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Abstract

Protecting confidential information in relational databases while ensuring availability
of public information at the same time is a demanding task. Unwanted information
flows due to the reasoning capabilities of database users require sophisticated inference
control mechanisms, since access control is in general not sufficient to guarantee
the preservation of confidentiality. The policy-driven approach of Controlled Query
Evaluation (CQE) turned out to be an effective means for controlling inferences in
databases that can be modeled in a logical framework. It uses a censor function
to determine whether or not the honest answer to a user query enables the user to
disclose confidential information which is declared in form of a confidentiality policy.
In doing so, CQE also takes answers to previous queries and the user’s background
knowledge about the inner workings of the mechanism into account.

Relational databases are usually modeled using first-order logic. In this context,
the decision problem to be solved by the CQE censor becomes undecidable in general
because the censor basically performs theorem proving over an ever growing user
log. In this thesis, we develop a stateless CQE mechanism that does not need to
maintain such a user log but still reaches the declarative goals of inference control.
This feature comes at the price of several restrictions for the database administrator
who declares the schema of the database, the security administrator who declares
the information to be kept confidential, and the database user who sends queries to
the database.

We first investigate a scenario with quite restricted possibilities for expressing
queries and confidentiality policies and propose an efficient stateless CQE mechanism.
Due to the assumed restrictions, the censor function of this mechanism reduces to a
simple pattern matching. Based on this case, we systematically enhance the proposed
query and policy languages and investigate the respective effects on confidentiality.
We suitably adapt the stateless CQE mechanism to these enhancements and formally
prove the preservation of confidentiality. Finally, we develop efficient algorithmic
implementations of stateless CQE, thereby showing that inference control in relational
databases is feasible for actual relational database management systems under suitable
restrictions.
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Chapter 1

Motivation

You should, of course, take security
seriously but not lose sight of the fact
that your database has to serve some
useful purpose.

(D. Gollmann, Computer Security)

Modern database applications are usually employed in distributed environments
and accessed by a variety of users with different intentions to store, process, and
retrieve homogeneously structured data. In general, most of these databases should
not be unconditionally publicly accessible: For example, a database system that
stores sensitive data should keep this data secret from database users unless they are
allowed to read it, whereas non-sensitive data may in principle be accessible by every
user of the system. Moreover, in the sense of informational self-determination, a user
who provides personal data to a database system should be able to freely decide
whether or not this data may be revealed to other users. This gives rise to the need
of secure database systems.

Providing a secure database system, however, is a demanding task in general
because security is a rather diverse concept. It is generally accepted (see, for
example, [CFMS94, Gol06, Bis09]) to divide the notion of security into several
interests, some of which are availability, confidentiality, integrity, authenticity and
non-repudiation. When talking about security, from the perspective of database users
it seems reasonable to prioritize availability and confidentiality over the remaining
interests: For a database user to complete his task it is essential that the data needed
is available; on the contrary, sensitive or personal data should not be disclosed to
certain users under any circumstances in order to preserve confidentiality. Obviously,
there is a trade-off between the security interests of availability and confidentiality: A
database system can be seen as “perfectly secure” in the sense of confidentiality if it
refuses to reply user queries at all. However, such a system would be “overprotective”
and useless from the point of view of a user who relies on the system to complete a
task, since it completely lacks availability.

A widespread approach to guarantee the preservation of confidentiality in database
systems while ensuring good availability at the same time is access control. Roughly
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speaking, in this approach (which is elaborated on in more detail in Section 1.1),
access rights are declared for combinations of subjects (database users) and objects
(database contents). Access to an object is only granted if it is allowed according
to these access rights. On the one hand, access control mechanisms for database
systems are efficiently implementable in general; on the other hand, unfortunately,
access control is insufficient when aiming at preserving confidentiality on the level of
information, as explained in the following.

A crucial facet of database security is the distinction between data security and
information security. While the term data refers to the pure database entries, that
is, the constant symbols that represent the contents of the database, the term
information is a more abstract level and denotes interpreted data. In general, there
is an overlap between these two notions, and it often depends on the context whether
to speak of data or of information. In the context of database queries, the pure
evaluation of a query may be considered as data, whereas the result of somehow
“processing” this evaluation may be considered as information. For example, the
statements “Smith’s bank account number is 101” and “The bank account with
number 101 has a balance of $1,000” are data, since they might be retrieved from a
database using simple queries. If, however, the querying database user is aware of
the fact that bank account numbers are unique, he might process the query answers
together with this fact and obtain the information that “Smith has a bank account
with a balance of $1,000”. From this example, it can be seen that data security does
not imply information security in general: On the data level, the combination “Smith
—$1,000” is not disclosed to the user, but on the information level, he is able to derive
this combination. Avoiding this problem requires either to employ a mechanism that
detects such harmful inferences during runtime or to declare suitable access rights
which, however, only shifts the problem of inference detection to declaration time.
Unfortunately, detecting such harmful inferences is a costly (or, in general, even
undecidable) problem, since for relational databases it can basically be reduced to
first-order theorem proving. The issue of inference control is addressed in more detail
in Section 1.2.

Consequently, when aiming at preserving confidentiality, the administrator of a
database system is faced with the decision to employ an access control mechanism—
which may fail on the level of information security—or to employ an inference control
mechanism—which may lead to infeasible runtimes. Therefore, the objective of this
thesis is the development of an efficiently implementable mechanism that preserves
confidentiality even on the information level.

As indicated before, we address access control and inference control in the following
Sections 1.1 and 1.2, respectively. In Section 1.3, we outline the structure of this
thesis.



1.1 Access Control

1.1 Access Control

In order to protect personal or sensitive data in relational databases, access control
(see, for example, Gollmann [Gol06]) can be used, which is usually divided into
discretionary and mandatory access control.

Discretionary access control (DAC) considers (sets of) data as objects and users,
who want to access the data, as subjects. For each object, the “owner” of this object
(for example, the user who has inserted the data into the database) can declare which
subject should be allowed to access the object in which mode. Regarding the mode,
in relational databases it is reasonable to distinguish between read and write access.
Alternatively, the declaration of access rights can be performed in a “subject-oriented”
way by specifying for each subject which objects it may access in which mode.

DAC can be implemented efficiently when using suitable data structures for
storing the declared access rights. In fact, DAC mechanisms are implemented in
many relational database management systems, for example, the database language
SQL [SQLO08] provides the commands GRANT and REVOKE which allow for granting
and revoking access rights for database objects.

In general, however, DAC is not able to effectively protect sensitive data as the
following example shows: Suppose a database user s; who has inserted data o into
a database and is thus considered the owner of o. User s; now decides that user
so may read o, whereas user s3 must not access o in any way, and thus s; declares
suitable access rights regarding o. Then user s, reads o, which is allowed according
to the declared access rights, and inserts a copy o’ of o into the database. Since user
sy is owner of o/, he might decide on his own discretion that user s3 may read o’.
When user s3 then reads o', he also knows o by definition of o’. Thus, user s3 is, in
a way, able to bypass the access rights declared by user s;.

A step towards the protection of such unwanted information flows is mandatory
access control (MAC). In contrast to DAC, this technique does not employ “object-
wide” but “system-wide” data protection. Basically, objects as well as subjects get
assigned labels which are arranged in a lattice by a security administrator. For
subjects, these labels play the role of clearances, whereas, regarding objects, security
labels represent classifications. Access to objects is then controlled by a suitable
security model. For example, the Bell-LaPadula security model, see [BL76], allows
read accesses only to objects with a classification that is “lower” (or equal) than the
clearance of the accessing subject, while write accesses are allowed only if the object’s
classification is “higher” (or equal) than the subject’s clearance. An example for MAC
enforcement in actual database management systems is Oracle Label Security [J1T09].

MAC principally offers the possibility to protect data from unwanted accesses by
controlling harmful information flows. Reconsidering the above sketched example,
when using MAC, user s3 could be prevented from disclosing o by assigning suitable
labels to s3, 0 and every object possibly containing copies of o. In general, however,
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MAC burdens the security administrator of the database system with the suitable
assignment of labels. Moreover, as already indicated in the introduction of Chapter 1,
MAC as well as DAC is only able to protect data but not information that is derived
from this data.

1.2 Inference Control

When aiming at protecting information instead of data, the inference problem emerges:
A user of a database system might have, in addition to the data he receives in form
of answers to his queries, additional knowledge of the system. This knowledge might
then enable him to derive information from the data; since this information is never
explicitly delivered to the user, it is hard to control in general.

The inference problem manifests in different forms, see Farkas/Jajodia [FJ02] for
a comprehensive survey. In the context of relational databases, mainly semantic
constraints in form of data dependencies can be used to obtain information from
data. For example, reconsidering the bank account example from the introduction of
Chapter 1, the fact that account numbers are unique would usually be expressed by
a functional dependency in a relational database. “Applying” this dependency to
already known data might then disclose a confidential information, as sketched in
the example.

Since access control techniques only work “data-oriented”, the application of
semantic constraints cannot be controlled by these techniques and consequently, for
the goal of protecting information, access control mechanisms turn out inappropriate
in general. Instead of assigning labels to subjects and objects (that is, users and data,
respectively), it is more suitable to declare the information to be protected by means
of a security policy, which can be represented, for example, as a set of “secrets”.
During the execution of the system, the policy must be enforced appropriately: When
a user sends a query to the database system, a mechanism should inspect whether
the user would be able to disclose a declared secret if the correct answer to his query
was returned. If so, this answer should be suitably modified. For example, suppose
that a piece of information / is to be kept secret according to a security policy which
has been declared for a database system, and consider a user who sends a query g
to the database. The enforcement of the policy by an inference control mechanism
should meet the following requirements (which are, in fact, manifestations of the
security interests availability and confidentiality):

e On the one hand, the answer a5 to the query g should be “helpful” for the
user, that is, it should provide information regarding g in the context of the
database instance;

e on the other hand, a; should not enable the user to derive /, that is, considering



1.3 Structure of this Thesis

the background knowledge k of the user and a suitable inference relation |=,
the answer aq should be suitably modified if {aq, k} = i.

Depending on the context, however, the latter requirement may be difficult to meet.
For example, when assuming a first-order logic framework, the decision problem
for logical implication (which corresponds to the general inference relation = in
the above example) is undecidable in general. Therefore, the development of an
inference control mechanism with feasible runtime requires suitable restrictions of
the considered framework.

1.3 Structure of this Thesis

The remainder of this thesis is divided into four parts.

In Part I, we introduce some basic concepts from the areas of relational databases
and Controlled Query Evaluation that are referred to throughout this thesis. Fur-
thermore, we give an overview of related research.

e In Chapter 2, we introduce a logic-oriented view on relational databases that is
adopted for the following investigations. We formally describe the representation
of database relations and semantic constraints by means of first-order logic
and moreover show how to express and evaluate database queries within this
framework.

e In Chapter 3, we present the general approach of Controlled Query Evaluation,
which serves as a starting point for efficient inference control mechanisms. We
first introduce the basic concept and then concentrate on the “refusal strategy
for known potential secrets”.

e In Chapter 4, we outline a selection of work that is related to the topic of this
thesis. More precisely, we give an overview of research in the fields of access
control and inference control in databases with an emphasis on the approach of
Controlled Query Evaluation. Finally, we sketch our contributions of previously
published work in the context of stateless inference control.

In Part II, the main part of this thesis, we develop stateless (and thus efficiently
implementable) inference control mechanisms for relational database queries. We
investigate a variety of query/policy language combinations within the logical frame-
work introduced in Part I.

e In Chapter 5, we explain our notion of stateless inference control and identify
a parameter setting for the following investigations. Moreover, we formalize
the idea of confidentiality preservation which is considered the most important
security interest for our inference control mechanisms.
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e In Chapter 6, we introduce a first approach for stateless inference control with
rather simple policy and query languages. More precisely, each query has
the form of a tuple and asks whether or not this tuple actually occurs in the
database instance. An element of a policy might express a part of a tuple, and
each tuple of the actual database instance which contains this part must not
be disclosed to a querying user.

We moreover prove this approach secure in the sense of our notion of confiden-
tiality preservation and propose an implementation of our approach in form of
a simple pattern matching technique. It follows that the declarative goals of
inference control can be reached by means of efficient algorithms under suitable
restrictions.

e In Chapter 7, we describe and investigate several enhancements of the basic
approach from Chapter 6. All of these enhancements aim for more expressive
query and policy languages. We explore whether or under what circumstances
these enhancements of the approach are still secure in the sense of confidentiality
preservation.

More specifically, regarding the query language, we consider parts of tuples
(also known as select-project-queries), Boolean combinations of parts of tuples
(asking whether or not these Boolean expressions are true in the actual database
instance), and open queries (asking for sets of tuples rather than for truth
values); regarding the policy language, we consider Boolean combinations of
parts of tuples, and open formulas (for expressing “secret schemas”).

In Part III, we show that the stateless inference control mechanisms from Part II
are actually implementable by efficient algorithms.

e In Chapter 8, we present a fragment of the database language SQL and show
how elements of the investigated query languages can be represented within
this SQL fragment. Moreover, we propose a representation of potential secrets
in a relational database system.

e In Chapter 9, we develop SQL representations of the investigated censors,
that is, the cores of the stateless inference control mechanisms from Part II.
Relying on these implementations, we then propose two algorithms for stateless
inference control and prove these algorithms efficient in terms of computational
complexity.

Finally, in Part IV, we conclude this thesis with a summary and an evaluation
of our results. In particular, we compile a list of advantages our approach has over
previous work on inference control in relational databases. Moreover, we sketch some
directions for future research.
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Chapter 2
Relational Databases

Among the lots of different kinds of databases and data models, nowadays the most
popular one is the relational model, pioneered by Codd [Cod70], which considers
data records as tuples of relations. Since most of the commercially used database
management systems base on this model, we also take it as a basis for our investiga-
tions. In the following, we formally define the concepts of relational databases within
a first-order logic framework. In Example 2.4 (which can be found in Section 2.3),
we illustrate these concepts.

2.1 Schemas and Instances

A relational database consists of two elements: the database schema and the database
instance. The database schema describes the syntactical material and the semantic
constraints of the database, and the instance contains the actual contents of the
database.

A database schema usually comprises one or more relation schemas of the form
Rs = (R,U,X). Each of these relation schemas has a relation symbol R, a finite
set of attributes U = {Ay, ..., An}, and a finite set of local semantic constraints .
In the following, we focus on database schemas that comprise only one relation
schema. For convenience, we shortly write sets of attributes without set braces in
abstract examples, for example, {A;, Ag, ..., A} is denoted by A;A; ... A,. Moreover,
a database schema declares the set Const of constant symbols from which the actual
tuples in the database instance are built. We hereafter assume Const to be an infinite
set.

A relation instance r of a relation schema is an interpretation of the schema,
considering the relation symbol as a predicate; more specifically, r is an Herbrand
interpretation, that is, every constant is interpreted by itself. Moreover, r is supposed
to be finite, meaning that the predicate symbol is interpreted by a finite set. In the
following, we refer to relation instances as instances, for short.

If a formula x of an appropriate fragment of first-order logic is true in an instance
r, we write r =p X, using the symbol [=p to denote the model-of relation. Otherwise,
if x is false in r, we write r Fm X, which is equivalent to r Em —x. For a set F
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of formulas it holds that r = F if and only if r =m x for all x € F. The logical
implication, denoted with =, is a relation between a set of formulas F and a single
formula y which is defined using the model-of relation: x is logically implied by F,
F E x, if for all instances r it holds that r = F only if r =y x. Like the model-of
relation, the logical implication can be extended to sets of formulas: F = G holds if
and only if F |= x for all x € G.

On the database level, we identify an instance r with the set of tuples pu =
R(ai1,...,an) (with a; € Const) such that r =m . Consequently, this set of tuples
contains exactly those ground atoms' being true in r. We shortly say that these
tuples “are in r”. When we refer to the value of a particular attribute A in a tuple p,
we use the square bracket notation p[A].

2.2 Semantic Constraints and Normalization

The most prevalent type of local semantic constraint is the functional dependency, or
FD for short. If A and B are sets of attributes, then an instance r is said to satisfy
the FD A — B if any two tuples p1 and uo of r that agree on the A-attributes,
p1lAl = uslA] for all A € A, also agree on the B-attributes, pi[B] = p2[B] for all
B € B. The FD A — B is called trivial if B C A. The sets of left-hand side and
right-hand side attributes of an FD o are denoted by /hs(o) and rhs(o), respectively.

An FD can be represented as a sentence of first-order logic using univer-
sal quantifiers. Consider the relation schema (R,U,{c}) with the attribute set
U= {Al, A2, ey A,‘, Bl, Bg, ey Bj, Cl, CQ, ey Ck} and the FD o = {Al,Ag, ,A,'} —
{B1, By, ..., Bj}, that is, A, A, ..., A; are the left-hand side attributes of o,
Bi, B, ..., Bj are the right-hand side attributes of o and (i, (y, ..., Cx are the at-
tributes that do not occur in . Moreover, without loss of generality, the attributes
are supposed to occur in R in the same order as they are listed in &/ above. Then o
can be expressed by the following first-order sentence:

(VXa,) - (VXa,)(VXB,) ... (VXB,) (VXc,) - (VXc,) (2.1)
(VXg;) - (VX)) (VXcy) - (VX)
[ (R(Xay, ... Xa Xgy, ... X5 Xy oo X )N

R(Xay, . Xa, Xy, oo Xpr X, Xcy))

= ((Xg, = Xg) A . A (X = Xpr)) ]

Hereafter, when denoting FDs, we omit the set braces for convenience in abstract
examples. For example, the FD {A{, As, ..., A;} — {B1, B, ..., Bj} from above is

! A ground atom is a formula without variables and logical connectives, that is, in the relational
database context, a predicate instantiated only with constants.
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shortly denoted by A1As... A; — B1Bs ... Bj.

A relation schema is normalized if it adheres to a certain normal form. Since
database normalization theory is a widespread research area, we only introduce the
concepts being needed in subsequent chapters. A building block of many database
normal forms is the notion of keys. An attribute set SK is called a super key of
Rs if ¥ = SK — U, that is, if each instantiation of the SK-attributes uniquely
determines the respective tuple in every instance. A candidate key K (or key for
short) is a minimal super key, that is, ¥ = K\{A} — U for all attributes A € K.
Each attribute occurring in a key of Rs is a key attribute. A relation schema Rs is in
Boyce-Codd normal form (BCNF) if for every nontrivial FD 4 — Bwith ¥ F A — B
the attribute set A is a super key of Rs. If additionally Rs has a unique candidate
key, it is in object normal form (ONF), as introduced by Biskup [Bis89].

Since FDs are in fact syntactic abbreviations for first-order logic formulas, the
notion of logical implication also applies for sets of FDs. Moreover, two sets of FDs
Y and ¥’ are equivalent, ¥ =Y’ if ¥ =Y and ¥’ = X. Throughout this thesis, we
assume that sets of FDs are in some sense minimal unless otherwise stated. More
precisely, FDs are supposed to have minimal left- and right-hand sides, and sets of
FDs should not contain redundant FDs, that is, FDs that are already implied by the
other FDs. We specify this notion of minimality in the following definition, which is
adopted from [AHV95].

Definition 2.1 (Minimality of FD-sets). Let ¥ and ¥’ be sets of FDs. ¥’ is
called a minimal cover of L if

1. each 0 € ¥’ has the form A — B with A denoting a set of attributes and B
denoting a single attribute;

2.Y =%;
3. there exists no proper subset ¥ C ¥’ such that X" E X ;

4. for all o0 € X' with 0 = A — B there is no proper subset A" C A such that
Y =A — B.

A set of FDs is called minimal if it is a minimal cover of itself.

Remarks. The assumption of minimal covers is no proper restriction because for a
set of FDs a minimal cover can be constructed in polynomial time, see, for example,
[Mai80].

For brevity, after ensuring that a set of FDs is minimal, we recombine FDs with
the same left-hand side. More precisely, (sub-)sets of FDs of the form {A — By, A —
By, ..., A — B,} are represented as A — BBy ... By.

11



2 Relational Databases

2.3 Queries and Evaluation

Since we use a logic-oriented framework for relational databases, we express database
queries in terms of the relational calculus. The relational calculus is basically a
fragment of first-order logic without function symbols. In addition to the syntactic
material introduced in Section 2.1 (constants and relation symbols as predicates), for
expressing database queries we also need variables and logical connectives (Boolean
operations). In our framework, the infinite set of variable identifiers will be denoted by
Var and the set of logical connectives is assumed to be {—, A, V} (all other connectives
like = and < can be expressed using this set of connectives). In the following, we
consider subsets of the relational calculus as query languages; thus, a database query
is always expressible as a formula of the relational calculus. To distinguish easily
between constants and variables in logical formulas, identifiers beginning with a
lowercase letter or a number denote constants, whereas identifiers beginning with an
uppercase letter denote variables hereafter.

A user sending a query to the database expects this query to be answered. The
most intuitive way of answering a query is an evaluation of the representing formula
in the actual database instance. In doing so, we have to distinguish between closed
and open queries. A closed query, usually denoted by ¢, does not contain free
variables and is thus either true or false in a database instance. Consequently, the
simplest way of evaluating a closed query is to return its truth value with respect to
the database instance. An alternative way is to return the query itself (in case it is
true in the database) or the negation of the query (otherwise). We formally describe
this answering mechanism in the following definition.

Definition 2.2 (Ordinary evaluation of closed queries). The ordinary query
evaluation eval is a function with a closed query ® from a suitable query language
% as a parameter that maps a database instance on a truth value:

true if r Em @,
false otherwise.

eval(®)(r) := {

An alternative version of the ordinary evaluation, eval®, maps the instance r on the
version of ® being true in r:

eval*(®)(r) := { ® i riEm @,

- otherwise.

In general, we will use this alternative version eval* in the following for denoting the
ordinary evaluation of a query.
In contrast to closed queries, open queries contain free variables and are denoted

12
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by ¢(\7) where V is the vector? of free variables that occur in the query. If the
actual vector of variables is not important in the context, we omit it and shortly
denote the query with ®. The idea of evaluating an open query is to find all variable
assignments of V that makes the query true in the database instance. This leads to
the following definition.?

Definition 2.3 (Ordinary evaluation of open queries). Let ®(V) be an open
query. Then the ordinary query evaluation eval® is defined by

eval*(®(V))(r) := {®(2) | & € Const x ... x Const and r =y D(2)).

Note that, unlike for closed queries, for open queries eval® returns “negative
information” only implicitly: variable assignments that make a query ¢(\7) false in
the database instance are not returned; thus eval* returns the empty set if ®(\7) is
false in the database instance for every variable assignment.

In this thesis, we will also investigate “mixed scenarios” where closed queries as
well as open queries occur (see, for example, Section 7.3). In such cases, we consider
closed queries as specific open queries with an empty vector of free variables. Then
for a closed query @ the evaluation eval* does not return ® or = as in Definition 2.2
but {®} or 0, respectively.

Having introduced several database concepts in Sections 2.1-2.3, we now give an
example that illustrates these concepts.

Example 2.4. Let a relation schema be given by Rs = (R,U,Y) with the set
U = {A, B, C} of attributes and the set ¥ = {01, 02} of local semantic constraints
with

0c1=A— BCand oy =C — A.
Moreover, an instance r of Rs is given by
r={R(a,b,c),R(d,b,e)}.

The FDs in ¥ are both nontrivial. A as well as C are candidate keys of Rs, since
Y =EA— ABC and ¥ = C — ABC and A as well as C are minimal with this
property. The super keys of Rs are all subsets of U containing A or C, that is, A, C,
AB, AC, BC, and ABC.

Rs is in BCNF, since lhs(o1) = {A} and lhs(o2) = {C} are super keys. Rs is,
however, not in ONF| since there is no unique key. Strictly speaking, ¥ is not minimal

2The usage of a vector instead of a set indicates that we assume the free variables of an open query
and thus also the attributes of a relation to be linearly ordered. Note that this assumption is
only technical.

3For convenience, we overload the function eval*. It should, however, always become clear from
the context which variant of eval™ is meant.
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because property 1 of Definition 2.1 is violated, but we may read ¥ as abbreviation
for the minimal cover ¥’ = {A — B,A— C, C — A}.

There are two tuples in the instance, u; = R(a,b,c) and pu2 = R(d,b,e), and
the FDs from ¥ are satisfied. Considering r as (Herbrand) interpretation, this is
expressed by r Em p1, r Ewm p2, and r =y . The instance r' = {R(a,b,c), R(a,b,d)}
is not an instance of Rs, since o7 is violated (the tuples of r’ agree on A but not on
0).

With the relational calculus as query language, for example the following queries
can be expressed:

®1 = (3Xa)(FXc)R(Xa, b, Xc)
®a(Xc) = (3Xa)R(Xa b, Xc)

The first query, ®1, is a closed query asking if there exists a tuple p with p[B] = b.
The second query, ®o, contains a free variable X and is thus open; it asks for
all values ¢y, co, ... of C such that there exist tuples p1, po, ... with p;[B] = b and
wilC] = ¢ for i € {1,2, ...}, respectively. According to Definitions 2.2 and 2.3, ®;
and ®5 are evaluated with respect to the instance r as follows:

eval(®1)(r) = true
eval*(®q)(r) = (IXa)(IXc)R(Xa,b,Xc)
eval*(®o(X))(r) = {(3Xa)R(Xab,c), (3Xa)R(Xa,b,e)}

Note that, strictly speaking, the second query should read ®5((X¢)) rather than
®y(Xc). However, the vector braces in the argument of open queries are omitted
hereafter for convenience. O
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Chapter 3
Controlled Query Evaluation

A universal policy-driven approach to the inference problem in logic-oriented
databases is Controlled Query Evaluation (CQE). Roughly, CQE checks for a user
query whether the user would be able to infer a secret by employing his knowledge
(which consists of the a priori knowledge the user has before sending queries to the
database, and the answers to previous queries) and the correct answer to his query.
If so, the answer to the query is suitably modified before being returned, thereby
preventing the harmful inference.

In Section 3.1, we explain the basic idea of CQE and our notion of confidentiality
policy on an informal level. In Section 3.2, we then present the formal framework for

CQE.

3.1 Basic Ideas and Architecture

The general architecture of CQE is depicted in Figure 3.1 on the following page: Each
database query is first answered ordinarily with respect to the database instance, but
the result is sent to a censor rather than directly to the user. The censor inspects the
query result, the policy that has been declared by a security administrator, and the
assumed user knowledge which is also called user log in the following, and determines
whether or not the query result may be returned to the user. In case the query result
is considered harmful, it is suitably modified before being returned to the user. This
modification can be performed according to different strategies: by lying, by refusal,
or by a combination of both.

In this thesis, we focus on the modification strategy of refusal and on potential
secrets as elements of the security policy (refer to Section 5.1 for the complete set
of parameters). Potential secrets are declared independently of the actual database
instance in a suitable language, that is, a fragment of first-order logic. If a declared
potential secret is true in the actual database instance, the user must be prevented
from disclosing this fact; otherwise, if the potential secret is false in the actual
database instance, the knowledge of this fact is considered harmless.

A confidentiality policy, or policy for short, is a set of potential secrets each of
which has to be protected in the environment the policy has been defined for. More
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Figure 3.1: Schematic architecture of CQE.

precisely, regarding any declared potential secret of the policy, a user who is receiving
(controlled) answers to his queries must at any time consider it possible that this
potential secret is false in the actual database instance. In other words, for a query
answering mechanism to be secure (in the sense of confidential), for each declared
potential secret the following should hold:

There exists a database instance that, on the one hand, is “compatible”
with both the a priori knowledge of the user and the answers the user
has received so far and, on the other hand, makes the potential secret
under consideration false.

Hereafter, we denote policies by pot_sec, signifying that policies consist of potential
secrets.

3.2 Formal Framework

In order to investigate CQE on a formal level, we need to represent the above
sketched concepts in a suitable framework. In the following, we shortly summarize
some elaborations of Biskup and Bonatti [BB04a, BB04b], who developed CQE for
different combinations of parameters.

Given a (possibly infinite) query sequence Q = (®1, o, ...) and the a priori user
knowledge log,, CQE is a function that maps the database instance r and the
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confidentiality policy pot_sec on a sequence of pairs of answers and user logs:*

cqe(Q,logy)(r,pot_sec) := ((ansy,log), (anss,logs), ...) (3.1)

For the modification strategy of refusal, the answers as well as the user logs are
determined subject to the following censor function which maps a policy, a user log,
and a query on a truth value:

censor(pot_sec,log,®) := (3.2)
(exists W)[V € pot_sec and ((log U {®} = V) or (log U{—=d} | V))]

Basically, the censor checks whether the query or the negated query together with
the user knowledge implies a potential secret. If so, the censor returns true, and
otherwise it returns false. The censor has to check both the query and the negated
query to block meta-inferences as explained in the following: Given an instance r, the
censor has to check in any case, whether eval*(®)(r) € {®, =®} implies a potential
secret in order to determine whether or not the answer must be modified. Now
suppose, the censor only checks eval*(®)(r) and not the complement —eval*(®)(r);
then the censor decision true would indicate that the honest answer to ® implies a
potential secret. If the policy is known to the user, the truth value of ® in r might
now be reconstructed by the user if only one of {®, ~®} implies a potential secret.
Therefore, censor checks the query as well as its complement, making it impossible
for the user to distinguish instances in which @ is true from instances in which ¢ is
false.
With the censor function (3.1), answers and user logs are defined by

ans; := if log;_ [= eval®(®;)(r) (3.3)
then eval™(®;)(r)
else if censor(pot_sec,logi_1,P;)
then mum

else eval*(®;)(r),
with the special return value mum denoting a refusal, and

log;:= if censor(pot_sec,logi_1,P;) (3.4)
then log;
else log; U {eval*(®;)(r)},

respectively.
Regarding ans;, it is first checked whether the user already knows the answer to his
query, and if so, the (honest) answer is returned without further tests. This “improved

“At this point, we do not impose further restrictions on ®1,®s, ..., log,, and the elements of
pot_sec, but only suppose it to be expressed in a suitable fragment of first-order logic.
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refusal” is necessary, since otherwise log U {—eval*(®)(r)} would be inconsistent and
thus imply every formula—especially the potential secrets, see [BB04b]. As a result,
the answer would be refused although the user already knows it. If the user does not
already know the answer to his query, the censor is invoked and, dependent on its
decision, the refusal value mum or the honest answer is given.

The user log only needs to be updated if the censor decision is false. The
“new” log is then defined as the union of the “old” log and the answer to the query.
Otherwise, if the censor decision is true, meaning that the answer is refused, the
user knowledge remains unchanged.

Hereafter, we assume that the a priori user knowledge log, is always true with
respect to the considered instance r, that is, r =y logy. Otherwise, availability would
possibly become rather restricted, since even harmless answers could, together with
the user log, lead to inconsistencies and thus to the disclosure of potential secrets,
and would therefore be refused.

We now recall two important properties of the user log from [BBO01], basically
saying that the user log is always true in the actual database instance and never
implies a potential secret.

Proposition 3.1 (Properties of the user log). Consider a database instance r,
a query sequence Q@ = (®1, o, ...), a confidentiality policy pot_sec and the a priori
user knowledge log, with r |=m logy. Then the user logs log; with i € {1,2,...} that
are produced by cqe(Q,log)(r,pot_sec) satisfy the following properties:

rE=wm logj; (3.5)
log; £V for all W € pot_sec. (3.6)

It has been shown by Biskup and Bonatti [BB01] that CQE as defined in (3.1)
with the censor (3.2) is a secure query answering mechanism according to the notion
that has been outlined in Section 3.1. We omit the precise definition of security here;
note, however, that it basically corresponds to Definition 5.4 in Section 5.2.

In the subsequent chapters, we investigate CQE for relational databases. Conse-
quently, the detection of inferences by the censor function corresponds to the decision
problem of implication in first-order logic, which is known to be undecidable in
general. Therefore, CQE for relational databases is usually restricted to suitable
fragments of first-order logic to guarantee the decidability of logical implication.
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Chapter 4

Related Research

Security in databases has been investigated from different perspectives by many
researchers. Consequently, most textbooks on computer security also deal with
several aspects of database security; see, for example, [Den82, Gol06, Bis09].

