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Chapter 1

Introduction

The term meta-analysis was coined by Glass (1976) in the social sciences and Glass

defined meta-analysis as ’the statistical analysis of a large collection of analysis results

from individual studies for the purpose of integrating the findings’. Beside the social

sciences, meta-analysis is nowadays widely accepted and applied in the life sciences. Fol-

lowing Draper et al. (1992), there are a lot of other fields in which statistical methods

for meta-analysis are applied, for instance, archaeology, astronomy, chemistry, engineer-

ing, environmental sciences, geosciences, military operations analysis, official statistics,

physics, and psychology.

Combining results from independent studies has a long history in statistics, though the

term meta-analysis was only coined around thirty years ago. As an early application in

biometry, Pearson (1904) used data from five small independent samples and computed a

pooled estimate of correlation between mortality and inoculation with a vaccine for enteric

fever in order to evaluate the efficacy of the vaccine. In the physical sciences, Birge (1932)

combined estimates across experiments at different laboratories to establish reference

values for some fundamental constants in physics. Early works of Cochran (1937), Yates

and Cochran (1938), Tippett (1931), and Fisher (1932) dealt with combining information

in the agricultural sciences in order to derive estimates of treatment effects and test their

significance.
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As the scope of meta-analysis grew over the years, several terminologies also came

into existence, such as combining experiments, combination of information, combination of

results, systematic review, quantitative research synthesis, research integration, or pooling

evidence. The basic statistical methods behind these various terms, however, are all the

same and we will always use the term meta-analysis in the following.

Meta-analysis can be seen as a process which consists of four important stages of re-

search synthesis: problem formulation, data collection, data evaluation, and data analysis

and interpretation, see the introduction in Hartung, Knapp, and Sinha (2008) for a de-

tailed description of these stages. The main focus of this thesis is on the data analysis

stage, that is, given the results of the independent studies we deal with the problem how

to combine these results using sound statistical methods. Several text books on statistical

methods of meta-analysis which merely deal with this data analysis stage are nowadays

available, notably Hedges and Olkin (1985), the edited volume by Cooper and Hedges

(1994), Whitehead (2002), and Hartung, Knapp, and Sinha (2008).

The emphasis of the present thesis is on statistical methods for combining results when

only published data from the individual studies are available. This is the scenario Glass

(1976) had in mind defining the term meta-analysis and this is still the most common

situation in research. Individual data from all the studies could clearly improve the

findings from a meta-analysis, but in practice it is usually very difficult, if not impossible,

to get all the data from the different experiments.

The experiments or studies we are interested in are comparative studies, that is, studies

in which a hypothesis is tested comparing a new intervention or treatment with a standard

intervention or control. The difference or the association between the two counterparts can

be modelled using a single parameter, we generally will call effect size in the following.

Possible effect sizes are difference of normal means, standardized mean difference, risk

difference, or odds ratio. The data situation for the meta-analysis is then that estimates

of the effect size of interest are available from each study as well as estimates of the

precision of each study-specific effect size estimate.
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The foundation of the statistical methods in meta-analysis stems from the comparison

of several normal populations. Assuming a common mean in all the normal populations,

but possibly unequal variances, statistical inference about this common mean is not trivial

and has attracted a lot of researchers in the last decades. Chapter 2 contains many results

for this common mean problem but the presentation is restricted to those results which

can be extended to the meta-analysis for effect sizes. The statistical methods presented

in this chapter build the foundation of the so-called fixed effects model of meta-analysis.

In case the means of the several populations are possibly unequal, but vary about an

overall mean, statistical inference about this overall mean in the one-way random effects

model of analysis of variance with possibly heterogeneous error variances is an appropriate

tool. Chapter 3 contains many results for the statistical inference in this model, but again

the presentation is restricted to those results which can also be used or easily extended

for combining results of comparative studies. The statistical methods presented in this

chapter build the foundation of the so-called random effects model of meta-analysis.

Chapter 4 is devoted to the combination of results from comparative studies with

normal outcomes. We discuss the meta-analytical techniques for the effect sizes difference

of normal means, standardized difference of normal means, and ratio of normal means

when the difference of two populations is of interest.

The meta-analysis of comparative studies with binary outcomes is discussed in Chap-

ter 5. The effect sizes considered are difference of probabilities, also sometimes called risk

difference, (logarithmic) relative risk, and (logarithmic) odds ratio. Beside the general

meta-analysis methods, meta-analysis methods for sparse data with binary outcomes are

stressed that can lead to some additional difficulties.

A crucial decision in meta-analysis is whether ong should use the fixed effects or the

random effects meta-analysis model. When using a random effects model, explaining

heterogeneity is a further important task in meta-analysis. From a statistical point of

view, one can use study-specific covariates in regression models to explore possible sources

of heterogeneity. The analysis in this type of regression models, briefly called meta-

regression, is the topic of Chapter 6.
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Most of the presented meta-analysis methods are based on the so-called frequentist

approach. Bayesian methods heavily rely on informative prior distributions on the pa-

rameters. Using non-informative priors, results of meta-analysis are nearly identical in

both approaches, frequentist and Bayesian approach. Moreover, the appropriate choice

of prior distributions depends on the actual problem at hand. Thus, we present ideas of

Bayesian methods when appropriate, but do not provide details on the Bayesian analysis.
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Chapter 2

The Common Mean Problem

Let us consider k independent normal populations, where the ith population follows a

normal distribution with mean µ ∈ IR and variance σ2
i > 0, i = 1, . . . , k. Let Ȳi denote

the sample mean in the ith population, S2
i the sample variance, and ni the sample size,

i = 1, . . . , k. Then, we have

Ȳi ∼ N

(
µ ,

σ2
i

ni

)
and

(ni − 1) S2
i

σ2
i

∼ χ2
ni−1, i = 1, . . . , k, (2.1)

and the statistics are all mutually independent. Note that (Ȳi, S
2
i , i = 1, . . . , k) is minimal

sufficient for (µ, σ2
1, . . . , σ

2
k) even though it is not complete.

If the population variances σ2
1, . . . , σ

2
k are completely known, the maximum likelihood

estimator of µ is given by

µ̂ =

∑k
i=1 ni Ȳi/σ

2
i∑k

j=1 nj/σ
2
j

. (2.2)

The estimator (2.2) is also the minimum variance unbiased estimator under normality

as well as the best linear unbiased estimator without normality for estimating µ. The

variance of µ̂ is given by

Var (µ̂) =
1∑k

i=1 ni/σ
2
i

. (2.3)

If the population variances σ2
1, . . . , σ

2
k are completely unknown, the log-likelihood func-
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tion of the minimal sufficient statistics (Ȳi, S
2
i , i = 1, . . . , k) is

L∗ =
k∑
i=1

[
constant− ni

2
ln(σ2

i )−
(ni − 1) S2

i + ni
(
Ȳi − µ

)2

2σ2
i

]
. (2.4)

Differentiations of L∗ w.r.t to µ, σ2
1, . . . , σ

2
k and setting the derivatives equal to zero yield

the maximum likelihood estimators µ̂ML and σ̂2
i(ML), i = 1, . . . , k, which must satisfy

σ̂2
i(ML) =

(ni − 1)S2
i

ni
+
(
Ȳi − µ̂ML

)2
, i = 1, . . . , k, (2.5)

and

µ̂ML =

∑k
i=1 ni Ȳi/σ̂

2
i(ML)∑k

j=1 nj/σ̂
2
j(ML)

. (2.6)

Clearly, the maximum likelihood estimator (MLE) of µ in Eq. (2.6) does not have a closed

form and has to be found numerically.

The literature has not paid much attention to likelihood methods in the common mean

problem since Cochran’s (1937) seminal paper. Cochran (1937) considered experiments

with equal sample sizes and recommended the use of a weighted mean statistic, which is

nowadays known as the Graybill-Deal estimator, see Eq. (2.7) below, if at least 15 degrees

of freedom are available in S2
i . With fewer than 15 degrees of freedom, Cochran (1937)

preferred the maximum likelihood estimator since its increased precision is well worth the

extra labor it involves.

In the Behrens-Fisher problem (k = 2 populations), Suguira and Gupta (1987) showed

that the likelihood equation for estimating the common mean has either a unique solution

with large probability or three solutions with small probability. When it has three solu-

tions, the maximum likelihood estimator of the common mean is given by either minimum

or maximum real root of a cubic equation, and when it has a unique solution, it is just

the maximum likelihood estimator. This shows that one should be careful in obtaining

maximum likelihood estimates by numerical iterations.

Recently, Pal et al. (2007) also considered maximum likelihood estimation of the com-

mon mean in case of k = 2 populations. They showed that the maximum likelihood

estimator of µ is unbiased and, via simulation study, compared the variance of the MLE
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of µ with the variance of the Graybill-Deal estimator. The finding of their simulation

study is that the MLE of µ has better overall performance than the Graybill-Deal es-

timator. Maybe, this work will stimulate future research on likelihood methods in the

common mean problem.

An estimator of the common mean given in a closed form can be obtained by replacing

σ2
i by S2

i in Eq. (2.2). This yields the already mentioned well-known Graybill-Deal (1959)

estimator given as

µ̂GD =

∑k
i=1 ni Ȳi/S

2
i∑k

j=1 nj/S
2
j

. (2.7)

Clearly, µ̂GD is an unbiased estimator of the common mean µ for the statistics Ȳi and S2
i ,

i = 1, . . . , k, are stochastically independent.

For calculating the variance of µ̂GD, a standard conditional argument first yields

Var (µ̂GD) = E [Var (µ̂GD|S1, . . . , Sk)] + Var [E (µ̂GD|S1, . . . , Sk)]

= E

( k∑
i=1

ni σ
2
i

S4
i

)/(
k∑
i=1

ni
S2
i

)2
 . (2.8)

Meier (1953) derived a first order approximation of the variance of µ̂GD as

Var (µ̂GD) =
1∑k

i=1 ni/σ
2
i

[
1 + 2

k∑
i=1

1

ni − 1
ci (1− ci) +O

(
k∑
i=1

1

(ni − 1)2

)]
(2.9)

with

ci =
ni / σ

2
i∑k

j=1 nj / σ
2
j

, i = 1, . . . , k.

Since µ̂GD uses sufficient statistics, the question naturally arises whether µ̂GD is a

uniformly better unbiased estimator of µ than is each Ȳi, i = 1, . . . , k, that is, Var(µ̂GD) ≤
σ2
i /ni, i = 1, . . . , k for all σ2

1, . . . , σ
2
k. In case of k = 2 populations, Graybill and Deal

(1959) showed that
n1 Ȳ1/S

2
1 + n2 Ȳ2/S

2
2

n1/S2
1 + n2/S2

2

is a uniformly better unbiased estimator of µ than is Ȳ1 or Ȳ2 if and only if n1 and n2 are

each greater than 10. Norwood and Hinkelmann (1977) extended this result for k > 2
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populations and showed that µ̂GD is a uniformly better estimator of µ than each Ȳi if and

only if each sample size ni, i = 1, . . . , k, is greater than 10 or ni = 10 for some i and nj

greater than 18 for all j 6= i.

For further statistical inference on the common mean, an estimator of the variance of

µ̂GD should be available. Sinha (1985) derived an unbiased estimator of the variance of

µ̂GD that is a convergent series. A first order approximation of this estimator is

V̂ar(1) (µ̂GD) =

1∑k
i=1 ni/S

2
i

 1 +
k∑
i=1

4

ni + 1

 ni / S
2
i∑k

j=1 nj / S
2
j

− n2
i / S

4
i(∑k

j=1 nj / S
2
j

)2


 . (2.10)

This estimator is comparable to the approximate estimator

V̂ar(2) (µ̂GD) =

1∑k
i=1 ni/S

2
i

 1 +
k∑
i=1

4

ni − 1

 ni / S
2
i∑k

j=1 nj / S
2
j

− n2
i / S

4
i(∑k

j=1 nj / S
2
j

)2


 (2.11)

due to Meier (1953).

In view of generalizing results from this chapter to comparative experiments with

possibly non-normal outcomes in later chapters, we present two further estimators of the

variance of µ̂GD which can be easily adapted for later purposes. One rough estimator of

the variance of µ̂GD is given by simply replacing σ2
i by S2

i in Eq. (2.3), that is,

V̂ar(3) (µ̂GD) =
1∑k

i=1 ni/S
2
i

. (2.12)

Another estimator of the variance of µ̂GD is based on a direct estimator of the variance

(2.3). An unbiased estimator of the variance (2.3), assuming completely known variances

σ2
1, . . . , σ

2
k, is given by

V̂ar(µ̂) =
1

k − 1

k∑
i=1

ni / σ
2
i∑k

j=1 nj / σ
2
j

(
Ȳi − µ̂

)2
(2.13)

with µ̂ from Eq. (2.2). Using standard linear model arguments, we can show that µ̂

and V̂ar(µ̂) are stochastically independent and (k − 1) V̂ar(µ̂)/E[V̂ar(µ̂)] follows a χ2-

distribution with (k−1) degrees of freedom, see Hartung (1999). By replacing σ2
i through
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S2
i in Eq. (2.13), we obtain an approximate variance estimator of µ̂GD, that is,

V̂ar(4) (µ̂GD) =
1

k − 1

k∑
i=1

ni / S
2
i∑k

j=1 nj / S
2
j

(
Ȳi − µ̂GD

)2
. (2.14)

By applying Meier’s general theorem (Meier, 1953), Hartung and Knapp (2005b) derived

the unconditional expected value of V̂ar(4) (µ̂GD) as

E
[
V̂ar(4) (µ̂GD)

]
=

1∑k
i=1 ni/σ

2
i

[
1 + 2

k∑
i=1

1

ni − 1

[
k ci (1− ci)

k − 1
+

(1− ci)2

k − 1

]
+O

(
k∑
i=1

1

(ni − 1)2

)]

with

ci =
ni / σ

2
i∑k

j=1 nj / σ
2
j

, i = 1, . . . , k.

Note that the expected value of V̂ar(4) (µ̂GD) is in close agreement to the first order

approximation (2.9) of the variance of the Graybill-Deal estimator.

2.1 Approximate Confidence Intervals

Using the Graybill-Deal estimator (2.7) for the common mean and an appropriate esti-

mator of the variance of µ̂GD, for instance, an estimator from Eqs. (2.10), (2.11), (2.12),

or (2.14), approximate 100(1− α)% confidence intervals for µ can be constructed on the

basis of a suitable normalization of µ̂GD.

A simple large sample 100(1− α)% confidence interval, which is widely used in meta-

analysis, is given by

CI(1)(µ) : µ̂GD ∓
√

V̂ar(3)(µ̂GD) z1−α/2, (2.15)

where z1−α/2 denotes the (1 − α/2)-quantile of the standard normal distribution. This

interval, however, mostly proves to be too narrow and the actual confidence coefficient

of the interval (2.15) can be dramatically less than the nominal one, see Li, Shi, and

Roth (1994) and Böckenhoff and Hartung (1998). Based on concavity corrections for the

estimates of 1/σ2
i , i = 1, . . . , k, and following the lines of the interval (2.15), Böckenhoff
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and Hartung (1998) worked out improved confidence intervals for µ. A larger coverage

probability can also be achieved by using the (1 − α/2)-quantile of a t-distribution with

ν degrees of freedom, say tν;1−α/2, instead of z1−α/2. Follmann and Proschan (1999)

suggested the choice of ν = k − 1 degrees of freedom.

But it is more appealing to use the more accurate variance estimators (2.10) and

(2.11) for constructing approximate confidence intervals on the common mean. By using

Patnaik’s (1949) approximation of equivalent degrees of freedom, Meier (1953) showed

that the distribution of V̂ar(2)(µ̂GD) can be approximated by a scaled χ2-distribution with

estimated degrees of freedom ν̂, where

1

ν̂
=

k∑
i=1

1

ni − 1

(
ni / S

2
i∑k

j=1 nj / S
2
j

)2

.

Using the same approximate distribution for V̂ar(1)(µ̂GD), two approximate 100(1− α)%

confidence intervals on µ are given as

CI(2)(µ) : µ̂GD ∓
√

V̂ar(1)(µ̂GD) tν̂;1−α/2 (2.16)

and

CI(3)(µ) : µ̂GD ∓
√

V̂ar(2)(µ̂GD) tν̂;1−α/2. (2.17)

Finally, an approximate 100(1 − α)% confidence interval for µ, that does not require

the estimation of degrees of freedom, can be constructed using the variance estimator

(2.14). Since, suitably scaled, V̂ar(4)(µ̂GD) can be well approximated by a χ2-distribution

with k − 1 degrees of freedom, an approximate 100(1 − α)% confidence interval for µ is

given as

CI(4)(µ) : µ̂GD ∓
√

V̂ar(4)(µ̂GD) tk−1;1−α/2. (2.18)

But in the common mean problem, several exact confidence intervals on µ are available,

which will be presented in the next section. The approximate intervals, especially intervals

(2.15) and (2.18), however, can be also applied to situations when results of independent

studies should be combined and the parameter of interest is not a normal mean or a

difference of normal mean. This will be shown in Chapters 3-5.
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2.2 Exact Confidence Intervals

Since

ti =

√
ni
(
Ȳi − µ

)
Si

∼ tni−1 (2.19)

or, equivalently,

Fi =
ni
(
Ȳi − µ

)2

S2
i

∼ F1,ni−1 (2.20)

are test statistics for testing hypotheses about µ based on the ith sample, suitable linear

combinations of these test statistics or other functions thereof can be used as a pivotal

quantity to construct exact confidence intervals for µ.

Cohen and Sackrowitz (1984) considered Mt = max1≤i≤k{|ti|} as test statistic for

testing hypotheses about µ. We can use Mt to construct an exact confidence interval for

µ after determining the quantile of the distribution of Mt, say c1−α/2, which satisfies the

following equation

1− α = P
(
Mt ≤ c1−α/2

)
=

k∏
i=1

P
(
|ti| ≤ c1−α/2

)
.

Since the distribution of Mt essentially depends on the degrees of freedom of the t-test

statistics ti, the quantile c1−α/2 can be readily found using appropriate statistical software

packages. An exact 100(1− α)% confidence interval for µ is then given by

CI(5)(µ) :

[
max
1≤i≤k

{
Ȳi −

c1−α/2 Si√
ni

}
, min

1≤i≤k

{
Ȳi +

c1−α/2 Si√
ni

}]
(2.21)

=
k⋂
i=1

[
Ȳi −

c1−α/2 Si√
ni

, Ȳi +
c1−α/2 Si√

ni

]
.

An alternative approach is to use the confidence interval

CI(6)(µ) :

[
max
1≤i≤k

{
Ȳi −

c
(i)
1−α/2 Si√

ni

}
, min

1≤i≤k

{
Ȳi +

c
(i)
1−α/2 Si√

ni

}]
(2.22)

=
k⋂
i=1

[
Ȳi −

c
(i)
1−α/2 Si√

ni
, Ȳi +

c
(i)
1−α/2 Si√

ni

]
,

where c
(i)
1−α/2 satisfies the equation

P
(
|ti| ≤ c

(i)
1−α/2

)
= (1− α)1/k.
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Clearly, CI(6)(µ) is an exact 100(1 − α)% confidence interval for µ. Since both intervals

CI(5)(µ) and CI(6)(µ) can be described as intersections of individual confidence intervals,

these intersections may be empty. Consequently, both intervals are not necessarily always

genuine intervals.

Fairweather (1972) suggested using a weighted linear combination of the ti’s, namely

Wt =
k∑
i=1

ui ti, ui =
[Var(ti)]

−1∑k
j=1 [Var(tj)]

−1
, i = 1, . . . , k. (2.23)

Let b1−α/2 denote the quantile of the distribution of Wt satisfying the equation

1− α = P
(
|Wt| ≤ b1−α/2

)
,

then the exact 100(1− α)% confidence interval for µ is given by

CI(7)(µ) :

∑k
i=1

√
ni ui Ȳi / Si∑k

j=1

√
nj uj / Sj

∓
b1−α/2∑k

j=1

√
nj uj / Sj

. (2.24)

Let tν denote a t-distributed random variable with ν degrees of freedom, then it holds

Var(tν) = ν/(ν − 2), ν > 2, so that the distribution of Wt essentially depends on the

degrees of freedom of the t-test statistics. Fairweather (1972) provided an approximation

of the distribution of Wt that can also be used to approximate the required quantile b1−α/2.

Since Wt is a linear combination of t-distributed random variables, the distribution of Wt

should resemble a scaled t-distribution, that is, we approximate the distribution of Wt by

a c tν-distribution so that the second and fourth moment of both distributions coincide.

The solution is given by ν = 4 + 1/
∑k

i=1[u2
i /(ni − 5)] and c =

√
(ν − 2) / (ν A) with

A =
∑k

i=1(ni − 3)/(ni − 1), see Fairweather (1972). Note that Fairweather’s interval is

always a genuine interval for 0 < α < 0.5.

Jordan and Krishnamoorthy (1996) suggested using a linear combination of the F -test

statistics (2.20), namely

Wf =
k∑
i=1

wi Fi, wi =
[Var(Fi)]

−1∑k
j=1 [Var(Fj)]

−1
, i = 1, . . . , k. (2.25)

Note that Var(Fi) = 2 m2
i (mi − 1)/[(mi − 2)2 (mi − 4)] with mi = ni − 1, i = 1, . . . , k.

