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ABSTRACT

�is thesis contributes to the theory of consumer’s behavior. It is devided

into three parts: �e �rst part gives a brief history of the theoretical de-

velopments relevant to the two consecutive parts and provides a detailed

outline. �e second part contains theoretical contributions. Speci�cally,

(i) it provides a unifying proof technique to show that preference cycles

can be of arbitrary length formore than two but not for two commodities.

An immediate corollary is that the Weak Axiom of Revealed Preference

only implies the Strong Axiom for two commodities, (ii) it provides a

simple graphical way to construct preference cycles, (iii) it shows that

for two dimensional commodity spaces any homothetic utility function

that rationalizes each pair of observations in a set of consumption data

also rationalizes the entire set of observations, (iv) it explorers rationaliz-

ability issues for �nite sets of observations of stochastic choice and gives

two rationalizability theorems. �e third part provides three practical

contributions. Spec�cally, (i) it explorers some possible applications of

a lemma used in the chapter on homothetic preferences in two dimen-

sions, (ii) it suggests a procedure to decide whether or not to treat a

consumer who violates the Generalized Axiom of Revealed Preference

as “close enough” to utility maximization, (iii) it provides a newmeasure

for the severity of a violation of utility maximization based on the extent

to which the upper bound of the indi�erence map intersects the budget

set.
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Part I

INTRODUCTION





1
A BRIEF HISTORY OF REVEALED PREFERENCE

1.1 introduction

Revealed preference has to be considered as one of the most in�uencial

ideas in economics.1 Paul Samuelson introduced his “Note on the Pure

�eory of Consumer’s Behavior” in 1938 – a paper in which he used

the expression “selected over” instead of “revealed preferred”. Varian

(2006) recalls a search he conducted on Google scholar in 2005 with

3,600 results which contained the phrase “revealed preference”. When I

repeated the search in early 2009, it returned 17,100 results.2

A more formal introduction of revealed preference is given in the

di�erent chapters of this thesis. �e main idea in Samuelson (1938) was

to “[drop] o� the last vestiges of the utility analysis” and to “start anew

in direct attack upon the problem”. He expressed the hope

[. . .] that the orientation given here is more directly based

upon those elements which must be taken as data by eco-
nomic science [. . .]

In noticing that utility is unobservable, Samuelson’s approach was to
base the analysis of consumer behavior on the observable magnitutes

prices, expenditure and demand at any price-wealth situation. If, then,
a consumer demands a certain bundle x at a given price vector p and
expenditure w, he reveals that he preferres this bundle over all other
bundles which were a�ordable. Samuelson went on to postulate that

[. . .] if an individual selects batch one over batch two, he

does not at the same time select two over one.

�is is what later became known as the Weak Axiom of Revealed Prefer-

ence (warp).

1 �is chapter is roughly based on Mas-Colell (1982) and Varian (2006).

2 Clearly Google scholar has improved over time and now includes many more old

papers as well as new unpublished working papers.

3



4 a brief history of revealed preference

A�er Little’s (1949) and Samuelson’s (1948) graphical attempts to

show how to construct indi�erence maps based on revealed preference

relations and thereby showing that “a theory of consumer’s demand can

be based solely on consistent behaviour” (Little 1949) it became obvious

that the two-dimensional graphical analysis was not su�cient.

Shortly a�erwards, Houthakker (1950) provided a general proof for

arbitrarily many goods. His idea was to extend the directly revealed

preference relations to indirectly revealed preference relations.Wemight

not observe that a consumer selects bundle one over bundle two, but we

might nonetheless be able to establish a preference relation between one

and two by observing that a consumer selects bundle one over bundle

three, bundle three over bundle four, and so forth, until we arrive at

bundle two.

Houthakker’s idea extended the weak axiom and is now known as

the Strong Axiom of Revelaed Preference (sarp). It can be related to

the old “integrability problem” which can be traced back as far as An-

tonelli in 1886 (cf. Richter 1966): Given a demand function, how can we

tell whether or not it could have been induced by a utility function? In

Antonelli’s version of integrability, restrictions are imposed on indirect

demand functions (independent variables being commodity bundles)

and direct preferences are recovered (cf. Mas-Colell 1982). Integrability

conditions can also be imposed on direct demand functions to obtain

indirect preferences; see Hurwicz and Uzawa (1971). �e integrability

conditions on direct demand functions – symmetry and negative de�-

niteness of the Slutsky matrix – are well known.

While integrability theory considers in�nitesimal changes and re-

lies on a condition which does not admit an economic interpretation

(symmetry), revealed preference theory relies on the sarp, which is a

fairly intuitive condition. However, revealed preference and integrability

theory are equivalent in the sense that their conditions “characterize

the preference hypothesis by restrictions involving only the demand

function” (Mas-Colell 1982).

A related question is whether one can �nd su�cient conditions on

demand functions which not only guarantee that a consumer acts as

a utility maximizer, but also that his preferences are completely “deter-

mined” by his choice behaviour, i.e. whether preferences are unique



1.2 afriat’s approach and empirical analysis 5

inside some class. �is problem is treated in Mas-Colell (1978), where

the author shows that a regularity condition (the “income Lipschitz prop-

erty”) on the demand together with the sarp is su�cient for uniqueness

of an underlying continuous preference relation.

It has long been noticed that a notion of stochastic preferences or ran-
dom utility maximization could be a fruitful extension of the revealed
preference approach. Marschak (1959) was perhaps the �rst to connect

the revealed preference approach to the psychometric literature (�ur-

stone 1927, Luce 1958). Simply put, stochastic preferences imply that

while a consumer is a rational maximizer of utility, he might choose

according to one preference relation in some situation and according to

another preference relation in some other situation. Alternatively, one

can argue that while we can observe choices, we might not be able to

observe all aspects of the situation in which this choice is made. For ex-

ample, the situation may consist of a given income, a price vector, and a

weather condition, but we only observe the income and the price. In this

case we can interpret the observed choice as the result of random utility

maximization, where the random factor is the weather. Another inter-

pretation is that we observe individual choices of a group of anonymous

consumers which cannot be traced. In that case, we might ask whether

the distribution of choices observed for that group in a variety of situa-

tions is consistent with utility maximization. Papers addressing these

issues include among others Block andMarschak (1960), McFadden and

Richter (1970), Falmagne (1978), Fishburn (1978), Cohen (1980), Barberá

and Pattanaik (1986), Cohen and Falmagne (1990), Bandyopadhyay et al.

(1999, 2002, 2004), and McFadden (2005).

1.2 afriat’s approach and empirical analysis

Afriat’s (1967) approach to revealed preference proved to be quite suc-

cessful for empirical work.�emain idea was to not start with a demand

function which speci�es demand for all possible situations, but to start

with a �nite set of consumption data, i.e. observed prices, expenditures,
and choices, and to ask how a researcher could construct a utility function
consistent with the observations. A new and somewhat clearer exposi-

tion of Afriat’s original paper was later provided by Diewert (1973).
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Afriat’s approach was constructive: He gave an algorithm which can

be used to compute a utility function consistent with a �nite set of

observations, given that the data satis�ed a condition he called “cyclic

consistency”. Cyclic consistency was later reformulated by Varian (1982)

as the Generalized Axiom of Revealed Preference (garp).�e di�erence

between sarp and garp is that while sarp is built around single-valued

demand, garp also allows for multi-valued demand. �is distinction

is of importance because multi-valued demand leads to “�at” parts of

indi�erence curves which violates sarp.

When economists became increasingly interested in estimating con-

sumer demand functions – two of the most famous examples are Chris-

tensen et al. (1975) and Deaton and Muellbauer (1980) – Varian (1982)

noted that one could start any analysis by testing nonparametrically

whether a set of consumption data could have been generated by the

maximization of a utility function. He also developed several other non-

parametric tests (Varian 1983) for speci�c forms, like homotheticity.

�is nonparametric approach to demand analysis became increasingly

popular over the last decade with the ascent of experimental economics,

speci�cally induced budgets experiments. Experimental data has a dis-

tinctive advantage over �eld data, as the experimenter can observe data

in an ideal way, just as assumed in revealed preference theory.

Battalio et al. (1973) were perhaps the �rst to look at individual demand

generated in a quasi-experimental setting. �eir subjects were patients

in a psychiatric hospital who were endowed with di�erent amounts of

wealth as reward for cooperative behavior and could choose from a set

of di�erent goods; the authors changed prices of these goods to obtain

power against the alternative hypothesis of random demand. Sippel

(1997) recruited subjects from a pool of university students and was

perhaps the �rst to test the theory of consumer demand in a laboratory

setting.�e goods he o�ered ranged from videoclips to snacks. A similar

experiment was conducted by Mattei (2000). Harbaugh et al. (2001)

conducted a similar experiment with children as subjects. Andreoni and

Miller (2002) (see alsoAndreoni andVesterlund 2001) examined dictator

gameswith changing transfer rates and treated donations and own payo�

as two di�erent goods; a very similar experiment was conducted by

Fisman et al. (2007). Février and Visser (2004) conducted an experiment
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with di�erent kinds of orange juices as goods. Choi et al. (2007a) looked
at investments in risky assets. Besides experimental data, household level

panel data has also been analyzed using revealed preference techniques,

for example by Blundell et al. (2003) and Blundell et al. (2007).

�e data generated in induced budgets experiments is, by all practical
means, just as the theory of revealed preference assumes. An induced

budget experiment consists of an income (or wealth) endowment of

experimental subjects which they can spend on some goods o�ered by

the experimenter who controls the prices of these goods. �e income

endowment usually is of no direct value to the subject, i.e. unspent

income is lost for them, creating incentives to spend all income. In some

experiments, such as the one by Andreoni andMiller (2002), subjects are

even required to spend their entire income. Prices and income are varied,

creating di�erent budget sets, and subjects are asked to choose one of

the a�ordable consumption bundles. For example, in Andreoni and

Miller (2002), subjects were given a sheet of paper informing subjects

about prices and income. Subjects were then asked to write down their

preferred bundle. In Fisman et al. (2007) and Choi et al. (2007a) this was
taken a step further: Subjects were presented budget lines on a computer

screen and asked to click on their preferred point on the line with the

computer mouse.

In Sippel’s (1997) experiment the commodities subjects could choose

from were commodities in the literal sense, e.g. snacks. Andreoni and

Miller’s (2002) treated “payment to self ” and “payment to other” as two

di�erent commodities. �is setup may require some leap of reasoning,

as subjects could choose how much of their endowment they wanted

to pass to an anonymous other subject, given di�erent transfer rates

(i.e. one unit of money passed would result in x units of money for the
other subject). �at is, “giving” was interpreted as a commodity, and the

transfer rate was interpreted as the “price of giving”. While this classical

demand theory framework may not be the most natural environment

to test preferences for altruism,3 it did create a rich set of data to test

whether (broadly de�ned) “altruistic” choices could be modelled as the

result of utility maximization.

3 But note that tax deduction for charitable donations or the matching of donations of

private persons by a company sponsoring a charity event are quite common.



8 a brief history of revealed preference

�e theory of revealed preference has therefore turned out to be not

only a successful theoretical approach to consumer behavior without

the need for introspective subjective utility, it has also generated a rich

set of experimental and empirical examination which is likely to grow

in the future.



2
CONTRIBUTIONS OF THIS THESIS

2.1 introduction

�is thesis contributes to the theory of revealed preference and its ap-

plication. It is devided into three parts. Part i contains a brief history

of revealed preference and this short introduction to the contributions.

Part ii contains theoretical contributions. Part iii contains applications.

2.2 theory

Chapter 3 contains a geometric graph-based attack on a known and

solved problem. It introduces a new and unifying approach to show that

a preference cycle, by which a consumer reveals that he prefers a bundle

to itself via a chain of other choices, can only be of irreducible length

two in case of a two dimensionsal commodity space. In three or more

dimensional commodity spaces a preference cycle can be of arbitrary

length. Two corollaries are that warp implies sarp in two dimensions

but not in higher dimensions. �e proof given here generalizes the

existing proofs insofar as it provides necessary and su�cient conditions

for preference cycles to exist. It is shown that the necessary conditions

cannot hold in two dimensions, but the su�cient conditions can be

full�lled in more than two dimensions. It is also shown how one can

use the employed methods to de�ne demand for all positive prices such

that in three dimensions preference cycles of arbitrary length can be

constructed. �e proof is intuitively appealing as is gives a geometric

interpretation of preference cycles as paths on indi�erence surfaces.

Chapter 4 provides a simple graphical way to construct preference

cycles in three dimensions by “taking a look behind the scenes” of in-

tersecting budget hyperplanes. By looking at the positive orthant of the

Euclidean coordinate system through the origin of the system, the search

9
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for preference cycles is substantially simpli�ed given suitable budgets.

An attempt is made to adapt the method to four dimensions.

Chapter 5 presents a proof to show that for two dimensional commod-

ity spaces any homothetic utility function that rationalizes each pair of

observations in a set of consumption data also rationalizes the entire

set of observations. �e result is stated as a pairwise version of Varian’s

Homothetic Axiom of Revealed Preference. �e chapter provides an

explicit way to compute scalar factors to construct homothetic prefer-

ence relations. �ese scalar factors are later applied in Chapter 7. �e

chapter also provides insights into relations between di�erent revealed

preference axioms which can be tested using data from induced budgets

experiments, and how to construct powerful tests for homotheticity.

Chapter 6 explorers rationalizability issues for �nite sets of observa-

tions of stochastic choice in the framework introduced by Bandyopad-

hyay et al. (1999). Is is argued that a useful approach is to consider indirect

preferences on budgets instead of direct preferences on commodity bun-

dles. Stochastic choices are rationalizable in terms of stochastic orderings

on the normalized price space if and only if there exists a solution to a

linear feasibility problem. Together with the weak axiom of stochastic

revealed preference the existence of a solution implies rationalizability

in terms of stochastic orderings on the commodity space. Furthermore

it is shown that the problem of �nding su�ciency conditions for binary

choice probabilities to be rationalizable bears similarities to the problem

considered in this chapter. �e chapter also provides a discussion about

some di�culties with the notion of probability measures on the set of

preferences.

2.3 applications

Chapter 7 continues the work started in Chapter 5. �e result obtained

in the theoretical part is used to provide a simpli�ed nonparametric test.

It is shown how the explicit scalar factors derived in Chapter 5 can be

usefully applied to data sets which violate homotheticity. �e new test

and measures are applied to experimental data.

Chapter 8 suggests a procedure to decide whether or not to treat a

consumer who violates garp as “close enough” to utility maximization.
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It is based on the reduction of the power the test has against random

behavior. It can also be used to compare di�erent e�ciency indices.

If a consumer is inconsistent with garp, we might need a measure

for the severity of this inconsistency. In Chapter 9 a new measure based

on the extent to which the indi�erence surfaces intersect the budget

hyperplanes is proposed. �e measure is intuively appealing and, as a

cuto�-rule evaluated by Monte Carlo experiments, performs very well

compared to the o�en used Afriat E�ciency Index. �e results suggest

that the new measure is better suited to capture small deviations from

utility maximation.





Part II

THEORY





3
PREFERENCE CYCLES AND THE NUMBER OF

COMMODITIES

3.1 introduction

For quite some time it had been an open question in economic theory

whether the Weak Axiom of Revealed Preference (warp) as introduced

by Samuelson (1938) was actually su�cient to guarantee that a demand

function maximizes a utility function. Houthakker (1950) de�ned an

apparently stronger condition, the Strong Axiom of Revealed Preference

(sarp) and showed that this condition was indeed su�cient. Arrow

(1959), however, remarked that there was still no proof “that the Weak

Axiom is not su�cient to ensure the desired result. �e question is

still open.” Uzawa (1959) showed that the Weak Axiom combined with

certain regularity conditions implies the Strong Axiom.1 Meanwhile,

Rose (1958) showed that the Weak Axiom implies the Strong Axiom for

two commodities, extending a limited geometrical argument by Hicks

(1965 [1956], pp. 52–54).2

Finally, Gale (1960) constructed a counterexample for the case of three

commodities: warp was satis�ed, sarp was violated. �is, essentially,

settled the question. Kihlstrom et al. (1976) provided a theoretical argu-

ment which yields an in�nite number of demand functions that satisfy

warp but not sarp. Peters and Wakker (1994, 1996) showed how to em-

bed Gale’s example in higher dimensions without relying on isomorphic

extensions, i.e. with strictly positive demand for every commodity for

suitable budgets. John (1997) showed that there is a simpler proof of

their results.

1 Samuelson is said to have expressed the view that these regularity conditions “are

perhaps integrability conditions in disguise” (Gale, 1960), and Kihlstrom et al. (1976)

commented that “it looks very much like the strong axiom itself ”.
2 In Chapter 5 is is shown that for similar reasons pairwise comparison of consumption

decisions is su�cient to check for homothetic rationalization.

15



16 preference cycles and the number of commodities

Samuelson (1953) raised the question whether the exclusion of cycles

of a certain length would be su�cient to imply sarp. Even if warp

does not generally imply sarp, the exclusion of cycles of length k could
exclude the possibility of cycles of length greater than k. �is question
was answered by Shafer (1977) who showed that there exists a demand

function for three commodities which violates sarp, but has no revealed

preference cycles of length less then or equal to any k ≥ 2, which for

k = 2 also proves that warp does not imply sarp. Shafer’s result was also
extended into more than three dimensions by Peters and Wakker and

John.

�e results can be found in some advanced textbooks. However, the

existing proofs are complicated and o�en long-winded. In this chapter

a simple new approach is developed to show that with more than two

commodities there can be preference cycles of arbitrary �nite length

whereas for two commodities cycles can only be of length 2. From this

it immidiately follows (i) that warp necessarily implies sarp for two

commodities, (ii) that warp does not imply sarp for more than two

commodities. �e approach here uni�es the proofs of Rose, Gale, and

Peters andWakker insofar that it gives necessary and su�cient condi-

tions for the existence of cycles of length greater than two. It is shown

that in two dimensions the necessary conditions cannot hold, whereas in

more than two dimensions the su�cient conditions can be satis�ed.�e

employed methods might be useful for other researchers to �nd simpler

proofs for their results. Section 3.5 shows a way to de�ne demand for

all positive prices such that in three dimensions preference cycles of

arbitrary length can be constructed.

�e proof technique is intuitively appealing as it admits an under-

standing of the reason by giving a geometric interpretion of preference

cycles as paths on indi�erence surfaces.

3.2 preliminaries

We use the following notation: Rℓ+ = {x ∈ Rℓ ∶ x ≧ 0}, Rℓ++ = {x ∈

Rℓ ∶ x > 0}, where “ x ≧ y ” means “ xi ≥ yi for all i ”, “ x ≥ y ” means
“ x ≧ y and x ≠ y ”, and “ x > y ” means “ xi > yi for all i ”. Note the
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convention to use subscripts to denote scalars or vector components

and superscripts to index bundles.