A comprehensive overview of the history and ongoing research in the field of
database security can also be found in the survey of Bertino and Sandhu [BS05].
Focusing on the requirement of confidentiality, the authors discuss techniques for
relational databases such as discretionary and mandatory access control. Moreover,
features for advanced systems are addressed, for example, flexible authorization
models, credential-based user specification mechanisms, information dissemination
strategies, and distributed cooperative data modification. The authors exemplarily
sketch some of these features for object-based database systems and access control
systems for XML. Furthermore, they discuss data management techniques that are
suitable for preserving privacy, for example, data anonymization, data mining, and
database systems being tailored to support privacy policies.

Moreover, design processes for secure databases have been proposed, for exam-
ple, by Ferndndez-Medina and Piattini [FP05] for the multilevel secure database
model—an extension of the classical relational database model. The authors identify
four stages of a secure design process: requirements gathering, database analysis,
multilevel relational logical design, and specific logical design. Moreover, Oracle
Label Security [J1T09] is proposed as a technical means for implementing security
specifications. Although being tailored to mandatory access control, the process
being discussed by Fernandez-Medina and Piattini may also be helpful regarding
other security mechanisms.

In the following, we take a closer look at two research directions of database
security: We briefly and exemplarily outline some results from the fields of access
control (Section 4.1) and inference control (Section 4.2) in databases. Roughly
speaking, in general, access control approaches control the disclosure of data, whereas
inference control approaches control the disclosure of information. In Section 4.3, we
then shortly present our contributions to Controlled Query Evaluation in relational
databases and describe how they are integrated into this thesis.
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4.1 Access Control

The security concept of access control has been a topic of research for decades. Many
varieties of access control have been investigated so far, making it nearly impossible
to give a complete overview of this area. We therefore only exemplarily discuss some
of the results in the following subsections which represent, in our view, the important
research directions in the field of access control in databases.

This overview is structured into the subsections “Discretionary and Mandatory
Access Control” which covers “classical” access control for relational and object-
oriented databases (Subsection 4.1.1), “Query Modification” which addresses a basic
technique for enforcing access control (Subsection 4.1.2), and “Access Control Models
and Mechanisms” which considers access control from a more general point of view
(Subsection 4.1.3). We will use the abbreviations DAC and MAC for discretionary
and mandatory access control, respectively.

4.1.1 Discretionary and Mandatory Access Control

An early approach to DAC in relational databases is the one of Griffiths and
Wade [GW76]. The authors investigate granting and revocation of privileges on the
table level of the relational database management system System R. They use a
graph-based representation of the granted privileges for every user of the system and
discuss a recursive revocation semantics.

MAC is often treated under the notion of multilevel security (MLS); consequently,
database systems enforcing MAC are also called MLS databases. One of the first
comprehensive MLS database systems, referred to as the SeaView model, is developed
by Lunt et al. [LDST90]. On the one hand, this system uses a reference monitor to
enforce a MAC policy; on the other hand, DAC policies can be expressed by the
individual users of the system. Moreover, the authors discuss and formalize data
consistency rules and propose an implementation of their system which allows to
express the multilevel relations as views over single-level relations.

Since the representation of multilevel relations (which only exist at the logical
level in general) as single-level relations is often needed in MLS databases, Jajodia
and Sandhu [JS91a] propose an improved algorithm for decomposing and recovering
multilevel relations. The authors describe the drawbacks of previous decomposition
and recovery algorithms, develop a formal operational semantics for update operations
on multilevel relations, and outline a decomposition algorithm by means of these
operations which decomposes a multilevel relation into a set of single-level relations.
In addition to this, Jajodia and Sandhu describe a corresponding recovery algorithm
that constructs a multilevel relation from the single-level relations, and they propose
some options for extensions of the algorithms.

In [JS91b], Jajodia and Sandhu point out that there is no exact model for MLS
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databases so far. In order to lay the foundations for such a model, the authors
investigate integrity constraints and update operations for multilevel relations.

In [SJ92], Sandhu and Jajodia address the issue of polyinstantiation in MLS
databases. Polyinstantiation occurs when two (or more) tuples with the same
primary key values but different non-key values are present in the database. This
inconsistency may be intentional in order to implement cover stories, that is, different
views on the database for users with different clearances. Sandhu and Jajodia
distinguish the notions of entity polyinstantiation and element polyinstantiation,
explain how polyinstantiation can be completely prevented, and discuss the PCS
(polyinstantiation for cover stories) semantics for polyinstantiation which basically
provides a natural and intuitive way for implementing cover stories.

Besides relational databases, also more complex information systems like object-
oriented databases (OODBs) have been investigated in the context of access control;
see Olivier and von Solms [OvS94] for a comprehensive taxonomy that captures
many issues relevant to modeling secure OODBs. In OODBs, data is organized in
object-oriented structures, that is, classes, objects (with attributes and methods),
and links between them. As an approach to multilevel security in OODBs, Cuppens
and Gabillon [CG98] investigate the assignment of security levels to classes, class
attributes, objects, object attributes, attribute values, methods, and inheritance
links. They compile a list of 25 rules, each of which either describes the semantics of
a security level assignment or is an inference rule. For example, the existence of a
class attribute implies the existence of the corresponding class; therefore, the security
level of the class attribute must dominate the security level of the class in order to
avoid harmful inferences.

In [CG99], Cuppens and Gabillon develop a logical model for MLS databases. They
propose a proof-theoretic three-layer approach: On the first layer, non-protected
relational databases are formalized using a fragment of first-order logic with equality.
On the second layer, they extend their model in order to express classification
levels, the partial ordering between them, the actual classification of data, and rules
for controlling inferences which are similar to the ones in [CG98]. Moreover, the
authors discuss cover stories (see also [CG01]) as an ambiguity-free alternative to
polyinstantiation. On the third layer, the MultiView layer, the model is extended in
order to express which part of the database may be observed by which user. Finally,
Cuppens and Gabillon adapt their investigations for object-oriented databases and
sketch some implementation principles for MultiView object-oriented databases.

4.1.2 Query Modification

A further approach to enforcing access control in relational database systems is
proposed by Stonebraker and Wong [SW74]. They introduce the technique of query
modification which basically extends relational database queries (expressed in a
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high level language) by additional conditions such that the resulting queries never
allow the user to access protected data when answered ordinarily. The authors
investigate select-project-queries as well as aggregate queries. Many applications
of query modification have been proposed in literature, for example, by Power et
al. [PSPS05] for the scenario of sensitive patient data in medical information systems.

The enforcement of MAC by query modification is investigated by Keefe, Thurais-
ingham and Tsai [KTT89]. They first propose a strategy which stores the conditions
that are used by the query modification algorithm in relational database tables. In
order to take information about the user’s state into account (for example, answers
to previous queries), the authors propose a logic-based strategy which represents the
conditions as logical rules and maintains a rule base which is accessed during query
processing. To make their approach more efficient, Keefe, Thuraisingham and Tsai
finally propose a graph-based strategy for representing and processing the conditions
for query modification.

4.1.3 Access Control Models and Mechanisms

A security model expresses a security policy on a formal level rather than in natural
language in order to avoid ambiguities and inconsistencies (see Gollmann [Gol06]).
Many security models for access control and corresponding mechanisms for enforcing
the expressed policies have been investigated so far, an overview of which can be
found in the following papers.

An investigation of access control models focusing on information flow can be found
at Sandhu [San93]. After introducing Denning’s basic notion of information flow
policies, he describes and compares models that base on security labels being arranged
in a lattice structure. While the Bell-LaPadula model focuses on the preservation of
confidentiality, the Biba model gives priority to the integrity of information. Sandhu
also discusses combinations of the two models. Finally, as a prominent example for
dynamic access rights, the Chinese Wall model is addressed.

Samarati and De Capitani di Vimercati [SDO1] give a comprehensive overview of
access control policies, security models and mechanisms for the enforcement of access
control policies. Their work covers basic mechanisms for implementing DAC like
the Harrison-Ruzzo-Ullman model, drawbacks of DAC approaches, MAC security
models like the Bell-LaPadula model and the Biba model, combinations of DAC and
MAC like the Chinese Wall model, extensions for the basic DAC policies, role-based
access control (RBAC), and advanced models involving logic-based policy languages,
composition of policies, and certificate-/credential-based models.

Nicomette and Deswarte [ND96] develop an adaption of the Bell-LaPadula security
model for distributed object systems. In such a system, an object interacts with
another object by invoking a method of this object. Nicomette and Deswarte describe
the drawbacks of the original Bell-LaPadula model—in particular its restrictiveness—
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and show that their adaption is less restrictive than the original model.

A general access control mechanism that is based on Ordered Logic with ordered
domains is proposed by Bertino et al. [BBFR00]. The authors consider the access
from subjects to objects according to privileges. These privileges are declared by other
subjects or they are derived according to hierarchies or derivation rules. Subjects
can be individual users, hierarchically ordered groups or hierarchically ordered roles;
moreover, also objects and privileges are assumed to be organized as hierarchies. In
contrast to many others models, in the approach of Bertino et al. it is possible to
express negative authorizations, that is, prohibitions. Sets of explicit authorizations
and rules for the derivation of implicit authorizations are expressed as logic programs
and access decisions are taken using the stable model semantics of Datalog programs.
Furthermore, the authors address the issues of conflicting rules and administrative
authorizations, that is, “privileges for granting privileges”.

Jajodia et al. [JSSS01] develop a similar approach: the Flexible Authorization
Framework (FAF). This framework allows for the enforcement of multiple access
control policies in a single system, thereby considering positive and negative autho-
rizations as well as propagation of authorizations along hierarchies. Starting with
the description of the system components—objects, users, groups and roles—and
their hierarchies, Jajodia et al. propose a logical authorization specification language
for expressing explicit authorizations and rules for deriving implicit authorizations.
Moreover, rules for conflict resolution and integrity preservation can be formulated.
Due to several restrictions, an authorization specification (interpreted as logic pro-
gram) is guaranteed to be locally stratified and thus to have a unique stable model.
Therefore, for every access request a unique decision can be made whether or not to
permit this request.

4.2 Inference Control

Unlike access control (which usually aims at preventing direct accesses to sensitive
data), inference control also takes indirect accesses into account which may arise
when combining several non-sensitive pieces of data, possibly including background
knowledge. Being originally investigated for statistical databases, inference control is
nowadays a widespread research topic, as is evident from the survey of Farkas and
Jajodia [FJ02]. In the following, we exemplarily outline some of the contributions to
research on inference control. We are conscious that a lot of general research has been
performed in the field of inference control, for example, Halpern and O’Neill [HOOS]
propose a framework for studying the notion of secrecy (being strongly related to
most inference control requirements) in general multiagent systems; however, we do
not take such general research into account, but focus on database-related research
in the following.
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This section is structured as follows: In Subsection 4.2.1, we address inference
control in statistical databases; in Subsection 4.2.2, we compile some research results
on inference control in relational databases; and in Subsection 4.2.3, we discuss the
contributions to the field of Controlled Query Evaluation in detail—a particular form
of inference control in databases which serves as a basis for the investigations in this
thesis.

4.2.1 Statistical Databases

Inference control has its roots in the research area of statistical databases. These
databases aim at providing statistical data about individuals on the one hand
and protecting the privacy of these individuals on the other hand. Denning and
Schlorer [DS83] show that in the context of statistical databases, sensitive information
about individuals may be inferred when collecting and correlating enough statistical
data. They give an overview of inference controls that work against such unwanted
disclosures. Basically, these inference controls can be divided into restriction tech-
niques which withhold certain parts of the statistics and perturbation techniques
which prevent unwanted inferences by adding noise to the statistics.

Kenthapadi, Mishra and Nissim [KMNO05] investigate the online auditing problem
for statistical database queries, that is, given a sequence of queries and their answers,
deciding whether or not the true answer to the current query enables the querying
user to breach privacy. Besides the classical notion of a privacy breach (a user is
able to learn a single data element in full), the authors propose a more sophisticated
notion by using probability theory: A privacy breach occurs if for a data element
and a small interval the a priori probability for the element falling into the interval
is not equal to the a posteriori probability (after having received the answer to the
posed query). Since existing offline algorithms prove insufficient to prevent privacy
breaches, Kenthapadi et al. propose the online technique of simulatable auditing.
Basically, an auditor (that is, a mechanism that answers the user queries) is called
simulatable (by the querying user) if its decision whether or not to give the true
answer is independent of the actual data and the (correct) answer to the current
query. The authors propose simulatable algorithms for max queries (that is, queries
asking for the maximum of a set of data elements) for both the classical notion
and the probabilistic notion of a privacy breach; moreover, they show that these
algorithms are “useful” in the sense of availability of data. A derivative of simulatable
auditing which is called simulatable binding has been proposed by Zhang, Jajodia
and Brodsky [ZJB08]. Simulatable binding improves simulatable auditing in that it
yields a yet higher data availability.

Sweeney [Swe02] proposes the k-anonymity protection model for statistical
databases. To avoid the problem that tuples of two databases can be linked in
order to uniquely identify individuals, she introduces the notion of a quasi-identifier
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and the k-anonymity requirement. A quasi-identifier is a set of attributes that possi-
bly enables to identify an individual by linking a tuple with external information;
k-anonymity demands that each instantiation of a quasi-identifier occurs at least k
times in the database, thereby preventing the unique identification of individuals.
Sweeney also describes three attacks against k-anonymity and proposes solutions for
these attacks.

Machanavajjhala et al. [MGKV07] point out two further attacks against k-
anonymous tables. The homogeneity attack exploits a lack of diversity in the
values of the sensitive attributes: If a sensitive attribute has the same instantiation
in each tuple in a set of tuples with the same quasi-identifier instantiation, then
sensitive individual information can be derived. The background knowledge attack
exploits the same lack of diversity by utilizing personal knowledge that is not ex-
plicitly represented in the database. The authors therefore propose the principle
of ¢-diversity; it basically demands that a sensitive attribute must at least have £
different instantiations in a set of tuples with the same quasi-identifier.

Li, Li and Venkatasubramanian [LLV07] on the one hand justify why ¢-diversity
is sometimes difficult and unnecessary to achieve and on the other hand describe
two attacks against ¢-diversity: the skewness attack, exploiting skew probability
distributions of sensitive attributes, and the similarity attack, exploiting semantic
similarity of attribute values. They propose the principle of t-closeness to thwart
these attacks. Intuitively, a set of tuples has t-closeness if the distribution of a
sensitive attribute in this set and the distribution of the same attribute in the whole
database table have a distance of at most t. Moreover, the authors discuss several
distance measures for probability distributions.

4.2.2 Relational Databases

Some inference control approaches for relational databases are, in fact, extensions
of access control mechanisms. For example, Brodsky, Farkas and Jajodia [BFJO0O]
present the Disclosure Monitor (DiMon) which extends a standard MAC mechanism
for relational databases with the Disclosure Inference Engine (DilE): If a user query
must not be answered according to the MAC policy, the query is rejected immediately;
otherwise, the information that can be derived from previous queries, the current
query and the (database) constraints the user is aware of is computed by the DilE
and again checked by the MAC mechanism. Only if also this second check yields
a positive result, the query is answered; if the check fails, the query is rejected.
The authors consider select-project-queries on a single relation as user queries and
Horn clauses as database constraints which in particular allow to express functional,
multivalued and join dependencies. The DilE can work in two different modes:
In the data-dependent mode, the derived information is computed using previous
queries, the corresponding answers and the constraints; in the data-independent
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mode, only the previous queries and the constraints are considered. Brodsky et al.
propose algorithms for both modes that are sound and complete, thereby proving
the underlying inference problems decidable. Moreover, the data-dependent mode
is shown to achieve a higher availability at the expense of higher space complexity
(since it has to maintain a history file for queries and answers), whereas the data-
independent mode is less space consuming at the expense of availability and the
restriction that queries and constraints must not involve constants.

Farkas, Toland and Eastman [FTEO1] propose the Dynamic Disclosure Monitor
(D?Mon) as an extension of the data-dependent mode of the DiMon approach. Unlike
DiMon, the D?>Mon approach takes database updates into account. It therefore
integrates two additional components into the DiMon architecture: the Update Con-
solidator for the propagation of updates to the user’s history file and the Cardinality
Inference Detection which aims at detecting inferences due to combinatorial effects.
For the Update Consolidator, the authors present a sound and complete algorithm.

Su and Ozsoyoglu [SO91] propose a technique that “re-classifies” an MLS database
in order to prevent inferences. In contrast to the DiMon approach, this technique
requires a preprocessing of the database, but afterwards it only needs to perform
computationally cheap access control. The authors investigate inferences by functional
and multivalued dependencies (FDs and MVDs, respectively). They address the
problem that unauthorized information may be derived if integrity constraints (like
FDs and MVDs) are not properly reflected by the classification of the database. Su
and Ozsoyoglu show how FDs and MVDs can be exploited for such inferences. For
both kinds of dependencies they develop an algorithm that adjusts the classification
levels of the database in order to prevent such exploitations.

A similar but more general approach can be found at Stickel [Sti94]. Given a
classification of objects (in the sense of MAC) and a set of inference rules, he shows
how to obtain a classification of the objects that is free of inference channels by
upgrading single classifications to higher levels. Stickel proposes a logical formulation
of this classification problem and adapts the Davis-Putnam procedure for theorem
proving in order to find minimal solutions to the problem. In this context, minimal
means that no object is classified higher than necessary. Moreover, Stickel discusses
the option of assigning costs to upgrade possibilities in order to control the selection
of upgrades by the proposed algorithm.

Dawson, De Capitani di Vimercati and Samarati [DDS99] consider existing non-
MLS databases and address the task of classifying these databases in the sense of
MAC under explicit consideration of inference constraints. This classification should
on the one hand be correct in terms of classification constraints declared by the
security administrator, and on the other hand it should be minimal in the sense that
no database entry is overclassified. The authors propose an algorithm that takes a
set of classification constraints as input and computes a minimal correct classification
assignment. Moreover, an algorithm is given that labels the entries in an actual
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database according to such a classification assignment.

Besides the extensions of MAC, many others approaches to inference control in
relational databases have been proposed. For example, Delugach and Hinke [DH96]
develop the “Wizard” system for detecting inferences in relational databases. The
mechanism is designed as a tool for security administrators and aims at statically
detecting possible inferences before a user sends queries to the database system. The
information that is represented by the database is viewed at on three layers, each of
which is further divided into so-called facets. The authors consider inference paths in
single facets as well as inter-facet inference paths. Moreover, the identified inferences
are graded by there severity. Delugach and Hinke finally describe the implementation
of their system.

Yip and Levitt [YL98a] investigate data level inferences in relational databases.
They develop an inference detection system with a set of five inference rules that can
be applied to query answers in order to derive additional information. Unlike previous
approaches, these rules operate on the data without taking schema information such
as functional dependencies into account. Moreover, union queries are considered
which are basically sequences of single queries. The authors also implement their
inference detection system and identify conditions for a feasible runtime, for the
considered problem is NP-hard in theory. In [YLI8b], Yip and Levitt extend their
system by an additional inference rule and elaborate on the application of inference
rules to union queries in detail. They also sketch the prototypical implementation of
their approach.

As a generalized approach to schema level inference detection, Hale and
Shenoi [HS96] investigate fuzzy FD inference in relational databases. They in-
troduce fuzzy tuples as generalization of classical relational tuples and develop a
model in which fuzzy as well as classical relational databases can be considered. Using
the notion of redundancy between fuzzy tuples, the authors define fuzzy FDs and the
fuzzy counterparts of Armstrong’s axioms for computing inference closures. Moreover,
they generalize the notion of FD-based inference in order to cover deductive and
abductive FD reasoning in relational databases. As an application example, Hale
and Shenoi describe a scenario in which a classical database is augmented by a fuzzy
relation in order to express common knowledge.

Chang and Moskowitz [CMO0O0] propose a probabilistic framework for analyzing
inferences in databases. They introduce the notion of similarity between database
attributes and propose the dispersion as a similarity measure. Similar attributes carry
about the same information and might thus assist in drawing inferences. Moreover,
Chang and Moskowitz model correlations between the attributes of the database by
means of Bayesian networks and describe the techniques of blocking and aggregation
in order to reduce the information and thus the possible inferences in a database.

Another facet of inference control is addressed by Chen and Chu [CC08]. They
consider the case of collaborative inference attacks in databases. Their probabilistic

27



4 Related Research

framework contains a Semantic Inference Model (SIM) which is instantiated to a
Semantic Inference Graph (SIG). The SIM captures three kinds of information: data
dependencies, schema dependencies and domain-specific semantic knowledge. The
SIG then instantiates the SIM with the specific entity instances of the actual database.
Chen and Chu suggest to map the SIG to a Bayesian network in order to analyze
inferences. If the answer to a user query enables the user to infer sensitive information
in terms of a specified threshold, the answer is refused. Regarding the collaboration
among users, the authors identify three parameters that affect the effectiveness
of collaboration: authoritativeness, that is, accuracy of information; honesty, that
is, honesty level and willingness of the knowledge provider; and fidelity, that is,
effectiveness of the communication between the collaborating users. Furthermore,
collaboration with overlapping inference channels as well as collaboration with non-
overlapping inference channels is taken into account.

Rather than developing specific inference control mechanisms, some authors focus
on providing formal models for the investigation of inferences. For example, a more
general approach to inference control or, more precisely, inference detection, can
be found in the work of Stouppa and Studer [SS07]. They investigate the data
privacy problem (being strongly related to the detection of inferences) in a formal
framework which assumes that public knowledge is expressed by means of a view
instance (consisting of queries and the corresponding answers) and an ontology
(representing background knowledge); the data privacy condition is given as a set
of queries. Intuitively, privacy is preserved if none of the queries in the privacy
condition can be inferred from the view instance and the ontology. Besides the
general framework, Stouppa and Studer investigate the data privacy problem for
relational databases and ontologies based on the description logic ALC.

Cuenca Grau and Horrocks [CHO8] consider logic-based information systems
which can be seen as a generalization of many kinds of information systems such
as relational databases. For these generalized information systems, the authors
formulate three different privacy problems. Moreover, on the one hand, Cuenca
Grau and Horrocks recall the probabilistic frameworks of Miklau/Suciu [MS07] and
Deutsch/Papakonstantinou [DP05] in which privacy conditions can be expressed; on
the other hand, they formalize privacy in a logic-based framework. Furthermore,
connections between the presented frameworks are pointed out.

4.2.3 Controlled Query Evaluation

Controlled Query Evaluation (CQE) is a particular form of inference control in
(logic-based) databases that enforces a security policy by inspecting the assumed
user knowledge before answering a query. If necessary, the answer to the query
is then suitably modified in order to preserve confidentiality. CQE is inspired by
the work of Sicherman, de Jonge and van de Riet [SdJvdR83] and Bonatti, Kraus
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and Subrahmanian [BKS95]. In the following, we first sketch the contributions of
these two papers. After that, we describe the development of CQE from the first
approaches to the more recent results.

Sicherman, de Jonge and van de Riet [SdJvdR83] investigate how information can
be kept secret in a question-answering system when using a refusal strategy. The
authors consider propositional databases and sentences (being either true or false in
the database) as queries and secrets. The aim of the system is to prevent the user
from disclosing the actual truth value of a secret in the database—even if he exploits
his usage history and further information about the functionality of the system. The
authors systematically identify the situations in which the system should refuse to
answer in order to protect the secrets. They propose one solution for the case that
the user knows the set of secrets (but, of course, not their actual truth value in the
database) and another solution for the case that the user does not know the secrets.
Moreover, it is formally shown that both solutions prevent the user from learning
secrets.

Bonatti, Kraus and Subrahmanian [BKS95] enforce security in deductive databases
(which are represented as finite sets of propositional formulas) by means of a lying
algorithm. In order to formalize their approach, they propose two modal extensions of
propositional logic: The first extension, logic of secrecy, introduces modal operators
for declaring formulas as secrets; the second extension, logic of interaction, adds
further modal operators to the logic of secrecy in order to describe the communication
between user and database. Moreover, the authors give a formal model-theoretic
semantics for the logics of secrecy and interaction and propose an algorithm that
preserves security in terms of the underlying logics. This algorithm basically gives
the correct answer to a query if this answer together with the user’s beliefs does not
imply the disjunction of the declared secrets; otherwise, the negated answer to the
query is returned. Bonatti, Kraus and Subrahmanian additionally show that the
proposed algorithm is in the same complexity class as ordinary query evaluation.

Biskup [Bis00] compares the strategies of lying and refusal in a common framework.
He considers structures that interpret the symbols of an appropriate logic as database
instances and sentences of this logic as queries. Moreover, a policy is a set of pairs
of complementary sentences, the so-called secrecies; a database user must not learn
which part of such a pair is actually true in the database instance. Biskup develops an
architecture which decides by means of the answer to a user query and the assumed
user knowledge whether or not the answer to this query is harmful regarding the
declared policy. If so, it is suitably modified before being delivered to the user. The
modification can either be a lie, that is, the answer is negated, or a refusal, that is,
the answer is the special return value mum. Biskup shows that (for most situations)
the refusal strategy more often returns the true answer to a query than the lying
strategy if the policy is unknown to the user. He therefore suggests to prefer refusal
over lying in general.
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Biskup and Bonatti [BB01] extend the investigations of [Bis00] to policies that
consist of potential secrets. A potential secret is also a sentence in the underlying
logic but, unlike a secrecy, a potential secret needs only to be kept secret from the
user in case it is true in the database instance; otherwise, if it is false in the instance,
the user may be aware of this fact. Biskup and Bonatti again consider the strategies
of lying and refusal and assume that the policy is known to the user. They show
that, provided the potential secrets in the policy are closed under disjunction, lying
and refusal basically deliver the same information to the database user.

In [BB04b], Biskup and Bonatti propose the combined method for CQE under
known policies. While the approaches discussed so far either always lie (uniform
lying) or always refuse (uniform refusal) when a modification of an answer is required,
the combined method uses a combination of lying and refusal. More precisely, as long
as only the correct answer to a query can be exploited to infer a secret, the combined
method returns a lie, that is, the negated answer; if, however, also the negated
answer enables the user to infer a secret, then the combined method refuses to answer.
Biskup and Bonatti formally show that this method is secure and compare it to the
approaches of uniform lying and uniform refusal. It turns out that the combined
method returns more correct answers than the uniform methods in general. Moreover,
properties are identified under which the combined method and the uniform lying
method or the combined method and the uniform refusal method coincide.

An overview of CQE in propositional databases can be found in [BB04a]. Biskup
and Bonatti categorize the so far investigated approaches along the dimensions of
confidentiality policy (potential secrets or secrecies), user awareness regarding policy
(known or unknown) and enforcement method (lying, refusal or combined), thereby
also identifying and filling the gaps.

In [BB07], Biskup and Bonatti investigate CQE for a fragment of first-order logic,
thereby making the approach suitable for open queries in relational databases. In
order to guarantee decidability, some restrictions must apply. More precisely, queries
must be domain-independent and safe, and query language, policy language and
a priori user knowledge must be suitably restricted so that all formulas are in the
Bernays-Schonfinkel class (whose implication problem is known to be decidable).
The controlled evaluation of an open query can then be simulated by the evaluation
of a sequence of closed queries and the evaluation of a completeness sentence which
basically captures the negative part of the answer, that is, the variable substitutions
that make the query false in the database instance. Biskup and Bonatti propose a lying
method and a refusal method for open queries, both assuming a fixed enumeration
sequence of the constants which is known to the database user. Moreover, an
alternative lying method and a combined method are investigated which consider
the completeness sentence at the beginning of the query evaluation rather than
examining it as late as possible. These alternatives, however, come at the price of
cooperativeness. All of the proposed methods are proven confidentiality preserving.
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Biskup and Weibert [BWO08a] consider CQE with known potential secrets for in-
complete propositional databases. In incomplete databases, queries may be answered
by true, false or undef (in case the actual truth value of the query is unknown)
which has to be reflected in the the CQE formalisms. It turns out to be appropriate
to express the user knowledge in the modal logic S5. Moreover, the authors intro-
duce the concept of a security configuration which expresses for a policy, the user
knowledge and a query, which answers to the query would lead to the disclosure
of a secret. Using these security configurations, requirements for the lying method,
the refusal method and the combined method are elaborated; for each method, one
security preserving censor is presented.

Regarding incomplete first-order databases, a first approach is made by Biskup,
Tadros and Wiese [BTW10] who investigate CQE with known potential secrets
for incomplete first-order databases. They use the so-called GFFD-databases as a
restricted data model for first-order databases and the modal logic S5 for expressing
user knowledge and policies. It is then shown that the resulting model can basically
be reduced to the propositional case.

Biskup, Seiler and Weibert [BSWO09] first investigate database updates in the
context of CQE. They consider the lying approach for known potential secrets in
propositional databases and define a view update as the change of the truth value of
an atomic sentence (performed by a database user). Evaluated ordinarily, accepted
view update requests as well as denied view update requests may lead to harmful
inferences; thus, the authors propose an algorithm that performs inference-free
view updates applying the lying method. This algorithm is proven confidentiality
preserving, and moreover it is shown that each view update may be successfully
undone if the undo operation is performed immediately after the update operation.
A more general approach to updates within a client-server architecture, considering
updates that are initiated by the client, updates that are initiated by the server, and
transactions of update requests, is developed by Biskup et al. in [BGSW09].

Biskup and Wiese [BWO08b] propose a preprocessing approach for the lying method
of CQE under known potential secrets in propositional databases. Basically, an
alternative database instance is constructed before the user sends a query to the
database. This alternative instance possibly contains lies compared to the original
instance, but user queries can be answered ordinarily with respect to the alternative
instance without disclosing secrets. Therefore, the alternative instance is called
inference-proof. Moreover, explicit availability policies are considered that consist of
propositional formulas; in the inference-proof instance, as few of these formulas as
possible should have a different truth value than in the original instance. Biskup
and Wiese also develop an algorithm for constructing the alternative instance. This
algorithm combines the techniques of SAT-solving and Branch and Bound. An
extension of the results to the case of first-order databases is developed by Biskup
and Wiese in [BW09).
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Although for a suitable fragment of first-order logic CQE in relational databases
becomes decidable (see [BB07]), pertinent algorithms suffer from high complexity in
general. This is mainly due to the ever growing log file which has to be considered for
every query evaluation. Therefore, several efforts have been made in order to abandon
the log file. The results from this research direction form the basis for this thesis and
are discussed in Section 4.3. A further result from this area, which is not addressed
in the remainder of this thesis, has been achieved by Biskup et al. [BHLL10a].
Their approach applies for the refusal method under known potential secrets and
under the presence of functional and full join dependencies. The authors identify a
sufficient and necessary formal condition for the violation of the confidentiality policy.
This condition characterizes a “forbidden structure” that can be represented by the
hypotheses of a template dependency. If all of these hypotheses are satisfied, the
user is able to infer a secret (which is represented by the conclusion of the template
dependency). Consequently, the user must be prevented from fully discovering this
forbidden structure which can be controlled by a suitable monitoring component. In
contrast to previous approaches, however, it is not necessary to maintain a general
log file for the user.

Wiese [Wiel0] transfers CQE for propositional databases to a possibilistic logic
setting: Rather than returning one of the values true or false (or undef in the
scenario of incomplete databases) when answering a query, the “necessity degree” of
the query in the knowledge base is computed and returned. This obviously allows for
a finer-grained way of answering a query. In order to formalize her approach, Wiese
uses the standard possibilistic logic SPL which basically labels each formula in a
given knowledge base with a (lower bound for a) necessity degree, thereby inducing a
possibility distribution; this possibility distribution, in turn, can be used to determine
the necessity degrees of arbitrary formulas. Evaluation of a query then corresponds
to the computation of the necessity degree of this query. A security policy is declared
as a set of pairs of formulas and necessity degrees, each of which signifies that the
user must not know that the formula is certain in the knowledge base at a necessity
degree above the given one. In this framework, Wiese develops a method for the
controlled evaluation of queries and proves it confidentiality preserving.

A recent survey on the achievements in the field of Controlled Query Evalua-
tion from the more general perspective of a client-server model can be found at
Biskup [Bis10].