After determining the quantile a1−α/2 satisfying the equation

1− α = P
(
Wf ≤ a1−α/2

)
,
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an exact 100(1− α)% confidence interval for µ is given as

CI(8)(µ) :
k∑
i=1

pi Ȳi ∓∆, (2.26)

where

pi =
wi ni / S

2
i

k∑
j=1

wj nj / S2
j

, i = 1, . . . , k,

and

∆2 =
a1−α/2∑k

i=1wi ni / S
2
i

−

{
k∑
i=1

pi Ȳ
2
i −

( k∑
i=1

pi Ȳi

)2
}
.

Since ∆2 is not always positive, the interval (2.26) is not always a genuine interval. Jordan

and Krishnamoorthy (1996) suggested approximating the distribution of WF by a d Fk,ν-

distribution, with numerator degrees of freedom equal to the number of populations, so

that the first two moments of both distributions coincide. The solutions for d and ν are

given by, recall that mi = ni − 1, i = 1, . . . , k,

ν =
4 k M2 − 2 (k + 2) M2

1

k M2 − (k + 2) M2
1

and d = (ν − 2) M1 / ν,

where

M1 = E(Wf ) =
k∑
i=1

wi mi

mi − 2

and

M2 = E(Wf )
2 =

k∑
i=1

3 w2
i m

2
i

(mi − 2)(mi − 4)
+ 2

k−1∑
i=1

k∑
j=i+1

wi wj mi mj

(mi − 2) (mj − 2)
,

see Jordan and Krishnamoorthy (1996).

Yu, Sun, and Sinha (1999) derived exact 100(1− α)% confidence intervals for µ using

p-values of the F -test statistics Fi from Eq. (2.20). Recall that Fi is a F1,ni−1-distributed

random variable, then the ith p-value Pi is defined as

Pi =

∫ ∞
Fi

hi(x) dx ,

where hi(x) denotes the probability density function of the F -distribution with 1 and

(ni−1) degrees of freedom. Note that P1, . . . , Pk are independently uniformly distributed

random variables on the unit interval.
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There are several methods for combining p-values, see Hedges and Olkin (1985), that

can be used for constructing exact confidence intervals for µ. We restrict the presentation

here to the two most familiar methods, the inverse normal method by Stouffer et al. (1949)

and the inverse χ2-method by Fisher (1932). The general construction principle for the

confidence intervals is the inversion of the acceptance region a family of level-α-tests.

Note that by using Tippett’s minimum p-value method, one obtains the interval CI(6)(µ)

from Eq. (2.22), see Yu, Sun, and Sinha (1999).

Using the inverse normal method, hypotheses about µ will be rejected if∑k
i=1 Φ−1(Pi)√

k
< zα,

where Φ−1 denotes the inverse of the cumulative distribution function Φ of the standard

normal distribution. Consequently, an exact 100(1−α)% confidence interval for µ is given

by inverting the acceptance region, that is,

CI(9)(µ) :

{
µ :

∑k
i=1 Φ−1(Pi)√

k
> zα

}
. (2.27)

Note that this approach does not necessarily yield a genuine interval.

Using Fisher’s inverse χ2-method, hypotheses about µ will be rejected if

−2
k∑
i=1

ln(Pi) > χ2
2k;1−α,

where χ2
2k;1−α denotes the (1−α)-quantile of a χ2-distribution with 2 k degrees of freedom.

Again, by inverting the acceptance region, we obtain an exact 100(1 − α)% confidence

interval for µ as

CI(10)(µ) :

{
µ : −2

k∑
i=1

ln(Pi) < χ2
2k;1−α

}
. (2.28)

Like the interval (2.27), the interval (2.28) is not necessarily a genuine interval. Yu, Sun,

and Sinha (1999) derived sufficient conditions for the inverse χ2-method and the inverse

normal method to produce genuine intervals. Moreover, in a small simulation study for

k = 2 populations, they showed that the interval with the inverse χ2-method outperforms
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the other p-value based exact confidence intervals for µ in terms of expected length. Com-

pared to the other exact intervals, they recommended the use of Fairweather’s interval,

when the two population variances are close and small, followed by the interval with in-

verse χ2-method and Jordan and Krishnamoorthy’s interval. When the two variances are

widely apart, they recommended the use of the inverse χ2-method followed by Jordan and

Krishnamoorthy (1996) and Fairweather (1972).

Hartung and Knapp (2005b) used the t-test statistics ti from Eq. (2.19) and suggested

two broad classes of exact 100(1 − α)% confidence intervals for µ. Let Ftni−1 be the

cumulative distribution function of the t-distribution with (ni − 1) degrees of freedom.

Then it holds

Ftni−1(ti) =: ui ∼ U(0, 1) and Φ−1(ui) ∼ N(0, 1),

where U(0, 1) stands for the uniform distribution on the unit interval. Let us consider the

weighted inverse normal combination statistic

Z(µ) =
k∑
i=1

√
γi∑k
j=1 γj

Φ−1
(
Ftni−1(ti)

)
(2.29)

with some positive weights γi, i = 1, . . . , k. Clearly, Z(µ) is a standard normal random

variable. One possible choice of positive weights is γi = 1, i = 1, . . . , k. This means

that the precision of each result is only represented through the cumulative distribution

function Ftni−1 . Since the results of larger experiments are usually more precise, a natural

choice of the weights γi may be the sample size ni or the degrees of freedom ni − 1.

The functions Ftni−1(·) and Φ−1(·) are monotone increasing functions in their argu-

ments (·), so that Z(µ) from Eq. (2.29) is a monotone decreasing function in µ. Conse-

quently, an exact 100(1− α)% confidence interval for µ is given by

CI(11)(µ) : [ µL,Z ; µU,Z ] , (2.30)

where the bounds µL,Z and µU,Z are the unique solutions for µ of the equations

Z(µ) = Φ−1(1− α/2) and Z(µ) = Φ−1(α/2) .

A second class of exact confidence intervals for µ suggested by Hartung and Knapp

(2005b) is based on the inverse χ2-method. Let G−1
γi

denote the inverse of the cumulative
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distribution function Gγi
of a χ2-distribution with γi degrees of freedom. The general

inverse χ2-combination statistic is then given by

S(µ) =
k∑
i=1

G−1
γi

(
Ftni−1(ti)

)
. (2.31)

Clearly, S(µ) is a χ2-distributed random variable with γΣ =
∑k

i=1 γi degrees of freedom.

Since Ftni−1(·) and G−1
γi

(·) are monotone increasing functions in their arguments (·), S(µ)

is monotone decreasing in µ. Consequently, an exact 100(1− α)% confidence interval for

µ is given by

CI(12)(µ) : [ µL,S ; µU,S ] , (2.32)

where the bounds µL,S and µU,S are the unique solutions for µ of the equations

S(µ) = χ2
γΣ;1−α/2 and S(µ) = χ2

γΣ;α/2 .

Table 2.1 contains the simulation results concerning the expected lengths of the exact

confidence intervals (2.30) and (2.32) for k = 2 populations. For interval (2.30), we

considered the weights γi = 1 and γi = ni, i = 1, . . . , k. For interval (2.32), we considered

the weights γi = 2, that is, the weights of Fisher’s (1932) method for combining p-values,

and again the sample sizes γi = ni, i = 1, . . . , k. We used the simulation design from Yu,

Sun, and Sinha (1999).

We observe from Table 2.1, that the exact intervals CI(11) based on the inverse normal

method are always shorter than the exact intervals CI(12) based on the inverse χ2-method.

For the intervals CI(12), the weights equal to the sample sizes always produce on average

shorter intervals than the constant weights. For the intervals CI(11), the intervals using

the sample sizes as weights are on average shorter than the intervals with the constant

weights if the smaller sample size is associated with the larger variance. If the smaller

sample size is associated with the smaller variance, the intervals using constant weights

are on average shorter.
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Table 2.1. Comparison of expected lengths of four exact confidence

intervals for µ given a nominal confidence coefficient of 1− α = 0.95

Sample Standard Average length

size deviation CI(11) CI(11) CI(12) CI(12)

n1 n2 σ1 σ2 γi = 1 γi = ni γi = 2 γi = ni
7 10 1 0.5 0.689 0.664 0.771 0.679

7 10 1 1 1.032 1.028 1.080 1.038

7 10 1 5 2.107 2.279 2.594 2.508

7 10 1 10 2.610 2.952 4.169 3.774

7 10 1 20 3.036 3.601 7.073 5.929

10 7 1 0.5 0.730 0.751 0.773 0.768

10 7 1 1 1.035 1.030 1.081 1.039

10 7 1 5 1.826 1.687 2.706 1.890

10 7 1 10 2.081 1.867 4.482 2.469

10 7 1 20 2.285 2.003 8.049 3.553

10 10 1 0.5 0.640 0.640 0.697 0.654

10 10 1 1 0.936 0.936 0.977 0.944

10 10 1 5 1.732 1.732 2.349 1.910

10 10 1 10 2.021 2.021 3.843 2.623

10 10 1 20 2.233 2.233 6.761 3.847

10 15 1 0.5 0.544 0.523 0.617 0.531

10 15 1 1 0.830 0.825 0.873 0.832

10 15 1 5 1.635 1.780 2.065 1.933

10 15 1 10 1.946 2.213 3.300 2.773

10 15 1 20 2.177 2.582 5.680 4.223

15 10 1 0.5 0.583 0.602 0.620 0.612

15 10 1 1 0.831 0.826 0.874 0.833

15 10 1 5 1.390 1.280 2.151 1.384

15 10 1 10 1.556 1.399 3.623 1.692

15 10 1 20 1.662 1.469 6.563 2.181

21 21 1 0.5 0.421 0.421 0.463 0.426

21 21 1 1 0.622 0.622 0.653 0.625

21 21 1 5 1.090 1.090 1.575 1.153

21 21 1 10 1.221 1.221 2.583 1.413

21 21 1 20 1.303 1.303 4.632 1.768
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2.3 Generalized Confidence Intervals

The concept of generalized p-values was first introduced by Tsui and Weerahandi (1989)

to deal with the statistical testing problem in which nuisance parameters are present, and

it is difficult or impossible to obtain a non-trivial test with a fixed level of significance.

Weerahandi (1993) then introduced the concept of generalized confidence intervals in this

setting. Although, a lot of exact confidence intervals for the common mean µ exist, see

Section 2.2, the generalized confidence interval approach may be an alternative in the

common mean problem as some of the exact confidence intervals do not always yield

genuine intervals.

The general setup for constructing a generalized confidence interval is as follows: Let

X be a random quantity having a density function f(X|ζ), where ζ = (θ,η) is a vector

of unknown parameters, θ is the parameter of interest, and η is a vector of nuisance

parameters. Suppose we are interested in a confidence interval for θ. Let x denote the

observed value of X and consider the generalized variable T (X;x, ζ), which depends on

the observed value x and the parameters ζ, and satisfies the following requirements:

(A) The distribution of T (X;x, θ,η) does not depend on any unknown parameters.

(B) The observed value of T (X;x, θ,η) is free of the nuisance parameters.

Then, we say T (X;x, θ,η) is generalized pivotal quantity. If t1 and t2 are such that

P(t1 ≤ T (X;x, θ,η) ≤ t2) = 1− α, (2.33)

then,

{θ : t1 ≤ T (X;x, θ,η) ≤ t2}

is a 100(1 − α)% generalized confidence interval for θ. For example, if the value of

T (X;x, θ,η) at X = x is θ, then

[T (x;α/2) , T (x; 1− α/2)]

is a (1 − α) confidence interval for θ, where T (x;κ) stands for the κth quantile of

T (X;x, θ,η).
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Recall that we have independent samples from k normal populations with common

mean µ and possibly unequal variances σ2
i , i = 1, . . . , k. The sample sizes ni, i = 1, . . . , k,

may differ from sample to sample. Let Ȳi and S2
i be the sample mean and sample variance

in the ith population. It is noted that Ȳi and S2
i are stochastically independent with

Ȳi ∼ N

(
µ,
σ2
i

ni

)
, Ui =

(ni − 1) S2
i

σ2
i

=
Vi
σ2
i

∼ χ2
ni−1, i = 1, . . . , k. (2.34)

Let ȳi and s2
i denote the observed values of Ȳi and S2

i , and vi stands for the observed

value of Vi.

Krishnamoorthy and Lu (2003) considered a weighted linear combination of sample

generalized pivotal quantities. Within each sample, a generalized pivotal quantity for µ

is given as

Ti = ȳi −
(
Ȳi − µ
σi/
√
ni

)√
σ2
i vi
ni Vi

= ȳi −
Zi√
Ui

√
vi√
ni
,

= ȳi − ti
si√
ni
, (2.35)

with Zi ∼ N(0, 1) and ti =
√
ni − 1 Zi/

√
Ui ∼ tni−1, i = 1, . . . , k. A generalized pivotal

quantity for σ2
i is given as

Ri =
σ2
i

Vi
vi =

vi
Qi

, Qi =
Vi
σ2
i

∼ χ2
ni−1, i = 1, . . . , k. (2.36)

Define Ȳ = (Ȳ1, . . . , Ȳk)
′ and V = (V1, . . . , Vk)

′ and let be ȳ and v the corresponding

observed values. Then, the generalized pivotal quantity for the common mean µ is given

as

TKL
(
Ȳ ,V ; ȳ,v

)
=

∑k
i=1 Wi Ti∑k
j=1 Wj

(2.37)

with

Wi = ni Qi/vi = ni R
−1
i .

The generalized pivotal quantity TKL fulfills the two conditions (A) and (B) above and the

observed value of TKL is µ. Consequently, GCI1(µ) :
(
TKL;α/2, TKL;1−α/2

)
is a generalized
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confidence interval for µ. Note that Krishnamoorthy and Lu (2003) used two different χ2-

random variables Ui and Qi in the definitions of Ti and Ri even though they are related to

the same sample sum of squares. As Krishnamoorthy and Lu (2003) pointed out, the use

if the same χ2-random variable in the generalized pivotal quantity produced confidence

limits that are too liberal. Since closed-form expressions for the required quantiles are

not available, they may be estimated by simulating the distribution of TKL
(
Ȳ ,V ; ȳ,v

)
using the following algorithm:

For given data (ȳi, s
2
i , ni), i = 1, . . . k:

For j = 1, . . . ,m:

1. Generate tn1−1, . . . , tn−1.

2. Generate Qi χ
2
ni−1, i = 1, . . . , k.

3. Compute W1, . . . ,Wk.

4. Compute TKL,j =
∑k

i=1 Wi

(
ȳi − ti si/

√
ni
) /∑k

j=1Wj .

(end j loop)

Compute the α/2- and (1− α/2)-quantile of TKL,1, . . . , TKL,m.

Then, (TKL;α/2, TKL;1−α/2) is a 100(1− α)% generalized confidence interval on µ.

Lin and Lee (2005) first considered the best linear unbiased estimator for µ assuming

that the variances σ2
i , i = 1, . . . , k, are known. This estimator is given as, see Eq. (2.2),

µ̂ =

∑k
i=1 ni Ȳi/σ

2
i∑k

j=1 nj/σ
2
j

(2.38)

with

µ̂ ∼ N

µ, [ k∑
i=1

(ni/σ
2
i )

]−1
 .

Consequently, √√√√ k∑
i=1

(ni/σ2
i ) (µ̂− µ) = Z ∼ N(0, 1).
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The generalized pivotal quantity for µ is then given as

TLL
(
Ȳ ,V ; ȳ,v

)
=

∑k
i=1(ni/σ

2
i ) ȳi (Vi/vi)∑k

j=1(nj/σ2
j ) (Vj/vj)

−

√∑k
i=1 ni/σ

2
i (µ̂− µ)√∑k

j=1(nj/σ2
j ) (Vj/vj)

=

∑k
i=1 ni Ui ȳi/vi∑k
j=1 nj Uj/vj

− Z√∑k
j=1 nj Uj/vj

=

∑k
i=1Wi ȳi∑k
j=1Wj

− Z√∑k
j=1Wj

(2.39)

with

Wi = ni Ui/vi, i = 1, . . . , k.

The generalized pivotal quantity TLL fulfills the two conditions (A) and (B) and the

observed value of TLL is µ. Consequently, GCI2(µ) :
(
TLL;α/2, TLL;1−α/2

)
is a generalized

confidence interval for µ. Again, closed-form expressions for the required quantiles are not

available, but they may be estimated by simulating the distribution of TLL
(
Ȳ ,V ; ȳ,v

)
using the following algorithm:

For given data (ȳi, s
2
i , ni), i = 1, . . . k:

For j = 1, . . . ,m:

1. Generate Z ∼ N (0, 1).

2. Generate Ui ∼ χ2
ni−1, i = 1, . . . , k.

3. Compute W1, . . . ,Wk.

4. Compute TLL,j =
∑k

i=1 Wi ȳi
/∑k

j=1 Wj − Z
/√∑k

i=1Wi.

(end j loop)

Compute the α/2- and (1− α/2)-quantile of TLL,1, . . . , TLL,m.

Then, (TLL;α/2, TLL;1−α/2) is a 100(1− α)% generalized confidence interval on µ.

A new third approach also starts with the best linear unbiased estimator µ̂ from

Eq. (2.38). Moreover, the statistic

V̂ar(µ̂) =
1

k − 1

(
k∑
i=1

ni
σ2
i

)−1 k∑
i=1

ni
σ2
i

(
Ȳi −

∑k
j=1 ni Ȳi/σ

2
i∑k

`=1 n`/σ
2
`

)2

(2.40)

is an unbiased estimator of the variance of µ̂ and stochastically independent of µ̂, see
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Hartung (1999). Hartung (1999) also showed that

(k − 1)
k∑
i=1

(ni/σ
2
i ) V̂ar(µ̂) (2.41)

is a χ2-distributed random variable with k − 1 degrees of freedom.

Consequently, (µ̂− µ)/

√
V̂ar(µ̂) is a t-distributed random variable with k − 1 degrees of

freedom.

A new generalized pivotal quantity is then given by

Tnew
(
Ȳ ,V ; ȳ,v

)
=

∑k
i=1 ni Ui ȳi/vi∑k
j=1 nj Uj/vj

− tk−1

√√√√ 1

k − 1

(
k∑
i=1

ni Ui
vi

)−1 k∑
i=1

ni Ui
vi

(
ȳi −

∑k
j=1(nj Uj/vj) ȳj∑k
`=1(n` U`/v`)

)2

=

∑k
i=1Wi ȳi∑k
j=1Wj

− tk−1

√√√√ 1

k − 1

(
k∑
i=1

Wi

)−1 k∑
i=1

Wi

(
ȳi −

∑k
j=1 Wj ȳj∑k
`=1W`

)2

(2.42)

with

Wi = ni Ui/vi, i = 1, . . . , k.

Again, the two conditions (A) and (B) above are fulfilled and the observed value of Tnew

is µ. Consequently, GCI3(µ) :
(
Tnew;α/2, Tnew;1−α/2

)
is a generalized confidence interval

for µ. As closed-form expressions for the required quantiles are not available, they may

be estimated by simulating the distribution of Tnew
(
Ȳ ,V ; ȳ,v

)
using the algorithm:

For given data (ȳi, s
2
i , ni), i = 1, . . . k:

For j = 1, . . . ,m:

1. Generate tk−1.

2. Generate Ui ∼ χ2
ni−1, i = 1 . . . , k.

3. Compute W1, . . . ,Wk.

4. Compute Tnew,j =
∑k

i=1Wi ȳi
/∑k

j=1 Wj

− tk−1

[
1/(k − 1)

(∑k
i=1Wi

)−1∑k
i=1 Wi

(
ȳi −

∑k
j=1Wj ȳj

/∑k
`=1W`

)2
]1/2

.

(end j loop)
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Compute the α/2- and (1− α/2)-quantile of Tnew,1, . . . , Tnew,m.

Then, (Tnew;α/2, Tnew;1−α/2) is a 100(1− α)% generalized confidence interval on µ.

In Table 2.2, results for simulated actual confidence coefficients and expected lengths

of three generalized confidence intervals GCI1(µ), GCI2(µ), and GCI3(µ) are arranged.

We used the same simulation design like in Table 2.1.

