
Conqueror: tamper-proof code execution on
legacy systems

Lorenzo Martignoni1 Roberto Paleari2 Danilo Bruschi2

1Università degli Studi di Udine 2Università degli Studi di Milano

7th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA ’10)



Verify the integrity of a piece of code executing in an
untrusted system

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove 1 and 2 with a pure software-based solution?

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 2



Verify the integrity of a piece of code executing in an
untrusted system

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove 1 and 2 with a pure software-based solution?

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 2



Verify the integrity of a piece of code executing in an
untrusted system

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove 1 and 2 with a pure software-based solution?

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 2



Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The verifier challenges the untrusted system (to compute a
checksum)

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 3



Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The untrusted system executes the checksum function

Should be executed at the highest level of privilege

Should execute without any interruption

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 3



Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The checksum must be received within a time interval

Time is measured by an external entity (the verifier)

If the checksum is wrong or the timeout has expired,
attestation fails

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 3



Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The checksum must be received within a time interval

Time is measured by an external entity (the verifier)

If the checksum is wrong or the timeout has expired,
attestation fails

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 3



Pioneer: State-of-the-art software-based attestation
solution

Characteristics

Applies to legacy systems (e.g., no TPM)

Checksum function is known a priori

Implementation of the checksum function is time-optimal

The challenge is in a seed to initialize the checksum function

Limitations

Researchers found ways to thwart Pioneer
(e.g., through TLBs desynchronization)

Does not take into account hypervisor-based attackers

Pioneer: Verifying Code Integrity and Enforcing Un-tampered Code Execution on Legacy Systems
(Sheshadri, Pradeep, Mark Luck, Doorn, Perrig, Elaine)

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 4



Conqueror: Bullet-proof software-based code attestation

Features

Legacy systems (e.g., no TPM)

Immune to all the attacks that are known to defeat Pioneer

Effective even against hypervisor-based attackers

Threat model

Attacker cannot operate in SMM

No hardware-based attacks (e.g., DMA attacks)

Single thread of execution (e.g., no SMP)

Attacker cannot leverage a pristine or more powerful system

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 5



Conqueror: Bullet-proof software-based code attestation

Features

Legacy systems (e.g., no TPM)

Immune to all the attacks that are known to defeat Pioneer

Effective even against hypervisor-based attackers

Threat model

Attacker cannot operate in SMM

No hardware-based attacks (e.g., DMA attacks)

Single thread of execution (e.g., no SMP)

Attacker cannot leverage a pristine or more powerful system

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 5



How Conqueror works?

Variation of the traditional challenge-response scheme

The challenge is not a seed, but consists in the whole
checksum function

The checksum function is:

1. Generated on demand
2. Obfuscated
3. Self-decrypting

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 6



Rationale behind Conqueror

Conqueror’s checksum functions are not optimal

As functions are generated on demand and obfuscated,
attackers must first analyze them

Our claim
An attacker has two options:

Static analysis

Dynamic analysis

Both static and dynamic attacks introduce a noticeable overhead
in checksum computation

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 7



Conqueror protocol

t0

Verifier Untrusted system

1. Checksum function

2. Decryption key

4
6

3
.

C
o
m

p
u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 8



Conqueror protocol

t0

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o
m

p
u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 8



Conqueror protocol

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o
m

p
u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 8



Conqueror protocol

t ′

Verifier Untrusted system

1. Checksum function
2. Decryption key

4

6

3
.

C
o
m

p
u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 8



Conqueror protocol

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o
m

p
u
te

ch
eck

su
m

5. Checksum

7. Output
Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 8



Tamper-Proof Environment Bootstrapper (TPEB)

Send function

Executable

TPEB

Untrusted system

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Attestation of the memory
region [BASE, BASE + SIZE)

Attestation of the environment:
I Maximum privilege
I Interrupts disabled
I No hypervisor

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 9



Tamper-Proof Environment Bootstrapper (TPEB)

Send function

Executable

TPEB

Untrusted system

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Prologue

1. Disables maskable interrupts

2. Decrypts the rest of the page

3. Installs custom interrupt
handlers

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 9



Tamper-Proof Environment Bootstrapper (TPEB)

Send function

Executable

TPEB

Untrusted system

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Checksum loop

Made of different gadgets

They update the running value
of the checksum according to
the content of a memory
location

Gadgets are selected and
combined randomly

Gadgets are obfuscated

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 9



Tamper-Proof Environment Bootstrapper (TPEB)

Send function

Executable

TPEB

Untrusted system

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Epilogue

Invokes the send function

Transfers the control to the
executable

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 9



Checksum loop

Iterate the memory to attest in a pseudorandom fashion

The content of each location is fed to a different gadget, that
updates the checksum

The whole memory traversal process is repeated multiple times

for (i = 0, j = 0; i < ITERATIONS; i++) {
x = seed(i) % (SIZE / 4);

do {
x = (x + (x*x | 5)) % (SIZE / 4);

checksum gadget[j++ % GADGETS](BASE + x*4);

} while (x != seed(i) % (SIZE / 4));

}

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 10



Checksum loop

Iterate the memory to attest in a pseudorandom fashion

The content of each location is fed to a different gadget, that
updates the checksum