Let X = Rℓ+ be the commodity space, where ℓ ≥ 2 denotes the number
of di�erent commodities. �e price space is P = Rℓ++, and the space of
price-income vectors is P ×R++. Consumers choose a single bundle x i =
(x i
1
, . . . , x iℓ)′ ∈ X when facing a price vector pi = (pi

1
, . . . , piℓ) ∈ P and

an income w i ∈ R++. A budget set is then de�ned by Bi = B(pi ,w i) =
{x ∈ X ∶ pix i ≤ w i}. Demand is exhaustive, i.e. pix i = w i . Denote the
boundary of the budget set B as B̄ = {x ∈ X ∶ px = w}, so x i ∈ B̄i . It
is convenient to normalize prices by the level of expenditure at each

observation, so that pix i = 1 for all i. A set of n observations can then
be denoted as S = {(x i , pi)}ni=1.
Let R ⊆ X × X be a binary relation on X. Instead of (x i , x j) ∈ R we

will write x iRx j. �e following de�nitions are central in the theory of
revealed preference:

De�nition 3.1 (Revealed preference relations) An observation x i is
directly revealed preferred to x, written x iRx, if pix i ≥ pix. It is re-
vealed preferred to x, written x iR∗x, if for some sequence of bundles
(x j, xk , . . . , xm) it is the case that x iRx j, x jRxk , . . ., xmRx. In this case
R∗ is the transitive closure of the relation R.

De�nition 3.2 (Weak Axiom of Revealed Preference) �e data set

S satis�es the Weak Axiom of Revealed Preference (warp) if x iRx j,
x i ≠ x j, implies [not x jRx i].

De�nition 3.3 (Strong Axiom of Revealed Preference) �e data set

S satis�es the Strong Axiom of Revealed Preference (sarp) if x iR∗x j,
x i ≠ x j, implies [not x jRx i].

De�nition 3.4 (Revealed preferred set and convex monotonic hull)
�e set of bundles that are revealed preferred to a certain bundle x0
(which does not have to be an observed choice) is given by the convex
monotonic hull of all choices revealed preferred to x0, i.e.

RP(x0) = Hconvex({x ∈ X ∶ x ≥ x i

such that x iR∗x0 for some i = 1, . . . , n}),
(3.1)
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where the convex hull Hconvex of a set of points A = {ai}ni=1 is de�ned as

Hconvex(A) = {
n
∑
i=1

λiai ∶ ai ∈ A, λi ∈ R+,
n
∑
i=1

λi = 1} . (3.2)

See also Varian (1982) and Knoblauch (1992). �e convex monotonic

hull of a set of points {x i} will be denoted as3

CMHconvex({x i}) = Hconvex({x ∈ X ∶ x ≥ x i

for some i = 1, . . . , n}). (3.3)

�e set of observations S can be interpreted as an unweighted directed
graph (digraph), i.e. a pair G = (V ,A) where V is the set of nodes or
vertices (the observations) and A is the set of directed edges or arcs (the
directly revealed preference relations). An arc ai j = {x i , x j} is directed
from x i to x j and is an element of A if and only if x iRx j.4�e graph can
then be represented by a Boolean adjacency matrixM = {mi j} where
mi j = 1 if x iRx j and mi j = 0 otherwise.5

De�nition 3.5 (Preference Cycles) An ordered set {(x i , pi)}ki=1 of k
observations forms a cycle of length k if pix i+1 ≤ 1 and x i ≠ x i+1 for
i = 1, . . . , k mod k, i.e. if x i is indirectly revealed preferred to itself via
the chain of observations {(x i , pi)}ki=1. A set {(x i , pi)}

k
i=1 forms a cycle

of irreducible length k if it forms a cycle of length k and there is no shorter
cycle (with a smaller k) by which x i is indirectly revealed preferred to
itself.

As an illustration, suppose we have a set of observations {(x i , pi)}5i=1
such that x1Rx2, . . ., x4Rx5. Suppose that also x5Rx1 and x2Rx4, but
there are no other directly revealed preference relations.�en by x1R∗x5

3 In a slight abuse of notation we will also write CMHconvex(T) for a set T = {(x i , pi)}.
4 See also Wakker (1989), who takes a graph theoretic approach to revealed preference

and de�nes alternatives as vertices and revealed preference relations as arcs. He shows

that a choice function satis�es congruency (a condition “similiar” yet not equivalent

to sarp, cf. Richter 1966) if and only if all dicircuits (directed paths that form a cycle)

are reversible.

5 One can then use Warshall’s (1962) algorithm to compute the transitive closure of

the binary relation R. In the context of revealed preference theory this has �rst been
pointed out and used by Varian (1982).
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1 2 3 4 5

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0

0 1 1 1 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Figure 3.1.: Le�:�e observations can be interpreted as nodes of a digraph.�e shortest
cycle includes nodes 1, 2, 4 and 5. Right: �e Boolean adjacency matrix of

the graph.

and x5Rx1 there is a preference cycle. �e irreducible length of the
shortest cycle in that data is four. See Figure 3.1.

Obviously, warp implies the absence of cycles of irreducible length

two, whereas sarp implies the absence of cycles of arbitrary irreducible

length.

3.3 theory

Obviously any hyperplane that has an interior point of a convex polytope

on one side will also have at least one vertex of the polytope on the same

side.

�is can be interpreted in the context of revealed preference:�ere can

be observations that are strictly in a set RP(x0) and hence are redundant
for the construction of RP(x0). If an observation x i is directly preferred
to such an interior point, the budget hyperplane B̄i has to intersect the
set RP(x0). �en B̄i has at least one vertex of RP(x0) on its “le�” side,
so x i is also directly revealed preferred to at least one other vertex of
RP(x0). �is leads to Proposition 3.1.

Proposition 3.1 (Necessary Conditions) Suppose T = {(x i , pi)}ki=1
is an ordered set of observations that forms a cycle of irreducible length

k such that x1Rx2, x2Rx3, . . ., xk−1Rxk , xkRx1. �en all of the obser-
vations in the cycle have to be distinct and non-redundant vertices of

CMHconvex(T), and the line segments connecting two observations of

which one observation is directly revealed preferred to the other have to

be edges on the boundary of CMHconvex(T).
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Proof Suppose x i ∈ T is not a vertex on the convex monotonic hull of T .
�en x i−1 is directly revealed preferred to some x j, j ∉ {i− 1, i}. If j < i− 1
there exists a sequence x jRx j+1, x j+1Rx j+2, . . ., x i−2Rx i−1, x i−1Rx j of
length i − j < k which constitutes a preference cycle. If j > i there exists
a sequence x i−1Rx j, x jRx j+1, . . ., xk−1Rxk , xkRx1, . . ., x j−1Rx j of length
i − j + k < k which constitutes a preferences cycle.
Suppose that the line segment connecting x i−1 and x i is not an edge

of the convex monotonic hull. �en x i−1 also has to be directly revealed
preferred to some x j which is a vertex that causes the line to be strictly in
the convex monotonic hull. Obviously this causes the cycle to be shorter

than k by the same token as above.
Suppose x i ∈ T is a redundant vertex on the boundary so that x i =

λx j + (1 − λ)xk , 0 < λ < 1, for some x j, xk ∈ T . �en x i is on a line
segment connecting x j and xk such that either (i) x jRxk or xkRx j, or
(ii) x jRx i ∧ x iRxk or xkRx i ∧ x iRx j. Case (i) implies x jRx i or xkRx i
respectively. Case (ii) implies x jRxk or xkRx j respectively. In either
case, one bundle in {x i , x j, xk} is directly revealed preferred to two
other bundles, which reduces the length of the preference cycle by the

same token as above.

Suppose x i ∈ T is a redundant vertex on the boundary because it is a
point on the monotonic extension of the convex hull of all bundles in T ,
so that x i ≥ x j for some x j. Obviously any bundle directly revealed pre-
ferred to x i will also be directly revealed preferred to x j, which reduces
the length of the preference cycle by the same token as above.

Proposition 3.2 For the case of commodity spaceR2+ there cannot
be cycles of irreducible length greater than two.

Proof Suppose there is a cycle x1Rx2, x2Rx3, . . ., xk−1Rxk , xkRx1 of
length k. By Proposition 3.1 the two edges connecting xk−1 with xk and
xk with x1 have to be on the boundary of the convex monotonic hull
of all observations in the cycle. Because in a two-dimensional convex

hull any vertex has only two edges, xk−1 and x1 have to be either equal
or on di�erent sides of xk . If xk−1 = x1, there is a cycle of length two.
If xk−1 ≠ x1, at one point an edge connecting some x i with x i+1 needs
to cut through the convex monotonic hull. �erefore there cannot be a

cycle of irreducible length greater than two. See Figure 3.2.
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x1

x2

x3

x4

Figure 3.2.:Obviously x3 cannot be directly revealed preferred to x4 without also
being directly revealed preferred to x1 and x2.

Corollary 3.1 For the case of commodity space R2+ warp implies

sarp for any �nite set S of data.

Proof Follows directly from Proposition 3.2.

Remark 3.1 In contrast to Rose’s (1958) proof, Proposition 3.1 gives
necessary conditions for the existence of preference cycles of length

k > 2. Proposition 3.2 shows that these conditions cannot hold in the

two commodity case.

Proposition 3.3 (Su�cient Conditions) Suppose T ′ = {x i}ki=1 is a set
of bundles such that all x i ∈ T ′ are distinct and non-redundant vertices
on CMHconvex(T ′). �en if there are non-intersecting line segments
connecting all x i with x(i mod k)+1 for all x i ∈ T ′ such that these line
segments are edges of CMHconvex(T ′), there exists a set of price vectors
{pi}ki=1, pi ∈ P for all i ≤ k, such that {(x i , pi)}ki=1 forms a cycle of
irreducible length k. 6

Proof By the supporting hyperplane theorem there exists a hyperplane
H(p) = {x ∈ X ∶ px = 1} such that x i , x i+1 ∈ H(p) and x j ∉ H(p) for all
j ≠ i, i + 1. Let p be the price vector at which x i+1 was chosen, so that
B̄i+1 = H(p). Clearly, x i+1Rx i and [not x i+1Rx j], i.e. x j ∉ Bi+1 for all
j ∉ {i, i + 1}, j ≤ k.

6 Note that (i mod k) + 1 = i + 1 for all i < k and (i mod k) + 1 = 1 for i = k.
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Proposition 3.4 For the case of commodity space Rℓ+, ℓ > 2, there
always exists a set of bundles T ′ = {x i}ki=1 such that all x i ∈ T ′ are dis-
tinct and non-redundant vertices on CMHconvex(T ′) and there are non-
intersecting edges ofCMHconvex(T ′) that connect all x i with x(i mod k)+1
for all x i ∈ T ′. For more than three commodities the shortest revealed
preference cycle can therefore be of arbitrary irreducible length.

Proof A simpleway to �nd a set of bundlesT ′ that satis�es the conditions
is to take a set of k distinct points from the intersection of an indi�erence
surface of a concave utility function and a hyperplane H(q) = {x ∈ X ∶

qx = 1}. �e intersection of two convex sets is convex, so there are no
interior or redundant points in the convex hull of the stereographic

projection of all x i ∈ T ′ on a projective plane. Obviously the edges of
that convex hull do not intersect and connect all x i with x(i mod k)+1 for
all projected points. (See also Figures 3.3, 3.4, and 3.5.)

Corollary 3.2 For the case of commodity spaceRℓ+, ℓ > 2, warp does
not imply sarp for any �nite set S of data.

Proof Follows directly from Propositions 3.3 and 3.4.

Remark 3.2 �e conditions in Proposition 3.3 extend the conditions

given in Proposition 3.1. �e combination is su�cient for the existence

of preference cycles of arbitrary length. In the �nal step (Proposition

3.4) it was shown that the su�ciency conditions given in Proposition 3.3

can be met in three or more dimensions.

3.4 intuition

A graph G(V ,A) as de�ned in Section 3.2 that represents a preference
cycle of irreducible length k is always a planar graph, i.e. a graph that
can be drawn in the plane so that no edges intersect. �erefore G(V ,A)
can always be embedded in an indi�erence surface of dimension three

or more in the sense that every vi ∈ V is associated with a point on the
surface, and every ai j ∈ A is associated with an edge. It cannot, however,
be embedded in a two-dimensional indi�erence curve. �at is to say,

one cannot “extract” a preference cycle longer than two from a two-
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1

2 3

4

5

Figure 3.3.: A graph that represents a preference cycle can be “extracted” from a three-
dimensional indi�erence surface.

1 2 3 4 5

Figure 3.4.:No graph that represents a preference cycle can be “extracted” from a
two-dimensional indi�erence curve.

dimensional commodity space, whereas higher dimensions allow this,

as illustrated in Figures 3.3 and 3.4.

A similiar intuition yields the following: Just as there is only one

distinct path on a circle (a closed curve) that connects a certain point

on the circle with itself, there is no such path on an indi�erence curve

(which is not closed). And just as there are in�nitely many distinct paths

on a sphere that connect a certain point on the sphere with itself, there

are in�nitely many paths on an indi�erence surface of a dimension

greater than two.

Figure 3.5 shows how one can easily construct examples of preference

cycles of arbitrary length in the three-dimensional commodity space.

By Proposition 3.3, there exist price vectors such that each edge that
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connects two points is a line segment in the budget hyperplane at which

one of the points was chosen, so that one of the points is directly revealed

preferred to the other. �is idea is also employed in Section 3.5 to de�ne

demand for all positve prices. Note that when one tries to use thismethod

to construct a preference cycle in two dimensions, one obtains exactly

two points – which is the maximal cycle length in two dimensions.

3.5 constructing demand for all positive prices

In this section we will sketch a way to de�ne demand for all positive

prices in three dimensions such that only the weak but not the strong

axiom is satis�ed.

De�ne a line L which passes through the origin and the point (1, 1, 1).
�e budget hyperplane B̄(p) de�ned by any price vector p ∈ P will
intersect L. Call this point of intersection a(p). Let u(x) = x1/3

1
x1/3
2

x1/3
3
.

�e set {x ∈ X ∶ u(x) = u(a(p))} is an indi�erence surface of the
preference represented by the Cobb-Douglas utility function u(x)which
is maximized by a(p) if all prices in p are the same and a(p) ∈ B̄(p).
For any other price vector for which a(p) ∈ B̄(p), the decision on
B̄(p) which maximizes u(x) will be di�erent from a(p) and hence be
revealed preferred to a(p) because a(p) ∈ B̄(p). �e intersection of the
sets {x ∈ X ∶ u(x) = u(a(p))} and B̄(p) de�nes a simple closed curve
in the plane B̄(p).
Now take the minimal λ such that B̄(λ(1, 1, 1)) is just tangent to the

intersection of B̄(p) and {x ∈ X ∶ u(x) = u(a(p))}. �e set B̄((λ +
ε)(1, 1, 1)) ∩ B̄(p) ∩ {x ∈ X ∶ u(x) = u(a(p))} consists of two elements
for a su�ciently small ε > 0. De�ne the demand at p to be one of these
elements, either always the one on “the le� hand side” or “the right hand

side”, where the viewpoint is from the line L.
�e set B̄((λ+ ε)(1, 1, 1))∩{x ∈ X ∶ u(x) = u(a(p))}de�nes a simple

closed curve in the plane B̄((λ + ε)(1, 1, 1)). Given demand as de�ned
above, every bundle on this curve will be revealed preferred to itself via a

chain of other bundles on the same curve. In fact, any bundle demanded

at any price vector will be revealed preferred to itself via such a chain

of bundles on the curve de�ned by B̄((λ + ε)(1, 1, 1)) ∩ {x ∈ X ∶ u(x) =
u(a(p))}. Note that the su�ciency conditions given in Proposition 3.3
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Figure 3.5.: A simple example for the construction of a cycle. Top Le�:�e indi�erence
surface of the utility function u(x1, x2, x3) = x1/31 x1/32 x1/33 for ū = 1 and

the plane H = {x ∈ R3
+
∶ 1/4(x1 + x2 + x3) = 1}. Top Right: A set of points

on the intersection of the indi�erence curve and the hyperplane. Bottom:

�e convex monotonic hull of the points.
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Figure 3.6.: De�ning demand for all positive prices:�e upper triangle (plane 1) depicts
a budget plane with equal prices for each commodity; the point in the

middle is it’s center. �e lower triangle is a budget plane which intersects

the �rst plane at the dashed line (plane 2). �e closed curve in the interior

is the intersection of an indi�erence surface with plane 1. Demand at the

price vector de�ning plane 2 is either the le� or the right point; both points

show the intersection of plane 2 with the indi�erence surface and plane 1.

are full�lled. �e demand therefore exhibits cycles of irreducible length

k > 2.
Consider Figure 3.6. �e upper triangle depicts a plane B̄(λ(1, 1, 1))

and its center. �e closed curve in the interior is the intersection of

this plane and a set {x ∈ X ∶ u(x) = u(a(p))} for some p ∈ P. �e
darker lower triangle depicts the budget B̄(p); the dashed line shows
the intersection of the two planes. �e points on the le� and right hand

side show the intersection of the two planes with the set {x ∈ X ∶ u(x) =
u(a(p))}. If demand is de�ned to be the point on the right hand side,
this bundle will be revealed preferred to all points on the segment of

the curve between the two points. Changing p such that B̄(p) “rotates”
around the center, we can construct cycles of arbirary length.



4
BEHIND THE SCENES: A GRAPHICAL WAY TO

CONSTRUCT PREFERENCE CYCLES

4.1 introduction

...you, who can actually see an angle, and contemplate the
complete circumference of a Circle in the happy region of the

�ree Dimensions — how shall I make clear to you the extreme
di�culty which we in Flatland experience in recognizing one

another’s con�guration?
–Edwin A. Abbott, Flatland

�e �rst proof that the Weak Axiom of Revealed Preference (warp)

does not imply the Strong Axiom of Revealed Preference (sarp) was pro-

vided by Gale (1960) by means of a counterexample. �is chapter shows

how one can easily construct preference cycles in three dimensions by

“taking a look behind the scenes” of intersecting budget hyperplanes.

By looking at the positive orthant of the Euclidean coordinate system

through the origin of the system, the search for preference cycles is

substantially simpli�ed for suitable budgets.

Let X = Rℓ+ be the commodity space, where ℓ ≥ 2 denotes the number
of di�erent commodities. �e price space is P = Rℓ++, and the space of
price-income vectors is P ×R++. Consumers choose a single bundle x i =
(x i
1
, . . . , x iℓ)′ ∈ X when facing a price vector pi = (pi

1
, . . . , piℓ) ∈ P and

an income w i ∈ R++. A budget set is then de�ned by Bi = B(pi ,w i) =
{x ∈ X ∶ pix i ≤ w i}. Demand is exhaustive, i.e. pix i = w i . Denote the
boundary of the budget set B as B̄ = {x ∈ X ∶ px = w}, so x i ∈ B̄i . It
is convenient to normalize prices by the level of expenditure at each

observation, so that pix i = 1 for all i. A set of n observations can then
be denoted as S = {(x i , pi)}ni=1.