This small simulation study shows that the generalized confidence interval GCI1(µ)

is either slightly conservative or almost exact as already pointed out by Krishnamoorthy

and Lu (2003). The Lin and Lee (2005) generalized confidence interval GCI2(µ), however,

is either (slightly or moderately) liberal or almost exact, but never conservative. The

actual confidence coefficient of the newly proposed generalized confidence interval GCI3(µ)

always lies between the two other confidence coefficients. It is either slightly liberal or

almost exact. But the average length of GCI3(µ) is not acceptable. Since for k = 2

populations, the t-distribution with one degree of freedom is involved in the calculation,

GCI3(µ) is simply too wide. The other two generalized confidence intervals have nearly

comparable average length. Since the actual confidence coefficient of GCI2(µ) is always

less than or equal to the actual of confidence coefficient of GCI1(µ), GCI2(µ) is on average

always shorter than GCI1(µ). Compared to the average lengths of the CI11, see Table 2.1,

it is noteworthy that the average length of GCI1(µ) is often smaller than the average

length of CI11, when GCI1(µ) almost exactly attains the nominal confidence coefficient.
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Table 2.2. Simulated confidence coefficients (in %) and expected lengths of three

generalized confidence intervals for µ given a nominal level of 1− α = 0.95

Sample Standard

size deviation Confidence coefficient Average length

n1 n2 σ1 σ2 GCI1 GCI2 GCI3 GCI1 GCI2 GCI3

7 10 1 0.5 95.8 94.4 94.9 0.680 0.619 2.869

7 10 1 1 95.9 93.6 94.6 1.139 1.004 4.372

7 10 1 5 95.6 94.5 94.8 1.799 1.691 7.980

7 10 1 10 95.1 94.7 94.9 1.797 1.752 8.698

7 10 1 20 94.8 94.7 94.8 1.795 1.776 8.975

10 7 1 0.5 95.5 93.5 94.1 0.778 0.691 3.028

10 7 1 1 95.8 93.2 94.2 1.139 1.003 4.367

10 7 1 5 95.2 94.5 94.9 1.429 1.377 7.090

10 7 1 10 95.0 94.7 94.7 1.407 1.391 7.441

10 7 1 20 95.0 95.0 94.5 1.395 1.390 7.349

10 10 1 0.5 95.1 93.7 94.6 0.644 0.593 2.737

10 10 1 1 95.6 93.6 94.3 1.019 0.919 4.146

10 10 1 5 95.4 94.8 94.8 1.394 1.349 6.712

10 10 1 10 95.3 95.0 94.9 1.399 1.384 7.057

10 10 1 20 94.8 94.8 95.1 1.389 1.384 7.182

10 15 1 0.5 95.3 94.2 94.8 0.522 0.493 2.398

10 15 1 1 95.4 93.8 93.9 0.882 0.811 3.752

10 15 1 5 95.1 94.4 94.9 1.381 1.334 6.559

10 15 1 10 95.2 94.9 95.2 1.394 1.377 6.904

10 15 1 20 94.9 94.9 94.8 1.389 1.385 6.977

15 10 1 0.5 95.6 94.1 94.5 0.605 0.560 2.594

15 10 1 1 95.7 93.8 94.5 0.881 0.810 3.718

15 10 1 5 95.0 94.8 95.1 1.086 1.067 5.545

15 10 1 10 94.8 94.7 95.2 1.087 1.082 5.703

15 10 1 20 95.0 95.0 95.0 1.087 1.085 5.772

21 21 1 0.5 95.3 94.7 94.9 0.409 0.395 1.940

21 21 1 1 95.5 94.4 94.9 0.647 0.617 3.007

21 21 1 5 95.0 94.8 95.0 0.887 0.877 4.470

21 21 1 10 95.0 94.9 94.9 0.895 0.892 4.669

21 21 1 20 95.1 95.1 95.0 0.896 0.895 4.641
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2.4 Tests of Homogeneity

The crucial assumption in the previous sections is that there is a common mean in all

the populations or studies. In this section we present some selected tests of testing

homogeneity of normal means which can be extended to testing homogeneity of other

effect sizes in later chapters. A more detailed discussion of homogeneity tests in the

common mean problem can be found in Hartung, Knapp, and Sinha (2008, Chapter 6).

Let Yij be the observation on the jth subject of the ith population/study, i = 1, . . . , k

and j = 1, . . . , ni. Then the standard one-way ANOVA model is given by

Yij = µi + eij = µ+ βi + eij, i = 1, . . . , k, j = 1, . . . , ni,

where µ is the common mean for all the k populations, βi is the effect of population i

with
∑k

i=1 βi = 0, and eij are error terms which are assumed to be mutually independent

and normally distributed with

E(eij) = 0, Var(eij) = σ2
i , i = 1, . . . , k, j = 1, . . . , ni.

Under the above set up, we are interested in testing the hypothesis

H0 : µ1 = · · · = µk

or, equivalently,

H0 : β1 = · · · = βk.

Assuming equal error variances, one uses the standard likelihood ratio F -test for test-

ing homogeneity which is also known to be the optimum from an invariance point of view.

This test statistic, say Fan, is given by

Fan =
N − k
k − 1

∑k
i=1 ni(Ȳi. − Ȳ..)2∑k
i=1(ni − 1)S2

i

, (2.43)

with N =
∑k

i=1 ni, Ȳi. =
∑ni

j=1 Yij/ni, Ȳ.. =
∑k

i=1 niȲi./N , and

S2
i =

∑ni

j=1(Yij − Ȳi.)2/(ni − 1).

Under the null hypothesis, Fan has an F -distribution with k− 1 and N − k degrees of

freedom. The test rejects H0 at level α if San > Fk−1,N−k;1−α, where Fk−1,N−k;1−α denotes
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the (1−α)-quantile of the F -distribution with k− 1 and N − k degrees of freedom. This

ANOVA F-test has the weakness of not being robust with respect to heterogeneity in the

intra-population error variances (Brown and Forsythe, 1974).

Based on the standard ANOVA F-test statistic, several modifications have been pro-

posed for testing equality of means in the case of heteroscedastic error variances, for

instance, the Brown-Forsythe (1974) test, a modification of the Brown-Forsythe test pro-

posed by Mehrotra (1997), or an approximate F -test by Asiribo and Gurland (1990).

For testing H0 in case of heteroscedastic error variances, Cochran (1937) suggested

the test statistic

QC =
k∑
i=1

v̂i

(
Ȳi. −

k∑
j=1

hj Ȳj.

)2

, (2.44)

where v̂i = ni/S
2
i , hi = v̂i/

∑k
i=1 v̂i. Under H0, Cochran’s statistic is approximately χ2-

distributed with k−1 degrees of freedom. The test rejects H0 at level α if QC > χ2
k−1;1−α,

where χ2
k−1;1−α is the (1−α)-quantile of the χ2-distribution with k−1 degrees of freedom.

Cochran’s test is often used as the standard test for testing homogeneity of effect sizes in

meta-analysis. The popularity of this test stems from the fact that the test statistic can

be easily adapted to other parameters than the normal mean. However, in the common

mean problem, Cochran’s test can be very liberal for small or moderate sample sizes in

the groups and, thus, cannot be recommended for practical use in this situation, see the

extensive simulation study by Hartung, Argac, and Makambi (2002).

An improved test based on QC from Eq. (2.44) in terms of attaining the nominal level

was suggested by Welch (1951). The Welch test statistic is given by

QW =

∑k
i=1 v̂i

(
Ȳi. −

∑k
j=1 hj Ȳj.

)2

(k − 1) + 2 [(k − 2)/(k + 1)]
∑k

i=1 (1− hi)2 /(ni − 1)
, (2.45)

where v̂i = ni/S
2
i , hi = v̂i/

∑k
i=1 v̂i. Under H0, the statistic QW has an approximate

F -distribution with k − 1 and νg degrees of freedom, where

νg =
(k2 − 1)/3∑k

i=1 (1− hi)2 /(ni − 1)
.

This test rejects H0 at level α if QW > Fk−1,νg ;1−α. The basic idea of the Welch test is to
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approximate the distribution of Cochran’s test statistic through a scaled F -distribution,

say c Fk−1,νg , so that the first two moments of both distributions coincide under H0.

Cochran’s test as well as Welch’s test use estimated weights v̂i = ni/S
2
i . Since we

know that

E(v̂i) = E

(
ni
S2
i

)
= ci

ni
σ2
i

,

where ci = (ni − 1)/(ni − 3), an unbiased estimator of ni/σ
2
i is ni/(ci S

2
i ). Defining

v̂∗i = ni/(ci S
2
i ), Hartung, Argac, and Makambi (2002) proposed a test they called adjusted

Welch test, denoted by Qadj.W, which is given by

Qadj.W =

∑k
i=1 v̂

∗
i (Ȳi. −

∑k
j=1 h

∗
j Ȳj.)

2

(k − 1) + 2 [(k − 2)/(k + 1)]
∑k

i=1 (1− h∗i )
2 /(ni − 1)

, (2.46)

where h∗i = v̂∗i /
∑k

j=1 v̂
∗
j , i = 1, . . . , k. Under H0, the adjusted Welch statistic, Qadj.W, is

distributed approximately as an F -variable with k − 1 and ν∗g degrees of freedom, where

ν∗g =
(k2 − 1)/3∑k

i=1 (1− h∗i )
2 /(ni − 1)

.

The test rejects H0 at level α if Qadj.W > Fk−1,ν∗g ;1−α.

Note that the numerator of the test statistic (2.46) can be seen as an adjusted Cochran

statistic, that is,

Qadj.C =
k∑
i=1

v̂∗i

(
Ȳi. −

k∑
j=1

h∗j Ȳj.

)2

(2.47)

and this test rejects H0 at level α if Qadj.C > χ2
k−1;1−α.

Hartung, Argac, and Makambi (2002) reported that the use of the unbiased weights

v̂∗i in test statistic (2.46) leads to a very conservative test. Therefore, they considered

general weights, say ṽ∗i = ni/(ϕi S
2
i ), i = 1, . . . , k, with ϕi = (ni + δ1)/(ni + δ2) and

δ1 and δ2 are real numbers satisfying 1 ≤ ϕi ≤ ci = (ni − 1)/(ni − 3). Replacing v̂∗i

by ṽ∗i in Eq. (2.46) defines a new class of Welch-type test statistics. The motivation for

considering adjustments of the Welch test is based on the observation that the Welch

test can be liberal for small sample sizes in the groups and increasing number of groups.

Based on their simulation study, Hartung, Argac, and Makambi (2002) recommended the

use of ϕi = (n1 + 2)/(ni + 1) as correction factor for adjusting the weights ṽ∗i .
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Using the simulation pattern for k = 9 groups from Hartung, Argac, and Makambi

(2002), which is reproduced in Table 2.3., we investigated the actual level of Cochran’s

test, QC from Eq. (2.44), of the adjusted Cochran test, Qadj.C from Eq. (2.47), of Welch’s

test, QW from Eq. (2.45), of the adjusted Welch test, Qadj.W from Eq. (2.46), and of the

recommended adjusted Welch test with ϕi = (n1 + 2)/(ni + 1), denoted by Qadj.W(ϕ), via

Monte Carlo simulation. The results of the simulation study are presented in Table 2.4.

As Hartung, Argac, and Makambi (2002) already pointed out, Cochran’s test is very

liberal and cannot be recommended in this situation. The adjusted Cochran test corrects

this shortcoming rather well but is still a bit too liberal. The Welch test is too liberal

for small sizes. For increasing sample sizes, the actual level of the Welch test tends to

the nominal one, but in the present simulation scenario the test always remains a bit

too liberal. The adjusted Welch test, Qadj.W, is clearly too conservative and the other

adjusted Welch test, Qadj.W(ϕ), acts quite well for small sample sizes.
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Table 2.3. Sample designs for k = 9 groups

Samples size and variance in the groups

Pattern i 1 2 3 4 5 6 7 8 9

1 ni 5 5 5 5 5 5 5 5 5

σ2
i 4 4 4 4 4 4 4 4 4

2 ni 5 5 5 5 5 5 5 5 5

σ2
i 2 6 10 2 6 10 2 6 10

3 ni 10 10 10 10 10 10 10 10 10

σ2
i 4 4 4 4 4 4 4 4 4

4 ni 10 10 10 10 10 10 10 10 10

σ2
i 2 6 10 2 6 10 2 6 10

5 ni 5 10 15 5 10 15 5 10 15

σ2
i 4 4 4 4 4 4 4 4 4

6 ni 5 10 15 5 10 15 5 10 15

σ2
i 2 6 10 2 6 10 2 6 10

7 ni 5 10 15 5 10 15 5 10 15

σ2
i 10 6 2 10 6 2 10 6 2

8 ni 10 20 30 10 20 30 10 20 30

σ2
i 4 4 4 4 4 4 4 4 4

9 ni 10 20 30 10 20 30 10 20 30

σ2
i 2 6 10 2 6 10 2 6 10

10 ni 10 20 30 10 20 30 10 20 30

σ2
i 10 6 2 10 6 2 10 6 2

Table 2.4. Simulated actual significance level (in %) of

five homogeneity tests given a nominal level of α = 0.05.

Pattern QC Qadj.C QW Qadj.W Qadj.W(ϕ)

1 29.0 5.7 7.6 0.8 4.9

2 29.6 6.0 7.9 1.0 5.2

3 14.5 6.2 5.8 1.9 4.1

4 14.6 6.3 5.8 2.0 4.1

5 19.1 6.4 7.3 1.7 5.1

6 17.3 5.7 6.4 1.4 4.4

7 20.3 6.9 7.9 1.9 5.6

8 10.6 6.0 5.6 2.8 4.4

9 10.0 5.7 5.4 2.7 4.2

10 11.1 6.1 5.7 2.8 4.4
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Chapter 3

The One-Way Random Effects

Model

The crucial assumption in Chapter 2 is that the means are all equal in the several popu-

lations or studies. In Section 2.4, we discussed some selected tests for testing the equality

of means in several normal populations, for a more detailed discussion let us refer to

Hartung, Knapp, and Sinha (2008). Practically, these homogeneity tests are often used

as pre-tests for the choice of the appropriate model of analysis. In case, one cannot reject

the null hypothesis of equality of means, one feels confident in analyzing a common mean.

If the null hypothesis is rejected, the model to be analyzed will be the so-called one-way

random effects model, which is the topic of this chapter.

The derivation of the one-way random effects model can be seen from different views.

Using standard linear model theory, one assumes that there is extra variation additionally

to the within-population variability and this extra variation is due to random population-

by-subject interaction. This interaction term can be modelled as a random variable with

mean 0 and variance, say τ 2.

The second approach uses a normal-normal hierarchial model approach. The observa-

tional model assumes that each population has a normal mean, say µi, and variance σ2
i ,

i = 1, . . . , k, and each mean and variance can differ from population to population. In

the structural model, one assumes that the means µi are random variables coming from
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a super-population with normal mean µ and variance, say τ 2. The parameters µ and τ 2

are also called hyperparameters in this approach.

Both approaches finally lead to the one-way random effects model. Let Ȳi denote

the sample mean in the ith population, S2
i the sample variance, and ni the sample size,

i = 1, . . . , k.

Then, we have

Ȳi ∼ N

(
µ , τ 2 +

σ2
i

ni

)
and

(ni − 1) S2
i

σ2
i

∼ χ2
ni−1, i = 1, . . . , k, (3.1)

where τ 2 ≥ 0 stands for the variability between the populations and is also called the

heterogeneity parameter. The expected value µ is generally called overall mean. In case

τ 2 = 0, we have the common mean problem from Chapter 2. Note that (Ȳi, S
2
i , i =

1, . . . , k) are minimally sufficient statistics in model (3.1).

If the variances τ 2 and σ2
i , i = 1, . . . , k, are completely known, the maximum likelihood

estimator for µ in model (3.1) is given as

µ̂ =

∑k
i=1(τ 2 + σ2

i /ni)
−1 Ȳi∑k

j=1(τ 2 + σ2
j/nj)

−1
. (3.2)

The estimator (3.2) is also the minimum variance unbiased estimator under normality as

well as the best linear unbiased estimator without normality for estimating µ in model

(3.1). The variance of µ̂ is given by

Var(µ̂) =

[
k∑
i=1

(τ 2 + σ2
i /ni)

−1

]−1

.

In practice, the within-population variances σ2
i , i = 1, . . . , k, can be unbiasedly esti-

mated using the sample variances S2
i . The heterogeneity parameter τ 2, however, has to

be estimated using the sufficient statistics (Ȳi, S
2
i ), i = 1, . . . , k.

3.1 Estimators of the Heterogeneity Parameter

In the literature, a lot of estimators for τ 2 were proposed, see Rao, Kaplan, Cochran

(1981). In this section, we review one class of estimators based on quadratic forms of Ȳi,
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i = 1, . . . , k, and the estimators are then deduced by applying the method of moments

principle. Cochran (1954) set the sample variance of the Ȳi’s, that is,

S2
Y =

1

k − 1

k∑
i=1

(
Ȳi − Ȳ

)2
, (3.3)

with Ȳ =
∑k

i=1 Ȳi/k, equal to its expected value and solves for τ 2. Replacing σ2
i through

the sample variance S2
i , the method of moments estimator for τ 2, also called ANOVA-type

estimator, is given as

τ̂ 2
AN =

1

k − 1

k∑
i=1

(
Ȳi − Ȳ

)2 − 1

k

k∑
i=1

S2
i

ni
. (3.4)

The estimator τ 2
AN may lead to a negative estimate of τ 2, and hence it is used by enforcing

non-negativity in practice, that is, max{0, τ̂ 2
AN}.

A widely used estimator for τ 2, using a similar approach like Cochran (1954), is the

method of moments estimator proposed by DerSimonian and Laird (1986). They use

Cochran’s (1954) statistic

Q2
C =

k∑
i=1

vi
(
Ȳi − Ȳv

)2
, (3.5)

where vi = ni/σ
2
i and Ȳv =

∑k
i=1 vi Ȳi/

∑k
i=1 vi. By equating Q2

C to its expected value and

solving for τ 2 they find the method of moments estimator for τ 2. Replacing σ2
i through

the sample variance S2
i in practice, the method of moments estimator for τ 2, also called

DerSimonian and Laird estimator, is given as

τ̂ 2
DSL =

Q̂2
C − (k − 1)∑k

i=1 v̂i −
∑k

i=1 v̂
2
i /
∑k

i=1 v̂i
, (3.6)

where v̂i = ni/S
2
i and Q̂2

C is obtained by replacing vi by v̂i in Q2
C. The estimator τ̂ 2

DSL may

also yield a negative estimate for the heterogeneity parameter, and hence the truncated

version max{0, τ̂ 2
DSL} is usually used.

Recently, a general method of moments estimator for τ 2 was considered by Kacker

(2004) using general weights. Note that Hartung, Böckenhoff, and Knapp (2003) already

developed methods for combining results using general weights, see Section 3.4.
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Using Kacker’s approach, suppose Ȳa =
∑k

i=1 ai Ȳi/
∑k

i=1 ai, where a1, . . . , ak are any

positive constants. Then it holds

E

[
k∑
i=1

ai
(
Ȳi − Ȳa

)2

]

=
k∑
i=1

ai
(
τ 2 + σ2

i /ni
)
−

k∑
i=1

a2
i

(
τ 2 + σ2

i /ni
)/ k∑

j=1

aj

= τ 2

(
k∑
i=1

ai −
∑k

j=1 a
2
j∑k

`=1 a`

)
+

(
k∑
i=1

ai
σ2
i

ni
−
∑k

j=1 a
2
j σ

2
j/nj∑k

`=1 a`

)
. (3.7)

By replacing σ2
i through S2

i , a general method of moments estimator of τ 2 can be obtained

as

τ̂ 2
GMM =

k∑
i=1

ai
(
Ȳi − Ȳa

)2 −

(
k∑
i=1

ai
S2
i

ni
−
∑k

j=1 a
2
j S

2
j /nj∑k

`=1 a`

)
k∑
i=1

ai −
∑k

j=1 a
2
j∑k

`=1 a`

. (3.8)

In Eq. (3.8), a1, . . . , ak are any positive values reflecting weights assigned to the k studies.

Each set of values for the weights yields an alternative estimator for τ 2. Note that for

ai = 1/k, i = 1, . . . , k, the estimator (3.8) is the ANOVA-type estimator (3.4), and for

ai = ni/S
2
i , i = 1, . . . , k, the estimator (3.8) is the DerSimonian-Laird estimator (3.6).

Again, the general method of moments estimator τ̂ 2
GMM can yield negative values, and

hence the truncated version, max {0, τ̂ 2
GMM}, is used in practice.

With ai = 1/(τ 2 + σ2
i /ni), i = 1, . . . , k, equation (3.7) reduces to

E

[
k∑
i=1

ai
(
Ȳi − Ȳa

)2

]
= k − 1. (3.9)

By substituting S2
1 , . . . , S

2
k for σ2

1, . . . , σ
2
k we get the Mandel-Paule (1970) estimating equa-

tion

Q(τ 2) =
k∑
i=1

w̃i
[
Ȳi − Ȳw̃(τ 2)

]2
= k − 1, (3.10)

where Ȳw̃(τ 2) =
∑k

i=1 w̃iȲi/
∑k

i=1 w̃i and w̃i = 1/(τ 2 + S2
i /ni), i = 1, . . . , k. The solution

of Eq. (3.10), say τ̂ 2
MP, is called the Mandel-Paule estimator for τ 2. Since Q(τ 2) is a
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strictly monotone decreasing function in τ 2, see, for instance, Hartung and Knapp (2005a),

the solution is unique and exists provided that Q(0) > k − 1. If Q(0) < k − 1, the

Mandel-Paule estimator is set to zero. Like the general method of moments estimator

τ̂ 2
GMM, the Mandel-Paule estimator τ̂ 2

MP does not require a normality assumption. Ruhkin,

Biggerstaff, and Vangel (2000) investigated the properties of τ̂ 2
MP under normality and

showed that τ̂ 2
MP is close to the conditionally restricted maximum likelihood estimator

for τ 2; the condition being that the observed sample variance s2
1, . . . , s

2
k be regarded as

the true within-population variances σ2
1, . . . , σ

2
k. Note that the estimating equations for

the (conditionally) maximum likelihood and restricted maximum likelihood estimator are

presented in the next section.

