the design δŝ, we can calculate the variation in the state δv.

Remark 4.3 (Pseudo load) In general, the pseudo load operator p(v, s;η, δs) is a bilinear
form p : V × S → R. For a chosen fixed δŝ it becomes a linear functional Qp : V → R and
is called pseudo load because it plays the role of a load in the sensitivity equation (4.21) and
is denoted by Qp(v, s; ·), i.e. Qp(v, s; ·) = p(v, s; ·, δŝ).

4.3.3 Sensitivity of the material residual

In the same way we can perform the total variation of the material residual given in (4.8).
For a given solution {v, s} ∈ V × S of (4.6) we have G(v, s;ψ) = 0 ∀ ψ ∈ S. The total
variation reads

G′ = G′v(v, s;ψ, δv) +G′s(v, s;ψ, δs) = 0, (4.23)
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where the partial variations are given by

G′v(v, s;ψ, δv) = b′v(v, s;ψ, δv)− F ′s(s; δv,ψ) (4.24)

G′s(v, s;ψ, δs) = b′s(v, s;ψ, δs)− F ′′ss(s;v,ψ, δs) . (4.25)

Note, that G′v = E′′sv and G′s = E′′ss, respectively.

We introduce for the variations of the material residualGwith respect to v and s the operators

d(v, s;ψ, δs) := G′s(v, s;ψ, δs), (4.26)

t(v, s;ψ, δv) := G′v(v, s;ψ, δv), (4.27)

where d(·; ·) is the so-called tangent material stiffness in order to highlight the duality to the
tangent physical stiffness (4.18) and we call t(·; ·) the tangent pseudo load operator for the
material problem, compare with Eq. 4.19. Both terms are bilinear forms d : S × S → R and
t : S × V → R.

As a result of the permutableness of variations, i.e.

G′v = E′′sv = E′′vs = R′s, (4.28)

we obtain for the variation of G with respect to v

G′v(v, s; ·, δv) = R′s(v, s; δv, ·) = p(v, s; δv, ·)

= a′s(v, s; δv, ·)− F ′s(s; δv, ·) .
(4.29)

Thus, due to symmetry, the partial variation G′v leads to the tangent pseudo load operator of
the physical problem (4.19), i.e.

t(v, s;ψ, δv) = p(v, s; δv,ψ). (4.30)

Therefore, we have additional to specify only the material tangent operator d(v, s; ·, ·) = G′s.
With these notations, the total variation yields the form

G′ = p(v, s; δv,ψ) + d(v, s;ψ, δs) = 0. (4.31)

After rearranging the above terms we can formulate the following sensitivity equation for the
material problem.

Problem 4.3 Let δv̂ ∈ V be a given fixed variation in the state. Find δs ∈ S such that

d(v, s;ψ, δs) = −Qm(v, s;ψ) ∀ψ ∈ S, (4.32)

where

Qm(v, s;ψ) := p(v, s; δv̂,ψ) = G′v(v, s;ψ, δv̂) (4.33)

is the pseudo load of the material problem for the variation δv̂.
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This is a variational equation for the sensitivity of the design due to changes in the state. For
a given variation in the state δv̂, we can calculate the variation in the design δs.

Remark 4.4 It is interesting to note, that due to symmetry both the sensitivity of the state
and the sensitivity of the design depend on the pseudo load operator p(·, ·). Therefore, this
operator plays an important role for the solution of the minimization problems for v and s.

4.3.4 Sensitivity relations in terms of deformation and displacement

For the classical spatial motion or physical problem with a fixed reference configuration ΩR
the formulation in terms of the deformation ϕ or the displacement field u yield the same
results. But if we consider problems with changes in the material configuration, i.e. if the
reference configuration ΩR is not fixed, we have to distinguish betweenϕ andu. We consider
for instance the sensitivity equation (4.21). If the deformation ϕ is the unknown, the problem
reads: Find δϕ ∈ V such that

k(ϕ, s;η, δϕ) = −Qp(ϕ, s;η) ∀ η ∈ V, (4.34)

with Qp(ϕ, s;η) = p(ϕ, s;η, δs). This equation yields the change in the deformation δϕ
due to changes in the design δX = δs. The corresponding change in displacement field is
obtained from the relation

δu = δϕ− δX. (4.35)

On the other hand, if the displacement field u is the unknown, the problem reads: Find δu ∈
V such that

k(u, s;η, δu) = −Qp(u, s;η) ∀ η ∈ V, (4.36)

with Qp(u, s;η) = p(u, s;η, δs). This equation yields the change in the displacement field
δu due to changes δX . The change in the deformation δϕ and the change in the displacement
δu are related by

δϕ = δu+ δX. (4.37)

Note that

k(ϕ, s; ·, ·) = k(u, s; ·, ·), (4.38)

because E′ϕ = E′u and E′′ϕϕ = E′′uu, i.e. all variations with respect to ϕ and u yield the same
results. But

p(ϕ, s; ·, δs) 6= p(u, s; ·, δs) (4.39)

and therefore

Qp(ϕ, s; ·) 6= Qp(u, s; ·). (4.40)

Hence, if we have configurational changes δX 6= 0, then we have δϕ 6= δu. This is the
reason why the distinction between δϕ and δu is important, if configurational variations are
concerned.
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4.4 Finite element approximation

The finite element formulation is based on a conforming Galerkin method defined on meshes
Th = {K} with a mesh parameter h consisting of closed cells K. The boundary ∂K of each
element K is assumed to be Lipschitz-continuous. On the mesh Th we define finite dimen-
sional element spaces Vh ⊂ V and Sh ⊂ S consisting of cellwise polynomial functions, see
e.g. the standard textbooks [19, 56, 85].

4.4.1 The discrete energy minimization problem

The discrete state vh ∈ Vh ⊂ V and discrete design sh ∈ Sh ⊂ S are determined by the
following discrete version of Problem 4.1.

Problem 4.4 Find {vh, sh} ∈ Vh × Sh such that

E(vh, sh) = min
{ph,rh}∈Vh×Sh

E(ph, rh). (4.41)

The corresponding optimality condition is given as follows. Find {vh, sh} ∈ Vh × Sh such
that {

R(vh, sh;ηh)

G(vh, sh;ψh)

}
= 0 ∀ {ηh,ψh} ∈ Vh × Sh. (4.42)

4.4.2 Matrix representation of the residuals and tangent forms

For a matrix description of the derived residuals and tangent forms we introduce the discrete
approximations for the state and the design, i.e. the nodal vector v ∈ Rn and the vector of
design variables s ∈ Rm. Here, n and m are the dimensions of the introduced approximation
spaces, i.e. n denotes the number of the discrete state variables and m the number of the
discrete design variables. We introduce in the same manner the discrete approximations for
the corresponding variations and test functions, i.e. δv ∈ Rn and η ∈ Rn as well as δs ∈ Rm
and ψ ∈ Rm.

For given {v̂h, ŝh}, the discrete versions of the residuals and tangent forms are given as

R(v̂h, ŝh;ηh) = ηTR, (4.43)

G(v̂h, ŝh;ψh) = ψTG, (4.44)

k(v̂h, ŝh;ηh, δvh) = ηTKδv , (4.45)

p(v̂h, ŝh;ηh, δsh) = ηTP δs, (4.46)
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t(v̂h, ŝh;ψh, δvh) = ψTT δv , (4.47)

d(v̂h, ŝh;ψh, δsh) = ψTDδs, (4.48)

where the vectors and matrices associated to the functionals and bilinear forms are denoted
by

R ∈ Rn primal physical residual vector

G ∈ Rm primal material residual vector

K ∈ Rn×n primal tangent physical stiffness matrix

P ∈ Rn×m primal tangent physical pseudo load matrix

T ∈ Rm×n primal tangent material pseudo load matrix

D ∈ Rm×m primal tangent material stiffness matrix.

Details on the formulation of the matrix representations are given in C.3 and C.4.

Note that due to (4.30) we have T = P T . Figure 4.2 summarizes the complete discrete
tangent forms in the physical and material spaces.

4.4.3 The discrete sensitivity equations

With the above definitions, the sensitivity of the primal energy (4.13) with respect to varia-
tions δs is given as

δsE = GT δs. (4.49)

Furthermore, the discrete versions of the sensitivity equations for the physical (4.20) and
material (4.31) residuals become

δR = Kδv + P δs = 0 or δv = −K−1P δs, (4.50)

δG = P T δv +Dδs = 0 or δs = −D−1P T δv . (4.51)

For chosen fixed variations δŝ and δv̂ the discrete versions of the sensitivity equations for the
physical (4.21) and material (4.32) problem are given by

Kδv = −Qp with Qp := P δŝ, (4.52)

Dδs = −Qm with Qm := P T δv̂ . (4.53)

Here, Qp ∈ Rn is the pseudo load vector of the physical residual problem associated to the
functional Qp(vh, sh; ·) and Qm ∈ Rm is the pseudo load vector of the material residual
problem associated to the functional Qm(vh, sh; ·).
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Remark 4.5 (Sensitivity operator) It is important to note, that we obtain with the relations
from (4.50) directly a connection between the physical and the material spaces. Both spaces
are connected by the transformation

δv = Sp δs with Sp := −K−1P , (4.54)

where Sp ∈ Rn×m denotes the sensitivity operator matrix of the physical problem. With the
knowledge of the pseudo load operator matrix P , we can evaluate the sensitivity equation for
arbitrary admissible variations δs in the material space. In the same manner, we obtain from
(4.51) for the material problem the transformation

δs = Sm δv with Sm := −D−1P T , (4.55)

where Sm ∈ Rm×n denotes the sensitivity operator matrix of the material problem. With this,
we can perform the sensitivity analysis for arbitrary admissible variations δv in the physical
space.

Remark 4.6 (Deformation vs. displacement) The importance of the distinction between sen-
sitivity relations in terms of the deformation ϕ and the displacement u has been shown in
Section 4.3.4. We consider the discrete formulation in order to illustrate this important fact.
The discrete nodal vectors of ϕ and u are introduced as ϕ ∈ Rn and u ∈ Rn, respectively.
The nodal coordinates Xi are chosen as the design variables, i.e. we set s = X ∈ Rn.
Let P (ϕ) be the pseudo load operator matrix corresponding to p(ϕ, s; ·; ·) evaluated at the
current deformation ϕ. Furthermore, let P (u) be the same operator in terms of the actual
displacement field u, i.e. obtained from p(u, s; ·; ·). Then, by means of Gradϕ = I+Gradu
we have

dϕ

dX
= [ I +

du

dX
] = Sp(ϕ) = −K−1P (ϕ) and dϕ = Sp(ϕ)dX, (4.56)

du

dX
= Sp(ϕ)− I = Sp(u) = −K−1P (u) and du = Sp(u)dX, (4.57)

where I ∈ Rn×n denotes the identity matrix. Finally, the pseudo load operator matrices
P (ϕ) and P (u) as well as the sensitivity operator matrices Sp(ϕ) and Sp(u) are related by

P (ϕ) = P (u)−KI, (4.58)

Sp(ϕ) = I + Sp(u). (4.59)

Hence, P (ϕ) 6= P (u) and Sp(ϕ) 6= Sp(u). As in the continuous case (4.37), the change in
the deformation dϕ and the change in the displacement du are related by

dϕ = du + dX. (4.60)

This has to be taken into account by evaluating the sensitivity relation (4.54).
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Remark 4.7 (Sensitivity of the energy release rate) As mentioned in Remark 4.2 the mate-
rial residual G is directly related to the energy release rate G, i.e. G = −G. Therefore, the
sensitivity of the material residual (4.31) can be used to calculate the sensitivity of G, which
can be derived as

δG = −δG = −G′ = −[ d(v, s;ψ, δs) + p(v, s; δv,ψ) ] . (4.61)

In order to obtain a dependency only from the variation in the design δs, we can substitute
the sensitivity of the state (4.21) to eliminate δv. With (4.50) and (4.51) we have

δGh = −G′(vh, sh;ψh, δvh, δsh) = −ψT δG (4.62)

where

δG = Dδs + P T δv = [D − P TK−1P ] δs. (4.63)

Hence, for a given variation in the design δs we can calculate the variation in the energy
release rate or rather the variation in the material residual G.

4.5 Solution of the energy minimization problem

The energy minimization problem can be solved using different algorithms. It can be solved
simultaneously for {v, s}, i.e. by solving the coupled problem (4.6) or in a staggered way by
using gradient-based methods or Newton type methods.

4.5.1 Solution of the coupled problem

A Newton method on the continuous level is applied in order to get the solution of (4.6). Let
Y := V × S be a product space and set y = {v, s} ∈ Y , ∆y = {∆v, ∆s} ∈ Y as well as
φ = {η,ψ} ∈ Y . Furthermore, we set

B(y;φ) := R(v, s;η) +G(v, s;ψ). (4.64)

Then, the optimality condition (4.6) reads

B(y;φ) = 0 ∀φ ∈ Y. (4.65)

A Taylor expansion yields

B(y +∆y;φ) = B(y;φ) +B′(y;φ, ∆y) +O = 0 . (4.66)

The remainder O contains higher order terms which can be usually neglected. Each Newton
step requires the solution of the linear system

h(y;φ, ∆y) = −B(y;φ) ∀φ ∈ Y, (4.67)
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where h(y;φ, ∆y) := B′(y;φ, ∆y) denotes the Hessian. The Hessian contains the partial
variations of R and G, i.e.

h(y;φ, ∆y) = R′v(v, s;η, ∆v) +R′s(v, s;η, ∆s)

+G′v(v, s;ψ, ∆v) +G′s(v, s;ψ, ∆s). (4.68)

The definitions of the sensitivities of the physical (4.20) and material residual (4.31) yield the
explicit form of the variations of R and G, respectively, and the Hessian takes the form

h(y;φ, ∆y) = k(v, s;η, ∆v) + p(v, s;η, ∆s)

+ p(v, s;∆v,ψ) + d(v, s;ψ, ∆s). (4.69)

Finally, the solution of problem (4.6) requires the solution of the linear system{
k(v, s;η, ∆v) + p(v, s;η, ∆s) = −R(v, s;η)

p(v, s;∆v,ψ) + d(v, s;ψ, ∆s) = −G(v, s;ψ)

}
(4.70)

in each Newton step.

After a standard finite element discretization by using the notations from Section 4.4.2, the
system (4.70) takes the form[

K P
P T D

] [
∆v
∆s

]
= −

[
R
G

]
. (4.71)

Remark 4.8 (Coupling of the physical and material problem) The off-diagonal elements
of the above saddle point problem are the pseudo load operators of the physical (4.19) and
material residual (4.27). Hence, the physical and the material problems are coupled by the
pseudo load operator p(·, ·).

Remark 4.9 (Schur complement) If we substitute the first equation of (4.71) into the second
and vice versa, we can eliminate ∆v or ∆s by using the Schur complement in order to solve
the problem one after the other and to minimize the size of the system. We obtain a formulation
for the state variables

[K − PD−1P T ]∆v = PD−1G −R (4.72)

or for the design variables

[D − P TK−1P ]∆s = P TK−1R − G . (4.73)

This requires well-conditioned matrices K and D in order to compute the corresponding
inverse matrices accurately and to obtain a stable solution algorithm.
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Remark 4.10 (Problems within the numerical solution) It seems, that the naturally best
way to find a solution of the energy minimization problem (4.4) is a full Newton method, i.e.
the simultaneous solution of the physical and material problem. The best convergence speed is
expected and hence, the lowest computational cost. This optimization problem is non-convex
in general and for real problems with a large number of design variables such an algorithm
is very sensitive and not stable. Furthermore, the system (4.71) has a typical saddle point
structure and we have to be careful by solving this system. Often a preconditioner is needed
in order to obtain a well-conditioned system matrix. See for instance [15] and the references
therein for preconditioners for this type of equations. Therefore, other solution algorithms
should be considered.

4.5.2 A staggered solution algorithm

The energy only in terms of s. In order to solve the energy minimization problem in a
staggered way, we introduce the functional

E(s) := E(v(s), s). (4.74)

A reformulation of Problem 4.1 only in terms of the design function s yields the following
problem.

Problem 4.5 Find s ∈ S such that the energy E(s) is minimized, i.e.

E(s) = min
r∈S

E(v(r), r). (4.75)

For a given solution v we have to solve G(v(s), s) = 0 within a Newton or gradient-based
algorithm. First, we have to solve the primal physical problem to provide a solution v.

Solution of the primal physical problem. The primal physical problem is solved for a
given fixed design s. The variational equation of the primal problem is given in Eq. 4.7 as

R(v, s;η) = 0 ∀η ∈ V.
The solution within a Newton scheme requires the linearization

R(v, s;η) +DvR(v, s;η) ·∆v +O = 0. (4.76)

The tangent operator DvR(v, s;η) · ∆v = R′v(u, s;η, ∆v) = k(v, s;η, ∆v) is the tan-
gent physical stiffness operator (4.18). The remainder O contains higher order terms and is
neglected. Hence, the solution of (4.7) requires the solution of the linear equation

k(v, s;η, ∆v) = −R(v, s;η) ∀η ∈ V (4.77)

in every Newton step in order to compute the increment ∆v. The discrete version of (4.77) is
given by

K∆v = −R. (4.78)
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Solution of the primal material problem. The variational equation of the material prob-
lem is given in Eq. 4.8 and reads G(v, s;ψ) = 0. In order to solve this nonlinear problem in
a staggered way, we use the linearization

G(v, s;ψ) +DsG(v(s), s;ψ) ·∆s+O = 0. (4.79)

The material tangent operator is introduced as

m(v, s;ψ, ∆s) := DsG(v(s), s;ψ) ·∆s

=
d

dε
[G(v, s+ ε∆s;ψ) +G(v(s+ ε∆s), s;ψ) ]

∣∣∣∣
ε=0

.
(4.80)

This is a bilinear form m : S ×S → R, which has to be evaluated for the current {v, s}. The
remainder O is again neglected. Hence, we have to solve the linear equation

m(v, s;ψ, ∆s) = −G(v, s;ψ) ∀ψ ∈ S (4.81)

in every Newton step in order to compute the increment ∆s.

The discrete formulation of (4.80) for given {v̂h, ŝh} reads

m(v̂h, ŝh;ψh, ∆sh) = ψT
[
∂G

∂s
+
∂G

∂v

∂v

∂s

]
∆s

= ψT
[
D − P TK−1P

]
∆s,

(4.82)

where the relations ∂G/∂v = P T and ∂v/∂s = −K−1P have been used. Finally, the
staggered Newton algorithm for the material problem (4.81) becomes the discrete form

M∆s = −G with M := D − P TK−1P , (4.83)

where M ∈ Rm×m denotes the discrete material tangent operator matrix corresponding to
the bilinear form m(·, ·) from (4.80).

Alternatively, gradient based methods which are used in classical nonlinear programming can
be considered in order to solve (4.75). For instance, a simple steepest descent method is given
by the update rule

si+1 = si +∆si = si − εi G(vh(sh,i), sh,i), (4.84)

where εi denotes the step size parameter which controls the decrease in the energy. The
algorithm can be further improved by using quasi-Newton methods such as a BFGS method,
see e.g. [81] for such solution algorithms.

Remark 4.11 (Applications) The proposed full Newton and staggered solution algorithms
can be applied to problems which are concerned with energy minimization. Applications to
global and goal-oriented mesh optimization (r-adaptivity) are investigated in Chapter 7 and
Chapter 8, respectively. Furthermore, the shape optimization problem is studied in Chapter 9.
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Remark 4.12 (Stability within the numerical solution) As mentioned in Remark 4.10, the
full Newton algorithm is very sensitive and not stable for a large number of design variables.
The staggered solution method is more stable than the full Newton method but requires also a
well-conditioned tangent matrix M. In many cases, the tangent matrix is ill-conditioned and
becomes singular or close to singular during the iterations. Therefore, reasonable regular-
ization methods have to be used in order to regularize the problem. This is discussed in detail
in Section 7.5 for the mesh optimization problem.

Remark 4.13 (Staggered Newton method vs. gradient based method) The solution of the
linear equation (4.83) is part of a staggered Newton method. If the problem is well-posed
and the tangent matrix M is well-conditioned the algorithm converged very quickly to the
solution. As mentioned above in many cases M is ill-conditioned and the computed new
increment ∆s results possibly not in a decrease of the energy. In contrast, a gradient based
method yields in the most cases accurate search directions and is very stable. Therefore, by
using quasi-Newton methods based on gradient information and an adequate and efficient
line search algorithm the gradient method can be superior to the staggered Newton method
because no regularization has to be taken into account.

4.6 Explicit formulations for shape sensitivity

Explicit variational and discrete formulations of the derived residuals and tangent forms are
stated in this section. In addition to the well-known classical physical residual R(v, s; ·) and
tangent stiffness k(v, s; ·, ·), all variations of the primal energy are derived with respect to v
and s.

The formulations are obtained by using the variational framework in the physical and material
spaces introduced in Chapter 3. All residuals and tangent forms are expressed in terms of the
second Piola-Kirchhoff stress tensor S and the Green-Lagrange strain tensor E within this
work. Alternatively, they can be written in terms of the first Piola-Kirchhoff stress P and F.

Within this section the model problem of nonlinear elasticity is considered. The formulations
for linearized elasticity are given for completeness in Section B.2.4.

4.6.1 Variational formulations of the primal residuals and tangent forms

The partial variations of the primal physical and material residuals have been introduced as

k(v, s;η, δv) = R′v(v, s;η, δv) t(v, s;ψ, δv) = G′v(v, s;ψ, δv)

p(v, s;η, δs) = Rs(v, s;η, δs) d(v, s;ψ, δs) = G′s(v, s;ψ, δs).
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The residuals written in terms of S and E are given by

R(v, s;η) =

∫
ΩR

S : E′v(v,η) dΩ− F (s;η) (4.85)

G(v, s;ψ) =

∫
ΩR

[ S : E′s(v,ψ) +WRI : Gradψ ] dΩ− F ′s(s;v,ψ) (4.86)

and the explicit formulation of the tangent forms are obtained as

k(v, s;η, δv) =

∫
ΩR

{S : E′′vv(η, δv) + E′v(v,η) : C : E′v(v, δv) } dΩ, (4.87)

p(v, s;η, δs) =

∫
ΩR

{S : E′′vs(v,η, δs) + E′v(v,η) : C : E′s(v, δs)

+ S : E′v(v,η) Div δs } dΩ

−F ′s(s;η, δs),

(4.88)

t(v, s;ψ, δv) =

∫
ΩR

{S : E′′sv(v,ψ, δv) + E′s(v,ψ) : C : E′v(v, δv)

+ S : E′v(v, δv) Divψ } dΩ

−F ′s(s; δv,ψ),

(4.89)

d(v, s;ψ, δs) =

∫
ΩR

{S : E′′ss(v,ψ, δs) + E′s(v,ψ) : C : E′s(v, δs)

+ S : [ E′s(v,ψ) Div δs+ E′s(v, δs) Divψ ]

+WR [ DivψDiv δs− I : GradψGrad δs ] } dΩ

−F ′′ss(s;v,ψ, δs).

(4.90)

The explicit formulations of F (s;η), F ′s(s;v,ψ), F ′s(s;η, δs) and F ′′ss(s;v,ψ, δs) depend
on the form of the functional F (·). We consider for instance the potential VR(v) of physical
body forces bR per unit volume in the reference configuration, i.e. we choose the functional

F (s;v) = −
∫

ΩR

VR dΩ =

∫
ΩR

bR · v dΩ. (4.91)

Then, we have

F (s;η) =

∫
ΩR

bR · η dΩ, (4.92)

F ′s(s;η, δs) =

∫
ΩR

bR · η Div δsdΩ, (4.93)
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F ′s(s;v,ψ) = −
∫

ΩR

VR I : Gradψ dΩ, (4.94)

F ′′ss(s;v,ψ, δs) = −
∫

ΩR

VR [ DivψDiv δs− I : GradψGrad δs ] dΩ. (4.95)

The derived residuals and tangent forms have the same structure with different variations of
the Green-Lagrange strain tensor E. But the terms obtained from variations with respect to s
have additional terms as a result of the variation of the domain ΩR.

4.6.2 Discrete formulations of the primal residuals and tangent matrices

The above residuals and tangent forms are discretized using the isoparametric concept, i.e.
the state vh and the geometryXh are approximated by the same shape functions defined on a
fixed parameter space. Details about the numerical implementation are given in Appendix C.

The nodal contributions of the discrete residual vectors are given by

Rei =

∫
Ωe

R

BTviS¯
dΩ− F e(s)i, (4.96)

Gei =

∫
Ωe

R

{BTsiS¯ +WRILi} dΩ− F es (s; v)i, (4.97)

and the tangent matrices are obtained as

Ke
ij =

∫
Ωe

R

{BTviCBvj + LTi SLjI }dΩ, (4.98)

P eij =

∫
Ωe

R

{BTviCBsj − LTi SLj Grad v − FSLjLTi + FSLiL
T
j }dΩ

− F es (s)ij ,

(4.99)

Deij =

∫
Ωe

R

{BTsiCBsj + LTi SLj Grad vT Grad v + Grad vTFSLjL
T
i

+LjL
T
i S

TF T Grad v −Grad vTFSLiL
T
j − LiLTj STF T Grad v

+WR [LiL
T
j − LjLTi ] }dΩ

−F ess(s; v)ij . (4.100)

Here, S and F are the matrices corresponding to second Piola-Kirchhoff stress tensor S and
the deformation gradient F, respectively, as well as C is the matrix representation of the
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fourth-order elasticity tensor C. Due to the symmetry of S it is useful to use the Voigt notation
in order to compute the residuals. For this we introduce the column matrix S

¯
. Furthermore, I

denotes the identity matrix and Li the gradient of the shape function φi. For instance, in the
two-dimensional case these matrices are given by

S =

[
S11 S12

S21 S22

]
, S

¯
=
[
S11 S22 S12

]T
, (4.101)

I =

[
1 0
0 1

]
, Li =

[
φi,1
φi,2

]
. (4.102)

The matrices Bv and Bs are given in (C.8) and (C.12).

The quantities F e(s)i and F es (s; v)i are the element nodal vectors on a node i corresponding
to the functionals F (s; ·) and F ′s(s;v, ·). In the same manner, F es (s)ij and F ess(s; v)ij are
the element nodal matrices corresponding to the bilinear forms F ′s(s; ·, ·) and F ′′ss(s;v, ·, ·),
respectively. The residuals and tangent forms depend on the explicit form of the functional
F (s; ·). We choose the particular form (4.91), i.e.

F (s;v) = −
∫

ΩR

VR dΩ =

∫
ΩR

bR · v dΩ.

With this, the discrete version of (4.92), (4.93), (4.94) and (4.95) are obtained as

F e(s)i =

∫
Ωe

R

φi bR dΩ, (4.103)

F es (s; v)i = −
∫

Ωe
R

VR ILi dΩ, (4.104)

F es (s)ij =

∫
Ωe

R

φi bR L
T
j dΩ, (4.105)

F ess(s; v)ij = −
∫

Ωe
R

VR [LiL
T
j − LjLTi ] dΩ. (4.106)

Remark 4.14 (Control of the residuals and tangent forms) The discrete formulations are
directly obtained by discretization of the variational formulations from Section 4.6.1. The
correctness of the derived residual vectors and tangent matrices have been checked by using
a global finite difference method, see e.g. [81] for details about such methods.

4.7 Complete energy variations of the primal problem

4.7.1 Variational formulation

The starting point of the above sensitivity relations is an energy functional, which depends
on a state function and a design function. Different variations with respect to v and s can
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E′′ss = G′s = d(v, s;ψ, δs)

E′v = R(v, s;η)

E(v, s)

E′′vs = R′s = p(v, s;η, δs)

E′s = G(v, s;ψ)

p(v, s; δv,ψ) = R′s = E′′vs = E′′sv = G′v = t(v, s;ψ, δv)

E′′vv = R′v = k(v, s;η, δv) E′′sv = G′v = t(v, s;ψ, δv)

Figure 4.1: Summary of the complete energy variations and tangent forms for admissible
variations {η, δv} ∈ V and {ψ, δs} ∈ S

be performed. For the classical spatial motion or physical problem only the variations with
respect to the state are required, i.e. E′v = R(v, s; ·) and E′′vv = k(v, s; ·, δv). In the context
of sensitivity analysis and structural optimization also the variation of the physical residual
R with respect to s is investigated, i.e. R′s = E′′vs = p(v, s; ·, δs).

If we also consider the material problem, we have to compute the variations of the energy
functional with respect to s, i.e. E′s = G(v, s; ·) and E′′ss = G′s = d(v, s; ·, δs) as well as
the mixed variation Esv = G′v = t(v, s; ·, δv). This yields a complete framework for the
physical and material problem. Due to symmetry and permutableness of variations, we have

p(v, s; δv,ψ) = R′s = E′′vs = E′′sv = G′v = t(v, s;ψ, δv). (4.107)

Hence, it turns out that the physical and material problems are coupled by the pseudo load
operator p(v, s; ·, ·). Figure 4.1 summarizes the complete variations in the physical and ma-
terial spaces.

4.7.2 Finite element formulation

The complete variations of the energy with respect to the state and the design yield the frame-
work for the complete description of the physical or direct and material or inverse motion
problem as well as corresponding sensitivity relations, see Fig. 4.1.

For classical problems with a fixed reference configuration ΩR we can say that the finite
element formulation is complete if we supply the physical residual vector R and the tangent
physical stiffness matrixK. From this we can solve the linear equationK∆v = −R in every
Newton step in order to compute the increment in the state ∆v .
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d(v, s;ψ, δs) = ψTDδs

R(v, s;η) = ηTR

E(v, s)

p(v, s;η, δs) = ηTP δs

G(v, s;ψ) = ψTG

p(v, s; δv,ψ) = δvTPψ = ψTP T δv = t(v, s;ψ, δv)

t(v, s;ψ, δv) = ψTT δvk(v, s;η, δv) = ηTKδv

Figure 4.2: Summary of the complete discrete operators of the primal problem

But for problems with configurational variations, we can say that the formulation is complete
if we supply additional the material residual G, the pseudo load operator matrix P and the
tangent material stiffnessD. With all these operators the formulation is complete in the sense
that the energy depends on the state and the design and we allow changes in both variables,
see Fig. 4.2.

Using the variational formulations for k(·, ·), p(·, ·) and d(·, ·) from (4.87), (4.88) and (4.90),
the tangent matrices P and D can be computed and assembled in the same routine as the
classical physical stiffness matrix K without considerable computational cost, because all of
these matrices have the same structure. The matrix formulations are given in (4.98), (4.99)
and (4.100), respectively.

The same holds true for the material residual G, which can be computed in the same way as
the classical physical residual vector R. By means of all these operators the finite element
formulation is complete. With this at hand, the physical and material problems can be solved
and sensitivity analysis in the physical and material spaces can be performed.

4.8 Summary and concluding remarks

Variational balance laws and sensitivity relations for the primal physical and material prob-
lems have been proposed within this chapter. Due to symmetry both problems are coupled by
the pseudo load operator p(v, s; ·, ·). The obtained residuals and tangent forms can be used
within different applications which are concerned with energy minimization. The proposed
approach yields a complete framework for the solution of the classical physical or direct
motion problem as well as for the material or inverse motion problem. Applications for the
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Table 4.1: Summary of important variational and discrete sensitivity relations

Variational formulation Discrete formulation

primal physical residual

δR = k(v, s; ·, δv) + p(v, s; ·, δs) δR = Kδv + P δs

primal material residual

δG = p(v, s; δv, ·) + d(v, s; ·, δs) δG = P T δv +Dδs

primal pseudo load tangent form

p(v, s;η, δs) ηTP δs

primal pseudo load (physical)

Qp(v, s;η) = p(v, s;η, δŝ) ηTQp = ηTP δŝ

primal pseudo load (material)

Qm(v, s;ψ) = p(u, s; δv̂,ψ) ψTQm = ψTP T δv̂

sensitivity of v

k(v, s; ·, δv) = −Qp(v, s; ·) Kδv = −Qp
sensitivity of s

d(v, s; ·, δs) = −Qm(v, s; ·) Dδs = −Qm
sensitivity of E

δsE = G(v, s; δs) δsE = GT δs

optimization of finite element meshes and shape optimization are studied in Chapter 7 and
Chapter 9, respectively.

For the classical physical problem with a fixed reference configuration ΩR the formulation in
terms of the deformationϕ or the displacement field u yield the same results. But if problems
with changes in the material configuration are considered, i.e. if the reference configuration
ΩR is not fixed, we have to distinguish between ϕ and u within the sensitivity analysis.

Furthermore, a complete and consistent finite element formulation of the derived residuals
and tangent forms has been given. All residuals and tangent matrices can be computed in
the same routine as the usual physical residual vector and tangent stiffness matrix. The finite
element formulation is complete if all residuals, i.e. R and G, as well as all tangent matrices
K, P and D are supplied.

Finally, the most important variational and discrete sensitivity relations are summarized in
Table 4.1.





Chapter 5

Duality techniques in the physical and material
spaces

Duality relations in the physical and material spaces are investigated within this
chapter. Additionally to the well-known dual physical problem, the correspond-
ing dual material problem is introduced. Furthermore, a dual relation for the
coupled physical and material problem is proposed. The derivation of the dual
problems is based on a general optimal control approach, which yields the frame-
work for general variational problems.

5.1 Introduction

The concept of duality plays an important role in many fields which deal with local quantities
of interest, e.g. in structural mechanics, physics, optimization, control theory, computational
methods and goal-oriented error estimation, see e.g. [4, 49, 62, 85].

In structural mechanics and mechanics in the physical space, duality relations are well-known
as Betti’s principle, also known as the reciprocity theorem. The quantities of interest are for
instance displacements and pointwise stresses or average stresses. The corresponding dual
solutions are Green’s functions or influence functions, see e.g. [49, 51].

Green’s functions play an important role in the solution of linear partial differential equations
[34, 76]. Furthermore, they are a key component of boundary integral methods such as the
boundary element method [50].

In structural optimization the dual problems are termed as adjoint problems and the corre-
sponding solutions are referred to as adjoint solutions, see e.g. [27, 28].

In the context of configurational mechanics or mechanics in the material space, a reciprocity
relation in the material space similar to the reciprocity relation for point loads in the physical
space was proposed in [53, 54].

Within this work, a general variational approach for dual solutions in the physical and mate-
rial spaces is investigated. In addition to the classical dual problem of the physical problem,
also duality relations for the material problem as well as for the coupled physical and material
problem are proposed. Some parts of this chapter are published in [73].

47
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5.1.1 A linear model situation

The primal problem. For motivation a linear model problem is considered. Let for instance
u ∈ V be the solution of the so-called primal problem in the variational form

a(u,η) = F (η) ∀η ∈ V, (5.1)

where a(·, ·) : V×V → R denotes a bilinear form corresponding to the considered differential
operator and F (·) : V → R is a linear functional associated with the given external loads in
a given space V .

The quantity of interest. In duality techniques we are concerned with a certain quantity of
interest or general output or cost functional J(u), which can be every functional value which
corresponds in some sense to the solution u. The quantities of interest can be represented as
linear or nonlinear functionals J(·) : V → R of the solution. This could be point values, e.g.
a component ui or the derivatives ∂kui or the stress component σij(u) at some given point
X , i.e.

J(u) = ui(X) or J(u) = ∂kui(X) or J(u) = σij(X). (5.2)

Furthermore, it could be some integral value over a certain region Γr, e.g.

J(u) =

∫
Γr

∂kui(X) dΓ. (5.3)

In general, every quantity of interest can be associated with a functional J(·).

The dual problem. For a chosen quantity of interest J(u), the corresponding dual or ad-
joint solution or generalized Green’s function z ∈ V is determined by the dual or adjoint
problem

a(η, z) = J(η) ∀η ∈ V. (5.4)

The duality relation. A duality relation is in the linear case easily obtained. Obviously, by
using (5.1) and (5.4) as well as the symmetry of a(·, ·), we have

J(u) = a(u, z) = F (z). (5.5)

If the dual solution z is known, the quantity of interest J(u) can be computed for arbitrary
functionals F (·), i.e. J(u) = F (z).
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For instance, let the displacement ui at some material pointX be the quantity of interest, i.e.
J(u) = ui(X). Furthermore, let

F (η) =

∫
ΩR

bR · η dΩ

be the explicit form of the functional. Then, we have

J(u) = ui(X) =

∫
ΩR

bR · z dΩ = F (z).

Hence, J(u) is given by the scalar product between the dual solution z and the given data
bR. In structural mechanics this is well-known as Betti’s principle and the dual solutions are
the Green’s functions or influence functions for ui(X). In the discrete case we have

ui(X) = zTF ,

in which z ∈ Rn is the discrete dual solution corresponding to ui and F ∈ Rn is the discrete
load vector corresponding to the functional F (·).

Remark 5.1 (Computation of J(u)) In general, there are two ways to compute J(u). The
first or classical way is to solve the primal problem (5.1). We obtain J(u) directly from u
or by a postprocessing step. The second way is indirect. We solve the dual problem (5.4) and
obtain the dual solution z. Afterwards, we evaluate Eq. 5.5 and get J(u). The advantage of
the second approach is that for a given dual solution z the quantity of interest J(u) can be
computed for arbitrary functionals F (·), i.e. for arbitrary given data.

5.1.2 Regularized functionals for point values

From a mathematical point of view the energy of the dual problem a(z, z) is infinite for some
dual solutions, because they are caused by point loads, which are represented by Dirac delta
functions δ(Y −X), see e.g. [49, 51]. Hence, (5.4) may not be well-defined.

The quantity of interest can be written as

J(u(X)) =

∫
Ω

δ(Y −X) · u(Y ) dΩY .

In order to avoid such infinite energy terms, we use for point values regularized functionals,
e.g. for the point values from (5.2) we have

Jε(u) =
1

Ωε

∫
Ωε

ui(X) dΩ or Jε(u) =
1

Ωε

∫
Ωε

∂kui(X) dΩ.
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This corresponds with the mean value of the displacement or the derivative of the point value
in a small domain

Ωε := {Y ∈ Ω : ||Y −X|| ≤ ε }

around the point X , see e.g. [4]. The corresponding dual solutions behave like regularized
Green’s functions and Eq. 5.4 is well-defined. Alternatively, a mollifier function can be used,
in which the Dirac function δ(Y −X) is approximated by mollifiers φε(Y −X) [88]. The
quantity of interest can be written as

Jε(u(X)) =

∫
Ω

φε(Y −X) · u(Y ) dΩY ,

where φε are infinitely smooth functions, see [85] for details.

With this in mind, we consider within this work always regularized functional for the quantity
of interest such that the corresponding dual problems are well-defined. The corresponding
dual solutions are regular and the dual energy a(z, z) has a finite value.

5.2 A general framework for duality techniques

The relation (5.5) holds in the exact form only for linear problems. Nevertheless, the duality
approach can be extended to general nonlinear variational problems. Furthermore, the concept
is more general and not restricted to mechanical problems and interpretations.

We consider an abstract optimal control approach, which yields a general framework for
duality relations of variational problems. Such an approach is also used for instance within a
posteriori error estimation techniques in finite element methods [4, 12].

Let x ∈ X be the solution of a given (nonlinear) variational problem

A(x;η) = 0 ∀η ∈ X (5.6)

in a space X . Furthermore, let J(x) : X → R be the (possible nonlinear) quantity of interest
with respect to the solution x.

An optimal control approach ends in the following constraint optimization problem:

min
x∈X

J(x) subject to A(x;η) = 0 ∀η ∈ X . (5.7)

The constraint is nothing but the variational problem (5.6). The corresponding Lagrangian
functional reads

L(x, g) = J(x)−A(x; g) (5.8)
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and the first-order optimality condition follows in the form

L′(x, g)(ν,η) =

{
L′x(x, g)(ν)

L′g(x, g)(η)

}
=

{
J ′x(x;ν)−A′x(x; g,ν)

−A(x;η)

}
= 0 (5.9)

for all {ν,η} ∈ X ×X . Here, g ∈ X denotes the dual or adjoint variable. The first equation
in (5.9) is the dual or adjoint problem and reads: Find g ∈ X such that

A′x(x; g,ν) = J ′x(x;ν) ∀ν ∈ X , (5.10)

with the tangent form A′x(x; ·, ·) and the linearized functional J ′x(x; ·), i.e.

A′x(x; g,ν) :=
d

dε
A(x+ εν; g)

∣∣∣∣
ε=0

, J ′x(x;ν) :=
d

dε
J(x+ εν)

∣∣∣∣
ε=0

. (5.11)

The dual problem is a linear problem and is formulated at the current linearization point, i.e.
at a given solution x.