27
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Let R ⊆ X ×X be a binary relation on X. If pix i ≥ pix then {x i , x} ∈ R
and we say that the observation x i is directly revealed preferred to x.
For brevity, we write x iRx. �e observation x i is revealed preferred
to x, written x iR∗x, if either x iRx or for some sequence of bundles
(x j, xk , . . . , xm) it is the case that x iRx j, x jRxk , . . ., xmRx. In this case
R∗ is the transitive closure of the relation R.
�e data set S satis�es the warp if x iRx j, x i ≠ x j, implies [not x jRx i].

�e data set S satis�es the sarp if x iR∗x j, x i ≠ x j, implies [not x jRx i].
An ordered set {(x i , pi)}ki=1 of k observations forms a cycle of length

k if pix i+1 ≤ 1 and x i ≠ x i+1 for i = 1, . . . , k mod k, i.e. if x i is indirectly
revealed preferred to itself via the chain of observations {(x i , pi)}ki=1. A
set {(x i , pi)}ki=1 forms a cycle of irreducible length k if it forms a cycle of
length k and there is no shorter cycle (with a smaller k) by which x i is
indirectly revealed preferred to itself.

Obviously, warp implies the absence of cycles of irreducible length

two, whereas sarp implies the absence of cycles of arbitrary irreducible

length.

In Section 4.2 it is shown how one can easily �nd a preference cycle

of irreducible length three. Section 4.3 attempts to extend the approach

to four dimensions.

4.2 three dimensions

For illustrative purposes consider the three budgets given by the price

vectors p1 = (1, 1, 2), p2 = (2, 1, 1), p3 = (1, 2, 1). �ese three budgets are

depicted in Figure 4.1.

Now take the coordinate system and rotate it until you look at the three

budgets “from behind and below”, i.e. through the origin (see Figure

4.2). Alternatively, project the three dimensional depiction including

the axes on a suitable plane. Without the third dimensions it is now easy

to see where we need to put the three choices associated with the three

budgets in order to create a preference cycle of irreducible length three.

As one can see in Figure 4.2, the three budgets are seperated into twelve

segments.

�e three outmost triangles are regions in which the subsets of the

budgets associated with that triangle “are above” the remaining two
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x
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Figure 4.1.:�ree intersecting budget hyperplanes, from two perspectives.

x y

z

Figure 4.2.: A (stylized) look at the three budgets from Figure 4.1 through the origin.
One can also think of it as Figure 4.1 a�er pressing it down on a �at surface.

budgets. �e six inner triangles which extend from the intersection with

the axes towards the origin in the center describe regions in which each

of the budgets “is above” one budget and “below” another budget. Finally,
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the three quadrangles in the center decribe regions in which the budget

is “below” both of the remaining two budgets.

x y

z
(a)

x y

z
(b)

x y

z
(c)

Figure 4.3.:We would like to construct a preference cycle of irreducible length three,
such that x1Rx2, x2Rx3, x3Rx1. Consider the budget B2, given by p2 =
(2, 1, 1). First, x1Rx2 requires that x2 be in the budget B1, given by p1 =
(1, 1, 2). �is narrows the possible area down to the two dark segments

in Figure 4.3(a). Next, [not x3Rx2] requires that x2 is not in the budget
B3, given by p3 = (1, 2, 1). �is narrows the possible area down to the two

dark segments in Figure 4.3(b). Combining the two restrictions leaves

only the one segment in the upper right corner. Apply the same reasoning

to the remaining two choices. Figure 4.3(c) shows possible choices for a

preference cycle.

Consider a preference cycle of irreducible length three: x1Rx2, x2Rx3,
x3Rx1, such that [not x2Rx1], [not x3Rx2], [not x1Rx3]. Start with x2:
�e condition x1Rx2 means that x2 is in the budget set at which x1 is
chosen. �is restricts the placement of x2 to the two segments in which
B2 “is below” B1. Furthermore, the condition [not x3Rx2]means that
x2 must not be in the budget set at which x3 is chosen. �is restricts
the placement of x2 to the two segments in which B2 “is above” B3.
Combining the two restrictions narrows the placement of x2 down to
one segment. Applying the same reasoning to x1 and x3, we end up with
one possible segment for each bundle. See Figure 4.3. Any placement in

these segments will satisfy the conditions given above – the three bundles
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form a cycle of irreducible length three; warp is satis�ed, whereas sarp

is violated.

Figure 4.4.: A graph representing the segments of budget intersections. Each node
represents a unique budget segment. An arrow from a node v i to a node
v j indicates that any bundle in the budget of the segment represented by
v i is directly revealed preferred to a bundle in the segment represented by
v j . Dashed lines indicate that the represented segments share a border in
Fig. 4.2 without yielding a revealed preference relation.

Figure 4.2 can also be represented by a directed graph: De�ne an

ordered pair G(V ,A), where V is a set of nodes or vertices representing
segments in Figure 4.2, and A is a set of ordered pairs of nodes, called
arcs. Two nodes vi and v j are connected by an arc, i.e. {(vi , v j)} ⊆ A, if
and only if any bundle in the budget of the segment represented by vi is
directly revealed preferred to any bundle in the segment represented by
v j. Consider the outer node north northeast of the center in Figure 4.4.
�is node represents a segment of bundle B2 de�ned by p2 = (2, 1, 1).

If the consumer choses a bundle x2 in that segment when facing B2,
then any bundle in B1 de�ned by p1 = (1, 1, 2) will be directly revealed

preferred to x2. �is is because there is an arc from a node of B1 directed
to the node on which x2 is chosen. Using a similar reasoning as for
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Figure 4.2, one can easily �nd the nodes on which decisions have to be

placed in order to construct a preference cycle.

4.3 four dimensions

Suppose a person of the Fourth Dimension, condoscending to
visit you, were to say ‘Whenever you open you eyes, you see a

Plane (which is of Two Dimensions) and you infer a Solid
(which is of �ree); but in reality you also see (though you do not

recognize) a Fourth Dimension, which is not colour nor
brightness nor anything of the kind, but a true Dimension,

although I cannot point out to you its direction, nor you can
possibly measure it.’

–Edwin A. Abbott, Flatland

In the previous section we represented three dimensional budgets as

segments of a triangle. Budgets in four dimensions can be represented

as segments in a tetrahedron. For a two-dimensional representation,

the tetrahedron can be ”unfolded“. Consider Figure 4.5, which is an

arrangement of four triangles. Each triangle is a 2-face of the original

tetrahedron. Each of the four budgets depicted in Figure 4.5 appears

explicitly in three of the four faces. Any bundle in any of these budgets

is uniquely de�ned by three and only three points; one point in each

face in which the budget appears.

To use graphs to represent the bugets, we now have to draw four

seperate graphs, one for each face of the 3-simplex. �is is done in

Figure 4.6.
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Figure 4.5.: Four budgets, four dimensions.
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Figure 4.6.:�e four graphs, representing four four-dimensional budgets. Dotted lines
indicate that the two segments share an edge of the 3-simplex.



5
HOMOTHETIC PREFERENCES: THE TWO-COMMODITY

CASE

5.1 introduction

Homotheticity of consumer preferences is featured importantly in theory

and applications. If preferences are homothetic, it is possible to deduce

a consumer’s entire preference relation from a single indi�erence set.

Assuming homothetic preferences provides useful restrictions for the

analysis of consumer demand. In applications researchers o�en focus

on special types of homothetic preferences, like those de�ned by the

ces utility function. A researcher who wishes to estimate homothetic

demand functions using consumption data might wish to test if the data

could have been generated by a homothetic utility function.

A common nonparametric test of the utility maximization hypothesis

has been developed by Afriat (1967) and re�ned by Varian (1982, 1983).

In applications, especially in controlled laboratory experiments, the

commodity space is o�en only two dimensional (e.g. Harbaugh et al.

2001, Andreoni and Miller 2002, Choi et al. 2007a, and Fisman et al.
2007). For the two-commodity case Rose (1958) showed that satisfying

the warp as introduced by Samuelson (1938) is su�cient for utility

maximization. In other words: Testing for warp is equivalent to testing

for sarp as introduced by Houthakker (1950).

Gale (1960) showed that Rose’s �nding does not hold for three dimen-

sions, a result extended to arbitrary dimensions by Peters andWakker

(1994, 1996).1 Banerjee and Murphy (2006) used the result for two di-

mensions to develop a simpli�ed test for utility maximization.

In this chapter it is shown that Rose’s result carries over to homothetic

rationalization. �at is, in the two-commodity case pairwise testing of

observations is su�cient to test a set of observations on consumption

choices for consistency with the maximization of a homothetic utility

1 An intuitive general proof can be found in Chapter 3.

35
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function. �e result is stated as a pairwise version of Varian’s (1983)

Homothetic Axiom of Revealed Preference (harp).

Section 5.2 reviews the relevant part of revealed preference theory

and introduces the Pairwise Homothetic Axiom of Revealed Preference

(pharp). In is shown that in two dimensions pharp is equivalent to

harp.�is section also provides an overview of the relationship between

testable axioms of revealed preference. Chapter 7 contains applications.

5.2 theory

5.2.1 Preliminaries

For the particularities of the chapter it is convenient to slightly deviate

from the notation introduced in Chapter 3. We use the following no-

tation: Rℓ+ = {z ∈ Rℓ ∶ z ≥ 0}, where z = (z1, . . . , zl), Rℓ++ = {z ∈ Rℓ ∶
z ≫ 0}, where “ z ≥ 0 ” means “ zi ≥ 0 for all i ”, and “ z ≫ 0 ” means
“ zi > 0 for all i ”. Note the convention to use subscripts to denote scalars
or vector components and superscripts to index bundles.

Let Rℓ+ be the consumption space, where ℓ ≥ 2 denotes the num-

ber of di�erent commodities. �e price space isRℓ++, and the space of
price-income vectors is Rℓ++ ×R++. Consumers choose bundles zi =
(z i
1
, . . . , z il)

′ ∈ Rℓ+when facing a price vectorpi = (pi
1
, . . . , pil) ∈ Rℓ++ and

an income w i ∈ R++. A budget set is then de�ned by Bi = B(pi ,w i) =
{z ∈ Rℓ+ ∶ pizi ≤ w i}. It is assumed that demand is exhaustive, i.e.
pizi = w i .2 An observation on a consumption choice is denoted by
(zi ,Bi). Let S be a �nite set of observations on a consumer, and let n
denote the number of observations, so that S = {(zi ,Bi)}ni=1.
An observation zi is directly revealed preferred to a bundle z, written

ziRz, if pizi > piz. An observation zi is revealed preferred to a bundle
z, written ziR∗z, if for some sequence of bundles z j, zk , . . . , zm it is the
case that ziRz j, z jRzk , . . ., zmRz. In this case R∗ is the transitive closure
of the relation R. We also need a revealed preference relation which was
not introduced before:

2 �is condition is known as budget balancedness and is o�en violated in practice. Section
7.2.3 addresses the problem.
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De�nition 5.1 (Strict revealed preference relation) An observation
zi is strictly directly revealed preferred to a bundle z, written ziPz, if
pizi > piz.

5.2.2 Revealed Preference Axioms

�e three most commonly employed axioms in the context of revealed

preference are the warp, sarp, and the Generalized Axiom of Revealed

Preference (garp). De�nitions for warp and sarp are given in Section

3.2 (De�nition 3.2 and 3.3). garp was introduced by Varian (1982) as a

reformulation of Afriat’s (1967) “cyclic consistency” condition:

De�nition 5.2 (GeneralizedAxiomofRevealedPreference) �edata

set S satis�es the Generalized Axiom of Revealed Preference (garp) if
ziR∗z j implies [not z jPzi].

De�nition 5.3 (Rationalizability) A utility function u(x) rational-
izes a data set S if u(zi) ≥ u(z) for all z such that pizi ≥ piz for all
i = 1, . . . , n.

sarp is a necessary and su�cient condition for the existence of a

strictly concave, strictly monotonic, continuous utility function that

rationalizes the data (see Houthakker 1950 and Matzkin and Richter

1991). garp is a necessary and su�cient condition for the existence of

a concave, monotonic, continuous utility function that rationalizes the

data (see Afriat 1967 and Varian 1982).

De�nition 5.4 (Homothetic utility function) A utility function is ho-
mothetic if it is a positive monotonic transformation of a utility function
that is homogeneous of degree 1.

harp was introduced by Varian (1983):

De�nition 5.5 (Homothetic Axiom of Revealed Preference) �edata

set S satis�es the Homothetic Axiom of Revealed Preference (harp) if
for all distinct choices of indices (i, . . . ,m)

(piz j)(p jzk)⋯(pmzi) ≥ w iw jwk⋯wm.
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harp is a necessary and su�cient condition for the existence of a

concave, monotonic, continuous, homothetic utility function that ratio-

nalizes the data (see Varian 1983).

Rose (1958) showed that in two dimensions warp is equivalent to

sarp. Banerjee and Murphy (2006) introduced a weaker condition than

garp, wgarp, and showed that in two dimensions wgarp and garp are

equivalent.

De�nition 5.6 (WeakGeneralizedAxiomofRevealedPreference) �e

data set S satis�es the Weak Generalized Axiom of Revealed Preference
(wgarp) if ziRz j implies [not z jPzi].

5.2.3 Homotheticity and Two-Commodity Choice

Following Varian (1983) and Knoblauch (1993), de�ne a scalar t i, j for all
i and j by

t i, j =min{(p
izk

w i )(
pkzl

wk )⋯(
pmz j

wm )} , (5.1)

where the minimum is over all distinct choices of indices k, l , . . . ,m.

De�nition 5.7 (Homothetically revealed preference relation) Let t i,i =
1. �en t i, jzi is homothetically revealed preferred to z j, written t i, jziHz j.

Note that t = t i, j is the smallest scalar for which t ziHz j, so that t i, jzi is
a vertex on the set of bundles that are homothetically revealed preferred

to z j (see Knoblauch 1993). harp is then equivalent to [not ziPt j,iz j] for
all i and j.
When the consumption space is two dimensional, the budgets can

be ranked by the price ratio. Let zi = (x i , yi)′ and choose good x as the
numeraire. �en pi = (1, qi), where qi is the relative price of good y. Let
the income w i be rede�ned appropriately. Without loss of generality, let
the data S be ordered by q such that qi ≥ qi+1. If there are observations
with the same q, let them be ordered such that yi/x i ≤ yi+1/x i+1.
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It is a well known fact that homotheticity implies that income expan-

sion paths are straight lines through the origin.3 It is easy to show that

the slope of the expansion path, y/x, must increase as the relative price
of y decreases: In the case of homotheticity, (piz j)(p jzi) ≥ (pizi)(p jz j).
�at is equivalent to (qi − q j)(x i y j − yix j) ≥ 0. If i < j, then (qi − q j) ≥
0, so it must be that (x i y j − yix j) ≥ 0. �us yi/x i ≤ y j/x j, and analo-
gously for i > j.�is is obviously a necessary condition for homotheticity,
but it is not obvious that it is also su�cient.

In this chapter, we introduce a new axiom for homothetic choice, the

pharp, and show that in two dimensions, pharp is already su�cient for

the existence of a homothetic utility function that rationalizes the data.

De�nition 5.8 (Pairwise Homothetic Axiom of Revealed Preference)
�e data satisfy the Pairwise Homothetic Axiom of Revealed Preference

(pharp) if for all distinct choices of indices i, j

(piz j)(p jzi) ≥ w iw j.

�eorem 5.1 For two-dimensional commodity spaces the following

conditions are equivalent:

(1) there exists a concave, monotonic, continuous, non-satiated, ho-

mothetic utility function that rationalizes the data;

(2) the data satisfy harp;

(3) the data satisfy pharp.

�e following Lemma will be helpful:

Lemma 5.1 De�ne a scalar θ i, j, where i and j are indices, by

θ i, j =
i−1
∏
k= j

pk+1zk

wk+1 if i > j and θ i, j =
j−1
∏
k=i

pkzk+1

wk if i < j.

If the commodity space is two-dimensional, the data are ordered by q
such that qi ≥ qi+1, and the data satisfy pharp, then θ i, j = t i, j.

3 Note that the harp also allows for expansion cones rather than expansion lines; see

Section 5.2.5.
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Proof of Lemma 5.1 Choose a z0 without loss of generality. It is �rst
shown that θ1,0 = t1,0. Remember that the observations are ordered such
that qi ≥ qi+1.

θ1,0 = p1z0

p1z1
≤
p1zi

p1z1
piz0

pizi
⇔ (p1z0)(pizi) − (p1zi)(piz0) ≤ 0

⇔ (q1 − qi)(x i y0 − x0yi) ≤ 0.

�e last line is true because if i > 1, the �rst term is positive and the
second term is negative, and vice versa if i < 1. Now suppose

θ1,0 ≤ p1zi

p1z1
⋯
pkz0

pkzk

for a sequence i, . . . , k of length n. �en θ1,0 is also less than or equal to
a sequence i, . . . , ℓ of length n + 1 because

p1zi

p1z1
⋯
pkz0

pkzk
≤
p1zi

p1z1
⋯
pkzℓ

pkzk
pℓz0

pℓzℓ

⇔ (pkz0)(pℓzℓ) ≤ (pkzℓ)(pℓz0),

where the last line is true for similar reasons as above. So θ1,0 = t1,0.
It is now possible to show that θn,0 = tn,0 implies θn+1,0 = tn+1,0, which

concludes the proof by induction: Write θn+1,0 as θn+1,nθn,0 and note
that θn+1,n = (pn+1zn)/(pn+1zn+1). �en it is to be shown that

(pn+1zn)
(pn+1zn+1)

θn,0 ≤
(pn+1zi)

(pn+1zn+1)
(piz j)
(pizi)

⋯
(pkz0)
(pkzk)

,

for sequences of i, . . . , k of arbitrary length. By assumption,

θn,0 ≤
(pnzi)
(pnzn)

(piz j)
(pizi)

⋯
(pkz0)
(pkzk)

.

It is then su�cient that

(pn+1zn)
(pn+1zn+1)

≤
(pn+1zi)

(pn+1zn+1)
(pnzn)
(pnzi)
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holds, which is true if n > 0. �e proof works analogously for n < 0.

Proof of �eorem 5.1 For (1)⇔ (2), see Varian (1983). It is obvious that

(2)⇒ (3). We will show that (3)⇒ (2).

Choose a z0 without loss of generality, i.e. assign indices such that q0
is the highest, the lowest, or somewhere between the highest and the

lowest relative price. �en [not z0Pθ1,0z1] if pharp is satis�ed. We need
to show that this implies [not z0Pθn,0zn] for all n > 0.