Since the truncated version of the general method of moments estimator has a positive

probability of yielding zero as the estimate, this estimator may not be the appropriate

choice especially if heterogeneity is actually present. Following the lines in Hartung and

Makambi (2002), we can construct an always non-negative estimator for τ 2 using the

basic quadratic form of the general method of moments estimator. For simplifying the

notation, let be

Qa =
k∑
i=1

ai
(
Ȳi − Ȳa

)2
,

A =
k∑
i=1

ai −
∑k

j=1 a
2
j∑k

`=1 a`
,

and

B(σ2) =
k∑
i=1

ai
σ2
i

ni
−
∑k

i=1 a
2
i σ

2
i /ni∑k

i=1 ai

with σ2 = (σ2
1, . . . , σ

2
k)
′. Then we can briefly write, see Eq. (3.7),

E(Qa) = τ 2 A+B(σ2).

Interpret Q1(a) = Qa/A as a positive estimate of τ 2 and define the estimator

τ̂ 2(δ) = δ Q1(a), δ > 0,
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then is holds

|Bias(τ̂ 2(δ))| = |E(δ Q1(a))− τ 2|

=
∣∣(δ − 1)τ 2 + δ B(σ2)/A

∣∣
≤

∣∣∣∣∣∣∣∣( δ − 1

δ

)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣( τ 2

B(σ2)/A

)∣∣∣∣∣∣∣∣
by the Cauchy-Schwarz inequality with ||(·)|| the Euclidean norm of (·). According to the

uniformly minimum bias principle by Hartung (1981) we have to minimize

(δ − 1)2 + δ2 for δ > 0

giving δ = 1/2.

To adjust for bias, let be τ̂ 2(η) = η Q1(a)/2 = η τ̂ 2(δ) such that

E

(
η τ̂ 2(δ) + η

B(σ̂2)

A

)
= E [Q1(a)]

with

B(σ̂2) =
k∑
i=1

ai
S2
i

ni
−
∑k

i=1 a
2
i S

2
i /ni∑k

i=1 ai
.

Since E[B(σ̂2)] = B(σ2), we have to choose

η =
2 E[Q1(a)]

E[Q1(a)] + 2 B(σ2)
.

For practical purpose, the desired non-negative estimator of τ 2 is given as

τ̂ 2
pos(η) =

Q1(a)

Q1(a) + 2 B(σ̂2)
Q1(a). (3.11)

Recently, Sidik and Jonkman (2005a) proposed another always non-negative hetero-

geneity estimator based on considerations from the linear regression model. Let Ȳ =

(Ȳ1, Ȳ2, . . . , Ȳk)
T be the vector of the sample means, then it holds

E(Ȳ ) = µ1k

and

Var(Ȳ ) = τ 2V ,
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where 1k is a vector of ones with dimension k×1 and V is a (k×k)-diagonal matrix with

entries σ2
i /(ni τ

2) + 1, i = 1, . . . , k. Assume that the ratios ri = σ2
i /(ni τ

2), i = 1, . . . , k,

are known, then the best linear unbiased estimator of µ is

µ̂r =

∑k
i=1(ri + 1)−1 Ȳi∑k
j=1(rj + 1)−1

.

An estimate of the variance of µ̂ is readily given as

V̂ar(µ̂r) =
τ̂ 2∑k

i=1(ri + 1)−1
,

where τ̂ 2 is an estimate of the heterogeneity variance. Using the weighted residual sum

of squares, an estimate of τ 2 is

τ̂ 2 =
(Ȳ − µ̂r1k)T V −1 (Ȳ − µ̂r1k)

k − 1
=

1

k − 1

k∑
i=1

(ri + 1)−1
(
Ȳi − µ̂r

)2
. (3.12)

However, the estimate (3.12) depends on the ratios ri which are usually unknown, and

each ratio depends on the heterogeneity parameter itself. To overcome this problem, Sidik

and Jonkman (2005a) proposed a two-step procedure. First, compute a crude estimator

of τ 2, say τ̂ 2
0 , and estimate the ratio ri by r̂i = S2

i /(ni τ
2
0 ), i = 1, . . . , k, and then replace

ri by r̂i in (3.12). This results in the final estimate

τ̂ 2
SJ =

1

k − 1

k∑
i=1

(r̂i + 1)−1
(
Ȳi − µ̂r̂

)2
. (3.13)

As a crude estimate of τ 2, Sidik and Jonkman (2005a) used

τ̂ 2
0 =

1

k

k∑
i=1

(
Ȳi − Ȳ

)2

with Ȳ the arithmetic mean of the Ȳi’s.

Finally, using the general approach of nonnegative minimum biased invariant quadratic

estimation of variance components proposed by Hartung (1981), Heine (1993) derived the

nonnegative minimum biased invariant quadratic estimator of τ 2 in the present model.

Let be N =
∑k

i=1 ni and if N − 2ni ≥ 0, i = 1, . . . , k, this estimator reads

τ̂ 2
PSD =

N2
∑k

i=1 n
2
i

∏
`′ 6=`(N − 2n`′)(Ȳi −

∑k
j=1 njȲj/N)2(∑k

`=1 n
2
` + 1

)∑k
`=1 n`(N − n`)

∏
`′ 6=`(N − 2n`′)

. (3.14)
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It is interesting to observe that the estimator (3.14) requires that the sample size in each

population or study must be less than or equal to the half of the total sample size. A

similar condition occurs when estimating the variance of the overall mean in the random

effects model with general weights to ensure the positiveness of the estimator, see Section

3.4 and Hartung, Böckenhoff, and Knapp (2003).

3.2 Confidence Intervals for the Heterogeneity Pa-

rameter

In this section we review several confidence intervals for the heterogeneity parameter.

Recall that

Ȳi ∼ N

(
µ , τ 2 +

σ2
i

ni

)
, i = 1, . . . , k,

then it holds for the log-likelihood function of µ and τ 2, assuming σ2
1, . . . , σ

2
k are known,

l(µ, τ 2) = −1

2

k∑
i=1

ln

(
τ 2 +

σ2
i

ni

)
− 1

2

k∑
i=1

(Ȳi − µ)2

τ 2 + σ2
i

. (3.15)

leaving out the additive constant. The two estimating equations for µ and τ 2 are

µ̂ =

∑k
i=1wi Ȳi∑k
j=1 wj

(3.16)

and

τ̂ 2 =

∑k
i=1w

2
i

[
(Ȳi − µ̂)2 − σ2

i /ni
]∑k

j=1w
2
j

(3.17)

with wi = 1/(τ 2 + σ2
i /ni), i = 1, . . . , k. Let µ̂ML and τ̂ 2

ML denote the ML estimators. A

confidence interval for τ 2 can then be obtained by profiling the likelihood ratio statistic,

see Hardy and Thompson (1996) and Biggerstaff and Tweedie (1997). Denote µ̃ as that

value of Eq. (3.16) with wi = 1/(τ̃ 2 +σ2
i /ni). Then, a 100(1−α)% confidence interval for

τ 2 is given by

CI1(τ 2) :
{
τ̃ 2 | − 2

[
l(µ̃, τ̃ 2)− l(µ̂ML, τ̂

2
ML)
]
< χ2

1;1−α
}

=
{
τ̃ 2 | l(µ̃, τ̃ 2) > l(µ̂ML, τ̂

2
ML)− χ2

1;1−α/2
}
. (3.18)
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Alternatively, one can base the confidence interval on the restricted log-likelihood. Fol-

lowing Viechtbauer (2007), it holds for the restricted log-likelihood for τ 2

lR(τ 2) = −1

2

k∑
i=1

ln(τ 2 + σ2
i /ni)−

1

2

k∑
i=1

1

τ 2 + σ2
i /ni

− 1

2

k∑
i=1

(Ȳi − µ̂)2

τ 2 + σ2
i /ni

. (3.19)

leaving out the additive constant. The estimating equation for τ 2 is given by

τ̂ 2 =

∑k
i=1w

2
i

[
(Ȳi − µ̂)2 − σ2

i /ni
]∑k

j=1w
2
j

+
1∑k
i=1 wi

, (3.20)

and let τ̂ 2
REML denote the REML estimate. Then, a 100(1 − α)% confidence interval for

τ 2 is given by

CI2(τ 2) :
{
τ̃ 2 | − 2

[
lR(τ̃ 2)− lR(τ̂ 2

REML)
]
< χ2

1;1−α
}

=
{
τ̃ 2 | lR(τ̃ 2) > lR(τ̂ 2

REML)− χ2
1;1−α/2

}
. (3.21)

In practice, the observed sample variances s2
1, . . . , s

2
k are substituted for σ2

1, . . . , σ
2
k and

then treated as known, true within-population variances in Eqs. (3.18) and (3.21), respec-

tively.

The asymptotic sampling variances of the ML and REML estimators of τ 2 can be

obtained by taking the inverse of the Fisher information. Following Viechtbauer (2007),

these variances are equal to

Var
(
τ̂ 2

ML

)
= 2

(
k∑
i=1

wi

)−1

(3.22)

and

Var
(
τ̂ 2

REML

)
= 2

 k∑
i=1

w2
i − 2

∑k
i=1w

3
i∑k

j=1wj
+

(∑k
i=1 w

2
i

)2

(∑k
j=1wj

)2


−1

, (3.23)

respectively. Estimates of the sampling variances are obtained by replacing wi through

ŵi = 1/(τ̂ 2
ML + s2

i /ni) or ŵi = 1/(τ̂ 2
REML + s2

i /ni) in Eqs. (3.22) and (3.23), respectively.

Based on the asymptotic normality of ML and REML estimates, 100(1− α)% Wald-

type confidence intervals for τ 2 are given by

CI3(τ 2) : τ̂ 2
ML ∓

√
V̂ar (τ̂ 2

ML) z1−α/2 (3.24)
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and

CI4(τ 2) : τ̂ 2
REML ∓

√
V̂ar (τ̂ 2

REML) z1−α/2. (3.25)

Sidik and Jonkman (2005a) recently suggested a new heterogeneity estimator, see

Section 3.1, and, based on this estimator, a method for obtaining a confidence interval

for τ 2. The proposed method works as follows. First, a rough estimate of τ 2 is calculated

with

τ 2
0 =

1

k

k∑
i=1

(
Ȳi − Ȳ

)2
,

where Ȳ is the sample average of the Yi’s. Next, calculate µ̂0 with Eq. (3.16), where

w∗i = 1/(τ̂ 2
0 + S2

i /ni). The heterogeneity estimator is then given by

τ̂ 2
SJ =

τ̂ 2
0

k − 1

k∑
i=1

w∗i
(
Ȳi − µ̂0

)2
. (3.26)

Based on the assumption that (k− 1)τ̂ 2
SJ/τ

2 approximately follows a χ2-distribution with

k− 1 degrees of freedom, an approximative 100(1−α)% confidence interval for τ 2 can be

obtained as

CI5(τ 2) :

(
(k − 1)τ̂ 2

SJ

χ2
k−1;1−α/2

,
(k − 1)τ̂ 2

SJ

χ2
k−1;α/2

)
. (3.27)

Biggerstaff and Tweedie (1997) proposed a confidence interval for τ 2 based on Cochran’s

homogeneity test statistic. Recall from Chapter 2 that for known within-study variances

this statistic is given as

QC =
k∑
i=1

vi

(
Ȳi. −

k∑
j=1

hj Ȳj.

)2

,

where vi = ni/σ
2
i , hi = vi/

∑k
i=1 vi. Biggerstaff and Tweedie (1997) approximated the

distribution of QC in the random effects model by a gamma distribution with shape

parameter r and scale parameter λ. Setting E(QC) = r/λ and Var(QC) = r/λ2 and

solving for r and λ, we have

r =
(E(QC))2

Var(QC)
and λ =

E(QC)

Var(QC)
.
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Note that in model (3.1) it holds (see Biggerstaff and Tweedie, 1997, and Eq. (3.7) for

the expected value)

E(QC) = k − 1 +

(
k∑
i=1

vi −
∑k

i=1 v
2
i∑k

j=1 vj

)
τ 2

and

Var(QC) = 2(k−1)+4

(
k∑
i=1

vi −
∑k

i=1 v
2
i∑k

j=1 vj

)
τ 2+2

(
k∑
i=1

v2
i − 2

∑k
i=1 v

3
i∑k

j=1 vj
+

(∑k
i=1 v

2
i

)2(∑k
j=1 vj

)2

)
τ 4.

Based on this approximation, an approximate distribution of the DerSimonian-Laird es-

timator τ̂ 2
DSL from Eq. (3.6) is a location-shifted, scaled, gamma distribution. The prob-

ability density function fDSL(·; τ 2) of τ̂ 2
DSL under this distributional assumption is

fDSL(t; τ 2) = c
λr

Γ(r)
(c t+ k − 1)r−1 exp[−λ(c t+ k − 1)]1[−(k−1)/c,∞)(t)

for τ 2 ≥ 0, where c = (
∑k

i=1 vi −
∑k

i=1 v
2
i /
∑k

j=1 vj) and 1A(·) is the indicator of the set

A. Recall that r and λ depend on τ 2.

Biggerstaff and Tweedie (1997) then defined the functions L(τ 2) and U(τ 2) by

L(τ 2) =

∫ ∞
τ̂2
DSL

fDSL(t; τ 2) dt

U(τ 2) =

∫ τ̂2
DSL

−(k−1)/c

fDSL(t; τ 2) dt,

where τ̂ 2
DSL stands here for the observed value of the DerSimonian-Laird estimator. A

100(1− α)% confidence interval for τ 2 is then given as

CI6(τ 2) = [τ̂ 2
L, τ̂

2
U ], (3.28)

where τ̂ 2
L and τ̂ 2

U are solutions for τ 2 in the equations L(τ 2) = α/2 and U(τ 2) = α/2.

Recently, Hartung and Knapp (2005a) and independently Viechtbauer (2007) proposed

a confidence interval using the quadratic form Q(τ 2) from (3.10) which Mandel and Paule

(1970) used for their estimator of τ 2. Hartung and Knapp (2005a) derived the first two

moments of Q(τ 2) and discussed the accuracy of the approximation of the distribution of
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Q(τ 2) to a χ2-distribution with k − 1 degrees of freedom. Since Q(τ 2) is a convex and

monotone decreasing function in τ 2 and, thus, proposed a (1 − α)-confidence region for

the among-group variance defined by

CI7(τ 2) =
{
τ 2 ≥ 0

∣∣ χ2
k−1;α/2 ≤ Q(τ 2) ≤ χ2

k−1;1−α/2
}
. (3.29)

Since Q(τ 2) is a monotone decreasing function in τ 2 ≥ 0, the function Q(τ 2) has its

maximal value at Q(0). For Q(0) < χ2
k−1;α/2, we define C7(σ2

a) = {0}, otherwise the

confidence region CI7(τ 2) is a genuine interval. Note that the validity of the inequality

Q(0) < χ2
k−1;α/2 only depends on the choice of the level α. To determine the bounds of

the confidence interval one has to solve the two equations for τ 2, namely,

lower bound: Q(τ 2) = χ2
k−1;1−α/2,

upper bound: Q(τ 2) = χ2
k−1;α/2.

(3.30)

Simulation studies by Hartung and Knapp (2005a), Knapp, Biggerstaff, and Hartung

(2006), and Viechtbauer (2007) showed that the interval CI7(τ 2) generally outperforms

the other intervals with respect to attaining the nominal confidence coefficient. Biggerstaff

and Tweedie’s interval based on Cochran’s statistic turned out to be rather conservative,

especially for large values of heterogeneity. The other intervals are often too liberal, that

is, too short. Especially the Wald-type intervals cannot be recommended for practical

purposes. The profile restricted maximum likelihood interval CI1(τ 2) behaves well in

attaining the nominal confidence coefficient in several scenarios and seems to be the only

real competitor to the interval CI7(τ 2).

3.3 Inference on the Overall Mean

In this section, we present some results on estimation, tests and confidence intervals of

the overall mean µ. Let us recall Ȳi ∼ N(µ, τ 2 + σ2
i /ni). Then, when the within-study

variances are known, the uniformly minimum variance unbiased estimator of µ is given

by

µ̂ = Ȳw =

∑k
i=1wi Ȳi∑k
j=1 wj

,
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where wi = (τ 2 + σ2
i /ni)

−1, i = 1, . . . , k. Then it holds for the standardized variable

Z =
Ȳw − µ

(
∑k

i=1wi)
−1/2

∼ N(0, 1).

However, in practice, we have to estimate the usually unknown variances. The within-

study variances σ2
i are estimated by their sample counterparts, and the between-study

variance τ 2 can be estimated using an estimator from the previous two sections. Finally,

we obtain an approximate 100(1− α)% confidence interval for µ as

ˆ̂µ = ˆ̄Yw =

∑k
i=1 ŵi Ȳi∑k
j=1 ŵj

±
( k∑

i=1

ŵi

)−1/2

z1−α/2 (3.31)

with ŵi = (τ̂ 2 + S2
i /ni)

−1.

As is well known, in small to moderate number of studies, which is mostly the case in

applications, the confidence interval (3.31) suffers from the same weaknesses as its fixed

effects counterpart. Namely, the actual confidence coefficient is below the nominal one.

Consequently, the corresponding test on the overall mean yields too many unjustified

significant results.

Hartung and Knapp (2001a,b) considered the residual sum of squares

Q =
k∑
i=1

wi (Ȳi − Ȳw)2, (3.32)

which is a chi-square random variable with k − 1 degrees of freedom and stochastically

independent of Ȳw. Moreover,

Q∗ = V̂ar(Ȳw) =
1

k − 1

∑k
i=1wi (Ȳi − Ȳw)2∑k

j=1wj
(3.33)

is an unbiased estimator of the variance of µ̂ in model (3.1). Consequently,

t =
Ȳw − µ√
V̂ar(Ȳw)

(3.34)

is a t-distributed random variable with k − 1 degrees of freedom. The test statistic t

depends on the unknown variance components which have to be replaced by appropriate
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estimates in practice. By substituting the variance components by their estimates, the

resulting test statistic is then approximately t-distributed with k − 1 degrees of freedom.

So, the alternative approximate 100(1− α)%-confidence interval for µ reads

ˆ̂µ = ˆ̄Yw =

∑k
i=1 ŵi Ȳi∑k
i=1 ŵi

±
√
Q̂∗ tk−1,1−α/2 (3.35)

with Q̂∗ the variance estimator according Eq. (3.33), where wi is replaced by ŵi.

Hartung and Knapp (2001a,b) conducted an extensive simulation study to compare

the attained type I error rates for the commonly used confidence interval (3.31) and the

proposed modified confidence interval (3.35). It turns out that the interval (3.35) greatly

improves the attained confidence coefficient. Moreover, the good performance of the

interval (3.35) does not heavily depend on the estimator of the between-study variance

used in the analysis, while the performance of the interval (3.31) can be dramatically

affect for different estimators of τ 2.

An exact test for µ in the present model is described in Iyer, Wang, and Mathew

(2004), using the notion of the generalized confidence intervals. The general concept of

generalized confidence intervals has been already introduced in Section 2.3. Basically, the

approach by Iyer, Wang, and Mathew (2004) is similar to the approach by Lin and Lee

(2005) in the common mean problem. The important contribution by Iyer, Wang, and

Mathew is the generalized pivotal quantity for τ 2 based on the residual sum of squares

(3.32).

Consider the set of k + 2 statistics (Ȳw, Q, S
2
i , i = 1, . . . , k). Recall that

Z =
Ȳw − µ√

1/
∑k

i=1 wi

∼ N(0, 1),

Ui =
(ni − 1)S2

i

σ2
i

=
Vi
σ2
i

∼ χ2
ni−1, i = 1, . . . , k,

and

Q =
k∑
i=1

wi (Ȳi − µ̂)2 ∼ χ2
k−1

are pivotal quantities, and let ȳi and s2
i denote the observed values of Ȳi and S2

i , and vi

stands for the observed value of Vi.
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The generalized pivotal quantity for τ 2 can be obtained through an implicit expression

for τ 2 given as the solution to the equation

Q =
k∑
i=1

ci

(
Ȳi −

k∑
i=1

ci Ȳi

/ k∑
j=1

cj

)2

= Q̃(τ 2)

with ci = 1/[τ 2 + (σ2
i /(ni Ui)], i = 1, . . . , k. The solution for τ 2 is unique, since Q̃(τ 2) is a

decreasing function of τ 2, and the maximum value is given at τ 2 = 0. Consequently, given

a real number q ≥ 0, there must exist a unique τ 2
∗ ≥ 0, such that Q̃(τ 2

∗ ) = q, provided

q ≤ Q̃(0).

Define the function

h(q) =

{
τ 2
∗ , if 0 ≤ q ≤ Q̃(0),

0, otherwise.

Let D = (Ȳ1, . . . , Ȳk, V1, . . . , Vk)
′ be the vector of the sufficient statistics and let d =

(ȳ1, . . . , ȳk, v1, . . . , vk)
′ be the vector of corresponding observed values.

Define

T =

(
σ2

1 ss1

n1 SS1

, . . . ,
σ2
k ssk

nk SSk

)′
= [ss1/(n1 Q1), . . . , ssk/(nk Qk)]

′ = (T1, . . . , Tk)
′ .