4.3 Contributions of Previously Published Work

Parts of this thesis have been published in three conference papers and a journal article,
which are my original work. All publications are co-authored by my advisor Joachim
Biskup. His contribution comprised joint exploration of potential approaches, ongoing
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discussions, proof-reading, and general advisory. In the following, the contributions
of the mentioned publications are shortly outlined.

e In [BLO7], we lay the foundation for stateless inference control in relational
databases. We explore a restricted scenario in which the declarative goals of
inference control can be reached by an access control mechanism and sketch two
efficient algorithms for the enforcement of these mechanism. The contributions
of this article are elaborated in more detail in Chapter 6.

e In [BELO§], we investigate the impact of functional dependencies under select-
project-queries and identify a situation in which again a reduction of inference
control to access control is possible.

This article, which serves as a basis for Section 7.1 of this thesis, is additionally
co-authored by David W. Embley with whom we discussed several aspects of
normalization theory.

e In [BLS09], some enhancements of stateless inference control are investigated,
and we propose an algorithmic implementation for these enhancements. In
Sections 7.2 and 7.4, these enhancements are reconsidered and the proofs of
confidentiality preservation are elaborated.

This article is additionally co-authored by Sebastian Sonntag who performed a
first exploration of the enhancement possibilities for stateless inference control
in his diploma thesis.

e In [BHLL10b], open queries are investigated in the context of stateless inference
control with the result that the database user must not be aware of the
confidentiality policy under open queries. Moreover, we sketch an algorithmic
implementation of the resulting mechanism. A detailed elaboration of this
enhancement including a formal proof of confidentiality preservation can be
found in Section 7.3 of this thesis.

This article is additionally co-authored by Sven Hartmann and Sebastian Link
who contributed valuable ideas from the field of dependency theory to the
original draft of the article, and with whom we discussed our results for open
queries.

In this thesis, the results of the above publications are compiled and put into
a common framework. Moreover, the gaps between the approaches are identified
and filled, those confidentiality proofs that have only been sketched before are
elaborated, and the limits of stateless inference control for relational databases in
the developed framework are investigated. Finally, an algorithmic implementation of
the comprehensive approach is provided.
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Chapter 5

Introduction to
Stateless Inference Control

CQE in its original form, as introduced in Chapter 3, is stateful, that is, it is necessary
to keep a user log in order to preserve confidentiality. More specifically, this user
log contains the (assumed) a priori knowledge of the user and the answers to the
previous queries. For each query, the CQE mechanism has to check whether the
(unmodified) answer to the current query or its negation together with the user log
allows for drawing harmful inferences.

From a practical point of view, however, the stateful CQE approach comes along
with two major drawbacks: On the one hand, the user log is an ever growing file
which, sooner or later, will lead to space problems; on the other hand, the inference
check basically corresponds to the implication decision problem in first-order logic
which is known to be undecidable in general or at least computationally complex
in particular cases. Implementations usually have to rely on an external theorem
prover and get the more costly the bigger the log file becomes. Consequently, our
objective in this and the following chapters is to avoid the theorem prover and the
ever growing log file by guaranteeing confidentiality preservation at the same time.
In doing so, it will be necessary to suitably restrict the framework of stateful CQE,
as introduced in Section 3.2.

5.1 Requirements, Parameters, and a Running Example

The stateless CQE mechanism that will be developed in the following, should
especially take care of the following aspects:

Confidentiality. As already required for stateful CQE, also stateless CQE shall
preserve confidentiality with respect to the declared confidentiality policy.
Therefore, the notion of confidentiality preservation must be specified by a
formal definition. We consider confidentiality preservation the primary goal of
our approach, that is, other goals are possibly neglected if this is necessary to
guarantee confidentiality preservation.
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Figure 5.1: Schematic architecture of stateless CQE.

Availability. A database system is perfectly secure in the sense of confidentiality
preservation if it refuses to answer at all. Clearly, from the perspective of a
database user this behavior is not acceptable, since he is supposed to need
information from the database in order to complete his task. We therefore
require our mechanism to ensure the availability of information as long as this
does not contradict the preservation of confidentiality.

Efficiency. Our mechanism shall be efficient in terms of complexity. More specifically,
the decision whether or not the user is able to draw harmful inferences should
no longer rely on the implication decision problem in first-order logic but rather
on some kind of access control that is computationally feasible and efficiently
implementable. Moreover, again for efficiency reasons, we want to avoid the
log file of stateful CQE.

The general architecture of a stateless CQE mechanism is depicted in Figure 5.1.
Observe that, compared to stateful CQE (as depicted in Figure 3.1), the censor of
stateless CQE no longer needs the user knowledge as input.

Trying to reach all of these goals at the same time, we might encounter problems.
For example, when abandoning the log file, a piece of information that is not
confidential if considered isolatedly might help to disclose a secret afterwards: Suppose,
the information that Smith has a salary of $5,000 is to be kept confidential. In this
context, the information that Smith is a manager seems to be harmless; if, however,
it turns out later on that all managers get a salary of $5,000 (which is, considered
isolatedly, harmless as well), the seemingly harmless information helps to disclose
the secret.
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Because we want to eliminate the user log file from the CQE framework, our
system has to be “oblivious” and consequently never (or at most to a certain degree)
aware of the information the user has. We have to be well-prepared for users who
want to exploit this property. More precisely, stateless CQE possibly has to modify
more answers than stateful CQE in order to prevent users from drawing harmful
inferences in the future. In the example sketched above, either the information that
Smith has a salary of $5,000 or the information that managers get a salary of $5,000
should not be delivered to the user, although it seems to be harmless at first glance.

In the following, we sketch and justify the parameters that we assume for our
investigations of stateless CQE. We divide these parameters into those that concern
the underlying relational database, those that concern the users of the system, and
those that concern the actual enforcement of inference control.

Parameters concerning the database

e We consider the domain of relational databases and therefore use a logic-
oriented approach for our investigations, as introduced in Chapter 2. This
approach follows the one elaborated by Abiteboul et al. [AHV95]. In particular,
we assume (a fragment of) the relational calculus as query language.

e We suppose that in our scenario relational databases only contain complete
information. In particular, we do not consider null values. From a logical
perspective, we assume that formulas, which are not true in a database instance,
are false in this instance. This assumption is also known as closed world
assumption.

e We concentrate on single relation schemas and assume in the following that
the database consists of the relation schema (R,U, L), unless stated otherwise.
In Section 11.2, we shortly address the issue of multiple relation schemas and
constraints between them as a direction for future research.

e We consider only functional dependencies as local (intra-relational) seman-
tic constraints. Although in database theory many other kinds of semantic
constraints are investigated (like, for example, multivalued dependencies, join
dependencies, and template dependencies), we consider functional dependen-
cies the most prevalent kind of local semantic constraints in actual relational
databases.

e We consider the actual contents of the database static, that is, we assume that
the instance of the relation schema is constituted before a user sends queries
to the database. In other words, we do not consider updates of the instance
during query time.
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5 Introduction to Stateless Inference Control

Parameters concerning the database users

e Our scenario contains three actors:

— The database administrator fills the database instance with content (pos-
sibly on behalf of third parties who act as “data owners”) and declares
the semantic constraints;

— the security administrator declares the confidentiality policy (possibly on
behalf of third parties who act as “data owners”) which describes the
information that should be kept confidential;

— the database user sends queries to the system and receives (possibly
modified) answers. Write accesses to the database are not considered.
Moreover, we assume a single user, since collusion between different users
is out of the scope of this thesis.

e We assume a “smart” database user, that is, a user who is aware of the declared

semantic constraints ¥ of the database and of the confidentiality policy. More
specifically, he can use the functional dependencies for reasoning and is aware
of the secrets being declared by the security administrator. Remember that
these secrets are potential, that is, knowledge about a declared secret does not
imply the actual truth value of this secret in the database instance. A policy
that the database user is aware of is also called a known policy hereafter.

We do not consider further knowledge, for example, about the contents of
the database instance. Thus, given the relation schema (R, U, ¥), the a priori
knowledge of the database user log is assumed to consist of the semantic
constraints only, that is, logy = X.

Parameters concerning the CQE mechanism
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e Our approach is language-based, that is, for the security administrator as well

as for the database user a language is defined that declares the admissible
secrets or the admissible queries, respectively.

Our approach is policy-driven, that is, the security administrator declares
the confidential information in form of a set of secrets, called confidentiality
policy, or policy for short. This policy may be formulated independently of the
actual database instance, which supports the functional separation of database
administrator and security administrator.

If necessary, query answers are modified by refusal, that is, for closed queries
the special answer mum is returned rather than the ordinary query evaluation;
for open queries the set of answers is suitably filtered, see Chapter 7.3. In
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particular, our approach never lies to the user but only answers his queries
honestly or refuses to answer.

To illustrate our elaborations, in the subsequent chapters we will make use of an
example from the banking context. In the following, we roughly sketch the setting of
this running example.

Example 5.1. A group of banks employs a common relational database system to
maintain the data of its clients. Within this database a relation schema ACCs =
(ACC,U, X) is declared for the relation ACC, which captures for each combination
of bank and account number the name and the balance of the respective account
holder. Let the following attributes and local semantic constraints be declared:

U = {BANK, ACC_NO, ACC_HOLDER, BALANCE}
¥ = {{BANK, ACC_NO} — {ACC_HOLDER, BALANCE}}

An instance of ACCs is given by:

acc | BANK ACC_NO ACC_HOLDER BALANCE
bank A 101 Smith $ 1,000
bank A 102 Jones $ 2,500
bank A 103 Smith $ 100
bank B 101 Anderson $ 1,500
$
$

bank B 105 Brown 1,000
bank C 201 Smith 50

As expressed by X, each combination of bank and account number uniquely
determines the account holder and his balance, so { BANK,ACC_NO} is the (unique)
key of ACCs. O

Whenever appropriate, we will refer to this example in the following, adjusting it
to the respective situation if necessary. When going into technical details, however,
we prefer abstract examples for reasons of clarity. To avoid confusion, we hereafter
adapt examples that refer to Example 5.1 to the assumptions of Section 2.3, that is,
we ensure that constant identifiers begin with a lowercase letter or with a number.
For example, bank A will be denoted by bankA, Smith by smith etc.

5.2 Confidentiality

After having clarified the desired properties and the essential parameters of our
framework, we now introduce the modified query evaluation, which serves as a basis
for our stateless CQE approach, and explain our notion of confidentiality preservation.
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5 Introduction to Stateless Inference Control

As already outlined in Chapter 3, stateful CQE deviates from the ordinary evalua-
tion to preserve the confidentiality of the declared secrets. The stateless CQE we
are about to develop also needs a special form of query evaluation. In order to be
flexible with regard to enhancements of the stateless CQE, we first introduce the
notion of a general modified query evaluation.

Definition 5.2 (Modified query evaluation). A modified query evaluation
m_eval maps

e a (possibly infinite) query sequence Q = (P1, Py, ...) (with &1, Py, ... being
queries expressed in a suitable query language, that is, in a fragment of first-
order logic),

e a database instance r, and

e a confidentiality policy pot_sec = {W1, Wy, ..., W} (with Wy, Vs, ..., W, being
potential secrets expressed in a suitable policy language, that is, in a fragment
of first-order logic)

on an answer sequence

m_eval (Q)(r,pot_sec) = (ansy, ansy, ...).

Since we will talk about secure query evaluation in the following, we also need
a precise notion of security. In this thesis, we concentrate on the security goal of
confidentiality and thus a secure query evaluation is characterized by the preservation
of confidentiality of the declared potential secrets. Consequently, we will use the
terms secure and confidentiality-preserving synonymously hereafter. Informally, in
our framework, the evaluation of a query preserves confidentiality if for each declared
potential secret the database user considers it possible that the negated secret is
true in the database instance after having received the answer to his query. More
precisely, considering a fixed potential secret from the policy, we demand that there
exists an alternative database instance (not necessarily different from the actual
instance) that is (from the perspective of the database user) indistinguishable from
the actual one and that makes the potential secret false.

In order to preserve confidentiality, we also have to ensure that the database user
does not have any harmful a priori knowledge. In the following two cases, we consider
the a priori knowledge of the user harmful:

e The database user knows that a potential secret is true in the database instance.

e The database user has knowledge that is false in the database instance.
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5.2 Confidentiality

In the first case, the user has already disclosed a secret whereas in the second case,
the user knowledge might get inconsistent when adding knowledge that is true in
the database instance. Inconsistent knowledge, however, enables the user to infer
arbitrary formulas, in particular the potential secrets.

Definition 5.3 gives a precondition for a pair of database instance and confidentiality
policy (r,pot_sec), ensuring that the a priori knowledge of the database user is not
harmful. Definition 5.4 states the actual conditions for a modified query evaluation
to be secure.

Definition 5.3 (Admissibility (for closed policies)). Given the a priori user
knowledge logy, a pair (r,pot_sec) of a database instance r and a confidentiality
policy pot_sec is called admissible with respect to log if the following conditions
hold:

1. r=m logy;

2. a) if pot_sec is known to the user: logy = W for all W € pot_sec,

b) if pot_sec is unknown to the user:
logy [~ W for all W € pot_sec with r |=m V.

Remark. Remember that we assume log, = X for our investigations according to
Section 5.1. Therefore, the first requirement of the admissibility definition, r v logy,
is always satisfied.

Definition 5.4 (Secure query evaluation). Given

e a (possibly infinite) query sequence Q@ = (P, Pg,...) (with &1, Dy, ... being
queries expressed in a suitable query language) and

e a confidentiality policy pot_sec = {W1, Vg, ..., W} (with Wy, Vs, ..., W, being
potential secrets expressed in a suitable policy language),

the modified query evaluation m_eval is secure with respect to pot_sec if

for all finite prefizes Q' of Q
for all V € pot_sec
for all database instances r
such that (r,pot_sec) is admissible
with respect to the a priori knowledge log
there exists an alternative instance r' and
there exists an alternative policy pot_sec’
such that (r',pot_sec’) is admissible
with respect to the a priori knowledge log
satisfying the following properties:
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5 Introduction to Stateless Inference Control

1. m_eval(Q')(r,pot_sec) = m_eval(Q')(r',pot_sec’);
2. eval*(V)(r') = —V;
3. if pot_sec is known to the database user, then pot_sec’ = pot_sec.

The modified query evaluation m_eval is secure if it is secure with respect to every
possible policy pot_sec.

Remark. Although we fixed logy, = ¥ in Section 5.1, Definition 5.4 can also be
applied for more general a priori knowledge sets log that contain elements from the
underlying logic.

Observe that parts of Definitions 5.3 and 5.4 refer to the awareness of the database
user regarding the confidentiality policy, although in the parameter setting of our
investigations we assume the policy to be known to the user. In Section 7.3, however,
we will see that this assumption cannot be kept up in every parameter setting.
Consequently, to be prepared for this situation, we formulated Definitions 5.3 and 5.4
a bit more general. If the policy is unknown, there is one more degree of freedom
with respect to confidentiality proofs because the policy is not fixed but can (not
necessarily uniquely) be constructed from the answers to the queries; if, however,
the policy is known, this degree of freedom disappears.

The most important property of a secure modified query evaluation is that the
user is never able to infer a potential secret with his knowledge. More precisely, he is
never able to learn that a declared potential secret is actually true in the database
instance under consideration. This property follows intuitively from Definition 5.4
which, considering a fixed potential secret, demands for the existence of an instance
that leads to the same answers that the user got from the system (and thus leads
to the same user knowledge) but makes the potential secret false. Thus, for each
declared potential secret, the user always considers a database instance possible in
which this secret is false and consequently never knows that a potential secret is true
in the actual database instance. This property is shown for the modification strategy
of refusal by the following Lemma.

Lemma 5.5 (The user log is harmless). Let m_eval be a secure modified query
evaluation that uses the modification strategy of refusal, Q = (®1, o, ...) a (possibly
infinite) query sequence, pot_sec a confidentiality policy, logy = X the a priori user
knowledge, and r a database instance. Furthermore, let log; denote the user knowledge
after having received the answer to the j-th query from m_eval(Q)(r,pot_sec). Then
for all potential secrets W € pot_sec it holds that log; = V.

Proof. Since m_eval is supposed to use the modification strategy of refusal, each
returned answer is either a refusal (mum) or it is true in the considered database
instance r. Moreover, only non-refused answers are added to the user log (see
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5.2 Confidentiality

the definition (3.4) of the user log in Chapter 3), so log; = logy, U {ans; | i €
{1,...,j}, ans; # mum}. Consequently, it holds that

ri=wm log;. (5.1)

Now consider a potential secret W € pot_sec. We prove the claim by induction on
the sequence number of the user log (denoted by j).

Jj = 0: According to the remark to Definition 5.3, (r,pot_sec) is admissible with
respect to log,. Thus, we know that log, = V.

j + 1: By the induction hypothesis it holds that

log; [~= V. (5.2)

If ansjy; = mum, then log;,,; = log; and consequently, log;,; = W. We therefore
assume that ans;;q # mum in the following. By definition of the user knowledge,

log; 1 = log;U{ansji1}. (5.3)

We now complete the proof by contradiction and therefore indirectly assume that
log; 1 =V, that is, with (5.3),

log; U{ansji1} = V. (5.4)

By definition of logical implication, (5.4) means that for all instances r the following
holds:

If r =m logj U {ansji1} then r =y V. (5.5)

Since m_eval is supposed to be secure, by Definition 5.4 there exists an alternative
instance r’ and an alternative policy pot_sec’ such that the a priori knowledge log,,
is true in r’ and m_eval yields the same answers on (r/,pot_sec’) and (r,pot_sec).
Thus, with (5.1) it follows that

r Em /ogj U {ansj+1}. (5.6)

Moreover, again by Definition 5.4, W is false in r’, that is,
r/ I?éM v, (57)

Consequently, r’ is a witness instance against (5.5) and therefore contradicts (5.4)
which completes the proof. ]
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5 Introduction to Stateless Inference Control

5.3 Outlook

Having defined the framework for our approach as well as the main requirements,
the parameters for our investigations, and our notion of confidentiality preservation,
we will develop an efficient inference control approach for relational databases in
Chapters 6 and 7. From a “logical perspective”, these chapters are structured in a
bottom-up fashion:

e In Chapter 6, we start our investigations with syntactically simple query and
policy languages, that is, we consider sets of atomic sentences with existential
quantifiers for policy elements and without existential quantifiers for queries.
It will turn out that these restrictions allow for an efficient mechanism that
reaches the declarative goals of inference control, as given by Definition 5.4.

e In Chapter 7, we stepwisely enhance these simple languages to more expressive
ones. More precisely, we consider the following enhancements:

— In Section 7.1, we enhance the query language by existential quantifiers.
As a consequence, we will have to further restrict the policy language in
order to keep up preservation of confidentiality.

— In Section 7.2, we additionally consider Boolean operations for both the
query and the policy language. We will basically learn that the user must
be prevented from using disjunction in queries; moreover, the security
administrator must neither use negation nor conjunction when declaring
policy elements.

— In Section 7.3, we investigate free variables for the query language, that is,
we enable the user to express open queries. This enhancement will lead to
the additional assumption that the user must not be aware of the policy.

— In Section 7.4, we investigate free variables for the policy language. This

enables the security administrator to express a set of “uniform” secrets

with a single policy element. This enhancement will require us to slightly
adapt some definitions, but it will not be necessary to assume further
restrictions.

Finally, in Section 7.5, we combine the enhancements from Sections 7.1-7.4.

It will turn out that negation in combination with free variables might

lead to unsafe queries, that is, queries whose evaluation is infinite.

In Section 7.6, we conclude Part II of this thesis with an overview of the investigated
languages. Moreover, we justify that our investigations are, in some sense, “complete”,
that is, they basically cover the space of possibilities for stateless CQE in relational
databases.
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Chapter 6
A Basic Case: Select-Queries

In this chapter, we start our investigations with a rather basic scenario, that is,
with simple query and policy languages. On the one hand, this approach enables us
to develop a simple but effective inference control mechanism; on the other hand,
unfortunately, “basic” also means “restrictive”, especially from the point of view of
the security administrator and the database user. To compensate for this drawback,
we will refine our approach in Chapter 7.

In Section 6.1, we introduce the query and policy languages being investigated in
this chapter. For the policy language, we describe and prove a couple of important
properties in Section 6.2 which are also referred to in subsequent chapters. In
Section 6.3, we develop a stateless CQE mechanism for our basic case and formally
show that it preserves confidentiality in the sense of Definition 5.4. Moreover, we
propose an efficient algorithmic implementation for this mechanism in Section 6.4.
Finally, we shortly summarize our contributions in Section 6.5.

This chapter is based on the work of Biskup and Lochner [BL0O7], who originally
investigated stateless CQE for select-queries.

6.1 Simple Query and Policy Languages

For our basic approach, we assume that the database user may only ask for full tuples.
More precisely, given a database instance r and a tuple u, the user may ask whether r
contains p or not. Here, u must be a tuple of n constants where n denotes the number
of attributes of the relation as declared in the relation schema. Other forms of queries
are not allowed for now. We call these queries select-queries® in the following because
in terms of the relational algebra, evaluating such a query is equivalent to performing
a selection operation on a relation. According to the assumption in Section 5.1,
however, our approach is logic-based rather than algebra-based and consequently we
express queries in relational calculus.® As an example for select-queries, consider the

5More precisely, we even only consider closed select-queries, that is, queries that can be answered
by true or false. For conciseness, however, we shortly refer to select-queries in the following.

5Tt is well known (see, for example, [AHV95]) that relational algebra and relational calculus are
equivalent in terms of expressiveness.
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6 A Basic Case: Select-Queries

relation schema (R, ABC, ¥): The user may express queries of the form ® = R(a,b,c)
where a, b, ¢ denote constant symbols.

When interpreting a select-query in a more general way as a logical formula, it is
a sentence, since it does not contain free variables. We will therefore speak of it as
an R-sentence. The language of R-sentences used as query language in this chapter
is equivalent to the set of n-ary tuples where n is the number of attributes of the
relation R.

Definition 6.1 (R-sentences). The language L is defined by
LR = {R(Vl, ,Vn) ’ Vi € Const}.

Remark. The language £ is also equivalent to the set of ground atoms of the
underlying first-order logic.

The security administrator also needs a language that defines the syntax of
potential secrets. In this chapter, we assume that a potential secret is either an
R-sentence from the language £ or an existential R-sentence which is basically an R-
sentence that additionally contains existentially quantified variables. As an additional
restriction we demand that each of these variables may not occur more than once
in an element of the language. Interpreted as queries, existential R-sentences may
also be referred to as select-project-queries because in terms of the relational algebra
an existential R-sentence can be expressed by selection and projection operations.
Considering the schema (R, ABC, ¥) again, an example for an existential R-sentence
is (3Xa)R(Xa,b,c); it corresponds to the selections B = b and C = ¢, and the
subsequent projection to attributes B and C.

The following definition formally describes the language of existential R-sentences
which is equivalent to the set of partial tuples over the relation R. It is used as policy
language in this chapter.

Definition 6.2 (Existential R-sentences). The language £ar is defined by

Lr =1 (3X1)...3Xn)R(v1,...,vp) | 0 < m < n,
X; € Var,
v; € Var U Const,
{Xl,...,Xm} g {Vl,...,Vn},
vi€ Var = v; = Xj for aje{l,.., m},
vi,vj € Var = v; # v; }.

Remark. Considering a set of existential R-sentences, for example, a set of potential

secrets, we assume the elements of the set to be “variable-disjoint”, unless otherwise
stated. That is, each variable occurs at most once in the whole set.
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Note that Zf is a subset of £5r and consequently elements from £ are existential
R-sentences, too. An existential R-sentence refers to exactly one relation which we
call the underlying relation. Analogously, the associated relation schema is the
underlying schema. We may interpret an existential R-sentence as a generalized
tuple, that is, a tuple possibly containing null values of the kind “value existing
but unknown”. We therefore adapt the square bracket notation from Section 2.1 for
existential R-sentences: The value of an attribute A (of the underlying relation R)
in an existential R-sentence x will be denoted by x[A] from now on. Moreover, we
use the notation select(y) for the set of attributes being instantiated with a constant
from Const in x. When we replace the occurrence of zero or more constants in an
existential R-sentence y with (pairwise different) existentially quantified variables,
the resulting existential R-sentence x" is called a weakening of x. We illustrate these
notions with the following example.

Example 6.3. Consider the relation schema (R, ABC, ) and two existential R-
sentences:

x1 = (3Xa)R(Xa,b,c)

X2 = (3Xa)(IXg)R(Xa, Xz .c)

The underlying relation of both x; and x2 is R; consequently, (R, ABC, ) is the
underlying schema of x; and y2. The existential R-sentences may be interpreted as
the tuples R(—,b,c) and R(—, — ,c), respectively, where “—” denotes an existing but
unknown value. Using the square bracket notation, we can refer to the attribute
values of x1 and yo:

X1[A] = Xa, xi1[B]=b, xi[C]=c,
x2[A] = Xa,  x2[B] = X, x2[C]=c.

The attributes being instantiated with constants of x; and x2 are select(x1) = {B,C}
and select(x2) = {C}, respectively. Finally, x2 is a weakening of x; because x2 can
be constructed by replacing b in x; with the existentially quantified variable Xg. ¢

The query language Zr and the policy language .Z3r are clearly rather restrictive,
but there is one crucial benefit: unlike with more expressive query and policy
languages, we need not to impose any restrictions on the relation schema, but
confidentiality can be preserved regardless of the declared schema constraints. We
will formulate this insight in the context of Theorem 6.12 in Section 6.3.

6.2 Properties of Existential R-Sentences

An important property of the language .Z3r of existential R-sentences is that no
“sophisticated implications” are possible within this language. That is to say that each
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formula from Z5r being implied by a set of formulas from Z5g is already implied
by a single element of this set of formulas. We state this property more precisely in
Lemma 6.8, but prior to this we define and illustrate our notion of relevance between
two existential R-sentences which will be used throughout this thesis, and we present
Lemma 6.7, which captures an important statement about existential R-sentences
that are true in a database instance.

Definition 6.4 (Relevance between existential R-sentences). Consider two
existential R-sentences x and X' with the same underlying relation R. We say
that x is relevant for x' if for every A € select(x) it holds that x'[A] = x[A].

For existential R-sentences, the notion of relevance is closely related to the logical
implication, as stated by the following lemma.

Lemma 6.5 (Relevance and logical implication). An existential R-sentence x
is relevant for another existential R-sentence X' if and only if X' = x.

Proof. First, we show the “="-part. Let x be relevant for x’, which means that
X'[A] = x[A] for every A € select(x) (6.1)

according to Definition 6.4. By the definition of select(x) and the structure of
existential R-sentences, we know that

X[B] € Var for every B ¢ select(x) (6.2)

and, moreover, that each such variable is existentially quantified in x. From (6.1),
(6.2), the structure of existential R-sentences and the definition of logical implication,
we then conclude that x' = x.

Second, we show the “<”-part and therefore assume that x’' = x. Thus, again by
the structure of existential R-sentences and the definition of logical implication, we
know that each constant occurring in x must occur in x’ at the same position. More
formally: x'[A] = x[A] for every A € select(x), which is, according to Definition 6.4,
equivalent with y being relevant for y’. O

The notion of relevance according to Definition 6.4 is now illustrated by the
following example.

Example 6.6. Let x, X’ and x” be three existential R-sentences with the same
underlying schema (R, ABC, ()):

X = R(ab,c)
X’ = (HXA)R(XA,b,C)
X” = (HXC)R(a,b,Xc)
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We first determine for each of these existential R-sentences the attributes that are
instantiated with constants:

select(x) = {AB,C}
select(y’) = {B,C}
select(x") = {A B}

Now we can see that x’ is relevant for x because x'[B] = x[B] and x'[C] = x[C].
Likewise, x” is relevant for x because x”[A] = x[A] and x”[B] = x[B]. However, x”
is not relevant for x’ because x”[A] # x'[A]. O

An important property of existential R-sentences is captured by Lemma 6.7: If an
existential R-sentence is true in a database instance r, then there exists an R-sentence
that is true in r as well and implies the existential R-sentence. We will need this
result in the following whenever reasoning about existential R-sentences being true
in the considered database instance.

Lemma 6.7 (Existential R-sentences and ground atoms). Consider an in-
stance r and an existential R-sentence x € Z3r. It holds that r =nm x if and
only if there exists a ground atom xg € Lr with r =m xg and Xxg = X-

Proof. If x is a ground atom, the lemma obviously holds by setting xg := x. We
thus assume that y is not a ground atom, that is, x ¢ -Zg, and prove both directions
of the lemma separately.

First, we show the “="-part: Consider x = (3X1) ... (3X;))R(vi, ... ,vn) and let
rEm X (6.3)
By the semantics of existential quantifiers,

r =m x if and only if (6.4)

there exists a variable assignment « such that r =m a(R (v, ..., vp)).

Observe that a(R(v1,...,vs)) € Zr is a ground atom and set xg := a(R(v1,...,vs)).
From (6.3) and (6.4) it then follows that r =pm x4 for the ground atom xg. It remains
to show that x, = x but this immediately follows from Lemma 6.5.

Second, we show the “<«="-part: Consider a ground atom x, with

rEm Xe (6.5)

and

Xg = Xx- (6.6)
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By the definition of logical implication, (6.6) can also be written as
for all instances r : if r |=m X then r =um x. (6.7)
Together with (6.5), we conclude that r F=pm x. O

As already indicated at the beginning of this section, we now show that sets
of existential R-sentences only allow for “trivial” inferences in the sense that an
existential R-sentence that is implied by a set of existential R-sentences is already
implied by a single element of this set.

Lemma 6.8 (Logical implication for existential R-sentences). Let the for-
mulas x and X1, ..., Xm be existential R-sentences from Lar. Then the following
properties are equivalent:

1LoAx1 o xm}t F X

2. There ezists a x;i € {X1,..., Xm} such that x is relevant for x;.
Proof. First, we show “1. = 2. by contraposition, that is, we assume that
X is not relevant for any x; € {x1,..., Xm} (6.8)

and show that {x1,..., xm} & x follows. From (6.8) we conclude with Lemma 6.5
that x; = x for every x; € {x1, ..., Xm}, and consequently x and x; “disagree” on at
least one constant attribute value. It follows that

a(X7) = X (6.9)

for an arbitrary variable assignment o, where x} denotes the matrix, that is, the
quantifier-free part of the existential R-sentence Y;.

We now construct a witness instance r against property 1 by completing the
elements of {x1,..., xm} to ground atoms. For this purpose, we choose a variable
assignment a and identify r with the set {a(x7), ..., a(x},)}. Consequently,

riE=m alx;) forevery i€ {l,..,m} (6.10)

and r [Em X for every ground atom xg ¢ {a(x7), ..., a(x},)}- Since, by the semantics
of the existential quantifier, a(x?) = x; for every i € {1, ..., m}, we get

rEm {x1, - Xm} (6.11)

from (6.10). Moreover, by construction of r and (6.9), we know from Lemma 6.7 that

r M X (6.12)
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Finally, from (6.11), (6.12) and the definition of logical implication, we conclude that
{x1, - xm} = x-

Second, we show “2. = 1. and therefore assume that y is relevant for a x; €
{x1, .-+ Xm}. From Lemma 6.5 it follows that x; &= x. Then, by monotonicity of
first-order logic, {x1, ..., Xxm} F x holds as well which completes the proof. O

Since a positive (ordinary) evaluation of a query ® € Zg C Z4g in the sense of
Definition 2.2 is an existential R-sentence, the lemma can basically be interpreted as
follows:

In the absence of further knowledge, the database user will be able to
infer an existential R-sentence from the set of positive query answers if
and only if already a single positive answer would enable him to do so.

The database user, however, may exploit further knowledge when trying to disclose
a secret: If a query is false in the database instance, the ordinary query evaluation
according to Definition 2.2 will return the negated query as an answer; moreover, in
Section 5.1 we assumed the database user to know the declared semantic constraints
of the database (which are expressed in form of functional dependencies). The
following lemma is an adaption of Lemma 6.8 considering every form of information
the database user might learn when receiving answers from the database.”

