Early Warning on a National Level – Project AMSEL

Martin Apel, Joachim Biskup, Ulrich Flegel, Michael Meier

Computer Science Department
Chair VI, Information Systems and Security

Overview

- early warning systems
- project overview
- architecture
- challenges and technologies
 - efficient and effective classification and detection
 - enablement of required cooperation
- summary

Early Warning Systems [1]

- aim at
 - detecting yet unclassified but potentially harmful system behavior
 - based on preliminary indications
 - establish hypotheses, predictions and advices in not yet completely understood situations
 - include two meanings of "early"
 - "fast": start early in time in order to avoid/minimize damage
 - "incomplete": process uncertain and incomplete information

[1] 08102 Manifesto -- Perspectives Workshop: Network Attack Detection and Defense. Dagstuhl, 2008.

3/24

Project AMSEL - Goals

- development of an EWS for automatic
 - privacy and confidentiality preserving
 - detection
 - of known and unknown
 - automatized attacks (malware)
 - reporting of
 - incidents
 - integration into a situation picture

Automatisch Malware Sammeln und Erkennen Lernen automatically collect and learn to detect malware

Approach

- coupling of technologies in an automatized process
 - sub-process detection
 - honeypot technology
 - malware collection
 - malware analysis technology
 - controlled execution and observation of malware
 - machine learning
 - generation of detection criteria (signatures)
 - sub-process reporting
 - central provision of detection criteria
 - update of detection systems
 - central reporting of detected incidents

Idea of a Malware EWS

- automatically
 - collect malware
 - analyze malware
 - generate signatures
 - distribute and deploy signatures
 - report alerts centrally
- ⇒ combination of misuse detection and anomaly detection techniques
 - provide specific alerts with low false positive rates
 - detect a priori unknown attacks

Architecture

© Michael Meier

Deployment Scenario

- protection level achieved and quality of situation picture depend on number and placement of deployed CL and DA boxes
 - cooperative information exchange required

Challenges and Technologies

- efficient and effective classification and detection
 - malware collection
 - malware analysis
 - signature generation
 - malware detection
- enablement of required cooperation
 - balance/resolve conflicting interests

Malware Collector

- collecting new malware as early as possible
- Nepenthes and Amun
 - low-interaction server honeypots
 - emulate vulnerabilities
 - catches/collects malware binaries
 - typically downloaded after initial compromise
- possible extensions
 - honey clients
 - collecting drive-by-downloaded files
 - spam traps
 - collecting attached files or targets of URLs

Malware Analysis

- inspecting and extracting appropriate features characterizing and distinguishing malware and benign programs
- static analysis
 - static features: directly extracted from malware samples
 - byte sequences of code or data segments
 - control flow graphs extracted by disassemblers
 - morphing/obfuscation techniques and tools
 - generate programs of equal/similar functionality but different static feature instantiations
 - 30.000 new unique (wrt. static features) malware samples a day
 - polymorphic variants of a few malware types
 - would require to handle 30.000 new signatures a day

Malware Analysis

- dynamic analysis
 - dynamic features: behavior observed during execution
 - e.g. trace of systems calls
 - logic bombs
 - difficult to trigger the malicious execution path during analysis
- dynamic analysis more promising for malware analysis and detection
- CWSandbox is used as dynamic analysis system
 - execution in a controlled and monitored environment
 - behavior report: chronologically ordered list of system calls performed by the program during analysis

Automatic Signature Generation

- 1. group similar malware behavior reports
 - (get the few malware types of the 30.000 malware samples a day)
 - clustering of behavior reports
- 2. create a signature for each group
 - incorporates behavior reports of known benign programs (good pool) to avoid false positives

Clustering

- requires a distance/similarity metric for program behavior reports
 - candidates, e.g.
 - edit distance
 - normalized compression distance
 - Manhattan distance (n-gram vectorization)
 - based on experimental evaluation [1] we chose Manhattan
- hierarchical clustering algorithms, e.g., single-link, complete-link, WPGMA, UPGMA, fuzzy clustering
 - currently under investigation: complete-link

[1] Measuring Similarity of Malware Behavior. 5th IEEE LCN Workshop on Security in Communications Networks, Oct. 20th 2009, Zurich.

Signature Generation

- given a cluster C determine sequences of system calls
 - that are shared among all behavior reports of cluster C
 - but are absent in behavior reports of the good pool
- determine shared substrings using Ukkonen's algorithm
- create a signature that matches, if all shared substrings occurred

Malware Detection System

- integration of existing behavior detection systems requires compatible feature domains
 - features extracted using CWSandbox and used for signature generation and features observed/monitored by the detection system need to be compatible
 - signature transformations need to be realized

- new detection systems are developed
 - based jSAM Java Signature Analysis Module
 - optimized multi-step-signature matching engine
 - expressive signature language EDL (Event Description Language)
 - full support of the behavior features used by EWS supplied signatures

Deployment Scenario

- information exchange
 - private and confidential information
 - allows outsiders (competitors, customers) insights into security incidents

Cooperation Enablement

- consideration of conflicting confidentiality and availability interests of participating and involved parities
- resolution of conflicts by use of information reductions, e.g. pseudonymization
- detailed study of
 - flow of information inside the EWS
 - participating and involved parties and their interest wrt. to particular information
 - ⇒ two classes of EWS functionality
 - analysis: requires linkability of information
 - are two ip addresses equal?
 - reaction: requires disclosure of original information
 - block this ip address

Information Flow

Exchanged Information

- timestamp
- alert signature name
- sending endpoint of MHS
- receiving endpoint of MTS
- download endpoint of MDS
- receiving endpoint of MDZ
- vulnerability module name
- receiving endpoint of CL box
- observing endpoint of DA box
- malware exploit payload
- malware sample payload

personal data of victim systems

Participating and Involved Parties

- collecting and learning box
- detecting and learning box
- threat repository
- alert repository
- victim systems
 - malware host system
 - malware distribution system
 - malware target system
 - malware drop zone

Conflicting Interests (Examples)

- victim systems
 - want to keep their endpoints confidential
- collecting and learning boxes
 - want to keep their existence confidential

- threat repository
 - needs to disclose endpoints of MDZ and MDS for blacklisting sites involved in an malware outbreak
- alert repository
 - need to link all data to create a situation picture
- ⇒ defining a suitable balance between conflicting interests
 - in some cases a given interest is only supported for repositories and not for box owners
 - confidentiality interest of VS is only partially supported box and repository owners can link and disclose information in most cases
- ⇒ pseudonymization techniques are used for tailoring linkable or disclosable pseudonyms

Summary

architecture of an automatic EWS

existing approaches are used for malware collection and analysis

- focus of our ongoing research
 - clustering of malware behavior
 - generating behavior signatures
 - balancing conflicting availability and confidentiality requirements

Thank You!

Optimization

- clustering and signature generation are time-consuming
- for each new malware behavior.
 - check if existing signature matches
 - if no signature matches
 - determine cluster closest to the new behavior
 - add new behavior to closest cluster
 - generate new signature for this cluster
- complete re-clustering is performed periodically