The whole memory traversal process is repeated multiple times

for (i = 0, j = 0; i < ITERATIONS; i++) {
x = seed(i) % (SIZE / 4);

do {
x = (x + (x*x | 5)) % (SIZE / 4);

checksum gadget[j++ % GADGETS](BASE + x*4);

} while (x != seed(i) % (SIZE / 4));

}

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 10



Checksum loop

Iterate the memory to attest in a pseudorandom fashion

The content of each location is fed to a different gadget, that
updates the checksum

The whole memory traversal process is repeated multiple times

for (i = 0, j = 0; i < ITERATIONS; i++) {
x = seed(i) % (SIZE / 4);

do {
x = (x + (x*x | 5)) % (SIZE / 4);

checksum gadget[j++ % GADGETS](BASE + x*4);

} while (x != seed(i) % (SIZE / 4));

}

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 10



Gadgets

Active gadgets

Intentionally executed by the
checksum function

Update the checksum

Verify the trustworthiness of the
environment

Passive gadgets

Executed on interrupts and
exceptions

Corrupt the checksum when
unexpected events occur

Registered by installing a custom
interrupt descriptor table

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 11



Active gadgets: Plain checksum computation

Most frequently used gadget

Simply updates the checksum

mov ADDR, %eax

mov (%eax), %eax

xor $0xa23bd430, %eax

add %eax, CHKSUM+4

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 12



Active gadgets: IDT attestation

IDT is part of the TPEB

Normal checksum computation attests the content of the IDT

Need a gadget to attest the address of the IDT

mov ADDR, %eax

mov (%eax), %eax

add %eax, CHKSUM+8

sidt IDTR

mov IDTR+2, %eax

xor $0x6127f1, %eax

add %eax, CHKSUM+8

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 12



Active gadgets: System mode attestation

Prevent the computation of the checksum from user mode

Update the checksum through privileged instructions

If executed in user mode, these instructions raise an exception

mov ADDR, %eax

mov (%eax), %eax

xor $0x1231d22, %eax

mov %eax, %dr3

mov %dr3, %ebx

add %ebx, CHKSUM

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 12



Active gadgets: Instruction and data pointers attestation

Based on self-modifying code

Prevent memory copy attacks (e.g., TLB desynchronization)

Attest that the VA ↔ PHY holds for read, write and fetch
operations

mov ADDR, %eax

mov (%eax), %eax

lea l smc, %ebx

roll $0x2, 0x1(%ebx)

l smc:

xor $0xdeadbeef, %eax

add %eax, CHKSUM+4

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 12



Active gadgets: Hypervisor detection

Rich ongoing debate on this topic . . .

Exploit timing attacks to detect running HVMs

Execute instruction that unconditionally trap to the hypervisor

mov ADDR, %eax

mov (%eax), %ebx

vmlaunch

xor $0x7b2a63ef, %ebx

sub %ebx, CHKSUM+8

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 12



Evaluation

Experimental setup

Prototype for Microsoft Windows XP (32-bit)
I Verifier: user/kernel component
I Untrusted system: device driver

Two scenarios:

1. Static attack (e.g., reverse engineering of the checksum function)
2. Dynamic hypervisor-based attack (most powerful attacker)

Parameters

∼ 100 gadgets, minimum 5% for hypervisor detection

Rely on a trusted system to estimate network RTT and
maximum checksum computation time

Trusted and untrusted systems have the same hardware
configuration

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 13



Estimating the maximum checksum computation time

Execution time of checksum functions can be precomputed
using a trusted system

Use Chebyshev’s inequality to estimate an upper bound on
computation

Pr(µ− σ ≤ X ≤ µ+ σ) ≥ 1− 1
λ2

Computation time
(including RTT)

Upper bound is ∆t = µ+ λσ

We choose λ = 11, to obtain a confidence > 99%

For a given checksum function, we estimate ∆t by challenging
the trusted system multiple times

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 14



Checksum computation time

 104

 106

 108

 110

 112

 114

 116

 118

 0  10  20  30  40  50  60

T
im

e 
(m

s)

# measurements

∆t

µhvm - 11 σhvm

Preliminary static analysis (disassembly)

No attack
Hypervisor-based attack

No checksum was forged in time to be considered valid

No authentic checksum was considered forged

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 15



Conclusions

We extended current state-of-the-art code attestation solutions

Prototype implementation of our attestation scheme

Conqueror is the basic building block of our next projects
I “Dynamic and Transparent Analysis of Commodity Production Systems”

(ASE 2010)
I “Live and Trustworthy Forensic Analysis of Commodity Production Systems”

(RAID 2010)

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 16



Conqueror
Tamper-proof code execution on legacy systems

Send function

Executable

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

Thank you!
Any questions?

Roberto Paleari
roberto@security.dico.unimi.it

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 17



Backup slides



Estimating the ideal number of memory iterations

Time overhead suffered by a hypervisor-based attacker, using 5
checksum functions

We assume the attacker has RTT = 0

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  1  2  3  4  5  6  7  8  9  10

T
im

e 
(m

s)

# of iterations

Upper bound on network RTT

Two iterations of the checksum loop are enough

To prevent false negatives, we perform four iterations

L. Martignoni, R. Paleari, D. Bruschi Conqueror: tamper-proof code execution on legacy systems 19