Suppose [not z0Pθn,0zn]. �en

p0z0 ≤ (p0zn)θn,0 ≤ (p0zn+1)θn+1,0 = (p0zn+1)θn+1,nθn,0

⇔ p0zn ≤ (p0zn+1)θn+1,n

⇔ (p0zn)(pn+1zn+1) ≤ (p0zn+1)(pn+1zn)
⇔ (q0 − qn+1)(xn+1yn − xnyn+1) ≤ 0.

It is easy to see that the last line is true because if n > 0 and pharp is

satis�ed the �rst term on the le� hand side is positive while the second

term is negative. A similar argument applies when n < 0. �is proves

that [not z0Pθ1,0z1] implies [not z0Pθn,0zn] for arbitrary z0. So pharp
implies harp.

Figure 5.1 illustrates the necessary and su�cient conditions for ho-

motheticity and the construction of an indi�erence map from a set of

observations on a consumer. Figure 5.1.(a) shows �ve observations on

a consumer. �e dashed lines are rays through the origin and the ob-

servations. Figure 5.1.(b) illustrates the necessary condition for harp:

Four of the �ve observations are projected on the budget line of the

remaining observation. Here the dashed lines indicate the slope of the

budget lines the decisions were made on. As we move up the budget line

of the observation in the middle, the shi�ed budget lines turn clockwise.

�is is a necessary condition for homotheticity. A piecewise linear indif-

ference curve rationalizes the observations; note that the linear segments

parallel the dashed lines. Figure 5.1.(c) shows how we can construct an

indi�erence map using the scalar factors de�ned above.4�e indi�er-

ence curve to the upper right is the tightest bound on the indi�erence

4 �e �gure is similar to Figure 1 in Knoblauch (1993).
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curve through the observation in the middle; the other two indi�erence

curves are scaled down using factors 3/4 and 1/2.

5.2.4 Relationships between the Axioms

If a set of data fails to satisfy harp or pharp, what conclusions can be

drawn? A consumer who violates garp will necessarily also violate harp.

On the other hand, a consumer who satis�es garp will not necessarily

satisfy harp. Absent a measure for the extent of any violation, testing

data for homotheticity will therefore only yield additional information

if the data already satisfy garp. To the best of the author’s knowledge

this relationship between harp and garp has not been formally stated

in the literature. It is therefore formally proven in Proposition 5.1.

Proposition 5.1 harp implies garp. garp does not imply harp.

Proof Varian (1983, �eorem 2) shows that harp is equivalent to the ex-
istence of a concave, monotonic, continuous, non-satiated, homothetic

utility function. He also shows (1983, �eorem 1) that the existence of a

concave, monotonic, continuous, non-satiated utility function is equiva-

lent to garp. Homotheticity is an additional restriction on preferences,

thus harp implies garp. To make the point clearer, consider the Afriat

inequalities

U i ≤ U j + λ jp j(zi − z j), (5.2)

for i, j = 1, . . . ,N , with N being the number of observations. garp is
equivalent to the existence of numbers U i , λi > 0, i = 1, . . . ,N such
that the Afriat inequalities are satis�ed. For convenience, normalize the

prices by the level of expenditure so that w i = pizi = 1 for i = 1, . . . ,N .
Let λi = U i . �en the Afriat inequalities become

U i ≤ U jp jzi . (5.3)

Obviously, if there exist numbers U i such that the inequalities 5.3 are
satis�ed, there also exist numbersU i , λi > 0 such that the inequalities 5.2
are satis�ed. �e existence of numbers U i > 0 such that the inequalities
5.3 are satis�ed is equivalent to harp (Varian 1983, �eorem 2).
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Figure 5.1.: Top le� (a): Five observations on a consumer and rays through the origin
and the observations. Top right (b): All observations are projected on

one of the budget lines. �e dashed lines show the slope of the projected

observations’ budgets. Bottom (c): �e construction of piecewise linear

indi�erence curves.
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A simple counterexample demonstrates that garp does not imply

harp. Suppose p1 = (1, 1) and p2 = (2, 4), w1 = w2 = 1. �e budgets
do not intersect, so garp cannot be violated. But with z1 = (1, 0) and

z2 = (0, 1/4), harp is violated.

Varian (1983) implicitly intended harp to be a restriction on prefer-

ences in addition to garp. It is also interesting to explore the relationship

between harp and warp:

Proposition 5.2 harp is neither necessary nor su�cient for warp or

sarp.

Proof In the example shown in Figure 5.2.(a), warp and sarp are satis-
�ed: z2R∗z1, [not z1R∗z2]. harp is violated because y1/x1 < y2/x2 and
the relative price of good y is lower for budget B1.
In the example shown in Figure 5.2.(b), warp and sarp are violated:

z2R∗z1, z1R∗z2. harp is satis�ed because the price vector is the same for
both budgets, which implies t1,2 = t2,1 = 1.

x

y

B1

B2z1

z2

(a)

x

y

B1
= B2

z1

z2

(b)

Figure 5.2.: Le�: harp is not necessary for warp. Right: harp is not su�cient for
warp.



5.2 theory 45

Figure 5.3 summarizes the relationships between the axioms in the

general case and in the case of two commodities, where “→” means

“implies” and “↔” means “is equivalent to”. See the appendix for a list of

references to existing proofs and new proofs.

harp garp

warp sarp

pharp wgarp

General Case

harp garp

warp sarp

pharp wgarp

Two-Dimensional Case

Figure 5.3.: Relationship between the axioms.

5.2.5 Expansion Lines and Expansion Cones

garp does not exclude demand correspondences, i.e. multi-valued de-

mand. Does this mean that harp-consistent decisions of a consumer

can imply expansion cones rather than expansion lines, or does harp
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impose greater restrictions on garp-consistent than warp-consistent

choices?5�e answer is given in Proposition 5.3.

Proposition 5.3 A homothetic utility function that rationalizes a data

set that satis�es harp but not warp implies expansion cones rather than

expansion lines. If a homothetic utility function that implies expansion

cones rationalizes a �nite set of observations, the data set does not

necessarily violate warp. �e demand function derived from such a

utility function cannot, however, satisfy warp.

Proof A data set that satis�es harp also satis�es garp. A data set can
only satisfy garp and simultaneously violatewarp if at least two di�erent

choices are made on the same budget set, i.e. if demand is multi-valued.

Consider Figure 5.4. Suppose that z1 and z2 are chosen from budgets
B1 = B2. �en garp implies that the consumer is indi�erent between z1,
z2, and α z1 + (1− α) z2 for all α ∈ [0, 1]. harp implies that the consumer

is also indi�erent between τ z1, τ z2, and α τ z1 + (1 − α) τ z2 for any
scalar τ > 0.�us any homothetic utility function which rationalizes the
observations implies expansion cones.

Consider Figure 5.5. Both indi�erence curves rationalize the single

observation. �e solid indi�erence curve implies that the observation is

the unique utility maximizing element in the budget. �e dashed indif-

ference curve implies that all points on the budget which lie between

the two intersections of the budget with the rays through the origin

yield the same utility. Obviously, no axiom is violated given the single

observation. But while the solid indi�erence curve is consistent with

warp, the dashed indi�erence curve is not. �is obviously holds in gen-

eral: A utility function which implies expansion cones implies that more

than one element of a single budget is utility maximizing, which violates

warp. But the observations which are rationalized do not violate warp

if they can also be rationalized by a strictly concave utility function. �e

reason is that the revealed preference relation is empirically de�ned and

generally not complete, whereas a continuous utility function de�ned

onRℓ represents a complete preference relation.

5 I owe this interesting question to an anonymous referee.



5.2 theory 47

x

y

B1
= B2
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τz2

Figure 5.4.: Expansion cones.

x

y

Figure 5.5.: Di�erent indi�erence curves rationalize the observation.





6
STOCHASTIC REVEALED PREFERENCE AND

RATIONALIZABILITY

6.1 introduction

�e idea that if there is any consistency in the behavior of individuals this

consistency is of a stochastic nature is not new. It has already been con-

sidered in the economic literature by Georgescu-Roegen (1936), Quandt

(1956), Luce (1958), Davidson andMarschak (1959), Debreu (1958), Block

andMarschak (1960), Marschak (1959), Hildenbrand (1971), Barberá and

Pattanaik (1986), and others. Bandyopadhyay, Dasgupta, and Pattanaik

(1999) (henceforth BDP) initiated a line of investigation in which they

explored choice behavior of a consumer who chooses in a stochastic

fashion from di�erent budget sets. In BDP (2002) this approach was ex-

tended by an interpretation of tuples of deterministic demand functions

of di�erent consumers as a stochastic demand function. �ey de�ne a

weak axiom of stochastic revealed preference which is implied by but

does not imply rationalizability in terms of stochastic orderings on the

commodity space.1 In BDP (2004), the authors note that

it is not at all obvious what would be a natural stochastic

translation of the familiar strong axiom of revealed prefer-

ence and what would be the implications of such a ‘strong

axiom of stochastic revealed preference’.

It is the purpose of this paper to explore rationalizability issues, provide

a necessary and su�cient condition for rationalizability in terms of

stochastic orderings, and to discuss related problems.

Suppose a consumer speci�es a probability for each subset of a given

budget such that the probability assignments add up to unity. Suppose

further that we observe these probability assignments on a �nite set of

budgets. Can we �nd conditions on the probability assignments such

1 Formal de�nitions are given in Section 6.3.

49
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that, if these conditions are satis�ed, we cannot reject the hypothesis that

the consumer has random preference orderings and, given the budget

set, optimizes on the basis of his realized preference ordering?

Alternatively, suppose we observe single choices of many anonymous

consumers on a �nite set of budgets, such that we observe each individual

decision but do not know by which consumer the decision was made.

Can we �nd conditions on the choices such that, if these conditions are

satis�ed, we cannot reject the hypothesis that the choices were made by

a set of maximizing consumers?

�e problem is complicated by at least two factors. Firstly, in the

context of stochastic revealed preference, budget sets are in�nite sets

of alternatives. �e stochastic choice literature is usually con�ned to

choices from �nite sets.2 Secondly, even in the deterministic case we are

not in general able to recover the entire ranking of a consumer with only

a �nite set of observations. �is is simply because a consumer might

choose a in a situation where b is not available, and chooses b in a
situation where a is not available. If there are no further observations
which can be used to deduce a relation between a and b via a chain
of other choices, we do not know if the consumer prefers a over b. In
the stochastic case we are therefore only able to deduce minimal choice

probabilities; for example, we might be able to deduce that the consumer

prefers a over b in at least 30% of all cases and b over a in at least 20%
of all cases.

It will be argued that a useful way to understand and analyze stochas-

tic choices on standard budget sets is in terms of indirect preferences

on the price-income space or the normalized price space. To this end

Sakai’s (1977) conditions for indirect preferences from which a utility

function can be deduced are used. �at is, the problem of �nding a

probability measure on orderings over the available commodity bundles

is transformed into the problem of �nding a probability measure on

orderings over the budget sets from which choices are observed.

2 Falmagne (1978), who was the �rst to �nd conditions for rationalizability of stochastic

choices by a probability distribution over linear preference orderings, explicitly con�nes

himself to choices from �nite sets of alternatives. Cohen (1980) extends Falmagne’s

approach to the case of an in�nite overall set of alternatives, but again, all choice sets

are �nite subsets of the set of alternatives.
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It is also shown that the rationalizability problem bears similarities to

the problem of �nding necessary and su�cient conditions for rationaliz-

ability of binary choice probabilities; this is speci�cally true for stochastic

revealed preference conditions based on partial relations between al-

ternatives. �at is, a set of conditions su�cient for rationalizability is

likely to also be applicable to the strand of literature concerned with

binary choice. No �nite set of necessary and su�cient conditions for

each number of alternatives is known, and Fishburn (1990) showed that

the set of conditions on the choice probabilities that are su�cient for

rationalizability regardless of the number of alternatives must be in�nite.

�is poses some problems for the framework considered here.

�e remainder of the paper is organized as follows. Section 6.3 in-

troduces the notation, and recalls the relevant work by BDP and Sakai.

Section 6.4 introduces a linear feasibility problem which is solvable if

and only if the choices are rationalizable in terms of stochastic order-

ings on the normalized price space. Combined with the weak axiom of

stochastic revealed preference it implies the existence of probability dis-

tribution of orderings on the commodity space. Problems, in particular

in connection with binary choices, are discussed. Section 6.5 concludes.

6.2 some technical remarks

Before we begin the analysis in the framework of BDP, some important

technical points have to be addressed. In particular, the question is how

to de�ne a stochastic preference.

In the framework of BDP (1999), the intuition of their notion of ratio-

nalizability is that the probability that a consumer chooses an element

in a subset of a budget equals the probability that this consumer has a

preference (ordering) which is maximized by an element in that subset,

given the budget contraint.

BDP (1999) de�ne a probability measure over “the class of all subsets”

of a budget set, speci�ed by a stochastic demand function. Because

the commodity space X is the positive orthant of the ℓ-dimensional
euclidean space and budgets are subsets of X, there is a natural algebra –
the Borel σ-algebra generated by the open sets, denotedX – and hence it
is unproblematic to de�ne a budget B as a non-empty set in X. One can
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then de�ne a σ-additive probability measure on B. Alternatively, as in
BDP (2004), this probability measure can be assumed to be only �nitely

additive, de�ned over the class of all subsets of a budget. �is alternative

is discussed further below.

While a σ-additive probability measure on a budget is not a problem,
the other side of BDP’s notion of rationalizability – a probability measure

on the set of preferences or orderings – is more problematic. One could

de�ne the set of orderings R as a metric space with a Borel σ-algebra of
subsets of R, as for instance McFadden (2005) does for a set of utility
functions. However, it is no simple matter to endow a set of preferences

with a metric, at least if the metric should have the desirable property

of being economically meaningful, i.e. that “similar preferences” with

respect to the metric lead to similar decisions in similar situations. Both

BDP (1999) and McFadden (2005) assume a σ-algebra on the set of
preferences without showing that it exists.

If, however, all measures considered in the chapter are only �nitely

additive, then the technical problems do not occur. But then one could

argue that the framework of BDP loses some of its possible interpre-

tations and applications. For example, a uniform distribution on the

budget would not be possible. �e alternative interpretation that we

observe choices of a (�nite) number of anonymous consumers with de-

terministic preferences (BDP 2002) would still be valid, but the current

framework only accounts for a number of consumers who each have the

same income. �is is a fairly unrealistic assumption.

Future research should therefore focus on the improvements of two

aspects: First, it needs to be shown that the set of preferences considered

in this framework can become ametric space, and a stochastic preference

needs to be de�ned as a probability on the Borel subsets of R. �e work
of Debreu (1969), Kannai (1970), Hildenbrand (1970, 1971, 1974), and

Grodal (1974) are probably valuable starting points for this venture.

Second, the framework of BDP (2002) needs to be extended to allow for

income heterogeneity among di�erent consumers.

In the chapter, we proceed in the following on the basis of BDP’s

framework of �nitely additive measures. We do so because the main

contribution is to point to an alternative way of framing the problem,

which should ultimately also be of direct use for the more general case.
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6.3 preliminaries

6.3.1 Notation and Basic Concepts

Let ℓ be the number of commodities, and let X = Rℓ+ be the commodity
space.3�e normalized price space P is de�ned by

P = {p ∶ p = (p1, p2, . . . , pℓ) and pi = ρi/w (i = 1, 2, . . . , ℓ)
for some (ρ1, ρ2, . . . , ρℓ,w) ∈ Rℓ++ ×R++},

(6.1)

where ρi denotes the price of commodity i andw denotes the consumer’s
income; for most of the paper we shall assume that we observe consump-

tion decisions on a �nite set of n budgets. A budget set can then be de�ned
by {x ∈ X ∶ px ≤ 1}. We will denote the budget sets as Bi = B(pi) and
the upper bound of budget sets as B̄i = {x ∈ X ∶ pix i = 1}, where super-
scripts index the observation. Furthermore B ⊆ 2X denotes the family
of all budget sets, i.e. B = ⋃{B(p) ∶ p ∈ P}.
Let h be a nonempty demand correspondence (function) on B which

assigns to each B a nonempty subset h(B). Formost of the paper, we shall
assume that h is a singleton, and denote x i = (x i

1
, x i
2
, . . . , x iℓ) = h(Bi).

Furthermore we shall assume that the entire income is spent, such that

h(Bi) = h(B̄i).
Let R ⊆ X ×X be a binary relation on X. If pix i ≥ pix then {x i , x} ∈ R

and we say that the observation x i is directly revealed preferred to x.
For brevity, we write x iRx. �e observation x i is revealed preferred
to x, written x iR∗x, if either x iRx or for some sequence of bundles
(x j, xk , . . . , xm) it is the case that x iRx j, x jRxk , . . ., xmRx. In this case
R∗ is the transitive closure of the relation R, i.e. R∗ = ⋃i Ri . Let R be the
set of all orderings over X.4

3 Notation: Rℓ
+
= {x ∈ Rℓ

∶ x ≧ 0}, Rℓ
++

= {x ∈ Rℓ
∶ x > 0}, where “ x ≧ y ” means

“ x i ≥ y i for all i ”, and x ≠ y ”, and “ x > y ” means “ x i > y i for all i ”. Note the
convention to use subscripts to denote scalars or vector components and superscripts

to index bundles.

4 We use the term “ordering” in the same sense as BDP. An ordering overRℓ
+
is binary

relation R over Rℓ
+
satisfying: (i) re�exivity: for all x ∈ Rℓ

+
, xRx; (ii) connected-

ness: for all distinct x, y ∈ Rℓ
+
, xRy or yRx; and (iii) transitivity: for all x, y, z ∈ Rℓ

+
,

[xRy and yRz] implies xRz.
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�e weak axiom of revealed preference (warp) asserts that R is asym-
metric: For all x, x′ ∈ X, x ≠ x′, xRx′ implies [not x′Rx]. �e strong
axiom of revealed preference (sarp) asserts that the transitive closure of
R, R∗, is asymmetric: xR∗x′ implies [not x′R∗x].

6.3.2 Indirect Revealed Preference and Revealed Favorability

�ere is a notion of indirect revealed preference due to Sakai (1977), Little
(1979), and Richter (1979).5We will rely on Sakai’s de�nitions and use

the concept of revealed favorability in the following sense: Let F ⊆ B×B
be a binary relation on B.

De�nition 6.1 (Revealed favorability relation) If x j ∈ Bi then there
has to be an element x ∈ Bi which is at least as good as x j and we say
that budget Bi is revealed more favorable than budget B j. Given a set
of observations on a consumer, we de�ne the relation F1 as Bi F1 B j if
x j ∈ Bi and Bi ≠ B j. Let F be the transitive closure of the relation F1. Let
F be the set of all orderings on B.