The second equation in (5.9) is just the variational equation of the primal problem (5.6). In
the general nonlinear case, the solution of this equation within a Newton scheme requires the
linearization A(x;η) + DxA(x;η) · ∆x + O = 0. The tangent operator is given in (5.11)
and denoted by t(x;η, ∆x) := DxA(x;η) · ∆x = A′x(x;η, ∆x). The term O denotes a
remainder of higher-order and can usually be neglected. Hence, the solution of the nonlinear
primal problem (5.6) requires the solution of the linear equation

t(x;η, ∆x) = −A(x;η) ∀η ∈ X (5.12)

in every Newton step in order to find the new increment ∆x.

By using (5.10) and (5.12) as well as the symmetry of the bilinear formA′x(x; ·, ·) = t(x; ·, ·),
i.e. A′x(x;η, ∆x) = A′x(x;∆x,η), we have

J ′x(x;∆x) = t(x; g, ∆x) = −A(x; g). (5.13)

If the dual solution g is known, the change in the quantity of interest J(x) can be computed
for arbitrary functionals A(x; ·), i.e. J ′x(x;∆x) = −A(x; g).

In order to make this relation more transparent we consider a discrete formulation. Let
J(xh) = xi be the quantity of interest and let g ∈ Rn be the discrete dual solution according
to xi as well as Jx ∈ Rn be a discrete vector which corresponds to J ′x(xh; ·). Furthermore,
let T ∈ Rn×n be the tangent matrix and let A ∈ Rn be a discrete vector corresponding to
the bilinear form t(xh; ·, ·) and the functional A(xh; ·), respectively. With these, the discrete
versions of (5.12) and (5.10), i.e. the discrete linearized primal problem and the discrete dual
problem are given as

T∆x = −A and T Tg = Jx, (5.14)

respectively. Due to the symmetry of the tangent form A′x(x; ·, ·), we have T = T T . Then,
the change in the quantity of interest J ′x(xh;∆xh) = ∆xi at the current linearization point
x is given from the discrete version of (5.13) in form of

∆xi = ∆xT Jx = ∆xTT Tg = gTT∆x = −gTA. (5.15)
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5.3 The physical problem

The above described approach is now applied to the physical problem. The primal physical
problem and the corresponding dual problem are introduced and a duality relation for physical
quantities is derived.

5.3.1 The primal physical problem

The variational equation of the primal problem is given in Eq. 4.7 as

R(v, s;η) = 0 ∀η ∈ V.

This equation is solved for a given fixed design s. The solution within a Newton scheme
requires the solution of the linearized equation (4.77) given by

k(v, s;η, ∆v) = −R(v, s;η) ∀η ∈ V. (5.16)

5.3.2 The dual physical problem

Let J(·) : V → R be a (possible nonlinear) quantity of interest for a given fixed s. The
optimal control approach from Section 5.2 is used with x = v as the considered variable and
X = V . This ends in the following constraint optimization problem:

min
v∈V

J(v) subject to R(v, s;η) = 0 ∀η ∈ V. (5.17)

Then, the Lagrangian functional reads

L(v, z) = J(v)−R(v, s; z) (5.18)

and the optimality condition becomes{
J ′v(v; δv)−R′v(v, s; z, δv)

−R(v, s; δz)

}
= 0 ∀{δv, δz} ∈ V × V. (5.19)

The tangent form is the physical stiffness (4.87), i.e. R′v(v, s; z, ·) = k(v, s; z, ·). The first
equation is the dual physical problem. Hence, the corresponding dual physical solution z ∈ V
is determined by

k(v, s; z,η) = J ′v(v;η) ∀η ∈ V. (5.20)

The variation of J according to (5.11) is given from J ′v(v;η) = d
dε J(v + εη)

∣∣
ε=0

. The
explicit form of J ′v(v; ·) depends on the chosen quantity of interest J .



5.4 The material problem 53

With (5.16) and (5.20) and by using the symmetry of k(v, s; ·, ·) we have

J ′v(v;∆v) = k(v, s; z, ∆v) = −R(v, s; z). (5.21)

Finally, if the dual solution z is known, the change in the quantity of interest can be computed
for arbitrary functionals R(·), i.e.

J ′v(v;∆v) = −R(v, s; z). (5.22)

We consider the discrete case. Let J(vh) = vi be the quantity of interest and let z ∈ Rn
be the vector with the discrete dual solution corresponding to vi. Then, the discrete form of
(5.22) for the change in the quantity of interest reads

∆vi = −zTR, (5.23)

where R ∈ Rn is the physical residual vector corresponding to R(v, s; ·).

5.4 The material problem

In the same manner, a dual material problem can be introduced using the framework for dual-
ity techniques of variational equations. Furthermore, a duality relation for material quantities
is proposed.

5.4.1 The primal material problem

The variational equation of the material problem is given in Eq. 4.8 and reads

G(v, s;ψ) = 0 ∀ψ ∈ S.

In order to solve this nonlinear problem in a staggered way, we use the linearized equation
(4.81) obtained in form of

m(v, s;ψ, ∆s) = −G(v, s;ψ) ∀ψ ∈ S. (5.24)

The material tangent operator has been introduced as m(v, s;ψ, ∆s) := DsG(v, s;ψ) ·∆s,
which has to be evaluated for the current {v, s}. This equation has to be solved in every
Newton step in order to compute the increment ∆s.
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5.4.2 The dual material problem

Let J(·) : S → R be a quantity of interest for a given v(s). The optimal control approach
from Sec. 5.2 with x = s and X = S ends in the following problem:

min
s∈S

J(s) subject to G(v, s;ψ) = 0 ∀ψ ∈ S. (5.25)

The corresponding Lagrangian functional reads

L(v, s, q) = J(s)−G(v(s), s; q) (5.26)

and the first-order optimality condition follows in the form

L′(v, s, q)(δv, δs, δq) = L′v(v, s, q)(δv) + L′s(v, s, q)(δs) + L′q(v, s, q)(δq)

= −G′v(v, s; q, δv) + J ′s(s; δs)−G′s(v, s; q, δs)

−G(v, s; δq) = 0. (5.27)

By virtue of the relation between the total variation G′ and the total partial variation DsG we
can eliminate δv and obtain only a dependency on δs, i.e.

G′(v, s; q)(δv, δs) = G′v(v, s; q, δv) +G′s(v, s; q, δs)

= m(v, s; q, δs) = DsG(v(s), s; q) · δs.
(5.28)

The optimality condition can be written as

L′ = J ′s(s; δs)−m(v, s; q, δs)−G(v, s; δq) = 0. (5.29)

Under the assumption that δs and δq are independent variations we obtain the system{
J ′s(s; δs)−m(v, s; q, δs)

−G(v, s; δq)

}
= 0 ∀{δs, δq} ∈ S × S. (5.30)

The first equation is the dual material problem: Find the dual material solution q ∈ S such
that

m(v, s; q,ψ) = J ′s(s;ψ) ∀ψ ∈ S. (5.31)

The second equation is just the primal material residual (4.8).

The variation of J according to (5.11) is given from J ′s(s;ψ) = d
dε J(s+ εψ)

∣∣
ε=0

. By
using (5.24) and (5.31) as well as the symmetry of m(v, s; ·, ·) we have

J ′s(s;∆s) = m(v, s; q, ∆s) = −G(v, s; q). (5.32)
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If the dual solution q is known J ′s(s;∆s) can be computed for any functionals G(·).

We consider the discrete case. Let J(sh) = si be the quantity of interest and let q ∈ Rm
be the vector with the discrete dual solution corresponding to si. Then, the discrete form of
(5.32) for the change in the quantity of interest reads

∆si = −qTG, (5.33)

where G ∈ Rm is the material residual vector corresponding to G(v, s; ·).

5.5 The coupled problem

As for the physical and material problems, a dual problem and a duality relation can be
also established for the coupled physical and material problem. We use the notation from
Section 4.5.1, i.e. we set y = {v, s} ∈ Y ,∆y = {∆v, ∆s} ∈ Y as well asφ = {η,ψ} ∈ Y ,
where Y := V × S.

5.5.1 The primal coupled problem

The variational equation of the coupled primal physical (4.7) and material problem (4.8) is
given in (4.65) as

B(y;φ) = R(v, s;η) +G(v, s;ψ) = 0 ∀ φ ∈ Y.

The solution of this problem ends in the linearized equation (4.67) given by

h(y;φ, ∆y) = −B(y;φ) ∀φ ∈ Y, (5.34)

where the Hessian h(y;φ, ∆y) is given in (4.69). This equations has to be solved in each
Newton step in order to compute the increment ∆y.

5.5.2 The dual coupled problem

Let J(·) : Y → R be a quantity of interest. Then, we have to solve the following optimization
problem:

min
y∈Y

J(y) subject to B(y;φ) = 0 ∀ φ ∈ Y. (5.35)

The corresponding Lagrangian functional is given by

L(y;y∗) = J(y)−B(y;y∗) = J(v, s)−R(v, s; zc)−G(v, s; qc). (5.36)
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Here, y∗ := {zc, qc} ∈ Y is the dual or adjoint solution for the coupled problem, in which
zc ∈ V is the dual solution for the physical problem and qc ∈ S the corresponding dual so-
lution for the material problem. The index c indicates that the coupled problem is considered.
We seek for stationary points of L which are candidates for optimal solutions of

L′(y;y∗)(δy, δy∗) = 0.

This leads to the following problem. Find w := {v, s, zc, qc} ∈ V × S × V × S such that

L′v(w)(δv)

L′s(w)(δs)

L′z(w)(δzc)

L′q(w)(δqc)


=



J ′v(v, s; δv)−R′v(v, s; zc, δv)−G′v(v, s; qc, δv)

J ′s(v, s; δs)−R′s(v, s; zc, δs)−G′s(v, s; qc, δs)

−R(v, s; δzc)

−G(v, s; δqc)


= 0 (5.37)

∀ {δv, δs, δzc, δqc} ∈ V × S × V × S . The last two equations are just the primal physical
and material problems given in (4.7) and (4.8).

The first two equations yield the dual coupled problem, which is given using the definition of
the Hessian (4.69) as{

k(v, s; zc, δv) + p(v, s; δv, qc) = J ′v(v, s; δv)

p(v, s; zc, δs) + d(v, s; qc, δs) = J ′s(v, s; δs)

}
, (5.38)

compare with the linearized primal coupled problem (4.70). Let J ′(y; δy) be the total varia-
tion of the functional J , i.e.

J ′(y; δy) := J ′v(v, s; δv) + J ′s(v, s; δs). (5.39)

Then, the dual coupled problem is given as follows. Find the dual solution y∗ ∈ Y such that

h(y;y∗,φ) = J ′(y;φ) ∀φ ∈ Y. (5.40)

Finally, a duality relation for the coupled problem is obtained by using (5.34) and (5.40) as
well as the symmetry of h(y; ·, ·) in form of

J ′(y;∆y) = h(y;y∗, ∆y) = −B(y;y∗). (5.41)

This equation can be evaluated for arbitrary residuals B(y; ·) if the corresponding dual so-
lutions y∗ = {zc, qc} are known. The result is the total change in the quantity of interest
with respect to v and s. The index c indicates that the dual solutions are obtained using the
coupled system. Note, that these dual solutions differ in general from the results which are
obtained with (5.20) and (5.31), respectively. Because the consecutive solution of (5.20) and
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(5.31) is part of a staggered solution scheme, i.e. a decoupled algorithm, and the increments
{∆v, ∆s} differ from the results of (5.34).

We consider the discrete formulation in order to make the above relations more transparent.
Let J(yh) = yi be the quantity of interest. Then, the discrete dual solution y∗ = [zTc q

T
c ]T

is the solution of the discrete version of (5.40) given as[
K P
P T D

] [
zc
qc

]
=

[
Jv
Js

]
, (5.42)

where Jv and Js are the discrete vectors corresponding to the functionals J ′v(y; ·) and J ′s(y; ·),
respectively.

The discrete version of the duality relation (5.41) reads

∆yi = −y∗TB = −[ zTc R + qTc G ]. (5.43)

Finally, if the dual solution y∗ is known the total change in the quantity of interest can be
computed for arbitrary residuals B = [RT GT ]T .

Remark 5.2 (Energy as quantity of interest) If we choose the overall primal potential en-
ergy E as quantity of interest, i.e. J(v, s) = E(v, s), the right hand side of (5.40) becomes

J ′(y; δy) = J ′v(v, s; δv) + J ′s(v, s; δs) = R(v, s; δv) +G(v, s; δs) = 0. (5.44)

Hence, the dual solution y∗ vanishes and the optimality condition (5.37) is reduced to the
optimality condition of the primal physical problem (4.6).

5.6 An illustrative example

A plate with a slit loaded by a body load bR is considered as indicated in Fig. 5.1a. The
physical quantity of interest is the vertical component of the nodal displacement at a given
point P , i.e. J(vh) = u2(P ). The material quantity of interest is the vertical component of
the nodal coordinate at P , i.e. J(sh) = X2(P ).

The approximate dual solutions zh and qh are computed using the finite element method
and the shown mesh by solving (5.20) and (5.31), respectively. The dual loads for the chosen
quantities of interest are just unit loads in vertical direction.

The vertical component of the dual physical solution zh and the dual material solution qh
are given in Fig. 5.1b and Fig. 5.1c, respectively. The dual solutions reflect the influence
of the considered residual on the change in the physical and material quantity of interest,
respectively. For instance, a large value of z in a certain domain Ωi indicates that a physical
residual in Ωi causes a large change in u2. In the same manner, a large value of q in Ωi
indicates that a material residual in Ωi causes a large change in X2. Hence, the dual solutions
are the influence functions for the considered physical and material quantity, respectively.
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P

bR

(a) primal problem (b) dual physical solution z2 for
J(vh) = u2(P )

(c) dual material solution q2 for
J(sh) = X2(P )

Figure 5.1: Plate with a slit loaded by a body force bR: the dual physical solution zh and the
dual material solution qh in vertical direction

5.7 Summary and concluding remarks

Duality techniques for the physical and material problems as well as for the coupled problem
based on variational principles have been proposed. This was based on an optimal control
approach, which yields the general framework for duality relations of variational equations.
The form of the dual problem and the corresponding dual solution depend on the kind of the
considered variational problem. The derived duality (sensitivity) relations are summarized in
Box 5.1.

The dual problems in the physical and material spaces are always linear problems and for-
mulated at the current linearization points {v, s}, i.e. at a given deformed state. If the dual
solutions are known, a quantity of interest can be computed for arbitrary physical and material
residuals, respectively.

The duality relations can be also interpreted as sensitivity relations, because they express the
sensitivity of the considered quantity of interest with respect changes in the corresponding
residual. For instance, for (5.22) we can write

δvi = −zT δR, (5.45)

where δR denotes the variation in the physical residual. The variation in the quantity of
interest δvi is coupled with the variation δR by the dual solution or influence function z .
With this in mind, z could also be termed as sensitivity function .
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physical problem

variational discrete

quantity of interest J(v) = vi J(vh) = vhi

primal physical problem R(v, s;η) = 0 ηTR(v , s) = 0

linearized primal problem k(v, s;η,∆v) = −R(v, s;η) ηTK∆v = −ηTR

dual physical problem k(v, s;z,η) = J ′v(v;η) ηTKz = ηT Ju

duality (sensitivity) relation J ′v(v;∆v) = −R(v, s;z) ∆vi = −zTR

material problem

variational discrete

quantity of interest J(s) = si J(sh) = shi

primal material problem G(v(s), s;ψ) = 0 ψTG(v(s), s) = 0

linearized primal problem m(v, s;ψ,∆s) = −G(v, s;ψ) ψTM∆s = −ψTG

dual material problem m(v, s; q,ψ) = J ′s(s;ψ) ψTMq = ψT Js

duality (sensitivity) relation J ′s(s;∆s) = −G(v, s; q) ∆si = −qTG

coupled physical and material problem

variational discrete

quantity of interest J(y) = yi J(yh) = yhi

primal coupled problem B(y;φ) = 0 φTB = ηTR + ψTG = 0

linearized primal problem h(y;φ,∆y) = −B(y;φ) φTH∆y = −φTB

dual coupled problem h(y;y∗,φ) = J ′(y;φ) φTHy∗ = φT J′

duality (sensitivity) relation J ′(y;∆y) = −B(y;y∗)
∆yi = −y∗TB

= −[ zTc R + qTc G ]

Box 5.1: Summary of variational and discrete duality relations





Chapter 6

Structural and sensitivity analysis of the dual problem

Variations in the physical and material spaces are considered for the dual pro-
blem. Based on an energy functional of the dual problem, balance laws and sen-
sitivity relations for the dual solution itself as well as for a chosen quantity of
interest are derived. The dual problem is embedded in the same framework as
the primal problem and novel complete variational and discrete formulations for
elasticity are proposed.

6.1 Introduction

As mentioned in Section 5.1, the dual physical problem plays an important role in struc-
tural mechanics as well as in computational methods for the computation of local quantities
of interest, such as pointwise stresses and displacements or average stresses, see e.g. [51].
Furthermore, the concept of duality is essential within goal-oriented error analysis and mesh
optimization techniques [4], see Section 8.1 and Section 8.2.1. But usually only variations
with respect to the state are considered. As far as the author knows, configurational variations
for the dual problem itself have not been studied so far.

The goal is now to embed the dual problem in the same framework as the primal problem. To
achieve this, we introduce in addition to the usual primal energy functionalE(v, s) an energy
functionalE∗ and a strain energy functionW ∗R for the dual problem. The variation of the dual
energy with respect to configurational changes yields a novel energy-momentum tensor for
the dual problem. In addition, a sensitivity relation for the dual solution itself is proposed,
i.e. we are interested in the change of the dual solution due to configurational changes. The
error in a chosen quantity of interest depends on the error in the corresponding dual solution.
In this context, it is of interest to study the sensitivity of the dual solution and the quantity of
interest. Some parts of this chapter are published in [71].

61
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6.2 Energy minimization and variational balance laws

6.2.1 The dual problem

The dual physical problem has been introduced in Section 5.3.2 in (5.20). The dual problem
corresponding to the chosen quantity of interest J(v, s) is formulated at the current lineariza-
tion point, i.e. on a given deformed state v. The dual solution z ∈ V is determined by the
linear equation

k(v, s; z,η) = J ′v(v, s;η) ∀η ∈ V. (6.1)

We introduce first an energy functional of the dual problem in order to use the same frame-
work as for the primal problem.

6.2.2 The dual energy functional

Let E∗(v)(z, s) be the total potential energy of the dual problem. The energy depends on the
state function v ∈ V because the problem is formulated on a given deformed configuration.
Furthermore, the energy depends on the same design function s ∈ S as the state. We assume,
that J(v) is a regularized functional and well defined on V . Then, the dual solution z ∈ V is
a minimizer of the corresponding energy functional of the dual problem

E∗(v)(z, s) := C∗(v)(z, s)− J ′v(v, s; z), (6.2)

where C∗(v)(z, s) denotes the internal energy of the dual problem. Furthermore, the func-
tional J ′v(v, s; z) contains the external potential energy, in which the explicit form of J ′v
depends on the chosen quantity of interest.

By means of k(v, s; ·, ·) given in (4.87), we introduce the strain energy function of the dual
problem

W ∗R(v, z) :=
1

2
[ S(v) : E′′vv(z, z) + E′v(v, z) : C : E′v(v, z) ] (6.3)

such that the internal energy of the dual problem is given as

C∗(v)(z, s) :=
1

2
k(v, s; z, z) =

∫
ΩR

W ∗R(v, z) dΩ. (6.4)

The energy functional of the dual problem E∗(v)(z, s) is constructed at a given deformed
state and describes an energy quantity due to the linear dual solution z at this point.

Remark 6.1 (Construction of the dual energy functional) The dual problem is formulated
at a given deformed state v and the dual energy functional E∗(v)(z, s) is chosen in such a
way that E∗z

′(v)(z, s)(η) = k(v, s; z,η)− J ′v(v, s;η), i.e. the partial variation of E∗ with
respect to z yields just the variational dual problem (6.1).
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6.2.3 The dual physical and material residuals

The minimization of the dual energy with respect to z and s ends in the following minimiza-
tion problem.

Problem 6.1 Find {z, s} ∈ V × S such that the dual energy functional (6.2) is minimized,
i.e.

E∗(v)(z, s) = min
{q,r}∈V×S

E∗(v)(q, r). (6.5)

The first-order optimality condition results in the following problem. Find {z, s} ∈ V × S
such thatE∗z

′(v)(z, s)(η)

E∗s
′(v)(z, s)(ψ)

 =

{
R∗(v, s; z,η)

G∗(v, s; z;ψ)

}
= 0 ∀ {η,ψ} ∈ V × S. (6.6)

The partial variation of E∗ with respect to z yields the dual physical residual R∗ : V → R
given as

R∗(v, s; z,η) := E∗z
′(v)(z, s)(η) = k(v, s; z,η)− J ′v(v, s;η). (6.7)

This is just the variational equation (6.1) for the dual problem. A variation with respect to
changes in the design s leads to the dual material residual G∗ : S → R in the form

G∗(v, s; z;ψ) := E∗s
′(v)(z, s)(ψ) =

1

2
k′s(v, s; z;ψ)− J ′′vs(v, s; z,ψ). (6.8)

The dual material residual G∗ represents the sensitivity of the energy functional E∗(v)(z, s)
with respect to changes in the design s. The change in the design causes a change in the
gradients of the state v and therefore a change in the dual solution at this state. Finally, this
ends in a change of the energy functional of the dual problem.

Remark 6.2 (Linear vs. nonlinear arguments) The dual problem is a linear problem and
the bilinear form k(v, s; z, ·) in the dual physical residual (6.7) is linear with respect to all
arguments right from the semicolon. The variables left from the semicolon are the current
evaluation points. In contrast, in the dual material residual (6.8), the dual solution z appears
as a quadratic term, because the variation of the strain energy of the dual problem (6.3) with
respect to s is still quadratic in z. This important fact is indicated by the second semicolon
in k′s(v, s; z; ·), i.e.

k′s(v, s; z; ·) := k′s(v, s; z, z, ·), (6.9)

Hence, in this semilinear form only the arguments right from the second semicolon are linear.
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6.3 Variational sensitivity analysis

In the same manner as for the primal problem in Section 4.3, the sensitivities of the energy and
the residuals are investigated. Furthermore, a sensitivity relation for the quantitiy of interest
is considered.

6.3.1 Sensitivity of the energy functional

The sensitivity of the dual energy functional (6.2) is given as the total variation with respect
to z and s, i.e.

δE∗ = δzE
∗(v)(z, s)(δz) + δsE

∗(v)(z, s)(δs)

= R∗(v, s; z, δz) +G∗(v, s; z; δs).
(6.10)

For a given solution z ∈ V of (6.1) we haveR∗(v, s; z, δz) = 0. Hence, the first contribution
vanishes and the sensitivity relation becomes

δE∗ = δsE
∗(v)(z, s)(δs) = G∗(v, s; z; δs). (6.11)

Therefore, the dual material residualG∗ can be interpreted as the sensitivity of the dual energy
E∗ with respect to configurational variations δs.

6.3.2 Sensitivity of the physical residual

The change in the design yields a change in the state and in the quantity of interest as well
as in the dual solution. In order to establish a sensitivity relation for the dual solution, we
consider the dual physical residual R∗ = 0 given in (6.7). The total variation reads

R∗′ = R∗z
′(v, s; δz,η) +R∗s

′(v, s; z,η, δs) = 0. (6.12)

The variation consists of two parts. Due to the fact that R∗ is linear in z we have

k∗(v, s; δz,η) := R∗z
′(v, s; δz,η) = k(v, s; δz,η). (6.13)

Hence, the first part is the tangent stiffness operator k(·, ·) from (4.87). The second part is the
dual tangent pseudo load operator

p∗(v, s; z,η, δs) := R∗s
′(v, s; z,η, δs)

= k′s(v, s; z,η, δs)− J ′′vs(v, s;η, δs).
(6.14)

This is a bilinear form p∗ : V × S → R. With these, (6.12) becomes

R∗′ = k(v, s; δz,η) + p∗(v, s; z,η, δs) = 0. (6.15)

A rearrangement of (6.15) leads to the following variational problem.
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Problem 6.2 Let δŝ ∈ S be a given fixed design variation. Find δz ∈ V such that

k(v, s; δz,η) = −Q∗p(v, s; z,η) ∀η ∈ V, (6.16)

where

Q∗p(v, s; z, ·) := p∗(v, s; z, ·, δŝ) (6.17)

is the dual pseudo load for a given fixed variation δŝ at the current state {v, s, z}.

This is a variational equation for the sensitivity of the dual solution due to changes in the
design. For a given variation in the design δŝ, we can calculate the variation in the dual
solution δz.

6.3.3 Sensitivity of the material residual

The sensitivity of the dual material residual (6.8) is given from the total variation of G∗ = 0,
i.e. we have

G∗′ = G∗z
′(v, s; z;ψ, δz) +G∗s

′(v, s; z;ψ, δs) = 0. (6.18)

The partial variations are introduced as

t∗(v, s; z,ψ, δz) := G∗z
′(v, s; z;ψ, δz)

=
1

2
k′s(v, s; z, δz;ψ)− J ′′vs(v, s; δz,ψ),

(6.19)

d∗(v, s; z;ψ, δs) := G∗s
′(v, s; z;ψ, δs)

=
1

2
k′′ss(v, s; z;ψ, δs)− J ′′′vss(v, s; z,ψ, δs),

(6.20)

where d∗(v, s; z;ψ, δs) denotes the dual tangent material stiffness operator. For given fixed
{v, s, z} these are bilinear forms t∗ : S×V → R and d∗ : S×S → R. Due to permutableness
of variations, i.e.

G∗z
′ = (E∗)′′sz = (E∗)′′zs = R∗s

′, (6.21)

we obtain for the variation of G∗ with respect to z

t∗(v, s; z,ψ, δz) = p∗(v, s; z, δz,ψ). (6.22)

Hence, (6.18) can be written as

G∗′ = p∗(v, s; z, δz,ψ) + d∗(v, s; z;ψ, δs) = 0. (6.23)

After rearranging the above terms we can formulate the following problem.
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Problem 6.3 Let δẑ ∈ V be a given fixed variation. Find δs ∈ S such that

d∗(v, s; z;ψ, δs) = −Q∗m(v, s; z,ψ) ∀ψ ∈ S, (6.24)

where

Q∗m(v, s; z, ·) := p∗(v, s; z, δẑ, ·) (6.25)

is the dual pseudo load of the material problem for the variation δẑ.

6.3.4 Sensitivity of the quantity of interest

The variation in the state δv ∈ V due to a variation in the design δs ∈ S is given by the
variational equation (4.21) as

k(v, s;η, δv) = −Qp(v, s;η) ∀η ∈ V.

Furthermore, the dual solution z at the current linearization point is determined by (6.1),
which is given by

k(v, s; z,η) = J ′v(v, s;η) ∀η ∈ V.

Due to the symmetry of k(·, ·) we obtain a sensitivity relation for the quantity of interest in
the form

J ′v(v, s; δu) = k(v, s; z, δv) = −Qp(v, s; z). (6.26)

Hence, the variation in a quantity of interest is given by the scalar product between the dual
solution z and the pseudo load corresponding to the design variation δs, i.e.

J ′v(v, s; δv) = −Qp(v, s; z). (6.27)

If the dual solution z is known, this equation can be evaluated for arbitrary pseudo loads
Qp(v, s; ·) = p(v, s; ·, δŝ) = R′s(v, s; ·, δŝ), i.e. for arbitrary admissible design variations
δs. The pseudo load operator of the primal problem p(v, s; ·, δŝ) is given in (4.88).

6.4 Finite element approximation

6.4.1 The discrete energy minimization problem

The finite element formulation is based on a conforming Galerkin method as for the primal
problem in Section 4.4.2. The discrete dual solution zh ∈ Vh ⊂ V and discrete design
sh ∈ Sh ⊂ S are determined by the following discrete version of Problem 6.1.
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Problem 6.4 Find {zh, sh} ∈ Vh × Sh such that

E∗(vh)(zh, sh) = min
{qh,rh}∈Vh×Sh

E∗(vh)(qh, rh). (6.28)

The optimality condition is given as follows. Find {zh, sh} ∈ Vh × Sh such that{
R∗(vh, sh; zh,ηh)

G∗(vh, sh; zh;ψh)

}
= 0 ∀ {ηh,ψh} ∈ Vh × Sh. (6.29)

6.4.2 Matrix representation of the residuals and tangent forms

For a matrix description of the approximate dual solution zh ∈ Vh ⊂ V we introduce the
discrete approximations for the dual solution, i.e. the nodal vector z ∈ Rn and the variation
δz ∈ Rn.

For given {v̂h, ŝh, ẑh}, the discrete versions of the residuals and tangent forms are given as

R∗(v̂h, ŝh; ẑh,ηh) = ηTR∗, (6.30)

G∗(v̂h, ŝh; ẑh;ψh) = ψTG∗, (6.31)

k(v̂h, ŝh; δzh,ηh) = δzTKη = ηTKδz , (6.32)

p∗(v̂h, ŝh; ẑh,ηh, δsh) = ηTP ∗δs, (6.33)

t∗(v̂h, ŝh; ẑh,ψh, δzh) = ψTT ∗δz , (6.34)

d∗(v̂h, ŝh; ẑh;ψh, δsh) = ψTD∗δs, (6.35)

where the vectors and matrices associated to the functionals and bilinear forms are denoted
by

R∗ ∈ Rn dual physical residual vector

G∗ ∈ Rm dual material residual vector

P ∗ ∈ Rn×m dual tangent physical pseudo load matrix

T ∗ ∈ Rm×n dual tangent material pseudo load matrix

D∗ ∈ Rm×m dual tangent material stiffness matrix.

Note that due to symmetry we have T ∗ = (P ∗)T . Details on the formulation of the matrix
representations are given in C.3 and C.4.
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6.4.3 The discrete sensitivity equations

The discrete sensitivity relation of the dual energy (6.11) with respect to variations δs reads

δsE
∗ = G∗

T

δs. (6.36)

Furthermore, the total variations of the dual physical (6.15) and material (6.23) residuals
become

δR∗ = Kδz + P ∗δs = 0 or δz = −K−1P ∗δs, (6.37)

δG∗ = P ∗T δz +D∗δs = 0 or δs = −D∗−1P ∗T δz . (6.38)

The discrete versions of the sensitivity equations for the dual physical (6.16) and material
(6.24) problem are given by

Kδz = −Q∗p with Q∗p := P ∗δŝ, (6.39)

D∗δs = −Q∗m with Q∗m := P ∗T δẑ . (6.40)

Here, Q∗p ∈ Rn is the dual pseudo load vector of the dual physical problem associated to the
functional Q∗p(vh, sh; zh, ·) and Q∗m ∈ Rm is the pseudo load vector of the material residual
problem associated to the functional Q∗m(vh, sh; zh, ·).

Remark 6.3 (Sensitivity operator) In Remark 4.5 we have proposed a sensitivity relation
for the state as δv = Sp δs . In the same manner, we obtain with (6.37) directly a connection
between the physical and the material spaces for the dual problem. Both spaces are connected
by the transformation

δz = S∗p δs with S∗p := −K−1P ∗, (6.41)

where S∗p ∈ Rn×m denotes the dual sensitivity operator matrix of the dual physical problem.
With the knowledge of the pseudo load operator matrix P ∗, we can evaluate the sensitivity
equation for arbitrary admissible variations δs in the material space. In the same manner,
we obtain from (6.38) for the material problem the transformation

δs = S∗m δz with S∗m := −D∗−1P ∗T , (6.42)

where S∗m ∈ Rm×n denotes the dual sensitivity operator matrix of the material problem.
With this, we can perform the sensitivity analysis for arbitrary admissible variations δz in
the physical space.

Finally, the sensitivity relation of the quantity of interest (6.27) becomes

J ′v(vh, sh; δvh) = −zTQp, (6.43)

where Qp = P δs denotes the pseudo load vector defined in (4.52). Let for instance vi be the
quantity of interest, i.e. J(vh, sh) = vi. Then, we have J ′v(vh, sh; δvh) = δvi and hence

δvi = −zTQp. (6.44)

The dual solution has to be computed once and the sensitivity relation can be evaluated for
arbitrary pseudo loads, i.e. for any admissible design variation δs .
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6.4.4 Computation of the dual solution

The discrete dual solution zh ∈ Vh corresponding to (6.1) is determined by the variational
equation

k(vh, sh;ηh, zh) = J ′v(vh, sh;ηh) ∀ηh ∈ Vh. (6.45)

To solve this problem, we have to apply equivalent nodal forces jk defined by the right-hand
side J ′v(vh, sh; ·). For a certain interpolation function φk ∈ Vh we have

jk = J ′v(vh, sh;φk). (6.46)

We consider for instance the stress component Sij(X) of the stress tensor S at some material
point X as quantity of interest, i.e. J(v, s) = Sij(X) and J ′v(v, s;η) = (Sij)

′
v(v,η)(X),

see also Example 6.1 in Section 6.5.2. The component (Sij)
′
v =: ∆Sij is given from the

stress field S′v(v,η) = C : E′v(v,η) =: ∆S(v,η). We use as interpolation functions φi the
standard finite element shape functions. Hence, the equivalent nodal forces are given from

jk = J ′v(vh, sh;φk) = ∆Sij(vh, φk)(X). (6.47)

The force jk is the stress∆Sij at the pointX , which is caused by applying the shape function
φk at the nodal coordinate k. The assembling of all element contributions yields the discrete
nodal vector Jv corresponding to the functional J ′v(vh, sh; ·).

The dual problem is formulated at a given linearization point, i.e. on a given deformed state
vh. The tangent form k(vh, sh; ·, ·) is just the tangent physical stiffness (4.87). Hence, in the
discrete case we have to solve

Kz = Jv, (6.48)

where K is the same tangent stiffness matrix as used in the last iteration within the solution
process of the primal problem. Therefore, this matrix and its inverse are already known and
have not to be additionally computed.

6.5 Explicit formulations for shape sensitivity

6.5.1 The energy-momentum tensor of the dual problem

The dual material residual (6.8) contains the variation of the internal energy (6.4) with respect
to configurational changes, which is obtained as

C∗s
′(v)(z, s)(ψ) =

1

2
k′s(v, s; z;ψ) =

1

2
k′s(v, s; z, z,ψ)

=

∫
ΩR

{ 1

2
[ S : E′′′vvs(z, z,ψ) + E′′vv(z, z) : C : E′s(v,ψ)

+ E′v(v, z) : D : E′s(v,ψ) : E′v(v, z) ]

+ E′′vs(v, z,ψ) : C : E′v(v, z) +W ∗R(v, z)I : Gradψ }dΩ

(6.49)
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Stress increments:

∆zS
(z) := C : E′′vv(z, z) = C : GradzT Grad z, (6.52)

∆zS
(1) := C : E′v(v, z) = C : FT Grad z, (6.53)

∆zS
(2) := D : E′v(v, z) : E′v(v, z) = D : FT Grad z : FT Grad z. (6.54)

Elasticity tensor increments:

∆zC(z) := D : E′′vv(z, z) = D : GradzT Grad z, (6.55)

∆zC(1) := D : E′v(v, z) = D : FT Grad z, (6.56)

∆zC(2) := E : E′v(v, z) : E′v(v, z) = E : FT Grad z : FT Grad z, (6.57)

where

C :=
∂S

∂E
, D :=

∂C
∂E

, E :=
∂D
∂E

. (6.58)

Box 6.1: Stress and elasticity tensor increments for the dual physical problem

where

E′′′vvs(η,ν,ψ) = − sym{GradψT GradνT Gradη

+ GradνT Gradη Gradψ}.
(6.50)

A more compact notation is given by

C∗s
′(v)(z, s)(ψ) =

∫
ΩR

{ 1

2
[ S : E′′′vvs(z, z,ψ) +∆zS

(z) : E′s(v,ψ)

+ 2∆zS
(1) : E′′vs(v, z,ψ) +∆zS

(2) : E′s(v,ψ) ]

+W ∗R(v, z)I : Gradψ }dΩ

(6.51)

The stresses (increments) ∆zS
(z), ∆zS

(1) and ∆zS
(2) are given in Box 6.1. For later use,

the increments of the elasticity tensor have been introduced in the same manner in Box 6.1.
The derivative of the fourth-order elasticity tensor C yields a sixth-order tensor D and the
second derivative leads to a eight-order tensor E. The explicit specifications of these tensors
for a classical compressible Neo-Hookean material are given in Appendix B.1.

The variation of the internal energy can be written in terms of an energy-momentum tensor.
A straightforward calculation and rearrangement of (6.51) yields

C∗s
′(v)(z, s)(ψ) =

∫
ΩR

Σ∗(v, z) : Gradψ dΩ. (6.59)
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Here, a novel energy-momentum tensor of the dual problem Σ∗ in form of

Σ∗(v, z) := W ∗R(v, z)I−Grad zT
∂W ∗R(v, z)

∂Grad z
−GradvT

∂W ∗R(v, z)

∂Gradv
(6.60)

has been introduced, where

∂W ∗R(v, z)

∂Grad z
= Gradz S + F∆zS

(1) (6.61)

∂W ∗R(v, z)

∂Gradv
= Gradz∆zS

(1) +
1

2
F [∆zS

(2) +∆zS
(z) ] (6.62)

are just the derivatives of the strain energy W ∗R with respect to the gradient of the primal and
dual solutions, compare with the energy-momentum tensor of the primal problem (3.55).

Remark 6.4 The above derived terms in Σ∗ are identified as the partial derivatives of W ∗R
with respect to v and z, respectively. The variation in s at a given deformed state causes a
change in v and hence a change in z and the dual energy E∗. Therefore, two contributions
appear in Σ∗ due to these changes.

Remark 6.5 For the initial problem, i.e. at the undeformed state with v = u = 0, we obtain
from (6.60) the energy-momentum or Eshelby tensor in terms of linear elasticity Σ(z), i.e.

Σ∗(u, z)

∣∣∣∣
u=0

= WR(z) I−Grad zTσ(z) =: Σ(z), (6.63)

with WR(z) := 1
2 ε(z) : C : ε(z) and the linear Cauchy stress tensor σ(z) := C : ε(z),

where ε(z) := sym{Grad z}.

Finally, the explicit form of the dual material residual (6.8) reads

G∗(v, s; z;ψ) =

∫
ΩR

Σ∗(v, z) : Gradψ dΩ− J ′′vs(v, s; z,ψ). (6.64)

The explicit form of J ′′vs(v, s; z,ψ) depends on the chosen quantity of interest. An example
is given in Section 6.5.2.

6.5.2 Variational formulation of the residuals and tangent forms

The explicit forms of the dual residuals and tangent forms are stated in this section in the
same manner as for the primal problem in Section 4.6.1.
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The partial variations of the dual physical and material residuals R∗ and G∗ have been intro-
duced as

k∗(v, s; δz,η) = R∗z
′(v, s; δz,η) t∗(v, s; z,ψ, δz) = G∗z

′(v, s; z;ψ, δz)

p∗(v, s; z,η, δs) = R∗s
′(v, s; z,η, δs) d∗(v, s; z;ψ, δs) = G∗s

′(v, s; z;ψ, δs).

The dual residuals written in terms of S and E are given by

R∗(v, s; z,η) =

∫
ΩR

{S : E′′vv(z,η) +∆zS
(1) : E′v(v,η) }dΩ

− J ′v(v, s;η),

(6.65)

G∗(v, s; z;ψ) =

∫
ΩR

{ 1

2
[ S : E′′′vvs(z, z,ψ) +∆zS

(z) : E′s(v,ψ)

+ 2∆zS
(1) : E′′vs(v, z,ψ) +∆zS

(2) : E′s(v,ψ) ]

+W ∗R(v, z)I : Gradψ }dΩ

−J ′′vs(v, s; z,ψ).