Note that T is a random vector whose distribution is free of any model parameters, and

the observed value of T is (σ2
1/n1, . . . , σ

2
k/nk)

′.

Define

Wi =

(
h(Q) +

vi
ni Ui

)−1

, i = 1, . . . , k, (3.36)

where Wi is a random variable whose distribution are free of any model parameters. Note

that when the observed statistics d are substituted in h(Q), it reduces to τ 2. Thus, when

the observed values d are substituted for D in Wi, the observed value is 1/(τ 2 + σ2
i /ni).

Denote θ = (µ, τ 2, σ2
1, . . . , σ

2
k)
′, then a generalized pivotal quantity for µ is given as

R = R(D;d,θ) =

∑k
i=1Wi ȳi∑k
j=1 Wj

−

 ȲW − µ√
1/
∑k

i=1wi

( k∑
i=1

Wi

)−1/2

=

∑k
i=1Wi ȳi∑k
j=1 Wj

− Z

(
k∑
i=1

(
h(Q(τ 2)) +

σ2
i ssi

ni SSi

)−1
)−1/2

. (3.37)
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Note that the distribution of R is free of any model parameters and R(d;d,θ) = µ. Thus,

R fulfills the requirements to be a generalized pivotal quantity. In actual applications,

when closed-form expressions for the required quantiles are unavailable, they may be

estimated by simulating the distribution of R(D;d,θ) using the following algorithm:

For given data (ȳi, s
2
i , ni), i = 1, . . . k:

For j = 1, . . . ,m:

1. Generate Z ∼ N(0, 1).

2. Generate Ui ∼ χ2
ni−1, i = 1, . . . , k.

3. Generate Q ∼ χ2
k−1.

4. Calculate Ti, i = 1, . . . , k.

5. Calculate Q̃(0).

6. If 0 ≤ Q ≤ Q̃(0), find τ 2
∗ such that Q̃(τ 2

∗ ) = Q, otherwise set τ 2
∗ = 0.

7. Calculate Wi = 1/[τ 2
∗ + ssi/(ni Ui)], i = 1, . . . , k.

8. Calculate ȳW =
∑k

i=1 Wi Ȳi/
∑k

j=1Wj.

9. Calculate R(D;d,θ)j = Rj.

(end j loop)

Compute the α/2- and (1− α/2)-quantile of R1, . . . , Rm.

Then, (Rα/2, R1−α/2) is a 100(1− α)% generalized confidence interval on µ.

Note that the above algorithm until step 6 can be used to simulate the distribution of

the generalized pivotal quantity for τ 2, and thus, one can compute a generalized confidence

interval for τ 2.

Moreover, using Wi from Eq. (3.36), i = 1, . . . , k, and following the lines of the third

generalized pivotal quantity for the common mean in Section 2.3, a further generalized

pivotal quantity for the overall mean µ is given in the present model as

S = S (D;d,θ)

=

k∑
i=1

Wi ȳi

k∑
j=1

Wj

− tk−1

√√√√ 1

k − 1

(
k∑
i=1

Wi

)−1 k∑
i=1

Wi

(
ȳi −

∑k
j=1 Wj ȳj∑k
`=1 W`

)2

, (3.38)

where tk−1 denotes a t-distributed random variable with k − 1 degrees of freedom. Note

that the distribution of S is free of any model parameters and S(d;d,θ) = µ. The above
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algorithm can be used for simulating the distribution of S by appropriately changing step

9 into calculate S(D;d,θ)j = Sj. Then, compute the α/2- and (1 − α/2)-quantile of

S1, . . . , Sm. Finally, (Sα/2, S1−α/2) is a 100(1− α)% generalized confidence interval on µ.

3.4 A General Weighting Scheme

In the previous sections as well as in Chapter 2, the weights have been always chosen as

the inverses of the variances of the sample means or the inverses of their estimators for

practical purposes. Though this choice is an optimal one in a certain sense, practically,

however, it may be possible that the overall conclusion from combining results of inde-

pendent studies using the inverse variance method may not be reasonable. Recall that

the smaller the variance of the sample mean of a study the higher the precision and, thus,

the more influential the result of the study in the overall analysis. The magnitude of the

variance is determined by the ratio of the population variance σ2
i and the sample size ni.

If ni is large, one will be confident in giving the study a large weight. But if ni is small

or moderate and the population variance, or more exactly the estimate of the variance

is close to zero, the study will get a large weight and can possibly dominate the overall

analysis irrespective of how large the other studies are. This latter scenario may be a

reason for searching for different weighting schemes provided by some external process.

Hartung, Böckenhoff, and Knapp (2003) discussed in detail statistical methods for

combining results with an arbitrary but fixed weighting scheme. In the sequel, we sum-

marize some main ideas and results.

Let us consider

Ȳi ∼ N(µ, αi), i = 1, . . . , k, (3.39)

where αi is a general variance. For αi = σ2
i /ni, we have the common mean problem, for

αi = τ 2 + σ2
i /ni, we have the one-way random effects model.

48



Let b = (b1, . . . , bk)
′ denote an arbitrary but fixed vector of standardized weights, that

is, bi ≥ 0, i = 1, . . . , k, and
∑k

i=1 b
2
i = 1. Then, clearly,

µ̂b =
k∑
i=1

b2
i Ȳi (3.40)

is an unbiased estimator of µ with variance

Var (µ̂b) =
k∑
i=1

b4
i αi. (3.41)

Possible choices of bi, i = 1, . . . , k, may be

bi =
√
ni/σ2

i

/ √√√√ k∑
j=1

nj/σ2
j , (3.42)

(weights from common mean problem)

bi =
√

1/(τ 2 + σ2
i /ni)

/ √√√√ k∑
j=1

(1/(τ 2 + σ2
j/nj), (3.43)

(weights from one-way random effects model)

bi =
√

1/k, (3.44)

(equal weights)

or

bi =

√√√√ni/

k∑
j=1

nj. (3.45)

(sample size based weights)

For further statistical inference on µ using the estimator µ̂b, estimators of Var(µ̂b) and

αi, i = 1, . . . , k, are required. Hartung, Böckenhoff, and Knapp (2003) considered the

basic statistics

u2
ib = b2

i

(
Ȳi −

k∑
j=1

b2
j Ȳj

)2

= b2
i

(
Ȳi − µ̂b

)2
. (3.46)
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They showed that
∑k

i=1 α
−1
i b2

i Ȳi and u2
ib are stochastically independent, i = 1, . . . , k, and,

using Patnaik’s (1949) method of moments matching approach, that, for d = (d1, . . . , dk),

di ∈ IR, i = 1, . . . , k, it holds

νd

∑k
i=1 di u

2
ib∑k

i=1 di E(u2
ib)

appr.∼ χ2
νd

(3.47)

with

νd =

(∑k
i=1 di E(u2

ib)
)2

∑k
i=1 d

2
i Var(u2

ib) + 2
∑k

i=1

∑k
j>i di dj Cov(u2

ib, u
2
jb)
, (3.48)

E(u2
ib) = (1− 2 b2

i ) b
2
i αi + b2

i

k∑
j=1

b4
j αj,

Var(u2
ib) = 2

[
E(u2

ib)
]2
,

and

Cov(u2
ib, u

2
jb) = 2 b2

i b
2
j

( k∑
`=1

b4
` α` − b2

i αi − b2
j αj

)2

.

Note that the degrees of freedom νd still contain the unknown general variances αi. In

practice, appropriate estimates of αi have to be plugged in.

Furthermore, Hartung, Böckenhoff, and Knapp (2003) showed that

V̂ar(µ̂b) =
1

1 +
∑k

j=1 b
4
j/(1− 2 b2

j)

k∑
i=1

b2
i

1− 2 b2
i

u2
ib (3.49)

is an non-negative unbiased estimator of Var(µ̂b), if b2
i < 1/2, i = 1, . . . , k, and k ≥ 3.

Note that b2
i < 1/2, i = 1, . . . , k, is sufficient but not necessary for the non-negativity of

V̂ar(µ̂b). Consequently, since µ̂b and V̂ar(µ̂b) are stochastically independent, it holds

µ̂b − µ√
V̂ar(µ̂b)

appr.∼ tν(b), (3.50)

where ν(b) can be determined according to (3.48) noting that V̂ar(µ̂b) can be expressed

as
∑k

i=1 di u
2
ib with

di =
b2
i /(1− 2 b2

i )

1 +
∑k

j=1 b
4
j/(1− 2 b2

j)
, i = 1, . . . , k.
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An approximated 100(1− α)% confidence interval for µ is then given as

µ̂b ±
√

V̂ar(µ̂b) tν̂(b);1−α/2, (3.51)

where ν̂(b) stands for the estimated degrees of freedom.

For more sophisticated methods involving quadratic estimation of αi using C. R. Rao’s

(1972) MINQUE principle and Hartung’s (1981) concept of nonnegative minimum bi-

ased invariant quadratic estimation of variance components, let us refer to Hartung,

Böckenhoff, and Knapp (2003). It is worth mentioning that Hartung and Knapp (2003)

proposed also confidence regions for the general variance components in the present set-

ting.
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Chapter 4

Combining Results of Controlled

Studies with Normal Response

The fundamentals for combining results from several independent studies or experiments

were extensively discussed in the previous two chapters. The methods presented there

heavily rely on the assumptions that we have normal means and variance estimators of

the means which are stochastically independent of the sample means and follow exactly

independent scaled chi-square distributions. Moreover, the methods were presented for

one-sample studies or experiments only.

In this chapter we discuss methods for combining results from comparative studies,

say treatment (T) versus control (C), with normal outcomes and show which methods of

Chapter 2 and 3 can be applied or extended in the present scenario.

Let us assume that, in general, there are k independent studies comparing a treatment

(T) versus a control (C). Let ȲT i and S2
T i denote the sample mean and the sample variance

of the treatment group in the ith study, let be nT i the corresponding sample size. Let ȲCi

and S2
Ci denote the sample mean and the sample variance of the control group in the ith

study, let be nCi the corresponding sample size. Then it holds for i = 1, . . . , k,

ȲT i ∼ N

(
µT i,

σ2
T i

nT i

)
, (nT i − 1) S2

T i ∼ σ2
Ti χ

2
nTi−1, (4.1)
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and

ȲCi ∼ N

(
µCi,

σ2
Ci

nCi

)
, (nCi − 1) S2

Ci ∼ σ2
Ci χ

2
nCi−1, (4.2)

where µT i and µCi are the means of the treatment and control group, respectively, and

σ2
T i and σ2

Ci are the corresponding variances. Note that the statistics (4.1) and (4.2)

are all mutually independent. Assuming that in each study the population variances are

identical, that is, σ2
i = σ2

T i = σ2
Ci, i = 1, . . . , k, then the pooled sample variance is given

by

S∗
2

i =
1

nT i + nCi − 2

[
(nT i − 1)S2

T i + (nCi − 1)S2
Ci

]
, (4.3)

and it follows that

(nT i + nCi − 2) S∗
2

i ∼ σ2
i χ

2
nTi+nCi−2. (4.4)

First, we have to decide which effect size we use for describing the difference between

treatment and control group. The following three effect sizes are widely used:

• Difference of means:

µDi = µTi
− µCi.

• Standardized difference of means:

θi =
µT i − µCi

σi
,

where σi denotes a suitable standard deviation, for instance, an average of the

population standard deviations σT i and σCi.

• Ratio of means:

ρi =
µT i
µCi

, µCi 6= 0.

We will discuss methods for combining results from independent studies using the different

effect sizes in the following three sections.
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4.1 Difference of Means

Let µDi = µT i − µCi, i = 1, . . . , k, be the parameter of interest in each study, then the

difference of the sample means, Di = ȲT i − ȲCi, is an unbiased estimator of µDi with

Di ∼ N

(
µDi,

σ2
T i

nT i
+
σ2
Ci

nCi

)
in general or

Di ∼ N

(
µDi,

nT i + nCi
nT i nCi

σ2
i

)
for identical population variances in each study.

The variance of Di can be unbiasedly estimated either by

V̂ar(Di) =
S2
T i

nT i
+
S2
Ci

nCi
or by V̂ar(Di) =

nT i + nCi
nT i nCi

S∗
2

i .

Note that the latter variance estimator is an exactly scaled chi-square distributed ran-

dom variable, see (4.4), whereas the distribution of S2
T i/nT i + S2

Ci/nCi, which is a linear

combination of two independent scaled chi-square variables, can only be approximated,

for instance, by Satterthwaite’s (1946) approximation if the population variances are dif-

ferent. In this case, the Satterthwaite approximation yields

νi

(
S2
T i

nT i
+
S2
Ci

nCi

)
approx.∼

(
σ2
T i

nT i
+
σ2
Ci

nCi

)
χ2
νi

with

νi =
(σ2

T i/nT i + σ2
Ci/nCi)

2

(σ2
T i/nT i)

2/(nT i − 1) + (σ2
Ci/nCi)

2/(nCi − 1)
.

Since the degrees of freedom depend on the unknown variances, they must be estimated

in practice by

ν̂i =
(S2

T i/nT i + S2
Ci/nCi)

2

(S2
T i/nT i)

2/(nT i − 1) + (S2
Ci/nCi)

2/(nCi − 1)
.

In case the assumption of equal variances in each study is fulfilled, we can directly use all

the results from Chapter 2 in a fixed effects model or all the results from Chapter 3 in a

random effects model. Under the assumption of equality of differences of means, that is,

it holds

H0 : µD1 = µD2 = · · · = µDk =: µD,
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we have the common mean problem from Chapter 2. The fixed effects model is then given

as

Di ∼ N

(
µD,

nT i + nCi
nT i nCi

σ2
i

)
,

(nT i + nCi − 2)S∗
2

i

σ2
i

∼ χ2
nTi+nCi−2, i = 1, . . . , k. (4.5)

By replacing the sample mean Ȳi through Di, the variance estimator S2
i /ni through

(1/nT i + 1/nCi)S
∗2
i , and the degrees of freedom ni − 1 through nT i + nCi − 2, all the

results from the common mean problem can be easily transferred to the analysis in model

(4.5), even the exact as well as the generalized confidence intervals for µD!

The random effects model is given for i = 1, . . . , k, as

Di ∼ N

(
µD, τ

2 +
nT i + nCi
nT i nCi

σ2
i

)
,

(nT i + nCi − 2)S∗
2

i

σ2
i

∼ χ2
nTi+nCi−2, (4.6)

where τ 2 again denotes the heterogeneity parameter. By carrying out the same replace-

ment as above, the results from the one-way random effects model can be transferred to

the analysis in model (4.6), even the generalized confidence intervals for µD!

When the variances of treatment and control group are not identical in each study we

have to use the random effects model

Di ∼ N

(
µD, τ

2 +
σ2
T i

nT i
+
σ2
Ci

nCi

)
, νi

(
S2
T i

nT i
+
S2
Ci

nCi

)
approx.∼

(
σ2
T i

nT i
+
σ2
Ci

nCi

)
χ2
νi
, (4.7)

i = 1, . . . , k. With τ 2 = 0, we obtain the corresponding fixed effects model. Recall that

the degrees of freedom νi of the approximate χ2-distribution depend on the unknown

variances σ2
T i and σ2

Ci and have to be estimated in practice. Consequently, by replacing

Ȳi through Di, S
2
i /ni through S2

T i/nT i + S2
Ci/nCi, and the degrees of freedom ni − 1 by

νi or ν̂i, respectively, the exact methods from Chapter 2 are no longer exact, but still

approximately valid.

Let τ̂ 2 be an estimator of τ 2, then

ŵi =

(
τ̂ 2 +

S2
T i

nT i
+
S2
Ci

nCi

)−1

, i = 1, . . . , k,

are the estimated weights in the random effects model (4.7). Note that v̂i = (S2
T i/nT i +

S2
Ci/nCi)

−1, i = 1, . . . , k, are the corresponding weights in the fixed effects model.
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Then

µ̂D,ŵ =

∑k
i=1 ŵi Di∑k
j=1 ŵj

is an estimator of µD. Note that

µ̂D,v̂ =

∑k
i=1 v̂i Di∑k
j=1 v̂j

is an unbiased estimator of µD, since ȲTi
, ȲCi, S

2
T i, and S2

Ci are mutually independent.

An approximate 100(1−α)% confidence interval on µD is given in analogy to interval

(3.31) as ∑k
i=1 ŵi Di∑k
j=1 ŵj

∓
( k∑

i=1

ŵi

)−1/2

z1−α/2 (4.8)

and a further approximate 100(1− α)% confidence interval on µD is given in analogy to

interval (3.35) as

∑k
i=1 ŵi Di∑k
j=1 ŵj

∓

√√√√ 1

k − 1

∑k
i=1wi (Di − µ̂D,ŵ)2∑k

j=1 wj
tk−1;1−α/2. (4.9)

Hartung and Knapp (2001a) conducted a simulation study to compare the actual

confidence coefficients of the two approximate confidence intervals (4.8) and (4.9) on µD.

In their simulation study, Hartung and Knapp used the DerSimonian-Laird estimator of

τ 2, which is given here in its truncated form as

τ̂ 2
DSL = max

{
0 ,

∑k
i=1 v̂i (Di − µ̂D,v̂)2 − (k − 1)∑k
i=1 v̂i −

∑k
j=1 v̂

2
j/
∑k

`=1 v̂`

}
.

Hartung and Knapp (2001a) showed in their simulation study that the interval (4.8) is

very liberal for k up to 12 studies in the fixed effects model, when the samples sizes in

both groups are small. With increasing sample sizes in the groups, the actual confidence

level of the interval moves towards the nominal one. The interval (4.9) maintains in most

cases the nominal level in this model, except for small samples, that is, nT i = nCi = 5,

i = 1, . . . , k, where the interval is also liberal, but still better than the interval (4.8) in

terms of having an actual confidence level closer to the nominal one.
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In the random effects model, interval (4.8) does not yield acceptable actual cover-

age probabilities when the amount of heterogeneity is moderate or large. The larger the

amount of heterogeneity the more liberal is the interval. The interval (4.9), however,

mostly has actual confidence coefficients close to the nominal one and this property holds

irrespective of the amount of heterogeneity. Like in the fixed effects model, the interval

(4.9) is a little bit liberal only for small sample sizes in the groups. Summarizing, the

interval (4.9) can be generally recommended when difference of means of several indepen-

dent experiments are to be combined and the variances in treatment and control group

differ in each study. Even in the fixed effects model and in case of homogeneous group

variances within the studies, the interval (4.9) possesses acceptable actual confidence lev-

els compared to the nominal one and can be a serious competitor in practice to the more

sophisticated exact methods due to its ease of computation.

4.2 Standardized Difference of Means

Recall that the standardized mean difference as an effect size based on means is given as

θi =
µT i − µCi

σi
.

An natural estimator of θi is given by

θ̂i =
ȲT i − ȲCi

σ̂i

with σ̂i an suitable estimator of standard deviation σi.

One estimator of θi, known as Cohen’s d (Cohen, 1969), uses

S2
i =

1

nT i + nCi

[
(nT i − 1)S2

T i + (nCi − 1)S2
Ci

]
as estimator of σ2

i , that is,

di =
ȲT i − ȲCi

Si
, i = 1, . . . , k.

Note that Cohen’s d is the maximum likelihood estimator of the standardized mean dif-

ference under normality.
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A second estimator of θi, known as Hedges’s g (Hedges, 1981, 1982), is defined as

gi =
ȲT i − ȲCi

S∗i
, i = 1, . . . , k, (4.10)

with S∗
2

i from (4.3). Note that S∗
2

i is an unbiased estimator of a common variance σ2
i in

the ith study.

Finally, a third estimator measure of θi, known as Glass’s ∆ (Glass, McGaw, and

Smith, 1981), is defined as

∆i =
ȲT i − ȲCi

SCi
, i = 1, . . . , k, (4.11)

where the standardized quantity is just the sample standard deviation based on the control

group alone. This is typically justified on the ground that the control group is in existence

for a longer period than the experimental group, and is likely to provide a more stable

estimate of the common variance. Moreover, this estimator is often used when several

treatments are compared with one control within a study.

In this section, however, we will exclusively consider Hedges’s gi as the estimator of

θi, i = 1, . . . , k, for ease of presentation.

It can be shown that (see Hedges and Olkin, 1985)

E(gi) ≈ θ +
3 θ

4ni − 9
, (4.12)

Var(gi) ≈
1

ñi
+

θ2

2(ni − 3.94)
, (4.13)

where

ni = nT i + nCi, ñi =
nT i nCi
nT i + nCi

.

In case the population variances are identical in both groups, under the assumption of

normality of the data, Hedges (1981) showed that
√
ñi gi follows a noncentral t-distribution

with noncentrality parameter
√
ñi θi and (nT i+nCi−2) degrees of freedom. Consequently,

the exact mean and variance of Hedges’s gi are given by

E(gi) =

√
ni − 2

2

Γ (ni/2− 3/2)

Γ (ni/2− 1)
θi, (4.14)

Var(gi) =
ni − 2

ni − 4
(1 + θ2

i )− θ2
i

ni − 2

2

[Γ (ni/2− 3/2)]2

[Γ (ni/2− 1)]2
, (4.15)
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and Γ(·) denotes the gamma function. Note that the variance Var(gi) depends on the

effect size θi.