De�nition 6.2 (Weak Axiom of Revealed Favorability) �eweak ax-
iom of revealed favorability (warf) asserts that F1 is asymmetric: For all
B,B′ ∈ B, B F1 B′ implies [not B′ F1 B].

De�nition 6.3 (Strong Axiom of Revealed Favorability) �e strong
axiom of revealed favorability (sarf) asserts that the transitive closure
of F1, F, is asymmetric: B F B′ implies [not B′ F B].

6.3.3 Stochastic Revealed Preference and its Weak Axiom

Next we recall the relevant part of the concepts used by BDP (1999,

2004).

5 Sakai (1977) calls the relations on the price-income space revealed favorability relations
and de�nes weak and strong axioms of revealed favorability by analogy with warp

and sarp. Little (1979) calls his relations indirect preference relations and employs the
Congruence Axiom due to Richter (1966). See also Varian (1982), who explores the

possibilities of ordinal comparisons between budgets in empirical analysis.
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De�nition 6.4 (Stochastic demand function) A stochastic demand
function (sdf) is a rule д, which, for every normalized price vector p ∈ P
speci�es exactly one (�nitely additive) probability measure q over the
class of all subsets of the budget set B = B(p).

Let q = д(p), where д is an sdf, and let A be a subset of a budget
set B(p). �en q(A) is the probability that the bundle chosen by the
consumer from the budget set B(p) will be in the set A.

De�nition 6.5 (Degenerate stochastic demand function) A stochas-
tic demand function д is degenerate if, for every normalized price vector
p ∈ P, there exists x ∈ B(p) such that, for every subset A of B(p), x ∈ A
implies q(A) = 1 and x ∉ A implies q(A) = 0, where q = д(p).

De�nition 6.6 (Weak Axiom of Stochastic Revealed Preference) A
stochastic demand function д satis�es the weak axiom of stochastic
revealed preference (wasrp) if, for all pairs of normalized price vectors p
and p′, and for all A ⊆ B ∩ B′

q (B − B′) ≥ q′(A) − q(A), (6.2)

where q = д(p), q′ = д(p′), B = B(p) and B′ = B(p′).

To interpret the wasrp, consider Figure 6.1. Suppose for simplicity

that q(A) = 0. �e wasrp then requires that the probability that the

consumer chooses a bundle in B − B′ when facing budget B is at least
as great as the the probability that the consumer chooses a bundle in

A when facing budget B′. When switching from B to B′, we “throw
out” B − B′ and add B′ − B. Because the addition of B′ − B should not
increase the probability of choosing a bundle in A, any increase in the
probability of choosing bundle A should be to due the bundles which
were available under B but are no longer available under B′. �en the
increase in the probability of choosing a bundle in A should not exceed
the maximal probability that can be diverted from B−B′ to A.�e �gure
also illustrates that wasrp implies the warp in the case of a degenerate

sdf (which can be interpreted as the demand function of a consumer

with deterministic preferences): If the consumer chooses a bundle in

A when facing budget B′ (i.e. q′(A) = 1), then he chooses a bundle in
B − B′ when facing budget B (i.e. q(B − B′) = 1).
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x

y
B

B′

B − B′

B ∩ B′

A

Figure 6.1.:�eWeak Axiom of Stochastic Revealed Preference

A stochastic demand function which satis�es q(B̄) = 1 is called tight
(BDP 2004). �e analysis here is con�ned to tight demand.

De�nition 6.7 (Rationalizability in terms of stochastic orderings) A

stochastic demand function д satis�es rationalizability in terms of stochas-
tic orderings (rso) if there exists a (�nitely additive) probability measure
r de�ned on R such that, for every normalized price vector p and every
subset A of B = B(p)

q(A) = r[{R ∈ R ∶ there is a unique R − greatest element in B
and that element is in A}] (6.3)

or q(A) = r[{R ∈ R ∶ argmaxB ∈ A}] for short, where q = д(p).

BDP (1999) show that rso implies but is not implied by wasrp; the

result holds for the framework of BDP (2004) which we consider here

as well.
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Figure 6.2.: An example

6.3.4 Indirect Preferences and Stochastic Choice

To extend wasrp to a stronger condition analogous to sarp it seems

necessary to be able to utilize transitive closures of preference relations.

But when we observe probability measures over all subsets of given

budgets it is di�cult to interpret these measures in terms of preference

relations between elements of X. It is more obvious how to interpret
the observations in terms of indirect preference relations or revealed

favorability relations between elements of B: We can interpret q j(B j ∩
Bi) as the minimal share of the consumer’s indirect preference relations
which rank budget Bi over budget B j.
Consider Figure 6.2. Suppose on budget B the consumer assigns

the probabilities q(A1) = 6⁄8 and q(A2) = 2⁄8 to the sets A1 and A2
respectively. On budget B′ he assigns the probabilities q′(A′

1
) = 4⁄8 and

q′(A′
2
) = 4⁄8 . Clearly he reveals that at least 2⁄8 of his preference orderings

rank B′ over B, and at least 4⁄8 of his preference orderings rank B oder
B′.
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Now suppose the indicated subsets of the budgets are singletons. �e

observed probability assignments are consistent with a consumer who

has three di�erent preferences Ra, Rb, Rc , such that A1 is the Ra-greatest
element of B and A′

2
is the Ra-greatest element of B′ and the preference

Ra is realized with probability 4⁄8 ; A1 is the Rb-greatest element of B
and A′

1
is the Rb-greatest element of B′ and the preference Rb is realized

with probability 2⁄8 ; A2 is the Rc-greatest element of B and A′1 is the Rc-
greatest element of B′ and the preference Rc is realized with probability
2⁄8 .

When considering indirect preferences, the only conditions imposed

by the observed probability assignments are that the consumer has an

indirect preference which ranks budget B over B′ and is realized with a
probability of at least 4⁄8 , and an indirect preference which ranks budget

B′ over B and is realized with a probability of at least 2⁄8 . For example
the consumer could have two di�erent indirect preferences Fa and Fb,
such that B is the Fa-greatest element of {B,B′} and the preference Fa
is realized with probability 5⁄8 ; B′ is the Fb-greatest element of {B,B′}
and the preference Fb is realized with probability 3⁄8 .

6.4 rationalizability

6.4.1 Rationalizability in Terms of Stochastic Orderings on the Normal-
ized Price Space

�e idea of the notion of rationalizability considered in this section is that

there exists a (�nitely additive) probability measure on the set of indirect

preferences which generates the observed choices. More formally:

De�nition 6.8 (Rationalizability in terms of stochastic orderings on
the normalized price space) Let N = {1, 2, . . . , n} be the set of indices
of the observed budgets, and letM ⊂ N with some index k ∈ M and k ∉
N . We say that a stochastic demand function д satis�es rationalizability
in terms of stochastic orderings on the normalized price space (rsop) if



6.4 rationalizability 59

there exists a (�nitely additive) probability measure f de�ned on F such
that we can use f to generate the observed stochastic demand:

f [{F ∈ F ∶ (∀i ∈ M) [Bi F Bk]}] ≥ qk (Bk ∩ ⋂
i∈M

Bi) (6.4a)

i.e. the sum over all indirect preferences which rank all budgets in

{Bi}i∈M higher than Bk is greater than or equal to the choice probability
assigned to the part of Bk that intersects with all {Bi}i∈M . Furthermore,

f [{F ∈ F ∶ (∀i ∈ M) [Bk F Bi]}] ≤ qk (Bk − ⋃
i∈M

Bi) , (6.4b)

i.e. the sum over all indirect preferences which rank all budgets in

{Bi}i∈M lower than Bk is less than or equal to the choice probability
assigned to the part of Bk that does not intersects with any Bi in {Bi}i∈M .

Because the number of di�erent indirect preferences is �nite if the

number of observations is �nite, it is straightforward to test, at least in

principle, for rsop. Let S(N) be the set of all ordered n-tuples of indices
in N , i.e. the set of the n! permutations of N . �e elements of S(N) will

be indicated by σ , and more explicitly as σi = ⟨a, b, . . . , e⟩ and σi(1) = a,
σi(2) = b, etc. Let πi = π(σi) be the probability assigned to the ordering
σi .
We now de�ne the following linear feasibility problem:

�nd Π = (π1, π2, . . . , πn!) (fp.1)

satisfying πi ≥ 0 for all i = 1, 2, . . . , n! (fp.2)

n!
∑
i=1

πi = 1 (fp.3)

∑
{i∈{1,...,n!}∶σi( j)<σi(k)∀ j∈M}

πi ≥ qk
⎛

⎝
Bk ∩ ⋂

j∈M
B j⎞

⎠

(fp.4)

∑
{i∈{1,...,n!}∶σi( j)>σi(k)∀ j∈M}

πi ≤ qk
⎛

⎝
Bk − ⋃

j∈M
B j⎞

⎠

(fp.5)

for all nonemptyM ⊂ N and all k ∈ N , k ∉ M
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Note that∑{i∈{1,...,n!}∶σi( j)<σi(k)∀ j∈M} πi denotes the sum over all prob-
ability assignments over preferences which rank all j ∈ M higher than k,
excluding preferences which rank one or more j ∈ M lower than k.

�eorem 6.1 �e following conditions are equivalent:

(1) there exists a (�nitely additive) probability measure f over the
set of all orderings on B that rationalizes the stochastic choices
{q(Bi)}

n
i=1, i.e. rsop is satis�ed;

(2) the linear feasibility problem (fp) has a solution.

Proof Follows immediately from the de�nition of rsop.

6.4.2 Rationalizability in Terms of Stochastic Orderings on the Commod-
ity Space

Sakai (1977,�eorem 6) shows that if the entire income is spent, the

(deterministic) demand at every normalized price vector is a singleton,

and the demand function satis�es sarf, then a (direct) utility function

can be deduced from the favorability relation. In analogy to Sakai’s result,

we arrive at the following interesting theorem.

�eorem6.2 If rsop is satis�ed, then the stochastic demand function

д satis�es rationalizability in terms of stochastic orderings (rso).

Proof Note that an sdf д speci�es exactly one �nitely additive probability
measure q over the class of all subsets of the budget. �us the demand
according to each preference the consumer has can be thought of as

single valued.

De�ne a set of functions дR ∶ B → X such that дR(B) = argmaxB R,
for all R ∈ R. Under sarf and single valued demand, for every indirect
preference F ∈ F there are direct preferences R such that x R x′ if and
only if B F B′, where x = дR(B) and x′ = дR(B′). LetQ be the set of all
R ∈ R consistent with a preference F ∈ F. Note that {R ∈ Q} ⊆ {R ∈ R}.

�en rso is implied by the existence of a probability measure r de�ned
onQ such that, for every normalized price vector p and every subset A
of B = B(p), we have q(B) = r[{R ∈ Q ∶ дR(B) ∈ A}]. If [not rso], then
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there does not exist r on Q such that q j(A) = r[{R ∈ Q ∶ дR(B) ∈ A}]
for all A ⊂ B j and all j ∈ N . Let

r[{R ∈ Q ∶ (∀i ∈ M) [дR(B)R дR(Bi)]}]

∶= f [{F ∈ F ∶ (∀i ∈ M) [B F Bi]}], (6.5a)

r[{R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(B)]}]
∶= f [{F ∈ F ∶ (∀i ∈ M) [Bi F B]}]. (6.5b)

Under the assumptions made above, we have

{R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}

⊆ {R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(Bk)]},

(6.6a)

{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi}

⊇ {R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]},

(6.6b)

and therefore

r[{R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}]

≤ r[{R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(Bk)]}],

r[{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi}]

≥ r[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}].

To see (6.6a), note that from

Ra ∈ {R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}

it follows that

(∀i ∈ M) [дRa(Bi)Ra дRa(Bk)].

To see (6.6b), let

Rb ∈ {R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}.
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Suppose дRb(Bk) ∉ Bk − ⋃i∈M Bi , which implies дRb(Bk) ∈ Bk ∩ Bi0

for at least one i0 ∈ M. �en we have дRb(Bi0)Rb дRb(Bk). If also
дRb(Bk)Rb дRb(Bi0), then Bi0 F Bk and Bk F Bi0 . �is contradicts Rb ∈
Q because F is asymmetric.
�e rest of the proof proceeds as follows: It will be shown that if

rsop is satis�ed, it is always possible to assign probability in a way

such that rso is satis�ed. In step 1.(a) it is shown that if there exists a

probability measure r such that q(Bk ∩⋂i∈M Bi) = r[{R ∈ Q ∶ дR(B) ∈
Bk ∩⋂i∈M Bi}] holds, then there also exists a probability measure r such
that q(Bk ∩⋂i∈M Bi) = r[{R ∈ Q ∶ дR(B) ∈ Bk ∩⋂i∈M Bi}] and q(A) =
r[{R ∈ Q ∶ дR(B) ∈ A}] hold for any A ⊂ Bk ∩⋂i∈M Bi , and similarly
for Bk −⋃i∈M Bi , which is shown in step 2.(a). �at is, in identifying
a violation of rso, we can restrict the search to sets of the form Bk ∩

⋂i∈M Bi or Bk −⋂i∈M Bi . Steps 1.(b), 1.(c), 2.(b), and 2.(c) start with a
probability measure which is inconsistent with rso. It is then shown

that there exists another probability measure obtained by appropriate

addition or substraction that is consistent with rso, given that rsop is

satis�ed.

1.(a) Suppose that A ⊆ Bk ∩⋂i∈M Bi for some M ⊂ N and k ∈ N −M.
We have

qk((Bk ∩ ⋂
i∈M

Bi) −A) + qk(A) = qk(Bk ∩ ⋂
i∈M

Bi).

If

qk(Bk ∩ ⋂
i∈M

Bi) = r[{R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}],

then Eq. (6.6a) and the fact that

{R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi −A} ∪ {R ∈ Q ∶ дR(Bk) ∈ A}

= {R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}

tell us that letting r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= qk(A) is consistent
with rsop.

1.(b) Now suppose that qk(A) > r̃[{R ∈ R ∶ дR(Bk) ∈ A}] for A =

Bk ∩⋂i∈M Bi for some probability measure r̃ onQ which satis�es
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(6.5a) and (6.5b). �en qk(A) = r̃[{R ∈ R ∶ дR(Bk) ∈ A}] + δ for
some δ > 0. Suppose

r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] + δ
≤ r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(Bk)]}].

�en by Eq. (6.6a) we can let r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= r̃[{R ∈

Q ∶ дR(Bk) ∈ A}] + δ and r[{R ∈ Q ∶ дR(Bk) ∈ Bk −⋃i∈M Bi}] ∶=
r̃[{R ∈ Q ∶ дR(Bk) ∈ Bk −⋃i∈M Bi}] − δ. To see that this is consis-
tent with rsop, note that

qk(Bk − ⋃
i∈M

Bi) = 1− r̃[{R ∈ Q ∶ дR(Bk) ∈ Bk ∩ ⋂
i∈M

Bi}] − δ

= 1− (1− r̃[{R ∈ Q ∶ дr(Bk) ∈ Bk − ⋃
i∈M

Bi}])

− δ
= r̃[{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃

i∈M
Bi}] − δ

and with rsop we have that

qk(Bk − ⋃
i∈M

Bi) ≥ r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}],

such that

r̃[{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi}] − δ

≥ r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}],

so if r̃ is consistent with rsop, so is r. If instead

r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] + δ
> r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(Bk)]}]

= f [{F ∈ F ∶ (∀i ∈ M) [Bi F Bk]}],

we have that qk(A) > f [{F ∈ F ∶ (∀i ∈ M) [Bi F Bk]}], which
contradicts rsop.
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1.(c) Now suppose that qk(A) < r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] for A =

Bk ∩⋂i∈M Bi . �en qk(A) = r̃[{R ∈ Q ∶ rR(Bk) ∈ A}] − δ. We
have that

r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] − δ
< r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bi)R дR(Bk)]}]

and letting r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= r̃[{R ∈ Q ∶ дR(Bk) ∈

A}] − δ and r[{R ∈ Q ∶ дR(Bk) ∈ Bk −⋃i∈M Bi}] ∶= r̃[{R ∈ Q ∶

дR(Bk) ∈ Bk −⋃i∈M Bi}] + δ is consistent with rsop for similiar
reasons as in step 1.(b).

2.(a) Suppose that A ⊆ Bk −⋃i∈M Bi . We have

qk(Bk − ⋃
i∈M

Bi −A) + qk(A) = qk(Bk − ⋃
i∈M

Bi).

If

qk(Bk − ⋃
i∈M

Bi) = r[{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi}],

then Eq. (6.6b) and the fact that

{R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi −A} ∪ {R ∈ Q ∶ дR(Bk) ∈ A}

= {R ∈ Q ∶ дR(Bk) ∈ Bk − ⋃
i∈M

Bi}

tell us that letting r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= qk(A) is consistent
with rsop.

2.(b) Now suppose that qk(A) < r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] for A =

Bk −⋃i∈M Bi .�en qk(A) = r̃[{R ∈ Q ∶ rR(Bk) ∈ A}]− δ. Suppose
r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] − δ

≥ r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}].

�en by Eq. (6.6b) we can let r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= r̃[{R ∈

Q ∶ дR(Bk) ∈ A}] + δ. �is is consistent with rsop for similiar
reasons as in step 1.(b). If instead

r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] − δ
< r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}]

= f [{F ∈ F ∶ (∀i ∈ M) [Bk F Bi]}],
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we have that qk(A) < f [{F ∈ F ∶ (∀i ∈ M) [Bk F Bi]}], which
contradicts rsop.

2.(c) Now suppose that qk(A) > r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] for A =

Bk −⋃i∈M Bi . �en qk(A) = r̃[{R ∈ Q ∶ rR(Bk) ∈ A}] + δ. We
have that

r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] + δ
> r̃[{R ∈ Q ∶ (∀i ∈ M) [дR(Bk)R дR(Bi)]}],

and letting r[{R ∈ Q ∶ дR(Bk) ∈ A}] ∶= r̃[{R ∈ Q ∶ дR(Bk) ∈

A}] + δ and r[{R ∈ Q ∶ дR(Bk) ∈ Bk ∩⋂i∈M Bi}] ∶= r̃[{R ∈ Q ∶

дR(Bk) ∈ Bk ∩⋂i∈M Bi}] − δ is consistent with rsop for similiar
reasons as in step 1.(b).

Finally, note that any A ⊂ Bk can always be written as the union of
�nitly many disjoint sets Z j, i.e. A = ⋃ j Z j, where for every j, either
Z j ⊆ B −⋃ j B j or Z j ⊆ B ∩⋂ j B j. We then have that qk(A) = ∑ j q(Z j).

�en qk(A) ≠ r̃[{R ∈ Q ∶ дR(Bk) ∈ A}] implies that for at least one j we
have that q(Z j) ≠ r̃[{R ∈ Q ∶ дR(B) ∈ Z j}], and the same arguments as
in steps 1 and 2 apply.