(6.66)

The stress increments ∆zS
(z), ∆zS

(1) and ∆zS
(2) are given in (6.52), (6.53) and (6.54),

respectively. Furthermore, the explicit formulation of the tangent forms are obtained as

k∗(v, s; δz,η) = k(v, s; δz,η)

=

∫
ΩR

{S : E′′vv(δz,η) + E′v(v, δz) : C : E′v(v,η) } dΩ,
(6.67)

p∗(v, s; z,η, δs) =

∫
ΩR

{S : E′′′vvs(z,η, δs) + E′′vv(z,η) : C : E′s(v, δs) (6.68)

+ E′′vs(v, z, δs) : C : E′v(v,η)

+ E′v(v, z) : C : E′′vs(v,η, δs)

+ E′v(v,η) : D : E′v(v, z) : E′s(v, δs)

+ [ S : E′′vv(z,η) + E′v(v, z) : C : E′v(v,η) ] Div δs } dΩ

−J ′′vs(v, s;η, δs),
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t∗(v, s; z,ψ, δz) =

∫
ΩR

{S : E′′′vvs(z, δz,ψ) + E′′vv(z, δz) : C : E′s(v,ψ) (6.69)

+ E′′vs(v, z,ψ) : C : E′v(v, δz)

+ E′v(v, z) : C : E′′vs(v, δz,ψ)

+ E′v(v, δz) : D : E′v(v, z) : E′s(v,ψ)

+ [ S : E′′vv(z, δz) + E′v(v, z) : C : E′v(v, δz) ] Divψ } dΩ

−J ′′vs(v, s; δz,ψ),

d∗(v, s; z;ψ, δs) =

∫
ΩR

{ 1

2
[ S : E′′′′vvss(z, z,ψ, δs) (6.70)

+ E′′′vvs(z, z,ψ) : C : E′s(v, δs)

+ E′′′vvs(z, z, δs) : C : E′s(v,ψ)

+ E′′vv(z, z) : C : E′′ss(v,ψ, δs)

+ E′′ss(v,ψ, δs) : D : E′v(v, z) : E′v(v, z)

+ E′s(v,ψ) : D : E′′vv(z, z) : E′s(v, δs)

+ E′s(v,ψ) : E : E′v(v, z) : E′v(v, z) : E′s(v, δs) ]

+ E′′′vss(v, z,ψ, δs) : C : E′v(v, z)

+ E′′vs(v, z,ψ) : C : E′′vs(v, z, δs)

+ E′′vs(v, z, δs) : D : E′v(v, z) : E′s(v,ψ)

+ E′′vs(v, z,ψ) : D : E′v(v, z) : E′s(v, δs)

+ (W ∗R)′s(δs) Divψ + (W ∗R)′s(ψ) Div δs

+W ∗R [ DivψDiv δs− I : GradψGrad δs ] } dΩ

−J ′′′vss(v, s; z,ψ, δs).

The bilinear form d∗(v, s; z;ψ, δs) contains the variations of the strain energy function of
the dual problem W ∗R. These terms are given by

(W ∗R)′s(ψ) =
1

2
[ S : E′′′vvs(z, z,ψ) + E′′vv(z, z) : C : E′s(v,ψ)

+ E′s(v,ψ) : D : E′v(v, z) : E′v(v, z) ]

+ E′′vs(v, z,ψ) : C : E′v(v, z),

(6.71)
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(W ∗R)′s(δs) =
1

2
[ S : E′′′vvs(z, z, δs) + E′′vv(z, z) : C : E′s(v, δs)

+ E′s(v, δs) : D : E′v(v, z) : E′v(v, z) ]

+ E′′vs(v, z, δs) : C : E′v(v, z).

(6.72)

Furthermore, the variation E′′′′vvss(z, z,ψ, δs) reads

E′′′′vvss(z, z,ψ, δs) = sym{ Grad δsT GradψT Grad zT Grad z

+ GradψT Grad δsT Grad zT Grad z

+ GradψT Grad zT Grad zGrad δs

+ Grad δsT Grad zT Grad zGradψ

+ Grad zT Grad zGrad δsGradψ

+ Grad zT Grad zGradψGrad δs }.

(6.73)

The explicit forms of the contributions J ′′vs(v, s;η, δs) and J ′′′vss(v, s; z,ψ, δs) depend on
the chosen quantity of interest.

Example 6.1 As an example of a nonlinear functional J , we consider for instance the stress
component Sij(X) of the stress tensor S at some material point X as quantity of interest,
i.e. J(v, s) = Sij(X). The linearized functional follows in the form

J ′v(v, s;η) = (Sij)
′
v(v,η)(X). (6.74)

The variation of J ′v(v, s; z) with respect to s reads

J ′′vs(v, s;η,ψ) = (Sij)
′′
vs(v,η,ψ)(X) (6.75)

and the second variation with respect to s is given as

J ′′′vss(v, s;η,ψ, δs) = (Sij)
′′′
vss(v,η,ψ, δs)(X). (6.76)

The components (Sij)
′
v , (Sij)

′′
vs and (Sij)

′′′
vss are given from the stress fields

S′v(v,η) = C : E′v(v,η), (6.77)

S′′vs(v,η,ψ) = C : E′′vs(v,η,ψ) + E′v(v,η) : D : E′s(v,ψ), (6.78)

S′′′vss(v,η,ψ, δs) =C : E′′′vss(v,η,ψ, δs) + E′′vs(v,η,ψ) : D : E′s(v, δs)

+ E′′vs(v,η, δs) : D : E′s(v,ψ)

+ E′v(v,η) : D : E′′ss(v,ψ, δs)

+ E′v(v,η) : E : E′s(v, δs) : E′s(v,ψ).

(6.79)
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6.5.3 Discrete formulations of the dual residuals and tangent matrices

In the same manner as for the primal problem, the above dual residuals and tangent forms are
discretized using the isoparametric concept as described in Appendix C.

The nodal contributions of the discrete residual vectors are given by

R∗ei =

∫
Ωe

R

{BTziS¯ +BTvi∆zS¯
(1) } dΩ− Jev(v , s)i, (6.80)

G∗ei =

∫
Ωe

R

{ 1

2
[BTvvsiS¯

+BTsi∆zS¯
(z) + 2BTvsi∆zS¯

(1) +BTsi∆zS¯
(2) ]

+W ∗R ILi } dΩ− Jevs(v , s; z)i,

(6.81)

where S
¯

is given in (4.101) and ∆zS¯
(z), ∆zS¯

(1) and ∆zS¯
(2) are the column matrix repre-

sentations of the symmetric stress increments ∆zS
(z), ∆zS

(1) and ∆zS
(2), respectively. For

instance, the first increment has in the two-dimensional case the form

∆zS¯
(z) =

[
∆zS

(z)
11 ∆zS

(z)
22 ∆zS

(z)
12

]T
. (6.82)

The stress increments are defined in Box 6.1.

Furthermore, the corresponding dual tangent matrices are obtained as

K∗eij = Ke
ij

=

∫
Ωe

R

{BTviCBvj + LTi SLjI } dΩ,
(6.83)

P ∗eij =

∫
Ωe

R

{BTziCBsj − LTi SLj Grad z −Grad zSLjL
T
i

−LTi ∆zS
(1)Lj Grad v − F∆zS

(1)LjL
T
i

+BTviCBvsj +BTvi∆zC
(1)Bsj

+ Grad zSLiL
T
j + F∆zS

(1)LiL
T
j } dΩ

−Jevs(v , s)ij ,

(6.84)
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D∗eij =

∫
Ωe

R

{ Grad zT Grad zSTLjL
T
i + LjL

T
i SGrad zT Grad z

+LTi SLj Grad zT Grad z

+ 1/2 [BTvvsiCBsj +BTsiCBvvsj ]

+ 1/2 [LTi ∆zS
(z)Lj Grad vT Grad v + LjL

T
i ∆zS

(z)F T Grad v

+ Grad vTF∆zS
(z)LjL

T
i ]

+ 1/2 [LTi ∆zS
(2)Lj Grad vT Grad v + LjL

T
i ∆zS

(2)F T Grad v

+ Grad vTF∆zS
(2)LjL

T
i ]

+ 1/2 [BTsi∆zC
(z)Bsj +BTsi∆zC

(2)Bsj ]

+ Grad vT Grad z∆zS
(1)LjL

T
i + LjL

T
i ∆zS

(1) Grad zT Grad v

+LTi ∆zS
(1)Lj Grad zT Grad v + LTi ∆zS

(1)Lj Grad vT Grad z

+LjL
T
i ∆zS

(1)F T Grad z + Grad zTF∆zS
(1)LjL

T
i

+BTvsiCBvsj +BTsi∆zC
(1)Bvsj +BTvsi∆zC

(1)Bsj

+ YzLiL
T
j + LiL

T
j Y

T
z +W ∗R [LiL

T
j − LjLTi ] } dΩ

−Jevss(v , s; z)ij .

(6.85)

The quantities Jev(v , s)i and Jevs(v , s; z)i are the element nodal vectors on a node i corre-
sponding to the functionals J ′v(v, s; ·) and J ′′vs(v, s; z, ·). In the same manner, Jevs(v , s)ij and
Jevss(v , s; z)ij are the element nodal matrices corresponding to the bilinear forms J ′′vs(v, s; ·, ·)
and J ′′′vss(v, s; z, ·, ·).

The matrices Bvvsi, Bvsi and Bzi are given in Appendix C in (C.20), (C.18) and (C.15),
respectively. Furthermore,

Yz :=−Grad zT [ Grad zS + F∆zS
(1) ]

−Grad vT [ Grad z∆zS
(1) +

1

2
F (∆zS

(z) +∆zS
(2)) ]

(6.86)

as well as ∆zS
(z), ∆zS

(1) and ∆zS
(2) are the matrix representation of the stress increments

(6.52), (6.53) and (6.54). The matrices ∆zC
(z), ∆zC

(1) and ∆zC
(2) are the matrix represen-

tations of the fourth-order tensors (6.55), (6.56) and (6.57), respectively.
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(E∗)′′ss = G∗s
′ = d∗(ψ, δs)

E∗z
′ = R∗(v, s; z,η)

E∗(v)(z, s)

(E∗)′′zs = R∗s
′ = p∗(η, δs)

E∗s
′ = G∗(v, s; z;ψ)

p∗(δz,ψ) = R∗s
′ = (E∗)′′zs = (E∗)′′sz = G∗z

′ = t∗(ψ, δz)

(E∗)′′zz = R∗z
′ = k∗(δz,η) (E∗)′′sz = G∗z

′ = t∗(ψ, δz)

Figure 6.1: Summary of the complete energy variations of the dual problem for variations
{η, δz} ∈ V and {ψ, δs} ∈ S. The tangent forms have to be evaluated for given
{v, s, z}.

6.6 Complete energy variations of the dual problem

The energy functional of the dual problem E∗(v)(z, s) is formulated on a given deformed
state and depends on the dual solution z and a design function s. The problem is completely
described if both variables are considered. This is illustrated in Fig. 6.1.

In the same manner as mentioned for the primal problem in Section 4.7, the dual physical and
material problems are coupled by the dual pseudo load operator p∗(v, s; z, ·, ·), i.e.

p∗(v, s; z, δz,ψ) = R∗s
′ = (E∗)′′zs = (E∗)′′sz = G∗z

′ = t∗(v, s; z,ψ, δz).

In the context of the finite element method we can say that the element formulation is com-
plete if the dual residualsR∗ and G∗ as well as dual tangent matrices P ∗ andD∗ are supplied.
These residuals and tangent matrices can efficiently be computed and assembled in the same
routine as the quantities for the primal problem without considerable computational cost. By
means of all residuals and tangent forms not only the analysis of the dual problem can be
performed but also the sensitivity with respect to configurational changes.

6.7 Total change in the dual energy and the dual solution

The above derived sensitivity relations are obtained for a given fixed state v, i.e. the deformed
body can be associated with the reference configuration of the dual problem.
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The change in the dual energy δE∗ and the change in the dual solution δz from (6.11) and
(6.16) are just the parts of the change for a given fixed state. The total change in the dual
energy and the dual solution consist of additional parts due to the change in the state v itself.

Therefore, we assume in the following that v is not fixed. The total variations of the dual
energy functional and the dual physical residual are considered.

6.7.1 The dual energy functional

The total variation of the dual energy (6.2) with respect to z, s and v reads

δE∗ = δzE
∗(v)(z, s)(δz) + δsE

∗(v)(z, s)(δs) + δvE
∗(v)(z, s)(δv)

= R∗(v, s; z, δz) +G∗(v, s; z; δs) + L∗(v, s; z; δv),
(6.87)

where

L∗(v, s; z; δv) := δvE
∗(v)(z, s)(δv). (6.88)

For a given solution z ∈ V of (6.1) we have R∗(v, s; z, δz) = 0 and the first contribution
vanishes. Hence, we obtain

δE∗ = G∗(v, s; z; δs) + L∗(v, s; z; δv). (6.89)

The functional L∗ becomes in the discrete case

L∗(v̂h, ŝh; ẑh; δv) = δvTL∗ = L∗T δv . (6.90)

The total variation of the dual energy can be written as

δE∗ = G∗T δs + L∗T δv = G∗T δs − L∗TK−1P δs = [G∗T − L∗TK−1P ]δs, (6.91)

where the sensitivity relation for the state (4.54) has been used in order to eliminate δv , i.e.
δv = −K−1P δs . This sensitivity relation depends only on changes in s.

6.7.2 The dual physical residual

The total variation of the dual physical residual (6.7) becomes

R∗′ = R∗z
′(v, s; δz,η) +R∗s

′(v, s; z,η, δs) +R∗v
′(v, s; z,η, δv)

= k(v, s; δz,η) + p∗(v, s; z,η, δs) + b∗(v, s; z,η, δv) = 0,
(6.92)

where

b∗(v, s; z,η, δv) := R∗v
′(v, s; z,η, δv). (6.93)
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Hence, the total change in the dual solution is given by

k(v, s; δz,η) = −Q∗full(v, s; z,η) ∀η ∈ V, (6.94)

with the complete or full dual pseudo load

Q∗full(v, s; z,η) := p∗(v, s; z,η, δs) + b∗(v, s; z,η, δv). (6.95)

We consider the discrete case. The bilinear form b∗(v, s; z,η, δv) becomes the matrix repre-
sentation

b∗(v̂h, ŝh; ẑh,ηh, δvh) = ηTB∗δv , (6.96)

with the tangent matrixB∗ ∈ Rn×n. This is just the partial derivative of discrete dual residual
vectorR∗ with respect to v , i.e.B∗ = ∂R∗/∂v . For given solutions {vh, sh, zh} the discrete
residual reads R∗(v , s; z) = 0 and we have

δR∗ =
∂R∗

∂z
δz +

∂R∗

∂s
δs +

∂R∗

∂v
δv = Kδz + P ∗δs +B∗δv

= Kδz + P ∗δs −B∗K−1P δs = 0,

(6.97)

where δv = −K−1P δs has been used. Hence, the total change in the dual solution due to
configurational variations δs is given by the discrete version of (6.94) in form of

Kδz = −Q∗full with Q∗full = [P ∗ −B∗K−1P ] δs. (6.98)

This is a linear equation, in which K is the same primal tangent physical stiffness matrix as
used within the last solution iteration of the primal problem.

For linear problems the dual residual R∗ depends not on v and hence the second term in the
full pseudo load Q∗full vanishes, i.e. B∗K−1P = 0, because of B∗ = ∂R∗/∂v = 0.

Remark 6.6 (Sensitivity operator) A connection between the physical and material spaces
for the total change in the dual solution is directly obtained from (6.98), i.e. we have

δz = S∗full δs with S∗full := −K−1[P ∗ −B∗K−1P ], (6.99)

where S∗full ∈ Rn×m denotes the full dual sensitivity operator matrix of the dual problem.

6.7.3 Explicit formulations for shape sensitivity

In the same manner as in Section 6.5.2 and Section 6.5.3 the explicit variational and dis-
crete formulations of the functional L∗(v, s; z; δv) and the tangent form b∗(v, s; z,η, δv)
are stated.
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The partial variation of the dual energy E∗ with respect to v reads

L∗(v, s; z; δv) =

∫
ΩR

1

2
{∆zS

(z) : E′v(v, δv) (6.100)

+ 2∆zS
(1) : E′′vv(z, δv) +∆zS

(2) : E′v(v, δv) } dΩ

−J ′′vv(v, s; z, δv).

The corresponding nodal vector contribution is obtained as

L∗ei =

∫
Ωe

R

1

2
{BTvi∆zS¯

(z) + 2BTzi∆zS¯
(1) +BTvi∆zS¯

(2) } dΩ

− Jevv(v , s; z)i.

(6.101)

Furthermore, the partial variation of the dual physical residual R∗ with respect to v is given
by

b∗(v, s; z,η, δv) =

∫
ΩR

{E′′vv(z,η) : C : E′v(v, δv) (6.102)

+ E′v(v,η) : C : E′′vv(z, δv)

+ E′′vv(η, δv) : C : E′v(v, z)

+ E′v(v,η) : D : E′v(v, z) : E′v(v, δv) } dΩ

−J ′′vv(v, s;η, δv).

The discrete tangent matrix representation is achieved in form of

B∗eij =

∫
Ωe

R

{BTziCBvj +BTviCBzj + LTi ∆zS
(1)LjI +BTvi∆zC

(1)Bvj } dΩ

−Jevv(v , s)ij .
(6.103)

The stress increments∆zS
(i) and the elasticity tensor increment∆zC(1) are given in Box 6.1.

Details on the numerical implementation are stated in Appendix C.

6.8 An illustrative example

System and model problem. A L-shaped plate as indicated in Figure 6.2a is investigated.
The plate is loaded by tractions t̄ = [0,−5]T . A compressible Neo-Hookean material with
the strain energy function given in (B.20) is considered. The Lamé parameters are chosen as
λ = 5.769 × 102 and µ = 3.846 × 102, which correspond to E = 103 and ν = 0.3. The
discrete design variables s are the nodal coordinates of the mesh.
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(a) primal problem (b) primal solution uh and material residual G

Figure 6.2: L-shaped plate: system of the primal problem and the primal material residual on
the mesh nodes for the given deformed state

The quantity of interest and the dual problem. The stress component S22(Xp) of the
second Piola-Kirchhoff stress S at the point Xp is considered as quantity of interest, i.e.
J(u, s) = S22(Xp). The explicit expressions of the variations are given in Example 6.1 in
Section 6.5.2.

Both the dual problem for the initial problem with uh = 0 and the dual problem formulated
at the given deformed state uh due to the primal load case t̄ are taken into consideration. The
solution of the dual problem (6.45) for the chosen quantity of interest J(u, s) = S22(Xp)
requires the computation of the dual load J ′u given in (6.47). The corresponding discrete
equivalent nodal forces Ju for the initial case (uh = 0) and the deformed state are shown
in Fig. 6.3a and Fig. 6.3b, respectively. These loads cause the approximate dual solutions
zh shown in Fig. 6.3c and Fig. 6.3d. These are very rough approximations of the exact dual
solutions, which have a discontinuity in the point Xp. A good approximation of the dual
solution on a highly local refined mesh for uh = 0 is given in Fig. 6.4. The figure shows a
3D plot of the vertical component zy .

The change in the quantity of interest. If the dual solutions are known the change in the
quantity of interest J(u, s) can be computed for arbitrary residualsR, i.e. we have to evaluate
(5.22) for any changes in the physical loads. Furthermore, if we have configurational changes
δs we can compute the change in J(u, s) due to δs , i.e. we have to evaluate Eq. 6.27. The
discrete versions of (5.22) and (6.27) are given as

δS22(Xp) = −zTR and δS22(Xp) = −zTQp, (6.104)

where Qp = P δŝ is the pseudo load vector corresponding to configurational variations δŝ .
The new value of the quantity of interest is given by the update

Jnew = J(uh, sh) + J ′u(uh, sh; δuh). (6.105)

Hence, the stress component for the changed design is given by Snew22 = S22 + δS22.
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(a) dual load case Ju for uh = 0 (b) dual load case Ju for given uh

(c) dual solution zh for uh = 0 (d) dual solution zh for given uh

(e) dual material residual G∗ for uh = 0 (f) dual material residual G∗ for given uh

Figure 6.3: L-shaped plate: dual problems (equivalent nodal forces Ju), dual solutions and
dual material residuals for the undeformed and a given deformed state for
J(u, s) = S22(Xp); (the dual solutions are scaled and the nodal forces are
normalized to unity)
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Figure 6.4: L-shaped plate: 3D plot of the approximate dual solution zy

The primal and dual material residuals. The primal solution uh as well as the corre-
sponding primal material residual G(uh, sh) for the chosen mesh are given in Fig. 6.2b. The
nodal values of G are scaled to unity in order to guarantee the visibility. The material residual
does in general not vanish in the discrete case. The primal material residual G in Fig. 6.2b
can be interpreted as the sensitivity of the primal energy functional E(uh, sh) with respect
to changes in the material configuration. In the same manner, the dual material residuals G∗

shown in Fig. 6.3e and Fig. 6.3f, respectively, can be interpreted as the sensitivity of the dual
energy functionalE∗(uh)(zh, sh). Hence, the changes in the primal energy δsE and the dual
energy δsE∗ due to given changes in the discrete design variables δs are given by the discrete
sensitivity relations

δsE = GT δs and δsE
∗ = G∗T δs. (6.106)

A large material residual on a nodal coordinate si indicates that a change in this design
variable causes a large change in the primal and dual energy, respectively, i.e. the residual
reflects the influence of the design variable si on energy changes.

6.9 Summary and concluding remarks

In the present chapter a novel formulation for the dual problem with respect to configurational
variations has been presented. The dual problem can be formulated at a given deformed state.
In the same manner as for the primal problem the complete variational and discrete formu-
lations of the dual problem were proposed. Variations of a dual energy functional yield a
dual physical and material residual, respectively. The corresponding tangent forms have been
derived, which are the basis for sensitivity analysis of the dual solution itself. The most im-
portant sensitivity relations are summarized in Table 6.1.

The change in the dual solution δz due to changes in the design of the material body on a
given deformed state can be computed by solving the sensitivity relation (6.98) given as

Kδz = −Q∗full,
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Table 6.1: Summary of important variational and discrete sensitivity relations

Variational formulation Discrete formulation

dual physical residual (fixed v)

δR∗ = k(v, s; δz, ·) + p∗(v, s; z, ·, δs) δR∗ = Kδz + P ∗δs

dual material residual (fixed v)

δG∗ = p∗(v, s; z, δz, ·) + d∗(v, s; z; ·, δs) δG∗ = P ∗T δz +D∗δs

dual pseudo load (fixed v)

Q∗p(v, s; z, ·) = p∗(v, s; z, ·, δŝ) Q∗p = P ∗δŝ

sensitivity of z (fixed v)

k(v, s; δz, ·) = −Q∗p(v, s; z, ·) Kδz = −Q∗p
sensitivity of E∗ (fixed v)

δsE
∗ = G∗(v, s; z; δs) δsE

∗ = G∗T δs

full dual pseudo load

Q∗full(v, s; z, ·) Q∗full = [P ∗ −B∗K−1P ] δŝ

sensitivity of z

k(v, s; δz, ·) = −Q∗full(v, s; z, ·) Kδz = −Q∗full

sensitivity of E∗

δE∗ = G∗(v, s; z; δs) + L∗(v, s; z; δv) δE∗ = [G∗T − L∗TK−1P ] δs

sensitivity of J(v, s)

J ′v(v, s; δv) = −Qp(v, s; z) J ′v(vh, sh; δvh) = −zTQp

where Q∗full is the total dual pseudo load for a given design variation δŝ . This can be used
within the error analysis of sensitivity relations or model adaptivity for local quantities of
interest, because the change in a chosen quantity of interest due to design or model changes
depends on the change in the dual solution δz , which is caused by the same design or model
changes. The change of the physical model can be interpreted as a change in the design. This
is discussed in Section 10.4 and Section 10.5. Therefore, the first-order approximation for the
change in the dual solution obtained from (6.98) can be used to estimate the change in the
quantity of interest, see Section 10.4.3.



Chapter 7

Global r-adaptive mesh optimization

A direct application of the proposed energy minimization problem is r-adaptive
mesh optimization. In this case the nodal coordinates in the domain and the nodal
coordinates in tangential direction on the boundaries are chosen as design vari-
ables. The lowest potential energy of the primal problem yields the smallest dis-
cretization error on the current mesh. The derived residuals and tangent forms of
the primal problem are the basis for global r-adaptive mesh optimization.

7.1 Introduction

The optimization of finite element meshes with a fixed number of nodes by relocating a subset
of nodes is well-known as r-adaptivity. This problem has a long tradition. First steps for the
optimization of finite element meshes based on a discrete formulation of energy minimization
date back to the nineteen seventies and were outlined for instance in [23, 24, 41, 75, 99]. The
energy is minimized with respect to the state and the position of the nodes. The best mesh is
defined as the one associated with the lowest potential energy.

Another approach is based on the well-known fact, that the mesh is optimal if the discretiza-
tion error is uniformly distributed on the mesh [33]. For computed error estimators on all
elements, the nodes are positioned such that the error is uniformly distributed, i.e. the error
in every element is the same.

Furthermore, r-adaptive techniques are also known as the so-called moving mesh algorithms,
see e.g. [22] for an overview. Local minimization problems with few degrees of freedom are
often solved instead of the global problem [103].

In recent years r-adaptivity became very popular in the context of configurational mechanics
or mechanics in the material space, see e.g. [2, 20, 77, 80, 101].

Furthermore, in the context of structural optimization and sensitivity analysis this has been
investigated in [66, 69, 70]. The overall energy depends on the state function and on a design
function, which specifies in an abstract sense the material configuration. The partial variation

85
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with respect to the state variable leads to the classical physical residual and the partial vari-
ation with respect to the design function leads to the material residual. In the context of the
finite element method, we obtain a material residual due to the non-optimal numerical solu-
tion, which is a result of the non-optimal discretization in the sense of the minimization of
the overall energy. Hence, a non-vanishing material residual within the domain is an indicator
for a non-optimal finite element mesh.

Within r-adaptivity we can improve the finite element solution on the same mesh. Further-
more, the method is easy to implement in comparison to other adaptivity algorithms, e.g.
h-, p- or hp-adaptivity, because no new degrees of freedom have to be introduced and the
nodal connectivities are fixed. But there are also some disadvantages of the method. The r-
adaptivity based on direct energy minimization requires the solution of a highly nonlinear op-
timization problem, because all the nodal coordinates or a large subset of nodal coordinates
are the design variables. In addition, some numerical difficulties arise during the solution
process, e.g. the system matrices are often ill-conditioned and we have to control the mesh
distortion. Due to the non-convexity of the energy functional the solution may not be unique,
but yields an improvement of the initial mesh.

Nevertheless, r-adaptive mesh optimization algorithms are useful in many cases, for instance:

• At the beginning of an adaptive process, i.e. for an initial coarse mesh before the appli-
cation of the h- or p-adaptive methods.

• For problems with changes in the reference configuration, e.g. shape optimization or
fracture mechanics, where the mesh may become distorted due to the change of the
shape.

• For problems, where moving and large local phenomena occur, e.g. shock waves or
moving interfaces.

In h- or p-adaptive algorithms the approximation spaces are enhanced in every iteration step,
i.e. new degrees of freedom are introduced by selectively subdividing elements or by selective
enrichment of elements. This leads to a minimization of the overall discretization error for
h → 0 or p → ∞, respectively. In contrast, the r-adaptivity yields an improvement of the
solution on the same mesh, i.e. the approximation spaces are fixed and hence we may in
general not expect the minimization of the overall discretization error. But the discretization
error on the current mesh can be minimized. Therefore, the r-adaptive optimization can not
be seen as a real competitor to h- or p-adaptivity but rather a supplement. The combination
of r- and h- or p-adaptivity seems to be promising. A combined rh-adaption is more efficient
than a pure h-adaptive algorithm [89]. Therefore, a rhp-adaptive method seems to be the
most efficient strategy.
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7.2 The energy minimization problem

The discrete energy minimization problem which has been introduced in Section 4.4.1 is
considered. Within this chapter the displacement field u is chosen as primary unknown. The
discrete energy functional depends on the discrete state uh ∈ Vh ⊂ V and discrete design
sh ∈ Sh ⊂ S.

In the context of the finite element method and r-adaptivity, the discrete design variables
are a subset of nodal coordinates which are allowed to vary and the current mesh is the
reference configuration. All inner nodes or a subset of nodes build up the design space Sh.
Additional we can include nodal coordinates in tangential direction on the boundary. The
nodal coordinates in normal direction on the boundaries are fixed in order to keep the shape
of the body.

The minimization of the energy with respect to the state and the nodal coordinates yields a
r-adaptive mesh optimization algorithm. Hence, uh and sh are determined by problem (4.4),
i.e. the following optimization problem has to be solved: Find {uh, sh} ∈ Vh×Sh such that

E(uh, sh) = min
{ph,rh}∈Vh×Sh

E(ph, rh). (7.1)

For the optimal solutions u∗h ∈ Vh and s∗h ∈ Sh in the chosen approximation spaces Vh and
Sh it is required that

E(u∗h, s
∗
h) ≤ E(uh, sh) ∀ uh, sh ∈ Vh × Sh. (7.2)

The error of the state eu,h and the design es,h in the chosen approximation spaces are intro-
duced by

eu,h := u∗h − uh and es,h := s∗h − sh. (7.3)

The optimal solution u∗h depends on the optimal design, i.e. u∗h = uh(s∗h) and we can rewrite
the energy in the form Ê(u∗h) = E(uh(s∗h), s∗h). In the linear theory, we have a simple energy
representation of the form

E(u) =
1

2
a(u,u)− F (u). (7.4)

It can easily be proved that

Ê(u∗h) ≤ Ê(uh) (7.5)
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because, using linearity and symmetry of bilinear form a(·, ·), we have

Ê(uh) = Ê(u∗h − eu,h)

=
1

2
a(u∗h − eu,h,u∗h − eu,h)− F (u∗h − eu,h)

=
1

2
a(u∗h,u

∗
h)− a(u∗h, eu,h) +

1

2
a(eu,h, eu,h)

− F (u∗h) + F (eu,h)

= Ê(u∗h) +
1

2
a(eu,h, eu,h).

(7.6)

Here, we have used a(u∗h, eu,h) − F (eu,h) = 0. Due to the fact that a(eu,h, eu,h) ≥ 0
follows the relation (7.5).

This is the motivation for r-adaptive mesh optimization. We reduce the energy with respect
to u and s in order to find the state with the lowest energy and hence the optimal solution u∗h
and s∗h in the chosen approximation spaces Vh and Sh.

7.3 Error measures in the context of r-adaptivity

Different error measures can be introduced in the context of r-adaptivity.

Definition 7.1 (Error measures within r-adaptivity) Letu ∈ V be the exact solution of the
considered variational problem. Then, the error

eu := u− uh (7.7)

measures the overall discretization error with respect to a solution uh(sh) ∈ Vh. In contrast,
the error

eu,h := u∗h − uh (7.8)

measures the discretization error on the current mesh, i.e. the distance between the optimal
solution u∗h = uh(s∗h) ∈ Vh and a solution uh(sh) ∈ Vh. Furthermore, the least obtainable
discretization error on the current mesh is introduced as

e∗u := u− u∗h, (7.9)

i.e. the distance between the true solution u and the optimal solution u∗h on the current
approximation spaces Vh and Sh.
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For the error e∗u holds

e∗u = u− u∗h = (u− uh)− (u∗h − uh) = eu − eu,h. (7.10)

Hence, the error eu can be split into the error e∗u and the error on the current mesh eu,h, i.e.

eu = e∗u + eu,h. (7.11)

For instance, for the linear problem (7.4), the error eu in terms of the energy norm || · ||E is
given as

||eu||2E = a(eu, eu) = a(e∗u + eu,h, e
∗
u + eu,h)

= a(e∗u, e
∗
u) + 2a(e∗u, eu,h) + a(eu,h, eu,h)

= a(e∗u, e
∗
u) + a(eu,h, eu,h)

= ||e∗u||2E + ||eu,h||2E ,

(7.12)

where the orthogonality condition a(e∗u,η) = 0 ∀η ∈ Vh has been used. Due to the fact that
||eu,h||2E ≥ 0 follows the relation

||e∗u||2E ≤ ||eu||2E . (7.13)

For the optimal discretization, i.e. uh = u∗h = uh(s∗h) follows eu,h = 0 and hence eu = e∗u.
This means, even in the case that the best distribution of the nodal coordinates s∗h is obtained,
there is still an error contribution. On coarse meshes the contribution of the part eu,h on the
overall error eu is large. This is illustrated in Figure 8.4.

Furthermore, let ||e∗u|| be an error norm of the optimal discretization error on the current
mesh e∗u = u− u∗h. If the true error ||eu|| → 0, the error measure ||eu,h|| is asymptotically
exact if

||e∗u||
||eu||

→ 0. (7.14)

The proof is straightforward. Using the triangular inequality we have from eu,h = eu − e∗u
||eu|| − ||e∗u|| ≤ ||eu,h|| ≤ ||eu||+ ||e∗u|| (7.15)

or (
1− ||e

∗
u||

||eu||

)
≤ ||eu,h||||eu||

≤
(

1 +
||e∗u||
||eu||

)
. (7.16)

The effectivity index

Ieff :=
||eu,h||
||eu||

(7.17)
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tends to unity as
||e∗u||
||eu||

→ 0.

Finally, in contrast to other adaptivity techniques, e.g. h or p-adaptivity, the r-adaptivity leads
only to a minimization of the discretization error eu,h on the current mesh, i.e. we keep the
same approximation spaces Vh and Sh. This means that for the optimal solution u∗h the error
e∗u remains. In h or p-adaptivity we extend in every step the approximation spaces Vh and
Sh. This leads to a minimization of the true error eu for h → 0 or p → ∞, respectively.
Nevertheless, the r-adaptivity provides an improved solution on the same mesh with low
computational cost. If we require a lower discretization error, we have to extend the app-
roximation spaces, i.e. we have to perform a h- or p-adaptive step. The best performance
could be achieved if we combine r-adaptivity with h- and/or p-adaptivity.

7.4 The error in the material residual

The physical residual is fulfilled for every admissible design, i.e.

R(uh, sh;ηh) = 0 ∀ sh ∈ Sh. (7.18)

The optimality condition (4.42) for the material problem holds only for stationary points u∗h
and s∗h, i.e. E′s = G(u∗h, s

∗
h;ψh) = 0. This means, that the material residual is not fulfilled

for every uh 6= u∗h = uh(s∗h), i.e.

G(uh, sh;ψh) 6= 0 ∀uh 6= u∗h = uh(s∗h) ∈ Vh. (7.19)

Hence, we obtain a material residual as a result of the non-optimal solution uh, which is a
result of the non-optimal design sh in the sense of the minimization of problem (4.41). With
the definition of the errors (7.3) we have s∗h = sh + es,h and

G(u∗h, s
∗
h;ψh) = G(uh(sh + es,h), sh + es,h;ψh) = 0. (7.20)

From this, a suitable approximation for the error could be obtained from the linearization

G(uh, sh;ψh) +DsG(uh, sh;ψh) · es,h +O = 0. (7.21)

The material tangent operator

DsG(uh, sh;ψh) · es,h = m(uh, sh;ψh, es,h) (7.22)

is given in (4.80), where we have replaced the design increment by the error in the design
es,h. The remainder of higher-order O and can be neglected. The material tangent operator
has to be evaluated in each step at the current state {uh, sh}. Finally, we obtain an equation
for the error in the design or rather for the error in the material residual in the form

m(uh, sh;ψh, es,h) = −G(uh, sh;ψh) ∀ψh ∈ Sh. (7.23)
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This is comparable to the discrete version of Eq. 4.81, in which we have replaced the design
increment ∆sh by es,h.

Finally, the discrete material residual vector G corresponding to the functional G(uh, sh; ·)
is an error indicator for a non-optimal finite element discretization. The minimization of the
residual on the mesh nodes by relocating the nodes yields a lower energy and therefore a
smaller discretization error on the current mesh.

Remark 7.1 The material residual as an error indicator for mesh optimization can also be
used within h-adaptive algorithms [79]. Furthermore, it seems promising to combine r- and
h-adaptivity as well as remeshing strategies based on the above mentioned error indicators
[78, 89].

7.5 Numerical solution, regularization and algorithmic details

7.5.1 Solution algorithms

For the mesh optimization problem a subset the nodal coordinates Xs are chosen as design
variables, i.e. s = Xs. The optimal nodal positions (the design) of a given mesh (the reference
configuration) can be computed by solving Eq. 4.71, i.e.[

K P
P T D

] [
∆u
∆Xs

]
= −

[
R
G

]
. (7.24)

Alternatively, other solution algorithms could be used for the mesh optimization problem.
The staggered solution algorithm (4.83) yields the form

M∆Xs = −G with M = D − P TK−1P . (7.25)

Furthermore, the simple steepest descent method (4.84) becomes

Xi+1
s = Xis − εG(u(Xis),X

i
s). (7.26)

7.5.2 Regularization

The mesh optimization problem can be interpreted as an inverse problem. It requires the
solution of the material residual problem within a staggered algorithm (7.25) or the coupled
system (7.24). Several numerical difficulties arise due to the solution of this problem. In
many cases, the Hessian matrix of the system is ill-conditioned and becomes singular or
close to singular during the iterations and therefore the Newton algorithm is not stable and
fails. The optimization problem is non-convex in general and hence, the solution needs not
to be unique. Therefore, the problem could be termed ill-posed in the sense of HADAMARD
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and reasonable regularization methods should be used in order to regularize the problem. A
classical regularization is given by adding a penalty functional P to the original objective E,
i.e.

Ẽ(u, s) = E(u, s) + P(γ, s), (7.27)

where γ is a penalty parameter. The choice of the penalty functional and the penalty para-
meter depends on the problem. For a classical TIKHONOV-type regularization we often have
a functional in the form

P(γ, s) =
γ

2
||s− s0||2 , (7.28)

see for instance [36] and the references therein for details. The numerical difficulties for
the mesh optimization problem are also mentioned by [2, 77]. The authors have proposed
different strategies in order to overcome these problems.

An ill-conditioned problem is indicated by a large condition number c of the system matrix
A from the system Ax = b, which can be defined by

c(A) =
σmax(A)

σmin(A)
. (7.29)

Here, σmax(A) and σmin(A) are the maximal and minimal singular values ofA, respectively.
A large condition number is caused by nearly zero singular values of A. In the context of
sensitivity analysis, the condition number quantifies the sensitivity of the systemAx = b with
respect to small perturbations (A + εÃ)x(ε) = b + εb̃. Small changes in A or b can induce
large changes in x if the condition number in large. The singular values can be obtained by a
singular value decomposition (SVD) of the system matrix. The SVD is used in many fields
of engineering and physics, which deal with inverse problems.

For a rectangular matrix A ∈ Rn×m, the SVD is a decomposition of the form

A = V ΣY T =

m∑
i=1

σiviy
T
i (7.30)

where V ∈ Rn×n and Y ∈ Rm×m are matrices with orthonormal columns, i.e. we have
V V T = I ∈ Rn×n and Y Y T = I ∈ Rm×m. The matrixΣ = diag(σ1, . . . , σm) ∈ Rn×m is a
diagonal matrix with non-negative diagonal elements σi. The quantities σi are called singular
values of A and they appearing in decreasing order such that σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0. The
column vectors of V = [v1, . . . , vn] and Y = [y1, . . . , ym] are called left and right singular
vectors of A, respectively, see e.g. [43] for details.

We use the singular value decomposition in order to calculate the condition number and
therefore information about the solution behavior as well as for a regularization of the Hessian
matrix.



7.5 Numerical solution, regularization and algorithmic details 93

The SVD is a reliable method in order to identify the numerical rank. The singular vectors,
which are corresponding to the non-zero singular values σi of A span the range of A. With
these, we can define the numerical rank r of A as the number of the non-zero singular values
of A, which are larger than a defined tolerance. The solution of the system Ax = b could be
expressed in terms of the left and right singular vectors

x = A−1b = Y Σ−1V Tb =
m∑
i=1

1

σi
yi v

T
i b . (7.31)

The solution x is given by linear combination of yivTi b weighted with the inverse singular
values σ−1

i . At this point, we see the influence of nearly zero singular values σi, i.e. we have

lim
σi→0

1

σi
yi v

T
i b =∞ . (7.32)

If we truncate the sum in Eq. 7.31 after r terms, the result is a rank-r approximation to the
original Hessian. The error in the approximation depends upon the magnitude of the neglected
singular values. This could be interpreted as filtering out the noisy data.

7.5.3 Mesh distortion control

The quality of the mesh (the distortion of the mesh) has an important influence on the shape
derivatives and hence on the results and the success of the optimization process.

In order to control the mesh distortion a simple geometrical distortion parameter ξ is used,
which is also utilized in shape optimization [106]. The distortion parameter for a quadrilateral
element with four nodes is given by

ξ =
4

A
min(det Ji) i = 1, ..., 4 . (7.33)

Here, min(det Ji) denotes the minimum value of the Jacobian determinant andA the element
area. The distortion parameter has the following properties:

ξ


= 1 element is a parallelogram
> 0 element is convex
= 0 element is degenerate (triangle)
< 0 element is concave

The parameter ξ must be greater than zero to avoid degeneracy of the element. In practical
computations, the condition ξ ≥ tolξ is used with a tolerance tolξ ∈ [0.2, 0.5].
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1. Solve the physical problem within a Newton Method.

2. Solve the material problem:
Compute the material tangent operator M = D − P TK−1P .
Check the condition number and the numerical rank of M with SVD. If necessary,
compute a rank-r approximation in order to overcome the ill-conditioning.
Compute ∆Xs.