Since gi is biased for θi, an approximately unbiased estimate of θi is given as

g∗i =

(
1− 3

4ni − 9

)
gi,

see Hedges (1981). For increasing total sample ni, the correction term approaches one, so

that the large sample distributions of gi and g∗i are identical.

The variance of g∗i in large samples is given as

Var(g∗i ) ≈
nT i + nCi
nT i nCi

+
θ2
i

2 (nT i + nCi − 2)
,

which can be estimated by

V̂ar(g∗i ) =
nT i + nCi
nT i nCi

+
g2
i

2 (nT i + nCi − 2)
.

Note that for θi = 0, the large sample variance of g∗i reduces to (nT i + nCi)/(nT i nCi)

and does not depend on θi. Otherwise the large sample variance depends on the unknown

standardized mean difference and, generally, g∗i and V̂ar(g∗i ) are correlated. Consequently,

one may seek for a variance-stabilizing transformation of the estimator g∗i .

Following Hedges and Olkin (1985), the variance-stabilizing transformation of g∗i is

given by

h(g∗i ) =
√

2 sinh−1(g∗i /ai) =
√

2 ln

(
g∗i
ai

+

√
(g∗i )

2

a2
i

+ 1

)
with

ai =
√

4 + 2(nT i/nCi) + 2(nCi/nT i) .

Note that the exact form of the transformation of g∗i depends on the balance nT i/nCi. For

the balanced case nT i = nCi, it holds ai =
√

8 .

Let h(δi) denote the transformed parameter, then it holds approximately

√
ni [h(g∗i )− h(δi)] ∼ N(0, 1),

or, equivalently,

h(g∗i ) ∼ N

(
h(δi),

1

ni

)
.
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Note that, using the inverse function h−1(x) = a sinh(x/
√

2), results for h(δi) can be

backtransformed to results for δi.

In the following, we describe the combination procedure using estimators g∗i and vari-

ance estimators V̂ar(g∗i ), i = 1, . . . , k, and combine the results directly on the scale of

θi. Alternatively, one can first combine the transformed estimators h(g∗i ) and then back-

transform the results using the inverse function h−1. For combining h(g∗i ), i = 1, . . . , k,

we have to replace g∗i by h(g∗i ) and V̂ar(g∗i ) by 1/ni in the following formulas.

The homogeneity hypothesis

H0 : θ1 = θ2 = · · · = θk,

that is, all standardized mean differences are identical, can be tested using Cochran’s

(general large sample) homogeneity statistic. Defining here v̂i = 1/V̂ar(g∗i ) and ui =

v̂i/
∑k

j=1 v̂j, i = 1, . . . , k, the test statistic can be obtained as

QC =
k∑
i=1

v̂i

(
g∗i −

k∑
j=1

uj g
∗
j

)2

. (4.16)

Under H0, QC is approximately χ2-distributed with k − 1 degrees of freedom. If the

homogeneity assumption holds, the fixed effects model is quite appropriate; otherwise,

the combination of the results should be carried out in a random effects model.

Recall that the random effects model is given here as

g∗i ∼ N

[
θ, τ 2 +

(
nT i + nCi
nT i nCi

+
θ2
i

2 (nT i + nCi − 2)

)]
, (4.17)

where θ denotes the overall effect size and τ 2 stands for the between-study variability.

Following the DerSimonian-Laird (1986) approach, an estimator of τ 2 can be obtained

as

τ̂ 2 =
QC − (k − 1)∑k

i=1 v̂i −
∑k

i=1 v̂
2
i /
∑k

j=1 v̂j
(4.18)

with QC from Eq. (4.16), where negative estimates are set to zero.

Let ŵi = 1/[τ̂ 2 + V̂ar(g∗i )], i = 1, . . . , k, denote the estimate of the inverse of the

variance in model (4.17), then the estimate of the overall effect θ is given by

θ̂ =

∑k
i=1 ŵi g

∗
i∑k

j=1 ŵj
.
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The large sample variance of θ̂ is given as

V̂ar(1)(θ̂) =

( k∑
i=1

ŵi

)−1

.

Following Hartung (1999), another estimator of the variance of θ̂ is given as

V̂ar(2)(θ̂) =
1

k − 1

∑k
i=1 ŵi(g

∗
i − θ̂)2∑k

j=1 ŵj
.

Consequently, a large sample 100(1− α)% confidence interval for θ is given as

CI1(θ) : θ̂ ∓
√

V̂ar(1)(θ̂) z1−α/2 (4.19)

which can be improved with respect to the actual coverage probability for a small number

of studies through

CI2(θ) : θ̂ ∓
√

V̂ar(2)(θ̂) tk−1;1−α/2. (4.20)

Hartung and Knapp (2001a) carried out a simulation study comparing the actual

confidence coefficients of the approximate confidence intervals (4.19) and (4.20) when there

is no difference between the treatment and the control group, that is, under H0 : θ = 0.

In the fixed effects approach, the interval (4.19) mostly proves to be conservative, while

the interval (4.20) attains the nominal confidence coefficient quite well, only for small

sample sizes this interval is also conservative. In the random effects approach, the interval

(4.19) turns out to be conservative for small values of heterogeneity, but with increasing

heterogeneity, this interval can be very liberal. The interval (4.20) almost has actual

confidence coefficients close to the nominal one, except in small sample sizes when the

interval is a bit conservative.

Since the simulation study by Hartung and Knapp (2001a) is restricted to θ = 0 and

to the combination on the scale of the standardized mean difference, some additional

simulation results are provided studying the performance of the intervals for different

values of θ and considering the combinations of the estimators g∗i as well as the transformed

estimators h(g∗i ).

In Table 4.1, a part of the simulation results are reported, which represents the main

findings. The estimated standardized mean differences were generated on the original
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scale and, thus, τ 2 stands for the variability of the true standardized mean differences.

The sample sizes were chosen identical in all studies, two scenarios considered the balanced

case, and two other unbalanced situations. In Table 4.1, CI1 and CI2 stand for the intervals

(4.19) and (4.20) and CI3 stands for interval when the standard approach is applied on

the transformed estimators h(g∗i ) and CI4 is derived in analogy to CI2 applied on h(g∗i ).

For k = 3 studies, the standard confidence interval CI1 is conservative when no het-

erogeneity is present. But when heterogeneity is present, this interval turns out to be

liberal and, with increasing heterogeneity, the actual confidence coefficient decreases up

to 80% given a nominal one of 95%. The true underlying standardized mean difference

does not essentially affect the results.

When the results are combined on the transformed scale using the standard approach

and then the combined results are backtransformed to the original scale, the resulting

confidence interval CI3 proves to be very conservative in most cases. For increasing het-

erogeneity, the actual confidence coefficient declines, but still for moderate heterogeneity,

for instance, τ 2 = 1, the interval is still rather conservative. The true underlying stan-

dardized mean difference affects the performance of the interval for large heterogeneity.

For θ = 0.5, the interval is liberal with actual confidence intervals between 85% and 90%,

except in the small sample case. For θ = 5, the actual confidence coefficient, however, is

around the nominal one.

The confidence interval CI2 attains well the nominal coefficient in all scenarios as

mostly does the confidence interval CI4 as well. But the true underlying standardized

mean difference affects the performance of the interval CI4. Whereas for θ = 5, the

interval CI4 consistently attains the nominal level, the interval turns out to be a bit

liberal for θ = 0.5 and large heterogeneity.

Doubling the number of the studies basically yields the same performance of the four

intervals. The liberal intervals with k = 3 studies have now actual confidence coefficients

closer to the nominal one, but again it clearly turns out that the intervals CI2 and CI4

outperforms the other two intervals.

Since the actual confidence coefficients of CI2 and CI4 are often close together, the

average lengths of these intervals are reported in Table 4.2. Obviously, the intervals
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for k = 6 studies are, on average, always shorter than the intervals for k = 3 studies.

Moreover, for k = 3 studies, the average length of interval CI2 is less than the average

length of interval CI4, and consequently, the interval CI2 is preferred to CI4. However,

for k = 6 studies, both intervals can be recommended similarly.

4.3 Ratio of Means

The response ratio, that is, the ratio of mean outcome in the experimental group to that

in the control group, and closely related measures of proportionate change are often used

as measures of effect sizes in ecology, see Hedges, Gurevitch, and Curtis (1999). The

parameter of interest is the ratio of the population means, that is, ρi = µT i/µCi. The

sample response ratio Ri = ȲT i/ȲCi is an estimate of ρi in the ith study. Usually, the

combination of the response ratios Ri is carried out on the metric of the natural logarithm

for two reasons. First, the natural logarithm linearizes the metric, that is, deviations in the

numerator are treated the same as deviations in the denominator. Second, the sampling

distribution of Ri is skewed and the sampling distribution of ln(Ri) is much more normal

in small sample sizes than that of Ri. For further discussion on this topic, we refer to

Hedges, Gurevitch, and Curtis (1999).

Let ζi = ln(µT i) − ln(µCi) be the natural logarithm of the ratio of population means

in the ith study. Then, ζi can be estimated by

ζ̂i = ln(ȲT i)− ln(ȲCi)

with

Var(ζ̂i) ≈
σ2
T i

nT i µ2
T i

+
σ2
Ci

nCi µ2
Ci

,

or

Var(ζ̂i) ≈ σ2
i

(
1

nT i µ2
T i

+
1

nCi µ2
Ci

)
,

where the latter holds for σ2
i = σ2

T i = σ2
Ci.
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Table 4.1. Estimated actual confidence coefficients (in %) of four intervals for different

values of the standardized mean difference given a nominal level of 100(1− α)% = 95%

k = 3 studies k = 6 studies

θ (nT , nC) τ 2 CI1 CI2 CI3 CI4 CI1 CI2 CI3 CI4

0.5 (5,5) 0 96.59 95.44 100 95.23 96.88 95.92 100 95.28

0.1 95.28 95.67 99.99 95.42 95.61 95.87 99.99 95.17

1 88.69 95.67 99.65 95.09 91.60 96.31 99.71 95.12

10 82.50 95.77 96.43 93.44 87.53 96.32 98.29 94.14

0.5 (10,10) 0 96.42 95.07 100 94.95 96.38 95.37 100 95.04

0.1 93.55 95.26 99.95 95.12 94.00 95.45 99.96 95.09

1 84.80 95.36 97.67 94.83 89.58 95.56 98.50 94.88

10 80.25 95.47 89.97 93.34 85.36 95.69 95.78 94.20

0.5 (15,10) 0 96.39 95.25 100 95.17 96.33 95.32 100 95.06

0.1 92.87 95.17 99.96 95.04 93.67 95.42 99.94 95.10

1 84.11 95.36 97.03 94.90 89.52 95.51 98.13 94.89

10 79.77 95.41 88.68 93.53 84.97 95.55 95.09 94.21

0.5 (30,20) 0 96.33 94.99 100 94.93 96.33 95.11 100 95.02

0.1 90.19 95.12 99.74 95.03 91.74 95.06 99.78 94.88

1 82.16 95.15 92.87 94.82 88.78 95.30 95.78 94.91

10 78.92 95.15 84.58 93.29 84.02 95.36 92.63 94.29

5 (5,5) 0 96.69 95.29 100 95.05 96.30 95.16 100 94.14

0.1 96.08 95.20 100 94.88 95.82 95.06 100 94.34

1 92.74 95.22 99.99 95.04 92.35 94.53 100 94.68

10 82.64 95.12 97.39 95.04 85.55 94.56 96.33 95.04

5 (10,10) 0 96.49 95.17 100 95.01 96.11 95.01 100 94.60

0.1 95.51 95.23 100 95.11 95.54 95.09 100 94.75

1 89.89 94.93 99.98 94.94 91.10 94.72 99.98 94.97

10 80.92 95.11 95.92 95.01 85.81 94.99 94.70 95.09

5 (15,10) 0 96.40 95.16 100 95.06 96.31 95.08 100 94.72

0.1 95.46 95.28 100 95.24 95.28 94.96 100 94.79

1 88.86 94.91 99.97 94.90 90.70 94.87 99.97 95.03

10 81.02 95.20 95.72 95.00 86.33 95.20 94.81 95.23

5 (30,20) 0 96.35 94.96 100 94.92 96.18 95.15 100 94.98

0.1 94.17 94.97 100 94.95 94.42 94.93 100 94.90

1 86.04 95.08 99.83 95.12 89.56 94.82 99.87 94.96

10 79.67 95.08 94.43 95.00 85.82 95.07 93.98 95.08
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Table 4.2. Average lengths of two intervals for

different values of the standardized mean difference

k = 3 studies k = 6 studies

θ (nT , nC) τ 2 CI2 CI4 CI2 CI4

0.5 (5,5) 0 3.163 3.489 1.407 1.446

0.1 3.517 3.952 1.561 1.605

1 5.790 7.539 2.561 2.623

10 15.533 43.197 6.721 6.886

0.5 (10,10) 0 2.093 2.181 0.944 0.953

0.1 2.552 2.704 1.149 1.159

1 5.042 6.097 2.269 2.272

10 14.673 36.433 6.509 6.427

0.5 (15,10) 0 1.892 1.954 0.855 0.861

0.1 2.378 2.494 1.073 1.080

1 4.926 5.861 2.222 2.219

10 14.518 34.551 6.479 6.362

0.5 (30,20) 0 1.314 1.334 0.594 0.596

0.1 1.932 1.992 0.874 0.876

1 4.656 5.427 2.108 2.094

10 14.194 32.723 6.398 6.227

5 (5,5) 0 6.846 7.990 2.944 3.232

0.1 6.984 8.182 3.011 3.303

1 8.256 10.061 3.567 3.909

10 16.299 34.554 7.122 8.157

5 (10,10) 0 4.363 4.634 1.935 2.007

0.1 4.578 4.881 2.039 2.114

1 6.296 6.985 2.803 2.909

10 14.913 28.340 6.696 7.364

5 (15,10) 0 3.852 4.035 1.716 1.764

0.1 4.104 4.316 1.828 1.878

1 5.917 6.471 2.647 2.725

10 14.813 27.423 6.641 7.241

5 (30,20) 0 2.622 2.678 1.182 1.197

0.1 2.970 3.046 1.341 1.357

1 5.179 5.531 2.331 2.371

10 14.305 25.770 6.472 6.984
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Let us assume in the rest of this section that σ2
i = σ2

T i = σ2
Ci. Then, the variance of ζ̂i

can be estimated as

V̂ar(ζ̂i) = S∗i
2

(
1

nT i Ȳ 2
T i

+
1

nCi Ȳ 2
Ci

)
,

where S∗i
2 is the pooled sample variance from Eq. (4.3).

The homogeneity hypothesis that all the ratios of population means are equal, that is,

H0 : ρ1 = ρ2 = · · · = ρk or equivalently H∗0 : ζ1 = ζ2 = · · · = ζk

can be tested using Cochran’s large sample homogeneity statistic. Defining now v̂i =

1/V̂ar(ζ̂i) and ci = v̂i/
∑k

j=1 v̂j, i = 1, . . . , k, the test statistic can be obtained as

QC =
k∑
i=1

v̂i

(
ζ̂i −

k∑
j=1

cj ζ̂j

)2

. (4.21)

Under H0 and H∗0 , respectively, QC is approximately χ2 distributed with k − 1 degrees

of freedom. If the homogeneity assumption holds, the fixed effects meta-analysis model

is quite appropriate; otherwise, the combination of the results should be carried out in a

random effects model.

Recall that the random effects model is given here as

ζ̂i ∼ N

[
ζ, τ 2 + σ2

i

(
1

nT i µ2
T i

+
1

nCi µ2
Ci

)]
(4.22)

where ζ denotes the overall effect size on the logarithmic scale and τ 2 stands for the

between-study variability.

Following the DerSimonian-Laird (1986) approach, an estimate of τ 2 can be obtained

as

τ̂ 2 =
QC − (k − 1)∑k

i=1 v̂i −
∑k

i=1 v̂
2
i /
∑k

j=1 v̂j

with QC obtained from Eq. (4.21). This estimator may yield negative values, which are

set to zero in practice.

Let ŵi = 1/[τ̂ 2 + V̂ar(ζ̂i)], i = 1, . . . , k, denote the estimate of the inverse of the

variance in model (4.22), then the estimate of the overall effect ζ is given by
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ζ̂ =

∑k
i=1 ŵi ζ̂i∑k
j=1 ŵj

.

The large sample variance of ζ̂ is given as

V̂ar(1)(ζ̂) =

( k∑
i=1

ŵi

)−1

.

For a small number of studies, Hedges, Gurevitch, and Curtis (1999) recommended the

use of the following variance estimator

V̂ar(2)(ζ̂) =

( k∑
i=1

ŵi

)−1
(

1 + 4
k∑
i=1

1

nT i + nCi − 2

(ŵi
v̂i

)2 ŵi [
∑k

j=1 ŵj − ŵi]
(
∑k

j=1 ŵj)
2

)
.

Following Hartung (1999), another estimator of the variance of ζ̂ is given as

V̂ar(3)(ζ̂) =
1

k − 1

∑k
i=1 ŵi(ζ̂i − ζ̂)2∑k

i=1 ŵi
.

A large sample 100(1− α)% confidence interval for ζ is given as

ζ̂ ∓
√

V̂ar(1)(ζ̂) z1−α/2,

which can be improved with respect to the actual coverage probability for a small number

of studies through

ζ̂ ∓
√

V̂ar(2)(ζ̂) z1−α/2.

Following Hartung and Knapp (2001a), an alternative 100(1−α)% confidence interval for

ζ can be obtained as

ζ̂ ∓
√

V̂ar(3)(ζ̂) tk−1;1−α/2.

After combining the results on the log scale, the results will naturally be transformed

to the original scale using antilogs. Backtransforming the mean of logs introduces a bias

into the estimate of the mean response ratio due to the convexity of the log transform.

This bias also arises, for example, in the averaging of correlation coefficients by backtrans-

forming the average of several Fisher’s z transforms, or in the averaging of odds ratios by

backtransforming the average of several log odds ratios. However, since the magnitude of

the bias depends upon the variance of the weighted mean, this bias is usually expected

to be slight.
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Chapter 5

Combining Results of Controlled

Studies with Binary Outcome

An important application of meta-analysis, especially in biometry and epidemiology, is

the combination of results from comparative or controlled studies with binary outcomes.

Often, in clinical trials or observational studies, the outcome can be generally described

as success or failure or as positive or negative, which can be easily coded as 1 or 0.

Let pT i denote the probability of success in the treatment (T) group in the ith study,

i = 1, . . . , k, and nT i the sample size, then the number of successes, say nT1i is a binomial

variate with parameters nT i and pT i. Let us denote by nT0i the number of failures in the

treatment group in the ith study. By analogy, let us denote by pCi, nCi, nC1i, and nC0i

the corresponding values in the control (C) group of the ith study. Then the number of

successes in the control group, nC1i, is a binomial variate with parameters nCi and pCi.

The results of each study can be arranged in a (2 × 2)-table as shown in Table 5.1.

Here, n1i stands for the total number of successes in the ith study, n0i is the total number

of failures, and ni is the total sample size of the ith study.
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Table 5.1. Observed frequencies on two binary characteristics in study i

Success Failure Total

Treatment nT1i nT0i nT i
Control nC1i nC0i nCi
Total n1i n0i ni

There are several effect sizes which can be used to quantify a difference between treat-

ment and control group. In the next section, we will describe the effect sizes: probability

difference, also known as risk difference, relative risk, also known as risk ratio, and odds

ratio.

Given estimates of the effect size and corresponding standard errors, several results

from Chapter 2 and 3 can be used for combining these estimates. In Section 5.2, we will

describe the method, which is known as generic inverse variance method, for combining

effect size estimates in the fixed and random effects model of meta-analysis.

The generic inverse variance method is based on large sample theory. In case of sparse

binary data, this method can lead to inconsistent results. In Section 5.3, Mantel-Haenszel

type estimators and appropriate variance estimators are presented which are consistent in

large samples as well as sparse data situations in the fixed effects model of meta-analysis.

The one-way random effects model of meta-analysis can be derived as the marginal

model of a normal-normal hierarchical model. The assumption that the effect size es-

timator is (at least approximately) normally distributed may be not fulfilled for binary

outcomes, especially for small sample sizes. Thus, one may seek for a model which makes

direct use of the binomially distributed number of successes. In Section 5.4, we will present

binomial-normal hierarchical models which can be used in meta-analysis.
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5.1 Effect Sizes

Probability difference

The probability difference in the ith study is defined as θ1i = pT i − pCi, and can be

unbiasedly estimated by the difference of the observed success probabilities, namely

θ̂1i =
nT1i

nT i
− nC1i

nCi
. (5.1)

The unbiased estimate of the variance of (5.1) is

V̂ar(θ̂1i) =
nT1i nT0i

n2
T i (nT i − 1)

+
nC1i nC0i

n2
Ci (nCi − 1)

. (5.2)

Note that the inverse of the estimator V̂ar(θ̂1) does not exist when both numerators on

the right hand side of Eq. (5.2) are equal to zero. When this situation occurs, the study

cannot be incorporated in the meta-analysis using the generic inverse variance method,

see Section 5.2.