To see that rsop is not necessary, suppose the sdf is degenerate and

let B ≠ B′ and д(B) = д(B′). �is is obviously consistent with rso, but
(fp) has no solution.

6.4.3 Problems and Open Questions

Consider the following construction: A budget Bi is revealed more favor-
able by degree φ(i, j) than B j if

φ(i, j) =max{q j (B j ∩ Bi) , q j (B j ∩ BM(1))

+
m−1
∑
k=1

qM(k) (BM(k) ∩ BM(k+1))

+qM(m) (BM(m) ∩ Bi) −m}, (6.7)

where the maximum is over all sets of indices M ⊆ N − {i, j}. �en
obviously

φ(i, j) + φ( j, i) ≤ 1 (6.8)
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is a necessary condition for rsop. It may seem to be a reasonable conjec-

ture that the condition is also su�cient, but unfortunately it is not, as

will be shown below. But �rst note the following:

Claim 6.1 Identify a deterministic demand function with a degener-

ate stochastic demand function. For that demand function, condition

(6.8) is equivalent to the strong axiom of revealed favorability.

Proof In the deterministic case, Bi F B j is equivalent to φ(i, j) = 1.

To see this, note that (i) φ(i, j) ∈ {0, 1}, (ii) Bi F1 B j is equivalent to
q j (B j ∩ Bi) = 1, and (iii) Bi F B j is equivalent to q j (B j ∩ BM(1)) = 1 and

qM(1) (BM(1) ∩ BM(2)) = 1, . . . , qM(m) (BM(m) ∩ BM(i)) = 1

for someM ⊂ N . So condition (6.8) is equivalent to asymmetry of F.

A “system of binary probabilities”

[αi j ∶ i, j ∈ {1, 2, . . . , n}, i ≠ j, αi j + α ji = 1]

is said to be “induced by rankings” (rationalizable) if there is a probabil-

ity distribution on the set of n! orderings of {1, 2, . . . , n} such that, for
all distinct i and j, αi j is the sum of all probabilities attached to order-
ings which rank i over j (cf. Fishburn (1990)). �e so-called triangular
condition

αi j + α jk + αki ≤ 2 (6.9)

and its generalization

αM(1)M(2) + αM(2)M(3) + . . . + αM(m)M(1) ≤ m − 1 (6.10)

for all sets of indices M ⊆ N of length m is a necessary condition for
rationalizability.6 It was also conjectured to be a su�cient condition

for rationalizability by Marschak (1959). In an unpublished paper, Mc-

Fadden and Richter (1970) provided a counterexample for n = 6.7 Later

6 For the generalized form, see for example Cohen and Falmagne (1990). In the case

of binary probabilities, the generalized form can be deduced from the triangular

condition.

7 A revision of the paper was later published as McFadden (2005).
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on, Fishburn (1990) observed that the set of conditions on the choice

probabilities that are su�cient for rationalizability regardless of n must
be in�nite.

�is poses some problems for the framework considered here. Con-

sider the counterexample of McFadden and Richter (1970) applied to

the framework of stochastic revealed preference: For n = 6, let

α12 = α14 = α34 = α36 = α56 = α52 = 1
α21 = α41 = α43 = α63 = α65 = α25 = 0 (6.11)

αi j = 1/2 for all other i, j

where q j (B j ∩ Bi) = αi j. �en the triangular condition and its general-
ization are satis�ed, and so is condition (6.8); but (fp) has no solution.

Indeed, with q j (B j ∩ Bi) = αi j, conditions (6.10) imply (6.8) because

φ(i, j) + φ( j, i) = α j M i(1) + αM i(1)M i(2) + . . . + αM i(m) i
+ αi M j(1) + αM j(1)M j(2) + . . . + αM j(m) j (6.12)

−mi −m j,

whereM i andM j, ∣M i ∣ = mi and ∣M j∣ = m j, are the sets of indices used
to construct φ(i, j) and φ( j, i), and with (6.12) and condition (6.10) we
obtain

φ(i, j) + φ( j, i) +mi +m j ≤ (mi + 1) + (m j + 1) − 1

⇔ φ(i, j) + φ( j, i) ≤ 1.

While it might also be possible that exploitation of the particularities

of the framework of BDP, e.g. linearities of budgets, helps to �nd �nite

sets of necessary and su�cient conditions for stochastic revealed prefer-

ence without applicability to the binary probability problem8, the results

of this section suggest that conditions for rsop based on de�nitions

for a partial revealed favorability relation between budgets su�er from

similar problems as the conditions for rationalizability of binary prob-

abilities. �erefore a “strong axiom of stochastic revealed favorability”

8 Suppose the commodity space is restricted to the positive orthant of the two-

dimensional Euclidean space. �en, in analogy to deterministic revealed preference

(see Rose (1958) and Chapters 3 and 5 of this thesis), wasrp might imply rso.
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could possibly also solve the problem of �nding a �nite set of necessary

and su�cient conditions for systems of binary probabilities for each

particular n.

6.5 conclusions

�e weak axiom of stochastic revealed preference, as introduced by

Bandyopadhyay et al. (1999) and used in Bandyopadhyay et al. (2004), is

a necessary but not su�cient condition for stochastic demand behavior

to be rationalizable in terms of stochastic orderings on the commodity

space. It was the purpose of this paper to explore rationalizability issues

and to show how one can, in principle, test whether or not a �nite

set of observations of stochastic choice is rationalizable by stochastic

orderings.

To this end the problem of �nding a probability measure over order-

ings on the commodity space was transformed into a problem of �nding

a probability measure over orderings on the normalized price space.

�e advantage of this indirect approach is that it avoids the problems

resulting from the in�nity of the set of alternatives a consumer chooses

from when facing a budget set de�ned in the usual way. Furthermore, it

is interesting to note that rationalizability in terms of stochastic order-

ings on the normalized price space and the weak axiom of stochastic

revealed preference together imply rationalizability in terms of stochastic

orderings on the commodity space.

In Section 6.4.3 similarities with binary probability systems were

pointed out. In particular it was shown that conditions based on partial

revealed favorability relations are likely to su�er from similar problems

as the conditions for rationalizability of binary probabilities.
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APPLICATIONS





7
HOMOTHETIC PREFERENCES: APPLICATIONS IN TWO

DIMENSIONS

7.1 introduction

�e proof that pairwise comparison of choices is su�cient for homoth-

etic rationalization in two dimensions provides (see Chapter 5) a direct

way to compute scalar factors needed to construct piecewise linear ho-

mothetic indi�erence curves through the choices. �ese scalars usually

cannot be computed e�ciently because a violation of homotheticity im-

plies negative weight cycles in a graph representing the data. �e direct

way given in Chapter 5 for the case of two dimensions can still be used

e�ciently even if homotheticity is violated. It is shown how this feature

can be usefully applied to get an idea about how severe a deviation from

homotheticity is. We apply the test and measure developed in this chap-

ter to data sets from two-person dictator experiments (Andreoni and

Miller 2002, Fisman et al. 2007) and a two-asset risk experiment (Choi

et al. 2007a).
�e remainder is organized as follows. Section 7.2 introduces several

application of the theoretical �ndings. It provides a simpli�ed test for

homotheticity, ways to reveal or measure the extent of deviation from

homotheticity, and a test for discrete budget sets. It is also shown how

one can construct powerful budget combinations to increase the proba-

bility of observing a violation of homotheticity under random choice. In

Section 7.3 some of the ideas of Section 7.2 are applied to existing data

sets. Section 7.4 concludes.

7.2 possible applications

�e notation here follows Chapter 5.

71
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7.2.1 Testing harp

Testing harp requires shortest path algorithms such as the Warshall or

Floyd-Warshall algorithm (Warshall 1962, Floyd 1962). Such algorithm

can detect negative weight cycles in the data: Varian (1983) interprets the

set of n observations as a weighted graph with n nodes and an associated
n2 cost matrix C = {ci j}, where ci j = logpiz j/w i is interpreted as the
cost of moving from node i to node j. harp then requires that moving
from a node i to itself is never “cheaper” than zero.
�e Floyd-Warshall algorithm takes {ci j} as input and provides as

output a matrix {c̄i j} which is the minimum cost of moving from node
i to node j. In the case of two dimensions, however, we know from
�eorem 2 that pairwise comparison is su�cient to detect violations of

homotheticity. Hence a quicker way to test if a set of consumption data

satis�es homotheticity is to compute the matrixM = {mi j}, where

mi j =
piz j

w i
p jzi

w j ; (7.1)

the pharp is violated if and only if any element ofM is less than 1. If
there is a unique ordering of the relative prices, it is su�cient to only

compute and check the subdiagonal for the ordered data; an algorithm

to detect negative weight cycles is not needed.

7.2.2 Revealing the Extent of Deviation

If the data does not satisfy harp, the scalar factors in Equation (5.1)

cannot be computed using the Floyd-Warshall or any other e�cient

algorithm because shortest path problems are not well de�ned in the

presence of negative weight cycles. But note that Lemma 5.1 provides an

explicit way to compute the scalar factors in the case of two dimensions.

�e factors θ i, j can then be used to recover homothetic preferences
implied by the choices of a consumer, even if homotheticity is actually

violated. While this may not seem reasonable, note that estimating pa-

rameters of homothetic functions with data that violate homotheticity

is not uncommon.

For example, one can use this approach to graphically reveal the extent

to which consumption choices deviate from homotheticity. Consider
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x

y

Figure 7.1.: Using the scalar factors θ i , j fromLemma 1 we can construct curves through
the choices. �e size of the gray areas gives an idea about how severe the

deviation from homotheticity is.

Figure 7.1: �e data clearly violate homotheticity. Consequently, the

implied homothetic indi�erence curves intersect the budget lines. �e

area between the curves and the budget lines gives us an idea about how

severe the violation of homotheticity is. In Chapter 9 this approach is

used to de�ne an e�ciency index that gives a measure of how severe a

violation of utility maximization is. In general, neither this nor some

variant of the common Afriat E�ciency Index (aei, see Varian 1990)

can be used to capture the extent of violations of homotheticity because

the indi�erence map is not well de�ned. In two dimensions however,

Lemma 5.1 allows us to do so.

7.2.3 Budget Balancedness and Homothetic E�ciency

All nonparametric tests based on revealed preference theory lose some

of their simplicity and unambiguity if budget balancedness is violated,

i.e. if consumers do not spend their entire income. For example, most

subjects in Fisman et al. (2007) and Choi et. at. (2007a) did not spent
their entire endowment.1 garp can still be usefully applied using, for

example, the aei, which roughly speaking is based on shi�ing budgets

1 �is important aspect was pointed out by an anonymous referee.
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x

y

zi

B i
= B i

(pi ,w i
)

B = B(pi , λw i
)

Figure 7.2.:�e extent to which a budget has to be shi�ed towards the origin in order
to be tangent to the implied homothetic indi�erence curve given an idea

about how severe the deviation from homotheticity is. Note that in this

example budget balancedness is violated.

towards the origin until the data “�ts” garp. �is is not feasible when

dealing with harp (see also Proposition 7.1).

�ere are two straightforward solutions. One can rede�ne budgets

such that endowment equals actual expenditure, so that budget bal-

ancedness is satis�ed. Alternatively, one can compute e�ciency indices

based on the homothetic preference relations using the scalar factors

from Lemma 5.1, which is only possible in two dimensions. A�er having

constructed upper bounds of homothetic indi�erence curves using the

scalars θ i, j, one can shi� budgets towards the origin until all budgets
are just tangent to the indi�erence curves. To do this, one needs to mul-

tiply income for each budget with a factor λ ∈ [0, 1]. �e minimum

of all factors then gives an idea about how severe the deviation from

homotheticity is, and subjects can be compared based on this measure

of “homothetic e�ciency”. Figure 7.2 illustrates this idea.
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More formally, the measure for homothetic e�ciency which will be

employed in Section 7.3 is de�ned as

he = min
i, j∈{1,...,N}

{
(θ i, j zi)p j

w j } , (7.2)

where θ i, j is de�ned as in Lemma 5.1.

7.2.4 Discrete Budget Sets

One can also use the result of Lemma 5.1 for a nonparametric test of ho-

motheticity for discrete budget sets. In economic experiments, budgets

o�en are discrete (see, for example, Harbaugh et al. 2001, Andreoni and

Miller 2002, or Chen et al. 2006). Figure 7.3 shows budgets for which

commodities can only be demanded in integers. For certain homothetic

preferences the consumer is constrained to choices that appear to violate

homotheticity if the observer assumes that the budgets are given by the

lines through the available bundles.

As noted above, by Lemma 5.1 it is possible to use Knoblauch’s (1993)

method of recovering homothetic preferences even if homotheticity

is violated. One can then test if there have been bundles available on

or below a budget line which are within the homothetically revealed

preferred set. If not, the hypothesis of homotheticity cannot be rejected.

7.2.5 �e Power of a Test

Bronars (1987) suggested a Monte Carlo approach to determine the

power the test has against random behavior. �e approximate power of

the test is the percentage of random choices which violated garp. For

the simple case of just two observation, Bronars showed analytically that

the probability of a violation of garp, given random choice, is highest

when two intersecting budgets are nearly parallel such that the length of

a budget lying inside the other budget is large relative to the rest of the

budget. Knowing the corresponding conditions for harp would make

it easier for researchers to design powerful budget combinations. �e

following proposition will be helpful towards this end:
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x

y

(a) (b)

Figure 7.3.: A problem with discrete budget sets. Le�: Varian’s test will reject the hy-
pothesis of homotheticity for the two choices. Note that not all bundles on

the lines are available; the dots indicate available bundles, the circled dots

indicate the choices made. Right: Using the scalar factors θ i , j from Lemma
5.1 we can construct curves through the choices. Note that no alternative

choices to the upper right of the curves are available on the budgets.
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Proposition 7.1 Generate arbitrarily many new observations by shi�-

ing a budget Bi towards or away from the origin and using the inter-
section of the new budget with a ray through zi as a new observation.
Testing all augmented sets of observations obtained in this way for garp

is equivalent to testing the original set for harp.

Proof Normalize the prices by the level of expenditure so that pizi = 1
for i = 1, . . . ,N . Generate a new observation (zi

′

,pi
′

) by multiplying

some zi and pi with a scalar factor τ > 0.
If τ ≥ t i, j, then τ ziHz j. Using Eq. (5.1), this implies that t i, j zi and

therefore τ zi is revealed preferred to z j via a chain of bundles: t i,k ziRzk ,
tk,l zkRzl , . . ., tm, j zmRz j for some sequence of indices k, l , . . . ,m. �us
[not z jPt i, j zi] (harp) is equivalent to [not z jPzi′] (garp) for all zi′ =
τ zi with τ > t i, j.
If τ < t i, j, then [not τ ziHz j] and [not zi

′R∗z j]. �us neither harp
nor garp impose a condition on the relation between zi

′

and z j.

Proposition 7.1 implies that a set of budgets which is powerful for a

garp test will also be powerful for a test for homotheticity. Additionally,

the budgets for a harp test do not even have to intersect; it is su�cient for

the budgets to have similar slopes. Figure 7.4 illustrates this: Conditional

on the observation on the budget with the steepest slope, the probability

of a violation of harp, given random choice, will be higher when this

budget is paired with another budget with a similar slope.�is is because

homotheticity implies that the choice on the other budgets is made

to the lower right side of the indicated expansion line, and the ratio

∣∣Li Y ∣∣/∣∣Li Xi ∣∣ decreases as the slope decreases.

7.3 applications to experimental data

7.3.1 Dictator Games

�e experiment of Andreoni and Miller (2002) was designed to test the

rationalizability of altruistic choices. It is a generalized dictator game in

which one subject (the dictator) allocates token endowments between

himself and an anonymous other subject (the bene�ciary) with di�erent

transfer rates. �e payo�s to the dictator and the bene�ciary are inter-
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Figure 7.4.:�eprobability of observing a violation of harp decreases as the di�erence
in the slope increases.

preted as two distinct goods, and the transfer rates as the price ratio of

these two goods.

Fisman et al. (2007) employed the same basic idea as Andreoni and

Miller, but they presented subjects budgets graphically. Subjects could

thenmake a decision by using a computermouse to click on their desired

bundle. �is method allowed to collect a large set of observations per

subject.2

Andreoni and Miller

�e budgets presented to subjects were discrete: Subjects were only

allowed to demand each of the two goods in integers. �erefore we

employ the procedure described in Section 7.2.4 to test if any of the

deviations for homotheticity could be due to the discreteness of budget.

However, the tests for harp and pharp and the test that accounts for the

2 Note that none of the experiments considered here tested the hypothesis of income

homogeneity of degree zero, which is implied by warp. However, the data was tested

for consistency with garp, which allows multi-valued demand. Any apparent violation

of income homogeneity could therefore also be interpretated as indi�erence between

the di�erent bundles.
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discreteness of the budgets yield the same. We can therefore conclude

that the setup is not sensitive with respect to discreteness.

�e same data were also used to analyze di�erences betweenmale and

female subjects (see Andreoni and Vesterlund 2001); therefore data on

the sex of a subject are available. Table 7.1 reports the number of subjects

who satisfy pharp and garp; remember that in this case pharp implies

but is not implied by garp.

pharp garp all

satisfied violated satisfied violated

sex
male 67 28 89 6 95

female 24 23 40 7 47

all 91 51 129 13 142

Table 7.1.: Subjects who satisfy pharp and garp in the dictator game of Andreoni and
Vesterlund (2001) and Andreoni and Miller (2002).

A detailed analysis of the data is beyond the scope of this chapter, but

it is interesting to note that male subjects are signi�cantly less likely than

female subjects to violate pharp (χ2 = 5.175, p = 0.0229).3

Fisman et al.

As opposed to the Andreoni and Miller experiment, subjects were not

required to make decisions on the upper bound of the budget but were

free to click on any bundle on or below the budget line. Some of the

subjects did not satisfy budget balancedness, and none of the subject

satis�es garp. Fisman et al. therefore had to resort to computing the

3 Andreoni and Vesterlund’s �nding that male subjects are more price sensitive than

women might explain this result to a large extent.
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Figure 7.5.: Distribution of the homothetic e�ciency index in the data of Fisman et. al.

Afriat E�ciency Index (or Critical Cost E�ciency Index) and concluded

that most subjects were “close enough” to utility maximizing.

Using the observed expenditure instead of the actual endowment as

income, 12 out of a total 76 subjects satisfy garp. Out of these 12 subjects,

5 also satisfy pharp.