3. Line search:
Compute α such that ξ(α) ≥ tolξ.
Compute β such that E(Xh + β∆Xh) < E(Xh).

4. Update Xs with ∆X̄s = ε∆Xs, where ε = min[α, β].

5. Update u with sensitivity relation ∆u ≈ Sp∆X̄s.
After that, the system is usually still unbalanced, see Remark 7.2.
Goto 1 and find the new state of equilibrium.

Box 7.1: Staggered solution algorithm for global r-adaptive mesh optimization

7.5.4 Overall solution algorithm

We consider a staggered solution algorithm for Eq. 7.25, i.e. the algorithm introduced in Sec-
tion 4.5.2 is used. The energy functional (4.74) has to be minimized, which has the particular
form E(Xh) := E(uh(Xh),Xh). The overall solution scheme for mesh optimization is
given in Box 7.1.

The line search consists of two parts. In the first part, we compute a step size parameter α
in order to avoid mesh distortion. For a given tolerance tolξ, the step size parameter is given
explicitly for every element from (7.33)

ξ(α) =
4

A(Xe + α∆Xe)
det J(Xe + α∆Xe) ≥ tolξ. (7.34)

where Xe denotes the element coordinate vector. The maximum step length α along a given
search direction can be computed in closed form from this expression [106]. The second
part is the computation of the usual step size β used in nonlinear programming in order to
guarantee the decrease in the energy. For this, we use the Armijo-Goldstein condition.

An algorithm for the simultaneous solution of the physical and material problem (7.24) can
be obtained in the same manner by using the regularization and line search as in the staggered
solution algorithm.

Remark 7.2 (Update of the state) The computation of the accurate material residual G for
the next iteration step requires the solution of the state variable uh for the updated current
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design, i.e. the equation R(uh, sh;ηh) = 0 has to be solved. For a simple linear physical
problem, only the solution of one linear equation is required. In the general nonlinear case,
some Newton iterations for the physical problem have to be performed in order to find the
new state of equilibrium for the current design. The best performance of the algorithm could
be achieved, if beforehand the data of the state uh are transferred to the new design. To do
this, the sensitivity relation for the physical problem (4.54) can be used. With a sufficient
small ∆Xs an approximation for the change in the state is obtained from

∆u ≈ −K−1P ∆Xs = Sp∆Xs . (7.35)

After this, the system is usually still unbalanced, but only few Newton iterations are required
in order to find the new state of equilibrium.

7.6 Numerical examples

In this section two numerical examples for global r-adaptive mesh optimization are presented.
In the first example, the model problem of linearized elasticity is considered and in the second
example a problem from nonlinear elasticity is studied. Further examples with some details
on the proposed error measures in the context of r-adaptivity are given in the next chapter in
Section 8.5.

7.6.1 Unit square

System and model problem. A two-dimensional unit square Ω = (0, 1)2 with homoge-
neous Dirichlet boundary conditions u = 0 on Γ is considered. The body is loaded with a
horizontal body load bx = 50. We consider in this first example the model problem of linea-
rized elasticity given in Appendix B.2. The displacement field is governed by Eq. B.77. The
problem is modeled with the plane strain condition with E = 1000 and ν = 0.3.

We discretize the model with 153 Q4 elements and we choose an arbitrary irregular initial
discretization, see Fig. 7.1a.

The design variables. For the mesh optimization problem a subset the nodal coordinates
Xs are chosen as design variables. The optimal nodal positions (the design) of a given mesh
(the reference configuration) can be computed by using the solution algorithms given in Sec-
tion 7.5.1.

For simplicity, in this first example only horizontal movements of all inner nodes are allowed.
This restriction stabilize the algorithm especially by using the simultaneous solution of the
physical and material problems.

The mesh consists of overall 360 degrees of freedom (DOF) but only 128 nodal coordinates
are chosen as design variables.
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(a) Initial mesh (b) Optimized mesh

(c) Solution ux on the optimized mesh

Figure 7.1: Unit square with horizontal body load

Solution algorithm and mesh distortion. We consider the simultaneous solution of the
physical and material problem. In order to find the minimum of the objective E(u,X) we
have to solve Eq. 7.24 in each Newton step. The Newton algorithm stops when the norm
of the physical and material residuals are lower than given tolerances TOLR and TOLG,
respectively. In the computation the tolerances are chosen as TOLR = TOLG = 10−12.

The distortion of the mesh during the optimization process has been controlled by a distortion
parameter as described in Section 7.5.3. The mesh distortion control parameter (7.33) with
tolξ = 0.2 was used. The elements are well-shaped during the optimization process in this
example such that the distortion constraint is not active.

Results of the simultaneous solution algorithm. The results of the full Newton algorithm
are given in Table 7.1. The solution E(u∗h,X

∗
h) was obtained after 7 iterations. The corre-

sponding optimal mesh is given in Fig. 7.1b.
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Table 7.1: Results of the full Newton algorithm

i ||R|| ||G|| ||ε∆u|| ||ε∆X|| E(uh,Xh) ε = min[α, β]

0 5.292E-14 1.646E-03 3.111E-02 0.000E+00 -5.232E-02 1.00E+00
1 5.364E-02 1.274E-03 1.326E-03 1.269E-01 -5.238E-02 2.50E-01
2 1.729E-01 4.882E-04 1.949E-03 2.208E-01 -5.245E-02 7.66E-01
3 3.575E-02 9.226E-05 5.271E-04 8.298E-02 -5.247E-02 1.00E+00
4 1.763E-02 1.022E-05 4.869E-04 7.695E-02 -5.247E-02 1.00E+00
5 2.468E-04 5.255E-07 2.529E-05 4.125E-03 -5.247E-02 1.00E+00
6 1.791E-07 4.820E-10 2.444E-06 3.757E-04 -5.247E-02 1.00E+00
7 2.134E-14 8.843E-15 2.245E-09 3.359E-07 -5.247E-02 1.00E+00

During the iteration the free nodes move in the opposite direction of the material residual
forces and the energy decrease from E(u0

h,X
0
h) = −5.2323 × 10−2 (initial mesh) to the

value E(u∗h,X
∗
h) = −5.2466× 10−2 (optimized mesh), see Table 7.1.

Here, u∗h ∈ Vh and X∗h ∈ Sh are the optimal solution in the chosen approximation spaces
Vh and Sh in the sense of the minimization problem (7.1).

The optimal mesh. The optimal solution X∗h (the optimal design) for E(uh,Xh) for this
simple model problem under the given load case is a symmetric discretization as shown in
Fig. 7.1b. This discretization leads to the best approximation for the given problem in the
chosen approximation spaces Vh and Sh.

The mesh is finer in the middle of the domain and tends to a coarser discretization on the
boundary. This behavior reflects the solution for the given load case. The solution uh has the
maximum in the middle and goes to zero on the boundary, see Fig. 7.1c.

The errors in the state, design and energy. With the optimal solutions {u∗h,X∗h} at hand,
we introduce the error in the energy eE,h := E(u∗h,X

∗
h)−E(uh,Xh), the error in the state

eu,h := u∗h − uh and the design eX,h := X∗h −Xh, respectively, see Eq. 7.3. The relative
errors are given by

ηrelE :=

∣∣∣∣ eh,E
E(u∗h,X

∗
h)

∣∣∣∣ , ηrelu :=
||eh,u||L2

||u∗h||L2

, ηrelX :=
||eh,X ||L2

||X∗h||L2

, (7.36)

where || · ||L2 denotes the usual L2 norm. The behavior of the errors during the iterations
are shown in Table 7.2. The reduction of the error in the energy is merely marginal, but the
reduction of the error in the displacement is about 12.5 %.
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Table 7.2: Relative errors during the mesh optimization process.

Iteration ηrelu [%] ηrelX [%] ηrelE [%]

0 1.2475e+001 4.3465e+000 2.7233e-001
1 8.5868e+000 3.2306e+000 1.6568e-001
2 2.7892e+000 1.2628e+000 2.6839e-002
3 1.4723e+000 7.0776e-001 2.5854e-003
4 7.6473e-002 3.8580e-002 2.6867e-005
5 7.3401e-003 3.3895e-003 1.1397e-007
6 6.7417e-006 3.0294e-006 1.0000e-013
7 0 0 0

Concluding remarks. This example can be used as a benchmark for the performance and
reliability of the considered solution algorithm, because the optimal solution is known for
this simple problem.

Furthermore, the material residual on the mesh nodes vanish completely. This is in general
not the case, because the mesh distortion control usually avoid this. This is further discussed
in the next example.

As mentioned in Remark 4.12, the full Newton algorithm (7.24) is very sensitive and in many
cases not stable for a large number of design variables. Therefore, in general, suitable regu-
larization methods have to be considered, see Section 7.5.2. A staggered solution algorithm
is more stable for complex problems. Such an algorithm is used in the next example. Further-
more, quasi-Newton methods based on gradient information can be alternatively used, see
Remark 4.13.

7.6.2 Cracked beam

System and model problem. In this second example a cracked cantilever beam under self-
weight loading by = −10 is considered, see Fig. 7.2. The dimensions of the rectangular
domain are L = 4 and H = 1 as well as the crack length is a = 0.4. We consider as
an example of isothermal hyperelasticity a classical compressible Neo-Hookean material.
The strain energy function under consideration in terms of the invariant IC = tr(FTF) and
J = det F is given by

WR(IC , J) =
1

2
µ (IC − 3− 2 lnJ) +

1

2
λ (J − 1)2, (7.37)

see Box B.2 for details and the corresponding stress and elasticity tensors. The Lamé parame-
ters are chosen as λ = 5.769× 103 and µ = 3.846× 103, which correspond to E = 104 and
ν = 0.3.
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Figure 7.2: Cracked beam: system

(a) initial mesh (b) optimized mesh

Figure 7.3: Cracked beam: deformed initial and optimized mesh

All inner nodes as well as all nodal coordinates in tangential direction on the free boundaries
are chosen as design variables. Only the nodal coordinates on the Dirichlet boundary are
fixed.

The mesh consists of 70 Q4 element with 184 degrees of freedom. Overall 131 nodal coordi-
nates are chosen as design variables.

Results of the staggered solution algorithm. The staggered solution algorithm Eq. 7.25
is used in order to solve the problem. The solution was attained within 16 iterations. The
deformed initial and optimized meshes are shown in Fig. 7.3a and Fig. 7.3b, respectively.

The system matrix was ill-conditioned for some Newton iterations and a regularization method
has been used as proposed in Section 7.5.2. The algorithm works but the usual quadratic con-
vergence can not be achieved, because the original tangent operatorM is replaced by a rank-r
approximation as described in Box. 7.1.

The overall energy decreases from −3.23597 (initial mesh) to −3.33385 (optimized mesh).
The norm of the material residual ||G||L2

decreases from 2.8793 × 10−1 to 8.7777 × 10−2,
i.e. a reduction of 69.51 % with respect to the initial mesh. The material residual does not
vanish completely as a result of the mesh distortion control.

Therefore, a usual stoping criterion as used in the Newton method for the physical problem
can not be used. But the algorithm stops if the change in the norm of the material residual is
smaller than a given tolerance or if a maximal admissible number of iterations is achieved. In
practical computations the tolerance can be chosen as [ 10−4, 10−8 ].
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Figure 7.4: Cracked beam: elements on the crack tip

The largest improvements of the mesh occur within the first few iterations. The gain of ac-
curacy by performing many iterations in order to minimize the material residual further can
be low in comparison to the numerical work involved. Hence, in practical computations it is
sufficient to do just few iterations in order to obtain the largest improvements of the solution.

Mesh distortion control. In order to control the distortion of the mesh during the opti-
mization process, a simple geometrical distortion parameter has been used as described in
Section 7.5.3. The mesh distortion control parameter (7.33) with tolξ = 0.1 was used.

As mentioned above, the material residual does not vanish completely as a result of the mesh
distortion control. This means that there is still an ambition to move the nodes in order to
minimize the energy but the elements may become distorted. A remeshing strategy with a
change of the nodal connectivities as well as h-adaptivity techniques for patches with dis-
torted elements could be considered to improve the algorithm further. Furthermore, other
mesh distortion control criteria could be used, see e.g. [92].

Due to the singularity at the crack the nodes are concentrated at the crack tip and the elements
around the tip seem distorted. But this is not the case, see Fig. 7.4. The mesh distortion control
avoid the distortion. By choosing a larger value of the distortion control parameter (7.33) this
effect will be reduced and the elements become more well-shaped.

Control of a displacement. In order to quantify the capability of the optimized mesh, we
control as a quantity of interest the vertical displacement at the lower right corner. We use a
reference solution u∗y = −0.440225 obtained from a fine mesh with 4258 nodes.

The vertical displacement of the initial mesh is u0
y = −0.406161. The relative error with re-

spect to u∗y is given by 7.74 %. The optimized mesh yields the displacement uy = −0.420303
and hence a relative error of 4.53 %. Finally, we obtain a reduction of 41.52 % in the relative
error for the displacement at the lower right corner with respect to the reference solution.

This demonstrates the potential of r-adaptive mesh optimization techniques. The discretiza-
tion error is significantly reduced with a fixed number of nodes.



Chapter 8

Goal-oriented r-adaptive mesh optimization

A novel approach for goal-oriented r-adaptive mesh optimization based on mini-
mization principles of the primal and dual energy functionals is proposed within
this chapter. The mesh is optimized with respect to a chosen quantity of interest.
The variational framework is first presented for a linear elliptic problem and later
on extended to nonlinear problems. Furthermore, error measures for a chosen
quantity of interest are investigated.

8.1 Introduction

The proposed approach for global r-adaptive mesh optimization in Chapter 7 is based on
global energy minimization. The resulting mesh is optimal with respect to the overall energy
of the primal problem. The discretization error measured in terms of the global energy norm
can be computed using standard residual based error estimators or averaging techniques, see
e.g. [3, 59] and [109], respectively. But nothing can be said about the quality of a certain
quantities of interest, such as pointwise stresses and displacements or average stresses. The
error in a local quantity of interest depends on the error in the corresponding dual solution
or generalized Green’s function. This fact is used in dual-weighted based goal-oriented error
estimation techniques and adaptivity algorithms. The error is measured with respect to a
specific structural response quantity and the mesh is optimized with respect to the chosen
quantity of interest.

A posteriori error analysis for quantities of interest using duality techniques was first pre-
sented in [37]. A generalization with exact weighted a posteriori error estimates was proposed
in [11]. Furthermore, the terms goal-oriented error estimation was introduced in [88], who
presented upper and lower error bounds based on the parallelogram law. An engineering mo-
tivation by means of Betti’s principle was given in [31]. In the context of fracture mechanics
and mechanics in the material space duality techniques and a posteriori error estimates were
investigated for instance in [52, 90, 91]. A goal-oriented a posteriori error estimation tech-
nique for the pointwise error of finite element approximations using fundamental solutions

101
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has been presented in [47]. The approach is based on an integral representation of the point-
wise quantity of interest using the corresponding Green’s function, which is decomposed
into an unknown regular part and a fundamental solution. See also for instance [4, 46] for an
overview of different problems and applications.

Furthermore, in recent years the goal-oriented techniques are used for combined model and
discretization error analysis and adaptive algorithms, see e.g. [18, 84, 95] for an overview.
The modeling error is a part of the error due to the natural imperfections in abstract models
of actual physical phenomena.

In this chapter, a novel approach for goal-oriented r-adaptivity based on energy minimization
principles for the primal and the dual problems is proposed. The primal and dual energy
functionals are the basis for a goal-oriented mesh optimization algorithm. The corresponding
primal and dual material residuals yield an error indicator for mesh optimization. Therefore,
the approach is referred to as Primal Dual Material Residual (PDMR) method. The resulting
mesh yields an optimal solution with respect to a chosen quantity of interest.

As mentioned above, r-adaptive methods based on energy minimization of the primal pro-
blem are well-known since several decades. But the extension to goal-oriented r-adaptive
mesh optimization based on energy minimization principles has not been investigated so far.
Some parts of this chapter are published in [68, 72].

8.2 Linear problems

For motivation and notational simplicity the model problem of linearized elasticity is consi-
dered. The problem formulation is given in Appendix B.2. The linear primal problem is de-
fined by the variational equation (B.80) as

a(u,η) = F (η) ∀ η ∈ V. (8.1)

Furthermore, the dual problem is given in (B.109) in form of

a(z,η) = J(η) ∀ η ∈ V. (8.2)

These problems are solved for a fixed design s. The corresponding primal and dual residuals
are introduced as

R(u,η) := a(u,η)− F (η), (8.3)

R∗(z,η) := a(z,η)− J(η). (8.4)
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8.2.1 The error in a quantity of interest

The Galerkin approximations of the primal (8.1) and the dual problem (8.2) are given by
using finite dimensional subspaces Vh ⊂ V . The approximate primal problem reads: Find
uh ∈ Vh ⊂ V such that

a(uh,ηh) = F (ηh) ∀ηh ∈ Vh. (8.5)

Furthermore, the approximate dual problem is given by

a(zh,ηh) = J(ηh) ∀ηh ∈ Vh. (8.6)

Using once again the symmetry of the bilinear form we have for the approximation of the
quantity of interest J(uh)

J(uh) = a(zh,uh) = a(uh, zh) = F (zh). (8.7)

Finally, if the approximate dual solution zh is known, the quantity of interest J(uh) can be
computed for arbitrary functionals F (·), i.e. J(uh) = F (zh).

The error in the primal solution eu and the error in the dual solution ez are introduced as

eu := u− uh and ez := z − zh. (8.8)

These errors are used within error representations for J(u). The error in the quantity of
interest is given by

J(eu) := J(u)− J(uh) = F (z − zh) = F (ez). (8.9)

The error can be expressed in terms of the primal physical residual R(·) as

J(eu) = a(z, eu) = a(eu, z) = a(u, z)− a(uh, z)

= F (z)− a(uh, z) = −R(uh, z).
(8.10)

By using the Galerkin orthogonality

a(u− uh,ηh) = 0 ∀ηh ∈ Vh, (8.11)

the error in the quantity of interest can be written as

J(eu) = a(eu, z) = a(eu, z − zh) = F (z − zh)− a(uh, z − zh)

= −R(uh, z − zh).
(8.12)

The error can be also expressed in terms of the dual physical residual R∗(·) in the form

J(eu) = a(z, eu) = a(ez, eu) = a(ez,u) = a(z,u)− a(zh,u)

= J(u)− a(zh,u) = −R∗(zh,u).
(8.13)
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Furthermore, using the Galerkin orthogonality the error becomes

J(eu) = a(ez,u) = a(ez,u− uh) = J(u− uh)− a(zh,u− uh)

= −R∗(zh,u− uh).
(8.14)

Due to the linear model problem, the error can be alternatively written as

J(eu) = −
[

1

2
R(uh, z − zh) +

1

2
R∗(zh,u− uh)

]
. (8.15)

The equations (8.12) and (8.14) are the basis for different error estimators for the error J(eu),
see e.g. [4, 11]. A simple error estimator in the energy norm || · ||E follows directly from the
error representation (8.12). Using the Cauchy-Schwarz inequality, we obtain the upper error
bound

|J(eu)| = |a(u− uh, z − zh)| ≤ ||u− uh||E ||z − zh||E . (8.16)

In practical computations, the relation is applied element-wise as

|J(eu)| ≤
∑
K∈Th

||u− uh||E,K ||z − zh||E,K . (8.17)

The error in the quantity of interest is bounded by the energy norm error of the primal problem
weighted with the energy norm error of the dual solution.

The element contributions ||u − uh||E,K and ||z − zh||E,K are computed using standard
residual based error estimators, see e.g. [3, 59]. Furthermore, local or global averaging tech-
niques for a posteriori error control can be used, e.g. the ZZ-error estimator [109].

Finally, the most important fact is, that the error in J(u) depends on the error in the corre-
sponding dual solution. Therefore, in the context of goal-oriented r-adaptivity, we have to
optimize the mesh with respect to the dual solution.

8.2.2 Error measures in the context of r-adaptivity

Different global error measures in the context of r-adaptivity have been introduced in Sec-
tion 7.3. In the same manner, for the discrete solutions of the quantity of interest the overall
error

J(eu) := J(u)− J(uh) (8.18)

the error on the current mesh

J(eu,h) := J(u∗h)− J(uh) (8.19)

as well as the least obtainable error on the current mesh

J(e∗u) := J(u)− J(u∗h) (8.20)

are introduced. Furthermore, the overall error can be split into

J(eu) = J(e∗u) + J(eu,h). (8.21)



8.2 Linear problems 105

8.2.3 Energy principles for the primal and dual problem

In order to use the same arguments from energy minimization as for the global mesh opti-
mization, we consider in the following energy principles for the primal and dual problems.

The weak form of the primal problem is given in (8.1) as a(u,η) = F (η). We assume that
an energy functional

E(u) :=
1

2
a(u,u)− F (u) (8.22)

exists such that

R(u,η) = E′u(u,η) = 0 ∀η ∈ V. (8.23)

The solution u is a minimizer of the corresponding energy functional E(u). The first-order
optimality condition leads to the primal physical residual (8.3).

In the same manner, the variational equation for the dual problem is given in (8.2) and reads
a(z,η) = J(η). We assume, that J(u) is a regularized functional and well defined on V .
Then, the dual solution z is a minimizer of the corresponding energy functional of the dual
problem

E∗(z) :=
1

2
a(z, z)− J(z). (8.24)

The first-order optimality condition leads to the dual physical residual (8.4), i.e.

R∗(z,η) = E∗z
′(z,η) = 0 ∀η ∈ V. (8.25)

The minimization of the energy of the primal problem E(u) and the dual problem E∗(z)
lead to the primal and dual physical residuals, respectively. The consecutive solution of both
problems provide the solutions u and z. In order to solve these problems simultaneously, the
functional

I(u, z) := γuE(u) + γz E
∗(z) (8.26)

is introduced which contains both energy quantities. Here, for later use, the scaling factors or
weights γu and γz have been introduced in order to favor either one or the other. This ends in
the following problem.

Problem 8.1 (Energy minimization w.r.t. {u, z}) Find {u, z} ∈ V × V such that the en-
ergy functional (8.26) is minimized, i.e.

I(u, z) = min
{p,q}∈V×V

I(p, q). (8.27)
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The first-order optimality condition for this problem reads{
I ′u(u,η)

I ′z(z,ν)

}
=

{
γuR(u,η)

γz R
∗(z,ν)

}
= 0 (8.28)

for all {η,ν} ∈ V × V . The variation with respect to u leads to the primal physical residual
R(u,η) = E′u(u,η) defined in (8.3) and the variation with respect to z yields the dual
physical residual R∗(z,ν) = E∗z

′(z,ν) which is given in (8.4).

The optimality condition (8.28) yields two independent equations, i.e. there is no coupling
between u and z at this point and the scaling factors or weights can be set to γu = γz = 1.
Finally, the minimizers {u, z} ∈ V × V of the functional (8.26) are given by the solution of
the set of equations

a(u,η) = F (η)

a(z,ν) = J(ν)

∀η ∈ V

∀ν ∈ V.
(8.29)

Remark 8.1 (Optimal control approach) The optimal control approach from Section 5.2 is
applied to the linear problem (8.1), which results in the following constraint optimization
problem:

min
u∈V

J(u) s.t. a(u,η) = F (η) ∀η ∈ V. (8.30)

The Lagrangian functional is given by L(u, z) = J(u) +F (z)− a(u, z) and the optimality
condition becomes{

L′z(u,η)

L′u(z,ν)

}
=

{
F (η)− a(u,η)

J(ν)− a(ν, z)

}
= 0 ∀ {η,ν} ∈ V × V. (8.31)

These equations obtained from the optimal control approach are equivalent to (8.29). Hence,
the two approaches are equivalent.

8.2.4 Energy minimization with respect to the design

The global mesh optimization is based on the minimization of the energy with respect to
the state and the design. For the goal-oriented mesh optimization, the functional (8.26) is
extended by the design function s, i.e.

I(u, z, s) = γuE(u, s) + γz E
∗(z, s), (8.32)

where E(u, s) = 1
2 a(s;u,u)−F (s;u) and E∗(z, s) = 1

2 a(s; z, z)−J(s; z). The energy
of the primal problem depends on s and the energy of the dual problem depends on the same
design function, because both problems have the same reference configuration. Hence, the
optimization problem is now coupled by the design function s.
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Remark 8.2 In the context of the finite element method and mesh optimization, the discrete
design variables are a subset of nodal coordinates. Then, the primal and dual problems are
approximated on the same mesh. In general, it can also be imagined that the primal and dual
problems are solved on different meshes. In this work, only the first case is considered, i.e.
the same design function s is used for the primal and the dual problem.

In this case, the following problem is introduced.

Problem 8.2 (Energy minimization w.r.t. {u, z, s}) Find {u, z, s} ∈ V ×V ×S such that
the energy functional (8.32) is minimized, i.e.

I(u, z, s) = min
{p,q,r}∈V×V×S

I(p, q, r). (8.33)

The optimality condition is given as
I ′u(u, z, s)(η)

I ′z(u, z, s)(ν)

I ′s(u, z, s)(ψ)

 =


γuR(s;u,η)

γz R
∗(s; z,ν)

γuG(s;u;ψ) + γz G
∗(s; z;ψ)

 = 0 (8.34)

for all {η,ν,ψ} ∈ V × V × S, where

R(s;u,η) = E′u(u, s;η) primal physical residual

R∗(s; z,ν) = E∗z
′(z, s;ν) dual physical residual

G(s;u;ψ) = E′s(u, s;ψ) primal material residual

G∗(s; z;ψ) = E∗s
′(z, s;ψ) dual material residual.

The first and the second equations are the primal and dual physical residuals (8.3) and (8.4),
respectively. The last two equations are the primal and dual material residuals

G(s;u;ψ) =
1

2
a′s(s;u;ψ)− F ′s(s;u,ψ), (8.35)

G∗(s; z;ψ) =
1

2
a′s(s; z;ψ)− J ′s(s; z,ψ). (8.36)

Remark 8.3 (Linear vs. nonlinear arguments) The bilinear forms a(s;u, ·) and a(s; z, ·)
in the physical residuals R(s;u, ·) and R∗(s; z, ·) are linear with respect to all arguments
right from the semicolon, i.e. the primal and the dual solutions u and z are linear. In con-
trast, in the material residuals G(s;u; ·) and G∗(s; z; ·) the primal and the dual solutions
u and z appear still as quadratic terms, because the variations of the internal energies
1
2 a
′
s(s;u; ·) := 1

2 a
′
s(s;u,u, ·) and 1

2 a
′
s(s; z; ·) := 1

2 a
′
s(s; z, z, ·) are quadratic in u and

z, respectively. This is indicated by the second semicolon, i.e. only the arguments right from
the second semicolon are linear.
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For a homogeneous elastic body with the chosen model problem of linearized elasticity (B.77)
the energy functionals (8.22) and (8.24) are given by

E(u, s) =

∫
ΩR

WR(u) dΩ− F (s;u), (8.37)

E∗(z, s) =

∫
ΩR

WR(z) dΩ− J(s; z), (8.38)

where the quadratic strain energy function WR(·) reads

WR(·) =
1

2
σ(·) : ε(·). (8.39)

The explicit forms of the residuals are obtained as

R(s;u,η) =

∫
ΩR

σ(u) : Gradη dΩ− F (s;η), (8.40)

G(s;u;ψ) =

∫
ΩR

Σ(u) : Gradψ dΩ− F ′s(s;u,ψ), (8.41)

R∗(s; z,η) =

∫
ΩR

σ(z) : Gradη dΩ− J(s;η), (8.42)

G∗(s; z;ψ) =

∫
ΩR

Σ(z) : Gradψ dΩ− J ′s(s; z,ψ), (8.43)

where the Eshelby tensor in terms of linear elasticity is given as

Σ(·) := WR(·)I−Grad(·)Tσ(·). (8.44)

8.3 Nonlinear problems

The extension to nonlinear problems is proposed within this section. The variational equation
of the primal problem is given by

a(u, s;η) = F (s;η) ∀η ∈ V, (8.45)

For a given nonlinear primal problem, the corresponding dual problem is formulated at the
current linearization point and determined by the linear equation

k(u, s; z,η) = J ′u(u, s;η) ∀η ∈ V, (8.46)

where the tangent operator k(u, s; z,η) = a′u(u, s; z,η) is the tangent physical stiffness
operator (4.87) of the primal problem. The corresponding primal and dual residuals have
been introduced in (4.7) and (6.7) as

R(u, s;η) = a(u, s;η)− F (s;η), (8.47)

R∗(u, s; z,η) = k(u, s; z,η)− J ′u(u, s;η). (8.48)
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8.3.1 The error in a quantity of interest

We consider the physical problem for a given fixed design and therefore the variable s is
omitted for notational simplicity within this section. A representation of the error in a quantity
of interest J(u) − J(uh) for general nonlinear problems can be obtain by using an optimal
control approach [12].

In Section 5.3.2 we have introduced the Lagrangian functional L(u, z) = J(u) − R(u; z)
with the corresponding optimality condition

L′(u, z)(η,ν) =

{
J ′u(u;η)−R′u(u; z,η)

−R(u;ν)

}
= 0 (8.49)

for all {η,ν} ∈ V × V .

The Galerkin approximation of (8.49) for solutions {uh, zh} ∈ Vh × Vh is given by

L′(uh, zh)(ηh,νh) =

{
J ′u(uh;ηh)−R′u(uh; zh,ηh)

−R(uh;νh)

}
= 0 (8.50)

for all {ηh,νh} ∈ Vh × Vh.

For an error representation the relation

J(u)− J(uh) = L(u, z)− L(uh, zh)

=
1

2
L′(uh, zh)(eu, ez) + ruz(uh, zh, eu, ez)

(8.51)

can be used. The first term is given as

L′(uh, zh)(eu, ez) = L′u(uh, zh)(u− uh) + L′z(uh, zh)(z − zh)

= J ′u(uh;u− uh)−R′u(uh; zh,u− uh)−R(uh; z − zh)

= −[R∗(uh; zh,u− uh) +R(uh; z − zh) ] (8.52)

and the remainder reads

ruz(uh, zh, eu, ez) :=
1

2

∫ 1

0

{J ′′′uuu(uh + λeu)(eu, eu, eu)

−R′′′uuu(uh + λeu)(eu, eu, eu, zh + λez)

− 3R′′uu(uh + λeu)(eu, eu, ez)}λ(λ− 1) dλ,

(8.53)

which is cubic in eu := u− uh and ez := z − zh.
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Finally, for the error in the quantity of interest holds

J(u)− J(uh) = −
[

1

2
R(uh; z − zh) +

1

2
R∗(uh; zh,u− uh)

]
+ ruz. (8.54)

The proof is straightforward and can be found in [4, 12]. The error in the quantity of interest
J(u)− J(uh) depends directly on the error in the corresponding dual solution.

Remark 8.4 (Linear vs. nonlinear problem) In the linear case the primal and dual residu-
als coincide, i.e. R(uh; z − zh) = R∗(zh;u − uh). Therefore, (8.12) and (8.14) yield the
same error in the quantity of interest. But this does not apply to the nonlinear case.

Remark 8.5 (Error measures in the context of r-adaptivity) Error measures in the con-
text of r-adaptivity have been introduced in Section 7.3. The corresponding errors for lin-
ear quantities of interest are given in Section 8.2.2. For nonlinear quantities of interest these
errors are introduced in the same manner as

Jeu(u,uh) := J(u)− J(uh), (8.55)

Jeu,h
(u∗h,uh) := J(u∗h)− J(uh), (8.56)

Je∗u(u,u∗h) := J(u)− J(u∗h). (8.57)

8.3.2 Energy minimization with respect to the design

In the same manner as for the linear problem in Section 8.2.4, the combined energy functional
for the primal problem (4.1) as well as for the dual problem (6.2) is given as

I(u, z, s) = γuE(u, s) + γz E
∗(u)(z, s). (8.58)

The minimization of the overall energy is given by a sequence of minimization problems
at every linearization point {u, s, z}, i.e. we have to solve the following problem in each
linearization point.

Problem 8.3 (Energy minimization w.r.t. {u, z, s}) Find {u, z, s} ∈ V ×V ×S such that
the energy functional (8.58) is minimized, i.e.

I(u, z, s) = min
{p,q,r}∈V×V×S

I(p, q, r). (8.59)

The first-order optimality condition is given as
I ′u(u, z, s)(η)

I ′z(u, z, s)(ν)

I ′s(u, z, s)(ψ)

 =


γuR(u, s;η)

γz R
∗(u, s; z,ν)

γuG(u, s;ψ) + γz G
∗(u, s; z;ψ)

 = 0 (8.60)
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for all {η,ν,ψ} ∈ V × V × S. The structure of this system coincides with the system of the
linear problem (8.34), but in contrast the first equation is still a nonlinear variational equation
for the state u and the second equation is a linear equation for z formulated at the current
linearization point, i.e. at a given deformed state.

The primal physical and material residualsR andG are given in (4.7) and (4.8). Furthermore,
the dual physical and material residuals R∗ and G∗ are given in (6.7) and (6.8), respectively.

For the computational treatment it is useful to reformulate the optimization problem (8.59)
only in terms of s, i.e. we introduce the functional

I(s) := γuE(u(s), s) + γz E
∗(u(s))(z(s), s) (8.61)

and we seek for s ∈ S such that

I(s) = min
r∈S
I(r). (8.62)

For given solutions {u, z} this optimization problem can be solved by using standard gra-
dient based algorithms or a staggered Newton method like for the global mesh optimization
problem from Section 4.5.2.

Remark 8.6 (Energy as quantity of interest) If the overall energy E(u, s) of the primal
problem is chosen as quantity of interest, i.e.

J(u, s) = E(u, s), (8.63)

the corresponding dual problem reads

k(u, s; z,η) = J ′u(u, s;η) = R(u, s;η) = 0. (8.64)

Hence, the dual solution z becomes zero and E∗(u)(z, s) vanishes. In this trivial case we
obtain just the global mesh optimization problem (4.4) with the optimality condition (4.6).

8.4 Solution algorithm and practical aspects

In practice, we propose a staggered solution algorithm, i.e. we solve first the primal and the
dual problem and thereafter the optimization problem for the optimal design. For a given
initial mesh Th(sh) and a certain load step the solution scheme is given in Box 8.1.

Different numerical difficulties arise due to the solution of this problem. Reasonable regu-
larization methods should be used in order to regularize the energy functional. Furthermore,
the quality of the mesh (the distortion of the mesh) has an important influence on the shape
derivatives and hence on the results and the success of the optimization process. Hence, we
have to control the mesh distortion during the optimization progress, see Section 7.5.3.
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1. Solve the primal problem for a given load scale λ and for a given design ŝh. Find
uh ∈ Vh such that

a(uh, ŝh;ηh) = λ · F (ŝh;ηh) ∀ηh ∈ Vh.

2. Solve the corresponding dual problem for given {ûh, ŝh}. Find zh ∈ Vh such that

k(ûh, ŝh; zh,ηh) = J ′u(ûh, ŝh;ηh) ∀ηh ∈ Vh.

3. Solve the minimization problem for given {ûh, ŝh, ẑh}. Find sh ∈ Sh such that (8.61)
is minimized, i.e.

I(sh) = min
rh∈Sh

I(rh).

Compute the primal and the dual material residuals G and G∗ for {uh, sh, zh} and the
search direction d by using gradient based or Newton-type methods.
Compute a step size parameter ε and update the design, i.e. si+1 = si + ∆s with
∆s = εd .
Update u with the sensitivity relation ∆u ≈ S∆s , see Remark 7.2. Goto (1) and find
the new state of equilibrium.

Box 8.1: Staggered solution algorithm for goal-oriented r-adaptive mesh optimization

Furthermore, the dimension of the numerical values of the primal and the dual material resi-
duals can be very different, because they depend directly on the dimension of the primal and
dual energy. In order to find a new search direction we have to choose the weights γu and
γz in an adequate manner. Within the following examples normalized material residuals are
used, i.e the weights γu and γz are chosen in such a way that both residuals are normalized
to unity with the corresponding sign. Afterwards, the new search direction d has to be scaled
back to a suitable value in dependency on the dimension of the primal solution, the decrease
in the energy functional and the distortion of the mesh.

Of course, due to the complexity of the multi-objective problem different solutions may be
possible in dependency on the parameters γu and γz . Furthermore, from a theoretical point
of view an objective conflict may appear, i.e. none of the feasible solutions allows the simul-
taneous minimization of both objectives, see e.g. [38,98]. In such a case, the weights have to
be set to γu = 1 and γz = 0 or γu = 0 and γz = 1, i.e. the single primal or the single dual
problem is solved. In the author’s experience, for a proper choice of the weights the algorithm
works.
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Xp
L

H

(a) system (b) primal material residual G (c) dual material residual G∗

Figure 8.1: Short cantilever: system and material residuals on the design variables for the
initial mesh

8.5 Numerical examples

In this section, numerical examples concerning global and goal-oriented mesh optimization
are presented. In the first example, the theory of linearized elasticity is considered and in the
second example a problem from nonlinear elasticity is investigated.

8.5.1 Short cantilever

System and model problem. We examine a short cantilever under self-weight loading
by = −100, see Fig. 8.1a. In this first example, the model problem of linearized elasticity
is considered, see Appendix B.2. The problem is modeled with the plane strain condition
with E = 1000 and ν = 0.3 and we discretize the model with standard Q4 elements.

The simple mesh consists of 49 Q4 elements and overall 128 degrees of freedom. The design
variables are the nodal coordinates of all inner nodes and the nodal coordinates in tangential
direction on the boundaries, i.e. 96 nodal coordinates are chosen as design variables.

We consider as a quantity of interest the vertical displacement uy at the pointXp as indicated
in Fig. 8.1a , i.e.

J(u, s) = uy(Xp). (8.65)

The dual load for this quantity of interest is just a unit load in y-direction at pointXp and the
resulting displacement field due to this load case is the dual solution zh for uy(Xp).
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(a) global mesh optimization for
the primal problem

(b) global mesh optimization for
the dual problem

(c) goal-oriented mesh optimiza-
tion

Figure 8.2: Short cantilever: optimized meshes

The primal and dual material residuals. The discrete primal material residual G(uh, sh)
due to the primal load case by is given in Fig. 8.1b and the discrete dual material residual
G∗(zh, sh) due to the dual load is shown in Fig. 8.1c. Both residuals are given for the same
initial discretization (design) and only for the design variables, i.e. for the nodal coordinates,
which are allowed to vary. These are error indicators for the non-optimal discretizations of
the primal and the dual problem, respectively.

Results of the mesh optimization algorithm. A simple steepest descent method was used
in order to solve the minimization problem (8.62). Therefore, only the gradients of the primal
and dual energy, i.e. the primal and dual material residuals, are required. The solution was
attained within 10 iterations by using the solution algorithm in Box. 8.1.

The global mesh optimization for the primal problem as well as the global mesh optimization
for the dual problem itself have been investigated. The resulting meshes are given in Fig. 8.2a
and Fig. 8.2b, respectively. The meshes are optimized with respect to the overall energy of
the primal problem E(u) and the overall energy of the dual problem E∗(z).

Furthermore, the goal-oriented optimized mesh with respect to the chosen quantity of interest
is shown in Fig. 8.2c. The resulting mesh yields an optimal solution with respect to J(u, s).

The error in the quantity of interest. In order to quantify the capability of the optimized
meshes, we compare the finite element solution J(uh, sh) in every iteration with a reference
solution J(u, s) = −0.28525 obtained on a fine mesh with 10201 nodes. The results of the
relative errors for the global mesh optimization and the goal-oriented approach are shown in
Fig. 8.3. For the initial mesh we have J(u0

h, s
0
h) = −0.27756 and a relative error of 2.70 %

with respect to the reference solution.
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Figure 8.3: Short cantilever: relative error J(eu) during the mesh optimization

The global mesh optimization procedure yields after 10 iterations to J(u∗h, s
∗
h) = −0.28176

and the relative error of about 1.23 %, i.e. the error is reduced of about 54 %. In contrast, the
goal-oriented mesh optimization leads to J(u∗h, s

∗
h) = −0.28301 and hence to the relative

error of 0.79 %, i.e. a reduction of 71 % with respect to the error of the initial mesh. Hence,
the goal-oriented approach yields a much better accuracy in the quantity of interest than the
global mesh optimization procedure.

Error measures within r-adaptivity. In Section 7.3 and in Remark 8.2.2 we have intro-
duced error measures within r-adaptivity for the global and the goal-oriented mesh optimiza-
tion problems. Due to the fact that we keep the current approximation spaces Vh and Sh
fixed, we minimize only the error on the current mesh J(eu,h) = J(u∗h)− J(uh) and obtain
the least obtainable error J(e∗u) = J(u) − J(u∗h). Hence, the errors shown in Fig. 8.3 tend
to the errors J(e∗u) and not to zero. In case a smaller error is desired, we have to extend the
approximation spaces, i.e. we have to perform a h or p-adaptive step.