Lemma 6.9 (Implications of R-sentences and FDs). Let F = Fy U Fo U F3 be
a finite and consistent set of formulas such that Fy C Zr, Fo C {—x | x € Zr},
and F3 is a set of FDs. Then for an existential R-sentence V € £5g, the following
properties are equivalent:

1. FEV.
2. There exists a x € Lr with x € F and x = V.

Proof. First, we show “1. = 2.7 by contraposition and therefore assume that for
every x € Zr it holds that

X¢EF or xpFEWV. (6.13)

We now construct a witness instance r against property 1, that is, r v F and
r Em W, by identifying r with Fp; in other words:

re=vx i x € F, (6.14)
rf=m x  otherwise.

"Note that, in contrast to Lemma 6.8, we do not consider arbitrary existential R-sentences in
Lemma 6.9 but only those that represent full tuples, that is, R-sentences.
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6 A Basic Case: Select-Queries

Since F is finite, 7 must be finite, too, and thus r may be interpreted as a finite
relation. We now show that

rew F (6.15)
by exemplarily considering a x € F via case distinction:

1. x € F1. By (6.14) it holds that r =m x.

2. x € F». By the definition of Fy, x is of the form —Y’ with ' € Zg. Since F is
supposed to be consistent, there is no formula in F; whose negative complement
is in F,. Thus, by the construction of r, r f5m X’. By the definition of the
E=m-operator, it then follows that r =pm =Y/, leading to r E=um x.

3. x € F3. We perform an indirect proof and assume that the FD y = A — B
(with A, B denoting sets of attributes) is violated in r (r M x). For an FD
to be violated, there must exist two tuples u1, p2 in r that correspond on the
(constant values of the) A-attributes but differ on (at least one value of) the
B-attributes. Then the set {1, 2, x} is inconsistent and, since {p1, p2, x} C F,
F must be inconsistent, too. This, however, contradicts the precondition that
F is a consistent set.

This completes the proof of (6.15). It remains to show that r =y W. We can derive
from (6.13) that x = V¥ for every x € Fi, so (by Lemma 6.5) there does not exist a
X € Fi such that WV is relevant for x. By applying Lemma 6.8 we can conclude that
F1 =V and therefore, by (6.14), r fem V.

Second, we show “2. = 1. By x € F, x = V¥ and the monotonicity of first-order
logic, it obviously follows that F = W. O

Again, we provide an intuitive interpretation of Lemma 6.9:

The database user will be able to infer an existential R-sentence from the
knowledge he gets during the answering of queries (which are supposed to
be full tuples, that is, R-sentences) if and only if already a single positive
answer would enable him to do so.

Remember that, in this chapter, a confidentiality policy is a set of existential
R-sentences. Consequently, the above interpretation of Lemma 6.9 already gives a
hint on how to develop a confidentiality-preserving query answering mechanism by
considering the answers to the user’s queries isolatedly, which enables us to avoid
the user log. We elaborate on this question in Section 6.3.

Finally, observe that, due to the structure of existential R-sentences, a negated
existential R-sentence cannot be exploited to infer another (positive) existential
R-sentence. We will need this property to rule out inference possibilities in the
context of the confidentiality proof in Section 6.3.
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Lemma 6.10 (Implications of negated existential R-sentences). Let x1 and
X2 be existential R-sentences. Then, independent of the actual definition of x1 and
X2, it holds that X1 F& X2-

Proof. We assume the contrary, —x; |= X2, for some existential R-sentences x; and
X2. By the definition of logical implication this can also be written as

for all instances r : if r =pm -y then r =m xo. (6.16)
By the semantics of first-order logic, (6.16) is equivalent to
for all instances r : if r jEpm x1 then r =m x2. (6.17)

Now consider the empty instance r = (). Since no ground atoms are true in r, it
follows by Lemma 6.7 that r =M x1 and r f=m x2. This is a contradiction to (6.17).00

6.3 Confidentiality-Preserving Stateless CQE

From the intuitive interpretation of Lemma 6.9 in Section 6.2, we can derive a
mechanism for answering a sequence of user queries that preserves confidentiality
regarding a declared confidentiality policy. Whenever a single query of the sequence
is harmless, that is, when it (considered isolatedly) does not disclose one of the
declared secrets, it is answered correctly; otherwise, the answer to the query is
refused. Observe that this mechanism is stateless in the sense that no log file for the
assumed user knowledge is needed any longer. Moreover, instead of (costly) theorem
prover calls, (efficient) access control is sufficient to enforce the mechanism (refer to
Section 6.4 for details).

We describe a general form of our mechanism (for queries from Z4g) in the
following Definition 6.11 and afterwards prove it confidentiality-preserving when
considering only queries from Zg in Theorem 6.12. In Chapter 7, we will reuse
the mechanism from Definition 6.11 and prove it confidentiality-preserving also for
queries from Z5r under certain assumptions.

Definition 6.11 (Stateless CQE for existential R-sentences). The stateless
CQF scqe is a specific modified query evaluation according to Definition 5.2. Given a

policy pot_sec C LaR, the answers ansy, anss, ... to a query sequence Q = (®1, Py, ...),
with 1, o, ... € LR, are determined subject to the censor function

censorar(pot_sec,®) := (exists V)|V € pot_sec and ¢ = V].
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The stateless CQFE scqe is then defined as follows:
scqe(Q)(r,pot_sec) := (ansy, ansa, ...)  with

ans; := 4f censorag(pot_sec,P;)
then mum
else eval™(®;)(r)

Remarks. In order to avoid meta-inferences (see Chapter 3), the censor of scge should
actually not only check if the positive formula ¢ allows for harmful inferences but
also if the negative formula —® does. From Lemma 6.10, however, we know that in
the setting of Definition 6.11 such inferences cannot occur when considering negative
formulas. Even in combination with the user log, the formula —=® does not enable
the user to draw harmful inferences. This will be proven formally in Theorem 6.12
for R-sentences and in Theorem 7.10 for existential R-sentences.

Moreover, we need not to propose an “improved” version of scqe (like in Section 3.2
for stateful CQE), since the possible inconsistency during the censor evaluation
cannot occur for scqe.

The following theorem shows that scqe, as defined above but with % as query lan-
guage, is an effective inference control mechanism, that is, it preserves confidentiality
with respect to the declared policy.

Theorem 6.12 (scqge preserves confidentiality under 2R). Consider an in-
stance r, a confidentiality policy pot_sec C ZLar and a query sequence Q =
(b1, Dy, ...) with &1, Pq,... € Lr. Moreover, let logy = ¥ be the a priori user
knowledge and assume that (r,pot_sec) is admissible with respect to log,. Then the
stateless CQE scqe(Q)(r,pot_sec) is secure in the sense of Definition 5.4.

Proof. We consider a finite prefix Q" = (&1, ®g, ..., ®,,) of the query sequence Q and
a potential secret W € pot_sec. Since pot_sec is assumed to be known to the user,
we have to find an alternative instance r’ with (r/,pot_sec) being admissible with
respect to log, and r’ satisfying the following properties (according to Definition 5.4):

1. scqe(Q')(r,pot_sec) = scqe(Q')(r',pot_sec);
2. eval*(V)(r') = —V;

We start by constructing an auxiliary set log capturing the a priori knowledge of
the user and the non-refused answers during the answer of the query sequence Q'

log := logyU{ans; | i €{1,...,n}, ans; # mum} (6.18)
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We show by an indirect proof that log does not imply the potential secret W, and
therefore start with assuming the contrary:

log = V. (6.19)

Note that log meets the requirements of the set F in Lemma 6.9 which, together
with (6.19), then leads to

ans; =V (6.20)

for a positive ans; € log. By (6.18), ans; is the non-refused answer to query ®; and
thus we get

eval®(®;)(r) = V. (6.21)

Since eval*(®;)(r) € {®;, =P} and =, = ¥ by Lemma 6.10, (6.21) can be reduced
to

O =W (6.22)

According to Definition 6.11, this leads to ans; = mum, contradicting that ans; is a
non-refused answer. Consequently,

log = V. (6.23)

By (6.23) and the definition of the =-operator, there exists a database instance r’
with the following properties:

r' l=m log  and (6.24)
Fbem . (6.25)

Since log = ans; for every ans; # mum by (6.18), we can derive from (6.24) that

r' l=m ans; for every ans; # mum (6.26)
which is, by Definition 2.2, equivalent to

eval*(®;)(r') = ans;. (6.27)

Furthermore, note that according to the censor definition (Definition 6.11) the
decision whether or not an answer has to be refused is independent of the actual
database instance; it consequently follows that

scqe((P;))(r,pot_sec) = (mum) if and only if (6.28)
scqe({®;))(r',pot_sec) = (mum).

Now we are ready to complete the proof:
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(arbitrary FDs)

Al A A3 .. Aol Ag Ai A A3 ... Al A

(a) schema and query restrictions (b) policy restrictions

Figure 6.1: Visualization of the restrictions for select-queries.

e Since scqge either returns the correct answer to a query or refuses the answer,
(6.27) together with (6.28) imply the first property: scqe(Q’)(r,pot_sec) =
scqe(Q')(r',pot_sec).

e By (6.25), also the second property is satisfied: eval*(W)(r') = -W.

e By (6.24), (6.18) and log, = X, r’ satisfies the semantic constraints ¥ and is
thus an instance of the assumed relation schema.

e Finally, the pair (r/,pot_sec) is admissible in the sense of Definition 5.3 (for
pot_sec being known):

— (6.24) and (6.18) lead to r' v logy;
— (6.25) together with (6.18) yield log, ~ W (for every W € pot_sec).

As a result, r’ serves as an alternative instance in the sense of Definition 5.4 and
thus scqge is secure. O

From Definition 6.11 it is easy to see that stateless CQE considers each query
of a sequence isolatedly and thus no user log is needed any longer. The insight
that confidentiality is preserved in spite of that, as expressed in Theorem 6.12, is a
first step in enforcing the declarative goals of inference control with the operational
means of access control. After having enhanced the stateless CQE in the subsequent
chapter, we will develop an algorithmic implementation of our approach in Part 111
of this thesis.

For each combination of query language and policy language being investigated
in this thesis, we will provide a visualization of the respective restrictions that
guarantee the preservation of confidentiality. In general, these restrictions may affect
schema design, query language and policy language. In Figure 6.1, the restrictions
for confidentiality-preserving answering of select-queries by means of a stateless
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CQE are visualized by means of a “generic” relation with attributes Aj, As, ..., Ap;
Figure 6.1(a) visualizes schema and query language restrictions, whereas Figure 6.1(b)
visualizes policy language restrictions. Actually, for select-queries the schema design
does not need to be restricted at all, thus arbitrary FDs may be declared. The
query language must be restricted to (full) tuples, which is indicated by the gray
table row in Figure 6.1(a). The policy language must be restricted to existential
R-sentences, that is, parts of tuples; this is indicated by the interrupted gray table row
in Figure 6.1(b), where the gray parts indicate those positions that are instantiated
with a constant (all other positions are assumed to be instantiated with existentially
quantified variables).

6.4 Complexity Considerations

As stated in Section 5.1, in this thesis we aim at developing an inference control
mechanism that is efficiently implementable. In Chapter 9, we will present algorithms
for our approach and show that they are efficient in the sense of computational
complexity. In this section, we want to justify that our investigations are headed
in the right direction, that is, we roughly outline an efficient implementation of
the censor censorgr as introduced in Definition 6.11. In the following, we consider
isolated queries rather than query sequences. Moreover, we adopt the assumptions
from Section 6.3, that is, we consider queries and potential secrets from the languages
Zr and L3R, respectively.

According to Definition 6.11, answering a query is actually a process that consists
of two steps:

1. The censor is invoked;

2. a) in case the censor returns true: mum is returned,

b) otherwise: the query is answered ordinarily.

We first analyze the censor invocation. In the context of stateful CQE approaches, the
censor has to check whether the (uncontrolled) answer to the query in combination
with the user log enables the user to compute harmful logical implications. The
decision problem for logical implication is, however, known to be costly or (for
first-order logic) even undecidable in general.

Although Definition 6.11 suggests that in the scenario of Section 6.3 the censor still
has to check for logical implications, we know from Definition 6.4 and Lemma 6.5
that this inference control can in fact be reduced to some kind of pattern matching
as explained in the following example.
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Example 6.13. Assume (R, U, ()) with U« = {A, B, C} as underlying relation schema
and let a query and a policy be given by

® = R(a,b,c) and
pot_sec = {V} with V= (3Xa)R(Xa,b,c),

respectively. According to Definition 6.11, censorgg(pot_sec,®) has to check if
® = W when answering ®. By Definition 6.4 and Lemma 6.5, ® = WV is equivalent to
®[A] = V[A] for every A € select(V) which is effectively checked by the censor:

select(V) = {B,C}
®[B] = b= VI[B] V is relevant for @, the censor returns true.
®[C] =c=V|[(]

This test can obviously be performed in linear time in the number of attributes. ¢

The above given Example 6.13 assumes a singleton policy and thus oversimplifies
the censor decision. If the policy contains multiple elements, a pattern matching must
be carried out for each of these elements. Remember that the policy elements may
be interpreted as generalized tuples (see Section 6.1), and therefore we assume these
elements to be stored as a relation instance. More precisely, for each relation schema
and the corresponding instance of a database we assume an additional schema and an
instance, respectively, that represents the declared policy. We call these additional
schema and instance classification schema and classification instance, respectively.
Formally, they are defined as follows.

Definition 6.14 (Classification schema). Let Rs = (R, U,X) be a relation
schema with the set Const of constants. The classification schema of Rs s given by
RECt=5¢¢ = (RPot—sec 1f ()} and ConstP®'—**¢ = Const U {#} such that # ¢ Const.

Definition 6.15 (Classification instance). Let Rs be a relation schema with the
classification schema R’Swt*sec and pot_sec C Zar a policy. The classification
instance with respect to pot_sec, denoted by rP°t—s¢, is defined as follows:
ppot_sec ._ { Rpot,sec(vavék, ’v;’k) |

exists W = (3X1) ... 3Xm)R(v1,v2, ...,vy) € pot_sec

such that for every i € {1,2,...,n}:

vi € Const = v = v;,

vieVar=vi=# }

Example 6.16. Reconsidering relation schema and policy from Example 6.13, the
classification instance rP°*—*¢¢ emerges from pot_sec by replacing each occurring
variable with the “new” constant symbol #: rPot—6¢ = {RPOt—ec(4 b c)}. O
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Given a query @, a policy pot_sec, and the corresponding classification instance
rPot—sec " an implementation of censorsg has to check if there is a tuple pu € rPet—sec
such that ®[A] = u[A] if u[A] # #. It is easy to see that this is the case if and only
if there exists a W € pot_sec such that WV is relevant for ®. We now sketch two
algorithms for this relevance check.

The first algorithm scans through the tuples of rP°'—¢¢ and checks whether the
tuple p under consideration satisfies the condition for relevance (®[A] = plA] if
w[A] # #). With n denoting the number of attributes of the underlying relation
and m denoting the number of tuples in rP°*—¢ that is, the size of the policy, the
complexity of this algorithm can be estimated by O(m - n).

The second algorithm constructs the set Py of all tuples that satisfy the condition
for relevance; this can be done by successively replacing each subset of constants in
& with #, for example, if & = R(a,b,c) then

Po ={ R(a,bc), R(#.b.c), R(a,#.c), R(a.b#), R(#.#.c), R(#.b.#),
R(a.#.#), R(F#.#.4#) 1

Then the algorithm checks if at least one of the tuples in Pg occurs in rPt—¢¢; if so,
it returns true as censor decision. We estimate the complexity of this algorithm in
two steps:

e The complexity of the construction of Py depends on the number n of attributes
in the underlying relation. For each subset of these attributes, an element is
added to Pg. Consequently, |Pe| = 2" and thus the complexity of this step can
be estimated by O(2").

e For analyzing the second step, we assume that the classification instance rPet—sec
is indexed by a B-tree. It has been shown by Bayer and McCreight [BM72]

that the height h of a B-tree is bounded by h <1+ log, (mT‘Ll), where k is

the minimal number of entries in each node of the tree® and m is the number
of tuples in rP°'—¢, In the worst case, the B-tree must be searched for each
element of Py. The complexity for a single search operation is bounded by
the height h of the B-tree and thus the complexity of the entire second step
is bounded by 2" - (1 + log, (’"TH)) Note that k is an implementation-
dependent constant, so the complexity of the second step can be estimated by
O(2" - log(m)).

Altogether, the complexity of the proposed censor algorithm can be estimated by
O(2" + 2" - log(m)) for a single query.

Whether the first or the second algorithm should be chosen obviously depends on
the size of the parameters m and n. Assuming that the optimal choice is made, the

8More precisely, each node of the B-tree holds between k and 2k entries.

61



6 A Basic Case: Select-Queries

censor complexity is O(min{m - n,2" + 2" - log(m)}). According to Definition 6.11,
censorgr has a policy pot_sec and a query & as input parameters. In particular, we
do not regard the database schema as input but assume it to be set up in advance
by the database administrator. Thus, the number n of attributes, which is part
of the database schema, is considered a constant hereafter. As a consequence, the
complexity of the censor algorithm simplifies to O(min{m, log(m)}) = O(log(m)).

Having estimated the complexity of the censor, it remains to investigate the
complexity of the ordinary query evaluation which is performed if the censor returns
false. The evaluation of a select-query is performed by scanning the tuples of the
relation instance r for the correct instantiation of the selection attributes. Provided
that the tuples of r are indexed by a suitable data structure, for example, a B-tree,
the ordinary evaluation of a query ® € Zg can thus be carried out in time O(log(|r|)),
where |r| denotes the size of r, that is, the number of tuples in the instance.

We summarize the insights of this section in the following proposition.

Proposition 6.17 (scge is efficient). Let Rs = (R,U,X) be a relation schema, r
an instance of Rs, pot_sec C Aar a policy of size m, and ® € ZLr a query. The
controlled evaluation of ® according to Definition 6.11, scqe((®))(r,pot_sec), takes
time O(log(m) + log(|r|)).

6.5 Summary

In this chapter, we investigated a scenario for stateless CQE in relational databases.
This scenario is rather basic which manifests in restricted query and policy languages.
More precisely, the proposed query language enables a database user to ask for full
tuples, that is, to express (closed) select-queries; the proposed policy language is the
set of existential R-sentences, that is, it enables a security administrator to protect
parts of tuples.

We identified and formally proved some useful properties of existential R-sentences
and developed a stateless CQE mechanism. This mechanism basically reduces the
computation of inferences to a simple pattern matching algorithm. We showed that
our mechanism is both secure and efficient, that is, confidentiality-preserving and
implementable by a logarithmic-time algorithm, respectively.
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Chapter 7
Enhancements of the Languages

In the previous chapter, we considered a basic case for the preservation of confi-
dentiality under inferences in relational databases. We formally proved that our
approach is confidentiality-preserving under the assumption of simple policy and
query languages, thereby restricting the security administrator as well as the user
who sends queries to the database in their expressive means.

From a practical point of view, the assumed restrictions are not acceptable: The
proposed languages for queries and elements of the confidentiality policy are not
expressive enough with regard to a convenient database management system. In
the following, we shortly sketch some desirable enhancements of the restricted
languages from the view of the database user as well as from the view of the security
administrator.

The Database User The database user is only able to express elementary queries
with a rather coarse granularity so far. Particularly, he cannot express the following
kinds of queries with the means at his disposal:

e Select-project-queries, that is, queries that can be expressed by using the
selection and the projection operation in the relational algebra. In the relational
calculus, selection is expressed by constants and projection is expressed by
existentially quantified variables. For example, regarding the relation ACC
from Example 5.1, the user possibly wants to know if bank A has a client called
Smith. In terms of relational calculus, this can be expressed by

(IXacc_no)(3Xsar)ACC(bankA,Xacc_no.smith,Xpar).

The query language Zr that we investigated in Chapter 6, however, does not
enable the user to express queries containing existentially quantified variables.

e Boolean queries, that is, queries that are composed from elementary (select-
project-) queries using Boolean operations. In the banking example, the user
might want to find out if client Jones has accounts at bank A as well as at
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bank B.? This can be expressed in relational calculus as follows:

(HXACC,NO) (E]XBAL)ACC(bankA,XACCiNO ,jones,XBAL)/\
(HXACC,NO) (EXBAL)ACC(bankB,XACCiNo ,jones,XBAL)

Again, Zr does not allow to express this kind of queries.

e Open queries, that is, queries with free variables, asking for variable assignments
that make the query true in the database instance. Regarding Example 5.1
again, the database user possibly wants to retrieve all clients of bank B who
have an account balance of $20,000. The corresponding relational calculus
query is

(HXACC,NO)ACC(bankB,XACC,NO,X,ZCCiH,QOOOO)

with X A(CC,H denoting a free variable. This query is not expressible in Zr
either.

The Security Administrator The security administrator is only able to express
existential R-sentences as secrets so far. It is, however, desirable, that he has a more
expressive language at his disposal. For example, consider the following issues:

e Boolean secrets, that is, Boolean combinations of existential R-sentences. Re-
garding Example 5.1, the security administrator might want to protect that
client Anderson has an account at bank A or at bank B.'° This may be expressed
using disjunction:

(ElXACC,NO) (HXBAL)ACC(bankA,XAcciNO,anderson,XBAL)\/
(ElXACC,NO) (EIXBAL)ACC(bankB,XAcciNO,anderson,XBAL)

So far, however, the security administrator is not allowed to use disjunction.

e Secret schemas, that is, formulas that cover several secrets at a time as some
kind of “template”. In the banking example, the ACC relation is possibly
published with the restriction that no account numbers from bank A must be
readable. Instead of specifying a secret for every (potential) client of bank A,
the security administrator could specify a single formula capturing the desired
information by using free variables:

(3Xgar)(3Xacc_H)ACC (bankA Xhcc noXacc_H . XeaL)

9Disjunctive queries like “Does client Jones have an account at bank A or at bank B?” turn out to
be harmful, see Subsection 7.2.1.

10Conjunctive secrets like “Client Anderson has an account at bank A and at bank B.” turn out to
be harmful, see Subsection 7.2.2.
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This formula represents the set of secrets that emerges from replacing X ECCJ\,O
with every possible constant. So far, however, the security administrator is not
allowed to use free variables.

In general, these lists of enhancements for the query language and the policy
language raise no claim to completeness. However, for the parameters fixed in
Section 5.1, we consider this selection of enhancements reasonable. For example,
considering real-world database applications, it would also be desirable to express
join queries which are outside the scope of this thesis. In Section 11.2, however, we
provide some reflections on how to deal with join queries.

In the following, we aim at developing a confidentiality-preserving query answering
system for relational databases that supports the kinds of queries and potential
secrets sketched above. Therefore, we will investigate several enhancements of our
basic languages in the following Sections 7.1-7.5. Our goal is to substantially relax
the restrictions for the database user and the security administrator on the one hand
and to maintain the preservation of confidentiality on the other hand.

In reaching this goal, as we shall see, relaxing one restriction often requires us
to tighten another restriction. This makes it difficult to determine a “maximal”
enhancement of our languages that improves expressiveness and allows for an efficient
preservation of confidentiality at the same time. Nevertheless, in Section 7.6 we
present a tabular summary of our achievements which outlines the space of possibilities
being investigated in Sections 7.1-7.5.

7.1 Select-Project-Queries

First, we consider an enhancement of the query language referring to the granularity
of expressible queries. Instead of restricting the expressiveness to the tuple level, as
in Chapter 6, we consider the next finer level—the “partial tuple level”. As already
explained in Chapter 6, a partial tuple, expressed by an existential R-sentence, may
be considered as a projection of a full tuple to a subset of the attributes. Therefore,
partial tuple queries are also called select-project-queries. For example, considering a
relation R over the attributes ABC, the database user can express queries of the form
® = (3Xg)R(a,Xg,c) where a, ¢ denote constant symbols and Xg denotes a variable.
This query asks whether or not the value combination (a,c) occurs as instantiation
of the attributes A and C in the actual database instance.

In Subsection 7.1.1, we point out the arising problems when enabling the user to
express existential R-sentences as queries. Moreover, we develop a solution to these
problems in form of additional schema- and policy-restrictions for our stateless CQE
mechanism. In Subsection 7.1.2, we formally show that under these restrictions the
stateless CQE is confidentiality-preserving.
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Figure 7.1: Application of FDs.

Select-project-queries have originally been investigated by Biskup, Embley and
Lochner [BELO0S8|, whose work serves as a basis for this section.

7.1.1 Query Language and Arising Problems

We now assume that the query language as well as the policy language are given by
LAr, that is, the language of select-project-queries, as introduced in Definition 6.2.

In contrast to the basic query language containing only select-queries, as inves-
tigated in Chapter 6, functional dependencies play a major role in the context of
select-project-queries. More precisely, when the database user is able to express
select-project-queries, he might exploit the declared FDs together with the existential
R-sentences he receives as answers to disclose a potential secret. We say the user
applies FDs to existential R-sentences. For example, consider Figure 7.1: x1 and x2
are existential R-sentences agreeing on the K-attributes which are supposed to be
instantiated with constants. Applying the FD o = K — N; Ns now means to “collect”
the Ni- and Ns-constants from y; and yo in a new formula x, as depicted in the
figure. Obviously, N; and Ny must not be instantiated with different constants in
x1 and Yo, since otherwise the FD ¢ would be violated and thus not be applicable.
These notions shall now be defined formally and illustrated by an example afterwards.

Definition 7.1 (Compatibility and applicability of FDs). Consider two exis-
tential R-sentences x1, X2 € Lar with the same underlying relation schema Rs and
an FD o. We call o compatible with x1 and xo if all atiributes occurring in o are
attributes of Rs, that is, lhs(c) U rhs(c) CU. Moreover, o is applicable to x; and
x2 if

e o is compatible with x1 and X2,

e x1[K] = x2[K] € Const for all attributes K € lhs(c),!! and

T x1[K], x2[K] € Var then x1[K] # x2[K] due to the remark to Definition 6.2.
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o x1[N]| = x2[N] for all attributes N € select(x1) N select(x2) N rhs(o).

The result xo of applying o to x1 and X2 is defined as follows:'?

) xalA] if A € select(x1),
Xol Al := { X;[A] otherwise. 1

Example 7.2. Let Rs = (R,U, ) be a relation schema with & = {A, B, C, D} and
X1, ---, X4 € L3R existential R-sentences with the underlying schema Rs:

x1 = (3Xp)R(a,b,c,Xp)
X2 = R(a,c,b,d)

xs = (3Xc¢)R(a,b,Xc,d)
x4 = (3Xg)R(a,XB,c,d)

Now consider the FD ¢ = AB — CD which is compatible with x1, ..., x4 because

lhs(o) U rhs(o) = {A, B, C,D} CU. Then for example the following statements with
respect to applicability hold:

e o is applicable to x1 and x3 because
— Ihs(o) = {A, B} and x1]A] = x3[A] as well as x1[B] = x3[B];
— select(x1) N select(x3) Nrhs(c) = {A, B, C}N{A B, D}n{C,D} =0.
The result of applying o to x1 and x3 is x» with x[A] = x1[A], x+[B] = x1[B],
Xo[C] = x1[C] and x,[D] = x2[D], that is, xo = R(a,b,c,d).
e o is not applicable to x; and x2 because B € lhs(c) but x1[B] # x2[B].
e o is not applicable to x; and x4 because B € lhs(o) but x4[B] ¢ Const.

(In fact, o is only applicable to x1 and ys in this example.) %

The application of an FD is “logically sound” in the sense that the result of such
an application is logically implied by the FD and the existential R-sentences it is
applied to. This is captured by the following lemma.

Lemma 7.3 (FD application is sound). Let x1,x2 € ZL3r and o an FD being
applicable to x1 and xo. Then for the result of applying o to x1 and x2, denoted by
Xo it holds that {x1,x2,0} E Xo-

20bserve that, due to the definition of applicability, the application of an FD is (up to variable
identifiers) independent of the order of x1 and xa2.
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Proof. According to the definition of logical implication, {x1, x2,0} = xo if for all
instances r it holds that

if r =M x1,r Em x2 and r = o then r =m X6 (7.1)

We choose an instance r and assume that r [=pm x1, r [Em x2 and r |=m 0. Then, by
Lemma 6.7, there exist ground atoms xg, and xg, with

r =m Xg and xg = xi for i € {1,2}. (7.2)

According to Definition 6.4 and Lemma 6.5, each x,, agrees with the corresponding
X; on the constants:

if xi[A] € Const then x4 [A] = xi[A] for i € {1, 2}. (7.3)

Since o is applicable to x1, x2, these existential R-sentences must be instantiated
with the same constants on /hs(o) (see Definition 7.1) and thus, by (7.3), also x4,
and xg, are instantiated with these constants on /hs(o). Regarding the first-order
logic representation of FDs (2.1), from x,, and xg, agreeing on /hs(o) it follows that

Xgi1 [A] = Xgo|A] for all A € rhs(o). (7.4)
Thus, by construction of x,, we get
Xo|A] = xgA] for all A € select(x,;) (7.5)

for i € {1,2} according to Definition 7.1. Applying Definition 6.4 and Lemma 6.5
again, we conclude that

Xg E xo for i € {1,2} (7.6)

which, together with (7.2), leads to r =m Xxo- O

Remark. In Section 7.3, we will revisit the notion of applicability of FDs when we
define the chase of existential R-sentences. Basically, this mechanism “exhaustively
applies” a set of FDs to a set of existential R-sentences, see Definition 7.28.

We now investigate the impact of enabling the user to formulate select-project-
queries. Astonishingly enough, already the slight modification of the query language
Zr by allowing the use of existentially quantified variables for expressing select-
project-queries may lead to the disclosure of potential secrets. Consider the following
example:
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Example 7.4. Reconsider the relation schema ACCs and the instance acc from
Example 5.1. We assume Z3r as query and policy language and consider the policy
pot_sec = {V} with

V = (IXgank) (3Xacc_no)ACC(Xpank . Xacc_no .jones,2500).

A user with a priori knowledge log, = X, that is, logy = {{BANK, ACC_NO} —
{ACC_HOLDER, BALANCE}}, now sends the following queries to the database:

&1 = (3Xacc_#)ACC (bankA,102,Xacc_11,2500)
&y = (IXpar)ACC(bankA,102, jones, Xgay )

Evaluating ®; and ®o with the stateless CQE scqge, as introduced in Definition 6.11,
leads to ans; = eval*(®;)(acc) = ;1 and ansy = eval*(®2)(acc) = Py, that is, none
of the answers is refused, and consequently, the updated user log after the answer to
¢2 is

logy = { {BANK, ACC_NO} — {ACC_HOLDER, BALANCE?,
(HXACCiH)ACC(bankA,102,XACCiH,25OO),
(EIXBAL)ACC(bankA,102,jones,XBAL) }

The user can now apply the FD
o = {BANK,ACC_NO} — {ACC_HOLDER, BALANCE}
to the returned answers according to Definition 7.1. He gets
Xo = ACC(bankA,102,jones,2500)
as result of the application. It obviously holds that x, = V. O

In order to protect against this exploitation of FDs, we must analyze the problem
in more detail. In Example 7.4, the instantiation of the key attributes of the relation
schema serves as tuple identifier: Since ans; and anss agree on the instantiation
of BANK and ACC_NO, the user knows that the answers refer to the same tuple.
Consequently, the harmful instantiation (jones,2500) of the attributes ACC_HOLDER
and BALANCE may be distributed to different queries, thereby taking advantage of
the “obliviousness” of the system: When the user asks for the combination BANK =
bankA, ACC_NO = 102 and ACC_HOLDER = jones, the system “forgot” that he is
already aware of the fact that the combination BANK = bankA, ACC_NO = 102 and
BALANCE = 2500 occurs in acc.

Observe that the key property of the attributes BANK, ACC_NO, expressed by
the set ¥, is crucial: If the security administrator is allowed to express arbitrary
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secrets (in the language Z5gr), FDs may be exploited to disclose these secrets, as
illustrated by Example 7.4. Intuitively, the disclosure of a secret “connects” two or
more non-key attribute values via the key of the relation schema by applying an FD
to two or more existential R-sentences. Consequently, the security administrator
should not be able to declare secrets that protect more than one non-key attribute
value.