To analyze the extent of deviation from homothetic rationalizability,

we compute the he index described in Section 7.2.3, Eq. (7.2). We also

compute the aei; the correlation coe�cient between the he and the aei

is ρ = 0.791, the Spearman rank correlation coe�cient is ρrank = 0.856.
Figure 7.5 shows the distribution of the HE. �e mean he is 0.501.4

Subject 14 occasionally passed substantial amounts of money when it

was cheap to do so and had a rather high he of 0.923. Figure 7.6 shows

one of the decisions and the implied upper bound of the indi�erence

curve through that point (gray curve).When we “impose” homotheticity

on that subject’s preferences and compute the convex monotonic hull

of all points homothetically revealed preferred to the indicated choice

(see Varian 1982 and Knoblauch 1993), we obtain a less steeper curve.

�e interpretation is that if we are willing to accept this subject’s choices

4 It is not straightforward how to interpret the he. One approach would be an exten-

sive examination of the distribution of the he under random behavior similar to the

approach used in Chapters 8 and 9 which is beyond the scope of this chapter.
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hold

pass

Figure 7.6.: Indi�erence curve for decision 35 of subject ID 14 as implied by choices,
with and without imposing homotheticity.

as “close enough” to homothetic choices, we can recover a more precise

indi�erence map. Without homotheticity, the subject’s choices appear

to be generated by preferences close to the Leontief type, whereas a�er

imposing homotheticity, the preferences appear to be closer to utilitarian

preferences.

7.3.2 Two-Asset Risk Experiment

Choi et al. (2007a) used graphical representations of simple portfolio
choice problems to study behavior under uncertainty at the level of the

individual subject. �ere was one symmetric treatment in which the

two di�erent assets on which subjects could allocate their endowment

payed o� with the same probability, and two asymmetric treatments

with di�erent probabilities.

�e correlation coe�cient between the he and the aei is ρ = 0.792,

the Spearman rank correlation coe�cient is ρrank = 0.705. Figure 7.7
shows the distribution of the HE.�e mean he is slightly lower in the

symmetric treatment (0.731 and 0.759, respectively).
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Figure 7.7.: Distribution of the homothetic e�ciency index in the data of Choi et. al.

7.4 conclusions

In Chapter 5 it was shown that for two dimensional commodity spaces

any homothetic utility function that rationalizes each pair of observa-

tions in a set of consumption data also rationalizes the entire set of

observations. �e result exploits the possibility of ranking budgets by

their slope, which is only possible when the consumption space is two-

dimensional.

A straightforward application, given in this chapter, is to simplify the

nonparametric test for homotheticity, so that the use of Warshall’s algo-

rithm can be avoided. Other possible applications are based on Lemma

5.1: It can be used to compute implied indi�erence curves that intersect

the budget lines. �is is useful to measure the extent of deviation from

homotheticity, and to provide a nonparametric test of homotheticity for

discrete budget sets. �is was demonstrated by applying the described

methods to experimental data.

Besides the explored features of the two-commoditiy case, the theo-

retical Chapter 5 also provided an overview of the relationship between

di�erent axioms of revealed preference which one can test for. We also
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showed how to design budgets in order to create a powerful test for

homotheticity.





8
TESTING FOR UTILITY MAXIMIZATION WITH ERROR

8.1 introduction

Revealed Preference methods o�er an unambiguous way of testing

whether a set of observations on consumption could have been gen-

erated by a single utility maximizing consumer. �e test was originally

developed by Afriat (1967). Varian (1982) showed that his Generalized

Axiom of Revealed Preference (garp) is equivalent to Afriat’s condition

of cyclic consistency. Consistency with garp can easily be tested.

If a consumer’s decisions are inconsistent with garp one would like

to have a test for “almost optimizing” behavior, or one might want to

have an idea of how severe this violation of utility maximization is. One

such measure is the Afriat e�ciency index (aei, Afriat 1972) or Critical

Cost E�ciency Index, which is widely used.

Bronars (1987) suggests a Monte Carlo approach to determine the

power the test has against random behavior. �e approximate power of

the test is the percentage of random choices which violated garp.

Surprisingly it has rarely been noted that accepting certain consumers

who exhibit less than 100% e�ciency as “close enough” to garp de-

creases the power of the test. Sippel (1996) attributes the �rst notice of

the problem to Famulari (1995). Sippel shows that for data from three ex-

periments (Battalio et al. 1973,Mattei 1994, Sippel 1997) the test for garp

loses most of its power when accepting most subjects as close enough to

garp. Fisman et al. (2007), Choi et al. (2007a) and Choi et al. (2007b)
compute and compare the distribution of the aei of their experimental

data and of random choices based on Bronars’ procedure and arrive at

more optimistic results.

�e aim of this paper is to establish a procedure for testing almost opti-

mizing behavior based on the loss of power if we accept some consumers

with garp violations as close enough to garp. �is reveals the tradeo�

between the level of false positives and false negatives. �e researcher
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can then decide what level of power is still acceptable given the number

of consumers he can then treat as utility maximizers. A small loss in

power may be appropriate if that allows to treat many more consumers

as utility maximizers – assuming that this is an objective – whereas a

researcher should refrain from losing power if that loss would lead to

only a small number of additional consumers accepted as close enough

to garp.1

�e remainder of this chapter is organized as follows. Section 8.2 gives

a short introduction to revealed preference theory and describes the sug-

gested procedure. Section 8.3 applies the procedure to simulated utility

maximizing data with stochastic error and to data from experimental

dictator games. Section 8.4 concludes.

8.2 theory

8.2.1 Preliminaries

A set of observed consumption choices consists of a set of chosen

bundles of commodities and the prices and incomes at which these

bundles were chosen. Let X = Rℓ+ be the commodity space, where
ℓ ≥ 2 denotes the number of di�erent commodities.2�e price space
is P = Rℓ++, and the space of price-income vectors is P ×R++. Con-
sumers choose bundles x i = (x i

1
, . . . , x iℓ)′ ∈ X when facing a price vector

pi = (pi
1
, . . . , piℓ) ∈ P and an income w i ∈ R++. A budget set is then

de�ned by Bi = B(pi ,w i) = {x ∈ X ∶ pix i ≤ w i}. �e entire set of n
observations on a consumer is denoted as S = {(x i ,Bi)}ni=1.
A utility function u(x) rationalizes a set of observations S if u(x i) ≥

u(x) for all x such that pix i ≥ pix for all i = 1, . . . , n.
�e following de�nitions are needed to recover consumer preferences

that are implicit in a set of consumption choices: An observation x i
is directly revealed preferred to x, written x iRx, if pix i ≥ pix; revealed
preferred to x, written x iR∗x, if for some sequence of bundles (x j, xk , . . .,

1 In Chapter 9 we use this approach to compare the aei with a new e�ciency index.

2 �e following notation is used: For all x, y ∈ Rℓ we write x ≥ y for x i ≥ y i for all
i, x > y for x i ≥ y i and x ≠ y for all i, and x ≫ y for x i > y i for all i. We denote
Rℓ
+
= {x ∈ Rℓ

∶ x ≥ 0} andRℓ
++

= {x ∈ Rℓ
∶ x ≫ 0}.
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xm) such that x iRx j, x jRxk , . . ., xmRx. In this case R∗ is the transitive
closure of the relation R; strictly directly revealed preferred to x, written
x iPx, if pix i > pix.
For consistency with the maximization of a piecewise linear utility

function, Varian (1982) introduced the following condition: �e set of

observations S satis�es the Generalized Axiom of Revealed Preference
(garp) if x iR∗x j implies [not x jPx i]. It can then be shown (Afriat 1967,
Varian 1982) that if the data satisfy garp then there exists a concave,

monotonic, continuous, non-satiated utility function that rationalizes

the data.

Several goodness-of-�t measures have been proposed. Arguably the

most popular measure for the severity of a violation is the Afriat e�-

ciency index (aei) due to Afriat (1972). Reporting the aei has become a

standard for experimental studies.3 To obtain the aei, budgets are shi�ed

towards the origin until a set of observations is consistent with garp. Let

e be a number between 0 and 1. De�ne the relation R(e) to be x iR(e)x j

if epix i ≥ pix, and let R∗(e) be the transitive closure of R(e).

De�nition 8.1 (Generalized Axiom of Revealed Preference at e�cien-
cy level e) A set of data satis�es the Generalized Axiom of Revealed
Preference at e�ciency level e (garp(e)) if x iR∗(e)x j, x i ≠ x j, implies
[not ep jx j > p jx i].

�en the aei is the largest number such that garp(e) is satis�ed.
See Gross (1995) for a survey of other measures.

8.2.2 Power against Random Behavior

Depending on the characteristics of the budget sets, the chance of vi-

olating garp can di�er substantially. A completely rational consumer

will always be consistent. However, even a consumer who makes purely

random decisions has a chance to satisfy garp. Bronars (1987) suggests

a Monte Carlo approach to determine the power the test has against

random behavior. �e approximate power of the test is the percentage

of random choices which violated garp. Bronars’ �rst algorithm follows

3 See, for example, Sippel (1997), Mattei (2000), Harbaugh et al. (2001), Andreoni and

Miller (2002), Février and Visser (2004), Choi et al. (2007b), Fisman et al. (2007).
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Becker’s (1962) example by inducing a uniform distribution across the

budget hyperplane. For Bronars’ second algorithm, the random choices

are generated by drawing ℓ i.i.d uniform random variables, z1, . . . , zℓ,
for each price vector, and calculate budget shares Shi = zi/∑ℓ

j=1 z j. �e
random demand for commodity xi is then calculated as xi = (Shi w)/pi .

8.2.3 �e Procedure

Varian (1990) suggests a 95% aei as the critical value for acceptance of

garp-violating sets of observations as utility maximizing, “for sentimen-

tal reasons”. �ere is, however, no natural critical value. We therefore

suggest to generate random choices on the budget sets and to recom-

pute Bronars’ power for all observed e�ciency levels between 0 and 1.

�is will give us an idea of how much power the test loses if we accept

garp-violating observations as close enough to garp. �is procedure

also allows one to compare di�erent e�ciency indices.

To approximate the power of the garp test if we allow deviations from

utility maximization, we need to generate random choices on the budget

sets:

A1 Generate random choices on the budget sets of the observed data,
following Bronars’ �rst and second algorithm: (1) Draw a random

point SP from the (ℓ − 1)-simplex using a simplex point picking
algorithm. �e random demand for commodity xi is then calcu-
lated as xi = (SPi w)/pi . (2) Draw ℓ i.i.d uniform random vari-
ables, z1, . . . , zℓ, for each price vector, and calculate budget shares
Shi = zi/∑ℓ

i=1 z j. �e random demand for commodity xi is then
calculated as xi = (Shi w)/pi .

A2 Repeat steps A1 many times for each set of observed budgets.

�e second step is to compute the loss of power of the test for all

possible values of aei:

B1 Compute the aei for each consumer in the observed data sets.
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B2 Generate sets of observations following procedureA.Again, compute
the aei for each set.

B3 Sort the sets from B1 by their aei values. For each set from B1, com-
pute the percentage of sets from step B2 that have a higher aei.

8.3 application

To illustrate the procedure, we take data from a known generating func-

tion and add stochastic error to simulate measurement error. Ideally, we

would like to accept all of the sets obtained in this way for reasonably low

error terms as utility maximizing without thereby reducing the power

of the applied test.

We use a similar procedure as applied in Fleissig and Whitney (2003,

2005). First, we generate data from a �ve commodity Cobb-Douglas

utility function given by

U(x∗) =
5

∏
i=1

x∗αi
i , with

5

∑
i=1

αi = 1 (8.1)

We use random parameters each time by drawing each αi from a uni-
form distributionU[.05, .95] and then normalizing it such that∑

5
i=1 αi =

1.

For the Monte-Carlo experiment we assume that we observe the de-

mand according to the given utility function with some measurement er-

ror that �uctuates by κ%around the true demand;we use {κ1, κ2, κ3, κ4} =
{.05, .1, .2, .25}.

�e datasets have n = 20 observations each, with expenditurew drawn
from a uniform distributionW ∼ U[10000, 12000]. Price vectors are

drawn from a uniform distribution P ∼U[95, 100]. �ese expenditures

and prices lead to many intersections of budget sets which can lead to

many violations of garp.

�e data are generated by the following steps:
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A1’ Randomly draw 20 expenditure observations from the uniform
distributionW and 20 price vectors for which each element is

drawn from the uniform distribution P.
A2’ Generate utility maximizing demand for each budget. Denote the

maximizing decisions x∗i for i = 1, . . . , 5.
A3’ Generate demandswithmeasurement error bymultiplying x∗

1
, . . . , x∗

5

by a uniform random number, so that xi = x∗i (1 + εi) for i =
1, . . . , 5, where εi ∼ U[−κ, κ] and κ ∈ {.05, .1, .2, .25}. To keep ex-

penditure constant, normalize the xi by multiplying each with
λ = w/(p ⋅ x).

A4’ Repeat steps A1’ – A3’ many times.

For illustrative purposes we proceed to execute procedures A, A’, and

B. For the latter we use the data generated in A’ as the observed data sets.

A and A’ are repeated 10000 times. Bronars’ power is based on his �rst

algorithm.4We then plot the result measuring the power of the test on

the horizontal axis and the fraction of observations accepted as close

enough to utility maximization on the vertical axis; see Figure 8.1.

To further illustrate the procedure, we use laboratory data from two

experimental dictator games of Andreoni and Miller (2002) and Fisman

et al. (2007). In the former experiment, the same set of budgets was

used for each subject. Bronars’ power is based on the �rst algorithm

with 20000 repetitions of procedure A. In the latter experiment, budgets

were drawn randomly for each subject. Bronars’ power is based on the

�rst algorithm with 200 repetitions of procedure A for each subject’s

budget sets, resulting in 15200 repetitions.5�e results are reported in

Figure 8.2.

Finally, to �nd the optimal tradeo�, note that the curves obtained

by the above procedure can be interpreted as a (non-linear) budget set.

A researcher could specify a “utility function” for test power and the

fraction of consumers accepted as close enough to garp and �nd the

optimal cuto� point. For example, a Cobb-Douglas type utility function

v (Power, garp) = Power2/3garp1/3 is maximized by choosing a power
4 �e results for Bronars’ second algorithm are very similar.

5 In Fisman et al. (2007), 50 budgets were drawn from identical distributions, hence all

subjects faced very similar budgets.
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Figure 8.1.: Simulated Data. �e plots show the fraction of simulated consumers who
are accepted as close enough to garp depending on the maintained power.
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Figure 8.2.: Data from Andreoni and Miller (2002) and Fisman et al. (2007). �e plots
show the fraction of subjects who are accepted as close enough to garp

depending on the maintained power.
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of 0.9679 with a fraction of 0.8421 subjects accepted as close enough to

garp for the data from Fisman et al. (2007).

8.4 discussion and conclusion

�e application to simulated data shows that for reasonably small error

terms one can accept almost all of the choices with stochastic error as

close enough to utility maximizing without losing much power. For

larger error terms the loss of power is substantial. �e application to

experimental data shows that the experiments fromAndreoni andMiller

(2002) and Fisman et al. (2007) su�er from lack of power once we allow

deviation from 100% e�ciency for most subjects, although it is note-

worthy that for the data from Fisman et al. (2007) all subjects violated

budget balancedness (did not spend all of their income) and yet we can

accept many of the subjects as utility maximizers without much loss of

power. With the introduction of the graphical presentation of budgets

to subjects (Choi et al. 2007b) which allows to collect more data in ex-
periments, we can expect to see more experiments of the kind of Choi

et al. (2007a) and Fisman et al. (2007). Because in these experiments no
subject was perfectly consistent with garp, trading o� power against

accepting subjects as utility maximizers becomes a delicate business.

�e present paper may contribute to the analysis of such data.

�e procedure described in this note can also be used to compare

di�erent methods of measuring the extent of violations of utility max-

imization. For this it is necessary to compute the di�erent e�ciency

indices for simulated utility maximizing choices with stochastic errors

and repeat this for Bronars’ procedure. One can then compare the loss

of power when basing the decision which observations to accept as close

enough to utility maximizing on the di�erent measures.



9
A GEOMETRIC MEASURE FOR THE VIOLATION OF

UTILITY MAXIMIZATION

9.1 introduction

If a consumer’s decisions are inconsistent with garp we might want

to have an idea of how severe this violation of utility maximization

is. Alternatively, we would like to have a test for “almost optimizing”

behavior. One such measure is the Afriat e�ciency index (aei, Afriat

1972), which is widely used.

We propose a new measure based on the extent to which the upper

bound of the indi�erence surface of a decision intersects the budget on

which the decision was made. �e idea is to use preference relations that

are implicit in a set of observations to construct the set of bundles which

are revealed preferred to a consumption choice.�e boundary of this set

can be interpreted as an upper bound for the indi�erence surface. If the

data violate garp, some of these sets will intersect the budget hyperplane

on which the choice was made. We then compute the area (or volume

in higher dimensions) of the intersection of the revealed preferred set

and the budget.

We use the procedure described in Chapter 8 to decide whether or

not to treat a consumer who violates garp as “close enough” to utility

maximization. It is based on the reduction of the power the test has

against randombehavior.When testing this procedurewith a set of utility

maximizing decisions with added stochastic error, our new geometric

measure performs very well compared to the aei.

�e remainder is organized as follows: Section 9.2 �rst brie�y summa-

rizes the revealed preference approach and the aei. �e new geometric

measure is introduced and it is shown how the procedure described in

Chapter 8 can be applied to compare the measure with the aei. Section

9.3 compares the newmeasure and its performance with the aei. Section
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9.4 discusses the advantages and disadvantages of the new measure and

concludes.

9.2 theory

9.2.1 Preliminaries

A set of observed consumption choices consists of a set of chosen

bundles of commodities and the prices and incomes at which these

bundles were chosen. Let X = Rℓ+ be the commodity space, where
ℓ ≥ 2 denotes the number of di�erent commodities. �e price space
is P = Rℓ++, and the space of price-income vectors is P ×R++. Con-
sumers choose bundles x i = (x i

1
, . . . , x iℓ)′ ∈ X when facing a price vector

pi = (pi
1
, . . . , piℓ) ∈ P and an income w i ∈ R++. A budget set is then

de�ned by Bi = B(pi ,w i) = {x ∈ X ∶ pix i ≤ w i}. �e entire set of n
observations on a consumer is denoted as S = {(x i ,Bi)}ni=1.
A utility function u(x) rationalizes a set of observations S if u(x i) ≥

u(x) for all x such that pix i ≥ pix for all i = 1, . . . , n.
�e following de�nitions are needed to recover consumer preferences

that are implicit in a set of consumption choices:

An observation x i is
(1) directly revealed preferred to x, written x iRx, if pix i ≥ pix;
(2) revealed preferred to x, written x iR∗x, if either x iRx or for some
sequence of bundles (x j, xk , . . ., xm) such that x iRx j, x jRxk , . . ., xmRx.
In this case R∗ is the transitive closure of the relation R.
(3) strictly directly revealed preferred to x, written x iPx, if pix i > pix.