The overall error is given by J(eu) = J(e∗u)+J(eu,h). The contribution of the error J(eu,h)
on the overall error is very large for the initial mesh and the first and second iterations. The
contributions of all errors for the goal-oriented mesh optimization during the iterations are
shown in Fig. 8.4.

Uniform mesh refinement vs. r-adaptivity. The r-adaptivity provides an improved solu-
tion on the same mesh with low computational cost. On a coarse mesh with 64 nodes, we
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Figure 8.4: Short cantilever: distribution of the absolute errors J(eu), J(eu,h) and J(e∗u) for
goal-oriented mesh optimization

have reduced the relative error of about 71 %. If we use a uniform mesh refinement we need
about 280 nodes in order to obtain the same accuracy, i.e. more than the fourfold number of
nodes. This is shown in Fig. 8.5. The relative error due to a uniform mesh refinement is com-
pared with the errors J(e∗u) obtained from the global and goal-oriented mesh optimization
procedures.

This demonstrates the potential of r-adaptive mesh optimization techniques. Especially on
coarse meshes, the error can be significantly reduced.

Mesh distortion control. In order to control the distortion of the mesh during the optimiza-
tion process, the same algorithm as for the global mesh optimization has been used, which
is described in Section 7.5.3. A remeshing strategy with a change of the nodal connectivities
as well as h-adaptivity techniques for patches with distorted elements could be considered to
improve the algorithm further.

As we can see in Fig. 8.3 and Fig. 8.4 the largest error contribution J(eu,h) occurs on the ini-
tial mesh and the first and second iterations. The gain of accuracy by using complex methods
for mesh distortion control can be low as compared to the numerical work involved. Hence,
in practical computations it is sufficient to do just few iterations in order to obtain the largest
improvements of the solution.
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Figure 8.5: Short cantilever: comparison of the relative error J(eu) due to uniform mesh
refinement with the optimal error J(e∗u) obtained from global and goal-oriented
mesh optimization

8.5.2 Plate with a slit

System and model problem. We consider a classical compressible Neo-Hookean material.
The strain energy function under consideration is given in (B.20) as

WR(IC , J) =
1

2
µ (IC − 3− 2 lnJ) +

1

2
λ (J − 1)2.

The corresponding stress and elasticity tensors are given in Box B.2.

We investigate a plate with a slit as indicated in Figure 8.6. The plate is loaded by a body force
bR = [0 , 100]T . The Lamé parameters are chosen as λ = 5.769×102 and µ = 3.846×102,
which correspond to E = 103 and ν = 0.3.

The design variables are the nodal coordinates of all inner nodes and the nodal coordinates
in tangential direction on the free boundary. The nodal coordinates on the Dirichlet boundary
ΓD are fixed.

The finite element model consists of 288 Q4 elements with 331 nodes and 662 degrees of
freedom. Overall 505 nodal coordinates are chosen as design variables.

The quantity of interest is the vertical displacement uy at the point Xp, i.e. J(u, s) =
uy(Xp).
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Figure 8.6: Plate with a slit: system and initial mesh

Results of the global and the goal-oriented mesh optimization approach. As in the for-
mer example, a steepest descent method has been used in order to solve the problem and up to
100 iterations have been investigated using the global and the goal-oriented mesh optimiza-
tion approach.

A reference solution J(u, s) = 9.667878× 10−2 obtained on a fine mesh with 29221 nodes
is used in order to quantify the error. The energy of the primal problem for this reference
solution is E(u, s) = −22.642969. For the initial mesh we have J(u0

h, s
0
h) = 9.4824 ×

10−2, which corresponds to a relative error of 1.92 % with respect to the reference solution.
Furthermore, the primal energy for the initial mesh is E(u0

h, s
0
h) = −2.2018 × 101, which

corresponds to a relative error of 2.76 %.

The values of the quantity of interest J(uh, sh) and the primal energy E(uh, sh) after every
tenth iteration are given in Table 8.1 and Table 8.2, respectively. In addition, the relative
errors in the quantity of interest ηrelJ and the primal energy ηrelE with respect to the reference
solutions are listed in the tables. The corresponding meshes for some selected iterations are
shown in Fig. 8.8 and Fig. 8.9, respectively. The meshes obtained from the global mesh
optimization reflect the primal solution for the given primal load case, see Fig. 8.8f. The
goal-oriented optimized meshes reflect the influence of the dual solution. The dual solution
is shown in Fig. 8.9f.

The largest improvements occur within the first thirty iterations. The global mesh optimiza-
tion leads after 30 iterations to J(uh, sh) = 9.5647×10−2 and a relative error of 1.07 %, i.e.
a reduction of the error of the initial mesh of about 44 %. The goal-oriented approach yields
J(uh, sh) = 9.5950× 10−2, which corresponds to a relative error of 0.75 %, i.e. a reduction
of 61 % with respect to the error of the initial mesh.
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Table 8.1: Global and goal-oriented mesh optimization: relative errors in J(uh, sh)

global goal-oriented
Iteration

J(uh, sh) ηrelJ [%] J(uh, sh) ηrelJ [%]

0 9.4824e-002 1.9186 9.4824e-002 1.9186

10 9.5600e-002 1.1160 9.5664e-002 1.0495

20 9.5628e-002 1.0867 9.5849e-002 0.8585

30 9.5647e-002 1.0667 9.5950e-002 0.7538

40 9.5659e-002 1.0546 9.5971e-002 0.7325

50 9.5667e-002 1.0470 9.5978e-002 0.7246

60 9.5675e-002 1.0383 9.5985e-002 0.7175

70 9.5681e-002 1.0320 9.5993e-002 0.7089

80 9.5695e-002 1.0180 9.5998e-002 0.7041

90 9.5707e-002 1.0055 9.6002e-002 0.6999

100 9.5717e-002 0.9949 9.6006e-002 0.6961

Table 8.2: Global and goal-oriented mesh optimization: relative errors in E(uh, sh)

global goal-oriented
Iteration

E(uh, sh) ηrelE [%] E(uh, sh) ηrelE [%]

0 -2.2018e+001 2.7584 -2.2018e+001 2.7584

10 -2.2200e+001 1.9582 -2.2112e+001 2.3461

20 -2.2207e+001 1.9249 -2.2190e+001 2.0022

30 -2.2212e+001 1.9022 -2.2213e+001 1.9005

40 -2.2215e+001 1.8905 -2.2217e+001 1.8830

50 -2.2215e+001 1.8884 -2.2218e+001 1.8772

60 -2.2217e+001 1.8813 -2.2219e+001 1.8719

70 -2.2217e+001 1.8815 -2.2221e+001 1.8653

80 -2.2220e+001 1.8680 -2.2221e+001 1.8616

90 -2.2221e+001 1.8614 -2.2222e+001 1.8585

100 -2.2223e+001 1.8563 -2.2223e+001 1.8556
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Figure 8.7: Plate with a slit: relative errors in J(uh, sh) and the primal energy E(uh, sh)
with respect to the reference solution

The goal-oriented approach yields much better results for the quantity of interest within all
iterations. In contrast, the global mesh optimization approach leads to better results for the
primal energy within the first thirty iterations. After that, both the global and the goal-oriented
optimized meshes give roughly the same primal energy E(uh, sh). This is shown in Fig. 8.7
and all values are given in Table 8.2.

Notes on the non-convex optimization problem. It is noteworthy that different meshes
yield the same amount of primal energy, because the optimization problem is non-convex in
general and several local minima may occur. For instance, the global and the goal-oriented
optimized meshes after 30 iterations are shown in Fig. 8.8c and Fig. 8.9c, respectively. The
relative error in the primal energy of both meshes is about 1.90 % with respect to the reference
solution, i.e. two local minima have been found, see Fig. 8.7.

Therefore, due to the complexity of the optimization problem, a global minima can in general
not be achieved. However, the error in the energy with respect to the error of the initial mesh
is reduced of about 32 %.

Hence, the errors in the quantity of interest and in the primal energy are significantly reduced
with respect to the initial discretization, in which the number of nodes as well as the mesh
topology are fixed.
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(a) i = 10 (b) i = 20 (c) i = 30

(d) i = 50 (e) i = 100 (f) primal solution uy

Figure 8.8: Global mesh optimization: optimized meshes and the vertical component of the
primal solution on the reference mesh
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(a) i = 10 (b) i = 20 (c) i = 30

(d) i = 50 (e) i = 100 (f) dual solution zy

Figure 8.9: Goal-oriented mesh optimization: optimized meshes and the vertical component
of the dual solution on the reference mesh
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Approximations of the dual solution. As shown in Section 8.3.1, the error in the quantity
depends on the error in the corresponding dual solution. Hence, the mesh has to be optimized
with respect to the dual solution in order to minimize the error. The mesh which yields a
good approximation of the dual solution can be associated with a good approximation of the
quantity of interest.

A good approximation of the dual solution on a h-adaptive refined mesh is given in Fig. 8.10c.
The figure shows a 3D plot of the vertical component zy in order to illustrate the solution
behavior. On the initial mesh only a rough approximation of the exact dual solution can be
computed. This is shown in Fig. 8.10a. The goal-oriented optimized mesh yields a better
approximation of the dual solution as the initial mesh, see Fig. 8.10b.

Concluding remarks. The proposed r-adaptive mesh optimization algorithm yields an im-
proved solution on the same mesh with a fixed number of nodes and mesh topology, i.e. the
current approximation spaces Vh and Sh are fixed. If a lower discretization error is required,
we have to extend the approximation spaces, i.e. we have to perform a h- or p-adaptive step.

Classical h- and p-methods are superior as compared to r-adaptive methods and it is not
intended to substitute any h- or p-method by a r-adaptivity. However, r-adaptive mesh op-
timization algorithms are powerful at the beginning of an adaptive process, i.e. for an initial
coarse mesh before the application of h- or p-adaptive methods.

It is well-known that the combination of h- and p-methods is more efficient than each in-
dividual method. Therefore, a combined rhp-method seems to be the most efficient way in
order to optimize the mesh and to improve the finite element solution. The development of
such a rhp-method for global and goal-oriented mesh optimization should be addressed to
future work.

Moreover, there are other challenging problems from shape optimization where r-adaptivity
can be used. For instance, a r-adaptive method could be used to reallocate the nodal position
of all interior nodes if the shape optimization algorithm has modified the boundary. Especially
the goal-oriented r-adaptivity can be used if a local quantity of interest is considered as a
constraint of the optimization problem.
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(a) initial mesh

(b) goal-oriented r-adaptive optimized mesh (i = 100)

(c) h-adaptive optimized mesh with respect to z

Figure 8.10: Approximative dual solutions zy on the initial and the goal-oriented r-adaptive
optimized meshes as well as a good approximation of the dual solution on a
h-adaptive optimized mesh



Chapter 9

Shape optimization and configurational mechanics

The shape optimization problem in the context of configurational mechanics is
considered in this chapter. At first, an abstract framework for structural optimiza-
tion problems is introduced. The shape optimization problem is investigated later
on and the internal energy is chosen as objective functional. It is shown that the
material residual on the design boundary is an indicator in which direction the
boundary has to move in order to minimize the internal energy.

9.1 Introduction

Many fields deal with configurational changes. A classical field is structural optimization, e.g.
shape or topology optimization, in which the changes of the objective functional and the state
variable due to changes in the material configuration are of interest, see e.g. [13, 14, 29, 58].
An interesting objective functional in shape and topology optimization is the energy, because
the minimization of the energy is directly related to the minimization of the compliance of
the system or equivalently to the maximization of the stiffness.

In this chapter the shape optimization problem is considered and the goal is to minimize the
internal energy of the primal problem. The shape of the body is described by a geometry
model, which is controlled by a set of discrete control points of geometrical objects. In the
examples, the geometry is modeled using Bézier curves.

Furthermore, different applications in the context of structural optimization and configura-
tional mechanics or mechanics in the material space can be found in the literature. The shape
optimization of elastic inclusions was studied in [101, 102] and an application to the opti-
mization of truss structures were presented in [1, 21].

In addition to these applications, the shape optimization problem for elastic solids is investi-
gated within this work and the relations to configurational mechanics are highlighted. Both
disciplines deal with changes in the material configuration but they use merely different desig-
nations for the same quantities. For instance, the so-called configurational or material forces
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or material residual are called sensitivities of the energy in the context of structural optimiza-
tion, see (4.13) in Section 4.3.1. It turns out that the discrete material residuals on the design
boundaries are the negative gradients within the shape optimization process. Therefore, mate-
rial residuals are indicators in which direction the boundary has to move in order to minimize
the compliance (internal energy) or equivalently to maximize of the structural stiffness. Some
results of this chapter are published in [66, 69].

9.2 On structural optimization and variational balance laws

9.2.1 An abstract framework for structural optimization

A classical structural optimization problem in an abstract setting is considered. In general,
the following optimization problem has to be solved.

Problem 9.1 (General structural optimization problem) Find {v, s} ∈ V ×S such that a
chosen objective functional I : V × S → R is minimized, i.e

I(v, s) = min
{p,r}∈V×S

I(p, r) (9.1)

subject to the constraint

R(v, s;η) = a(v, s;η)− F (s;η) = 0 ∀ η ∈ V. (9.2)

Additionally other conditions and side constraints for the design s may be introduced. The
corresponding Lagrangian functional reads

L(v, s, z) := I(v, s) +R(v, s; z) , (9.3)

where z ∈ V denotes the dual or adjoint variable. We seek for stationary points of L which
are given by the solution of

L′(v, s, z)(η,ψ,ν) = 0. (9.4)

The triple {v, s, z} ∈ V × S × V is determined by the saddle-point problem
L′v(v, s, z)(η)

L′s(v, s, z)(ψ)

L′z(v, s, z)(ν)

 =


I ′v(v, s;η) +R′v(v, s; z,η)

I ′s(v, s;ψ) +R′s(v, s; z,ψ)

R(v, s;ν)

 = 0 (9.5)

for all {η,ψ,ν} ∈ V ×S ×V . Here, I ′v, I
′
s, R

′
v, R

′
s are the partial variations of the objective

functional I and the primal physical residual R with respect to v and s. The last equation of
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(9.5) is simply the variational problem (9.2) for the state v. Using the notation from Chapter 4
with R′v(·, ·) = k(·, ·) and R′s(·, ·) = p(·, ·) the problem becomes

I ′v(v, s;η) + k(v, s; z,η)

I ′s(v, s;ψ) + p(v, s; z,ψ)

R(v, s;ν)

 = 0 ∀{η,ψ,ν} ∈ V × S × V. (9.6)

Remark 9.1 (Dual or adjoint problem) Eq. 9.51 is the dual or adjoint problem correspond-
ing to the solution v ∈ V at the current linearization point, i.e. z ∈ V is the solution of

k(v, s; z,η) = −I ′v(v, s;η) ∀ η ∈ V. (9.7)

The bilinear form k(v, s; z,η) = R′v(v, s; z,η) is the tangent physical stiffness operator at
the current linearization point v defined in (4.87).

9.2.2 The energy functional as objective function

The objective function I of the optimization problem (9.1) is arbitrary and depends on the par-
ticular application. In many engineering applications, the energy functional of the problem is
used as the objective functional, because there is a relation between the overall minimization
of the energy and the maximization of the stiffness.

For the particular choice of I(v, s) = E(v, s) we have for a given solution v ∈ V

I ′v(v, s;η) = E′v(v, s;η) = R(v, s;η) = 0 ∀ η ∈ V. (9.8)

Therefore, the dual solution z becomes zero in (9.7) as well as the Lagrangian (9.3) remains
L(v, s) = I(v, s) = E(v, s). Hence, the optimality condition (9.5) is reduced to the opti-
mality condition of the primal physical problem (4.6), i.e.{

E′v(v, s)(η)

E′s(v, s)(ψ)

}
=

{
R(v, s;η)

G(v, s;ψ)

}
= 0 ∀ {η,ψ} ∈ V × S. (9.9)

The partial variations of I = E with respect to v and s yield the primal physical and material
residuals defined in (4.7) and (4.8), respectively.

9.3 The minimum compliance problem

The model problem of linearized elasticity is considered and its formulation is given in Sec-
tion B.2. Let

C(u) =

∫
ΩR

WR dΩ =
1

2
a(u,u) (9.10)
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be the internal energy of the structure and F (u) a linear functional associated with the exter-
nal energy. The overall energy of this problem can be written in the form

E(u) =

∫
ΩR

WR dΩ− F (u) =
1

2
a(u,u)− F (u) = −1

2
F (u)

= −
∫

ΩR

WR dΩ = −1

2
a(u,u) = −C(u),

(9.11)

where the equilibrium equation a(u,η) = F (η) ∀ η ∈ V has been used.

Assume the overall potential energy as a measure for the mean structural stiffness S, i.e.
S = E. Note, that S = −C, i.e. the internal energy can be assumed as a measure for the mean
structural compliance. The maximization of the stiffness S is equivalent to the minimization
of the compliance C.

The goal is now to find the optimal design for which the structure attains a minimum of mean
elastic compliance among the structures of constant volume V0 or material cost. We use a
staggered solution algorithm and we formulate the optimization problem only in terms of the
design. This ends in the following problem.

Problem 9.2 (Minimum of mean elastic compliance) Find s ∈ S such that the internal
energy C(u(s), s) is minimized, i.e.

I(s) = min
r∈S

C(u(r), r) (9.12)

subject to the constraints

R(u, s;η) = 0 ∀η ∈ V (9.13)

V − V0 = 0 . (9.14)

From the above stated definitions, it turns out that the variation of the objective functional,
i.e. the variation of the internal energy with respect to s is the negative material residual G,
which is defined as the variation of the overall energy E with respect to s, i.e.

E′s = G(u, s;ψ) (9.15)

C ′s = −E′s = −G(u, s;ψ) . (9.16)

Hence, the gradients which are used in the shape optimization process contain the negative
configurational or material forces or material residualG. The negative gradients are the search
directions within a simple gradient based method in order to find a decrease in the objective
functional. This means in the context of shape optimization that the negative gradients on
the design boundaries represents the search directions. Finally, the negative material residual
can be interpreted as an indicator in which direction the boundary has to move in order to
minimize the internal energy or to maximize the structural stiffness.
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Remark 9.2 (Alternative formulation) In topology optimization the compliance minimiza-
tion problem is often written in an equivalent form in terms of the potential F (u), i.e. F (u)
is minimized in (9.12), see e.g. [14]. The internal energy C(u) and F (u) are related by a
constant factor, i.e.

F (u) = 2C(u). (9.17)

9.4 Design velocity fields

The design velocity field in the language of structural optimization corresponds to the ’dis-
placement’ in the material space. An initial domain ΩR(s) is perturbed to a domain Ωs by
using a (time-like) design parametrization s, which parameterizes in an abstract sense the
material body in the reference configuration, see Section 3.1.2. This change in the shape can
be expressed by the mapping T : X → Xs(X), X ∈ ΩR, where Xs is the material point
in the perturbed domain. By thinking of s as a time-like design parametrization, a design
velocity field V can be defined as

V (Xs, s) =
dXs

ds
=
dT (X, s)

ds
=
∂T (X, s)

∂s
. (9.18)

If we assume regularity in the neighborhood of the initial design s = 0, we have around the
initial mapping point T (X, 0) the Taylor expansion

T (X, s) = T (X, 0) + s
∂T (X, 0)

∂s
+O. (9.19)

Finally, with T (X, 0) = X and by ignoring high-order terms O, we obtain the relation

Xs = X + sV (X). (9.20)

The design velocity field characterizes the direction of domain variation. For a given V , the
change of the domain is uniquely controlled by the scalar parameter s. For more details see
e.g. [27, 28] and the references therein.

For a geometry model representation of the domain, this field is generated by a variation of
the underlying geometry mappings, i.e. the Bézier representation of patches describing the
geometry of the structure, respectively. In the continuum domain, the velocity fields associate
the geometry parametrization to the movement of material points. In the discrete case, this is
the association between the geometry parametrization and the movement of mesh nodes.

We consider a vector of design variables p ∈ Rm, which parameterize the shape of the current
domain ΩR. Within this chapter the design variables pi are control points of Bézier curves.
The design velocity field corresponding to the design variable pi is given by

V i(X) =
∂X

∂pi
. (9.21)
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In the context of the finite element method, the design velocity field V i(X) characterizes
the changes of the finite element nodal point coordinates X with respect to the changes of
arbitrary design parameter pi. Examples for such design velocity fields are given in Exam-
ple 9.5.2 in Figure 9.7a and 9.7b, respectively.

Furthermore, the velocity fields are also important and fundamental in the context of mesh
updating and smoothing. Let X be the vector of nodal coordinates, then the new shape Xs is
obtained from

Xs = X(p) + ε∆X(p, ∆p) (9.22)

with

∆X(p, ∆p) =
∂X

∂p
∆p =

m∑
i=1

∂X

∂pi
∆pi =

m∑
i=1

Vi∆pi . (9.23)

Here, Vi is the discrete design velocity field corresponding to the design parameter pi. Fur-
thermore, ε is a step size parameter, which controls the decrease in the objective and the mesh
distortion as well as ∆p is the increment of the design variables obtained from the solution
at the current iteration.

The design velocity field can be multiplied with the vector field of energy variation, i.e. the
material residual or configurational forces G, to build up the sensitivity of the objective (the
energy) with respect to a variation of the design variable pi, i.e.

E′pi = GT δXi = GT
∂X

∂pi
δpi = GTVi δpi . (9.24)

Hence, the design velocity fields connect the variation in the geometrical design variable pi
with the variation in the objective functional.

9.5 Numerical examples

9.5.1 Cantilever beam

System and model problem. As a first simple example from shape optimization the well-
known cantilever beam problem is considered. The cantilever is clamped on the left side
and loaded by a point load f0 = 5 at (L, 0), see Fig. 9.1. The initial design consists of the
rectangular domain with dimensions of L = 4 and H = 2, respectively.

The model problem of linearized elasticity is considered, see Appendix B.2. The cantilever
is modeled with the plane strain condition with E = 1000 and ν = 0.3. A regular finite
element mesh with overall 16 by 8 elements is chosen to guarantee visibility of the meshes in
all pictures.
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Figure 9.1: System of the cantilever and geometry model with 10 design variables pi in ver-
tical direction. The lower and upper boundaries are modeled with Bézier curves
with three internal control points (p5–p10).

The optimization problem and the design variables. The optimization task is to gener-
ate the most efficient material distribution with respect to the overall stiffness of the struc-
ture. The nonlinear programming problem consists of the objective function (internal elastic
energy), the constraint function (constant volume) and the geometrical design variables, i.e.
Problem 9.2 has to be solved.

Here, the lower and upper boundaries of the structure are modeled using Bézier curves with
three internal control points which are equally distributed over the length of the structure. In-
cluding the corner points, overall 10 vertical coordinates are design variables pi, see Fig. 9.1.
The design variables pi are bounded by upper po and lower pu side constraints

−10 = pu ≤ pi ≤ po = −0.25 ∀ i = {1, 2, 5, 6, 7}

0.25 = pu ≤ pi ≤ po = 10 ∀ i = {3, 4, 8, 9, 10} .

Results of the shape optimization. The optimum was attained within 19 iterations. The
initial and final solutions as well as some selected iterations are shown in Fig. 9.2.

The optimal shape leads to a uniform distribution of the material residual on the design
boundary. The norm of the material residual G on the design variables p decreases from
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(d) i = 19 C(uh) = 0.286983 ||G(p)|| = 0.217522

Figure 9.2: Distribution of the material residuals on the mesh nodes G(X) (left side) and
design variables G(p) (control points of the Bézier curves) (right side) during
the optimization progress, (a) initial shape (d) final shape
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Figure 9.3: Distribution of the internal energy

0.4508 to 0.2175, i.e. a reduction of 51.8 %. The internal energy C(uh) decreases from
0.4375 to 0.2869, i.e. a reduction of 34.4 %.

The distribution of the internal energy for the initial and optimized design is shown in Fig. 9.3.
The energy distribution of the optimized shape is more smooth in comparison to the initial
shape.

9.5.2 L-shape

System and model problem. We consider as a more complex example from shape opti-
mization a L-shaped cantilever problem, see Fig. 9.4. The nonlinear programming problem
under consideration consists of the objective function (internal elastic energy), the constraint
function (constant volume) and the geometrical design variables, i.e. we solve Problem 9.2.

The L-shape consists of three geometry patches as indicated in Fig. 9.4. The boundaries of the
patches are modeled using Bézier curves each with three internal control points. We consider
only the lower and right boundary of the L-shape as design boundary and keep the loaded
boundary fixed. Including the corner points, overall 14 coordinates of the control points are
design variables pi. The L-shape is modeled with the plane strain condition with E = 105

and ν = 0.3 and loaded by line loads tx = ty = 5.

Results of the shape optimization. The initial and final solutions as well as a selected
iteration are shown in Fig. 9.6. The optimal shape is obtained, if the material residual G(X)
is uniformly distributed over the design boundary, see Fig. 9.6 (c). The optimal solution was
attained within 37 iterations. The norm of the material residual G(p) on the design variables
decreases from 0.4009 to 0.1911, i.e. a reduction of 52 %.

The design variables p2 and p3 connect two geometry patches, respectively. Therefore, they
have a large influence domain, i.e. small variations result in large changes in the geometry
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Figure 9.4: L-shape: system (left) and geometry model with 14 design variables pi (right)

and hence in the internal energy. This is indicated by large material residuals G(pi) on these
design variables, see Fig. 9.6.

The internal energy C(uh) decreases from 0.9015 to 0.5409, i.e. a reduction of 40 %. The
distribution of the energy of the optimized shape is once again more smooth in comparison
to the initial shape, see Fig. 9.5.
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Figure 9.5: Distribution of the internal energy
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(a) i = 0 C(uh) = 0.9015 ||G(p)|| = 0.4009

(b) i = 6 C(uh) = 0.5698 ||G(p)|| = 0.2684

(c) i = 37 C(uh) = 0.5409 ||G(p)|| = 0.1911

Figure 9.6: Distribution of the material residuals on the mesh nodes G(X) (left side) and
design variables G(p) (control points of the Bézier curves) (right side) during
the optimization progress, (a) initial shape, (b) iteration 6, (c) final shape
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(a) Field V2 corresponding to p2 (b) Field V11 corresponding to p11

Figure 9.7: Design velocity fields Vi for p2 (a) and p11 (b)

Design velocity fields. As mentioned in Section 9.4, the design velocity field V i(X) cha-
racterizes the changes of the finite element nodal point coordinates X with respect to the
changes of arbitrary design parameter pi. For example, a variation of the vertical position
of the design variables p2 and p11 of the design boundary of the L-shape generate the fields
shown in Figure 9.7a and 9.7b, respectively. Hence, these fields reflect the influence domains
of the design variations.

Distribution of the material residual. It is interesting to note, that for the compliance
or internal energy optimization problem, the material residual G on the design boundary is
the indicator in which direction the boundary has to move in order to minimize the internal
energy. The optimal shape is obtained, if the material residual is uniformly distributed over
the design boundary, see Fig. 9.2d and Fig. 9.6c, respectively.

The material residual on the boundary does not vanish, because there is still an ambition to
find a state with lower internal energy, i.e. a more stiffer structure. The side constraints for
the design variables and the volume constraint avoid this movement.



Chapter 10

Error analysis and improvement of sensitivity
relations

This chapter is concerned with error analysis and improvement of first-order
sensitivity relations for the state and quantities of interest. At first, novel exact
sensitivity and error relations are presented. Based on the exact sensitivity rela-
tions an improvement algorithm is proposed. The improved design sensitivities
are used to estimate the error between the exact change in the state due to design
perturbations and the changes in the state obtained from a classical first-order
sensitivity relation.

10.1 Introduction

The reliability and accuracy of design sensitivities is an important question within sensitivity
analysis. For numerically obtained design sensitivities, such as finite difference methods, this
has been widely studied in the literature, see e.g. [104] for a compressive overview with many
references.

Within this work a variational approach is used in order to obtain the design sensitivities. Vari-
ational methods are known since several decades, see e.g. [27,28] and the references therein.
But as far as the author knows, the following approach for error analysis and improvement of
variational sensitivity relations has not been studied before. Here, only the error in the design
sensitivity is studied. Other errors such as the discretization error as well as the combined
sensitivity and discretization error are addressed to future work.

Variational sensitivity relations for the state v and a chosen quantity of interest J(v, s) have
been introduced in Section 4.3.2 and Section 6.3.4, respectively. These relations are based
on an invariant requirement of the physical residual R(v, s;η). This means that for a fixed
initial design s0 and a given initial solution v0 ∈ V the residual vanishes, i.e.

R(v0, s0;η) = 0 ∀ η ∈ V.
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Furthermore, also the total variation has to be zero, i.e.

δR = δvR(v0, s0;η, δv) + δsR(v0, s0;η, δs) = 0.

From this, the sensitivity relation for the state has been derived in (4.21) in form of

δvR(v0, s0;η, δv) = −δsR(v0, s0;η, δŝ) (10.1)

or

k(v0, s0;η, δv) = −Q(v0, s0;η), (10.2)

where k(v0, s0;η, δv) = δvR(v0, s0;η, δv) is the tangent stiffness operator (4.87) and

Q(v0, s0;η) = p(v0, s0;η, δŝ) = δsR(v0, s0;η, δŝ) (10.3)

is the pseudo load for a given fixed design variation δŝ. Furthermore, a sensitivity relation for
a chosen quantity of interest can be obtained from the above relation. This has been given in
(6.27) and reads

J ′v(v0, s0; δv) = −Q(v0, s0; z0), (10.4)

where z0 denotes the dual solution corresponding to the quantity of interest obtained on the
initial design s0.

It is important to note that these relations are valid only for infinitesimal variations δv and δs.
In practical computations the changes in the design have a finite value, i.e. design increments
∆s and state increments ∆v are considered. Let ∆v ∈ V be the exact change in the state
due to the design change ∆s. The pseudo load Q(v0, s0; ·) is therefore computed for a given
design increment ∆ŝ, i.e.

Q(v0, s0;η) = p(v0, s0;η, ∆ŝ) = δsR(v0, s0;η, ∆ŝ). (10.5)

Then, in the general case, the relations (10.2) and (10.4) are not fulfilled, i.e.

k(v0, s0;η, ∆v) ≈ −Q(v0, s0;η) and J ′v(v0, s0;∆v) ≈ −Q(v0, s0; z0). (10.6)

Hence, only an approximation for the change in the state ∆ṽ and a quantity of interest
J ′v(v0, s0;∆ṽ) due to changes ∆s are obtained by solving (10.2) and (10.4), i.e.

k(v0, s0;η, ∆ṽ) = −Q(v0, s0;η) (10.7)

and

J ′v(v0, s0;∆ṽ) = −Q(v0, s0; z0). (10.8)

Therefore, the goal is now to study the error

e∆v := ∆v −∆ṽ, (10.9)

i.e. the distance between the exact change in the state ∆v and the approximative change ∆ṽ
obtained from the sensitivity relation (10.7). This is illustrated in Fig. 10.1, which shows the
increments and the error for a one-dimensional problem.

To do this, first an exact representation of the sensitivity relation is derived.
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first-order sensitivity relation:

s0 s

v0

v

ṽ∆
v

∆s
∆
ṽ

e ∆
v

v(s)

∆ṽ

= −K−1 P ∆s

= −K−1 [∂R/∂s]∆s

= −K−1Q

e∆v = v − ṽ
= ∆v −∆ṽ

error in the change of the state:

Figure 10.1: One-dimensional illustration of the first-order increment ∆ṽ and the error in
the increment e∆v = ∆v −∆ṽ.

10.2 An exact sensitivity relation and error analysis for the state

10.2.1 Taylor expansion with an exact integral remainder

In this section an exact sensitivity relation for the state is proposed. This is based on well-
known Taylor expansions with exact integral remainders, see e.g. [30]. Such Taylor expan-
sions are also used within error estimation techniques for discretization and model errors, see
for instance [12, 18, 84].

The Taylor expansions are exemplary shown for a one-dimensional function. Let f(x) be
an arbitrary nonlinear function with an independent variable x. Furthermore, let x0 be some
initial value and ∆x be a given increment. Then, the changed function value of f(x0) due to
∆x is given as

f(x0 +∆x) = f(x0) +∆f(x0;∆x)

The exact increment

∆f(x0;∆x) := f(x0 +∆x)− f(x0) (10.10)
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is a nonlinear function and can be expressed using different Taylor expansions with integral
remainders. In particular, we have

∆f(x0;∆x) = r1
x(x0;∆x) (10.11)

= f ′x(x0;∆x) + r2
x(x0;∆x) (10.12)

=
1

2
f ′x(x0;∆x) +

1

2
f ′x(x0 +∆x;∆x) +

1

2
r3
x(x0;∆x) (10.13)

with the exact remainders

r1
x(x0;∆x) :=

∫ 1

0

f ′x(x0 + λ∆x;∆x) dλ (10.14)

r2
x(x0;∆x) :=

∫ 1

0

f ′′xx(x0 + λ∆x;∆x,∆x) (1− λ) dλ (10.15)

r3
x(x0;∆x) :=

∫ 1

0

f ′′′xxx(x0 + λ∆x;∆x,∆x,∆x)λ(λ− 1) dλ. (10.16)

These relations are exact if the remainders are computable and can easily be verified for
arbitrary continuously differentiable functions. A one-dimensional illustration of the first-
order approximation f ′x(x0;∆x) and the corresponding remainder r2

x(x0;∆x) is given in
Fig. 10.2. The extension to general functionals and semilinear forms is straightforward and
used within the following sections.

f ′x(x0;∆x) = f ′x(x0) ·∆x

x0 x

f(x0)

∆x

f(x)

f(x0 +∆x)

∆
f

(x
0
;∆
x

)

remainder:
r2
x(x0;∆x)

first-order approximation:

Figure 10.2: One-dimensional illustration of the first-order approximation and the remainder.
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10.2.2 An exact sensitivity relation

Let v0 ∈ V be the solution of the initial problem with a given initial design s0 ∈ S . Fur-
thermore, let v ∈ V be the solution for the changed design s = s0 + ∆s ∈ S. Then, both
problems are given as

R(v0, s0;η) = 0 ∀η ∈ V initial design s0 (10.17)

R(v, s;η) = 0 ∀η ∈ V changed design s = s0 +∆s. (10.18)

In the general case, the residuals depend nonlinear on v and s and we have

R(v, s;η) = R(v0 +∆v, s;η) 6= R(v0, s;η) +R(∆v, s;η), (10.19)

R(v, s;η) = R(v, s0 +∆s;η) 6= R(v, s0;η) +R(v, ∆s;η). (10.20)

Using a Taylor expansion with an exact integral remainder the variational form for the changed
design (10.18) can be written as

R(v, s;η) = R(v0 +∆v, s;η)

= R(v0, s;η) +R′v(v0, s;η, ∆v) + rv(v0, s;η, ∆v)

= R(v0, s;η) +∆vR(v0, s;η) = 0.

(10.21)

The change in the residual due to changes ∆v is given by the nonlinear increment

∆vR(v0, s;η) := R′v(v0, s;η, ∆v) + rv(v0, s;η, ∆v) (10.22)

with the remainder

rv(v0, s;η, ∆v) :=

∫ 1

0

R′′vv(v0 + λ∆v, s;η, ∆v, ∆v) (1− λ) dλ. (10.23)

Furthermore, (10.18) can be also written as

R(v, s;η) = R(v, s0 +∆s;η)

= R(v, s0;η) +R′s(v, s0;η, ∆s) + rs(v, s0;η, ∆s)

= R(v, s0;η) +∆sR(v, s0;η) = 0.

(10.24)

The change in the residual due to changes ∆s is given by the nonlinear increment

∆sR(v, s0;η) := R′s(v, s0;η, ∆s) + rs(v, s0;η, ∆s) (10.25)

with the remainder

rs(v, s0;η, ∆s) :=

∫ 1

0

R′′ss(v, s0 + λ∆s;η, ∆s, ∆s) (1− λ) dλ. (10.26)
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If the remainders are computable, these relations are exact. With this at hand, the residual
R(v, s;η) can be expressed only in terms of the initial state v0 or the initial design s0.

The goal is now to obtain an exact sensitivity relation for the state v due to changes in the
design ∆s, i.e. the exact distance between the solutions v0 and v from (10.17) and (10.18),
respectively. This is accomplished in the following result.

Theorem 10.1 (Exact sensitivity relation for the state) Let the residual R(v, s; ·) be suf-
ficiently differentiable with respect to v and s. Then it holds for the change in the state
∆v = v − v0 due to changes in the design ∆s that

k(v0, s0;η, ∆v) = −Qex(v)(v0, s0;η) ∀ η ∈ V (10.27)

with the exact pseudo load functional

Qex(v)(v0, s0;η) :=R′s(v0, s0;η, ∆s) +R′′sv(v0, s0;η, ∆s, ∆v)

+ r(v,v0, s0;η, ∆v, ∆s)
(10.28)

for a given ∆s. The remainder is quadratic in ∆v and ∆s and reads

r(v,v0, s0;η, ∆v, ∆s) :=

∫ 1

0

{R′′vv(v0 + λ∆v, s0;η, ∆v, ∆v) (10.29)

+R′′ss(v, s0 + λ∆s;η, ∆s, ∆s)

+R′′′svv(v0 + λ∆v, s0;η, ∆s, ∆v, ∆v)} (1− λ) dλ.

Proof . Obviously we have, subtract Eq. 10.17 from Eq. 10.18 and by using (10.24),

R(v, s;η)−R(v0, s0;η) =R(v, s0;η)−R(v0, s0;η)

+R′s(v, s0;η, ∆s) + rs(v, s0;η, ∆s) = 0.
(10.30)

Furthermore, we can write

R(v, s0;η)−R(v0, s0;η) = R(v0 +∆v, s0;η)−R(v0, s0;η)

= R′v(v0, s0;η, ∆v) + rv(v0, s0;η, ∆v)

= ∆vR(v0, s0;η),

(10.31)

where rv(v0, s0;η, ∆v) is defined in (10.23), in which s is replaced by s0. This yields

R(v, s;η)−R(v0, s0;η) =R′v(v0, s0;η, ∆v) +R′s(v, s0;η, ∆s)

+ rv(v0, s0;η, ∆v) + rs(v, s0;η, ∆s) = 0
(10.32)
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or

R′v(v0, s0;η, ∆v) =−R′s(v, s0;η, ∆s)

− rv(v0, s0;η, ∆v)− rs(v, s0;η, ∆s).
(10.33)

The term R′s(v, s0;η, ∆s) depends still on v. A Taylor expansion yields

R′s(v, s0;η, ∆s) = R′s(v0 +∆v, s0;η, ∆s)

= R′s(v0, s0;η, ∆s) +R′′sv(v0, s0;η, ∆s, ∆v)

+ rsv(v0, s0;η, ∆s, ∆v)

(10.34)

with the remainder

rsv(v0, s0;η, ∆s, ∆v) :=

∫ 1

0

R′′′svv(v0 + λ∆v, s0;η, ∆s, ∆v, ∆v) (1− λ) dλ.

(10.35)

Finally, this leads to

R′v(v0, s0;η, ∆v) =−R′s(v0, s0;η, ∆s)−R′′sv(v0, s0;η, ∆s, ∆v)

− rv(v0, s0;η, ∆v)− rs(v, s0;η, ∆s)

− rsv(v0, s0;η, ∆s, ∆v).

(10.36)

A rearrangement of all terms and the reminders as well as by using

k(v0, s0;η, ∆v) := R′v(v0, s0;η, ∆v) (10.37)

gives the stated result. �

In Theorem 10.1 an exact pseudo load for the state Qex(v,v0, s0; ·) has been introduced.
For chosen fixed ∆v and ∆s this is a linear functional Qex : V → R. The structure of
the exact sensitivity relation (10.27) is equivalent to the standard approximative sensitivity
relation (10.7). But obviously, the exact pseudo load contains the exact solution v or the
exact increment ∆v. For practical computations the exact solution can be replaced by a good
approximation. This will be discussed in detail in Section 10.3.

Remark 10.1 (Exact pseudo load vs. approximation) The derived exact pseudo load func-
tionalQex(v)(v0, s0; ·) in (10.27) and the approximate pseudo loadQ(v0, s0; ·) in (10.7) are
related by

Qex(v)(v0, s0;η) =Q(v0, s0;η) +Q′v(v0, s0;η, ∆v)

+ r(v,v0, s0;η, ∆v, ∆s),
(10.38)
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where the relations

Q(v0, s0; ·) = R′s(v0, s0; ·, ∆s), (10.39)

Q′v(v0, s0; ·, ∆v) = R′′sv(v0, s0; ·, ∆s, ∆v) (10.40)

have been used. Furthermore, the remainder (10.29) in terms of Q(·, ·; ·) is given as

r(v,v0, s0;η, ∆v, ∆s) =

∫ 1

0

{R′′vv(v0 + λ∆v, s0;η, ∆v, ∆v) (10.41)

+Q′s(v, s0 + λ∆s;η, ∆s)

+Q′′vv(v0 + λ∆v, s0;η, ∆v, ∆v)} (1− λ) dλ.

