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Verify the integrity of a piece of code executing in an
untrusted system

1. Execute foo()

2. Send back the result

1. foo() has been executed?

2. Is the result of foo() authentic?

Can we prove 1 and 2 with a pure software-based solution?
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Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The verifier challenges the untrusted system (to compute a
checksum)

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation
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Software-based attestation through challenge-response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The untrusted system executes the checksum function

Should be executed at the highest level of privilege

Should execute without any interruption

Any attempt to tamper the execution environment results in a
noticeable overhead in checksum computation
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Pioneer: State-of-the-art software-based attestation
solution

Characteristics

Applies to legacy systems (e.g., no TPM)

Checksum function is known a priori

Implementation of the checksum function is time-optimal

The challenge is in a seed to initialize the checksum function

Limitations

Researchers found ways to thwart Pioneer
(e.g., through TLBs desynchronization)

Does not take into account hypervisor-based attackers

Pioneer: Verifying Code Integrity and Enforcing Un-tampered Code Execution on Legacy Systems
(Sheshadri, Pradeep, Mark Luck, Doorn, Perrig, Elaine)
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Conqueror: Bullet-proof software-based code attestation

Features

Legacy systems (e.g., no TPM)

Immune to all the attacks that are known to defeat Pioneer

Effective even against hypervisor-based attackers

Threat model

Attacker cannot operate in SMM

No hardware-based attacks (e.g., DMA attacks)

Single thread of execution (e.g., no SMP)

Attacker cannot leverage a pristine or more powerful system
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How Conqueror works?

Variation of the traditional challenge-response scheme

The challenge is not a seed, but consists in the whole
checksum function

The checksum function is:

1. Generated on demand
2. Obfuscated
3. Self-decrypting
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Rationale behind Conqueror

Conqueror’s checksum functions are not optimal

As functions are generated on demand and obfuscated,
attackers must first analyze them

Our claim
An attacker has two options:

Static analysis

Dynamic analysis

Both static and dynamic attacks introduce a noticeable overhead
in checksum computation
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Conqueror protocol
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Tamper-Proof Environment Bootstrapper (TPEB)
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I Maximum privilege
I Interrupts disabled
I No hypervisor
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Tamper-Proof Environment Bootstrapper (TPEB)
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1. Disables maskable interrupts

2. Decrypts the rest of the page

3. Installs custom interrupt
handlers
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Tamper-Proof Environment Bootstrapper (TPEB)
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Made of different gadgets

They update the running value
of the checksum according to
the content of a memory
location

Gadgets are selected and
combined randomly

Gadgets are obfuscated
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Tamper-Proof Environment Bootstrapper (TPEB)
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Checksum loop

Iterate the memory to attest in a pseudorandom fashion

The content of each location is fed to a different gadget, that
updates the checksum

The whole memory traversal process is repeated multiple times

for (i = 0, j = 0; i < ITERATIONS; i++) {
x = seed(i) % (SIZE / 4);

do {
x = (x + (x*x | 5)) % (SIZE / 4);

checksum gadget[j++ % GADGETS](BASE + x*4);

} while (x != seed(i) % (SIZE / 4));

}
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Gadgets

Active gadgets

Intentionally executed by the
checksum function

Update the checksum

Verify the trustworthiness of the
environment

Passive gadgets

Executed on interrupts and
exceptions

Corrupt the checksum when
unexpected events occur

Registered by installing a custom
interrupt descriptor table
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Active gadgets: Plain checksum computation

Most frequently used gadget

Simply updates the checksum

mov ADDR, %eax

mov (%eax), %eax

xor $0xa23bd430, %eax

add %eax, CHKSUM+4
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Active gadgets: IDT attestation

IDT is part of the TPEB

Normal checksum computation attests the content of the IDT

Need a gadget to attest the address of the IDT

mov ADDR, %eax

mov (%eax), %eax

add %eax, CHKSUM+8

sidt IDTR

mov IDTR+2, %eax

xor $0x6127f1, %eax

add %eax, CHKSUM+8
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Active gadgets: System mode attestation

Prevent the computation of the checksum from user mode

Update the checksum through privileged instructions

If executed in user mode, these instructions raise an exception

mov ADDR, %eax

mov (%eax), %eax

xor $0x1231d22, %eax

mov %eax, %dr3

mov %dr3, %ebx

add %ebx, CHKSUM
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Active gadgets: Instruction and data pointers attestation

Based on self-modifying code

Prevent memory copy attacks (e.g., TLB desynchronization)

Attest that the VA ↔ PHY holds for read, write and fetch
operations

mov ADDR, %eax

mov (%eax), %eax

lea l smc, %ebx

roll $0x2, 0x1(%ebx)

l smc:

xor $0xdeadbeef, %eax

add %eax, CHKSUM+4
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Active gadgets: Hypervisor detection

Rich ongoing debate on this topic . . .

Exploit timing attacks to detect running HVMs

Execute instruction that unconditionally trap to the hypervisor

mov ADDR, %eax

mov (%eax), %ebx

vmlaunch

xor $0x7b2a63ef, %ebx

sub %ebx, CHKSUM+8
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Evaluation

Experimental setup

Prototype for Microsoft Windows XP (32-bit)
I Verifier: user/kernel component
I Untrusted system: device driver

Two scenarios:

1. Static attack (e.g., reverse engineering of the checksum function)
2. Dynamic hypervisor-based attack (most powerful attacker)

Parameters

∼ 100 gadgets, minimum 5% for hypervisor detection

Rely on a trusted system to estimate network RTT and
maximum checksum computation time

Trusted and untrusted systems have the same hardware
configuration
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Estimating the maximum checksum computation time

Execution time of checksum functions can be precomputed
using a trusted system

Use Chebyshev’s inequality to estimate an upper bound on
computation

Pr(µ− σ ≤ X ≤ µ+ σ) ≥ 1− 1
λ2

Computation time
(including RTT)

Upper bound is ∆t = µ+ λσ

We choose λ = 11, to obtain a confidence > 99%

For a given checksum function, we estimate ∆t by challenging
the trusted system multiple times
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Checksum computation time
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Conclusions

We extended current state-of-the-art code attestation solutions

Prototype implementation of our attestation scheme

Conqueror is the basic building block of our next projects
I “Dynamic and Transparent Analysis of Commodity Production Systems”

(ASE 2010)
I “Live and Trustworthy Forensic Analysis of Commodity Production Systems”

(RAID 2010)
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Conqueror
Tamper-proof code execution on legacy systems
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Thank you!
Any questions?

Roberto Paleari
roberto@security.dico.unimi.it
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Backup slides



Estimating the ideal number of memory iterations

Time overhead suffered by a hypervisor-based attacker, using 5
checksum functions

We assume the attacker has RTT = 0
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To prevent false negatives, we perform four iterations
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