Moreover, not only key constraints may be exploited for the disclosure of se-
crets: Suppose that the ACC-relation from Example 5.1 had an additional attribute
CONSULTANT that captures for each account holder the contact person of the
respective bank. Then {BANK, ACC_NO} would not be a key any longer, since
Y = {BANK,ACC_NO} — {CONSULTANT} and thus ¥ [~ {BANK,ACC_NO} —
U. Nevertheless, the FD {BANK, ACC_NO} — {ACC_HOLDER, BALANCE } might
still be exploited as in Example 7.4.

On the one hand, if we allow the database administrator to declare arbitrary FDs,
we are not able to control all possible “connections” of attribute values in the sense
of Example 7.4. On the other hand, the database administrator should at least be
able to declare the key constraints for the relation schema. We therefore assume the
relation schema to be in ONF (see Section 2.2) hereafter which basically means that

e the schema has a unique key K and

e the declared FDs are key dependencies, that is, all left-hand sides are supersets
of IC.

With this schema restriction it is possible to control the harmful “attribute value
connections” in the sense of Example 7.4 by slightly restricting the policy language.
In the following, we (syntactically) define this policy language restriction.

In relational databases, non-key attributes are also called property attributes
because they describe the properties of objects (represented by tuples) that are
uniquely determined by the instantiation of the key attributes. Therefore, a part of a
tuple (expressed by a select-project-query) that consists of key attribute values and
at most one property attribute value carries in some sense a “minimal information”
about the object it refers to. We consequently call such tuple parts basic facts. If x
is a basic fact then select(y), the set of attributes being instantiated with constants
in x, is a basic fact schema. Formally, basic fact schemas are defined as follows.

Definition 7.5 (Basic fact schemas). Let Rs = (R,U,X) be a relation schema
in ONF. The set of basic fact schemas of Rs is then defined by

bfs(Rs) := U o(SH\0

S'eS
with S :=={ILU{N} | K is key of Rs, N € U\K},

where p is the powerset operator.

70



7.1 Select-Project-Queries

Remark. Observe that bfs(Rs) in particular contains all attributes of Rs as singletons:
Each set K U{N} consists of the key and one additional attribute from U\/C, thus in
S each attribute from U occurs at least once; since bfs(Rs) consists of all subsets of
the elements of S, each attribute from U occurs in bfs(Rs) as singleton.

We illustrate the notions of basic fact schemas and basic facts with the following
example.

Example 7.6. Reconsider the relation schema ACCgs from Example 5.1. According
to Definition 7.5, the set S is given by

S = {{BANK,ACC_NO,ACC_HOLDER}, {BANK,ACC_NO,BALANCE}},
and consequently, the basic fact schemas of ACCg are

bfs(ACCs) = { {BANK}, {ACC_NO}, {ACC_HOLDERY}, {BALANCE?,
{BANK,ACC_NO}, {BANK,ACC_HOLDERY},
{BANK,BALANCE}, {ACC_NO,ACC_HOLDERY},
{ACC_NO,BALANCE}, {BANK,ACC_NO,ACC_HOLDER},
{BANK,ACC_NO,BALANCE} }.

In particular, the secret W from Example 7.4 is not a basic fact, since
select(W) = {ACC_HOLDER,BALANCE} ¢ bfs(ACCs).

In contrast, the following potential secrets are basic facts (with cy, ..., ¢g denoting
arbitrary constants):

V1 = (FXacc_no)(FXacc_n)(3Xpar ) ACC(c1,Xacc_no. Xacc_H. XBaL)
is a basic fact, since select(V1) = {BANK} € bfs(ACCs);

Wy = (IXgank ) (IXBaL ) ACC(Xpank  c2,¢3,.XBAL)
is a basic fact, since select(Vy) = {ACC_NO,ACC_HOLDER} € bfs(ACCs);

\Ug = (HXACC,H)ACC(CK:C51XACC,H1C6)
is a basic fact, since select(V3) = { BANK,ACC_NO,BALANCE} € bfs(ACCs).

(Note that Wy, W9, W3 are only examples and thus this is not an exhaustive list of
basic facts.) O

7.1.2 Preservation of Confidentiality

We claim that stateless CQE with %5k as query and policy language is secure in the
sense of Definition 5.4 if the relation schema is in ONF and each declared potential
secret is a basic fact, that is, an instantiation of a basic fact schema according
to Definition 7.5. We express this result formally in Theorem 7.10; for the proof,
however, we need two preparatory lemmas which shall be stated in the following.
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Lemma 7.7 (cqe is secure). The stateful CQFE cqe, as introduced in Section 3.2,
s a secure query evaluation in the sense of Definition 5.4.

This lemma originates from [BB01] and therefore we omit the proof. Together
with Lemma 5.5 it follows that the user logs of cge never imply a potential secret.
Stateless CQE does not actually need the user log, but in the proof of Theorem 7.10
we show that stateless and stateful CQE are equivalent in this context and therefore
we construct the user logs for stateless CQE in order to compare it to the user logs
of stateful CQE.

The second lemma basically says that the restriction of a confidentiality policy to
basic facts, as described in Subsection 7.1.1, results in the database user not being
able to disclose secrets solely by applying FDs.

Lemma 7.8 (Basic facts prevent the exploitation of FDs). Let x1 and x2 be
existential R-sentences with the underlying relation schema Rs in ONF, V € Z4r a
potential secret with the same underlying relation schema Rs and select(V) € bfs(Rs),
and o € ¥ an FD that is applicable to x1 and xo. Then for xo, the result of applying
o to x1 and xa, it holds that xo E VW only if x1 E WV or xo E V.

Proof. By Definition 7.1, each constant occurring in X, occurs in x; or in xs at the
same position:

Xo[A] € Const only if x1[A] = Xo[A] or x2[A] = xo[A]. (7.7)

Moreover, again by Definition 7.1, for all left-hand side attributes K of ¢ it holds
that

Xo K] = x1]K] = x2[K] (€ Const). (7.8)

Now we assume that x, = W holds and show that then also x; = W or x2 | W holds.
Because of select(V) € bfs(Rs) and from Definition 7.5 we know that besides the
left-hand sides attributes of o, in W at most one additional attribute N is instantiated
by a constant. Since both y, and W are existential R-sentences and x, = W, we can
apply Definition 6.4 and Lemma 6.5 and derive that for all A € select(V) it holds
that x»[A] = W[A]. In particular, x,[N] = W[N] and together with (7.7) we get

x1[N] = xo[N] or x2[N] = x»[N]. (7.9)

From (7.8), (7.9), select(V) € bfs(Rs), and Lemma 6.5, we now conclude that
X1 FE V¥ or x2 = V holds. O

We now verify the statement of Lemma 7.8 by means of the following example.
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Example 7.9. The relation schema Rs = (R, ABCD, A — BCD) (which is in ONF
with A as unique key) has the basic fact schemas bfs(Rs) = {A, B, C, D, AB, AC, AD}.
A potential secret V in the sense of Lemma 7.8 is a basic fact, that is, it instantiates
exactly one attribute set from bfs(Rs). Moreover, two existential R-sentences x1, X2
in the sense of Lemma 7.8 must agree on attribute A such that 0 = A — BCD is
applicable.

Consider x1 = (IXc)(3Xp)R(a,b,Xc,Xp) and x2 = (IXg)(3Xc)R(a,Xg,Xc,d).
The FD o is applicable to these existential R-sentences, the result of the application
is xo = (3Xc)R(a,b,Xc,d). Here, the basic fact schemas A, B, D, AB and AD are
instantiated, that is, it possibly holds that x, = W for a potential secret V. However,
all of the instantiated basic fact schemas are already instantiated in y; and/or x2
with the same constants as depicted in the following table:

basic fact schema ‘ A B D AB AD
instantiationin x, | @ b d (ab) (ad)
instantiationin x; | a b — (ab) -

instantiationin xo | a - d -  (ad)

From this representation, it is clear that if y, = W then also xy1 E W or x2a E V. O

With Lemmas 7.7 and 7.8 we are now able to show that the stateless CQE scqe
according to Definition 6.11 preserves confidentiality under the query language .Z5g
if we assume the underlying relation schema to be in ONF and restrict the potential
secrets to basic facts.

Theorem 7.10 (scqge preserves confidentiality under Z5g). Consider a rela-
tion schema Rs = (R,U,X) in ONF, an instance r of Rs, a confidentiality policy
pot_sec C Z4r with select(V) € bfs(Rs) for every W € pot_sec, and a query se-
quence Q@ = (&1, g, ...) with &1, Py, ... € Lag. Moreover, let logy = X be the a
priori user knowledge and assume that (r,pot_sec) is admissible with respect to log.
Then the stateless CQE scqe(Q)(r,pot_sec) is secure in the sense of Definition 5.4.

Proof. We recall the refusal censor from stateful CQE as investigated by Biskup and
Bonatti [BB01] and already explained in Chapter 3 (see (3.2)):

censor (pot_sec,log,®) := (7.10)
(exists W)[V € pot_sec and ((log U {®} = V) or (log U{—=d} = V))]

This censor has already been proven secure in the sense of Definition 5.4 in [BBO1].
We now show that censorag from Definition 6.11 and the censor (7.10) essentially do
the same, that is, the following statements are equivalent for each query ®; from Q:

censor(pot_sec,log;_,,®;) = true (7.11)
censorsg(pot_sec,®;) = true (7.12)
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Observe that “(7.12) = (7.11)” is obviously satisfied: if ®; = W for a ¥ € pot_sec
then also log;_; U {®;} = V¥ by the monotonicity of first-order logic.

We now show “(7.11) = (7.12)” and first of all note that in the given context there
are in principle four possibilities to draw an inference:

e inconsistencies, for example, the set {R(a), =R(a)} allows for arbitrary infer-
ences;

e application of FDs in the sense of Definition 7.1 and Lemma 7.3, for example,

{A — BC, (3Xc)R(a,b,Xc), (3Xg)R(a,X5,c)} = R(a,b,c);

e combinatorial effects, for example, given that Const = {a, b}, we get
{(FXa)R(Xa). ~R(a)} = R(b);

e weakening formulas, for example,

R(a,b) = (3Xa)R(Xa,b).

Since we only consider (subsets of) the assumed user knowledge as a basis for
drawing inferences in the following, inconsistencies may be neglected: According to
Proposition 3.1, the user knowledge is always true in the instance, r =y log; for all
i, thus rendering an inconsistent user knowledge impossible. Combinatorial effects
cannot occur either, since we assume Const to be an infinite set. In the following,
we consider only harmful inferences, that is, inferences that lead to the disclosure
of a secret; thus we may neglect weakening formulas as well because if a weakened
formula allowed for a harmful inference then already the stronger formula would by
transitivity: If for two formulas y, ¥’ and a secret W it holds that x = x’ (meaning
that x’ is a weakening of x) and x' = W then also x = W. As a result, we only have
to consider (sequences of) inferences due to the application of FDs in the following.

We now accomplish the proof by contraposition and therefore show that
censorgg(pot_sec,®;) = false only if censor(pot_sec,log;_,,®;) = false. According
to Definition 6.11, censorag(pot_sec,®;) = false is equivalent with

®; = W for all W € pot_sec, (7.13)
and, according to (7.10), censor(pot_sec,log;_;,®;) = false is equivalent with
log;_; U{®;} = V and log;_; U {=®;} = V¥ for all ¥ € pot_sec. (7.14)
We assume that (7.13) holds and consider the two parts of (7.14) separately:
log;_; U{®;} = WV for all ¥ € pot_sec (7.15)
log;_; U{=®;} = WV for all ¥ € pot_sec (7.16)
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First, we show that (7.15) holds. Consider the set Ly consisting of all query
answers being contained in log;_; and the query &;:

Lo := (log; 1 U{®;})\Z (7.17)

A set Lj;q emerges from its predecessor L; by applying an FD o € ¥ to
X{, Xlz € L; (with o being applicable to le and XIQ in the sense of Definition 7.1)
and adding the result ¥/ to L;. We now prove by induction on j that for every
X € L;j and for every W € pot_sec it holds that x = W which, in turn, shows
that (7.15) holds.

Jj = 0: By Lemmas 7.7 and 5.5, we know that log;_; [~ W for every
V € pot_sec. Moreover, ®; i~ W for every W € pot_sec by assumption (7.13).
This leads to x & W for every x € L; and for every W € pot_sec.

j + 1: By construction of the Lj-sets it holds that L;1\L; = {x4}. Since
for every x € Lj and every W € pot_sec it holds that x = W by the induction
hypothesis, we have to show that

xS £ W for every W € pot_sec. (7.18)

We indirectly show this by assuming that xJ = W for a W € pot_sec. Since Rs
is in ONF and select(V) € bfs(Rs), we can apply Lemma 7.8 which leads to
x1 E Vor x} = V. However, since x}, x4 € Lj, this contradicts the induction
hypothesis.

With the Lj-sets we simulated the application of FDs which has been identi-
fied as the only way to draw (harmful) inferences in our scenario. Therefore,
the induction shows that arbitrary sequences of FD applications do not lead to
the disclosure of secrets in the sense of (7.15).

Second, we show that (7.16) holds and therefore indirectly assume that
logi_; U{=®;} =V for a ¥ € pot_sec. By Lemmas 7.7 and 5.5, log;_; £E V¥
for every W € pot_sec, and thus —®; must be involved in the deduction of V.
As argued above, in the considered setting inferences can only be drawn by the
application of FDs, which is only possible with positive formulas. Thus, —®;
cannot be involved in the deduction of W which leads to a contradiction.

Summarized, by assuming (7.13) we showed that (7.15) and (7.16) hold which
implies that also (7.14) holds. This completes the proof. O

Remark. Theorem 7.10 requires that potential secrets are basic facts of the underlying
relation. Note that we could additionally allow the declaration of the “fully quan-
tified” secret W = (3Xa,)(3Xa,) ... (3Xa,)R(Xa, . Xa,, .. . Xa,) without compromising
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(a) schema and query restrictions (b) policy restrictions

Figure 7.2: Visualization of the restrictions for select-project-queries.

confidentiality, since scqe would then refuse every answer according to Definition 6.11.
However, we consider this special case unreasonable with regard to availability of
data and therefore refrain from adding ¥ to the policy language. If the security
administrator actually aims at refusing any query for a specific user, he should rather
employ a table-level access control mechanism than an inference control mechanism
like stateless CQE. This is, however, out of the scope of this thesis.

The restrictions for confidentiality-preserving answering of select-project-queries,
as demanded by Theorem 7.10, are depicted in Figure 7.2. Figure 7.2(a) visualizes
schema and query language restrictions, and Figure 7.2(b) visualizes policy language
restrictions. Regarding schema restrictions, the FD K — A in Figure 7.2(a) indicates
that only FDs with the unique key K on the left-hand side'® and a set of non-key
attributes A/ on the right-hand side may be declared due to the ONF restriction (in
this visualization, we assume A;AsAs as key without loss of generality). The query
language is restricted to existential R-sentences, visualized by an interrupted table
row as in Figure 7.2(b). Finally, an element of the policy, that is, a potential secret,
is an existential R-sentence with the additional restriction that the “gray part” is a
subset of the union of the key (table cells that belong to the key attributes are marked
light gray in Figure 7.2(b)) and a single non-key attribute. Figure 7.2(b) shows three
examples for potential secrets that comply with this “basic facts restriction” (see
Definition 7.5).

BONF actually allows supersets of K as left-hand side of an FD, but since I — A holds for every
attribute set .4, the minimality assumption according to Definition 2.1 implies that no proper
superset of I occurs as left-hand side of an FD.
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7.2 Boolean Expressions

This section deals with Boolean combinations of select-project-queries. More specifi-
cally, we investigate whether and how the Boolean operations negation, conjunction
and disjunction can be used together with existential R-sentences in query and
policy languages. It is well-known that all other kinds of Boolean operations (like
implication and equivalence) can be simulated using these “basic” operations.

In Subsections 7.2.1-7.2.2, we sketch the limits of our query and policy languages
when using Boolean operations. On the one hand, we present several examples
showing that confidentiality cannot be preserved under certain Boolean operations
when adhering to the stateless CQE approach from Section 6.3. On the other hand,
we identify the Boolean operations that are “compatible” with our approach. We
formally show in Subsection 7.2.3 that stateless CQE still preserves confidentiality
when we enhance query and policy languages by these Boolean operations.

This section is based on the work of Biskup, Lochner and Sonntag [BLS09] who
originally investigated stateless CQE for queries and potential secrets with Boolean
operations.

7.2.1 Limits of the Query Language

As illustrated in Example 7.4, the database user might utilize FDs in order to infer
potential secrets. More precisely, he might exploit the implicative structure of an
FD, which can be described informally as follows:

Whenever two tuples agree on the left-hand side attributes of an FD,
then they also agree on the right-hand side attributes.

Implicative structures, however, may not only arise from FDs but also from queries
if Boolean combinations are allowed in the query language. Consider the following
example.

Example 7.11. Recall the relation schema ACCs and the instance acc from Ex-
ample 5.1. ACCs is in ONF, since the unique key is £ = {BANK, ACC_NO} and
lhs(o) = K for the sole FD ¢ = { BANK, ACC_NO} — {ACC_HOLDER, BALANCE}.
Let a policy be given by pot_sec = {W} with

V= (EIXBAL)ACC(bankB,101,anderson,XBAL).

Assume that the database user may express arbitrary Boolean combinations of
existential R-sentences as queries and consider the query sequence Q = (1, ®3) with

¢, = (HXBAL)ACC(bankB,101,anderson,XBAL)\/
(3XBar)ACC(bankB,999,anderson,Xga;) and

&y = (IXpar)ACC(bankB,999,anderson, Xgay).
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Observe that eval®(®1)(acc) = 1 and eval*(P2)(acc) = —Pg, and moreover ¢y = W
and —=®y = W. Suppose that the user’s queries are controlled using a suitably
adapted version of the stateless CQE scqe from Definition 6.11; in this adaptation
the censor does not only work on positive existential R-sentences but on arbitrary
Boolean combinations of positive existential R-sentences. The adapted scge then
yields (ansi, ans2) with

(3XBar)ACC(bankB,101,anderson,Xgar )V
(3XBarL)ACC(bankB,999,anderson,Xga) and

ansy = —(3Xgar)ACC(bankB,999,anderson,Xpar ).

ansy =

However, {ansy, ansa} = (3Xgar)ACC(bankB,101,anderson, Xga;) = V and thus the
user is able to infer the secret by combining the answers to his queries. %

Example 7.11 demonstrates the exploitation of a “hidden implicative structure”:
Disjunction is equivalent to implication in the sense that y;1 V x2 is equivalent to
—x1 = Xo for first-order formulas x; and x2. We therefore refrain from incorporating
disjunction into the query language in the following. Moreover, we have to keep
in mind that disjunction may be expressed by a combination of conjunction and
negation: —(x1 A x2) is equivalent to —x; V —x2 for first-order formulas x; and xa.
Thus we allow negation only in combination with (atomic) existential R-sentences
and not with conjunctions of existential R-sentences.

Enhancing existential R-sentences with negation leads to the language .25, which
then can be used to define our enhanced query language .Z;R',A.

Definition 7.12 (%3r with negation). The language L3 is defined by
faﬁR = AR U {—|X | X € ng}.

Definition 7.13 (Z5r with negation and conjunction). The language faﬁ,{\ is
inductively defined as follows:

o If x € X5, then x € 3}/\;

o if x1,x2 € .,2”3}',/\ then x1 /A X2 € faﬁf?.

In Example 7.11, we already pointed out that the stateless CQE scqge, as given
by Definition 6.11, is, strictly speaking, not appropriate for queries with Boolean
combinations, since it is defined for atomic (positive) existential R-sentences only.
We therefore have to develop a modified version of scge.

A straightforward approach to handling a query ® from .77, R’,A would check whether
or not ® implies a potential secret W; if ® [~ W for every W € pot_sec, the ordinary
evaluation of ® would be returned; otherwise, if ® = W for a W € pot_sec, the
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mechanism would return mum which has been introduced as special return value for
refusals in Section 3.2.

This approach, however, is too restrictive in general because if one conjunct of
® implies a secret, the whole query has to be refused: Suppose that & = o, A
AP AL AP, and @; = W for a potential secret W; then, by the monotonicity
of first-order logic, {®1,...,®;, ..., ®,} E V¥, and thus, by the semantics of logical
implication, ®1 A ... A ®; A ... A ®, = V. Consequently, the mechanism refuses to
answer ® and therefore returns mum, although the conjuncts ®4, ..., ®;_1, P;1q, ..., P,
possibly could have been answered separately without enabling the user to disclose a
secret. Therefore, we propose a stateless CQE for queries from Zgﬁ’/\ which breaks
up a query into its conjuncts and answers them separately. In other words, the query
is modified by the mechanism in order to provide (possibly) more information to the
user.

Observe that disjunction in queries could actually be handled similarly: In Exam-
ple 7.11, the harmful inference arises from the first disjunct of query ®; which is
equivalent to the potential secret. The reason why the query is not refused is that
the second disjunct weakens the query such that the potential secret is not implied
only by this query. A stateless CQE mechanism for disjunctive queries, however,
could inspect the first query and find that the first disjunct might disclose a secret;
thus, the mechanism could refuse to answer the whole query but return an answer to
the second disjunct instead. We refrain from proposing such a mechanism for the
following reason: Splitting up a conjunctive query into the single conjuncts does not
change the semantics of the query as we shall see in the proof of Theorem 7.21; for
a disjunctive query ® = &1 V ... V ®,, however, it makes a difference whether we
consider ® or the sequence (@1, ..., P,), since {®q, ..., P,} E & but & (£ {Py,..., P},
that is, the sequence is in some sense stronger than the disjunctive query.

Besides conjunction, we have to take account of negation that possibly occurs in a
query from ZH}A. The stateless CQE scqge is defined only for positive existential R-
sentences, but it can easily be adapted for negative existential R-sentences: According
to the remark to Definition 6.11, the censor of scqe only checks the (positive) query
for implications, since the negative form of the query cannot imply a secret due
to Lemma 6.10. Considering negative queries, however, the query itself might be
negative and consequently the censor needs to check only the negated query which,
in turn, is a positive existential R-sentence. We therefore assume a slightly modified
censor for scqge in the following. It is given by

censor3g(pot_sec,®) := (exists W)[W € pot_sec and ®T = V], (7.19)

where T denotes the positive form of a query ®.

With this deliberations in mind, we define the stateless CQE scqge™” which is an
adaption of scqe, as given by Definition 6.11, for query sequences containing negation
and/or conjunction.
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Definition 7.14 (Stateless CQE for queries from Z53"). Consider

o a query sequence @ = (®1, gy, ...) with &1, g, ... € f;&A, that is,
;= ()P A ()P AL A (_‘)cbi,m,- foralli€{1,2,..}
such that ®;; € ZL5r for all ®;;,

e a policy pot_sec C L3k and

e an instance r.

A

Then scqge™” is defined as follows:

scge " (Q)(r,pot_sec) := scqe(Q’)(r,pot_sec) with
Q= ()11, (M) P12, -, () P1my, () P21, )

Example 7.15. Consider the schema (R, ABC,A — BC) and the instance r =
{R(a,b,c), R(d,b,e)}. A policy is given by pot_sec = {WV;, Uy} with

U, = (3Xa)(IXc)R(Xa,b,Xc) and
Vy = (3IXg)R(a,X.€).

Now the user sends the query sequence Q = (P, ¥3) to the database with ¢,y €
.,?;R',A given by

&, = R(a,b,e) A (IXa)R(Xa,fe) and
b, = ﬁ(HXB)R(d,XB,e) VAN (HXB)(HXC)R(B,XB,Xc).

For answering Q, according to Definition 7.14, Q is first transformed into Q' =
(P11, P12, P21, Po2) with

&1 1 = R(a,b,e),

&1 9 = (IXa)R(Xa,f,e),

®y1 = —~(3IXg)R(d,Xg,e) and
®,5 = (3Xg)(IXc)R(a,Xp. Xc).

Second, @ is answered as follows:

scqe™N(Q)(r,pot_sec) = scqe(Q')(r,pot_sec)
= (ansy,1, ansy 2, anss 1, anss o)
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with

ansi,1 = mum

[®11 E V3 and thus censor5g(pot_sec,®1,1) = true]

ansi o = —\(HXA)R(XA,I(,G)

[censor5g(pot_sec,®1 2) = false and eval™(P12)(r) = =Py 9]
anss 1 = (E!XB)R(d,XB,e)

[censor5g(pot_sec,®51) = false and eval™($g1)(r) = ~Pg ]
ansg o = (EXB)(HXC)R(Q,XB,X(:)

[censor5g(pot_sec,d32) = false and eval™(Pg2)(r) = D 2]

The user may now assemble these answers to get the answers ans; and anss for his
original query sequence:

ansy = ansi 1 A ansy o = mum A =(3X4)R(Xa,f,€)
ansy = ansa 1 A ansa2 = (3Xg)R(d,Xg,e) A (3Xg)(IXc)R(a,Xg, Xc)

The special value mum indicates that the answer to ®;; has been refused. Strictly
speaking, mum is not a logical formula and thus ans; is not a logical formula either. In
the context of queries from fif, however, the user may consider mum as a tautology
(mum = T) in order to express the “logical neutrality” of a refused query. This leads

to ans; = T A —=(IXa)R(Xa,f,e) = =(IXa)R(Xa.f,e). O

7.2.2 Limits of the Policy Language

Unlike the query language, the policy language may not be enhanced by negation
and conjunction without enabling the user to disclose secrets. We illustrate this with
the following two examples.

Example 7.16. Recall the relation schema ACCgs and the instance acc from Exam-
ple 5.1. Suppose that negation is allowed in the policy and consider pot_sec = {W}
with

V = - ACC(bankA,103,brown,200).
A user who sends the query
® = ACC(bankA,103,smith,100)

to the database gets the answer ans = eval*(®)(acc) = ACC(bankA,103,smith,100)
from a stateless CQE, since ¢ = V. With the declared FD {BANK, ACC_NO} —
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{ACC_HOLDER, BALANCE}, however, from this answer the user can conclude that
ACC(bankA,103,brown,200) must be false in acc, since {BANK, ACC_NO} is key
and thus the instantiation (bankA,103) of the attributes BANK, ACC_NO uniquely
determines the instantiation (smith,100) of the attributes ACC_HOLDER, BALANCE.
Therefore, the user knows that r =y “ACC(bankA,103,brown,200) and thus discloses
a secret. O

Example 7.17. With the schema ACCs and the instance acc from Example 5.1,
let a conjunctive policy be given by pot_sec = {W} with

V = ACC(bankB,101,anderson,1500) A ACC(bankB,105, brown,1000).
The user queries

®; = ACC(bankB,101,anderson,1500) and
®y = ACC(bankB,105,brown,1000)

may be answered correctly because

®; = ACC(bankB,101,anderson,1500) A ACC(bankB,105,brown,1000) and
&y = ACC(bankB,101,anderson,1500) A ACC(bankB,105, brown,1000).

However, considering both answers,

ansy = eval*(®1)(acc) = ACC(bankB,101,anderson,1500) and
ansy = eval*(®3)(acc) = ACC(bankB,105,brown,1000),

it holds that
{ans1, ansy} = ACC(bankB,101,anderson,1500) A ACC(bankB,105,brown,1000)
and thus the user is able to disclose the secret. O

Having shown exemplarily that negation and conjunction should not be allowed
in the policy language in general, we now motivate why disjunction in the policy
language is not harmful. For a query ® and a disjunctive secret W1 V Wy, the stateless
CQE has to check whether or not ¢ = W; vV Wy, Since, following Example 7.11,
we refrain from allowing disjunction in the query language, ® = W; V Wy holds
if and only if ® = V; or & = Wy holds (if we allowed disjunction in the query
language, the query could be given by ® = W; vV Wy which would lead to ¢ j= W; and
® £ Wy).14 Thus, the policy {W; V Wy} is, in some sense, equivalent with the policy

1 We will formally prove this claim in the context of Theorem 7.22 in subsection 7.2.3.

82



7.2 Boolean Expressions

{V1, Wy} C Z3g which can be handled by the (confidentiality-preserving) stateless
CQE scge as introduced in Definition 6.11.

We now enhance our policy language by disjunction and define a stateless CQE for
this enhanced language. In Subsection 7.2.3, we will formally show that this stateless
CQE is secure in the sense of Definition 5.4.

Definition 7.18 (%5r with disjunction). The language Z5r is inductively de-
fined as follows:

o If x € ZLr then x € Log;
e if x1.x2 € LR then x1V x2 € L.

Definition 7.19 (Stateless CQE for secrets from 23z). The stateless CQE
scqe,, emerges from the stateless CQE scqe, as given by Definition 6.11, by re-
placing the policy language Lag with L.

As will be indicated in the proof of Theorem 7.22 in Subsection 7.2.3, scqge,, may
be implemented by splitting up each disjunctive secret W1V Wy V...V W, into atomic
secrets Wi, Wy, ..., V. Consequently, on an operational level, scqe,, can be reduced
to scqe and is therefore efficiently implementable as well (see Section 6.4). In contrast
to scqge™”, we do not propose this reduction to scqe already in the definition of
scge,,, since on a declarative level it makes no difference whether or not disjunctive
secrets are split.

7.2.3 Preservation of Confidentiality

In the previous subsection, we identified possible enhancements of the query and policy
languages on an informal level. It turned out that, regarding the query language,
conjunction and a restricted form of negation might be added and, regarding the
policy language, only disjunction might be harmless.

In the following, we will formally show that these enhancements are in fact
acceptable regarding preservation of confidentiality. We start with a lemma which
basically says that each query sequence of negative existential R-sentences can be
rewritten as a query sequence without negation that leads to the same answers under
stateless CQE.

Lemma 7.20 (Negation in query sequences). Let r be a database instance of
the schema Rs = (R,U,X), pot_sec C Z4r a policy with select(V) € bfs(Rs) for
every W € pot_sec, Q = ((—)®1, (—)P2, ...) a query sequence with possibly negated
existential R-sentences ®1, o, ... € Lar, and QT the query sequence that emerges
from Q by skipping negation, that is, QT = (&1, Dy, ...) with 1, s, ... € Lar.
Then scqe(Q™)(r,pot_sec) = scqe(Q)(r,pot_sec) for scqe with the modified censor
according to (7.19).
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Proof. Let the answer sets to @ and @ be denoted by scqe(Q™)(r,pot_sec) =
(ansT,ansy,...) and scqe(Q)(r,pot_sec) = (ansi, anss,...), respectively. We now

+ = ans; for every i € {1,2, ...} by distinguishing two cases:

i =

show that ans

1. ans; = mum. According to Definition 6.11 (with the modified censor (7.19)),
scqe yields the same censor decisions on @ and Q™ since the censor only checks
the positive form of a formula. Therefore, we get ans’

T = ans; = mum.
2. ans; # mum. In this case, ans; = eval®((—)®;)(r) according to Definition 6.11.
If the i-th query of Q is positive, then the same query occurs in Q@ at the i-th
position and it trivially holds that ansf = ans;. Otherwise, if the /-th query of

Q is negative, we get ans; = eval*(—=®;)(r). We distinguish two subcases:
a) eval*(—®;)(r) = ®;. Then, by Definition 2.2, r fpm —®; and thus r Eu ;.
It follows that ans; = eval*(®;)(r) = ;.
b) eval*(=®;)(r) = —®;. Then, by Definition 2.2, r v —®; and thus
rfem @, It follows that ans’ = eval*(®;)(r) = —®;.

Consequently, since scqe(Q™)(r,pot_sec) and scqe(Q)(r,pot_sec) have been shown
to return the same answers, the proof is complete. O

We make use of this result in the proof of the following theorem which declares
that the stateless CQE from Definition 7.14 actually preserves confidentiality.

Theorem 7.21 (scqe™” preserves confidentiality). Reconsider the assump-
tions of Theorem 7.10, but let the queries in Q be elements of .,2”37{\. Then the
stateless CQE scqe™(Q)(r,pot_sec) is secure in the sense of Definition 5.4.