Remark 10.2 (The error in the pseudo load) The error in the pseudo load is easily ob-
tained from (10.38) as

Qex(v)(v0, s0;η)−Q(v0, s0;η) =Q′v(v0, s0;η, ∆v)

+ r(v,v0, s0;η, ∆v, ∆s).
(10.42)

Remark 10.3 (First-order sensitivity relation) The approximative pseudo loadQ(v0, s0; ·)
in (10.7) is just the first partial variation of the residual of the initial design R(v0, s0; ·) with
respect to s. Therefore, the approximate sensitivity relation (10.7) given as

k(v0, s0;η, ∆ṽ) = −Q(v0, s0;η)

is in the following referred to as the first-order sensitivity relation for the state. The first order
approximation for the state ṽ is introduced as

ṽ := v0 +∆ṽ. (10.43)

10.2.3 Different formulations depending on the order of linearization

Depending in which order the exact linearization is performed, different formulations of the
residuals and therefore different formulations of the exact sensitivity relations are obtained.
If the first linearization is done with respect to v and the second with respect to s we have

R(v, s;η) = R(v0, s;η) +R′v(v0, s;η, ∆v) + rv(v0, s;η, ∆v)

= R(v0, s0;η) +R′v(v0, s;η, ∆v) +R′s(v0, s0;η, ∆s)

+ rv(v0, s;η, ∆v) + rs(v0, s0;η, ∆s)

= R(v0, s0;η) +∆sR(v0, s0;η) +∆vR(v0, s;η) = 0.

(10.44)
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Furthermore, this can be written as

R(v, s;η) = R(v0, s0;η) (10.45)

+R′v(v0, s0;η, ∆v) +R′s(v0, s0;η, ∆s) +R′′vs(v0, s0;η, ∆v, ∆s)

+ rv(v0, s;η, ∆v) + rs(v0, s0;η, ∆s) + rvs(v0, s0;η, ∆v, ∆s) = 0.

The remainders rv , rs and rvs are defined in (10.23), (10.26) and (10.35), respectively.

On the other hand, if the first linearization is done with respect to s and the second with
respect to v we have

R(v, s;η) = R(v, s0;η) +R′s(v, s0;η, ∆s) + rs(v, s0;η, ∆s)

= R(v0, s0;η) +R′v(v0, s0;η, ∆v) +R′s(v, s0;η, ∆s)

+ rv(v0, s0;η, ∆v) + rs(v, s0;η, ∆s)

= R(v0, s0;η) +∆vR(v0, s0;η) +∆sR(v, s0;η) = 0

(10.46)

and

R(v, s;η) = R(v0, s0;η) (10.47)

+R′v(v0, s0;η, ∆v) +R′s(v0, s0;η, ∆s) +R′′sv(v0, s0;η, ∆s, ∆v)

+ rv(v0, s0;η, ∆v) + rs(v, s0;η, ∆s) + rsv(v0, s0;η, ∆s, ∆v) = 0.

Obviously, from (10.44) and (10.46) we have

R′v(v0, s;η, ∆v)

+R′s(v0, s0;η, ∆s)

+ rv(v0, s;η, ∆v)

+ rs(v0, s0;η, ∆s)


=



R′v(v0, s0;η, ∆v)

+R′s(v, s0;η, ∆s)

+ rv(v0, s0;η, ∆v)

+ rs(v, s0;η, ∆s)


(10.48)

or 

R′′vs(v0, s0;η, ∆v, ∆s)

+ rv(v0, s;η, ∆v)

+ rs(v0, s0;η, ∆s)

+ rvs(v0, s0;η, ∆v, ∆s)


=



R′′sv(v0, s0;η, ∆s, ∆v)

+ rv(v0, s0;η, ∆v)

+ rs(v, s0;η, ∆s)

+ rsv(v0, s0;η, ∆s, ∆v)


. (10.49)

From this follows that the change in the state ∆v can be computed using different formu-
lations. For given ∆s the bilinear form R′v(v0, s;η, ∆v) = R′v(v0, s0 + ∆s;η, ∆v) is
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= R(v0, s0) +∆vR(v0, s0) +∆sR(v, s0)

ss0
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∆
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R(v0, s)

R(v, s0)

= R(v0, s0) +∆sR(v0, s0)R(v0, s)

= R(v0, s0) +∆vR(v0, s0)R(v, s0)

= R(v0, s0) +∆sR(v0, s0) +∆vR(v0, s)R(v, s)

Figure 10.3: Illustration of the different order of linearization of a given functional R(v, s).

explicitly known and ∆v ∈ V is the solution of

R′v(v0, s;η, ∆v) = R′s(v0, s0;η, ∆s)

+ rv(v0, s;η, ∆v) + rs(v0, s0;η, ∆s)
∀η ∈ V. (10.50)

On the other hand, ∆v ∈ V is also the solution of

R′v(v0, s0;η, ∆v) = R′s(v, s0;η, ∆s)

+ rv(v0, s0;η, ∆v) + rs(v, s0;η, ∆s)
∀η ∈ V. (10.51)

Hence, both formulations are equivalent.

A graphical illustration of (10.44) and (10.46) is given in Fig. 10.3. The linearization of
R(v, s;η) can be performed first with respect v or equivalently with respect to s, i.e.

R(v, s;η) = R(v0, s0;η) +∆sR(v0, s0;η) +∆vR(v0, s;η)

= R(v0, s0;η) +∆vR(v0, s0;η) +∆sR(v, s0;η).
(10.52)

Finally, we have

∆sR(v0, s0;η) +∆vR(v0, s;η) = ∆vR(v0, s0;η) +∆sR(v, s0;η). (10.53)

10.2.4 The error in the change of the state

The first-order approximation for the change in the state ∆ṽ due to changes in the design ∆s
is given in (10.7) as

k(v0, s0;η, ∆ṽ) = −Q(v0, s0;η) ∀ η ∈ V.
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Furthermore, an exact relation has been introduced in (10.27) and the exact change ∆v is the
solution of

k(v0, s0;η, ∆v) = −Qex(v)(v0, s0;η) ∀ η ∈ V.

The goal is to now to obtain an exact error representation of the error in the increment

e∆v := v − ṽ = ∆v −∆ṽ. (10.54)

This relation is illustrated for a one-dimensional problem in Fig. 10.1.

The error e∆v depends directly on the error in the pseudo load introduced in (10.42). An
equation for the error e∆v can now be obtained with the results from Theorem 10.1. This is
accomplished in the following result.

Theorem 10.2 Let ∆ṽ be the solution of the approximative first-order sensitivity relation
(10.7) and let ∆v be the solution of the exact sensitivity relation (10.27). Then, it holds for
the error e∆v = ∆v −∆ṽ that

k(v0, s0;η, e∆v) = −[Qex(v)(v0, s0;η)−Q(v0, s0;η) ]

= −[R′′sv(v0, s0;η, ∆s, ∆v) + r(v,v0, s0;η, ∆v, ∆s) ]

= −[Q′v(v0, s0;η, ∆v) + r(v,v0, s0;η, ∆v, ∆s) ]

(10.55)

for all η ∈ V . The remainder r(v,v0, s0;η, ∆v, ∆s) is given in (10.29).

Proof . The proof is easily obtained if we subtract (10.7) from (10.27), i.e.

k(v0, s0;η, ∆v)− k(v0, s0;η, ∆ṽ) = −[Qex(v)(v0, s0;η)−Q(v0, s0;η) ].

Due to the linearity of the bilinear form k(v0, s0; ·, ·) it holds that

k(v0, s0;η, e∆v) = −[Qex(v)(v0, s0;η)−Q(v0, s0;η) ].

The right hand side is given by the error in the pseudo load (10.42). This gives the stated
result. �

Hence, the error in the change of the state e∆v depends directly on the error in the pseudo
load. The relation (10.55) is exact if the exact pseudo load Qex(v)(v0, s0;η) is computable.
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10.2.5 An error estimator for the design sensitivity of the state

The exact error representation (10.55) contains in the right hand side the exact increment∆v.
Hence, the practical computation requires a good approximation of the increment.

Let ∆ṽ∗ be a computed higher-order approximation of the increment such that ∆ṽ∗ ≈ ∆v.
Then, an approximation of the error relation (10.55) reads

k(v0, s0;η, e∆v) ≈ −[Qex(v0 +∆ṽ∗)(v0, s0;η)−Q(v0, s0;η) ]

= −[R′′sv(v0, s0;η, ∆s, ∆ṽ∗)

+ r(v0 +∆ṽ∗,v0, s0;η, ∆ṽ∗, ∆s) ].

(10.56)

In the simplest case, the solution ∆ṽ of the first-order sensitivity relation (10.7) can be used,
i.e. we set ∆ṽ∗ = ∆ṽ.

Furthermore, higher-order approximations can be computed using the exact sensitivity re-
lation (10.27) within an iterative algorithm. Such an improvement algorithm is proposed in
Section 10.3 in Box. 10.1.

The exact new state due to design changes ∆s is obtained with the exact increment ∆v as

v := v0 +∆v. (10.57)

A first-order approximation for the state ṽ for the changed design using the first-order solution
∆ṽ is given from

ṽ := v0 +∆ṽ. (10.58)

Furthermore, with an improved solution ∆ṽ∗ the new improved state is introduced as

ṽ∗ := v0 +∆ṽ∗. (10.59)

A simple error estimator can be obtained using such an improved solution ∆ṽ∗. Let ẽ∆v be
an error estimator for the error of the design sensitivity of the state introduced as

ẽ∆v := ṽ∗ − ṽ = ∆ṽ∗ −∆ṽ. (10.60)

For a good approximation ṽ∗ ≈ v the exact error representation (10.55) is the basis for the
computation of the error estimator ẽ∆v .

Finally, ẽ∆v is computable and just the solution of the following problem: Find ẽ∆v ∈ V
such that

k(v0, s0;η, ẽ∆v) = −[Qex(ṽ∗)(v0, s0;η)−Q(v0, s0;η) ] (10.61)

= −[R′′sv(v0, s0;η, ∆s, ∆ṽ∗) + r(ṽ∗,v0, s0;η, ∆ṽ∗, ∆s) ]

for all η ∈ V . The estimate ẽ∆v tends to the exact solution e∆v if ∆ṽ∗ → ∆v.
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Remark 10.4 (Least obtainable error) In practical computations the improved solution ṽ∗

can be very close to the exact solution v for sufficiently small design changes, i.e. v ≈ ṽ∗.
But especially for large design changes there is still a difference even if the best improved
solution ṽ∗ is obtained. Therefore, the least obtainable error can be introduced as

ẽ∗∆v := e∆v − ẽ∆v = ∆v −∆ṽ∗, (10.62)

which measures the distance between the exact solution ∆v and the improved solution ∆ṽ∗.

Remark 10.5 (Error estimator in the L2 norm) The error ẽ∆v measures the distance be-
tween the solution∆ṽ and an improved solution∆ṽ∗ obtained from an higher-order approx-
imation. The error estimator in terms of the L2 norm as well as the corresponding relative
error are introduced as

η̃∆v := ||ẽ∆v||L2
= ||ṽ∗ − ṽ||L2

= ||∆ṽ∗ −∆ṽ||L2
, (10.63)

η̃rel
∆v :=

||ṽ∗ − ṽ||L2

||ṽ∗||L2

=
||∆ṽ∗ −∆ṽ||L2

||ṽ∗||L2

. (10.64)

Furthermore, the exact error measured in the L2 norm as well as the corresponding relative
error are given as

η∆v := ||e∆v||L2
= ||v − ṽ||L2

= ||∆v −∆ṽ||L2
, (10.65)

ηrel
∆v :=

||v − ṽ||L2

||v||L2

=
||∆v −∆ṽ||L2

||v||L2

. (10.66)

Remark 10.6 (Effectivity index) In order to quantify the error estimator the effectivity in-
dex

Ieff :=
||ẽ∆v||L2

||e∆v||L2

=
η̃∆v
η∆v

(10.67)

is used. The error estimator is asymptotically exact if Ieff tends to unity. The effectivity index
is a measure for the accuracy of the resulting error estimator η̃∆v .

10.3 Improvement of sensitivity relations

The exact sensitivity representation (10.27) contains in the right hand side the exact solution
v or the exact increment ∆v for the changed design. From this relation an improvement
algorithm can be derived.
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10.3.1 An improvement approach

Let∆ṽ0 be a good approximation of the exact change∆v such that∆ṽ0 ≈ ∆v. An approxi-
mation of the state v for the changed design is given from

ṽ0 = v0 +∆ṽ0. (10.68)

The exact pseudo load Qex(v)(v0, s0;η) in (10.28) contains higher-order variations of the
considered residualR(·, ·; ·) obtained from the exact Taylor expansion with integral reminder.
Using the initial solution ∆ṽ0 within the exact sensitivity relation (10.27) we obtain an im-
proved design sensitivity solution ∆ṽ∗1 ∈ V by solving

k(v0, s0;η, ∆ṽ∗1) = −Qex(ṽ0)(v0, s0;η) ∀ η ∈ V (10.69)

with

Qex(ṽ0)(v0, s0;η) :=R′s(v0, s0;η, ∆s) +R′′sv(v0, s0;η, ∆s, ∆ṽ0)

+ r(ṽ0,v0, s0;η, ∆ṽ0, ∆s).
(10.70)

This can be repeated within an iteration loop until no further improvements occur, i.e. no
changes in the state. The algorithm stops if the change is smaller than a given tolerance TOL,
i.e.

||∆ṽ∗i+1 −∆ṽ∗i ||L2 ≤ TOL, (10.71)

or if a maximal admissible number of iterations is achieved. In practical computations the
tolerance is chosen as [ 10−10, 10−14 ].

The overall solution algorithm is given in Box. 10.1. The algorithm corresponds formally
with a classical Newton algorithm used within the solution of a nonlinear problem.

10.3.2 Computational aspects and efficiency

The proposed improvement approach for the design sensitivity of the state based on the for-
mulation of the exact sensitivity relation is very efficient for several reasons.

• The tangent stiffness matrix K0 and its inverse K−1
0 in Box. 10.1 are the same as used

for the solution of the primal structural problem K0∆v = −R in the last iteration step
of the Newton algorithm. Therefore, these matrices have not to be computed once again
for the sensitivity relation improvement.

• Hence, K−1
0 is already known and the computation of ∆ṽ∗i+1 in (10.72) requires only

the matrix-vector multiplication ∆ṽ∗i+1 = −K−1
0 Qex(ṽ∗i ). In all iteration steps the

same tangent stiffness matrix K−1
0 is used.
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Compute an initial value ∆ṽ0: Solve the first-order sensitivity relation (10.7) for given v0

and s0. Find ∆ṽ0 ∈ V such that

k(v0, s0;η, ∆ṽ0) = −Q(v0, s0;η) ∀η ∈ V,

i.e. solve the discrete linear equation

K0∆ṽ0 = −Q(v0).

Iteration loop: Set i = 0, ∆ṽ∗i = ∆ṽ0 and ṽ∗i = v0 +∆ṽ0

1. Solve the exact sensitivity relation (10.27) with ṽ∗i . Find ∆ṽ∗i+1 ∈ V such that

k(v0, s0;η, ∆ṽ∗i+1) = −Qex(ṽ∗i )(v0, s0;η) ∀η ∈ V,

i.e. solve the discrete linear equation

K0∆ṽ
∗
i+1 = −Qex(ṽ∗i ). (10.72)

2. Update improved state: ṽ∗i+1 = ṽ∗i +∆ṽ∗i+1

3. Check convergence:
if ||∆ṽ∗i+1 −∆ṽ∗i ||L2

≤ TOL or i ≥ max. # of iterations → END

else → set i = i+ 1 and GOTO (1)

Box 10.1: Solution algorithm for the improvement of ∆v due to changes in the design ∆s

• The most contributions of the exact pseudo load Qex(v)(v0, s0;η) in (10.28) are only
affected by elements which share nodes with design variations ∆s. Therefore, only
those elements have to be considered within the assembling routine and all other el-
ement contributions are zero. The assembling routine can be modified in such a way
that the loop runs not over all elements, but only over the elements which are affected
by design changes. In the most cases this is a small number of elements and the com-
putational effort is small.

The only contribution of Qex(v)(v0, s0;η) which is affected by all elements is the
term R′′vv(v, s;η, ∆v, ∆v) in the remainder (10.29). This term is quadratic in ∆v
and tends for small changes in the state very quickly to zero. Therefore, in practical
computations this terms has to be computed for all elements only for large values of
∆v. The computational experience shows that R′′vv has not to be considered for

||∆v||L2
≤ TOL, (10.73)

with a chosen tolerance of [ 10−5, 10−7 ]. For instance, let Rvv(∆v) be the discrete
vector corresponding to the functional R′′vv for a given ∆v. Then, the chosen tolerance
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TOL = 10−6 leads to a norm of the residual of about ||Rvv(∆v)||L2 ≈ 10−12, because
the functional is quadratic in ∆v. Hence, for small design changes ∆s which cause
small changes in the state ∆v the term R′′vv vanishes and only the elements which are
affected by design changes have to be considered as mentioned above.

The computation of the exact pseudo load Qex(v)(v0, s0;η) requires higher-order varia-
tions of the residual R(·, ·; ·) with respect to v and s. These terms can be derived using the
same variational approach as in the former chapters. Furthermore, the corresponding dis-
crete formulations are also obtained in the same manner. Explicit variational formulations
for shape design sensitivity of all required higher-order variations are given in Section 10.6.
Furthermore, compact formulations used within the numerical implementation are stated in
Appendix B.1.2. These terms can be computed and assembled in the same routine as the
classical stiffness matrix and the residual vector without considerable computational cost.

Remark 10.7 (Linear problems) The second variations with respect to v vanish in the exact
pseudo load Qex(v)(v0, s0;η) in (10.28) if a linear model problem is considered, i.e.

R′′vv(v, s;η, ∆v, ∆v) = 0 and R′′′svv(v, s;η, ∆s, ∆v, ∆v) = 0.

Therefore, if the problem is linear in v only the elements which are affected by design changes
∆s have to be considered within the assembling process. This makes the proposed approach
very efficient. For the model problem of linearized elasticity all required variations are given
in Section B.2.7.

10.3.3 Computation of the remainder

The exact pseudo load Qex(v)(v0, s0;η) contains an exact integral remainder defined in
(10.29) as

r(v,v0, s0;η, ∆v, ∆s) =

∫ 1

0

{R′′vv(v0 + λ∆v, s0;η, ∆v, ∆v)

+R′′ss(v, s0 + λ∆s;η, ∆s, ∆s)

+R′′′svv(v0 + λ∆v, s0;η, ∆s, ∆v, ∆v)} (1− λ) dλ.

Such integral remainders are usually neglected. In the present work the exact sensitivity and
error relations are based on the fully computation of the remainder. In the general case, the in-
tegral

∫ 1

0
(·) dλ cannot be computed analytically. In this work a numerical integration scheme

(Gauss integration) is used in order to solve the integral.

For instance, for notational simplicity only the first term in the remainder

rv(v0, s0;η, ∆v) =

∫ 1

0

R′′vv(v0 + λ∆v, s0;η, ∆v, ∆v) (1− λ) dλ
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is considered. Let Rvv(v0) ∈ Rn be the discrete vector corresponding to the functional
R′′vv(v0, s0; ·, ∆v, ∆v) for any given ∆v. Furthermore, let rv ∈ Rn be the discrete vec-
tor corresponding to the remainder functional rv(v0, s0; ·, ∆v). Then, the discrete vector rv
is given from

rv =

∫ 1

0

Rvv(v0 + λ∆v) (1− λ) dλ ∼=
NGP∑
i=1

Rvv(v0 + ξi∆v) (1− ξi)ωi, (10.74)

where ξi and ωi are the Gauss-points and weights of the one-dimensional integration scheme.
The accuracy of rv depends on the number of Gauss-points NGP. For an adequate number of
Gauss-points the integration scheme yields good results, i.e. the remainder can be computed
with high accuracy. In practical computations 2 to 4 Gauss-points should be used in order to
obtain sufficient results. All other remainder contributions can be computed within the same
integration loop.

10.4 An exact sensitivity relation and error analysis for
quantities of interest

The extension of the above presented framework to chosen quantities of interest is presented
within this section. The goal is to establish an exact relation for the change in the quantity
of interest due to design changes. The problem is more complex as the sensitivity relation
of the state because the dual problem is in general formulated at a given deformed state.
The corresponding dual solution is the deformation due to the dual load case applied on the
deformed structure.

The following approach has been inspired by an article on modeling error estimation [18].
This subject is in an abstract sense closely related to design sensitivity analysis if the change
in a model is interpreted as a design change, see Section 10.5.

10.4.1 An exact sensitivity relation

Let again v0 ∈ V be the solution of the initial problem (10.17) with a given initial design
s0 ∈ S and let v ∈ V be the solution for the changed design s = s0 + ∆s ∈ S , i.e. the
solution of (10.18). The quantity of interest for the initial and changed design are given as

J(v0, s0) initial design s0 (10.75)

J(v, s) changed design s = s0 +∆s. (10.76)

The goal is now to predict the change in the quantity of interest due to design changes, which
is given by the increment

∆J = J(v, s)− J(v0, s0). (10.77)
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The quantity of interest can be computed using an optimal control approach as shown in
Section 5.2. The corresponding Lagrangian functionals for the initial and changed design are
introduced as

L(s0)(v0, z0) = J(v0, s0)−R(v0, s0; z0), (10.78)

L(s)(v, z) = J(v, s)−R(v, s; z), (10.79)

where z0 and z are the dual solutions for the initial and changed design, respectively.

Furthermore, the Lagrangian L(s)(v, z) can be expressed in terms of the initial design as

L(s)(v, z) = L(s0 +∆s)(v, z)

= L(s0)(v, z) +∆sL(s0)(v, z)
(10.80)

with the increment of the Lagrangian

∆sL(s0)(v, z) := ∆sJ(v, s0)−∆sR(v, s0; z). (10.81)

The increments ∆sJ and ∆sR are given as

∆sJ(v, s0) := J ′s(v, s0;∆s+ rJs (v, s0;∆s) (10.82)

∆sR(v, s0; z) := R′s(v, s0; z, ∆s) + rRs (v, s0; z, ∆s) (10.83)

with the remainders

rJs (v, s0;∆s) :=

∫ 1

0

J ′′ss(v, s0 + λ∆s;∆s, ∆s) (1− λ) dλ, (10.84)

rRs (v, s0; z, ∆s) :=

∫ 1

0

R′′ss(v, s0 + λ∆s; z, ∆s, ∆s) (1− λ) dλ. (10.85)

The first-order optimality conditions for the initial problem (10.78) and the changed design
(10.79) read

L′(s0)(v0, z0)(∆v, ∆z) = 0 ∀ {∆v, ∆z} ∈ V × V, (10.86)

L′(s)(v, z)(∆v, ∆z) = 0 ∀ {∆v, ∆z} ∈ V × V. (10.87)

By using (10.80), the total variation L′(s)(v, z)(∆v, ∆z) in (10.87) can also be written as

L′(s)(v, z)(∆v, ∆z) = L′(s0)(v, z)(∆v, ∆z)

+ (∆sL)′(s0)(v, z)(∆v, ∆z).
(10.88)

The total variation of L(s0)(v0, z0) is given by

L′(s0)(v0, z0)(∆v, ∆z) = L′v(s0)(v0, z0)(∆v) + L′z(s0)(v0, z0)(∆z) (10.89)
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with

L′v(s0)(v0, z0)(∆v) = J ′v(v0, s0;∆v)−R′v(v0, s0; z0, ∆v), (10.90)

L′z(s0)(v0, z0)(∆z) = −R(v0, s0;∆z). (10.91)

In the same manner, the total variation of ∆sL(s0)(v0, z0) reads

(∆sL)′(s0)(v0, z0)(∆v, ∆z) = (∆sL)′v(s0)(v0, z0)(∆v)

+ (∆sL)′z(s0)(v0, z0)(∆z)
(10.92)

with

(∆sL)′v(s0)(v0, z0)(∆v) = (∆sJ)′v(v0, s0;∆v)− (∆sR)′v(v0, s0; z0, ∆v),
(10.93)

(∆sL)′z(s0)(v0, z0)(∆z) = −∆sR(v0, s0;∆z). (10.94)

The variations of the increments ∆sJ and ∆sR are given as

(∆sJ)′v(v0, s0;∆v) = J ′′sv(v0, s0;∆s, ∆v) + (rJs )′v(v0, s0;∆s, ∆v) (10.95)

(∆sR)′v(v0, s0; z0, ∆v) = R′′sv(v0, s0; z0, ∆s, ∆v) + (rRs )′v(v0, s0; z0, ∆s, ∆v)
(10.96)

with the variations of the remainders

(rJs )′v(v0, s0;∆s, ∆v) =

∫ 1

0

J ′′′ssv(v0, s0 + λ∆s;∆s, ∆s, ∆v) (1− λ) dλ, (10.97)

(rRs )′v(v0, s0;z0, ∆s, ∆v)

=

∫ 1

0

R′′′ssv(v0, s0 + λ∆s; z0, ∆s, ∆s, ∆v) (1− λ) dλ.
(10.98)

Furthermore, let {v0, z0} ∈ V×V and {v, z} ∈ V×V be solutions of (10.86) and (10.87), re-
spectively. Then, the quantity of interest is given by evaluatingL(s0)(v0, z0) andL(s)(v, z),
i.e.

J(v0, s0) = L(s0)(v0, z0), (10.99)

J(v, s) = L(s)(v, z) = L(s0)(v, z) +∆sL(s0)(v, z), (10.100)

because R(v0, s0; z0) = 0 and R(v, s; z) = 0.

Finally, the change in the quantity of interest ∆J = J(v, s)− J(v0, s0) can be equivalently
expressed in terms of the change in the Lagrangian functionals L(s)(v, z)− L(s0)(v0, z0).
This is accomplished in the following result.
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Theorem 10.3 (Exact change in the quantity of interest) Let the residualR(v, s; ·) and the
functional J(v, s) be sufficiently differentiable with respect to v and s. Then it holds for the
change in the quantity of interest ∆J = J(v, s) − J(v0, s0) due to changes in the design
∆s that

J(v, s)− J(v0, s0) = ∆J(v0, s0, z0)(∆v, ∆s, ∆z)

= ∆sJ(v0, s0)−∆sR(v0, s0; z0)− 1

2
∆sR(v0, s0;∆z)

+
1

2
[ (∆sJ)′v(v0, s0;∆v)− (∆sR)′v(v0, s0; z0, ∆v) ]

+
1

2
rL(s)(v0, z0;∆v, ∆z). (10.101)

The increments ∆sJ and ∆sR are defined in (10.82) and (10.83) and the variations of the
increments (∆sJ)′v and (∆sR)′v are given in (10.95) and (10.96), respectively. Furthermore,
the remainder rL(s)(v0, z0;∆v, ∆z) is cubic in ∆v and reads

rL(s)(v0, z0;∆v,∆z)

=

∫ 1

0

{ J ′′′vvv(v0 + λ∆v, s0;∆v, ∆v, ∆v)

−R′′′vvv(v0 + λ∆v, s0; z0 + λ∆z, ∆v, ∆v, ∆v)

− 3R′′vv(v0 + λ∆v, s0;∆z, ∆v, ∆v)

+ (∆sJ)′′′vvv(v0 + λ∆v, s0;∆v, ∆v, ∆v)

− (∆sR)′′′vvv(v0 + λ∆v, s0; z0 + λ∆z, ∆v, ∆v, ∆v)

− 3 (∆sR)′′vv(v0 + λ∆v, s0;∆z, ∆v, ∆v)}λ(λ− 1) dλ.

(10.102)

Proof . Let X := V × V be a product space and set x0 := {v0, z0} ∈ X , x := {v, z} ∈ X
as well as ∆x := {∆v, ∆z} ∈ X . Then, the Lagrangian functionals (10.78) and (10.80) are
given by

L(s0)(x0) = L(s0)(v0, z0),

L(s)(x) = L(s)(v, z)

= L(s0)(x) +∆sL(s0)(x) = L(s0)(v, z) +∆sL(s0)(v, z).

Furthermore, we have

L(s0)(x0) = L(s)(x0)−∆sL(s0)(x0).
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The change in the quantity of interest can be expressed in terms of the change in the La-
grangian functionals, i.e.

J(v, s)− J(v0, s0) = L(s)(x)− L(s0)(x0)

= L(s)(x)− L(s)(x0) +∆sL(s0)(x0)

= L(s)(x)− L(s)(x0) +∆sJ(v0, s0)−∆sR(v0, s0; z0).

Using (10.13) we obtain the representation

L(s)(x)− L(s)(x0) =
1

2
[L′(s)(x0)(∆x) + L′(s)(x0 +∆x)(∆x) ]

+
1

2
rL(s)(x0;∆x).

Because of (10.87), the second term vanishes, i.e.

L′(s)(x0 +∆x)(∆x) = L′(s)(x)(∆x) = 0.

Furthermore, using (10.88) and (10.86), we have for the first term

L′(s)(x0)(∆x) = L′(s0)(x0)(∆x) + (∆sL)′(s0)(x0)(∆x)

= (∆sL)′(s0)(x0)(∆x).

The variation (∆sL)′(s0)(x0;∆x) is given with (10.93) and (10.94) in form of

(∆sL)′(s0)(x0)(∆x) = (∆sL)′v(s0)(v0, z0)(∆v) + (∆sL)′z(s0)(v0, z0)(∆z)

= (∆sJ)′v(v0, s0;∆v)− (∆sR)′v(v0, s0; z0, ∆v)

−∆sR(v0, s0;∆z).

Finally, the reminder term rL(s)(x0;∆x) according to (10.16) is cubic in ∆x and reads

rL(s)(x0;∆x) =

∫ 1

0

L′′′(s)(x0 + λ∆x)(∆x, ∆x, ∆x)λ(λ− 1) dλ

=

∫ 1

0

{L′′′(s0)(x0 + λ∆x)(∆x, ∆x, ∆x)

+ (∆sL)′′′(s0)(x0 + λ∆x)(∆x, ∆x, ∆x)}λ(λ− 1) dλ,

where

L′′′(s0)(x0 + λ∆x)(∆x, ∆x, ∆x)

= J ′′′vvv(v0 + λ∆v, s0;∆v, ∆v, ∆v)

−R′′′vvv(v0 + λ∆v, s0; z0 + λ∆z, ∆v, ∆v, ∆v)

− 3R′′vv(v0 + λ∆v, s0;∆z, ∆v, ∆v),
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(∆sL)′′′(s0)(x0 + λ∆x)(∆x, ∆x, ∆x)

= (∆sJ)′′′vvv(v0 + λ∆v, s0;∆v, ∆v, ∆v)

− (∆sR)′′′vvv(v0 + λ∆v, s0; z0 + λ∆z, ∆v, ∆v, ∆v)

− 3 (∆sR)′′vv(v0 + λ∆v, s0;∆z, ∆v, ∆v).

This yields the stated result in (10.101). �

10.4.2 The error in the change of the quantity of interest

A first-order sensitivity relation for the change in the quantity of interest due to variations δs
has been introduced in Section 6.3.4 in Eq. 6.27 in form of

δJ = J ′v(v0, s0; δv) = −Q(v0, s0; z0)

= −p(v0, s0; z0, δs) = −R′s(v0, s0; z0, δs),

where z0 denotes the dual solution corresponding to the quantity of interest obtained on
the initial design s0. For a finite value of design changes ∆s this relations yields just an
approximation ∆J̃ for the change in the quantity of interest, i.e.

J(v, s)− J(v0, s0) ≈ ∆J̃ = J ′v(v0, s0;∆ṽ) = −R′s(v0, s0; z0, ∆s). (10.103)

Furthermore, a representation for the exact increment ∆J has been derived in (10.101). The
distance between the first-order approximation ∆J̃ and ∆J can now easily be obtained.

Theorem 10.4 Let ∆J̃ be the solution of the first-order sensitivity relation (10.103) and let
∆J be the solution of the exact sensitivity relation (10.101). Then, it holds for the error
∆J −∆J̃ that

∆J −∆J̃ = ∆sJ(v0, s0)− 1

2
∆sR(v0, s0;∆z)− rRs (v0, s0; z0, ∆s)

+
1

2
[ (∆sJ)′v(v0, s0;∆v)− (∆sR)′v(v0, s0; z0, ∆v) ]

+
1

2
rL(s)(v0, z0;∆v, ∆z), (10.104)

where the reminders rRs (v0, s0; z0, ∆s) and rL(s)(v0, z0;∆v, ∆z) are defined in (10.85)
and (10.102), respectively.

Proof . The proof is straightforward. We subtract (10.103) from (10.101) and use the defini-
tion of the increment ∆sR(v0, s0; z0) in (10.83). �
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10.4.3 An error estimator for the change in the quantity of interest

The exact sensitivity relation (10.101) contains the exact increments ∆v and ∆z which are
in general unknown. But the first-order approximations for the change in the state ∆ṽ and
the change in the dual solution ∆z̃ can be used in order to obtain a better approximation as
the first-order sensitivity relation (10.103).

These relations have been introduced in (4.21) and (6.94) in form of

k(v0, s0;η, ∆ṽ) = −Q(v0, s0;η) ∀η ∈ V,

k(v0, s0;∆z̃,η) = −Q∗full(v0, s0; z0,η) ∀η ∈ V.
The discrete formulations of these relations are given in (4.52) and (6.98) as

K∆ṽ = −Q and K∆z̃ = −Q∗full,

where Q = P∆s and Q∗full = [P ∗ −B∗K−1P ]∆s , respectively.

With∆ṽ and∆z̃ at hand, an improved solution for the change in the quantity of interest∆J̃∗

can be obtained from (10.101) as

J(v, s)− J(v0, s0) ∼= ∆J̃∗(v0, s0, z0)(∆ṽ, ∆s, ∆z̃) (10.105)

= ∆sJ(v0, s0)−∆sR(v0, s0; z0)− 1

2
∆sR(v0, s0;∆z̃)

+
1

2
[ (∆sJ)′v(v0, s0;∆ṽ)− (∆sR)′v(v0, s0; z0, ∆ṽ) ],

in which the cubic reminder rL(s)(v0, z0;∆ṽ, ∆z̃) has been omitted. For suitable chosen
design changes ∆s and good approximations ∆ṽ and ∆z̃ this relation yields an adequate
estimator for the true change in the quantity of interest.

Furthermore, the relation (10.105) could be advanced further if some improved solutions of
the state ∆ṽ∗ and the dual solution ∆z̃∗ are used, which could be obtained by an improve-
ment algorithm as proposed in Section 10.3.

10.5 On model error and design sensitivity analysis

The model error is a part of the error due to the natural imperfections in abstract models of
actual physical phenomena. This has been studied in recent years in a series of papers, see
e.g. [18, 84, 86, 94, 95] and the references therein for an overview. Furthermore, combined
model and discretization error control and adaptive algorithms have been investigated.
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The estimation of the modeling error is in an abstract sense closely related to design sensitivi-
ty analysis, if the change in a model is interpreted as a design change. It is assumed that the
considered model is parameterized by a design function s.

For instance, an important applications of the modeling error estimation is the analysis of
heterogeneous elastic materials [84,86]. In this application the elasticity tensor depends in an
abstract sense on a design variable, i.e. C = C(s). The tensor C0 = C(s0) is an approxima-
tion obtained through some homogenization process and the homogenization is controlled by
s. Let v0 ∈ V be the solution of this initial problem or coarse model with C0. Furthermore,
let v ∈ V be the solution for the changed problem or fine model with some C(s). Then, both
problems are given as

R(v0, s0;η) = 0 ∀η ∈ V initial or coarse model (design) (10.106)

R(v, s;η) = 0 ∀η ∈ V changed or fine model (design). (10.107)

These equations correspond to those introduced for the initial and changed design in (10.17)
and (10.18), respectively.

The error or the difference between the solutions em = v − v0 = ∆v is the modeling error
em or the change in the state ∆v due to different homogenized elasticity tensors. With this in
mind, the above proposed sensitivity and error relations can be used to estimate the modeling
error for the state or a chosen quantity of interest if the design function controls in an abstract
sense the considered model.

10.6 Explicit variational formulations for shape sensitivity

The computation of the the exact pseudo load Qex(v)(v0, s0;η) requires higher-order varia-
tions of the residual R(·, ·; ·) with respect to v and s. Explicit formulations of these higher-
order variations for shape sensitivity for the model problem of nonlinear elasticity are derived
within this section. A compact specification of all higher-order variations of R(v, s, ·) are
given in Appendix B.1.2. Those formulations can directly be implemented in standard finite
element programs as the usual residuals. Furthermore, the explicit formulations in terms of
linearized elasticity are stated in Appendix B.2.7.

Computation of R′′vv . The second variation of the primal physical residual R(v, s; ·) given
in (4.85) with respect to the state v is obtained in form of

R′′vv(v, s;η, ∆v, ∆v) = k′v(v, s;η, ∆v, ∆v)

=

∫
ΩR

{ 2 E′′vv(η, ∆v) : C : E′v(v, ∆v)

+ E′v(v,η) : C : E′′vv(∆v, ∆v)

+ E′v(v,η) : D : E′v(v, ∆v) : E′v(v, ∆v) } dΩ.

(10.108)
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The form is quadratic in ∆v. For chosen fixed ∆v the form R′′vv is a linear form. An explicit
and compact specification of R′′vv is given in Box B.6.

Computation of R′′ss. The second variation with respect to s reads

R′′ss(v, s;η, ∆s, ∆s) = p′s(v, s;η, ∆s, ∆s)

=

∫
ΩR

{ 2 E′′vs(v,η, ∆s) : C : E′s(v, ∆s)

+ S : E′′′vss(v,η, ∆s, ∆s)

+ E′v(v,η) : C : E′′ss(v, ∆s, ∆s)

+ E′v(v,η) : D : E′s(v, ∆s) : E′s(v, ∆s)

+ 2 [ S : E′′vs(v,η, ∆s) + E′v(v,η) : C : E′s(v, ∆s) ] Div∆s

− [ S : E′v(v,η)− bR · η ] I : Grad∆sGrad∆s

+ [ S : E′v(v,η)− bR · η ] Div∆sDiv∆s } dΩ,

(10.109)

where

E′′′vss(v,η, ∆s, ∆s) = 2 sym{Grad∆sT Grad∆sT GradvT Gradη

+ Grad∆sT GradvT GradηGrad∆s

+ FT GradηGrad∆sGrad∆s }.

(10.110)

For chosen fixed ∆s the form becomes is a linear functional, see Box B.7.

Computation of R′′sv . The mixed variation of R(v, s; ·) is obtained as

R′′sv(v, s;η, ∆s, ∆v) = p′v(v, s;η, ∆s, ∆v)

=

∫
ΩR

{E′′vs(v,η, ∆s) : C : E′v(v, ∆v)

+ S : E′′′vsv(η, ∆s, ∆v)

+ E′′vv(η, ∆v) : C : E′s(v, ∆s)

+ E′v(v,η) : C : E′′sv(v, ∆s, ∆v)

+ E′v(v,η) : D : E′v(v, ∆v) : E′s(v, ∆s)

+ [ S : E′′vv(η, ∆v) + E′v(v,η) : C : E′v(v, ∆v) ] Div∆s } dΩ,

(10.111)
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where

E′′′vsv(η, ∆s, ∆v) = − sym{Grad∆sT Grad∆vT Gradη

+ Grad∆vT GradηGrad∆s }.
(10.112)

A compact representation is given in Box B.8.

Computation of R′′′svv . The third variation of the primal physical residual R(v, s; ·) with
respect to v reads

R′′′svv(v, s;η, ∆s, ∆v, ∆v) = p′′vv(v, s;η, ∆s, ∆v, ∆v)

=

∫
ΩR

{E′′vs(v,η, ∆s) : C : E′′vv(∆v, ∆v)

+ 2 E′′′vsv(η, ∆s, ∆v) : C : E′v(v, ∆v)

+ 2 E′′vv(η, ∆v) : C : E′′sv(v, ∆s, ∆v)

+ E′v(v,η) : C : E′′′svv(∆s, ∆v, ∆v)

+ 2 E′′vv(η, ∆v) : D : E′v(v, ∆v) : E′s(v, ∆s)

+ 2 E′v(v,η) : D : E′v(v, ∆v) : E′′sv(v, ∆s, ∆v)

+ E′′vs(v,η, ∆s) : D : E′v(v, ∆v) : E′v(v, ∆v)

+ E′v(v,η) : D : E′′vv(∆v, ∆v) : E′s(v, ∆s)

+ E′v(v,η) : E : E′v(v, ∆v) : E′v(v, ∆v) : E′s(v, ∆s)

+ 2 E′′vv(η, ∆v) : C : E′v(v, ∆v) Div∆s

+ E′v(v,η) : C : E′′vv(∆v, ∆v) Div∆s

+ E′v(v,η) : D : E′v(v, ∆v) : E′v(v, ∆v) Div∆s }dΩ,

(10.113)

The form R′′′svv(v, s;η, ∆s, ∆v, ∆v) is quadratic in ∆v and linear in ∆s. A straightforward
but lengthy calculation yields a compact representation of R′′′svv which is given in Box B.9.