For consistency with the maximization of a piecewise linear utility

function, Varian (1982) introduced the following condition: �e set of

observations S satis�es the Generalized Axiom of Revealed Preference
(garp) if x iR∗x j implies [not x jPx i].
It can then be shown (Afriat 1967, Varian 1982) that if the data satisfy

garp then there exists a concave, monotonic, continuous, non-satiated

utility function that rationalizes the data.
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�e set of bundles that are revealed preferred to a certain bundle x0
(which does not have to be an observed choice) is given by the convex

monotonic hull of all choices revealed preferred to x0.�e interior of the
convex monotonic hull is used to compute an approximate overcompen-

sation function by Varian (1982). Knoblauch (1992) shows that the set

of bundles revealed preferred to x0, denoted RP(x0), is just the convex
monotonic hull of all bundles in S that are revealed preferred to x0:

RP(x0) = Hconvex({x ∈ X ∶ x ≥ x i

such that x iR∗x0 for some i = 1, . . . ,}).
(9.1)

where Hconvex denotes the convex hull. See also De�nition 3.4.

9.2.2 Prior Measures

Several goodness-of-�tmeasures have been proposed. Arguably themost

popular measure for the severity of a violation is the Afriat e�ciency

index (aei) due toAfriat (1972). Reporting the aei has become a standard

at least for experimental studies.1 To obtain the aei, budgets are shi�ed

towards the origin until a set of observations is consistent with garp. Let

e be a number between 0 and 1. De�ne the relation R(e) to be x iR(e)x j

if epix i ≥ pix, and let R∗(e) be the transitive closure of R(e). De�ne
garp(e) as

garp(e) ⇔ If x iR∗(e)x j implies [not ep jx j > p jx i]. (9.2)

�en the aei is the largest number e such that garp(e) is satis�ed.
Other measures include Varian’s (1985) minimum perturbation test,

based on the minimal movements of the data needed to accept the

null hypothesis of utility maximization; Famulari’s (1995) violation rate,

which is the proportion of combinations that form violations among

observations forwhich violations can be expected; and comparison of the

observed number of violations with the maximum number of violations

1 See, for example, Sippel (1997), Mattei (2000), Harbaugh et al. (2001), Andreoni and

Miller (2002), Février and Visser (2004), Fisman et al. (2007), Choi et al. (2007a), Choi
et al. (2007b).
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possible, as applied by Swo�ord and Whitney (1987) and McMillan and

Amoako-Tu�ou (1988). See Gross (1995) for a survey of measures and

his own test, which is based on an estimate of wasted expenditure.

9.2.3 �e New Measure

Obviously, if a consumer makes decisions that are incompatible with

garp, then at least for one choice the upper bound of the indi�erence

curve through that point, as implied by the other choices, intersects

the budget line he made the choice on.2�e idea of our measure is to

ask, “how much of a given budget did a consumer reveal to prefer to

the actual choice he made on the budget?”. To answer the question, we

take the upper bound of the indi�erence curve through a choice x i and
compute the area between that curve and the budget line. �at is to say,

we compute the area of the intersection of the two sets Bi and RP(x i).
�is basic idea is illustrated in Figure 9.1 and 9.2.

�e “size” of an intersection of Bi and RP(x i) is an area in two dimen-
sions, and a volume in three dimensions. For simplicity, the generaliza-

tion to arbitrary dimensions (the “hypervolume”) will be also be called

volume3 and denoted by vol(Polytope). For example, the volume of an
ℓ-dimensional hypercube h with edge length a is vol(h) = aℓ.
Denote the volume of the intersection of a budget Bi and all bundles

revealed preferred to x i by

V(x i) = vol (RP(x i) ∩ Bi) . (9.3)

Obviously, if S satis�es garp, V(x i) = 0 for all i = 1, . . . , n.
To compare the extent of violation of garp between many consumers

who all made decisions on the same budgets, V(x i) does not have to be
adjusted. However, if consumers made decisions on di�erent budgets,

the magnitude of V(x i) can be misleading. We therefore normalize the
volume in the following way:

2 Note that for illustrative purposes, we occasionally use terms only applicable to the

two dimensional case.

3 �e generalization of an area or volume to higher dimensions is also known as the

content. See Weisstein (2008).
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Figure 9.1.: Top: Two observations which violate garp. �e shaded area gives the set
of all bundles revealed preferred to x1 and x2. Since x1 and x2 form a
preference cycle the sets are necessarily identical. Bottom:�e intersection

of RP(x1) with the budget line AB on which x1 was chosen.
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x1

x2

x′′

x′ x

Figure 9.2.: Both {x′, x} and {x′′, x} lead to the same Afriat e�ciency index of 1 - ε,
but have di�erent volume violation indices.
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Denote the ratio of V(x i) to the entire volume of the budget Bi as

VB(x i) = V(x i)
vol(Bi)

(9.4)

where

vol(Bi) =
⎛

⎝

ℓ
∏
j=1

w i

pij

⎞

⎠

1

ℓ!
. (9.5)

Given the V(x i), we would like an index that aggregates the di�erent
intersections. One obvious way to de�ne the index is the mean of all

V(x i).4 Denote by

VImean =
1

n

n
∑
i=1

VB(x i) (9.6)

an index using the mean of all VB(x i). Because VB is bounded between
0 and 1, we can de�ne the volume e�ciency index (vei) as

vei = 1−VImean (9.7)

In two dimensions, computation is fairly simply. For higher dimen-

sions, we use the program qhull, which implements the quick hull algo-

rithm for convex hulls (see Barber et al. 1996).

9.2.4 Power against Random Behavior

Depending on the characteristic of the budget sets, the chance of violat-

ing garp can di�er substantially. A utility maximizing consumer will

always be consistent and is not in “danger” of violating garp. However,

even a consumer who makes purely random decision has a chance to sat-

isfy garp. Bronars (1987) suggests a Monte Carlo approach to determine

the power the test has against random behavior. �e approximate power

of the test is the percentage of random choices which violated garp.

4 Another option is to take the maximal of all V(x i), or the median. �e results are
robust with respect to the aggregation method.
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Bronars’ �rst algorithm follows Becker’s (1962) example by inducing

a uniform distribution across the budget hyperplane. Using Bronars’

second algorithm, the random choices are generated by drawing ℓ i.i.d
uniform random variables, z1, . . . , zℓ, for each price vector, and calculate
budget shares Shi = zi/∑ℓ

j=1 z j. �e random demand for commodity xi
is then calculated as xi = (Shi w)/pi .
One way to utilize Bronars’ power is to compute it based on a range

of values for an index that measures the severity of the violations, i.e.

the power of the test is the percentage of random choices which do

“worse” than the value of the index. For example, for an vei or aei of

.9, compute the percentage of random choices which have a vei or aei

lower than .9. �is will give an idea of how much power the test loses if

we allow consumers to deviate from optimizing behavior. See Section

9.3 for details.

9.2.5 �eoretical Considerations

In Section 9.3 we will evaluate the new measure based on Monte-Carlo

experiments. However, it should already be pointed out that while the

new measure is quite intuitive, it has a theoretical shortcoming. �e aei

can be related to wasted absolute income, which is a real magnitude. �e
volume e�ciency index is related to the fraction of the budget which is

preferred to the actual decision, and puts equal weight on fractions of

the same volume. Neither does it tell us anything about wasted income,

nor does it say much about wasted utility.

Consider Figure 9.2. If we move x just a bit upwards on the steeper
of the two budget lines we can �nd a utility function that rationalizes

{x, x′} and {x, x′′}. Suppose that the data was collected with a small
measurement error and that the consumer’s actual decision was indeed

a bit to the upper le� of the observation x. While the aei is 1 (or 1− ε)
and raises little concern about the rationality of the consumer, the vei

suggests a small but substantial deviation from utility maximization if

the data is {x, x′} and a relatively large deviation if the data is {x, x′′}.
To understand this unrobust behavior of the volume e�ciency index,

note that the set of observations {x, x′} or {x, x′′} only implies that the
shaded area is revealed preferred to x, but nothing can be said about
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how much it is preferred. Consider Figure 9.3, and suppose x1 and x2 are
the actual decisions instead of the observed ones in Figure 9.2. Suppose

the two indi�erence curves represent utility levels which, in absolute

terms, are only marginally di�erent. �en no bundle in the part of the

budget which is preferred to x in Figure 9.2 adds much utility to x.
Based on these considerations we can expect the volume e�ciency

index to be more robust if the underlying preferences are homothetic

or “almost” homothetic. In the diagram on the bottom of Figure 9.3 the

bundle x2 is projected on budget 1. Homotheticity implies that t x2 is
preferred over all bundles to the right of t x2 on budget 1, so the actual
decision made on budget 1 would have to be on the le� of t x2. �is
implies that if we measure decisions of a homothetic consumer with

some measurement error or slight failures in the maximization process

it is unlikely that we observe a decision pattern as the one depicted in

Figure 9.2.

Notwithstanding these theoretical concerns, the results of the Monte-

Carlo experiments in the next section imply that the volume e�ciency

index can be usefully applied.

9.3 comparison: power against random behavior

9.3.1 Procedure

�e procedure suggested in Chapter 8 is useful to compare two di�erent

e�ciency indices. To evaluate the two indices, we take data from known

generating functions and add stochastic error to simulate measurement

error. Ideally, we would like to accept all of the thusly obtained sets as

utility maximizing without thereby reducing the power of the applied

test.

We use a similar procedure as applied in Fleissig and Whitney (2003,

2005). First, we generate data from a �ve commodity utility function.

�e �rst function is a Cobb-Douglas type utility function given by

Ucd(x∗) =
5

∏
i=1

x∗αi
i , with

5

∑
i=1

αi = 1 (9.8)
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x1

x2

x2 x1

x1

x2

x2

t x2

x1

Figure 9.3.: Top: Wasting a large fraction of the budget does not necessarily mean
that the achieved utility level could have been a lot higher. Bottom: �e

set {x1, x2} does not satisfy homotheticity, because t x2 would then be
strictly preferred to x1. Observations with measurement error are less
likely to cause a low volume e�ciency index if the underlying preferences

are homothetic.
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�e second utility function is a non-homothetic utility function with

variable elasticity of substitution:

Uves(x∗) =
5

∑
i=1

αi (x∗i − γi)βi
, with

5

∑
i=1

αi =
5

∑
i=1

βi = 1 (9.9)

We run the computations for both functions with a di�erent set of

random parameters each time by drawing each αi and each βi from
a uniform distribution U[.05, .95] and then normalizing it such that

∑
5
i=1 αi = ∑

5
i=1 βi = 1. We draw each γi from a uniform distribution

U[−5, 5].5

For the Monte-Carlo experiment we assume that we observe the

demand according to the given utility function with some measurement

error that �uctuates by κ%around the true demand; we use {κ1, κ2, κ3} =
{.05, .1, .2}.

�e datasets have n = 20 observations each with expenditurew drawn
from a uniform distributionW ∼ U[10000, 12000]. Price vectors are

drawn from a uniform distributionP1 ∼U[95, 100]. �e same steps are

repeated with a distribution P2 ∼U[90, 100]. �ese expenditures and

prices lead to many intersections of budget sets which can lead to many

violations of garp.

To summarize, we use 12 di�erent settings, each one being an element

of {cd, ves} × {κ1, κ2, κ3} × {P1,P2}.
�e data are generated by the following steps:

A1 Randomly draw n expenditure observations from a uniform distri-
butionW and n price vectors for which each element is drawn
from a uniform distribution P ∈ {P1,P2}.

A2 Draw parameters α, β, γ fromU[.05, .95] andU[−5, 5], respectively.

Generate utility maximizing demand for each budget, using the

respective functional form and set of parameters. Denote the max-

imizing decisions x∗i for i = 1, . . . , 5.
A3 Generate demandswithmeasurement error bymultiplying x∗

1
, . . . , x∗

5

by a uniform random number, so that xi = x∗i (1 + εi) for i =

5 �e simulations were also conducted using a �xed set of parameters. �e results are

very similar.
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1, . . . , 5, where εi ∼ U[−κ, κ] and κ ∈ {.05, .1, .2}. To keep ex-

penditure constant, normalize the xi by multiplying each with
λ = w/(p ⋅ x).

A4 Repeat steps A1 – A4 many times, say 10,000.

To approximate the power the garp test has if we allow deviations

from utility maximization, we need to generate random choices on the

budget sets:

B1 Generate budgets as in step A1.
B2 Generate random choices on the budget sets of step B1, following

Bronars’ �rst and second algorithm: (1) Draw a random point

SP from the 4-simplex using a simplex point picking algorithm.
�e random demand for commodity xi is then calculated as xi =
(SPi w)/pi . (2) Draw �ve i.i.d uniform randomvariables, z1, . . . , z5,
for each price vector, and calculate budget shares Shi = zi/∑5i=1 z j.
�e random demand for commodity xi is then calculated as xi =
(Shi w)/pi .

B3 Repeat steps B1 and B2 many times, at least as o�en as with A1 – A4.

�e �nal step is to compute the loss of power of the test for all aei

and vei values:

C1 Generate utilitymaximizing sets of observationswith stochastic error,
following procedure A. �en for each set of n budgets, compute
the aei and the vei.

C2 Generate sets of observations following procedure B. Again, compute
the aei and the vei for each set.

C3 Sort the sets from C1 by their aei and vei values, respectively. For
each set from C1, compute the percentage of sets from step C2 that

have a higher aei and vei value, respectively.
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algorithm

first second

P1 96.52% 90.80%

P2 99.58% 99.22%

Table 9.1.: Bronars’ Power of the used data sets.

9.3.2 Results

Descriptive Statistics

Table 9.1 reports the Bronars’ Power of the data sets generated by proce-

dure B.

Table 9.2 reports the fraction of choice sets generated by procedure A

which are inconsistent with garp.

Loss of Power

�e main result is that for all of the di�erent data sets we generated,

the loss of power is mostly smaller and never greater if the cuto� point

is based on the vei rather than the aei. Perhaps a bit surprisingly, the

result is robust with respect to the functional form. It suggests that the

vei is better suited than the aei to capture small deviations from utility

maximization and distinguish between a set of decisions that are close

to utility maximizing on the one hand and purely random behavior on

the other hand.

Figures 9.4 and 9.5 report the proportion of utility maximizing ob-

servations with stochastic error that are accepted as “consistent enough”

with garp, depending on the desired power of the test, for the Cobb-

Douglas and ves utility function, respectively. Both �gures report the

results for P1 and Bronar’s �rst algorithm.�e results are very similar
for the remaining con�gurations. In all cases, we lose less test power

when basing decisions on the vei.
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Figure 9.4.: Results for the Cobb-Douglas function, usingP1 and Bronars’ �rst algo-
rithm. Top: κ = .05, middle: κ = .1, bottom: κ = .2. �e �gure reports

the proportion of utility maximizing observations that are accepted as

consistent with garp, depending on the desired power of the test. �e

dashed line gives the proportion of accepted observations according to

the aei, and the solid line gives the proportion according to the vei.
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Figure 9.5.: Same as for Figure 9.4, but for the ves utility function.
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cobb-douglas function

κ = .05 κ = .1 κ = .2

P1 2.94% 12.28% 31.09%

P2 1.06% 10.62% 38.39%

ves function

κ = .05 κ = .1 κ = .2

P1 1.92% 10.02% 28.51%

P2 0.40% 6.72% 32.00%

Table 9.2.: Fractions of garp-inconsistent choice sets.

Table 9.3 reports the retained test power when all utility maximizing

choices with stochastic error are accepted as utility maximizing, using

Bronars’ �rst algorithm.

9.4 discussion and conclusion

In this paper a new measure for the severity of a violation of utility

maximization, the volume e�ciency index, was suggested. �e measure

is based on the extent to which the upper bound of the indi�erence

surface of a decision intersects the budget on which the decision was

made. �is measure has several advantages.

�e measure is intuitively appealing as it can be easily illustrated with

graphical tools covered in any intermediate course in microeconomic

theory. In two dimensions the measure is easy to compute. It performs

very well as a cuto� rule for determining whether or not observations on

a single consumer can still be considered “close enough” to maximizing

behavior (see also Chapter 8).
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cobb-douglas function

aei vei

κ = .05 κ = .1 κ = .2 κ = .05 κ = .1 κ = .2

P1 94.92% 90.03% 78.51% 96.49% 96.30% 95.15%

P2 99.42% 98.73% 92.04% 99.58% 99.57% 99.36%

ves function

aei vei

κ = .05 κ = .1 κ = .2 κ = .05 κ = .1 κ = .2

P1 94.79% 92.80% 80.07% 96.49% 96.37% 95.03%

P2 99.48% 99.16% 96.03% 99.58% 99.57% 99.41%

Table 9.3.:�e retained test power when all choices are accepted as utility maximizing,
using Bronars’ �rst algorithm.
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A disadvantage is the computational e�ort needed to compute the

measure in high dimensions.6 However, note that the dimension of most

data obtained by laboratory experiments is naturally bounded.

6 From experimentationwith simulated data it seems that evenMonte Carlo experiments

are still quite feasible in six dimensions and 40 observation points per consumer.
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Proof of the relations between the axioms as shown in Figure 5.3

�e general case:

sarp⇒warp: sarp is obviously a stronger condition than warp.

not (warp⇒ sarp): See Gale (1960) for a counterexample.

sarp⇒ garp: sarp is a stronger condition than garp. To see this,

we can use Varian’s (1982) list of equivalent de�nitions for sarp,

speci�cally version 3: �e data satisfy sarp if x iR∗x j and x i ≠ x j

implies not x jRx i . �e data satisfy garp if x iR∗x j implies not
x jPx i ; note that x iPx j implies x iRx j.

not (garp⇒ sarp): garp allowsmulti-valued demand, sarp does not.

garp⇒wgarp: garp is obviously a stronger condition than wgarp.

not (wgarp⇒ garp): Suppose p1 = (2, 1, 1), p2 = (1, 2, 1), p3 = (1, 1, 2),

z1 = ( 1
10
, 0, 8

10
), z2 = ( 8

10
, 1
10
, 0), z3 = (0, 8

10
, 1
10
), andw1 = w2 = w3 =

1. �en wgarp is satis�ed and garp is not.

harp⇒ pharp: harp is obviously a stronger condition than pharp.

not (harp⇒ pharp): See the example for not (wgarp⇒ garp).

harp⇒ garp: See proof of Proposition 5.1.

not (garp⇒ harp): See proof of Proposition 5.1.

not (harp⇒warp): See proof of Proposition 5.2.

not (warp⇒ harp): See proof of Proposition 5.2.

113
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�e two-dimensional case:

warp⇒ sarp: See Rose (1958).

wgarp⇒ garp: See Banerjee and Murphy (2006).

pharp⇒ harp: See �eorem 5.1 in Section 5.2.
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