Proof. For simplicity, we show the theorem for a query sequence consisting of a single
query. However, the proof can be enhanced straightforwardly for query sequences of
arbitrary length.

Let @ = (®) with ® = (=) A (7)P2 A ... A (=) a query from Z5p". By
Definition 7.14 and Lemma 7.20 it holds that

scqe”™ " ((®))(r,pot__sec) = scqe({(—)®1, (m)®a, ..., (7)Pm))(r,pot_sec) (7.20)
= scqe((®1, Pg, ..., Ppy))(r,pot_sec)

= (ansy, ansy, ..., ansm,)

for scge from Definition 6.11 but with the modified censor (7.19).

In the following, we determine an alternative instance in the sense of Definition 5.4,
thereby proving scge™”((®))(r,pot_sec) secure. By Theorem 7.10, we know that
scqge((Py1, Pa, ..., Pm))(r,pot_sec) is secure in the sense of Definition 5.4 and thus, by
Lemma 5.5, for the user knowledge log = logy U {ans; | i € {1, ..., m}, ans; # mum}
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and a fixed potential secret W € pot_sec it holds that log = W, that is, there exists
an instance r’ with

r' F=m log and r’ [ V. (7.21)

By (7.20), scge™"((®))(r,pot_sec) and scqe((®1, P2, ..., Pm))(r,pot_sec) yield the
same answers and thus the same user log. Therefore, r’ satisfies the properties (7.21)
also for scqe™({®))(r,pot_sec), making it a suitable alternative instance in the
sense of Definition 5.4 for scqge™" ((®))(r,pot_sec). O

It remains to show that also the stateless CQE for the enhanced policy language
according to Definition 7.19 preserves confidentiality. We express this result in the
following theorem.

Theorem 7.22 (scqe,, preserves confidentiality). Reconsider the assumptions
of Theorem 7.10, but let the potential secrets in pot_sec be elements of £k such that
select(V; ;) € bfs(Rs) for every V; j occurring in Wi = W; 1VW;oV..VW; € pot_sec.
Then the stateless CQE scqe, (Q)(r,pot_sec) is secure in the sense of Definition 5.4.

Proof. For simplicity, we show the theorem for a policy consisting of a single potential
secret. However, the proof can be enhanced straightforwardly for arbitrary policies.

We consider the policy pot_sec = {W} with ¥ = WV; V Wy V ...V V¥, and show that
scqge,, yields the same results on pot_sec as scqge on pot_sec’ = {V, Wy, ...,V }.
Thus, scqe,, can be reduced to scqe by splitting up the policy into atomic, that is,
non-disjunctive, secrets. Since, according to Theorem 7.10, scge is secure in the sense
of Definition 5.4, it then immediately follows that scqe,, is secure as well.

More precisely, we show that for a query ¢ € Z5g it holds that

SE=V V¥V ...V, if and only if (7.22)
PEV ordE=Vyor ... or ® =V,

which yields the same censor decisions and thus the same answers under scqe,, and
scqe.

First, we show the “="-part of (7.22): Assume that ® = W; vV Wy V...V V¥, which
is, by the definition of logical implication, equivalent to

for all instances r: if r |Epm @ then r gy W1V Vo V. VW, (7.23)
With the semantics of the V-operator it follows
for all instances r: if r =y ® then r =M Wy or ... or r|=m Vi, (7.24)

Now consider a ground atom xz € Zr with the following properties:

85



7 Enhancements of the Languages

e For all A € select(®): xg[A] = ®[A];

e for all A ¢ select(®): xg|A] € Const’ with Const’ denoting a set of constants
that do not occur in ®, ¥y, ..., ¥,,.1°

By Definition 6.4, ® is relevant for xgz and thus, by Lemma 6.5,

Xg = @ (7.25)
We then consider an instance r’ = {xgz}, that is,
— (7.26)

and r’ m x for every ground atom x € Zg with x # x,. From (7.25) and (7.26),
we conclude with Lemma 6.7 that r’ Ey ® and thus, by (7.24), ' =m Wy or ...or
r' Em V. We assume that r’ [=m V; for a fixed W; € {Wq, Vg, ..., ¥} and have to
show that ® |= W; holds in order to complete the proof of the “="-part of (7.22).
By Lemma 6.7, there exists a ground atom X/g € Zr with

r' F=m X and x, | Vi (7.27)

Since, by construction, x, is the only ground atom being true in r’, we know that
Xg = Xg- Consequently, with (7.27) it holds that

Xg = Vi, (7.28)

meaning that V; is relevant for x, according to Lemma 6.5. From Definition 6.4 it
then follows that

for all A € select(V;) : xg[A] = V;[A]. (7.29)

By definition of Const’, W;[A] € Const\Const’ for all attributes A € select(V;) and
thus, according to (7.29), xg[A] € Const\Const’ for all attributes A € select(V;).
Then, by construction of x,, it holds that

for all A € select(V;) : ®[A] = V;[A]. (7.30)

Therefore, by Definition 6.4, W; is relevant for ® and, by Lemma 6.5, ® = V;.

Second, we show the “<"-part of (7.22): Assume that ® = V; for a fixed V; €

{V1, ¥y, ..., ¥V} and consider an instance r with
r ):M d. (731)
15Such a non-empty set Const’ always exists, since we assume an infinite set Const of constants and
$, Wy, Uy, ..., ¥V, contain only finitely many constants.
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Then, by the definition of logical implication, it follows that r = W; and thus also
rEmMVLV. . VY VLV, (7.32)

From (7.31), (7.32) and the definition of logical implication, we conclude that
¢’:\U1\/W2...\/Wm. ]

In the proof of Theorem 7.21, queries have been split up into the single conjuncts
in order to reduce scge™” to scqe; moreover, in the proof of Theorem 7.22, policy
elements have been split up into the single disjuncts to reduce scqe,, to scqge. These
two approaches can easily be combined to allow queries from XJR',A and potential
secrets from .Z5% at the same time.

The following definition captures this insight and Corollary 7.24, which follows from
Theorems 7.21 and 7.22, states that the combined mechanism preserves confidentiality.

Definition 7.23 (Stateless CQE for Boolean expressions). Consider

e a query sequence Q = (1, Po, ...) with 1, Py, ... € 02”3}/\, that is,
o; = (—\)(D,"l AN (_')(DI'Q VANPAN (_')q)ivmi for all i € {1, 2, }
such that CD,"J' € AR f07’ all ¢,‘J,

e a policy pot_sec C L5r and
e an instance r.

Then the stateless CQE scqey” is defined as follows:

scqey " (Q)(r,pot_sec) := scqe, (Q')(r,pot_sec) with
Q= ((")P11, ()P12, ., () P1my, (7) P21, )

Corollary 7.24 (scqe\j'/\ preserves confidentiality). Reconsider the assump-
tions of Theorem 7.10, but let the queries in Q be elements of .,Sf;,{,A and the potential
secrets in pot_sec elements of £3p such that select(V;;) € bfs(Rs) for every V;;
occurring in V; = Vi VW, oV ...V VWV, € pot_sec. Then the stateless CQE
scqey " (Q)(r,pot_sec) is secure in the sense of Definition 5.4.

In Figure 7.3 on the next page, the schematic architecture of the combined
mechanism is depicted. The lower right part captures the core of stateless CQE
(scqe) as already shown in Figure 5.1. The enhancement scqe™” to queries from
the language f;,;’,A and the enhancement scge,, to policies from the language £3%
is depicted in the upper right and in the lower left part, respectively, as a kind of
preprocessing. Both enhancements together form the stateless CQE for Boolean
expressions, scge,”". Queries as well as policies have to be split up suitably before
they are forwarded to the core. More precisely, each query that contains conjunction
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Figure 7.3: Schematic architecture of scqe,”.

88



7.3 Open Queries

Al A A3 .. Al Ag
[N e
V
I ] ]

(a) schema and query restrictions (b) policy restrictions

Figure 7.4: Visualization of the restrictions for Boolean expressions.

is considered as a set of atomic queries, and each potential secret that contains
disjunction is considered as a a set of atomic potential secrets. Consequently, the
actual controlled evaluation of queries can still be performed by scqe.

In Figure 7.4, the restrictions for confidentiality-preserving query answering under
Boolean expressions in query and policy languages are visualized. Basically, the same
elements as in Figure 7.2 are depicted, that is, ONF as schema restriction, existential
R-sentences as queries and as potential secrets, and the “basic facts restriction” for
potential secrets. Moreover, Figure 7.4 indicates which types of Boolean operations
are allowed according to the investigations of this section: Figure 7.4(a) shows that
queries may contain conjunction and negation (but neither negated conjunction
nor disjunction), and Figure 7.4(b) indicates that potential secrets may contain
disjunction (but neither negation nor conjunction).

7.3 Open Queries

With the query languages investigated so far, the database user is only able to express
closed queries, that is, queries that are either true or false in the database instance
under consideration. Most practical queries, however, are open queries, as already
motivated in the introduction of Chapter 7. In this section, we enhance our query
language in order to enable the database user to express open queries.

In Subsection 7.3.1, we introduce our enhanced query language and a suitable
stateless CQE mechanism for answering open queries in a controlled way. As we
shall see in Subsection 7.3.2, however, we will run into problems when still assuming
that the database user is aware of the declared confidentiality policy (as demanded
in Section 5.1). In Subsection 7.3.3, we therefore drop the assumption that the user
is aware of the policy and show that it is then possible to preserve confidentiality
again.
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Stateless CQE for open queries has originally been investigated in the work of
Biskup, Hartmann, Link and Lochner [BHLL10b] which has been taken as a basis
for this section.

7.3.1 Query Language and Completeness Information

We take the language -Z3r of existential R-sentences as a basis for our open query
language. In Section 7.5, we will investigate how the resulting language can be
enhanced by Boolean operations.

Open queries are simply existential R-sentences with free variables, as formally
described by the following Definition.

Definition 7.25 (Open existential R-sentences). The language ZLaR g is de-
fined by

,ng’fv = { <3X1> (me)R(Vl, ,Vn) ’ 0 S m S n,
X; € Var,
v; € Var U Const,
{Xl,...,Xm} g {V1,...,Vn},
vi,vj € Var = v; # v; }.

Of course, we also have to adapt the stateless CQE mechanism to open queries.
As already indicated by the ordinary query evaluation (Definitions 2.2 and 2.3), for
open queries we need an essentially different approach than for closed queries. This
is due to the fact that closed queries can be answered by true or false, whereas for
open queries the answers are sets of variable assignments making the query true in
the considered database instance.

Regarding the refusal approach of CQE, the mechanisms introduced so far either
give an honest answer to a query or refuse to answer a query at all (except for
scqge™”, as introduced in Definition 7.14, which considers a conjunctive query as
a sequence of atomic sentences and answers each conjunct separately). We do
not consider this approach appropriate for open queries but suggest to inspect the
ordinary evaluation result and discard the harmful variable assignments. Observe
that a variable assignment which is not part of the answer set to an open query may
then be interpreted in two different ways:

e [t may make the query false in the considered database instance.

e It may be harmful, that is, it possibly leads to the disclosure of a potential
secret.

Because the suggested mechanism first determines the honest and complete answer
to an open query and then “cleans up” the result set, we rather use the term filtering
than refusal in the following. We now provide a formal definition for this mechanism.
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Definition 7.26 (Stateless CQE for queries from Z5gr ). The stateless CQE
scqe®? is a specific modified query evaluation according to Definition 5.2. Given
a policy pot_sec C L3r, each of the answers ansi, anss,... to a query Sequence
Q = (b1, Dy, ...) with 1, Dy, ... € Lar s is defined subject to the refused-set

refused (®;(V;),pot_sec) := { ®(&) | & € Const x ... x Const and
exists W € pot_sec : ®(¢;) E WV }.

More precisely, the stateless CQE scqe®? is defined as follows:

scqe®d(Q)(r,pot_sec) := (ansy, ansg, ...) with
ans; := eval*(®;(V;))(r)\refused (®;(V;),pot_sec)

Observe that, regarding open queries, the database user might be aware of a
“completeness information”. In the case of ordinary query evaluation, this completeness
information reads as follows:

Each assignment of the free variables in a query ® that does not make ®
true in the actual database instance makes ¢ false in this instance.

This information is valid, since, according to Section 5.1, we employ a closed world
assumption. In the case of CQE, however, the completeness information reads as
follows:

Each assignment of the free variables in a query ® that is not part of the
(controlled) answer to ® makes ® false in the database instance or leads
to the disclosure of a potential secret.

This description of the completeness information seems to be the natural one, but for
the following investigations we need an alternative characterization. Note, however,
that this characterization is only a syntactic alternative but semantically equivalent
to the former one:

Each assignment of the free variables in a query & either makes ¢ false
in the database instance, or it makes ® true and is part of the controlled
answer, or it makes ® true and is not part of the controlled answer.

In Figure 7.5 on the following page, the completeness information regarding an
open query (V) is visualized as a partition of the (infinite) set of possible variable

—

assignments of V: In Figure 7.5(a), this set is divided into the finite set A of

—

assignments that make ®(V) true in the database instance and the infinite set B of

—

assignments that make ®(V) false. In Figure 7.5(b), A is further divided into the

—

assignments that make ®(V) true and that are returned as part of the controlled
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infinite set of infinite set of
variable assignments variable assignments
Ar | rEm ®(E) and O(C) € anse
A r ):M q)(E)
As | r Em ®(C) and @(C) ¢ anse
B r fEm @(C) B r v 9(C)
(a) ordinary evaluation (b) controlled evaluation

Figure 7.5: Partition of variable assignments for open queries.

answer (A;) and the assignments that make ®(V) true, but that are not returned
because they are harmful (Az).

According to Figure 7.5(b), we now express the completeness information by the
following completeness sentence; it is dependent of the query ¢ and the positive part

of the controlled answer according to Definition 7.26, hereafter denoted by anse:'°
complete(d(V),anse) := (7.33)
(VV) =D (V) V | d(V) A V=2|v|eWw)a Ve
®(S)eanse ®(c)eanse
B A1 Az

In the following, we use the abbreviations Aj, A2 and B (which correspond to the
partitions of the set of variable assignments in Figure 7.5) for the disjuncts of the
completeness sentence when appropriate.

Note that the completeness sentence is actually a tautology, since

AN Vv#e = - \/ V=¢

®(C)€anse d(&)€anse

16We slightly abuse notation, since universal quantification and equality are meant component-wise
in this sentence.
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and thus (7.33) reduces to (VV)[-®(V) v &(V)]. Due to the universal validity we
do not add this completeness sentence to the user log explicitly. However, we keep
in mind that the user is aware of this information; as we shall see in the following
subsection, it may assist him in disclosing secrets.

7.3.2 Problems with Known Policies

So far, we assumed that the database user who sends queries to the database is aware
of the confidentiality policy which has been defined by the security administrator.
The following example shows that this assumption should not be kept up in the
context of open queries.

Example 7.27. Reconsider the Schema ACCs and the instance acc from Exam-
ple 5.1. Moreover, let a policy pot_sec = {W} be given by

V = (IXpank) (3Xacc_no)ACC(Xpank  Xacc_no,brown,1000).
The queries ®1, Py € L3R 5, are given by

&1 (Xacc_no.Xacc_H.Xpar) = ACC(bankB,Xacc_no.Xacc_H.XBaL) and
(DQ = (HXBAL)ACC(bankB,105,brown,XBAL).

Observe that ®; is an open query that asks for all account information (account
number, account holder and balance) of bank B in the instance acc, and @3 is a
closed query that asks if client Brown has, according to acc, an account at bank B
with the account number 105.

As per Definition 7.26, the answers to 1 and ®5 are determined by means of the
respective eval*- and refused-sets:

eval*(®1)(acc) = { ACC(bankB,101,anderson,1500),
ACC(bankB,105,brown,1000) }

refused (®1,pot_sec) = {ACC(bankB,105,brown,1000) }

eval*(®z)(acc) = {(3Xpar)ACC(bankB,105,brown,Xgar)}
refused (P, pot _sec) = ()

Consequently, we get scqe®?(($1, P2))(acc,pot_sec) = (ansy, ansa) with

ans; = {ACC(bankB,101,anderson,1500)} and
ansg = {(HXBAL)ACC(bankB,105,brown,XBAL)}.

From ansy the user knows (by the semantics of the existential quantifier) that
acc |=m ACC(bankB,105,brown,c) for a suitable constant ¢ € Const. Note
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that, regarding query ®;, the variable assignment vector (105,brown,c) belongs
to part Ag of Figure 7.5(b), since it makes ®; true in acc but has not been
returned as part of the answer to ®1; thus, it discloses a secret. Since V =
(ElXBANK)(HXACC,NO)ACC(XBANK:XACC,NOrbrownv1000) is the only declared secret,
it must hold that

ACC(bankB,105,brown,c) =
(IXeank ) (FXacc_no)ACC(Xpank . Xacc_no,brown,1000),

which means, according to Definition 6.4 and Lemma 6.5, that ¢ = 1000. Summing
up, the user knows that

acc |=m ACC(bankB,105,brown,1000) and
ACC(bankB,105,brown,1000) = W,

and as a result, by the definition of =, he also knows that acc =m W, that is, he
discloses that the potential secret VW is true in the database instance acc. O

A crucial point in this example is the user awareness concerning the policy. The
potential secret W can only be inferred because the user knows the policy. In
the following, we justify this claim and start with an informal description of the
information the user gets from being aware of the confidentiality policy:

If an assignment ¢ of the free variables in an open query ¢(\7) makes

—

®(V) true in the database instance and does not occur in the controlled

—

answer to ®(V), then there exists a potential secret that is relevant for

().

We express this description more formally in the following awareness sentence, which
is dependent of the query ®, the policy pot_sec = {W1, Vs, ..., V,} and the positive
part of the controlled answer anse (which is not given as parameter of the awareness
sentence explicitly, since it can be computed from the query and the policy):

aware(d(V),pot_sec) := (7.34)

\7755) = \7 ( A o(V)[A :W,-[A])
i=1 \A

eselect(V;)

Note that the left-hand side of the implication corresponds to the As-disjunct of the
completeness sentence (7.33).

94



7.3 Open Queries

When modeling the assumed user knowledge in the context of open queries, the
awareness sentence (7.34) must clearly be taken into account. Considering an

open query ®;(V;) and the user knowledge log;_; before answering ®;(V;), the user
knowledge log; after having answered the query is determined as follows:

log; = log; | U ans; U complete(®;(V;),ans;) U aware(®;(V;),pot_sec)  (7.35)

The disclosure of a potential secret, as exemplarily sketched in Example 7.27,
exploits this user knowledge by suitably combining the completeness sentence (7.33)
and the awareness sentence (7.34). Note that the completeness sentence can be
rearranged to (VV)[(=B A —A;) = Aj], that is, a user who knows that B and A,
do not hold for a variable assignment ¢ can infer that A, holds for ¢. From the
awareness sentence it then follows that

\/( A ¢(\7)[A]=\|fi[A}),

i=1 \ Aeselect(V;)

that is, a W; € pot_sec is relevant for ®(c), leading to ®(c) = V; (by Definition 6.4
and Lemma 6.5). We supposed that B = —®(V) does not hold for V = &, thus
r =m ®(¢) and consequently, by the definition of logical implication, r |y V;. If
there is a unique W; € pot_sec such that W; is relevant for ®(c), then the user
knows that this particular potential secret is true in the database instance and thus
confidentiality is violated.

We point out that not the combination of an open query and a closed query is
responsible for the sketched disclosure of secrets; reconsidering Example 7.27, the
following open queries would lead to the same result sets as ®; and 5 and thus they
would cause the same problem:

¢} (Xacc_no . Xacc_r.Xgar) = ACC(bankB,Xacc_no.Xacc_H,XgaL) and
(DIQ(XACC,NO) = (HXBAL)ACC(bankB,XACCiNO,brOWﬂ,XBAL).

It is rather the combination of an open query and an existential R-sentence that
makes it possible to disclose a secret: On the one hand, the controlled evaluation
of the open query suggests that there is no information in the database regarding a
certain aspect—in Example 7.27, ans; suggests that there is no information about an
account holder Brown with an account at bank B in the database; on the other hand,
the controlled evaluation of the existential R-sentence shows that the uncontrolled
answer of the open query would have contained information regarding this aspect—in
Example 7.27, anss shows that there is an account holder Brown with an account
at bank B. Consequently, the user knows that a secret has been filtered from the
answer set of the open query.
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Preventing the database user from expressing queries with existentially quantified
variables would possibly solve the sketched problem. However, we refrain from inves-
tigating this approach because further language restrictions are counterproductive
when aiming at developing an expressive query language. In the following subsection,
we therefore propose an alternative solution to the confidentiality problem in the
context of open queries.

7.3.3 Preservation of Confidentiality

As justified in the preceding subsection, there is no straightforward transition from
stateless CQE for closed queries to stateless CQE for open queries when aiming at
guaranteeing preservation of confidentiality. Therefore, we have to suitably modify
our approach, preferably without further restricting our query and policy languages.

Since the user awareness regarding the policy turned out to be a crucial point in
Example 7.27, we claim that hiding the confidentiality policy from the user solves
the problem. This is justified as follows: From (7.35) we know that, after having
answered a query, the new user log consists of the former user log, the answer to
the current query, the completeness sentence, and the awareness sentence. In the
preceding subsection, we showed that the completeness sentence in combination
with the awareness sentence may cause the disclosure of a potential secret. The
completeness sentence is a tautology, so we cannot prevent the user from exploiting
it for drawing inferences. The awareness sentence, however, is only known to the
user if the policy is known, since the disjunction \//”,(...) ranges over the declared
potential secrets. Consequently, when hiding the policy, the awareness sentence
can no longer be exploited by the user. Thus, when arguing about open queries we
hereafter assume the policy to be unknown to the user.

It still remains to be shown formally that the answers to open queries do not
enable the user to disclose a potential secret, that is, that scqe®9 is secure in the sense
of Definition 5.4. We will show this in Theorem 7.35, but previously we introduce
the chase of existential R-sentences—a technique that follows the chase algorithm
of relational database theory as described in, for example, [AHV95]. Basically,
our chase mechanism takes a set of existential R-sentences and a set of functional
dependencies as input and generates a database instance as output that satisfies the
functional dependencies and makes the existential R-sentences true. We will need
this algorithm in the proof of Theorem 7.35 to construct an alternative database
instance as demanded by Definition 5.4. The chase is formally introduced in the
following Definition 7.28 and illustrated later in Example 7.29.

Definition 7.28 (Chase of existential R-sentences). Consider a set S C Z4r
of existential R-sentences (which are “variable-disjoint” according to the remark to
Definition 6.2) and a set ¥ of FDs such that there exists an instance r with r =y S
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and r =m X. Moreover, let S* denote the set of matrices (that is, quantifier-free parts)
of the existential R-sentences in S. We then call the constants distinguished variables
and the formerly existentially quantified variables non-distinguished variables and
assume the non-distinguished variables to be linearly ordered with ordering relation
<v. The application of an FD o to formulas x7, x5 € S* proceeds similar to the FD
application according to Definition 7.1, but it replaces one of the original formulas
instead of adding a new formula to S8*:

If Xi[K] = x5[K] for all K € Ihs(o),
then, for all N € rhs(o), set xi[N] := x5[N| if one of the following
holds:'"

o Xi[N] is non-distinguished and x3[N] is distinguished or
o Xi[N] and x3[N] are both non-distinguished and xi[N] <y x3[N].

The chase of S with ¥ is the set Sy C Z5r that results from repeatedly applying
the FDs of ¥ to formulas of S8* until a fixpoint is reached (that is, none of the FDs
is applicable or 8* is not changed by any further FD applications), and afterwards
adding existential quantifiers for the remaining non-distinguished variables.

Remarks. The precondition of Definition 7.28 (existence of an instance r with r =y S
and r |=m X) ensures that the sentences in S do not contradict the FDs X.

The original chase as introduced in, for example, [AHV95] is defined for a tableau
query'® and a set of functional and join dependencies. Interpreting the set S* as
tableau query, it can be seen that the original chase is a generalized form of our
chase and therefore our chase inherits the properties of the original chase.

The application of FDs according to Definition 7.1 is correlated to a chase step
according to Definition 7.28 as follows: Considering x7, x5 € S* and o € ¥ (with
Xi[K] = x5[K] for all K € lhs(0)), we can construct existential R-sentences x; and
X2 such that

e o is applicable to x1 and x2 in the sense of Definition 7.1 and

e the result of the FD application corresponds to the result of the chase step.

171 both x;[N] and x3[N] are distinguished, it already holds that x}[N] = x3[N]; otherwise, x; and
x5 would contradict the FD o € ¥, which is, however, impossible due to the precondition of
Definition 7.28.

18A tableau query (7 ,u) consists of a tableau 7 (which is basically a set of tuples that may contain
both variables and constants) and a tuple p of variables such that each of these variables occurs
in 7. The evaluation of (7,u) is the set of tuples with the same structure as u for which the
pattern described by 7 occurs in the database instance. Please refer to [AHV95] for details.
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Consequently, all results for FD application (in particular Lemma 7.3) also apply for
the chase.

More precisely, the construction of x; and y» is performed in the following way
(for i € {1,2}):

o If x7[A] is distinguished then let x;[A] := x}[A];

o If x7[A] is non-distinguished and A ¢ lhs(o) then let x;[A] € Var and add an
existential quantifier for this variable;

o If x*[A] is non-distinguished and A € lhs(o) then let x;[A] € Const such that
XilA] is a “new” constant (that does not occur in x7, x5) and x1[A] = x2[A] if
and only if x7[A] = x5[A]

For example, if x = R(a,X1,¢,X2), x5 = R(a,X1,X3,d) (with a, c,d denoting
distinguished variables and Xi, X2, X3 denoting non-distinguished variables) and
o = AB — CD, the corresponding existential R-sentences (in the sense of the above
construction) are x1 = (IX2)R(a,c’,c,X2) and x2 = (IX3)R(a,c’,X3,d) with ¢’ denot-
ing a “new” constant. The result of applying o to x1 and x2 is xo = R(a,c’,c,d),
and the chase step yields x7 = R(a,X1,c¢,d) which obviously corresponds to x, when
re-replacing ¢’ with Xj.

The following example together with Figure 7.6 on page 100 illustrate the chase
procedure.

Example 7.29. Consider the relation schema (R, ABC, %) with ¥ = {A — B, A —
C} and let the set S of existential R-sentences be given by

S = {(HXl)R(a,b,Xl), (HXQ)R(a,b,XQ), (E|X3)R(3,X3,C)}.

For the instance r that consists of the single tuple R(a,b,c) (which will also turn out
to be the result of chasing S with ¥), it obviously holds that r v S and r E=m X
therefore, the precondition of Definition 7.28 is satisfied. The set S* is then given by

S* = {R(a,bX1), R(a,b,X2), R(a,Xs,c)}

with a, b, ¢ denoting distinguished variables and X7, X3, X3 denoting non-distinguished
variables. The transition from S to S* is depicted in Figure 7.6(a). We further
assume that X; <y Xo <y Xj.

The chase may now be performed in an arbitrary order on the elements of S*. We
exemplarily describe one of these executions.

1. Apply A — C to xj = R(a,b,X1) and x4 = R(a,b,X2). Since X1 <y Xo, we
replace X; in x} with X2. The set S* is updated to S* = {R(a,b,X2), R(a,X3,¢)}
(because of the set semantics, the duplicate R(a,b,X2) occurs only once in §*).
This step is depicted in Figure 7.6(b).
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2. Apply A — B to xj = R(a,X3,c) and x5 = R(a,b,X3). Since X3 is non-
distinguished and b is distinguished, we replace X3 in x7 with b. The set S* is
updated to S* = {R(a,b,X2), R(a,b,c)}.

This step is depicted in Figure 7.6(c).

3. Apply A — C to xj = R(a,b,X2) and x5 = R(a,b,c). Since Xy is non-
distinguished and c is distinguished, we replace Xz in x7 with c. The set
S* is updated to S* = {R(a,b,c)}.

This step is depicted in Figure 7.6(d).

Since now S* is a singleton, no more applications of FDs are possible. Moreover,
S* does not contain any non-distinguished variables and thus we need not to add
existential quantifiers. Therefore, the result of the chase is Sy = {R(a,b,c)}. The
transition from S* to Sy is depicted in Figure 7.6(e). O

As previously mentioned, we apply the chase in the proof of Theorem 7.35. It
serves as a mechanism that constructs an alternative database instance (as demanded
by Definition 5.4), starting from the set of answers to a given query sequence. We
call such an instance that emerges from the chase mechanism a chased instance.
More precisely, it is defined as follows.

Definition 7.30 (Chased instance). Let S C Z3r and X a set of FDs such that
the precondition of Definition 7.28 is satisfied. Moreover, Sy denotes the chase
of § with X, Constyy is the set of constants occurring in S, and Constpe, 1S a
set of “mnew” constants, that is, Constoy N Constpen, = 0. Now consider the set
Sg :={g(xs) | xz € Ss} of ground atoms with

) x=lAl if A € select(xs)
g0l = { c € Constpen if A ¢ select(xy)

such that equal variables in elements of Sy are replaced by equal constants from
Const pey, and distinct variables are replaced by distinct constants. A chased instance
rsy is a witness instance for Sg, that is, for every ground atom xg it holds that

rss }ZM Xg if Xg € Sg§
rsy m Xg if Xg ¢ Sg-

In other words, a chased instance is constructed by replacing all (existentially

quantified) variables in the result of a chase by new constants. We illustrate the
concept of a chased instance with the following example.
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(a) (3X1)R(a,bXi)

100

(3X2)R(a,b,Xa)

(3X3)R(a,X3,¢)

X1

Xo

a | Xs| c

Xa

R(a,b,c)

(b)
X1 al| b |Xe X3
A—C
a X2
(d)
a Xo
al|b|c
A—C

Figure 7.6: Illustration of the chase.
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Example 7.31. Consider the relation schema (R, ABC, ¥) with the functional de-
pendencies ¥ = {A — B,A— C, C — B} and let the set S be given by

S :{ (HXl)R(a,b,Xl), (3X2)(E|X3)R(X2,X3,C), (3X4)R(X4,d,e),
(3X5)(3X6)R(X5,X6,e), (3X7)R<3,X7,f) }
We assume that X7 <y Xs <y ... <y X7 and chase § with ¥. The precondition for

the chase is satisfied, for example, by the instance r = {R(a,b,f), R(b,a,c), R(c,d,e)}
(r =m S and r =m X), and the chase result is

Sy ={ x. X¥ X3 } with

X+ = R(a,b,f), x& = (3X2)(3X3)R(X2,X3,¢) and x5 = (3X5)R(X5.d.e).
For constructing a chased instance, we consider the set Constpe,, = {n1, n2, ...} of new
constants. Since Constoq = {a, b, ¢, d, e, f}, the condition Constyy N Constpey, = 0

is satisfied. The set Sg is then determined by replacing the variables in Sy with
constants from Const ey :

Se={glxz) g(x3). gxy) } with
g(xx) = R(a,b,f), g(x3) = R(n1.n2.c) and g(x3) = R(n3.d.e).

The chased instance rs; is the instance that makes exactly the ground atoms of S;
true and all other ground atoms false. We may represent rs; as the following table:

rss | A B C

a b f
np  ng C
ns d e

Observe that rs; is indeed an instance of the schema (R,ABC, ¥) because the FDs
Y are satisfied. O

We require the chase to be a “proper” algorithm, that is, it should terminate and be,
in some sense, sound and complete. More precisely, regarding soundness, the chase
should (syntactically) produce only existential R-sentences that are logically implied
by the input, that is, by the set S and the functional dependencies ¥. Regarding
completeness, we consider a chased instance rs; and demand that it is a model for all
formulas being logically implied by S U ¥; with the definition of logical implication
in mind, this requirement is equivalent to rs; being a model of S U X.

The original chase (see the remark to Definition 7.28) is known to satisfy the
properties of termination, soundness and completeness. In the following Lemma 7.32,
however, we re-elaborate these properties for our special form of the chase and show
that they are actually satisfied.
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Lemma 7.32 (Properties of the chase). The chase according to Definition 7.28
has the following properties:

1. It always terminates and yields a unique'® result (independent of the order of
the FD applications).

2. It is sound in the sense that SUYL = Sx.

3. It is complete in the sense that rs; [=m S UX for every chased instance rs;
according to Definition 7.30.

Proof. As explained above, each chase step can be simulated by an FD application
in the sense of Definition 7.1. Therefore, we may argue about FD applications in &
rather than about chase steps in §* in the following.