Furthermore, the specifications of the fourth-order tangent operator C, the sixth-order tensor
D and the eighth-order tensor E are given in Appendix B.1.

Computation of R′′′ssv . For the sensitivity analysis of quantities of interest the variation

R′′′ssv(v, s;η, ∆s, ∆s, ∆v) = p′′sv(v, s;η, ∆s, ∆s, ∆v) (10.114)

is required in order to compute the remainder (10.98). This remainder occurs in the exact
sensitivity relation (10.101). The explicit formulation is quite lengthy and therefore omitted
at this point. But a compact representation is given in Box B.10.
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Figure 10.4: Plate with a hole: initial configuration, nodal coordinates of nodes 1-3 are cho-
sen as design variables.

10.7 Numerical example

A numerical example concerning error analysis and improvement of design sensitivity rela-
tions is presented in this section. The above derived framework for the sensitivity of the state
and for a chosen quantity of interest is investigated for a problem from nonlinear elasticity.

System and model problem. Within this example a plate with a hole under tension is con-
sidered. Only a quarter model is used for the sensitivity analysis as well as the improvement
algorithm. Due to geometric and load symmetry conditions, simply supported boundary con-
ditions are imposed on each edge and symmetric conditions are imposed on the cutting edges,
see Fig. 10.4. In the upper line, the distributed tension t̄ = [0 , 20]T is applied. A mesh with
overall 280 Q4 elements and 315 nodes is chosen in order to guarantee the visibility of the
design changes. The corresponding deformed configuration is given in Fig. 10.6b.

A compressible Neo-Hookean material with the strain energy function given in (B.20) is
considered. The corresponding stress and elasticity tensors are given in Box B.2. The Lamé
parameters are chosen as λ = 5.769 × 102 and µ = 3.846 × 102, which correspond to
E = 103 and ν = 0.3.
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ε∆X1
0

ε∆X3
0

ε∆X2
0

(a) design increments (b) perturbed mesh for ε = 1

Figure 10.5: Plate with a hole: changes in the design variables and perturbed mesh for ε = 1.

The design variables. The shape design sensitivity problem from Section 10.6 is consid-
ered. The discrete design variables are a subset of nodal coordinates of the mesh Xs. For
simplicity, only the nodal coordinates of 3 nodes on the curved boundary are chosen as de-
sign variables as indicated Fig. 10.4. The change in the design is defined by the increment in
the nodal coordinates

∆Xs = ε∆X0 with ∆X0 =

∆X1
0

∆X2
0

∆X3
0

 . (10.115)

The changes in the design variables ∆Xs are controlled by a design scaling parameter ε.
Hence, the sensitivity of the state due to changes in the design is studied with respect to
different values of ε. The nodal vectors ∆Xi0 on the nodes 1, 2 and 3 are chosen as

∆X1
0 = ∆X2

0 = ∆X3
0 =

[
−0.02
−0.02

]
. (10.116)

The possible directions of design changes in dependency of the scaling parameter ε are shown
in Fig. 10.5a. Furthermore, the perturbed mesh for ε = 1 is given in Fig. 10.5b. The mesh
consists of overall 280 elements but only 6 elements are affected by design changes, see
Fig. 10.6a.

Improvement of the state sensitivity. The classical first-order sensitivity relation (10.7)
yields for large design changes just a rough approximation for the change in the state ∆ṽ.
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(a) elements which are affected by design changes (b) deformed mesh for the initial design

Figure 10.6: Plate with a hole: elements which are affected by design changes and deformed
mesh.

An improvement algorithm has been proposed in Section 10.3 which is based on an exact
sensitivity relation given in (10.69). This algorithm yields an improved solution ∆ṽ∗.

For the considered example the improvement algorithm in Box. 10.1 has been applied for
different values of design scaling parameter ε. The tolerance within the convergence test is
chosen as TOL = 10−14 such that the algorithm stops if

||∆ṽ∗i+1 −∆ṽ∗i ||L2
≤ TOL = 10−14.

Furthermore, maximum 9 improvement iterations are allowed.

The results are shown in Fig. 10.7. The exact absolute and relative errors η∆v and ηrel
∆v , de-

fined in (10.65) as well as (10.66), are shown in dependency of ε in Fig. 10.7a and Fig. 10.7b,
respectively.

The errors are given for different number of improvement iterations. The error ∆u − ∆ũ∗0
denotes the error by using just the initial first-order sensitivity relation (10.7). Furthermore,
the error∆u−∆ũ∗1 gives the result if one improvement iteration is performed and∆u−∆ũ∗2
shows the error if two improvement iterations are used and so on.

The relative error of the first-order solution∆ũ∗0 for ε = 100 is about ηrel
∆v = 4.8546×10−1%

and is reduced to ηrel
∆v = 2.9801× 10−2 % by using 9 improvement iterations. Furthermore,

the relative error of ∆ũ∗0 for ε = 10−1 is about ηrel
∆v = 6.5779 × 10−3 % and is reduced to

ηrel
∆v = 7.2934× 10−7 % with 3 improvement iterations and to ηrel

∆v = 1.9687× 10−10 % by
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using 6 iterations. For smaller design scaling parameter ε the solution is improved in just one
or two iterations so that the error becomes numerically zero.

Hence, the error is significantly reduced. For suitable chosen ε the error is numerically zero,
i.e. the ’exact’ change in the state due to changes in the design can be computed. This demon-
strates the capability of the proposed improvement algorithm.

Number of required improvement iterations. The number of required improvement iter-
ations in order to achieve the chosen tolerance TOL depends on the value of the design change
and the quality of the initial solution ∆ũ∗0. In the considered example the design change is
controlled by a design scaling parameter ε. Furthermore, as mentioned above in this example
maximum 9 iterations are allowed within the improvement algorithm in Box. 10.1.

The required improvement iterations for different values of ε are given in Fig. 10.8. For the
first value ε = 100 more than 9 iterations are required in order to fulfil the chosen tolerance.
A numerical test has shown that overall 16 iterations have to be performed in order to achieve
the convergence criteria. But this is not efficient in comparison with the gain of accuracy.
This can be seen in Fig. 10.9, which shows the behavior of the relative error within the
improvement iterations. For ε = 100 the relative error decreases slowly in comparison with
smaller values of ε.

For smaller ε only few iterations are required in order to fulfill the chosen tolerance. For
instance, for ε = 10−4 only 2 iterations are performed and the error becomes numerically
zero.

Investigations of the error estimator. In Section 10.2.5 a novel error estimator for the
error in the change of the state has been proposed. The error estimator is defined in (10.60)
as

ẽ∆v := ṽ∗ − ṽ = ∆ṽ∗ −∆ṽ.

The improved solution ∆ṽ∗ can be computed using the above improvement algorithm. Fur-
thermore, the corresponding error estimator in the L2 norm η̃∆v as well as the relative error
η̃rel
∆v are given in (10.63) and (10.64), respectively.

The results of the error estimator η̃rel
∆v are stated in Table 10.1 for some selected values of

design scaling parameter ε. In the table head the parameter ε and the exact error ηrel
∆v are

given. The error estimator η̃rel
∆v has been computed for all improvement iterations. Up to

9 iterations were performed. Even for large design perturbations with ε = 100 the error
estimator η̃rel

∆v tends to the exact value ηrel
∆v . For smaller values of ε only a few improvement

iterations are required in order to obtain a good approximation of the exact error.
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∆u−∆ũ∗3
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∆u−∆ũ∗8
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ũ
∗ i
|| L

2
[%

]

 

 

∆u−∆ũ∗0
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∆u−∆ũ∗5
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Figure 10.7: Plate with a hole: absolute and relative errors of different improved solutions
∆ṽ∗i = ∆ũ∗i .
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Figure 10.8: Plate with a hole: number of required improvement iterations in order to achieve
the chosen tolerance TOL = 10−14.
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Figure 10.9: Plate with a hole: relative error for different design scaling parameters ε vs.
number of improvement iterations.
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Table 10.1: Plate with a hole: error estimator η̃rel
∆v and effectivity index Ieff = η̃∆v/η∆v

within the improvement iterations for different design scaling parameters ε

ε = 100, ηrel
∆v = 4.85458571 × 10−1 % ε = 10−1, ηrel

∆v = 6.57790116 × 10−3 %

Iter
η̃rel
∆v [%] Ieff η̃rel

∆v [%] Ieff

1 6.43739722e-001 1.32763426 6.77127823e-003 1.02939965

2 3.71243538e-001 0.76396310 6.55979904e-003 0.99724787

3 5.46847139e-001 1.12688412 6.57825683e-003 1.00005407

4 4.43658387e-001 0.91360716 6.57783019e-003 0.99998921

5 5.15985381e-001 1.06304978 6.57790144e-003 1.00000004

6 4.66555175e-001 0.96095444 6.57790097e-003 0.99999997

7 5.02646821e-001 1.03548158 6.57790129e-003 1.00000002

8 4.75508284e-001 0.97946475 6.57790130e-003 1.00000002

9 4.95914720e-001 1.02157541 6.57790130e-003 1.00000002

ε = 10−2, ηrel
∆v = 6.79501825 × 10−5 % ε = 10−3, ηrel

∆v = 6.81720441 × 10−7 %

Iter
η̃rel
∆v [%] Ieff η̃rel

∆v [%] Ieff

1 6.81470953e-005 1.00289790 6.81917715e-007 1.00028937

2 6.79482952e-005 0.99997222 6.81720266e-007 0.99999974

3 6.79501854e-005 1.00000004 6.81720457e-007 1.00000002

4 6.79501824e-005 0.99999999 6.81720457e-007 1.00000002

5 6.79501825e-005 0.99999999 6.81720457e-007 1.00000002

6 6.79501825e-005 0.99999999 6.81720457e-007 1.00000002

7 6.79501825e-005 0.99999999 6.81720457e-007 1.00000002

8 6.79501825e-005 0.99999999 6.81720457e-007 1.00000002

9 6.79501825e-005 0.99999999 6.81720457e-007 1.00000002
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Figure 10.10: Plate with a hole: effectivity index Ieff = η̃∆v/η∆v within the improvement
iterations for design scaling parameter ε = 100 and ε = 10−1.

Reliability and accuracy of the error estimator. The reliability and accuracy of the error
estimator is measured with the effectivity index Ieff = η̃∆v/η∆v introduced in (10.67). The
error estimator yields good results if Ieff tends to unity. The effectivity index for all improve-
ment iterations for some selected values of the design scaling parameter ε is given Table 10.1.

The values of Ieff oscillate for large design perturbations with ε = 100 and ε = 10−1 but
converge to unity. This is illustrated in Fig. 10.10.

Furthermore, even in the case that just 1 improvement iteration is performed, the error esti-
mator yields good results. This is shown in Fig. 10.11. For a large design perturbation with
ε = 100 the error is a little overestimated, i.e. η̃rel

∆v = 6.43739722×10−1 instead of the exact
error ηrel

∆v = 4.85458571 × 10−1. For smaller values of ε the estimator tends quickly to the
exact error until ε = 10−6. For ε smaller than ε = 10−6 the error is underestimated and tends
to zero from ε = 10−8. However, in the wide range of ε = 10−1 to ε = 10−7 the estimator
yields good results with just 1 improvement iteration. This can be further improved if more
than 1 improvement iterations are performed.

Finally, these results demonstrate the reliability and accuracy of the proposed error estimator.
For suitable chosen design changes the error estimator yields very good approximations of
the exact error in the state.
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Figure 10.11: Plate with a hole: exact relative error ηrel
∆v and error estimator η̃rel

∆v obtained
with one improvement iteration.

The change in the quantity of interest. The considered quantity of interest is the vertical
component of the nodal displacement at a given point XP , i.e. J(v, s) = uy(XP ). The
material point XP is shown in Fig. 10.4. This specific quantity of interest is close to the
design perturbation region and therefore strongly affected by design changes. The value for
the undisturbed design of the vertical displacement is J(v0, s0) = 3.15304776× 10−2.

The change in the quantity of interest is predicted by evaluating the first-order sensitivity re-
lation (10.103) as well as the improved sensitivity relation (10.105), which has been proposed
in Section 10.4.3. These relations yield the first-order solution ∆J̃ and the improved solution
∆J̃∗, respectively.

The relative errors of the first-order solution ∆J̃ as well as the improved solution ∆J̃∗ for
different values of design scaling parameters ε are given in Fig. 10.12. The relative error of
∆J̃ for ε = 100 is of about 5.85× 10−1 % and the error of ∆J̃∗ is of about 2.52× 10−1 %.
Furthermore, the error of the first-order solution ∆J̃ for ε = 10−2 is 8.21 × 10−5 % and
reduced to 3.30× 10−7 % using the improved solution ∆J̃∗.

Finally, the improved sensitivity relation (10.105) based on higher-order variations of the
considered residual and the quantity of interest yields better results for the change in the quan-
tity of interest due to design perturbations than the first-order sensitivity relation (10.103).
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first-order solution: |∆J −∆J̃ |

improved solution: |∆J −∆J̃∗|

Figure 10.12: Plate with a hole: relative errors of the first-order solution ∆J̃ and the im-
proved solution ∆J̃∗, which is obtained by using the first-order approxima-
tions of the state ∆ṽ and the dual solution ∆z̃.

10.8 Summary and concluding remarks

A novel exact sensitivity relation as well as an error estimator for the error of the sensitivity of
the state and quantities of interest have been presented within this chapter. This was based on
a fully variational framework for the exact initial and the changed design. Several important
results have been derived which are summarized below.

The starting point was the classical first-order sensitivity relation introduced in (10.7) as

k(v0, s0;η, ∆ṽ) = −Q(v0, s0;η) ∀ η ∈ V.

This relation yields just a rough approximation for the change in the state ∆ṽ due to large
design perturbations ∆s. Here, Q(v0, s0;η) is the classical first-order pseudo load.

In Theorem 10.1 an exact sensitivity relation (10.27) has been derived in form of

k(v0, s0;η, ∆v) = −Qex(v)(v0, s0;η) ∀ η ∈ V,

in which Qex(v)(v0, s0;η) is the exact pseudo load given in (10.28). This relation is based
on an exact integral remainder representation within the Taylor expansion. Hence, as stated
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in Theorem 10.2 in Eq. 10.55 the error e∆v = ∆v −∆ṽ depends on the error in the pseudo
loads, i.e.

k(v0, s0;η, e∆v) = −[Qex(v)(v0, s0;η)−Q(v0, s0;η) ] ∀ η ∈ V.

This relation is exact if Qex(v)(v0, s0;η) is explicitly computable.

The exact pseudo load contains the true solution v, which is in general unknown. An im-
proved solution ṽ∗ = v0 +∆ṽ∗ can be used in order to make this relation computable. Such
an improved solution can be obtained by using an iterative improvement algorithm based on
the exact sensitivity relation (10.27) as proposed in Section 10.3.

For a good approximation ṽ∗ ≈ v the exact error representation is the basis for an error
estimator ẽ∆v . This estimator is the solution of the error relation (10.61) given as

k(v0, s0;η, ẽ∆v) = −[Qex(ṽ∗)(v0, s0;η)−Q(v0, s0;η) ] ∀ η ∈ V.

For suitable chosen design changes this relation yields a good approximation of the exact
error e∆v .

This has been demonstrated within the numerical example. Much better solutions for the
change in the state due to design changes are obtained by using the improvement algorithm
in comparison to the classical first-order solution. The obtained improved solution is used
within the error representation as mentioned above. The estimated error tends quickly to the
exact error for suitable chosen design changes.

Furthermore, an exact sensitivity relation for quantities of interest has been derived. This
problem is more complex because the dual problem is formulated on a given deformed state.
Therefore, additional higher-order variations of the considered residual as well as of the quan-
tity of interest occur. The exact sensitivity relation is the basis for an improvement algorithm
for changes in the quantity of interest, in which the exact changes in the state and the dual
solution are replaced by first-order approximations. The proposed improved relation yields
better results than the first-order sensitivity relation.

In the present work only the first-order approximations of the state ∆ṽ and the dual solution
∆z̃ are used in order to evaluate the improved sensitivity relation (10.105). This relation
could be further enhanced if some improved solutions of the state ∆ṽ∗ and the dual solution
∆z̃∗ are used.





Chapter 11

Conclusion

In this concluding chapter, the work is briefly summarized and the main goals
and results are once more highlighted. Furthermore, an outlook on further re-
search topics and possible other investigations concludes the work.

11.1 Summary

In the present work a general framework for structural analysis and variational sensitivity
analysis of the primal and the dual problems has been presented. The main intention was to
provide a complete description of the primal and dual problems with respect to variations in
the physical and material spaces. A complete description means that changes in the physical
and material spaces are allowed. Therefore, not only the structural analysis of the problem is
considered but also the sensitivity of functionals and field quantities with respect to configu-
rational changes.

In summary, overall eight problems have been considered for a complete description of the
primal and dual problems, i.e. we have

structural & sensitivity × primal & dual × physical & material
analysis problems spaces .

These problems are symbolically summarized in the following table.

primal problem dual problem

physical material physical material

structural analysis R = 0 G = 0 R∗ = 0 G∗ = 0

sensitivity analysis δR = 0 δG = 0 δR∗ = 0 δG∗ = 0
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There are several problems which can be now solved based on the corresponding residuals
and tangent forms which have been derived in this thesis. In particular, the following results
have been presented in the present work.

A complete framework for the primal problem. The starting point was the energy func-
tional of the primal problem. Every functional quantity of the primal problem depends on
the state and on a design or control function, which controls in an abstract sense the material
configuration. Variations of the energy with respect to the state yield the physical residual and
variations with respect to configurational changes lead to the material residual. Additionally,
the sensitivities of these residuals were presented. The complete variations of the primal
energy with respect to state and design provide all residuals and tangent forms, which are
required for analysis and sensitivity of the primal problem. The derived variational formula-
tions were the basis for a consistent finite element formulation. It is important to notice that
all discrete residuals and tangent matrices can be computed and assembled in the same way
as the usual physical residual and stiffness matrix.

Duality techniques in the physical and material spaces. A variational framework for dual
solutions in the physical and material spaces has been proposed in Chapter 5. This is based
on an optimal control approach, which provides the general framework for duality relations
of variational equations. The form of the dual problem and the corresponding dual solution
depend on the kind of the considered variational problem.

A complete framework for the dual problem. The dual problem has been embedded in
the same framework as the primal problem in Chapter 6. A novel formulation for the dual
problem with respect to configurational variations has been presented. An energy functional
of the dual problem has been introduced and the complete variations with respect to the dual
solution and the design yield the corresponding dual physical and material residuals as well
as the dual tangent forms. These quantities are essential for structural analysis and sensitivity
investigations of the dual problem. A sensitivity relation for the change in the dual solution
itself due to configurational changes has been derived.

Different applications and several numerical examples based on the derived residuals and
tangent forms of the primal and dual problems were proposed in Chapter 7, Chapter 8 and
Chapter 9. In particular, the following applications were presented.

• Global r-adaptive mesh optimization based on energy minimization of the primal
problem. This is a direct application of the energy minimization problem by taking
the nodal coordinates as design variables. The discrete primal material residual on the
mesh nodes is an error indicator for a non-optimal finite element discretization. These
indicators represent the sensitivity of the primal energy with respect to changes of the
position of the mesh nodes. The mesh can be optimized with respect to the energy of
the primal problem.

• Goal-oriented r-adaptive mesh optimization based on the simultaneous minimiza-
tion of the primal and the dual energy functionals. This novel approach is referred to
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as Primal Dual Material Residual (PDMR) method, because both the primal and dual
material residuals provide an error indicator for mesh optimization. The mesh can be
optimized with respect to a chosen quantity of interest.

• Shape optimization based on the minimization of the primal internal energy (com-
pliance). The relations to configurational mechanics have been highlighted. Both dis-
ciplines deal with changes in the material configuration but they use merely different
designations for the same quantities. The primal material residual on the design bound-
ary is an indicator in which direction the boundary has to move in order to minimize
the internal energy, i.e. it represents the sensitivity of the internal energy with respect
to changes of the design boundary.

Error analysis of sensitivity relations. A novel theorem for error analysis of sensitivity re-
lations as well as an improvement strategy have been stated in Chapter 10. This is based on
an exact sensitivity relation with an exact integral remainder within the Taylor expansion.
The remainder can be computed explicitly based on higher-order variations of the considered
residual. This has been shown for the shape sensitivity problem and the required variations
have been derived for nonlinear and linearized elasticity in Section 10.6 and Section B.2.7,
respectively. Much better solutions for the change in the state due to design changes are ob-
tained by using the improvement algorithm in comparison to the classical first-order solution.
Furthermore, an exact sensitivity relation for quantities of interest has been presented in Sec-
tion 10.4. This relation is the basis for an estimator for the change in the quantity of interest
due to changes in the design and yields better results as the first-order sensitivity relation.

11.2 Future work

There are several challenging problems which can be treated in the future using the techniques
derived in this thesis.

Complete element formulation and extension to inelastic material. Within this work a
complete variational and finite element formulation has been proposed. The formulation is
complete in the sense that changes in the physical and material spaces are allowed. Future
finite element formulations should consider all residuals and tangent matrices in order to
obtain a complete description of the primal and dual problems as mentioned in Section 4.7 and
Section 6.6, respectively. In the present work, a Neo-Hookean material has been investigated
and non-standard sixth-order and eighth-order tensors have been derived in Section B.1. The
next step should be to extend the proposed approach also to inelastic materials.

Combination of r-, h- and p-adaptivity. In the context of mesh optimization and r-adaptivity
a global and a goal-oriented approach were presented. The next step should be to combine
r-adaptivity with h- and/or p-adaptive methods. It is well-known that the combination of h-
and p-methods is more efficient than each individual method. Therefore, a combined rhp-
method seems to be the most efficient way in order to optimize the mesh and to improve the
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finite element solution. By means of the primal and dual material residuals r-adaptivity is
easy to implement in an existing finite element code. These residuals can be computed with-
out considerable computational cost. Thus, the development of such a rhp-method for global
and goal-oriented mesh optimization should be addressed in future work.

Shape optimization and r-adaptivity. There are other challenging problems from shape
optimization where r-adaptivity can be used. For instance, a r-adaptive method could be
used to reallocate the nodal position of all interior nodes if the shape optimization algorithm
has modified the boundary. Often this is based only on a smooth mapping from the original
nodal position to the new one under certain geometrical requirements. But nothing can be
said about the quality of the mesh with respect to the discretization error. It is known in
shape optimization that h- and p-adaptive methods yield a non-differentiability of objectives
and constraints due to the modified mesh topology which has a severe impact on the overall
gradient driven nonlinear programming algorithm. Furthermore, it is not suitable to spend to
much effort in h- or p-adaptivity for any non-optimal design. Especially the goal-oriented
r-adaptivity can be used if a local quantity of interest is considered as a constraint of the
optimization problem. For instance, a displacement or a stress at some certain point of the
body has to be controlled, i.e. the quantity has to be smaller or greater than a given value.
The accuracy of the quantity of interest depends directly on the error in corresponding dual
solution and the mesh should be optimized with respect to the dual solution if the shape has
been modified. Hence, the combination of r-adaptive methods with shape optimization could
be a valuable tool.

Error analysis for state and design within shape optimization. Another interesting issue
in the above context is the error analysis for the state and the design functions within shape
optimization. Assume that a chosen objective functional or quantity of interest depends on
both the design and the state function. Then, the goal is to estimate the error in the state
and the design function, i.e. distance between the optimal solutions and some given solutions
within the optimization process. In addition, the errors which result from the discretization of
the state and the design using finite dimensional spaces have to be considered.

Improved sensitivity relations and structural optimization. A novel improvement algo-
rithm for sensitivity relations has been proposed in this work and a benchmark example of
shape sensitivity has been investigated. The algorithm can be used within different structural
optimization problems. Therefore, future work should address the application of the proposed
framework to a large class of optimization problems. Furthermore, it can be used within pa-
rameter identification problems, if some material parameters are chosen as design variables.

In addition, the combination of design sensitivity error with discretization error analysis
should be addressed in future work. In this context it would be interesting to study the in-
fluence of the discretization error on a chosen mesh to the design sensitivity error.



Appendix A

Summary of important variations

Important variations in the physical and material spaces are summarized within
this chapter. Furthermore, some lengthy derivations are given explicitly. Firstly,
details on the variation of kinematical quantities in local coordinates are stated.

A.1 Variations of kinematical quantities in local coordinates

The following variations are based on an intrinsic formulation in local coordinates presented
in [5, 7, 9]. The variations are exemplarily performed for selected quantities. In particular,
only the first variations of F and E with respect to v and s are stated. The extension to
higher-order variations is straightforward.

The variations are based on a multiplicative decomposition of the deformation gradients F
and f = F−1 using the local mappings K and M, which are introduced in Section 3.1.2 and
shown in Figure 3.2. Both gradients can be written as

F = MK−1, (A.1)

f = KM−1. (A.2)

The total variations are given as

δF = δMK−1 + Mδ[K−1], (A.3)

δf = δKM−1 + Kδ[M−1]. (A.4)

The variation of an inverse tensor A−1 can be computed using the identity AA−1 = I.
Hence, the variation is given from

δ(AA−1) = δAA−1 + Aδ[A−1] = δI = 0 or δ[A−1] = −A−1δAA−1. (A.5)

The corresponding variations of K and M are obtained as

δ[K−1] = −K−1δKK−1, (A.6)
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Table A.1: Summary of transformation relations for local gradients

Gradϕ = MK−1 = F GradϕT = K−TMT = FT

Grad δϕ = δMK−1 Grad δϕT = K−T δMT

Grad δΦ = δKK−1 Grad δΦT = K−T δKT

gradΦ = KM−1 = f gradΦT = M−TKT = fT = F−T

grad δΦ = δKM−1 grad δΦT = M−T δKT

grad δϕ = δMM−1 grad δϕT = M−T δMT

δ[M−1] = −M−1δMM−1. (A.7)

In order to identify the compositions with known quantities, the relations from Tab. A.1 are
used. Finally, the total variations of the deformation gradients are given as

δF = δMK−1 −MK−1δKK−1 = Grad δϕ− F Grad δΦ, (A.8)

δf = δKM−1 −KM−1δMM−1 = grad δΦ− f grad δϕ. (A.9)

The partial variations are identified as

δϕF(ϕ, δϕ) = Grad δϕ, (A.10)

δΦF(ϕ, δΦ) = −F Grad δΦ, (A.11)

δϕf(Φ, δϕ) = −f grad δϕ, (A.12)

δΦf(Φ, δΦ) = grad δΦ. (A.13)

Alternatively, the deformation can be expressed in terms of the displacement field u, i.e.
F(u) = I + Gradu. For this, the partial variations are given as

δuF(u, δu) = Grad δu, (A.14)

δΦF(u, δΦ) = −H Grad δΦ. (A.15)
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The partial variations with respect toΦ are different, i.e. δΦF(u, δΦ) 6= δΦF(ϕ, δΦ), but the
total variations of F yield the same results, i.e.

δF(u) = δuF(u, δu) + δΦF(u, δΦ)

= δϕF(ϕ, δϕ) + δΦF(ϕ, δΦ) = δF(ϕ)
(A.16)

because we have with δϕ = δΦ+ δu

δF(ϕ) = Grad δϕ−GradϕGrad δΦ

= Grad δΦ+ Grad δu−GradϕGrad δΦ

= Grad δu+ (I−Gradϕ) Grad δΦ

= Grad δu−GraduGrad δΦ

= δF(u).

(A.17)

Furthermore, the Green-Lagrange strain tensor

E =
1

2

(
FTF− I

)
=

1

2

(
K−TMTMK−1 − I

)
(A.18)

is considered as strain measure within this work.

The first total variation of E written in terms of K and M reads

δE =
1

2
δ( K−TMTMK−1 − I )

=
1

2
( δ[K−T ]MTMK−1 + K−T δMTMK−1

+ K−TMT δMK−1 + K−TMTMδ[K−1] )

(A.19)

Using (A.6), (A.7) and Tab. A.1 the variation becomes

δE =
1

2
(−Grad δΦTFTF + Grad δϕTF

+ FT Grad δϕ− FTF Grad δΦ )

= sym{FT Grad δϕ− FTF Grad δΦ }.

(A.20)

The partial variations are identified as

δϕE(ϕ, δϕ) = sym{FT Grad δϕ }, (A.21)

δΦE(ϕ, δΦ) = − sym{FTF Grad δΦ }. (A.22)

Higher-order variations of E can be obtained in the same manner. A complete list of the
required variations in terms of the generalized state v and design s is given in the following
section.
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A.2 Variations of gradients and strains

The calculations of the sensitivities require the variations of E with respect to v ∈ V and
s ∈ S . Let η, λ ∈ V be admissible variations for the state and ψ, χ ∈ S be admissible
design variations. Some important relations are listed below.

A.2.1 Variations of gradients

For the displacement gradient H := Gradu we have

H′u(η) = Gradη (A.23)

H′s(u,ψ) = −Gradu Gradψ = −H Gradψ. (A.24)

The variation of the deformation gradient F = Gradϕ = 1 + H reads

F′v(η) = Gradη (A.25)

F′s(v,ψ) = −Gradv Gradψ. (A.26)

A.2.2 Variations of strains

Hence, the variations of the Green-Lagrange strain tensor E = 1
2 (FTF−1) follow from the

above definitions in the form

E′v(v,η) =
1

2
( GradηTF + FT Gradη ) = sym{FT Gradη} (A.27)

E′s(u,ψ) = −1

2
( GradψT GradvTF + FT Gradv Gradψ )

= − sym{FT Gradv Gradψ} .
(A.28)

The second and mixed variations are obtained in a straightforward manner as

E′′vv(η,λ) =
1

2
( GradηT Gradλ+ GradλT Gradη )

= sym{GradλT Gradη}
(A.29)

E′′vs(v,η,ψ) = −1

2
( GradψT GradηTF + GradηT GradvGradψ

+ GradψT GradvT GradψT Gradη + FT Gradη Gradψ )

= − sym{GradψT GradvT Gradη + FT Gradη Gradψ}. (A.30)
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E′′ss(v,ψ,χ) =
1

2
( GradχT GradψT GradvTF

+ GradψT GradχT GradvTF

+ GradψT GradvT GradvGradχ

+ GradχT GradvT GradvGradψ

+ FT GradvGradχGradψ

+ FT GradvGradψGradχ )

= sym{GradχT GradvT GradvGradψ

+ FT GradvGradχGradψ

+ FT GradvGradψGradχ}

(A.31)

E′′sv(v,ψ,η) = −1

2
( GradψT GradηTF + GradψT GradvT Gradη

+ GradηT GradvGradψ + FT Gradη Gradψ )

= − sym{GradψT GradvT Gradη + FT Gradη Gradψ}

= − sym{GradηT GradvGradψ + FT Gradη Gradψ}.

(A.32)

Hence, as a result of symmetry, we have

E′′sv(v,ψ,η) = E′′vs(v,η,ψ). (A.33)

In addition, the following higher-order variations are required and obtained in short form as

E′′′vvs(η,λ,ψ) = − sym{ GradψT GradλT Gradη

+ GradλT Gradη Gradψ},
(A.34)

E′′′vsv(η,ψ,λ) = − sym{ GradψT GradλT Gradη

+ GradλT GradηGradψ},
(A.35)

E′′′svv(ψ,η,λ) = − sym{ GradψT GradλT Gradη

+ GradλT GradηGradψ },
(A.36)
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E′′′vss(v,η,ψ,χ) = sym{ GradχT GradψT GradvT Gradη

+ GradψT GradχT GradvT Gradη

+ GradψT GradvT GradηGradχ

+ GradχT GradvT GradηGradψ

+ FT GradηGradχGradψ

+ FT GradηGradψGradχ }.

(A.37)

E′′′′vvss(η,λ,ψ,χ) = sym{ GradχT GradψT GradλT Gradη

+ GradψT GradχT GradλT Gradη

+ GradψT GradλT GradηGradχ

+ GradχT GradλT GradηGradψ

+ GradλT GradηGradχGradψ

+ GradλT GradηGradψGradχ }.

(A.38)

Again, due to symmetry, we have

E′′′vsv(η,ψ,λ) = E′′′svv(ψ,η,λ). (A.39)

A.3 Variations of stresses

A.3.1 Standard variations

We consider a hyperelastic material, i.e. there exists a strain energy function WR(F) such
that

P =
∂WR

∂F
and S =

∂WR

∂E
, (A.40)

where P and S are the first and second Piola-Kirchhoff stress tensors, respectively. The vari-
ations read

P′v(v,η) =
∂P

∂F
: F′v = A : F′v = A : Gradη, (A.41)

P′s(v,ψ) =
∂P

∂F
: F′s = A : F′s = −A : GradvGradψ, (A.42)
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S′v(v,η) =
∂S

∂E
: E′v(v,η) = C : E′v(v,η) = C : FT Gradη, (A.43)

S′s(v,ψ) =
∂S

∂E
: E′s(v,ψ) = C : E′s(v,ψ) = −C : FT GradvGradψ, (A.44)

where

A :=
∂P

∂F
=
∂2WR

∂F ∂F
and C :=

∂S

∂E
=
∂2WR

∂E ∂E
. (A.45)

A.3.2 Higher-order variations

Within this work non-standard higher-order variations are required, which are obtained as

C′v(v,η) =
∂C
∂E

: E′v(v,η) = D : E′v(v,η), (A.46)

C′s(v,ψ) =
∂C
∂E

: E′s(v,ψ) = D : E′s(v,ψ), (A.47)

D′v(v,η) =
∂D
∂E

: E′v(v,η) = E : E′v(v,η), (A.48)

D′s(v,ψ) =
∂D
∂E

: E′s(v,ψ) = E : E′s(v,ψ), (A.49)

where the sixth-order tensor D and the eighth-order tensor E are given as

D :=
∂C
∂E

and E :=
∂D
∂E

. (A.50)

A.4 Variations of the strain energy function

The variations of the strain energy function WR(F) are obtained in form of

(WR)′v(v,η) =
∂WR

∂F
: F′v(v,η) = P : F′v(v,η) = P : Gradη

= FS : Gradη = S : FT Gradη

= S : E′v(v,η),

(A.51)

(WR)′s(v,ψ) =
∂WR

∂F
: F′s(v,ψ) = P : F′s(v,ψ) = −P : GradvGradψ

= −FS : GradvGradψ = −S : FT GradvGradψ

= S : E′s(v,ψ).

(A.52)
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In a concrete situation ϕ or u is chosen as the state variable. For v = ϕ we obtain

(WR)′ϕ(ϕ,η) =
∂WR

∂F
: F′ϕ(ϕ,η) = P : F′ϕ(ϕ,η) = P : Gradη

= S : E′ϕ(ϕ,η),

(A.53)

(WR)′s(ϕ,ψ) =
∂WR

∂F
: F′s(ϕ,ψ) = P : F′s(ϕ,ψ) = −P : F Gradψ =

= −FS : F Gradψ = −S : FTF Gradψ

= S : E′s(ϕ,ψ).

(A.54)

For v = u we have

(WR)′u(u,η) =
∂WR

∂F
: F′u(u,η) = P : F′u(u,η) = P : Gradη

= S : E′u(u,η),

(A.55)

(WR)′s(u,ψ) =
∂WR

∂F
: F′s(u,ψ) = P : F′s(u,ψ) = −P : H Gradψ

= −FS : H Gradψ = −S : FTH Gradψ

= S : E′s(u,ψ).

(A.56)

A.5 Variations of line, surface and volume elements

The variations of line, surface and volume elements with respect to s are given by

(dX)′s = Gradψ dX, (A.57)

(dA)′s = [ Divψ 1−GradψT ] dA, (A.58)

(dV )′s = Divψ dV. (A.59)

Following the chain rule, the variation of a quantity F =
∫

ΩR
(·) dΩ is given by

F ′v(v,η) =

∫
ΩR

(·)′v(v,η) dΩ, (A.60)

F ′s(v,ψ) =

∫
ΩR

(·)′s(v,ψ) + (·) Divψ dΩ

=

∫
ΩR

(·)′s(v,ψ) + (·)I : Gradψ dΩ.

(A.61)



Appendix B

Model problems and explicit formulations

Within this work the model problem of nonlinear elasticity has been considered.
All residuals and tangent forms have been derived with respect to the general
nonlinear case. In this chapter explicit formulations of constitutive relations as
well as the explicit formulations of higher-order variations of the primal physi-
cal residual are stated. Furthermore, for completeness, the most important varia-
tional and discrete relations are given for the theory of linearized elasticity.

B.1 Nonlinear elasticity

B.1.1 Constitutive relations

As an example of isothermal hyperelasticity a classical compressible Neo-Hookean material
is considered. The strain energy function WR(IC , J) under consideration is written in terms
of the first invariant of C = FTF given by

IC := tr(C) = tr(FTF) = F : F (B.1)

and J := det F.

The complete derivatives of the strain energy function with respect to the Green-Lagrange
strain tensor E or equivalent with respect to the C are given as

S :=
∂WR

∂E
= 2

∂WR

∂C
, (B.2)

C :=
∂S

∂E
= 2

∂S

∂C
, (B.3)

D :=
∂C
∂E

= 2
∂C
∂C

, (B.4)

E :=
∂D
∂E

= 2
∂D
∂C

. (B.5)
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Additional to the standard second Piola-Kirchhoff stress tensor S and the fourth-order tan-
gent operator C, nonstandard higher-order derivatives of the strain energy function WR are
required. A lengthy calculation yields a sixth-order tensor D and a eighth-order tensor E.
Within these tensors appear the derivatives of C−1 with respect to C, i.e.

V :=
∂C−1

∂C
, (B.6)

W :=
∂V
∂C

, (B.7)

X :=
∂W
∂C

. (B.8)

The explicit formulations of all stress tensors and corresponding tangent operators for two
Neo-Hookean materials are given in Box B.1 and Box B.2 as well as in Box B.3 and Box B.4.
Furthermore, the specifications of V, W and X are given in Box B.5.

Within this work a formulation in terms of E and S is used. All terms can be also written in
terms of F and the first Piola-Kirchhoff stress tensor P := ∂WR/∂F. For completeness, P,
the Cauchy stress tensor σ = J−1 PFT = J−1 FSFT and the fourth-order tangent operator
A := ∂P/∂F are also given for the considered strain energy functions.