Relative risk

The relative risk in the ith study is defined as the ratio of the success probabilities,

that is, pT i/pCi. However, it is more convenient to carry out the analysis on the log

scale because of the better normal approximation of the corresponding estimator in small

samples. Setting θ2 = ln(pT i/pCi), the logarithm of the relative risk, an estimate of θ2

may be defined as

θ̂∗2i = ln

(
nT1i / nT i
nC1i / nCi

)
. (5.3)

However, the estimate (5.3) cannot be computed when ni1i = 0 or nC1i = 0. Moreover,

there does not exist an unbiased estimate of the log relative risk. So, different proposals

exist in the literature for estimating this parameter. Pettigrew, Gart, and Thomas (1986)

discussed the proposed estimators with respect to bias and variance, and concluded that

there is no optimal solution. The ”optimal” solution always depends on the true, but

unknown, success probabilities. One widely used estimate in this context is

θ̂2i = ln

[
(nT1i + 0.5) / (nT i + 0.5)

(nC1i + 0.5) / (nCi + 0.5)

]
. (5.4)
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The variance of estimate (5.4) is estimated without bias except for terms of order O(n−3)

by

V̂ar(θ̂2) =
1

nT1i + 0.5
− 1

nT i + 0.5
+

1

nC1i + 0.5
− 1

nCi + 0.5
.

This variance estimate is always positive if nT1i 6= nT i or nC1i 6= nCi. If nT1i = nT i or

nC1i = nCi, then the value 0.5 will not be added to nT i and nCi to ensure the positiveness

of the variance estimate.

Odds ratio

The odds ratio in the ith study is defined as the ratio of the odds, that is, pT i/(1− pT i)
divided by pCi/(1 − pCi). Again, it is more convenient to carry out the analysis on the

log scale because of the better normal approximation of the corresponding estimator in

small samples. Setting θ3i = ln{[pT i/(1− pT i)]/[pCi/(1− pCi)]}, the logarithm of the odds

ratio, an estimate of θ3i is obtained as

θ̂∗3i = ln

[
nT1i / nT0i

nC1i / nC0i

]
= ln

[
nT1i nC0i

nT0i nC1i

]
. (5.5)

As in the case of the log relative risk, the estimate (5.5) cannot be computed when there

are no successes or only successes in at least one group. Again, no unbiased estimate of

the log odds ratio exists, and Gart and Zweifel (1967) investigated several estimators of

this parameter with respect to bias and variance. One estimate, originally proposed by

Haldane (1955), is widely used, namely

θ̂3 = ln

[
(nT1i + 0.5) / (nT0i + 0.5)

(nC1i + 0.5) / (nC0i + 0.5)

]
= ln

[
(nT1i + 0.5) (nC0i + 0.5)

(nT0i + 0.5) (nC1i + 0.5)

]
. (5.6)

The variance of estimate (5.6) is unbiasedly estimated except terms of order O(n−3) by

V̂ar(θ̂3) =
1

nT1i + 0.5
+

1

nT0i + 0.5
+

1

nC1i + 0.5
+

1

nC0i + 0.5
.
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5.2 Generic Inverse Variance Method

Let θi be the parameter of interest in the ith study, for instance, probability difference, log

relative risk, or log odds ratio, and let us assume that each independent study provides an

estimate of θi, say θ̂i, i = 1, . . . , k, as well as an estimate of Var(θ̂i) = σ2
i (θi), say σ̂2

i (θi).

Note that the variance σ2
i (θi) may functionally depend on the parameter of interest, and

consequently θ̂i and σ̂2
i (θi) are then correlated. Of course, within a meta-analysis, the

type of the parameter of interest is identical in all the studies.

In the random effects model of meta-analysis, we have, at least approximatively,

θ̂i ∼ N
[
θ , τ 2 + σ2

i (θi)
]
, i = 1, . . . , k. (5.7)

Here θ stands for the overall effect size and τ 2 denotes the parameter for the between-study

variance, also called heterogeneity parameter. If τ 2 = 0, we have the fixed effects model

of meta-analysis and θ is then the common effect size in all the studies, see Chapter 2.

For testing the homogeneity hypothesis, H0 : τ 2 = 0, we can use Cochran’s large

sample homogeneity test, see Chapter 2, which is given here as

QC =
k∑
i=1

v̂i

(
θ̂i − θ̃

)2

(5.8)

with v̂i = 1/σ̂2
i (θi), i = 1, . . . , k, and θ̃ =

∑k
i=1 v̂i θ̂i/

∑k
j=1 v̂j. Under H0, the statistic QC

is approximately chi-square distributed with k − 1 degrees of freedom and H0 is rejected

at level α if QC > χ2
k−1;1−α.

For estimating the heterogeneity parameter τ 2, the DerSimonian-Laird (DSL) estima-

tor or the restricted maximum likelihood (REML) estimator, see Chapter 3, are commonly

used in the present setting. The DSL estimator of τ 2 is given here as

τ̂ 2
DSL =

QC − (k − 1)∑k
i=1 v̂i −

∑k
i=1 v̂

2
i /
∑k

j=1 v̂j
(5.9)

with QC from Eq. (5.8).

Let wi(τ
2) = 1/[τ 2 + σ̂2

i (θi)], i = 1, . . . , k, and

θ̂(τ 2) =

∑k
i=1wi(τ

2) θ̂i∑k
i=1wi(τ

2)
.
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Then, the REML estimate of τ 2 can be found numerically by iterating

τ 2 =

∑k
i=1w

2
i (τ

2)
{

[θ̂i − θ̂(τ 2)]2 − σ̂2
i (θi)

}
∑k

j=1w
2
j (τ

2)
+

1∑k
i=1 wi(τ

2)
, (5.10)

starting with an initial guess of τ 2, say τ 2
0 , on the right hand side of Eq. (5.10).

By profiling the restricted log-likelihood for τ 2, we can construct a 100(1− α)% con-

fidence interval for τ 2 as follows. Recall that the restricted log-likelihood function can be

written as

lR(τ 2) ∝ −1

2

k∑
i=1

ln[τ 2 + σ̂2
i (θi)]−

1

2

k∑
i=1

1

τ 2 + σ̂2
i (θi)

− 1

2

k∑
i=1

[θ̂i − θ̂(τ 2)]2

τ 2 + σ̂2
i (θi)

.

Let τ̂ 2
REML denote the REML estimate, see Eq. (5.10). Then, a 100(1 − α)% confidence

interval for τ 2 is given by

CI(τ 2) :
{
τ̃ 2 ≥ 0 | − 2

[
lR(τ̃ 2)− lR(τ̂ 2

REML)
]
< χ2

1;1−α
}

=
{
τ̃ 2 | lR(τ̃ 2) > lR(τ̂ 2

REML)− χ2
1;1−α/2

}
. (5.11)

Using the quadratic form

Q̃(τ 2) =
k∑
i=1

w̃i

(
θ̂i − θ̂w̃

)2

with θ̂w̃ =
∑k

i=1 w̃i θ̂i/
∑k

i=1 w̃i and w̃i = [τ 2 + σ̂2
i (θi)]

−1, and following Hartung and

Knapp (2005a), Knapp, Biggerstaff, and Hartung (2006), or Viechtbauer (2007), a further

approximate 100(1− α)% confidence interval for τ 2 can be obtained as

CI(τ 2) =
{
τ 2 ≥ 0

∣∣ χ2
k−1;α/2 ≤ Q̃(τ 2) ≤ χ2

k−1;1−α/2

}
. (5.12)

To determine the bounds of the confidence interval explicitly one has to solve the two

equations for τ 2, namely

lower bound: Q̃(τ 2) = χ2
k−1;1−α/2,

upper bound: Q̃(τ 2) = χ2
k−1;α/2.
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Let ŵi = 1/[τ̂ 2 + σ̂2
i (θ̂i)] be the inverse of the estimated variance in model (5.7), with

τ̂ 2 being a suitable estimate of τ 2. Then the estimate of the overall effect size is given as

θ̂ =

∑k
i=1 ŵi θ̂i∑k
j=1 ŵj

.

The standard approximate 100(1− α)% confidence interval of θ is then given as

CI1(θ) : θ̂ ∓
( k∑

i=1

ŵi

)−1/2

z1−α/2, (5.13)

whereas the modified approximate 100(1−α)% confidence interval according to Hartung

and Knapp (2001b) is obtained as

CI2(θ) : θ̂ ∓
√
q̂ tk−1,1−α/2 with q̂ =

1

k − 1

∑k
i=1 ŵi

(
θ̂i − θ̂

)2

∑k
j=1 ŵj

. (5.14)

Hartung and Knapp (2001b) carried out an extensive simulation study for all three

effect sizes, probability difference, log relative risk, and log odds ratio, to investigate the

actual levels of the confidence intervals (5.13) and (5.14). The performance of the interval

(5.13) depends on the chosen parameter of interest as well as the amount of heterogeneity.

For the probability difference, this confidence interval can become very liberal, especially

for a small or moderate number of studies. The larger the amount of heterogeneity the

smaller the actual confidence level given a predefined level. For the log relative risk, this

interval turns out to be very often conservative; only when the sample sizes in the studies

extremely differ and large heterogeneity is present, the interval becomes anticonservative.

For the log odds ratio, the interval (5.13) turns out to be mostly liberal, except for small

values of τ 2. The interval (5.14) generally shows a better performance than the interval

(5.13) in attaining a predefined confidence level. For the probability difference and the

log odds ratio, the interval satisfactorily attains the nominal level, irrespective of the

pattern of sample sizes chosen and the value of the heterogeneity parameter. For the

relative risk, the interval tends to be a little conservative in most cases, but like the

interval (5.13) can become liberal when the sample sizes in the studies extremely differ

and large heterogeneity is present. But nevertheless, interval (5.14) is always preferable
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to interval (5.13). An important additional result of the simulation study of Hartung

and Knapp (2001b) is, that even if the meta-analysis is done using the random effects

approach though no heterogeneity is present, the interval (5.14) will satisfactorily keep

the nominal level. Thus, using this approach, a choice between fixed effects and random

effects approach in advance is not necessary.

Knapp, Biggerstaff, and Hartung (2006) and Viechtbauer (2007) evaluated the per-

formance of the confidence intervals for the heterogeneity parameter with the log odds

ratio as the parameter of interest. It turned out that their interval (5.12) outperforms the

other intervals with respect to attaining a predefined confidence level. Only the profile

likelihood based confidence interval (5.11) for τ 2 is a reasonable alternative in most but

not all cases.

5.3 Sparse Data and Mantel-Haenszel Type Estima-

tors

The general inverse variance method described in Section 5.2 can be applied in the fixed

effects as well as in the random effects model of meta-analysis. In some applications, for

instance combining results from safety studies of medicinal products when the number of

(serious) adverse events is of interest, it may occur that a lot of entries in the (2×2)-tables

are small or 0. This situation is known as ”sparse” data. Since the results of the general

inverse variance method rely on large sample results, the overall meta-analysis results can

be inconsistent in sparse-data situation, even when the correction factor like 0.5 is used

in the formulas of Section 5.1.

Mantel and Haenszel (1959) proposed an estimator of a common odds ratio of several

(2×2)-tables for case-control studies in epidemiology, which can also be generally used in

the fixed effects approach of meta-analysis. The Mantel-Haenszel estimator of a common

odds ratio is given as

ÔRMH =

∑k
i=1 nT1i nC0i/ni∑k
j=1 nT0j nC1j/nj

(5.15)

and can also be expressed as a weighted average of the study-specific odds ratio estimates,
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namely

ÔRMH =
k∑
i=1

wi∑k
j=1wj

nT1i nC0i

nT0i nC1i

, wi =
nT0i nC1i

ni
, i = 1, . . . , k. (5.16)

Breslow (1981) developed a large-sample theory to study odds ratio estimation in sparse

data, and demonstrated the consistency of the Mantel-Haenszel estimator within that

theory. In Breslow’s theory, the number of tables increases but the cell sizes remain

bounded.

Define for i = 1, . . . , k,

Ri = nT1i nC0i/ni,

Si = nT0i nC1i/ni,

Pi = (nT1i + nC0i)/ni,

Qi = (nT0i + nC1i)/ni.

Then an estimate of the variance of the logarithm of ÔRMH, see Robins, Breslow, and

Greenland (1986), which is consistent in both large-stratum and sparse-data situation, is

given by

V̂ar(ln ÔRMH) =

∑k
i=1 Pi Ri

2
(∑k

j=1Rj

)2 +

∑k
i=1(Pi Si +Qi Ri)

2
∑k

j=1Rj

∑k
`=1 S`

+

∑k
i=1Qi Si

2
(∑k

j=1 Sj
)2 . (5.17)

This variance estimator of ln ÔRMH is now generally accepted; see Silcocks (2005) for a

discussion on various estimators of the variance of ln ÔRMH.

An approximate 100(1− α)% confidence interval for log odds ratio is given as

ln ÔRMH ∓
√

V̂ar(ln ÔRMH) z1−α/2. (5.18)

Greenland and Robins (1985) considered Mantel-Haenszel-type estimators of the rel-

ative risk and the probability difference and derived estimates of the variance of these

estimators, which are consistent in large-stratum and sparse data situations. Again, these

estimators can be used in the fixed effects approach of meta-analysis.
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The Mantel-Haenszel-type estimator of the relative risk is given as

R̂RMH =

∑k
i=1 nT1i nCi/ni∑k
j=1 nC1j nTj/nj

. (5.19)

This estimator can also be displayed as a weighted average of the study-specific relative

risk estimators, namely,

R̂RMH =
k∑
i=1

wi∑k
j=1wj

nT1i nCi
nT i nC1i

, wi =
nT i nC1i

ni
, i = 1, . . . , k. (5.20)

The consistent variance estimator of the logarithm of R̂RMH is given by (see Greenland

and Robins, 1985)

V̂ar(ln R̂RMH) =

∑k
i=1(nT i nCi n1i − nT1i nC1i ni)/n

2
i∑k

j=1 nT1j nCj/nj
∑k

`=1 nC1` nT`/n`
. (5.21)

Consequently, an approximative 100(1− α)% confidence interval on log relative risk has

the form

ln R̂RMH ∓
√

V̂ar(ln R̂RMH) z1−α/2. (5.22)

The Mantel-Haenszel-type estimator of the probability difference is given by

P̂DMH =

∑k
i=1 nT1i nCi/ni − nT i nC1i/ni∑k

j=1 nTj nCj/nj
, (5.23)

which can be displayed as a weighted average of the study-specific probability difference

estimators, namely,

P̂DMH =
k∑
i=1

wi∑k
j=1 wj

(
nT1i

nT i
− nC1i

nCi

)
, wi =

nT i nCi
ni

, i = 1, . . . , k. (5.24)

The consistent estimator of the variance of P̂DMH is given by (see Greenland and Robins,

1985)

V̂ar(P̂DMH) =

∑k
i=1(nT1i nT0i n

3
Ci + nC1i nC0i n

3
T i)/(nT i nCin

2
i )(∑k

j=1 nTj nCj/nj
)2 . (5.25)

Consequently, an approximate 100(1−α)% confidence interval of the common probability

difference is given by

P̂DMH ∓
√

V̂ar(P̂DMH) z1−α/2. (5.26)
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The Mantel-Haenszel-type estimators are derived from the unconditional distribution

of the number of successes (nT1i, nC1i) and are first order approximations to the uncon-

ditional maximum likelihood estimators. As already mentioned, all these estimators for

the different effect sizes can only be used in the fixed effects approach of meta-analysis.

Greenland (1982) showed that if important heterogeneity is present, Mantel-Haenszel-type

estimators will not estimate meaningful parameters, and thus will also be inappropriate.

Peto’s method (Yusuf et al., 1985), sometimes also called Yusuf-Peto method, is a

further method of combining odds ratios in the fixed effects approach of meta-analysis.

This method was developed for use in mega-trials in cancer and heart disease, where

small effects are likely, yet very important. Consequently, this method may be appealing

in meta-analysis when combining results from studies with sparse data. In each study,

the log odds ratio is estimated by

ln ÔRPeto,i =
Oi − Ei
Vi

, i = 1, . . . , k, (5.27)

with

Oi = nT1i,

Ei =
nT i n1i

ni
,

Vi =
nT i nCi n1i n0i

(ni − 1) n2
i

,

and the estimate is based on the conditional distribution of nT1i given the total number

of successes. The estimator of the variance of ln ÔRPeto is

V̂ar(ln ÔRPeto,i) =
1

Vi
, i = 1, . . . , k. (5.28)

Consequently, the overall estimate of the common log odds ratio is

ln ÔRPeto =

∑k
i=1(Oi − Ei)∑k

j=1 Vj
=

k∑
i=1

Vi∑k
j=1 Vj

ln ÔRPeto,i (5.29)

with

V̂ar(ln ÔRPeto) =

(
k∑
i=1

Vi

)−1

. (5.30)
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An approximate 100(1− α)% confidence interval of the log odds ratio is then given by

ln ÔRPeto ∓
√

V̂ar(ln ÔRPeto) z1−α/2. (5.31)

It should be noted that Oi, Ei, and Vi are all equal to zero for studies with no events in

either study arm. These studies therefore do not contribute to either the point estimate

or variance of the pooled odds ratio.

Recently, Sweeting, Sutton, and Lambert (2004) and Bradburn et al. (2007) inves-

tigated the performance of meta-analytical methods in sparse data situations. In both

papers, methods for combining odds ratios with rare events were investigated. Though

the Mantel-Haenszel estimator can handle zero cells, often a continuity correction factor

like of 0.5 is still added to each cell in the (2×2)-table. The effect of the use of continuity

corrections was also investigated in both papers.

The findings for the odds ratio are similar in both papers. In sparse data situation, the

inverse variance method using the standard interval (5.13) performed consistently badly,

irrespective of the continuity correction used. In both papers, the improved interval (5.14)

was not considered. Peto’s method turns out to be the best method when event rates are

below 1 per cent, and provided that there is no substantial imbalance between treatment

and control group sizes within studies, and treatment effects are not exceptionally large.

In other circumstances, the use of the Mantel-Haenszel estimator of the common odds

ratio is to be preferred.

Though the methods described in this section make use of the binomially distributed

number of successes nT1i and nC1i, they can only be applied in the fixed effects approach of

meta-analysis. In the next section, we show how one can make direct use of the binomially

distributed number of successes in the random effects approach of meta-analysis.

5.4 Binomial-Normal Hierarchical Models

A critical assumption in the fixed effects or random effects model may be the assumption

that the estimator of the treatment difference is normally distributed, especially in small

sample sizes. When the number of successes in the treatment groups are known, that is,
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the observed (2× 2)-table is given, one can make direct use of the binomially distributed

numbers of successes. In the random effects approach this can be done in a binomial-

normal hierarchical model that can be analyzed with exact likelihood methods or within

the Bayesian framework using Markov chain Monte Carlo (MCMC) methods. Essentially,

we will present here the basic ideas of the model formulations.

Smith, Spiegelhalter, and Thomas (1995) first presented the formulation for the log

odds ratio that is straightforward. Then Warn, Thompson, and Spiegelhalter (2002) also

considered the binomial-normal hierarchical model for the log relative risk and the risk

difference risk. All the three models have one common feature, namely, that the number

of successes nT1i and nC1i are both binomially distributed with parameters nT i and pT i,

and nCi and pCi, respectively, in each study i, i = 1, . . . , k.

Let µi = logit(pCi) = ln[pCi/(1 − pCi)] be the logarithmic odds in the control group

and assume that the logarithmic odds in the treatment group is µi + θi. Consequently,

θi is the study-specific treatment difference on the log odds ratio scale. Finally, assume

that θi comes from a normal distribution with mean θ, the overall effect of treatment

difference, and variance τ 2, the heterogeneity parameter.

In summary, we may write the binomial-normal hierarchical model for the log odds

ratio as

nC1i ∼ Bin (nCi, pCi) ,

nT1i ∼ Bin (nT i, pT i) ,

µi = logit(pCi), (5.32)

logit(pT i) = µi + θi,

θi ∼ N(θ, τ 2).

Note that each value of θi from the normal distribution yields admissible values of the

success probabilities pT i and pCi.

For the log relative risk, we set µi = ln(pCi), that is, the logarithm of the success

probability in the control group. Then the logarithm of the success probability in the

treatment group is parameterized as ln(pT i) = µi + θi, and θi is the log relative risk.

Again, assume that θi comes from a normal distribution with mean θ, the overall effect of
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treatment difference, and variance τ 2, the heterogeneity parameter. But now, the value θi

needs to be constrained so that pTi ∈ [0, 1]. Following Warn, Thompson, and Spiegelhalter

(2002) this is equivalent to constraining ln(pT i) to the interval (−∞, 0], which is achieved

by confining θi to be less than − ln(pCi). Let θUi be the minimum of θi and − ln(pCi),

then θUi can take any value in the range (−∞,− ln(pCi)). The full model can then be

summarized as

nC1i ∼ Bin (nCi, pCi) ,

nT1i ∼ Bin (nT i, pT i) ,

µi = ln(pCi), (5.33)

ln(pT i) = µi + min {θi,− ln(pCi)} ,

θi ∼ N(θ, τ 2).