Termination and uniqueness follow from the Church-Rosser property of the general
chase, refer to [AHV95].

Regarding soundness, by the definition of logical implication, we have to show that
for every instance r it holds that

if r }:M SUZX then r }:M Sy (736)
We choose an instance r such that
reEm SUEL. (7.37)

By the termination property of the chase, each yy € Sy results from a finite sequence
of FD applications. In the first step, a x, is produced by applying an FD o € ¥ to
X1, X2 € S. From Lemma 7.3, we know that

{x1. x2. 0} F X0 (7.38)

Since S = {x1, x2} and X = o, we get SUX = {x1, x2, 0} which, together with (7.38)
and the transitivity of logical implication, leads to SUX = x,. According to the
chase definition, one of x1, x2 is replaced by X, and then the next step is performed.
We may therefore inductively apply the above argument and finally get SUX = xx
for each xy € Sy. With (7.37) and the definition of logical implication, it follows
that r v xx for each xy € Sy and thus r =y Sy. Consequently, SUY = Sy which
completes the soundness proof.

Regarding completeness, we have to show that for every chased instance rs; it
holds that rs; =m S and rs; F=m X. We choose an arbitrary chased instance rs; for
the remainder of the proof.

9The result is unique up to variable identifiers.
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First, we show “rs; =m S”: By Definition 7.1, for the result x, of applying an
FD o € ¥ to the existential R-sentences x1 and x2, it holds for i € {1, 2} that

Xo|A] = xi[A] for all attributes A € select(y;). (7.39)

By Definition 6.4 and Lemma 6.5, it follows from (7.39) that y, = x; for
i € {1,2}. Inductively applying this argument and the transitivity of logical
implication, for each y € S there exists a xyy € Sy with

Xz F X (7.40)

(If no FD is applied to a x € S during the chase process, then y € Sy and
thus (7.40) holds with x5 := x.)

According to Definition 7.30, rs; is a witness instance for Sg which emerges
from Sy by “grounding” the elements of Sy. Consequently, by construction
of Sg, Definition 6.4 and Lemma 6.5, for each x5 € Sy there exists a ground
atom xg € Sg such that

Xg = Xz (7.41)

Since rs; F=m Sg, it follows from (7.41) and (7.40) that rs; F=m S.

Second, we show “rs; =M L”: We suppose the contrary, that is, there exists a
o € X such that

rsy Fem o (7.42)

By the definition of FDs and the construction of rs., (7.42) means: There exist
ground atoms Xg,, Xg, € Sg With rs; [=m Xg and rsy =m Xg, such that

Xgi|A] = Xg|A] for all A€ lhs(o) but (7.43)
Xg1|B] # Xg|B] for a B € rhs(o). (7.44)

Let xx,,xs, € Sy be the existential R-sentences from which xg, and xg,
emerged during the construction of Sgz. Due to this construction, (7.43) and
(7.44) already hold for x5, and xy,, since equal attribute values in xg, and xg,
result from equal attribute values in xy, and xy, and distinct attribute values in
Xg and xg, result from distinct attribute values in xy, and xy,. Consequently,
Xz, [A] = xx,[A] for all A € lhs(o) which is, however, a contradiction to the
exhaustive application of FDs as demanded by the chase definition. As a result,
(7.42) is falsified and we get rs, =M X which completes the proof. O
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In the proof of Theorem 7.35, we will have to show that answers regarding the
alternative database instance are also answers regarding the original database instance.
A more general form of this property is captured by the following lemma. (Again,
the original chase is already known to satisfy this property.)

Lemma 7.33 (Implications of chased instances). Consider the chase Sy of a
set S C ZL5r with a set X of FDs, and a chased instance rs,. Then for a formula
X € ZL4ar with rs; F=m x and x[A] € Constoy for every attribute A € select(x) it
holds that SUX = x.

Proof. According to Lemma 6.7, from rs; =m x it follows that there exists a ground
atom xg with

rsy Fm Xg and xg = x (7.45)

The chase with FDs according to Definition 7.28 either replaces a non-distinguished
variable with another non-distinguished variable or a non-distinguished variable
with a distinguished variable from another formula in each step. Consequently, no
constants from Constpe, are introduced during the chase of § with ¥. Moreover,
during the construction of rs; according to Definition 7.30, when S, is generated
from Sy, only constants from Const e, are used to replace the variables. Thus, for
the ground atom x, from (7.45) there exists a xy € Sy such that

xx[A] = xg[A] for all attributes A with xz[A] € Constoyqy. (7.46)

Because of x4 = x (see (7.45)) it holds by Definition 6.4 and Lemma 6.5 that
Xg[A] = x|A] for every attribute A € select(x). Since we assume y to contain only
constants from Const g, with (7.46) we conclude that

Xz [A] = x[A] for all attributes A € select(). (7.47)

Again, we apply Definition 6.4 and Lemma 6.5 and find that (7.47) is equivalent
with xy E x. From the soundness of the chase according to Lemma 7.32, we know
that SU X = xx. Thus, applying the transitivity of the logical implication, we get
SUX E=x. O

Finally, we need a variant of Lemma 6.9 that is adapted to sets of (positive)
existential R-sentences. It states that a potential secret is implied by a set of
existential R-sentences and a set of FDs if and only if it is already implied by a single
element of the set of existential R-sentences.

Lemma 7.34 (Implications of existential R-sentences and FDs). Let Rs =
(R,U, L) be a relation schema in ONF, S C Z3r a set of existential R-sentences,
and V € L3r a potential secret with select(V) € bfs(Rs). Then the following
properties are equivalent:
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1. SUX E V.
2. xXEV foraxesS.
Proof. First, we show “1. = 2. and therefore assume that
SUXEV. (7.48)
Since the chase has been proven to be complete in Lemma 7.32, we know that
rss FM SUL (7.49)

for all chased instances rs;. In the following, we choose an arbitrary chased instance
rsy and consider the set Constyy of constants occurring in S U {W} and the set
Const pey, of constants that are newly introduced in the construction of rs.. Observe
that (7.49) together with (7.48) leads to

rss ):M v (7.50)

by definition of logical implication. Thus, by Lemma 6.7, there exists a ground atom
V, with rs; Em W, and W, = V. By Definition 6.4 and Lemma 6.5, it follows that

Y, [A] = V[A] for all attributes A € select(WV). (7.51)

Since we assume that select(V) C Const oy, we conclude from the construction of rs;
that there exists a Wy € Sy such that Wy = W. Since Sy emerges from a sequence of
FD applications to formulas from S, we can inductively apply Lemma 7.8 to Wy and
finally get x = W for a x € S. (Note that Lemma 7.8 is applicable in this context,
since we assume that select(W) € bfs(Rs).)

Second, the direction “2. = 1.” immediately holds by the monotonicity of first-order
logic. g

Having defined the notions of chase and chased instance and having presented some
results regarding the chase, we now show that hiding the policy from the database
user suffices to ensure preservation of confidentiality.

Theorem 7.35 (scqe®? preserves confidentiality). Reconsider the assumptions
from Theorem 7.10, but let the queries in Q be elements of £3r £, and suppose that
pot_sec is unknown to the user. Then scqe®? is secure in the sense of Definition 5.4.

Proof. In this proof, we use the following abbreviations:

eval; = eval*(®;(V))(r) eval?’ = eval*(d;(V))(r)
refused; = refused(®;(V;),pot_sec) refused, := refused(®;(V;),pot_sec')
ans; = evalj\refused,; ans’ = eval¥'\ refused’

105



7 Enhancements of the Languages

Moreover, with (ansi, anss, ...) we denote the answer sequence to Q produced by
scqe®9.

Consider the instance r and the policy pot_sec (with (r,pot_sec) being admissible
with respect to the a priori user knowledge log, according to Definition 5.3), a fixed
potential secret W € pot_sec, and a finite prefix Q' = (d1(V1), ®2(Va), ..., dn(Vy))
of the query sequence Q. According to Definition 5.4, we have to find an alternative
instance r’ and an alternative policy pot_sec’ satisfying the following properties:

r' |:M > (7.52)

[r' is an instance of the underlying schemal

for all V' € pot_sec’ : W' € L3g and select(V') € bfs(Rs) (7.53)

[pot_sec’ is a valid policy]

(r',pot_sec’) is admissible with respect to log, (7.54)
[admissibility in the sense of Definition 5.3]

ans; = ans; for i € {1, ..., n} (7.55)

[scqe®? yields the same answers on (r,pot_sec) and (r',pot_sec’)]

eval*(W)(r) = —W (7.56)
[V is false in r']

Observe that, unlike in previous confidentiality proofs, it does not need to hold that
pot_sec’ = pot_sec. This is due to the assumption that the confidentiality policy is
hidden from the user, see Definition 5.4.

In the following, we first construct the alternative instance r’ and the alternative
policy pot_sec’ such that properties (7.52) and (7.53) are satisfied. After that, we
prove that r’ and pot_sec’ also satisfy properties (7.54)—(7.56).

Construction of r' and pot_sec’: Consider the answer sets ansi, anss, ..., ans, to
the queries of Q. We construct r’ as a chased instance, see Definition 7.30, that
emerges from the chase of |J_; ans; with ¥: By the definition of scqe®, it holds that
r =m Ui ans; and, moreover, r =g X, since r is a proper instance; thus, r satisfies
the precondition of Definition 7.28 which justifies the applicability of Definition 7.30.
We denote the result of the chase with Ansy and the set of ground atoms that is
constructed from Ansy in order to obtain the chased instance with Ansg. Furthermore,
we denote the set of constants that occur in ansy, ..., ans, and ¥ with Const,y and
the set of constants that are newly introduced during the construction of Ans, with
Const pey, such that Consty N Constpe, = 0. By Lemma 7.32 (completeness of the
chase), it holds that

FEnm X (7.57)

106



7.3 Open Queries

that is, r’ is actually an instance as demanded by (7.52).
For the alternative policy pot_sec’, we generate a potential secret from the language
Z3r for each new constant occurring in Ansg:

pot_sec’ := {V' | exists xgz € Ansg such that for an attribute A (7.58)
Xg|A] € Constpen and W'[A] = xz[A] and
WA € Var for all A’ € U\{A} }

Since each V' € pot_sec’ has the form

(E|X1)(E|X2) (ElX,,,l)R(Vl,VQ, ,Vn)
with v; € Const for exactly one i € {1, ..., n}
and {vi, ..., Vi—1, Vig1, s Vo) = {X1, ..., Xo—1 ),

it holds that select(V’) € bfs(Rs) (by the remark to Definition 7.5) as demanded
by (7.53).
Property (7.54): According to Definition 5.3, we have to show that

r' =m logy; and (7.59)
for every W' € pot_sec’ : if r' = W' then log £ V. (7.60)

Since log, = X, (7.59) is satisfied by (7.52). Moreover, log, ~ x for all formulas
X € AR by the structure of logg; thus, (7.60) is trivially satisfied.

Property (7.55): We choose an arbitrary i and show that for all formulas x € Z3g
which represent elements of answer sets it holds that

X € ans; if and only if x € ans. (7.61)

For the “="-part, consider a x € ans;. We show that y € eval}’ and x ¢ refused
(which is equivalent to x € ans}):
First, by Definition 7.26 and Definition 2.3,

X € eval; = {®9;(¢) | ¢ € Const x ... x Const and r =y @;(¢)}.  (7.62)

Moreover, by the completeness of the chase according to Lemma 7.32, we know
that r’ =m U7, ans; and therefore in particular

Y Ewm . (7.63)
Together with (7.62), we get
x € {®;(¢) | ¢ € Const x ... x Const and r' =y ©;(C)} = evalt'. (7.64)
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Second, we indirectly show that x ¢ refused; and therefore assume that x €
refused;. Then, by Definition 7.26, there exists a W' € pot_sec’ such that
X E V. By Definition 6.4 and Lemma 6.5 it follows that

X[A] = W'[A] for every A € select(V'). (7.65)
By construction of pot_sec’ according to (7.58), we know that

V'[A] € Constpey for every A € select(V'), (7.66)
and thus, with (7.65),

X[A] € Const ey for every A € select(V'), (7.67)

which is a contradiction to the definition of new constants. Therefore,
X ¢ refused.

For the “«<”-part, consider a x € ans’. We show that y € eval] and x ¢ refused;
(which is equivalent to x € ans;):
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First, by the same argument as in the “="-direction, xy € evalf’ and thus
r' Em x. We now show indirectly that y cannot contain constants from
Const pey,, and therefore assume the contrary:

X[A] € Constpe,, for an attribute A € select(y). (7.68)

By construction of r’ and Lemma 6.7, there exists a xg € Ansg with r' F=m xg
and xg = x. It follows by Definition 6.4 and Lemma 6.5 that

Xg[A] = x[A] for every A € select(x). (7.69)
With (7.68) we get

XglA] € Const ey, for an attribute A € select(x) (7.70)
and thus, by construction of pot_sec’, there exists a V' € pot_sec’ such that

W'[A] = xg[A] and V'[B] € Var for all attributes B € U\{A}. (7.71)
From (7.70) and (7.71) we conclude that x[A] = W/[A] for each attribute
A € select(V') which, by Definition 6.4 and Lemma 6.5, leads to x = V' and

thus x € refused}, a contradiction to x € ans’. It follows that x[A] € Constjy
for every A € select(y). Since S :=J!_; ans; C L3R, r' is chased instance to S
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and X with r’ =M x, and x[A] € Const,g for every A € select(x), we can apply
Lemma 7.33 and get

n
U ans; UX = x. (7.72)
i=1
By Definition 7.26 and Definition 2.3, we know that
n
rEm U ans;, (7.73)
i=1
and, since (r,pot_sec) is assumed to be admissible with respect to logy, = X, it
holds that

From (7.73), (7.74), (7.72) and the definition of logical implication, we conclude
that r =M x and thus

X € {®i(¢) | ¢ € Const x ... x Const and r E=um (&)}, (7.75)

that is, x € evalj.

Second, we show that x ¢ refused;, again indirectly by assuming x € refused;,
which means that there exists a W' € pot_sec such that x = V' (Definition 7.26).
From (7.72), it then follows by transitivity of logical implication that

n
Uansiuz V. (7.76)
i=1

Since UL ans; C L5r and V' € L5 with select(V') € bfs(Rs) by assumption,
we can apply Lemma 7.34 which leads to

X EV foray €[ ]ans; (7.77)
i=1
which means that
n
X' € | refused; (7.78)
i=1

by Definition 7.26. This is obviously a contradiction to x’ € U7, ans; and thus
X ¢ refused;.
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K — N
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(a) schema and query restrictions (b) policy restrictions

Figure 7.7: Visualization of the restrictions for open queries.

Property (7.56): We show this property by an indirect proof and therefore assume
that eval*(W)(r") = W which, by Definition 2.2, means that

r'Emv V. (7.79)
By (7.79) and the assumption that W[A] € Const,y for every A € select(V), we can
apply Lemma 7.33 to S := U/ ans;, ¥ and ¥ which yields

Jansiuz = . (7.80)

i=1
By Lemma 7.34, (7.80) is equivalent to

X EVforay €| ans (7.81)

i=1

which again means that x’ € |JI_; refused; and is therefore a contradiction to x’ €
U, ans;. Tt follows that eval*(V)(r') = V. O

As in the preceding sections, we again provide a visualization of the restrictions
which are assumed in this section in Figure 7.7. This figure differs from Figure 7.2
as follows:

e With open queries, the user is not only able to ask for (parts of) single tuples
but also for sets of (parts of) tuples by using free variables; this is indicated by
the gray blocks in Figure 7.7(a).

e The policy is supposed to be unknown to the user; this is indicated by the
padlock icon in Figure 7.7(b).
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7.4 Open Confidentiality Policies

In the preceding section, we enhanced the query language by free variables. The
resulting language Z4g 5, is suitable for expressing open queries—a class of queries
that is highly relevant from the perspective of the database user. It might, however,
also be desirable for the security administrator to have free variables at his disposal
to express “secret schemas”, as already sketched in the introduction to Chapter 7.
Suppose, the database administrator aims at protecting all instantiations of a subset
of attributes in a database instance. If we take 25 (or .Z5%) as policy language,
a problem arises: The secrets are declared independently of the actual database
instance and thus the security administrator must add a secret to the policy for each
possible instantiation of the attribute set under consideration. Since we assume an
infinite set of constants, however, the resulting confidentiality policy would also be
infinite and thus not representable in a closed form. If the security administrator
avoids this problem by declaring only those instantiations as potential secrets that
are actually true in the database instance, the database user would be able to disclose
these secrets by simply reading the policy. As with open queries, we could hide the
policy from the user, but this is not necessary as we will see in the following and
would be in contrast to our “smart user assumption” from Section 5.1. Besides, it
is desirable that the policy can be declared independently of the actual database
instance in order to confirm the functional separation of database administrator
and security administrator as proposed in Section 5.1. We illustrate the sketched
problems with an example.

Example 7.36. Consider relation schema ACCs and instance acc from Example 5.1
and suppose that the security administrator wants to protect each account holder of
bank A, that is, each instantiation of ACC_HOLDER that occurs with BANK = bankA.
With a policy from the language £5g, this can be expressed by enumerating all
elements from Const as instantiations for ACC_HOLDER:

pOt,SGC1 = { (HXACCJVO)(EIXBAL)ACC(bankA,XACCJ\,O,anderson,XBAL),
(3Xacc_no)(3XpaL)ACC(bankA,Xacc_no.brown, Xgar),
(HXACCJVO)(EIXBAL)ACC(bankA,XACCJVO,jones,XBAL),... }

This is, however, an infinite policy. Alternatively, the security administrator could
declare only those potential secrets that are true in acc, that is,

pot_secy = { (HXACCiNo)(HXBAL)ACC(bankA,XACCiNO,Smith,XBAL),
(3Xacc_no)(3XgaL)ACC(bankA,Xacc_no.jones, Xpar) 1}

A database user being aware of the construction of pot_sec, knows that acc F=m
pot_secy. If he additionally knows the actual contents of pot_sec, (which is a
justified requirement according to Section 5.1), he is able to disclose the declared
secrets. O
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Motivated by this example, we investigate open confidentiality policies in this
section. In Subsection 7.4.1, we start with relating open policies to closed policies,
adapting the security definition from Section 5.2 to open policies, and proposing a
stateless CQE with a suitable censor. In Subsection 7.4.2, we propose an alternative
censor for open policies that can be interpreted algorithmically, prove it equivalent to
the censor from Subsection 7.4.1, and show that the stateless CQE for open policies
preserves confidentiality.

This section is based on the work of Biskup, Lochner and Sonntag [BLS09] who
originally investigated open confidentiality policies.

7.4.1 Policy Language and Adapted Stateless CQE

We take Z5r 5, as policy language, that is, the security administrator might use
free variables to express “secret schemas”. For simplicity, we assume .Z5r as query
language and do not consider disjunctive secrets in this section. In Section 7.5, we
will investigate how these languages may be enhanced by Boolean operations.

Regarding semantics, a policy with secrets from Z5g 5, can be transformed into
an (infinite) policy with secrets from Z5g via expansion.

Definition 7.37 (Expansion of open policies). Let pot_sec C Z4rf be an

open confidentiality policy. The expansion of an open potential secret W(V') € pot_sec
1s defined by

ex(V(V)) := {W(e) | & € Const x ... x Const}.
The expansion of pot_sec is defined by

ex(pot_sec) := U ex(V(V)).
W(V)epot _sec

An open policy is supposed to have the same semantics as its expansion, which is
basically expressed by the following Definitions 7.38-7.40.

First, we suitably adapt the notions of admissibility and secure query evaluation,
as introduced in Section 5.2, to open policies. Considering an open policy as short
representation of its expansion, it is easy to adapt these Definitions 5.3 and 5.4.

Definition 7.38 (Admissibility (for open policies)). Given the a priori user
knowledge log,, a pair (r,pot_sec) of a database instance r and a confidentiality
policy pot_sec C L4 s is called admissible with respect to log if the following
conditions hold:

1. r=m logy;
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2. a) if pot_sec is known to the user: log, = W(E) for every V(c) €
ex(pot_sec),
b) if pot_sec is unknown to the user:
logy = W(C) for every W(C) € ex(pot_sec) with r =m W(C).

Definition 7.39 (Secure query evaluation for open policies). Given

e a (possibly infinite) query sequence Q = (P1, P, ...) (with &1, Py, ... being
queries expressed in a suitable query language) and

e a confidentiality policy pot_sec = {\Ill(\71), WQ(VQ), s \Ilm(\7m)} C LAR s
the modified query evaluation m_eval is secure with respect to pot_sec if

for every finite prefir Q" of Q
for every W(C) € ex(pot_sec)
for every database instance r
such that (r,pot_sec) is admissible
with respect to the a priori knowledge log
there exists an alternative instance r' and
there exists an alternative policy pot_sec’
such that (r',pot_sec’) is admissible
with respect to the a priori knowledge log
satisfying the following properties:

1. m_eval(Q')(r,pot_sec) = m_eval(Q")(r',pot_sec’);
2. eval*(W(&))(r') = -V (S);

3. if pot_sec is known to the database user, then pot_sec’ = pot_sec.

The modified query evaluation m_eval is secure if it is secure with respect to every
possible policy pot_sec.

Finally, we adapt the stateless CQE scqge, as introduced in Definition 6.11, to
open policies. It suffices to slightly adjust the censor definition. The actual CQE
mechanism remains the same but uses the adjusted censor.

Definition 7.40 (Stateless CQE for secrets from Zar ). The stateless CQFE
scqeqp 5 a specific modified query evaluation according to Definition 5.2. Given
a policy pot_sec C L3R f, the answers ansi,ansa,... to a query sequence Q =
(1, g, ...), with @y, Dy, ... € LR, are determined subject to the censor function

censorSp(pot_sec,®) := (exists V(C))[W(C) € ex(pot_sec) and ¢ = V(C))].
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The stateless CQFE is then defined as follows:

scqeop(Q)(r,pot_sec) = (ansy, ansy, ...)  with

ans; = if censorjp(pot_sec,®;)
then mum
else eval™(®;)(r)

Unfortunately, the adjusted censor according to this definition has a major draw-
back: It has to scan the infinite expansion of an open policy and is thus not
algorithmically implementable in this form. We take account of this problem in the
following subsection.

7.4.2 Alternative Censor and Preservation of Confidentiality

The censor censor§h, as introduced in Definition 7.40, has been defined in a “natural
way” on the basis of the original censor for select-queries, see Definition 6.11. In order
to construct a censor that is effectively implementable, however, it is not appropriate
to define the censor via the infinite expansion of the confidentiality policy. Rather, it
should be formulated in terms of the ﬁgite policy.

Observe that a potential secret W(V) € Z4g s should be relevant for a query
® € AR (in the sense of an adapted form of Definition 6.4) if

—

e cach constant from W(V) occurs in ® at the same position (that is, attribute)
and

e cach attribute instantiated with a free variable in W(V) is instantiated with a
constant in @.

We formalize this notion in an alternative censor definition for scqe,p. In the following,
we denote the set of variables that occur freely in a formula x with fv(y).

Definition 7.41 (Alternative censor for open policies). Consider an open
policy pot_sec C LaR.f, a query ® € Lar, and the underlying relation schema
(R,U,X). The alternative censor for open confidentiality policies, c/e_ﬁ/.sorgl,;, is then
defined as follows:

Censorap(pot_sec,®) := (exists W(V))[W(V) € pot_sec and for all A€ U :
if W(V)[A] € Const then ®[A] = W(V)[A] and
if W(V)[A] € A (W(V)) then ®[A] € Const]

Remark. Instead of proposing an alternative censor, we could also redefine the notion
of relevance (see Definition 6.4) and investigate the relation between this new notion
of relevance and logical implication (in the sense of Lemma 6.5). We prefer the
alternative censor, however, so as not to get confused with the notion of relevance
which is widely used throughout this thesis.
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This alternative censor is in fact equivalent to censorg,g as we show in the following
—~—— O, .
lemma. We therefore assume hereafter that scqe,, uses censorsg instead of censorsp.

Lemma 7.42 (Equivalence of censors for open policies). For an arbitrary

query ® € L3 and an arbitrary policy pot_sec C L3grgf, it holds that
op —~——o0p

censorsp(pot_sec,®) = censorp(pot_sec,®).

Proof. Assuming (R,U,Y) as underlying relation schema, we show that for every
Y (V) € pot_sec the following properties are equivalent:

1. [censorSp] There exists a constant vector ¢ with W(¢) € ex(W(V)) and ¢ =
v(c).

2. [censorgg] For all A € U it holds that

a) if W(V)[A] € Const then ®[A] = W(V)[A];
b) if W(V)[A] € fv(W(V)) then ®[A] € Const.

First, we show “1. = 2”: Consider a constant vector € such that V(&) € ex(W(V))
and

® = (). (7.82)

We now consider properties 2a) and 2b) separately.
Regarding 2 a), by Definition 7.37, if W(V)[A] € Const for an attribute A € U,
then V(<) agrees with W(V) on this attribute, that is,

W(2)[A] = W(V)][A] for every A € select(W(V)). (7.83)
Moreover, by Definition 6.4 and Lemma 6.5, we conclude from (7.82) that

O[A] = V(C)[A] for every A € select(V(C)). (7.84)
Combining (7.83) and (7.84) then yields

®[A] = W(V)[A] for every A € select(W(V)), (7.85)
which is equivalent to 2a).

Regarding 2b), we suppose that W(V)[A] € fu(W(V)) for an attribute A. By
Definition 7.37, this means that W(c)[A] € Const. From (7.84) it then follows
that ®[A] € Const.
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—

Second, we show “2. = 1.: Consider a secret W(V) € pot_sec that satisfies
property 2. Let Ay, ...,Ax be the attributes with W(V)[A;] € fv(V(V)) for i €
{1,..., k}, and

Co = (Cayr ..., ca,) With ca, := ®[A;] for every i € {1,..., k} (7.86)

a constant vector such that ca, is an instantiation of A; for every i € {1, ..., k}. It is
obviously satisfied that W(cp) € ex(W(V)), so we still have to show that ¢ = W(cp)
which is, according to Definition 6.4 and Lemma 6.5, equivalent to

P[A] = W (Cop)[A] for every A € select(W(Cop)). (7.87)

Consider an attribute A such that A € select(W(Cs)). By construction, this holds
only if A is instantiated by a constant or by a free variable in W(V ) We distinguish
these two cases:

W(V)[A] € Const. In this case, by property 2a), ®[A] = W(V)[A] and thus also
O[A] = W(E)[A] by (7.83).

2. W(V)[A] € iv(W(V)). Then, by construction of &, ®[A] = ca = W(Zp)[A].
Consequently, (7.87) holds and thus property 1 is satisfied. O

Having introduced a “natural” censor and an equivalent censor that is algorith-
mically implementable, in the following we justify that the induced stateless CQE
scqeop (according to Definition 7.40) preserves confidentiality.

Observe that Definitions 5.3, 5.4 and 6.11 differ from Definitions 7.38-7.40 only
in that for closed confidentiality policies the elements of the policy are considered
and for open policies the elements of the expansion of the policy are considered.
Moreover, by Definition 7.37, the expansion of an open policy yields an infinite set
of existential R-sentences, that is, an infinite closed policy. Consequently, censoré’,g
works actually the same as censorgg from Definition 6.11, only that it checks elements
from an infinite policy rather than from a finite policy. In order to prove scqep
confidentiality-preserving, it therefore suffices to check whether Theorem 7.10 (which
considers closed queries and closed secrets from the language #4g) also holds if we
assume an infinite policy.

The proof of Theorem 7.10, however, does not make use of the finiteness property
of the policy and thus applies for infinite sets of existential R-sentences as well.
More precisely, already the definition of security (Definition 5.4) indicates that it
makes no difference whether a finite or an infinite policy pot_sec is considered: An
alternative instance and an alternative policy must exist for every W € pot_sec, but
for every W € pot_sec this instance and policy might be different. Consequently, in
the proof of Theorem 7.10, an arbitrary element of the policy is fixed when showing
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Figure 7.8: Visualization of the restrictions for open policies.

“(7.13) = (7.14)” and thus the argumentation is also valid when assuming an infinite
policy.

Summing up, scqe,p is secure, since it essentially works the same as scqge. We
formally express this insight in the following proposition.

Proposition 7.43 (scqe,, preserves confidentiality). Let Rs = (R,U,X) be a
relation schema in ONF, r an instance of Rs, pot_sec C Z1g f, a confidentiality pol-
icy with select(W(C)) € bfs(Rs) for every W(E) € ex(pot_sec), and Q = (®1, P, ...)
a query sequence with ®1, P, ... € Lag. Moreover, let logy = X be the a priori user
knowledge and assume that (r,pot_sec) is admissible with respect to log,. Then the
stateless CQE scqeop(Q)(r,pot_sec) is secure in the sense of Definition 7.39.

In Figure 7.8, the restrictions that are demanded by Proposition 7.43 are visualized.
The schema restrictions and the query restrictions are the same as in Section 7.1,
thus Figure 7.8(a) corresponds to Figure 7.2(a). Regarding the policy restrictions,
Proposition 7.43 allows for free variables in potential secrets in order to express
(infinite) sets of potential secrets with a single formula. This is indicated by sets
of (parts of) tuples in Figure 7.8(b). The dots signify that the expansion of a
potential secret with free variables yields an infinite set of potential secrets without
free variables.

7.5 Filling the Gaps

In Chapter 6 and Sections 7.1-7.4, we investigated for several combinations of
query and policy languages under which restrictions they are suitable for stateless
CQE. Although the crucial language combinations have been considered, regarding
a systematic investigation, some combinations are still missing. In this section, we
identify these gaps and elaborate on how to fill them.
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In Subsection 7.5.1, we merge the contributions of the preceding sections and
present comprehensive query and policy languages. After that, in Subsection 7.5.2,
we investigate the newly introduced comprehensive query language and present a
secure stateless CQE for this language. Finally, in Subsection 7.5.3, we consider the
policy languages that have been proposed so far and show that they are reducible to
existential R-sentences.

7.5.1 Combining Boolean Operations with Free Variables

Having considered Boolean expressions and free variables isolatedly in the preceding
sections, we now combine the aspects from Sections 7.2 and 7.3 and the aspects from
Sections 7.2 and 7.4, respectively, to obtain open query and policy languages with
Boolean operations.

For the policy language, we combine .Z3% and 3R £, that is, disjunction and free
variables. This combination is a straightforward adaption of Definition 7.18.

Definition 7.44 (Open existential R-sentences with disjunction). The lan-
guage fa\/R’fv is inductively defined as follows:

o If x € Lrp then Y€ favvav;

o if X1,x2 € Lirys then x1V X2 € Lagy-

Regarding the query language, the combination of .75, ,%A and Z3R 5, is ambiguous.
More precisely, negation together with free variables may lead to problems which is
illustrated by the following example.

Example 7.45. Let Rs = (R, A, () be a relation schema and r = {R(a)} an instance
of Rs. Moreover, the infinite set of constants is given by Const = {a, b, ...}. Now
consider the query ®(X) = —R(X) that contains negation on the one hand and is
open on the other hand. The evaluation of ®(X) according to Definition 2.3 is the

infinite set eval®(®(X))(r) = {=R(b), ~R(c), ...} O

Following the notion of [AHV95], Example 7.45 addresses the problem of unsafe
queries, that is, queries whose evaluation is infinite or, more general, depends on
the underlying domain. The authors of [AHV95] propose a modified semantics, the
active domain interpretation, for handling unsafe queries. Basically, this semantics
evaluates a query relative to the active domain Const’ C Const with Const’ denoting
the finite set of constants actually occurring in the database instance or in the query.
Consequently, the evaluation of a query is always finite. However, the authors admit
that the active domain semantics is not feasible from a practical point of view and
therefore introduce the notion of domain independence: A query is called domain
independent if the evaluation is the same on all domains.
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As a result, we should aim at admitting only domain independent queries because
they can be evaluated in the “natural way” as introduced in Section 2.3. It turns out,
however, that the restricted form of negation that may be used according to faﬁ,{\
might yield domain dependent queries when being combined with free variables. This
is due to the fact that negation may only be used in the form —(3X;) ... (3Xm)R(...),
that is, in combination with atomic existential R-sentences as in Example 7.45. Since
a database instance is finite by definition, such a query has potentially an infinite
evaluation when assuming an infinite set of constants as domain.