B.1 Nonlinear elasticity 189

Strain energy function:

WR(IC , J) =
1

2
µ (IC − ndim − 2 lnJ) +

1

2
λ (J − 1)2. (B.9)

Second-order stress tensors:

P = µF− [µ− λ (J2 − J) ]F−T (B.10)

S = µ I− [µ− λ (J2 − J) ]C−T (B.11)

σ =
1

J
µb− 1

J
[µ− λ (J2 − J) ]I (B.12)

Fourth-order tangent operators:

A = µ I⊗̄I + λ (2 J2 − J) F−T ⊗ F−T + [µ− λ (J2 − J) ] F−T ⊗̂F−1 (B.13)

C = λ (2 J2 − J) C−T ⊗C−T − 2 [µ− λ (J2 − J) ]V (B.14)

Component representation:

Pij = µFij − [µ− λ (J2 − J) ]F−1
ji (B.15)

Sij = µ δij − [µ− λ (J2 − J) ]C−1
ji (B.16)

σij =
1

J
(µ bij − [µ− λ (J2 − J) ]) δij (B.17)

Aijkl = µ δik δjl + λ (2 J2 − J)F−1
ji F

−1
lk + [µ− λ (J2 − J) ]F−1

li F−1
jk (B.18)

Cijkl = λ (2 J2 − J)C−1
ji C

−1
lk + [µ− λ (J2 − J) ] [C−1

ik C
−1
jl + C−1

il C
−1
jk ]

= λ (2 J2 − J)C−1
ji C

−1
lk − 2 [µ− λ (J2 − J) ]Vijkl (B.19)

The tensor V is given in (B.41) and b = FFT .
Box B.1: Stress tensors and standard tangent operators for a Neo-Hookean material
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Strain energy function:

WR(IC , J) =
1

2
µ (IC − ndim − 2 lnJ) +

1

2
λ (J − 1)2. (B.20)

Second-order stress tensor:

Sij = µ δij − [µ− λ (J2 − J) ]C−1
ij (B.21)

Fourth-order tangent operator:

Cijkl = λ (2 J2 − J)C−1
ij C

−1
kl − 2 [µ− λ (J2 − J) ]Vijkl (B.22)

Sixth-order tangent operator:

Dijklmn =λ (4 J2 − J)C−1
ij C

−1
kl C

−1
mn

+ 2λ (2 J2 − J) [C−1
ij Vklmn + C−1

kl Vijmn + C−1
mnVijkl ]

− 4 [µ− λ (J2 − J) ]Wijklmn

(B.23)

Eighth-order tangent operator:

Eijklmnop = λ (8 J2 − J)C−1
ij C

−1
kl C

−1
mnC

−1
op

+ 2λ (4 J2 − J) [C−1
ij C

−1
kl Vmnop + C−1

ij C
−1
mnVklop

+ C−1
ij C

−1
op Vklmn + C−1

kl C
−1
mnVijop

+ C−1
kl C

−1
op Vijmn + C−1

mnC
−1
op Vijkl ]

+ 4λ (2 J2 − J) [VijopVklmn + VklopVijmn + VmnopVijkl

+ C−1
ij Wklmnop + C−1

kl Wijmnop

+ C−1
mnWijklop + C−1

op Wijklmn ]

− 8 [µ− λ (J2 − J) ]Xijklmnop

(B.24)

The components of the tensors V, W and X are given in Box B.5.
Box B.2: Complete derivatives of WR with respect to E for a Neo-Hookean material
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Strain energy function:

WR(IC , J) =
1

2
µ (IC − ndim − 2 lnJ) +

1

2
λ ln2(J). (B.25)

Second-order stress tensors:

P = µ(F− F−T ) + λ ln(J)F−T = µF− [µ− λ ln(J) ]F−T (B.26)

S = µ(I−C−T ) + λ ln(J)C−T = µ I− [µ− λ ln(J) ]C−T (B.27)

σ =
1

J
(µb− [µ− λ ln(J) ])I (B.28)

Fourth-order tangent operators:

A = λF−T ⊗ F−T + µ I⊗̄I + [µ− λ ln(J) ] F−T ⊗̂F−1 (B.29)

C = λC−T ⊗C−T − 2 [µ− λ ln(J) ]V (B.30)

Component representation:

Pij = µFij − [µ− λ ln(J) ]F−1
ji (B.31)

Sij = µ δij − [µ− λ ln(J) ]C−1
ji (B.32)

σij =
1

J
(µ bij − [µ− λ ln(J) ]) δij (B.33)

Aijkl = λF−1
ji F

−1
lk + µ δikδjl + [µ− λ ln(J) ]F−1

li F−1
jk (B.34)

Cijkl = λC−1
ji C

−1
lk + [µ− λ ln(J) ] [C−1

ik C
−1
jl + C−1

il C
−1
jk ]

= λC−1
ji C

−1
lk − 2 [µ− λ ln(J) ]Vijkl (B.35)

The tensor Vijkl is given in (B.41) and b = FFT .

Box B.3: Stress tensors and standard tangent operators for a Neo-Hookean material



192 Model problems and explicit formulations

Strain energy function:

WR(IC , J) =
1

2
µ (IC − ndim − 2 lnJ) +

1

2
λ ln2(J). (B.36)

Second-order stress tensor:

Sij = µ δij − [µ− λ ln(J) ]C−1
ij (B.37)

Fourth-order tangent operator:

Cijkl = λC−1
ij C

−1
kl − 2 [µ− λ ln(J) ]Vijkl (B.38)

Sixth-order tangent operators:

Dijklmn = 2λ [C−1
ij Vklmn + C−1

kl Vijmn + C−1
mnVijkl ]

− 4 [µ− λ ln(J) ]Wijklmn

(B.39)

Eighth-order tangent operator:

Eijklmnop = 4λ [VijopVklmn + VklopVijmn + VmnopVijkl

+ C−1
ij Wklmnop + C−1

kl Wijmnop

+ C−1
mnWijklop + C−1

op Wijklmn ]

− 8 [µ− λ ln(J) ]Xijklmnop

(B.40)

The components of the tensors V, W and X are given in Box B.5.
Box B.4: Complete derivatives of WR with respect to E for a Neo-Hookean material
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Vijkl :=
∂C−1

ij

∂Ckl
= −1

2
(C−1

ik C
−1
jl + C−1

il C
−1
jk ) (B.41)

Wijklmn :=
∂Vijkl
∂Cmn

(B.42)

=
1

4
(C−1

ik C
−1
jmC

−1
ln + C−1

ik C
−1
jn C

−1
lm + C−1

il C
−1
jmC

−1
kn + C−1

il C
−1
jn C

−1
km

+C−1
imC

−1
jk C

−1
ln + C−1

imC
−1
jl C

−1
kn + C−1

in C
−1
jk C

−1
lm + C−1

in C
−1
jl C

−1
km )

Xijklmnop :=
∂Wijklmn

∂Cop

= −1

8
(C−1

io C
−1
kp C

−1
jmC

−1
ln + C−1

ip C
−1
ko C

−1
jmC

−1
ln + C−1

ik C
−1
jo C

−1
mpC

−1
ln

+C−1
ik C

−1
jp C

−1
moC

−1
ln + C−1

ik C
−1
jmC

−1
lo C

−1
np + C−1

ik C
−1
jmC

−1
lp C

−1
no

+C−1
io C

−1
kp C

−1
jn C

−1
lm + C−1

ip C
−1
ko C

−1
jn C

−1
lm + C−1

ik C
−1
jo C

−1
np C

−1
lm

+C−1
ik C

−1
jp C

−1
no C

−1
lm + C−1

ik C
−1
jn C

−1
lo C

−1
mp + C−1

ik C
−1
jn C

−1
lp C

−1
mo

+C−1
io C

−1
lp C

−1
jmC

−1
kn + C−1

ip C
−1
lo C

−1
jmC

−1
kn + C−1

il C
−1
jo C

−1
mpC

−1
kn

+C−1
il C

−1
jp C

−1
moC

−1
kn + C−1

il C
−1
jmC

−1
ko C

−1
np + C−1

il C
−1
jmC

−1
kp C

−1
no

+C−1
io C

−1
lp C

−1
jn C

−1
km + C−1

ip C
−1
lo C

−1
jn C

−1
km + C−1

il C
−1
jo C

−1
np C

−1
km

+C−1
il C

−1
jp C

−1
no C

−1
km + C−1

il C
−1
jn C

−1
ko C

−1
mp + C−1

il C
−1
jn C

−1
kp C

−1
mo

+C−1
io C

−1
mpC

−1
jk C

−1
ln + C−1

ip C
−1
moC

−1
jk C

−1
ln + C−1

imC
−1
jo C

−1
kp C

−1
ln

+C−1
imC

−1
jp C

−1
ko C

−1
ln + C−1

imC
−1
jk C

−1
lo C

−1
np + C−1

imC
−1
jk C

−1
lp C

−1
no

+C−1
io C

−1
mpC

−1
jl C

−1
kn + C−1

ip C
−1
moC

−1
jl C

−1
kn + C−1

imC
−1
jo C

−1
lp C

−1
kn

+C−1
imC

−1
jp C

−1
lo C

−1
kn + C−1

imC
−1
jl C

−1
ko C

−1
np + C−1

imC
−1
jl C

−1
kp C

−1
no

+C−1
io C

−1
np C

−1
jk C

−1
lm + C−1

ip C
−1
no C

−1
jk C

−1
lm + C−1

in C
−1
jo C

−1
kp C

−1
lm

+C−1
in C

−1
jp C

−1
ko C

−1
lm + C−1

in C
−1
jk C

−1
lo C

−1
mp + C−1

in C
−1
jk C

−1
lp C

−1
mo

+C−1
io C

−1
np C

−1
jl C

−1
km + C−1

ip C
−1
no C

−1
jl C

−1
km + C−1

in C
−1
jo C

−1
lp C

−1
km

+C−1
in C

−1
jp C

−1
lo C

−1
km + C−1

in C
−1
jl C

−1
ko C

−1
mp + C−1

in C
−1
jl C

−1
kp C

−1
mo )

(B.43)

Box B.5: Summary of derivatives of C−1 with respect to C = FTF
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B.1.2 Explicit formulations for higher-order variations of the residual

An exact error representation as well as an improvement algorithm of sensitivity relations
have been proposed in Chapter 10. The explicit computation of the exact pseudo loadQex(·)(·)
in (10.28) requires higher-order variations of the residual R(·) with respect to v and s. Ex-
plicit formulations of these higher-order variations for shape sensitivity are stated in Sec-
tion 10.6.

Compact specifications of R′′vv , R′′ss, R
′′
sv , R′′′svv and R′′′ssv for shape sensitivity are given

below. For given {v, s} and {∆v, ∆s} these forms become linear functionals and have the
same structure as the usual residual R(v, s; ·). Hence, they can be directly implemented in
standard finite element programs as the residual R.

R′′vv(v, s;η, ∆v, ∆v) = k′v(v, s;η, ∆v, ∆v) =

∫
ΩR

A1 : Gradη dΩ (B.44)

with the second-order tensor

A1 := 2 Gradv∆vS
(1) + F (∆vS

(2) +∆vS
(3) ). (B.45)

The stress increments due to changes in the state ∆v are introduced as

∆vS
(1) := C : E′v(v, ∆v) (B.46)

∆vS
(2) := C : E′′vv(∆v, ∆v) (B.47)

∆vS
(3) := D : E′v(v, ∆v) : E′v(v, ∆v) (B.48)

with

E′v(v, ∆v) = FT Grad∆v (B.49)

E′′vv(∆v, ∆v) = Grad∆vT Grad∆v. (B.50)

Box B.6: Explicit formulation of R′′vv for nonlinear elasticity
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R′′ss(v, s;η, ∆s, ∆s) = p′s(v, s;η, ∆s, ∆s)

=

∫
ΩR

{A1 : Gradη +A2 · η } dΩ
(B.51)

with the second-order tensor A1 and the vectorA2 which are given as

A1 := 2 [ GradvGrad∆s ( Grad∆sS + S Grad∆sT −∆sS
(1) )

+ FS Grad∆sT Grad∆sT − F∆sS
(1) Grad∆sT

− ( GradvGrad∆sS + FS Grad∆sT − F∆sS
(1) ) Div∆s ]

+ F (∆sS
(2) +∆sS

(3) )

− FS ( I : Grad∆sGrad∆s−Div∆sDiv∆s ),

(B.52)

A2 := bR ( I : Grad∆sGrad∆s−Div∆sDiv∆s ). (B.53)

The stress increments due to design changes ∆s are introduced as

∆sS
(1) := C : E′s(v, ∆s) (B.54)

∆sS
(2) := C : E′′ss(v, ∆s, ∆s) (B.55)

∆sS
(3) := D : E′s(v, ∆s) : E′s(v, ∆s) (B.56)

with

E′s(v, ∆s) = −FT GradvGrad∆s, (B.57)

E′′ss(v, ∆s, ∆s) = sym{Grad∆sT GradvT GradvGrad∆s

+ 2 FT GradvGrad∆sGrad∆s }.
(B.58)

Box B.7: Explicit formulation of R′′ss for nonlinear elasticity
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R′′sv(v, s;η, ∆s, ∆v) = p′v(v, s;η, ∆s, ∆v) =

∫
ΩR

A1 : Gradη dΩ, (B.59)

where the second-order tensor A1 is given by

A1 := Grad∆v (∆sS
(1) − S Grad∆sT −Grad∆sS )

−GradvGrad∆s∆vS
(1) − F∆vS

(1) Grad∆sT

+ F (∆svS
(1) +∆svS

(2) )

+ [ F∆vS
(1) + Grad∆v S ] Div∆s.

(B.60)

The stress increments due to changes ∆v and ∆s are introduced as

∆svS
(1) := C : E′′sv(v, ∆s, ∆v) = C : E′′vs(v, ∆v, ∆s) (B.61)

∆svS
(2) := D : E′v(v, ∆v) : E′s(v, ∆s) (B.62)

E′′sv(v, ∆v, ∆s) = − sym{Grad∆sT GradvT Grad∆v

+ FT Grad∆vGrad∆s }.
(B.63)

The stress increments ∆vS
(1) and ∆sS

(1) are defined in (B.46) and (B.54), respectively.

Box B.8: Explicit formulation of R′′sv for nonlinear elasticity
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R′′′svv(v, s;η, ∆s, ∆v, ∆v) = p′′vv(v, s;η, ∆s, ∆v, ∆v)

=

∫
ΩR

A1 : Gradη dΩ,
(B.64)

where the second-order tensor A1 is given by

A1 :=− 2 Grad∆v ( Grad∆s∆vS
(1) +∆vS

(1) Grad∆sT )

−GradvGrad∆s∆vS
(2) − F∆vS

(2) Grad∆sT

−GradvGrad∆s∆vS
(3) − F∆vS

(3) Grad∆sT

+ 2 Grad∆v (∆svS
(1) +∆svS

(2) )

+ F (∆svvS
(1) + 2∆svvS

(2) +∆svvS
(3) +∆svvS

(4) )

+ [ 2 Grad∆v∆vS
(1) + F∆vS

(2) + F∆vS
(3) ] Div∆s.

(B.65)

The stress increments due to changes ∆v and ∆s are introduced as

∆svvS
(1) := C : E′′′svv(∆s, ∆v, ∆v) (B.66)

∆svvS
(2) := D : E′v(v, ∆v) : E′′sv(v, ∆s, ∆v) (B.67)

∆svvS
(3) := D : E′′vv(∆v, ∆v) : E′s(v, ∆s) (B.68)

∆svvS
(4) := E : E′v(v, ∆v) : E′v(v, ∆v) : E′s(v, ∆s) (B.69)

with

E′′′svv(∆s, ∆v, ∆v) = − sym{ Grad∆sT Grad∆vT Grad∆v

+ Grad∆vT Grad∆vGrad∆s }.
(B.70)

Explicit formulation of C, D and E are given in Box B.2 and Box B.4. The stress incre-
ments ∆vS

(1), ∆vS
(2) and ∆vS

(3) are defined in (B.46), (B.47) and (B.48), respectively.
Furthermore, ∆svS

(1) and ∆svS
(2) are given in (B.61) and (B.62).

Box B.9: Explicit formulation of R′′′svv for nonlinear elasticity
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R′′′ssv(v, s;η, ∆s, ∆s, ∆v) = p′′sv(v, s;η, ∆s, ∆s, ∆v)

=

∫
ΩR

A1 : Gradη dΩ,
(B.71)

A1 := 2 [ Grad∆vGrad∆s ( Grad∆sS + S Grad∆sT −∆sS
(1) ) (B.72)

+ GradvGrad∆s ( Grad∆s∆vS
(1) +∆vS

(1) Grad∆sT )

−GradvGrad∆s(∆sS
(1))′v(∆v)

+ Grad∆v ( S Grad∆sT Grad∆sT −∆sS
(1) Grad∆sT )

+ F (∆vS
(1) Grad∆sT Grad∆sT − (∆sS

(1))′v(∆v) Grad∆sT )

−Grad∆v ( Grad∆sS + S Grad∆sT −∆sS
(1) ) Div∆s

− ( GradvGrad∆s∆vS
(1) + F∆vS

(1) Grad∆sT ) Div∆s

+ F(∆sS
(1))′v(∆v) Div∆s ]

+ Grad∆v (∆sS
(2) +∆sS

(3) ) + F ( (∆sS
(2))′v(∆v) + (∆sS

(3))′v(∆v) )

− (Grad∆vS + F∆vS
(1)) ( I : Grad∆sGrad∆s−Div∆sDiv∆s ),

(∆sS
(1))′v(∆v) := C : E′′sv(v, ∆s, ∆v) + D : E′v(v, ∆v) : E′s(v, ∆s), (B.73)

(∆sS
(2))′v(∆v) := C : E′′′ssv(v, ∆s, ∆s, ∆v) (B.74)

+ D : E′v(v, ∆v) : E′′ss(v, ∆s, ∆s),

(∆sS
(3))′v(∆v) := 2D : E′′sv(v, ∆s, ∆v) : E′s(v, ∆s) (B.75)

+ E : E′v(v, ∆v) : E′s(v, ∆s) : E′s(v, ∆s),

E′′′ssv(v, ∆s, ∆s, ∆v) = sym{Grad∆sT Grad∆vT GradvGrad∆s

+ Grad∆sT GradvT Grad∆vGrad∆s

+ 2 Grad∆vT GradvGrad∆sGrad∆s

+ 2 FT Grad∆vGrad∆sGrad∆s }.

(B.76)

Box B.10: Explicit formulation of R′′′ssv for nonlinear elasticity
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B.2 Linear elasticity

For the sake of completeness, the model problem of linearized elasticity is considered. The
most relevant variational and discrete relations are briefly stated.

B.2.1 The primal problem

The state u ∈ C2 is determined by

Au = −[µ∆u+ (λ+ µ)∇ Div u ] = bR in ΩR, (B.77)

where A denotes an elliptic differential operator and bR are body forces per unit volume in
ΩR. Additionally, we have to fulfill the boundary condition

u = ū on ΓD and t = t̄ on ΓN. (B.78)

For notational simplicity, we assume that no prescribed displacements and no prescribed
tractions are applied, i.e. ū = 0 and t̄ = 0, respectively.

Let V be a Sobolev space of states u, which is defined as

V = {η ∈ [H1(Ω)]3 : η = 0 on ΓD}. (B.79)

Furthermore, let a(·, ·) be a bilinear form on V ×V as well as F (·) a linear functional defined
on V . The weak form of the above problem for a given fixed s reads: Find u ∈ V such that

a(s;u,η) = F (s;η) ∀ η ∈ V. (B.80)

For the given model problem of linearized elasticity and under the above assumptions these
quantities are given as

a(s;u,η) =

∫
ΩR

σ(u) : ε(η) dΩ, (B.81)

F (s;η) =

∫
ΩR

bR · η dΩ, (B.82)

whereσ(u) = C : ε(u) denotes the Cauchy stress tensor, ε(u) = sym{Gradu} is the linear
strain tensor and C is the fourth-order isotropic material tensor corresponding to (B.77).

Remark B.1 The problem (B.80) is linear in u but possible nonlinear in s. This is indicated
by the semicolon in a(s; ·, ·) and F (s; ·), i.e. all arguments on the right of the semicolon are
linear.
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B.2.2 Variations of strains

We consider the linear strain tensor

ε(u) :=
1

2
(∇u+∇uT ) = sym{∇u}. (B.83)

The variations of ε with respect to u and s as well as the mixed variations are given by

ε′u(η) =
1

2
(∇η +∇ηT ) = sym{∇η} = ε(η) (B.84)

ε′s(u,ψ) = −1

2
(∇u∇ψ +∇ψT∇uT ) = − sym{∇u∇ψ} (B.85)

ε′′us(η,ψ) = −1

2
(∇η∇ψ +∇ψT∇ηT ) = − sym{∇η∇ψ} (B.86)

ε′′su(ψ,η) = ε′′us(η,ψ) = − sym{∇η∇ψ} (B.87)

ε′′ss(u,ψ,χ) =
1

2
(∇u∇χ∇ψ +∇u∇ψ∇χ

+∇ψT∇χT∇uT +∇χT∇ψT∇uT )

= sym{∇u∇χ∇ψ +∇u∇ψ∇χ} .

(B.88)

B.2.3 Variations of the primal energy

The energy functional reads

E(u, s) = C(u, s)− F (s;u) (B.89)

where

C(u, s) =
1

2
a(s;u,u) =

∫
ΩR

WR(u) dΩ, (B.90)

WR(u) :=
1

2
σ(u) : ε(u). (B.91)

The primal physical and material residuals are given by

R(u, s;η) = E′u(u, s)(η) = a(s;u,η)− F (s;η), (B.92)

G(u, s;ψ) = E′s(u, s)(ψ) = b(s,u;ψ)− F ′s(s;u,ψ), (B.93)

where a(s;u,η) = C ′u(u, s)(η) is given in (B.81) and

b(s,u;ψ) := C ′s(u, s)(ψ) =

∫
ΩR

Σ(u) : ∇ψ dΩ. (B.94)

The energy-momentum or Eshelby tensor in terms of linear elasticity is obtained as

Σ(u) := WR(u)I−∇uTσ. (B.95)
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B.2.4 Variational formulations of the primal residuals and tangent forms

The residuals written in terms of σ and ε are given by

R(u, s;η) =

∫
ΩR

σ : ε(η) dΩ− F (s;η) (B.96)

G(u, s;ψ) =

∫
ΩR

[σ : ε′s(u,ψ) +WRI : ∇ψ ] dΩ− F ′s(s;v,ψ) (B.97)

The tangent forms for linear elasticity are obtained as

k(u, s;η, δu) =

∫
ΩR

ε′u(η) : C : ε′u(δu) dΩ =

∫
ΩR

ε(η) : C : ε(δu) dΩ, (B.98)

p(u, s;η, δs) =

∫
ΩR

{ ε′u(η) : C : ε′s(u, δs) + σ : ε′′us(η, δs)

+σ : ε(η) Div δs } dΩ

−F ′s(s;η, δs),

(B.99)

t(u, s;ψ, δu) =

∫
ΩR

{ ε′s(u,ψ) : C : ε′u(δu) + σ : ε′′su(ψ, δu)

+σ : ε(δu) Divψ } dΩ

−F ′s(s; δv,ψ),

(B.100)

d(u, s;ψ, δs) =

∫
ΩR

{ ε′s(u,ψ) : C : ε′s(u, δs) + σ : ε′′ss(u,ψ, δs)

+σ : [ ε′s(u,ψ) Div δs+ ε′s(u, δs) Div ψ ]

+WR [ Div ψ Div δs− I : ∇ψ∇δs ] }dΩ

−F ′′ss(s;v,ψ, δs).

(B.101)

The explicit formulations of F (s;η), F ′s(s;v,ψ), F ′s(s;η, δs) and F ′′ss(s;v,ψ, δs) depend
on the form of the functional F (·). They are equal to the quantities from the nonlinear prob-
lem given in (4.92), (4.93), (4.94) and (4.95), respectively.
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B.2.5 Discrete formulations of the primal residuals and tangent matrices

The nodal contributions of the discrete residual vectors are given by

Rei =

∫
Ωe

R

BTi σ¯
dΩ− F e(s)i, (B.102)

Gei =

∫
Ωe

R

{BTsiσ¯ +WRILi}dΩ− F es (s; v)i, (B.103)

and the tangent matrices are obtained as

Ke
ij =

∫
Ωe

R

BTi CBj dΩ, (B.104)

P eij =

∫
Ωe

R

{BTi CBsj − σLjLTi + σLiL
T
j } dΩ

− F es (s)ij ,

(B.105)

Deij =

∫
Ωe

R

{BTsiCBsj +∇uTσLjLTi + LjL
T
i σ

T∇u

−∇uTσLiLTj − LiLTj σT∇u

+WR [LiL
T
j − LjLTi ] } dΩ

−F ess(s; v)ij ,

(B.106)

where

Bi =

 φi,1 0
0 φi,2
φi,2 φi,1

 , Bsi = −Bi∇u, Li := ∇φi =

[
φi,1
φi,2

]
, (B.107)

σ =

[
σ11 σ12

σ21 σ22

]
, σ

¯
=
[
σ11 σ22 σ12

]T
. (B.108)

Details about the numerical implementation are given in Appendix C.

The quantities F e(s)i and F es (s; v)i are the element nodal vectors on a node i corresponding
to the functionals F (s; ·) and F ′s(s;v, ·). In the same manner, F es (s)ij and F ess(s; v)ij are
the element nodal matrices corresponding to the bilinear forms F ′s(s; ·, ·) and F ′′ss(s;v, ·, ·),
respectively. These contributions are equal to the quantities from the nonlinear problem and
they are given in (4.103), (4.104), (4.105) and (4.106).
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B.2.6 The dual problem

The weak form of the dual problem for a given fixed s reads: Find z ∈ V such that

a(s; z,η) = J(s;η) ∀ η ∈ V. (B.109)

The corresponding energy functional is given as

E∗(z, s) = C∗(z, s)− J(s;u) (B.110)

where

C∗(z, s) = C(z, s) =
1

2
a(s; z, z) =

∫
ΩR

WR(z) dΩ. (B.111)

This coincides with (B.90). Hence, in the linear case the strain energy functions of the primal
and the dual problems coincide. Therefore, all variations of the internal energy C∗(z, s) =
C(z, s) yield the same results as for the primal problem.

Finally, the variational formulations of all dual residuals R∗(·) and G∗(·) as well as the dual
tangent forms p∗(·, ·), t∗(·, ·) and d∗(·, ·) are given in Section B.2.4, in which u has to be
replaced by z. In the same manner, the corresponding discrete formulations are given in
Section B.2.5.

Only the variations of the functional F (s;η) in the primal problem have to be replaced by
the corresponding variations of the functional J(s;η).

B.2.7 Explicit formulations for higher-order variations of the residual

This section deals with higher-order variations of the residual R(u, s; ·) with respect to u
and s for shape sensitivity. For the general nonlinear problem these terms have been derived
in Section 10.6. The variations are required for error analysis and improvement of sensitivity
relations as proposed in Chapter 10. Furthermore, compact specifications of R′′uu, R′′ss, R

′′
su

andR′′suu are stated. These relations can be directly computed as the usual residualR(u, s; ·).

For the model problem of linearized elasticity the second variation of R(u, s;η with respect
to u vanishes, i.e.

R′′uu(u, s;η, ∆u) = k′u(u, s;η, ∆u) = 0. (B.112)

Therefore, the remainder ru(u0, s0, ∆u) defined in (10.23) does not contribute to (10.29).
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The second variation of the primal physical residual R(u, s; ·) with respect to s reads

R′′ss(u, s;η, ∆s, ∆s) = p′s(u, s;η, ∆s, ∆s) (B.113)

=

∫
ΩR

{ 2 ε′′us(η, ∆s) : C : ε′s(u, ∆s)

+ σ : ε′′′uss(η, ∆s, ∆s) + ε′u(η) : C : ε′′ss(u, ∆s, ∆s)

+ [ ε′s(u, ∆s) : C : ε(η) + σ : ε′′us(η, ∆s) ]I : Grad∆s

− [σ : ε(η)− bR · η ]I : Grad∆sGrad∆s

+ [σ : ε′′us(η, ∆s) + ε′u(η) : C : ε′s(u, ∆s) ]I : Grad∆s

+ [ (σ : ε(η)− bR · η )I : Grad∆s ]I : Grad∆s } dΩ.

In the same manner, the mixed variation of the primal physical residualR(u, s; ·) with respect
to u is obtained as

R′′su(u, s;η, ∆s, ∆u) = p′u(u, s;η, ∆s, ∆u) (B.114)

=

∫
ΩR

{ ε′′us(η, ∆s) : C : ε′u(∆u) + ε′u(η) : C : ε′s(∆u, ∆s)

+ε′u(η) : C : ε(∆u)I : Grad∆s }dΩ

Finally, the third variation R′′suu vanishes in the case of linear elasticity, i.e.

R′′′suu(u, s;η, ∆s, ∆u, ∆u) = p′′uu(u, s;η, ∆s, ∆u, ∆u) = 0. (B.115)

For given {u, s} and {∆u, ∆s} all of the above forms become linear functionals. The com-
pact formulations for the problem of linear elasticity are collected in Box B.11 in the same
manner as in Section B.1.2 for the nonlinear problem.
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R′′uu(u, s;η, ∆u) = k′u(u, s;η, ∆u) = 0 (B.116)

R′′ss(u, s;η, ∆s, ∆s) = p′s(u, s;η, ∆s, ∆s)

=

∫
ΩR

{A1 : Gradη +A2 · η } dΩ
(B.117)

with

A1 := 2 [∆sσ
(1) Grad∆sT + σGrad∆sT Grad∆sT +∆sσ

(2)

− (∆sσ
(1) + σGrad∆sT ) Div∆s ]

− σ ( I : Grad∆sGrad∆s−Div∆sDiv∆s ),

(B.118)

A2 := bR ( I : Grad∆sGrad∆s−Div∆sDiv∆s ), (B.119)

∆sσ
(1) := C : GraduGrad∆s, (B.120)

∆sσ
(2) := C : GraduGrad∆sGrad∆s. (B.121)

R′′su(u, s;η, ∆s, ∆u) = p′u(u, s;η, ∆s, ∆u) =

∫
ΩR

A3 : Gradη dΩ (B.122)

with

A3 := −∆usσ−∆uσGrad∆sT +∆uσDiv∆s (B.123)

∆uσ := C : Grad∆u, (B.124)

∆usσ := C : Grad∆uGrad∆s. (B.125)

R′′′suu(u, s;η, ∆s, ∆u, ∆u) = p′′uu(u, s;η, ∆s, ∆u, ∆u) = 0 (B.126)

Box B.11: Explicit formulations of R′′uu, R′′ss, R
′′
su and R′′′suu for linear elasticity





Appendix C

Details on the numerical implementation

This chapter is concerned with some details about the numerical implementation.
The approximations of the considered residuals and tangent forms are briefly
stated. For notational simplicity only the two-dimensional case is considered.
The extension to general three-dimensional problems is straightforward.

C.1 Preliminaries

The finite element approximation is given as usual by using shape functions φi(ξ). Following
the isoparametric concept, the state vh and the geometry Xh are approximated by the same
shape functions defined on a fixed parameter space with coordinates ξ. According to the
classical Bubnov-Galerkin technique also the test functions are interpolated using the shape
functions φi(ξ). For details about the finite element technique we refer to standard text books,
e.g. [10, 17, 105, 107, 108].

The state function vh and the geometry Xh as well as their derivatives are approximated in
every element in the form

veh =

n∑
i=1

vi φi vh,β =

n∑
i=1

vi φi,β with vi =

[
v

(i)
1

v
(i)
2

]
,

Xe
h =

n∑
i=1

Xi φi Xh,β =

n∑
i=1

Xi φi,β with Xi =

[
X

(i)
1

X
(i)
2

]
,

where vi and Xi are the nodal components at node i and n denotes the number of nodes per
element. Furthermore, the gradient and the divergence are approximated by

Gradveh =

n∑
i=1

vi ⊗∇Xφi =

n∑
i=1

vi∇XφTi =

n∑
i=1

[
v

(i)
1 φi,1 v

(i)
1 φi,2

v
(i)
2 φi,1 v

(i)
2 φi,2

]
,

207
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GradXe
h =

n∑
i=1

Xi ⊗∇Xφi =

n∑
i=1

Xi∇XφTi =

n∑
i=1

[
X

(i)
1 φi,1 X

(i)
1 φi,2

X
(i)
2 φi,1 X

(i)
2 φi,2

]
,

Div veh =

n∑
i=1

∇Xφi · vi =

n∑
i=1

∇XφTi vi,

DivXe
h =

n∑
i=1

∇Xφi ·Xi =

n∑
i=1

∇XφTi Xi.

We introduce for the gradient of the shape functions the vectors

Li := ∇Xφi =

[
φi,1
φi,2

]
, Lj := ∇Xφj =

[
φj,1
φj,2

]
. (C.1)

C.2 Approximations of the Green-Lagrange strain tensor

We consider the Green-Lagrange strain tensor and its variations with respect to v and s given
in Section A.2. In addition to the classical well-known approximation of the variation E′v , we
introduce in the same manner similar approximations of different variations of E.

C.2.1 General approximation of symmetric strain measures

Let T′v(v, δv) be the variation of a two point tensor T(v) with respect to v. We assume that
the variation T′v has the particular form

T′v(v, δv) =
1

2

[
Grad δvTA + AT Grad δv

]
= sym{AT Grad δv} (C.2)

with some tensor A(v). For a matrix formulation we use the symmetry of T′v and we can
introduce a vector T ′v with three independent components such that its finite element approx-
imation can be written as

T ′v(vh, δvh) =

 (T ′v)11

(T ′v)22

2 (T ′v)12

 =

n∑
i=1

Bviδvi (C.3)

with

Bvi =

 A11 φi,1 A21 φi,1
A12 φi,2 A22 φi,2

A11 φi,2 +A12 φi,1 A21 φi,2 +A22 φi,1

 , δvi =

[
δv

(i)
1

δv
(i)
2

]
. (C.4)
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C.2.2 Approximation of variations of the Green-Lagrange strain tensor

Approximation of E′v(v,η). The variation with respect to the state is given as

E′v(v,η) = sym{FT Gradη} = sym{AT
v Gradη}, (C.5)

Av := F. (C.6)

The finite element approximation can be written as

E′v(vh,ηh) =

 (E′v)11

(E′v)22

2 (E′v)12

 =

n∑
i=1

Bviηi (C.7)

with

Bvi =

 A11
v φi,1 A21

v φi,1
A12
v φi,2 A22

v φi,2
A11
v φi,2 +A12

v φi,1 A21
v φi,2 +A22

v φi,1

 , ηi =

[
η

(i)
1

η
(i)
2

]
. (C.8)

Approximation of E′s(v,ψ). The variation of E with respect to the geometry can be writ-
ten in terms of the deformation ϕ or the displacement u or in terms of the generalized state
v as

E′s(v,ψ) = − sym{FT GradvGradη} = sym{AT
s Gradη}, (C.9)

As := −GradvTF. (C.10)

The finite element approximation follows as

E′s(vh,ψh) =

 (E′s)11

(E′s)22

2 (E′s)12

 =

n∑
i=1

Bsiψi (C.11)

with

Bsi =

 A11
s φi,1 A21

s φi,1
A12
s φi,2 A22

s φi,2
A11
s φi,2 +A12

s φi,1 A21
s φi,2 +A22

s φi,1

 , ψi =

[
ψ

(i)
1

ψ
(i)
2

]
. (C.12)

Approximation of E′′vv(η, z). The variation E′′vv(η, z) = E′′vv(z,η) reads

E′vv(η, z) = sym{Grad zT Gradη} = sym{AT
z Gradη}, (C.13)

Az := Gradz. (C.14)

The finite element approximation follows as E′′vv(ηh, zh) =
∑n
i=1Bziηi with

Bzi =

 A11
z φi,1 A21

z φi,1
A12
z φi,2 A22

z φi,2
A11
z φi,2 +A12 φi,1 A21

z φi,2 +A22
z φi,1

 . (C.15)
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Approximation of E′′vs(v, z,ψ). The partial variation can be expressed as

E′′vs(v, z,ψ) = − sym{Grad zT GradvGradψ + FT Grad z Gradψ}

= sym{AT
vs Gradψ},

(C.16)

Avs := −( GradvT Grad z + Grad zTF ). (C.17)

The approximation follows as E′′vs(vh, zh,ψh) =
∑n
i=1Bvsiψi with

Bvsi =

 A11
vs ϕi,1 A21

vs ϕi,1
A12
vs ϕi,2 A22

vs ϕi,2
A11
vs ϕi,2 +A12

vs ϕi,1 A21
vs ϕi,2 +A22

vs ϕi,1

 . (C.18)

Approximation of E′′′vvs(z, z,ψ). From (A.34) we have

E′′′vvs(z, z,ψ) = − sym{Grad zT Grad z Gradψ + Grad zT Grad z Gradψ}

= sym{AT
vvs Gradψ},

Avvs := −2 Grad zT Grad z. (C.19)

The finite element approximation reads E′′′vvs(vh, zh,ψh) =
∑n
i=1Bvvsiψi with

Bvvsi =

 A11
vvs ϕi,1 A21

vvs ϕi,1
A12
vvs ϕi,2 A22

vvs ϕi,2
A11
vvs ϕi,2 +A12

vvs ϕi,1 A21
vvs ϕi,2 +A22

vvs ϕi,1

 . (C.20)

C.3 Approximation of residuals

The approximation of the considered residuals and the introduction of the corresponding
matrix formulations are given below. This is exemplarily shown for the physical and material
residuals of the primal problem. The approach can be applied in the same manner to the
residuals of the dual problem R∗ and G∗, respectively.

The discretization of the primal physical residual (4.85) for given {v̂h, ŝh} is obtained as
usual in the form

R(v̂h, ŝh;ηh) =

NEL⋃
e=1

∫
Ωe

R

S : E′v(v̂
e
h,η

e
h) dΩ− F (seh;ηeh)

=

NEL⋃
e=1

∫
Ωe

R

S ·E′v(v̂eh,ηeh) dΩ− F (seh;ηeh)

=

NEL⋃
e=1

n∑
i=1

ηTi R
e
i = ηTR,

(C.21)
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where the nodal contribution Rei is given in (4.96). In order to indicate the assembly over all
finite elements we use the operator

⋃
. Furthermore, due to the symmetry of the two point

tensors S and E′v the residual can be written in terms of the vectors S and E′v . In the two-
dimensional case these vectors have three independent components and are given as

S =
[
S11 S22 S12

]T
, E′v =

[
(E′v)11 (E′v)22 2 (E′v)12

]T
.

In the same manner, the primal material residual (4.86) is given as

G(v̂h, ŝh;ψh) =

NEL⋃
e=1

∫
Ωe

R

S : E′s(v̂
e
h,ψ

e
h) +WRI : Gradψeh dΩ− F ′s(ŝeh; v̂eh,ψ

e
h)

=

NEL⋃
e=1

∫
Ωe

R

S ·E′s(v̂eh,ψeh) +WRI : Gradψeh dΩ− F ′s(ŝeh; v̂eh,ψ
e
h)

=

NEL⋃
e=1

n∑
i=1

ψTi G
e
i = ψTG, (C.22)

where Gei is given in (4.97).

Finally, for a four node element with 8 degrees of freedom the element vectors Re ∈ R8 and
Ge ∈ R8 are given by the vectors Rei ∈ R2 and Gei ∈ R2 as

Re =


Re1
Re2
Re3
Re4

 , Ge =


Ge1
Ge2
Ge3
Ge4

 . (C.23)

The residuals of the dual problemR∗ andG∗ can be computed in the same manner in the same
routine as R and G. The nodal contributions of these residuals are given in Section 6.5.3.

C.4 Approximation of tangent forms

The discretization of the considered primal and dual tangent forms from Section 4.6.2 and
Section 6.5.2 can be obtained in a straightforward manner. This is exemplarily shown for
the primal physical stiffness tangent form k(v, s;η, δv) and the primal physical pseudo load
tangent form p(v, s;η, δs), which have been introduced in (4.87) and (4.88), respectively.

For instance, for given {v̂h, ŝh} the primal physical stiffness tangent form read

k(v̂h, ŝh;ηh, δvh) =

NEL⋃
e=1

∫
Ωe

R

S : E′′vv(η
e
h, δv

e
h) + E′v(v̂

e
h,η

e
h) : C : E′v(v̂

e
h, δv

e
h)

=

NEL⋃
e=1

n∑
i=1

n∑
j=1

ηTi K
e
ij δvj = ηTKδv , (C.24)
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In the same manner, the primal physical pseudo load tangent form becomes the matrix repre-
sentation

p(v̂h, ŝh;ηh, δsh) =

NEL⋃
e=1

∫
Ωe

R

{S : E′′vs(v̂
e
h,η

e
h, δs

e
h)

+ E′v(v̂
e
h,η

e
h) : C : E′s(v̂

e
h, δs

e
h)

+ S : E′v(v̂
e
h,η

e
h) Div δseh } dΩ− F ′s(ŝeh;ηeh, δs

e
h)

=

NEL⋃
e=1

n∑
i=1

n∑
j=1

ηTi P
e
ij δsj = ηTP δs, (C.25)

where the nodal contribution Ke
ij and P eij are given in (4.98). and (4.99), respectively.

Finally, for a four node element the element matrices Ke ∈ R8×8 and P e ∈ R8×8 are given
by the submatrices Ke

ij ∈ R2×2 and P eij ∈ R2×2 as

Ke =


Ke

11 Ke
12 Ke

13 Ke
14

Ke
21 Ke

22 Ke
23 Ke

24

Ke
31 Ke

32 Ke
33 Ke

34

Ke
41 Ke

42 Ke
43 Ke

44

 , P e =


P e11 P e12 P e13 P e14

P e21 P e22 P e23 P e24

P e31 P e32 P e33 P e34

P e41 P e42 P e43 P e44

 . (C.26)

The approach can be applied in the same manner to the other tangent forms of the primal and
the dual problems in order to obtain the primal tangent material stiffness matrix D as well as
the dual pseudo load matrix P ∗ and the dual tangent material stiffness matrix D∗. The nodal
contributions of these matrices are given in Section 4.6.2 and Section 6.5.3, respectively. All
matrices can be computed in the same routine as the classical stiffness matrix K without
considerable computational cost.

Note, that the tangent physical and material stiffness matrices K, D and D∗ are symmetric.
But this does not apply, in general, to the tangent pseudo load matrices P and P ∗.
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