Finally, we consider the third effect measure probability difference. Let µi = pCi be

the success probability in the control group. Then the success probability in the treatment

group is parameterized as pT i = µi+θi, and as before assume that θi arises from a normal

distribution with mean θ, the overall effect of treatment difference, and variance τ 2, the

heterogeneity parameter. As in the previous case, the value θi needs to be constrained

so that pT i ∈ [0, 1], that is, θi ∈ [−pCi, 1 − pCi]. Define two new parameters θUi and θLi ,

corresponding to upper and lower bounds for θi. Let θLi be the maximum of θi and −pCi,
then θLi can take any value in the range [−pCi,∞). Similarly, let θUi be the minimum of

θLi and 1 − pCi, then θi is confined to the required range [−pCi, 1 − pCi]. The full model

is then given by

nC1i ∼ Bin (nCi, pCi) ,

nT1i ∼ Bin (nT i, pT i) ,

µi = pCi, (5.34)

pT i = µi + min {max {θi,−pCi} , 1− pCi} ,

θi ∼ N(θ, τ 2).

For a full Bayesian analysis in the models (5.32), (5.33), and (5.34), appropriate prior

distributions have to be determined for the hyperparameters θ and τ 2 as well as for

81



the success probabilities pCi in the control groups, which may also be called baseline

risk. For instance, in their example using the probability difference, Warn, Thompson,

and Spiegelhalter (2002) used the uniform distribution on [−1, 1] as prior distribution of

the risk difference parameter and the uniform distribution on [0, 2] as prior distribution

of the square root of the between-study variance, say τ . For the prior distributions of

pCi, they considered a uniform distribution on [0, 1] and a beta prior distribution with

hyperparameters α and β, with a uniform distribution on [1, 100] as hyperprior on each.

For the log relative risk parameter, Warn, Thompson, and Spiegelhalter (2002) used vague

N(0, 10)-distribution and priors identical to the priors above for τ and pCi.

Note that the problem of a zero cell can arise in the Bayesian analysis like in the generic

inverse variance method, see Section 5.2. The usual way to circumvent this problem is

to add 0.5 to the count in each cell of all (2× 2)-tables containing zero cells prior to the

analysis.

Using an exact binomial likelihood approach in model (5.32) leads to a logistic re-

gression model with a random intercept, and is therefore analogous to the individual

patient data method as used by Turner et al. (2000). Recently, Hamza, van Houwelin-

gen, and Stijnen (2008) showed that the use of the exact binomial likelihood approach

is preferred to the standard generic inverse variance approach when they considered the

logit of sensitivity and specificity in the meta-analysis of diagnostic tests.
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Chapter 6

Meta-Regression

In case of substantial heterogeneity between the studies, possible causes of the hetero-

geneity should be explored. In the context of meta-analysis, that can be done by either

covariates on the study level that could explain the differences between the studies or

by covariates on the subject level. However, the latter approach is only possible when

individual data are available. Since often only information on the study level is available,

explaining and investigating heterogeneity by covariates on the study level has drawn

much attention in applied sciences. The term meta-regression used to describe such anal-

ysis goes back to papers by Bashore et al. (1989), Jones (1992), Greenland (1994), and

Berlin and Antman (1994).

Since the number of studies in a meta-analysis is usually quite small, there is a great

danger of overfitting. So, there is only room for a few explanatory variables in a meta-

regression, whereas a lot of characteristics of the studies may be identified as potential

causes of heterogeneity. Higgins and Thompson (2004) remarked that explorations of het-

erogeneity are noted to be potentially misleading. Investigations of differences between

the studies and their results are observational associations and are subject to biases (such

as aggregation bias) and confounding (resulting from correlation between study charac-

teristics). Consequently, there is a clear danger of misleading conclusions if p-values from

multiple meta-regression analyses are interpreted näıvely.
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This chapter is organized as follows. In Section 6.1 we describe in detail the analysis of

the fixed and random effects meta-regression with one covariate. Section 6.2 contains the

general analysis of meta-regression with more than one covariate. Note that the methods

described in this chapter can be seen as an extension of the generic inverse variance method

of fixed and random effects meta-analysis. The models and methods can be applied for

all effect size measures considered in Chapters 2–5, that is, normal means, difference of

normal means, standardized mean differences, ratio of means, risk difference, relative risk,

and odds ratio.

6.1 Model with One Covariate

In the fixed effects meta-regression we write

Yi ∼ N
(
θi , σ

2
i

)
, i = 1, . . . , k, (6.1)

where Yi is the statistic in the ith study and σ2
i the within-study variability of the ith

study. The study-specific mean θi is parameterized as

θi = θ + βxi, i = 1, . . . , k, (6.2)

where xi denotes a quantitative covariate or an indicator variable for a factor with only

two levels, that is, xi = 0 or xi = 1. In case of a factor with two levels, θ represents the

effect size given xi = 0 and β is the difference of the effect size given xi = 1 compared

to xi = 0. For a quantitative covariate, β stands for the change in the effects size given

a unit change in the covariate. When the quantitative covariate is centered around its

mean, then θ represents the effect size given the mean of the quantitative covariate.

Additionally to the parameterization of the mean of the study-specific effect size, we

can allow for a parameter of the still unexplained variation between the studies. That is,

we can consider, in analogy to the random effects model of meta-analysis, see Chapter 3,

the following normal-normal hierarchical model

Yi ∼ N
(
θi , σ

2
i

)
, i = 1, . . . , k,

θi ∼ N
(
θ + βxi , τ

2
)
, i = 1, . . . , k.
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The random effects meta-regression with one covariate is given as the marginal model of

the above normal-normal hierarchical model, that is,

Yi ∼ N
(
θ + βxi , τ

2 + σ2
i

)
, i = 1, . . . , k. (6.3)

In the following, we will present the analysis in the random effects meta-regression.

The corresponding analysis in the fixed effects meta-regression can be performed by setting

τ 2 = 0.

Let wi = 1/ (τ 2 + σ2
i ), i = 1, . . . , k, be the true inverse of the variance of Yi, w =∑k

i=1 wi, and λi = wi/w, i = 1, . . . , k, the normed weights, then the weighted least-

squares estimators of θ and β are given by (see Knapp and Hartung, 2003)

β̃ =

∑k
i=1 λi xi Yi −

∑k
j=1 λj xj

∑k
`=1 λ` Y`∑k

i=1 λi x
2
i −

(∑k
j=1 λjxj

)2 (6.4)

and

θ̃ =
k∑
i=1

λi Yi − β̃
k∑
j=1

λj xj. (6.5)

The variances and the covariance of the estimators θ̃ and β̃ are

Var(θ̃) =

 k∑
i=1

wi −

(
k∑
j=1

wj xj

)2/ k∑
`=1

w` x
2
`

−1

, (6.6)

Var(β̃) =

 k∑
i=1

wi x
2
i −

(
k∑
j=1

wj xj

)2/ k∑
`=1

w`

−1

, (6.7)

and

Cov(θ̃ , β̃) =
−
∑k

i=1wi xi∑k
i=1 wi

∑k
j=1wj x

2
j −

(∑k
`=1 w` x`

)2 . (6.8)

Usually, every study provides an estimate of the within-study variance σ2
i , say σ̂2

i . The

between-study variance τ 2 can be estimated using the different estimation procedures

discussed in Chapter 3 adapted for the meta-regression model with one covariate. We

present some extensions of the between-study variance estimators from Chapter 3 in the

following.
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In analogy to the DerSimonian-Laird estimator in Chapter 3, the method of moments

(MM) estimator of the between-study variance τ 2 can be derived from the statistic Q1 =∑k
i=1w

∗
i (Yi− θ̂∗− β̂∗xi)2 in the present model, where θ̂∗ and β̂∗ are weighted least-squares

estimators of θ and β with known weights w∗i = 1/σ2
i , i = 1, . . . , k, that is, the weighted

least-squares estimators in the fixed effects meta regression. So, the quadratic form Q1

can also be seen as the residual sum of squares in the fixed effects meta-regression model.

The method of moments estimator is given in its truncated form as (see Thompson and

Sharp, 1999)

τ̂ 2
MM = max

{
0 ;

Q1 − (k − 2)

F (w∗,x)

}
(6.9)

with

F (w∗,x) =
k∑
i=1

w∗i −
∑
w∗2i

∑
w∗i x

2
i − 2

∑
w∗2i xi

∑
w∗i xi +

∑
w∗i
∑
w∗2i x

2
i∑

w∗i
∑
w∗i x

2
i − (

∑
w∗i xi)

2 .

In practice, the usually unknown variances σ2
i have to be replaced by appropriate estimates

in Eq. (6.9).

Using the ordinary least squares estimators of θ and β, say θ̄ and β̄, in model (6.3),

Raudenbush (1994) derived an approximated method of moments (AMM) estimator of

τ 2, which is given as

τ̂ 2
AMM = max

{
0,

1

k − 2

k∑
i=1

[
Yi − (θ̄ + β̄xi)

]2 − 1

k

k∑
i=1

σ̂2
i

}
. (6.10)

Note that the estimator τ̂ 2
AMM is equal to the ANOVA-type estimator of τ 2 in the case

of no covariates, see Chapter 3 (note that 1/(k − 2) is replaced by 1/(k − 1) with no

covariates).

The (approximate) restricted maximum likelihood (REML) estimator for the between-

study variance in model (6.3) with one covariate is the solution of the estimating equation

(see Berkey et al., 1995)

τ̂ 2 =

∑k
i=1 ŵ

2
i

(
(k/(k − 2))(Yi − θ̂ − β̂xi)2 − σ̂2

i

)
∑k

j=1 ŵ
2
j

. (6.11)

This equation is iteratively solved using a starting value of τ 2, say τ 2 = τ 2
0 , on the right

hand side of Eq. (6.11). With the weights ŵi = 1/(τ 2
0 + σ̂2

i ), the initial values of θ̂ and β̂
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are given. Then the right hand side of Eq. (6.11) can be evaluated to yield a new value

of τ̂ 2. This provides new weights ŵi, and leads to new estimates of θ and β and finally to

a new value of τ̂ 2. The procedure continues until convergence under the restriction that

τ̂ 2 is non-negative.

Knapp and Hartung (2003) considered the quadratic form

Q2 =
1

k − 2

k∑
i=1

wi (Yi − θ̃ − β̃ xi)2 , k > 2 . (6.12)

This quadratic form can be seen as a mean sum of the weighted least-squares residuals with

known variance components. Knapp and Hartung (2003) showed that, under normality

of Yi, the quadratic form Q2 from Eq. (6.12) is stochastically independent of the weighted

least-squares estimators θ̃ and β̃, and that (k− 2)Q2 is χ2-distributed with k− 2 degrees

of freedom. Let w̃i = (τ 2 + σ̂2
i )
−1, i = 1, . . . , k, and consider the quadratic form

Q̃2(τ 2) =
k∑
i=1

w̃i (Yi − ˜̃θ − ˜̃β xi)
2, k > 2, (6.13)

with ˜̃θ and ˜̃β the estimates of θ and β using the weights w̃i, i = 1, . . . , k. The distribution

of Q̃2(τ 2) can be approximated by a χ2-distribution with k−2 degrees of freedom. Conse-

quently, in analogy to the Mandel-Paule estimator of τ 2 from Chapter 3, an estimator of

τ 2 in the random effects meta-regression model with one covariate is given by the solution

for τ 2 of the estimating equation

Q̃2(τ 2) = k − 2. (6.14)

Moreover, an approximate (1− α)-confidence region for τ 2 may be defined as

CI(τ 2) =
{
τ 2 ≥ 0

∣∣ χ2
k−2;α/2 ≤ Q̃(τ 2) ≤ χ2

k−2;1−α/2

}
(6.15)

with χ2
k−2;α the α-quantile of the χ2-distribution with k − 2 degrees of freedom.

Let us now consider the analysis of the fixed effects in the present model. Let ŵi =

(τ̂ 2 + σ̂2
i )
−1

, i = 1, . . . , k, be the consistent estimators of the weights wi, and by plugging

in these estimators in Eqs. (6.4) and (6.5) we obtain the weighted least-squares estimators,
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denoted by θ̂ and β̂. The commonly used (large sample) (1 − α)-confidence intervals on

the parameters θ and β are given by

θ̂ ∓
√

V̂ar(θ̂) z1−α/2 (6.16)

and

β̂ ∓
√

V̂ar(β̂) z1−κ/2 , (6.17)

where V̂ar(θ̂) and V̂ar(β̂) are obtained by putting ŵi, i = 1, . . . , k, in Eqs. (6.6) and (6.7),

respectively.

Like in the random effects model of meta-analysis in Chapter 3, the use of the standard

normal distribution in Eqs. (6.16) and (6.17) is questionable, especially when the number

of studies is small. Based on simulation results, Berkey et al. (1995) recommended the use

of a t-distribution with k − 4 degrees of freedom, where they considered the log relative

risk as an outcome measure in their simulation study.

Let us consider again the quadratic form Q2 from Eq. (6.12). Since (k − 2)Q2 is χ2-

distributed with k − 2 degrees of freedom, the expected value of Q2 is equal to one for

known variance components.

Hence, unbiased and non-negative estimators of the variances of θ̃ and β̃ are given by

Q2(θ̃) =
1

k − 2

k∑
i=1

gi (Yi − θ̃ − β̃ xi)2 (6.18)

with gi = wi / [
∑
wj − (

∑
wj xj)

2/
∑
wj x

2
j ], i = 1, . . . , k, and

Q2(β̃) =
1

k − 2

k∑
i=1

hi (Yi − θ̃ − β̃ xi)2 (6.19)

with hi = wi / [
∑
wj x

2
j − (

∑
wj xj)

2/
∑
wj], i = 1, . . . , k, see Knapp and Hartung

(2003).

Replacing the unknown variance components in Eqs. (6.18) and (6.19) by appropri-

ate estimates, Knapp and Hartung (2003) proposed the following approximate (1 − κ)-

confidence intervals on θ and β:

θ̂ ±
√
Q̂2(θ̂) tk−2,1−κ/2 (6.20)
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and

β̂ ±
√
Q̂2(β̂) tk−2,1−κ/2 , (6.21)

where tν;κ denotes the κ-quantile of the t-distribution with ν degrees of freedom.

Using either the MM estimator or the REML estimator of the between-study variance,

the confidence intervals (6.20) and (6.21) are smaller than the corresponding intervals

(6.16) and (6.17) when the realized value of the quadratic form Q2 from Eq. (6.12) is

less than one given equal test distributions in both cases. Therefore, Knapp and Hartung

(2003) considered an ad-hoc modification of the variance estimates Q̂2(θ̂) and Q̂2(β̂) in

the limits of the confidence intervals (6.20) and (6.21) to the effect that they force the

realized value of Q2 to be at least one. That is, the modified confidence intervals are given

by

θ̂ ∓
√
Q̂∗2(θ̂) tk−2,1−κ/2 (6.22)

with

Q̂∗2(θ̂) =
max

{
1 ;
∑k

i=1 ŵi(Yi − θ̂ − β̂xi)2/(k − 2)
}

∑k
i=1 ŵi − (

∑k
j=1 ŵjxj)

2/
∑k

`=1 ŵ`x
2
`

,

and

β̂ ∓
√
Q̂∗2(β̂) tk−2,1−κ/2 (6.23)

with

Q̂∗2(β̂) =
max

{
1 ;
∑k

i=1 ŵi(Yi − θ̂ − β̂xi)2/(k − 2)
}

∑k
i=1 ŵix

2
i − (

∑k
j=1 ŵjxj)

2/
∑k

`=1 ŵ`
.

In a simulation study, Knapp and Hartung (2003) considered the log relative risk as

outcome measure in a meta-regression setting. The main result of their simulation study

is that the intervals (6.22) and (6.23) outperform the other corresponding intervals with

the respect to the nominal confidence coefficient.

Recently, Sidik and Jonkman (2005b) considered robust variance estimation in random

effects meta-regression. We will describe their approach in the general random effects

meta-regression model in the next section.
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6.2 Model with More Than One Covariate

The extension of model (6.3) to the case with more than one covariate is given as

Yi ∼ N
(
θ + xi

′β, τ 2 + σ2
i

)
= N

(
zi
′γ, τ 2 + σ2

i

)
, i = 1 . . . , k, (6.24)

where xi is now a vector of covariates, zi
′ = (1,xi

′), and β a vector of corresponding

regression parameters, γ ′ = (θ,β′).

In matrix notation, the general random effects meta-regression for meta-analysis with

(r − 1) covariates can be described as

Y ∼ N(Zγ, τ 2Ik + ∆) = N(Zγ,Λ−1), Λ−1 = τ 2Ik + ∆ (6.25)

with Y = (Y1, . . . , Yk)
′, Z the (k×r)-dimensional known regressor matrix with rank(Z) =

r < k − 1, γ = (θ, β1, . . . , βr−1)′ the unknown parameter vector of the fixed effects, τ 2

stands for the between-study variance, Ik is the (k× k)-dimensional identity matrix, and

∆ is a (k × k)-dimensional diagonal matrix with entries σ2
i , i = 1, . . . , k, that is, ∆

contains the within-study variances. Note that the case of a factor with more than two

levels can be included in model (6.25) by defining appropriate indicator variables equal

to the number of factor levels minus one.

In case all the variance components are known in model (6.25), the weighted least

squares estimator of γ is given as

γ̃ = (Z ′ΛZ)−1Z ′ΛY (6.26)

with variance-covariance matrix

Σ = (Z ′ΛZ)−1. (6.27)

Usually, each study provides an estimate of the within-study variability σ2
i , so that an

estimate of ∆, say ∆̂, is given. Consequently, we only have to estimate the between-study

variance τ 2 to obtain an estimate of Λ−1. In the general model (6.25) we consider the

method of moments estimator of τ 2 following the lines of the DerSimonian-Laird estimator

and the restricted maximum likelihood estimator.
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The residual sum of squares in Eq. (6.25) with τ 2 = 0 can be expressed as a quadratic

form in Y and has the matrix representation

Q = Y ′P ′∆−1PY with P = Ik −Z(Z ′∆−1Z)−1Z ′∆−1. (6.28)

Since PZ = 0, the expected value of Q is given as

E(Q) = tr[P ′∆−1P Cov(Y )]

= k − r + τ 2f(Z,∆−1)

with f(Z,∆−1) = tr(∆−1) − tr[(Z ′∆−1Z)−1Z ′∆−2Z], and tr(A) denotes the trace of a

squared matrix A.

Consequently, the method of moments estimator of τ 2 is given in its truncated form

as

τ̂ 2
MM = max

{
0 ,

Q− (k − r)
f(Z,∆−1)

}
. (6.29)

The (approximate) restricted maximum likelihood estimator (REML) can be deter-

mined by solving iteratively the equation (see Thompson and Sharp, 1999)

τ̂ 2 =

∑k
i=1 ŵ

2
i

(
(k/(k − r))(yi − θ̂ − xi

′β̂)2 − σ̂2
i

)
∑k

i=1 ŵ
2
i

. (6.30)

Let Λ̂
−1

= τ̂ 2Ik + ∆̂ be the estimated variance-covariance matrix in model (6.31),

then the estimate of γ is given by

γ̂ = (Z ′Λ̂Z)−1Z ′Λ̂Y (6.31)

with estimated variance-covariance matrix

Σ̂1 =
(
Z ′Λ̂Z

)−1

. (6.32)

With the estimated variances on the main diagonal of Σ̂1, confidence intervals and hy-

pothesis tests on the fixed effects can be constructed in the usual manner. However, as

already mention in Section 6.1, Knapp and Hartung (2003) found out that tests of the

meta-regression parameters based on the usual variance estimator generally do not hold

a test level at its nominal level.
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To carry forward the improved variance estimation approach by Knapp and Hartung

(2003) to the case of more than one covariate, let us consider the matrix

P1 = Ik −Z(Z ′Λ̂Z)−1Z ′Λ̂ (6.33)

and calculate the quadratic form

Q̂r =
Y ′P1

′Λ̂P1Y

k − r
. (6.34)

The improved variance estimate of a fixed effect estimate is then given by multiplying

the corresponding diagonal element in Σ̂1 with Q̂r, that is, Knapp and Hartung (2003)

suggested as estimator of the variance-covariance matrix of γ̂

Σ̂2 = Q̂r Σ̂1. (6.35)

For constructing confidence intervals on the fixed effects the t-distribution with (k − r)
degrees of freedom should be used.

Sidik and Jonkman (2005b) considered a robust variance-covariance matrix estimator

or so-called sandwich variance-covariance matrix estimator used in a wide range of ap-

plications under model misspecification for large samples; see Royall (1986). Extending

this approach to the general random effects meta-regression model, Sidik and Jonkman

(2005b) proposed the following estimator of the variance-covariance matrix of γ̂

Σ̂3 =
(
Z ′Λ̂Z

)−1

Z ′Λ̂ {diag(ε̂∗21 , . . . , ε̂
∗2
k )} Λ̂Z

(
Z ′Λ̂Z

)−1

, (6.36)

where ε̂∗2i = (1− ĥi)−1 ε̂2i , with ε̂i = Yi − zi
′γ̂ and ĥi = λ̂i zi

′(Z ′Λ̂Z)−1
zi. Note that λ̂i

is the ith diagonal element of Λ̂.

In a simulation study, Sidik and Jonkman (2005b) compared their approach with the

standard approach and the approach by Knapp and Hartung (2003). They concluded

that ”despite the seeming suitability of the robust estimator for random effects meta-

regression, the improved variance estimator of Knapp and Hartung (2003) yields the

best performance among the three estimators, and thus may provide the best protection

against errors in the estimated weights.”
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