To solve this problem, we could further restrict the use of negation when combining

37{,/\ with free variables such that = is allowed only if ® is a positive existential
R-sentence without free variables. But in the context of open queries another problem
arises: In Subsection 7.2.1, we reduced scge™” to scge by splitting up conjunctive
queries and answering each conjunct separately. Due to Definition 6.11 and the
adapted censor (7.19), scge behaves the same on a positive query  and its negative
form —®. More precisely, the decision whether or not a query is to be refused
as well as the ordinary evaluation eval* is independent of the sign of the query.
Considering open queries, however, scge must be replaced by scqe®?, and now the
ordinary evaluation is no longer independent of the sign of the query: If r =m ¢
for a (positive) existential R-sentence ®, then ® would be answered by {®} whereas
—® would be answered by (). Due to this discrepancy between answering negative
existential R-sentences in the context of closed queries and in the context of open
queries, the idea of Subsection 7.2.1 cannot be simply adapted for open queries. We
therefore refrain from considering negation in the context of open queries but only
combine conjunction and free variables in the following.

Definition 7.46 (Open existential R-sentences with conjunction). The lan-
guage ga/\R,fv is inductively defined as follows:

o If x € Lrp then Y€ faAvav;
o if x1,x2 € O?HAR',(V then x1 N x2 € ESAR’fV.

Remark. In Section 11.3, we will at least sketch how the query language .i”a/\R’fv can
be enhanced by a restricted form of negation.

To get an overview of all proposed languages, refer to Figure 7.9 on the following
page; it depicts the languages and their inclusion relations in form of Venn diagrams.
We started with the query language Zr (R-sentences) and the policy language Z3r
(existential R-sentences) in Chapter 6. In Chapter 7, we enhanced these languages
step by step until we reached .24y , and Z4 g, respectively. As illustrated by
Figure 7.9, the most expressive policy language gﬂvR,fv comprises all previously
proposed policy languages (see Figure 7.9(b)). Regarding query languages, however,
we decided not to combine negation with free variables; thus, the query language
24k g, does not comprise all previously proposed query languages (see Figure 7.9(a)).
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LR

vV
fHR'fv

(a) query languages (b) policy languages

Figure 7.9: Relations between the investigated languages.

7.5.2 A Comprehensive Query Language

In Subsection 7.2.1, we proposed to split up queries from .,2”37{,/\ into single conjuncts
and to answer these conjuncts separately. As a consequence, if one of the conjuncts
implies a potential secret, only this conjunct has to be refused whereas the other
conjuncts can still be answered. We now adopt this concept for XHAR’fV and define
the corresponding stateless CQE scqe®?”, which is an adaption of scqe®?, as given
by Definition 7.26, for open query sequences containing conjunction.

Definition 7.47 (Stateless CQE for queries from 24 (). Consider

o a query sequence @ = (®1, gy, ...) with &1, g, ... € XEARIV, that is,

o = ¢i,1(Vi,1)£\ Dio(Via) A A d’i,m,-(%,m,)
such that ®;;(V; ;) € L5r p for all ®;;(V; ),

e a policy pot_sec and

e an instance r.

Then, the stateless CQE scqe®d” is defined as follows:

scqe®?(Q)(r,pot _sec) := scqe®(Q')(r,pot_sec) with
Q = (®11(Vi1), ®12(Vi2), oo, @1y (Vi ), D21 (Vo1), ..)

We now show that scqe®?” is secure when assuming .Zag as policy language (please
refer to Subsection 7.5.3 for the investigation of more expressive policy languages).
Observe that we have to hide the policy from the user when dealing with open queries,
as elaborated in Section 7.3.

Theorem 7.48 (scqe®?” preserves confidentiality). Reconsider the assump-
tions from Theorem 7.10, but let the queries in Q be elements of Zﬂ/\R,fv and suppose
that pot_sec is unknown to the user. Then scqe®?” is secure in the sense of Defini-
tion 5.4.
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Proof. The claim directly follows from the definition of scqe®?” (Definition 7.47)
and Theorem 7.35. O

7.5.3 Reducing Policy Languages to Existential R-Sentences

So far, we mostly assumed .Z5g or %5k as policy language. Thus, it remains arguable
what happens when exchanging this language by a more expressive one. In the
following, we roughly outline that in the context of stateless CQE all proposed policy
languages are reducible to Z5g and therefore the results for Z5r also apply for the
other languages.

Regarding open confidentiality policies, observe that a potential secret that con-
tains free variables is only a short notation for its expansion, as already defined
in Subsection 7.4.1. More precisely, an open policy pot_sec C Z4g 5 is supposed
to have the same semantics as its expansion ex(pot_sec) C Z53gr. Therefore, when
reasoning about open potential secrets, it is obligatory to previously expand them.
Consequently, each open policy may (at least conceptually) be transformed into an
equivalent closed policy.

Regarding disjunctive policies, in the context of Theorem 7.22 it has been proven
that for a query ® € Z5r and a disjunctive secret W = Wy V Wy V...V, € 0% it
holds that

S l=W VWUV .V, if and only if (7.88)
Sl=Viordl=WVyor ... or ® =WV,

Note that all yet defined censors base their decision on whether or not an existential
R-sentence ® logically implies at least one of the declared (non-disjunctive) potential
secrets, see Definitions 6.11, 7.26, 7.40, and 7.41 and the definition of censorjg
in (7.19). According to (7.88), for potential secrets from Z3g, this is equivalent to
® logically implying the disjunction of the potential secrets. It follows that each
disjunctive policy from #3% may be transformed into an equivalent policy from Z4g
by splitting up each disjunctive secret into atomic secrets.

In the case of ,,%SVR’fV, which allows to declare potential secrets that contain free
variables as well as disjunction, the above argumentation can be applied as follows:
An open disjunctive potential secret of the form Wi (V1) V...V W (Vi) € RATIC

first transformed into {W1(V}), ..., Wpm(V,n)} in order to eliminate disjunction. After
that, this set is expanded to {ex(Vi(V})), o eX(Wm(Vm)l}, a set that is (in the
context of stateless CQE) equivalent to Wi (Vi) V...V WV, (V).

Summing up, all results that we found for the policy language Z5r also apply
for the policy languages 25k, Zar . and gﬂ\/R,fv that emerge from g by adding
disjunction and/or free variables.

Figure 7.10 on the next page visualizes schema restrictions, query language re-
strictions and policy language restrictions when assuming .ZHAR',(V as query language
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l_<_|

(a) schema and query restrictions (b) policy restrictions

Figure 7.10: Visualization of the restrictions for comprehensive languages.

and .24 4, as policy language. Regarding Figure 7.10(a), the “FD pattern” K — N
represents the ONF restriction, the interrupted table row represents an existential
R-sentence, and the gray blocks in the upper part of the table represents open queries,
that is, queries that are answered by sets of (parts of) tuples. Moreover, queries may
be connected by conjunction which is indicated by the A-symbol. Regarding Fig-
ure 7.10(b), the policy elements are restricted to existential R-sentences (represented
by the interrupted table row), existential R-sentences enhanced by free variables
(represented by the gray blocks in the lower part of the table), and disjunctions of
these elements (represented by the V-symbol). Furthermore, as indicated by the
padlock icon, the policy is supposed to be unknown to the user.

7.6 Summary

In this chapter, we investigated several language enhancements of the “basic case”
from Chapter 6. We started with existential R-sentences as query language, which
enabled us to express select-project-queries. It turned out that, regarding preservation
of confidentiality, the transition from select- to select-project-queries is non-trivial
under the presence of functional dependencies. More precisely, we have to restrict
the confidentiality policy to basic facts in order to keep up confidentiality.

Moreover, we investigated Boolean operations in query and policy languages. Since
stateless CQE requires that no “sophisticated” inferences can be drawn, we have to
restrict the use of Boolean operations in order to prevent implicative structures. In
fact, queries may be conjunctive but not disjunctive, whereas potential secrets may
be disjunctive but not conjunctive.

Another enhancement that we considered is the introduction of free variables.
Regarding the query language, free variables allow for open queries, that is, queries
that are answered by a set of tuples rather than by a truth value. We observed that
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the assumption that the user knows the confidentiality policy cannot be kept up
when he is allowed to use free variables in his queries. Regarding the policy language,
free variables allow for the declaration of “secret schemas” More precisely, a free
variable in a potential secret is (at least conceptually) replaced with every possible
constant when checking if a query implies this secret. In this way, multiple secrets
can be declared with a single formula.

Finally, we combined our results in order to develop the comprehensive query
language 24}, 4, and the comprehensive policy language 25 . Regarding the query
language, it turned out that the combination of free variables with negation cannot
be treated straightforwardly. This is, on the one hand, due to the problem of unsafe
queries, and, on the other hand, due to the different evaluation of closed and open
queries. We therefore refrained from integrating negation into the comprehensive
query language. In Section 11.3, however, we sketch some ideas regarding negation
in open queries.

Figure 7.11 on the following page summarizes our achievements with a tabular
overview of all query/policy language combinations. For each of these combinations,
the identified restrictions and the reference within this thesis are given.

It has been shown in Chapter 6 and Sections 7.1-7.5 that the restrictions which are
mentioned in Figure 7.11 are sufficient to guarantee the preservation of confidentiality
in the sense of Definitions 5.4 and 7.39. Although we did not explicitly show that these
restrictions are also necessary for the preservation of confidentiality, we provided
some examples which indicate that relaxations of these constraints might easily
compromise confidentiality. We shortly recall the consequences of these examples:

e Example 7.4 justifies the basic facts restriction when using existential R-
sentences in the query language.

e Example 7.11 shows that disjunction in queries possibly allows for harmful
inferences; consequently, the use of conjunction and negation must also be
restricted in order to prevent the simulation of disjunction.

e Example 7.16 illustrates that negation in potential secrets can be harmful.
e Example 7.17 illustrates that conjunction in potential secrets can be harmful.

e Example 7.27 justifies why the policy must be unknown to the user under open
queries.

e Example 7.45 together with the following elaborations show that the use of
negation together with open queries may lead to unsafe queries.

Certainly, parts of our achievements might still be enhanceable for some special
cases of query sequences or policies. We believe, however, that the table in Figure 7.11
basically covers the space of possibilities for stateless CQE in relational databases.
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query policy language
language BT AN LRy LR
Zr no restrictions | no restrictions | no restrictions | no restrictions
(Chapter 6) (Section 7.5) (Section 7.5) (Section 7.5)
ONF, ONF, ONF, ONF,
LR basic facts basic facts basic facts basic facts
(Section 7.1) (Section 7.2) (Section 7.4) (Section 7.5)
ONF, ONF, ONF, ONF,
25, ,{,/\ basic facts basic facts basic facts basic facts
(Section 7.2) (Section 7.2) (Section 7.5) (Section 7.5)
ONF, ONF, ONF, ONF,
basic facts basic facts basic facts basic facts
23R fu . . . :
unknown policy | unknown policy | unknown policy | unknown policy
(Section 7.3) (Section 7.5) (Section 7.5) (Section 7.5)
ONF, ONF, ONF, ONF,
on basic facts basic facts basic facts basic facts
3R, fv

unknown policy
(Section 7.5)

unknown policy
(Section 7.5)

unknown policy
(Section 7.5)

unknown policy
(Section 7.5)

Figure 7.11: Investigated combinations of query and policy languages.
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Chapter 8

SQL Representation of
Queries and Policies

In this and the subsequent chapter, we aim at developing a computationally efficient
algorithmic implementation of the concepts that have been investigated in Part II.
In doing so, we show that stateless CQE could actually be installed as a mediating
layer between a database management system and the users of this system with the
objective to preserve confidentiality in terms of the declared confidentiality policies.
Of course, for stateless CQE to be successfully deployed in an environment with
sensitive data, a more thorough investigation and protection of this environment
would be necessary; for example, it must be guaranteed that the stateless CQE
mechanism cannot be bypassed when accessing the database and that there are no
data leaks due to covert channels. In this thesis, however, we abstract from these
issues and focus on the implementation of the core of stateless CQE.

In the following Sections 8.1 and 8.2, we prepare the algorithmic implementation
of stateless CQE by elaborating the representation of the elements of query and
policy languages from Part II by means of the database language SQL [SQLO0S8]. More
precisely, we take the SQL implementation of the Oracle database system [LR*10]
as a basis for our investigations.

8.1 Queries

When translating queries of the relational calculus into SQL, we must pay attention
to the different semantics: While relational calculus queries are evaluated under set
semantics, that is, duplicates are removed from the answers, SQL queries are usually
evaluated using bag semantics, that is, the answers may contain duplicates. SQL,
however, provides the keyword DISTINCT in order to remove duplicates from answer
sets. Consequently, we simulate set semantics in the following by confining ourselves
to SELECT DISTINCT queries.

In Figure 8.1 on the next page, an SQL fragment which is able to express the
elements of the query languages from Part II is depicted in form of syntax diagrams.
These diagrams, which follow the notation of [LR™10], represent a formal grammar
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query ::=

—»@ELECT}»@ISTINC% select_list [»{ FROM

1—@lHERED—{ condition

select_list ::=

(%)
K/

column

~

c_alias

(e
2

NULL

condition ::=

comparison_condition

compound_condition

comparison_condition ::=

condition condition

Figure 8.1: Considered SQL fragment.
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with the start symbol query. For conciseness, the rules for replacing nonterminals with
strings are omitted (this concerns the nonterminals table, t_alias, column, c_alias
and string). Basically, the described fragment comprises simple SQL queries without
joins??, subqueries and aggregate functions. More precisely, the fragment allows to
select the values of one or more attributes (which are called columns in Figure 8.1)
from the tuples of a relation (which is called table in Figure 8.1) that satisfy a
conjunctive combination of comparison conditions. These comparison conditions
are equality checks between attribute values and strings. Moreover, it is possible to
specify alias names for attributes (c_alias) and relations (¢_alias), and to select the
special value NULL, see Subsection 8.1.2.

In the following subsections, we show how elements of the languages from Part II
can be translated into elements of this SQL fragment. We illustrate these translations
with examples assuming the underlying relation schema Rs = (R,U,()) with the
attribute set U = {A, B, C}. Moreover, we evaluate the example queries with respect
to the following instance rey:

r< |A B C
a b c
d e f
a c¢c d
c b a

8.1.1 R-Sentences

Interpreted as query, an R-sentence xr € Zr asks whether or not the whole tuple
represented by yg is part of the database instance. To express such a query in SQL,
the following constraints must apply regarding the SQL fragment of Figure 8.1:

e The select_list is * or a list of all attributes in U.

e The condition is a conjunction of comparison conditions such that for each
attribute A € U it is checked whether A is instantiated with yg[A].

Since we assume that queries always begin with SELECT DISTINCT, the answer to
such a query is either the single tuple that has been asked for or the empty relation;
in terms of the ordinary query evaluation eval according to Definition 2.2, these
answers can be interpreted as true or false, respectively.?!

20 Although the select_list allows to specify more than one relation, we will not use this feature to
express general joins (which are outside the scope of this thesis; see Section 11.2 for an outlook
on how to deal with join queries) but only to multiply specify the same relation for a query which
technically corresponds to a cross join of the relation with itself. See Subsection 8.1.3 for details.

21We refer to eval rather than to eval*, since from the perspective of the database user it seems more
natural to answer a closed query ® with true or false rather than with ® or —®, respectively.
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Example 8.1. The query ® = R(a,b,c) (€ £r) is expressed by the following SQL
statement:

SELECT DISTINCT * FROM R
WHERE A=’a’ AND B=’b’ AND C=’c’

The evaluation of this query with respect to re, yields the following result:

A B
a b c
Since this result is not the empty relation, the query ® is true in rey. %

8.1.2 Existential R-Sentences

Interpreted as query, an existential R-sentence x3r € Zar asks whether or not the
partial tuple represented by x3g is part of the database instance. To express such a
query in SQL, the following constraints must apply regarding the SQL fragment of
Figure 8.1:

e The select_list is a subset of the attributes in U; more precisely, it contains
exactly those attributes that are instantiated with a constant in y3g.

e The condition is a conjunction of comparison conditions such that for each
attribute A occurring in the select_list it is checked whether A is instantiated
with XgR[A].

As with R-sentences, the answer to such a query is either the single partial tuple
that has been asked for (corresponding to true in the relational calculus) or the
empty relation (corresponding to false in the relational calculus).

Example 8.2. The query ® = (3Xg)R(a,Xg,b) (€ L3r) is expressed by the follow-
ing SQL statement:

SELECT DISTINCT A, C FROM R
WHERE A=’a’ AND C=’b’

The evaluation of this query with respect to reyx yields the following result:

#

This result is the empty relation; thus, ® is false in rex. O
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A special case of an existential R-sentence is the query that asks for the existence
of an arbitrary tuple, for example, 3 = (IXa)(IXp)(IXc)R(Xa,X5,Xc) for the
ternary relation R. This query would cause an empty select_list which is not allowed
according to Figure 8.1. Therefore, the special value NULL may be specified as
select_list which leads to the following translation of the query ®s3:

SELECT DISTINCT NULL FROM R

This query is evaluated either to the empty tuple which signifies that there exists
a tuple in R and thus corresponds to true in the relational calculus, or to the
empty relation which signifies that R is empty and thus corresponds to false in the
relational calculus.

8.1.3 Existential R-Sentences with Conjunction

Negation, as used in the languages .55 and .,2”37{\ (see Section 7.2), cannot be
straightforwardly translated to SQL. This is due to the fact that general negative
queries may be unsafe, that is, their evaluation may be an infinite set. We therefore
only consider conjunctive queries without negation hereafter and denote the pertinent
fragment of .,2”37{\ with Z4y. This restriction, however, does not decrease the
expressiveness of the query language because from the definition of the ordinary query
evaluation (Definition 2.2) it follows that eval(=®)(r) = —eval(®)(r). Consequently,
the answer to ~® can also be obtained by asking ¢ and then negating the answer.

Interpreted as query, a conjunction of existential R-sentences x4z € 24k with
X4k = Xé\R,l A XﬁR,z A Xé\R,m (such that Xé\R,i € Lg for all i) asks whether or
not each conjunct Xé\R, ; of x4g (interpreted as partial tuple) is part of the database
instance. To express such a query in SQL, the following constraints must apply
regarding the SQL fragment of Figure 8.1:

e The select_list contains for every conjunct x4p ; of the query x4y the attributes
that are instantiated with constants in X/H\R,i5 moreover, each attribute is
qualified with the relation symbol and the number of the conjunct it occurs in
(for example, Ri.A if A is instantiated with a constant in XQR, o)

e The condition is a conjunction of comparison conditions such that for each
attribute Ri.A occurring in the select_list, qualified with relation symbol and
number of the conjunct, it is checked whether Ri.A is instantiated with x4p ;[A].

The answer to such a query is either a single tuple which equals to the concatenation
of all (partial) tuples being asked for in the conjuncts of x4k, or it is the empty
relation. The former case corresponds to the answer true in the relational calculus,
and the latter case corresponds to the answer false in the relational calculus.
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Example 8.3. The query ® = R(a,b,c) A (3Xc)R(d,e, Xc) (€ -Z4R) is expressed by
the following SQL statement:

SELECT DISTINCT R1.A, R1.B, R1.C, R2.A, R2.B

FROM R R1, R R2

WHERE R1.A=’a’ AND R1.B=’b’ AND R1.C=’c’ AND
R2.A=’d’ AND R2.B=’¢’

The evaluation of this query with respect to reyx yields the following result:

A B C A B
‘abcde

Consequently, ® is true in fey. O

If a conjunct x3 of a relational calculus query ® € £/ asks for the existence of an
arbitrary tuple (like the query ®3 in Subsection 8.1.2), this conjunct does not need
to be explicitly represented in the SQL translation of the query. This is justified
as follows: On the one hand, if the underlying relation R is empty, x3 evaluates to
false and consequently also ® evaluates to false in the relational calculus. The
evaluation of the SQL representation of ®, however, is the empty relation even if x3
is not represented, since R is empty and consequently every conjunct y #Z x3 of ¢
yields the empty relation. On the other hand, if there is at least one tuple in R, x3
evaluates to true in the relational calculus and consequently the answer to ® only
depends on the other conjuncts x # x3.

8.1.4 Open Queries

Syntactically, a formula x3r £ € 3R # is an existential R-sentence that additionally
contains (one or more) free variables. The answer to xar s (interpreted as query) is
the set of all assignments of these free variables that make x3r s part of the database
instance. To express such a query in SQL, the following constraints must apply
regarding the SQL fragment of Figure 8.1:

e The select_list is a subset of the attributes in U; more precisely, it contains
exactly those attributes that are instantiated with a constant or with a free
variable in x3gr -

e The condition is a conjunction of comparison conditions such that for each
attribute A occurring in the select_list and with x3g #[A] being a constant it
is checked whether A is instantiated with x3g £ [A].

Observe that these constraints are similar to those for existential R-sentences
(Subsection 8.1.2). However, for an open query x3g s, the select_list additionally
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contains those attributes that are instantiated with free variables in x3g . These
attributes do not occur in the condition and consequently, the answer to the SQL
query is the set of all value combinations for these attributes such that the resulting
tuples are part of the database instance.

We also include those attributes in the select_list that are instantiated with a
constant in x3g s ; this is for the following reason: Consider the special case of an
open query with zero free variables. If only those attributes were included in the
select_list that are instantiated with a free variable, the select_list would be empty
which is not allowed according to the syntax diagrams in Figure 8.1. Analogous
to existential R-sentences (see Subsection 8.1.2), if the query contains neither free
variables nor constants, the select_list is the special value NULL.

In order to easily distinguish between attributes instantiated with a constant
and attributes instantiated with a free variable in x3g f, we suggest to rename
the attribute identifiers in the SQL query appropriately: Attribute identifiers that
represent a free variable are extended by the prefix F_, as illustrated by the following
example.

Example 8.4. The query ®(Xg) = (3Xc)R(a, X, Xc) (€ Lar s ) is expressed by
the following SQL statement:

SELECT DISTINCT A, B F_B FROM R
WHERE A=’a’

The evaluation of this query with respect to rex yields the following result:

A F_B
a
a ¢
Consequently, ®(Xg) is true in rex for Xg = b and for Xg = c. O

8.1.5 Open Queries with Conjunction

The language -fa/\R,fv combines free variables with conjunction. Therefore, the SQL
representation of a formula Xé\R,fv € ga/\R,fw interpreted as a query, is a straightforward
combination of the representation of queries from %%}, and #g f,. The following
constraints must apply regarding the SQL fragment of Figure 8.1:

e The select_list contains for every conjunct Xﬁvav’i of the query X/H\R,fv the
attributes that are instantiated with a constant or with a free variable in
XSR,fv, ;3 moreover, each attribute in the select_list is qualified with the relation
symbol and the number of the conjunct it occurs in.
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8 SQL Representation of Queries and Policies

e The condition is a conjunction of comparison conditions such that for each
attribute Ri.A occurring in the select_list with x5 g, ;[A] being a constant it is
checked whether A is instantiated with xZg g, ;[A].

Each conjunct of Xé\vav could be answered isolatedly as described in Subsec-
tion 8.1.4, yielding a set of tuples for each conjunct. The answer to the SQL
representation of Xé\R,fv is the Cartesian product of these sets. Consequently, each
tuple in this answer set represents one attribute value combination for which each
conjunct of x4g 4, is part of the database instance.

We again suggest to rename the attribute identifiers that represent a free variable
in the SQL query in order to easily distinguish between attributes instantiated with
a constant and attributes instantiated with a free variable in Xﬁvav. Consider the
following example.

Example 8.5. The query ®(Xa,,Xc,, Xg;. Xc;) = R(Xa,.b,Xc,) N R(a,b,c) A
(3Xa;)R(Xas. X3 Xc;) (€ L4k ) is expressed by the following SQL statement:

SELECT DISTINCT R1.A F_A1, R1.B, R1.C F_C1,
R2.A, R2.B, R2.C,
R3.B F_B3, R3.C F_C3
FROM R R1, R R2, R R3
WHERE R1.B="b’ AND
R2.A=’a’ AND R2.B=’b’ AND R2.C=’c’

The evaluation of this query with respect to rex yields the following result:

F_A1 B F_Ci F_B3 F_C3
b b C

(os]
Q

o0 0o PP
o o oo oo o

P PP PO OO o
PP PP PP P
o oo o oo oo
O O 0O 0O o0 0 0 0
o 0o 0o T o o o

M OO M QO

Consequently, ®(Xa,,Xc, . XB;,Xc,) 1s true in rey for the following assignments of the
free variables: (a,c,b,c), (a,c,e,f), (a,c,c,d), (a,c,b,a), (c,a,b,c), (c,a,ef), (c,ac,d),
and (c,a,b,a). O

8.2 Policies

As already pointed out in Section 6.4, it is reasonable to store the elements of a
confidentiality policy in form of a classification instance rP°®—s¢¢. This classification
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8.2 Policies

instance has the (classification) schema (RP°'—¢ 1/, ()}, that is, it shares the attribute
set with the database relation R and has no semantic constraints. In the following,
we show how the notion of classification instance from Definition 6.15 can be adapted
to the policy language XHVR' > more precisely, we propose a tuple representation for
the elements of .,%HVR',(V. For the other policy languages that have been investigated
in Part II, it holds that Z5r C L5k 4, L5r C L5k s and Lag s C L5k 4. Conse-
quently, elements from these languages can be seen as special cases of ,ZHVR’fV and
their representation in RP°*—¢¢ does not need to be considered separately.

Given a (general) potential secret W € D?HVRyfV with V=WV vWyV ...V VU, and
V; € Arp forall i € {1, ..., m}, we consider each disjunct V; of W separately as a
generalized tuple.?? Each of these generalized tuples is then transformed into a tuple
wi according to the following rules:

o If W;[A] € Const for an attribute A, then pu;[A] := W;[A].
o If W;[A] € Var for an attribute A and W;[A] occurs freely in W;, then u;[A] := ~.

o If W;[A] € Var for an attribute A and W;[A] does not occur freely in W;, then
pilA] = #.
We assume that ~ and # are “new” constant symbols, that is, ~ ¢ Const and
# ¢ Const.

A policy pot_sec C %r s is then represented as a classification instance by
transforming each disjunct of each W € pot_sec into a tuple according to the above
rules. On the SQL level, each of these tuples is added to the classification instance
by means of the INSERT INTO command. We illustrate the representation of a policy
by a classification instance with the following example.

Example 8.6. Consider the policy pot_sec = {W1, Va} C 255 , with
V; = (3IX)(IXc)R(a,Xg,Xc) and
Vy = R(b,c,d) V (IXg)R(Xa,XB,€).
To represent pot_sec as classification instance, we first split W into its disjuncts:
Vo1 = R(b,c,d)
V9 = (IXB)R(Xa,XB,€)

Then, W, Wy and Vg9 are transformed into the tuples py, po1 and pz 2 of the
classification instance rP°'—¢¢ according to the given rules:

o= R (a4
/’LQ,I = Rpot,sec(b, c, d)
12,2 = Rpot,sec(N ,#Ye)

22 According to the proof of Theorem 7.22, stateless CQE behaves alike for the policies pot_sec =
{Vi1 VvV V.. VV¥,} and pot_sec = {V1, Vs, ..., Uy}
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8 SQL Representation of Queries and Policies

Finally, these tuples are inserted into the classification instance with the following
SQL commands:

INSERT INTO R_pot_sec VALUES (’a’, ’#°, '#7’)
INSERT INTO R_pot_sec VALUES (°b’, ’c’, ’d’)
INSERT INTO R_pot_sec VALUES (°~’, ’#°, ’e’) O
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Chapter 9
Implementation of Stateless CQE

In this chapter, we develop efficient algorithms for the stateless CQE mechanisms
from Part II. Relying on the SQL representations of the query and policy languages
from Chapter 8, these algorithms lay the foundation for the implementation of
effective and efficient inference control in database management systems.

In Section 9.1, we propose implementations for the censor functions censorsg and
c?ﬁ/sorg% which are the core of the investigated stateless CQE mechanisms. Based on
these implementations we then sketch two algorithms for stateless CQE in Section 9.2.
The first algorithm is designed for use in a closed queries scenario, whereas the second
algorithm is able to deal with query sequences that contain both closed and open
queries. Finally, we analyze the complexity of the proposed algorithms.

9.1 Implementation of the Censors

The stateless CQE mechanisms for closed queries that have been developed in Part 11
rely either on censorgg or on (gn\é/org’; (the censor censorjg is not considered in the
following, since we do not allow negation in queries, as justified in Subsection 8.1.3).
The controlled evaluation of open queries uses a refused-set rather than a censor, see
Definition 7.26. As we shall see at the end of this section, however, the computation
of (the important part of) refused can be performed using the censor functions for
closed queries. We therefore develop SQL implementations for the censor functions
censor3r and c/er?/sorg',)? in the following.

We hereafter suppose that a confidentiality policy has been set up by a security
administrator in form of a classification instance rP°*—*¢ as described in Section 8.2.
Then, the implementation of a censor function has the following general form:

SELECT COUNT(*) FROM R_pot_sec
WHERE <condition_const>
AND <condition_var>

Using the aggregate function COUNT, this SQL statement returns the number of tuples
in the classification instance that comply with the conditions <condition_const>
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Figure 9.1: Illustration of relevance.

and <condition_var>. These conditions will be designed with respect to the user
query under consideration in such a way that

e the return value 0 corresponds to the censor decision false, that is, the user
query under consideration may be answered honestly; and

e a return value > 1 corresponds to the censor decision true, that is, the answer
to the user query under consideration must be modified in order to preserve
confidentiality.

Firstly, we consider the censor function censorgg (see Definition 6.11) which is
used for closed queries and potential secrets without free variables. We assume the
policy language .#3g here, recalling that disjunctive secrets from the language £
are split into the single disjuncts when inserted into a classification instance (see
Section 8.2). The censor censorgg checks whether or not = VW for a user query
® € #£9r? and a potential secret W. According to Definition 6.4 and Lemma 6.5,
this condition is equivalent to W being relevant for ®, that is, ®[A] = W[A] for all
attributes A € select(V). We (exemplarily) visualize the concept of relevance in
Figure 9.1(a): The attribute values of the query ® and the potential secret W are
represented by boxes, either filled with a constant ¢; or the symbol #, representing
an existentially quantified variable. Using this representation, WV is relevant for ¢ if
and only if for each attribute A it holds that ®[A] = W[A] or V[A] = #.

We now use this characterization of relevance for specifying the conditions for the
SQL implementation of censorgg.

Definition 9.1 (SQL implementation of censorgr). Given a query ® with
A1, Az, ..., Am, denoting the attributes that are instantiated with constants in ® such
that ®[A;] = a;, and By, ..., Bm, denoting the attributes that are instantiated with
variables in ®, the conditions <condition_const> and <condition_var> (regarding
the general SQL implementation of censors on page 137) are defined as follows:

23Remember that, according to Definition 7.14, queries with conjunction are split into the single
conjuncts which are elements of the language .Z5r before being forwarded to the censor.
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<condition_const> := (A_1 = ’a_1’ OR A_1 = ’#’) AND
(A2 ='a2 ORA2="#) AND ... AND
(Aml ="’aml’ OR A ml = ’#)

<condition var> := B_1 = ’#’ AND B_2 = ’#’ AND ... AND B.m2 = ’#’

We illustrate the SQL implementation of the censor function censorsg with the
following example.

Example 9.2. Let a policy be given by pot_sec = {V, Vs} with
\Ul = (HXA)(E]XB)R(XA,XB,C) and
Yy = (IXB)(IXc)R(a, X, Xc).

The corresponding classification instance rP°*—"¢¢ then consists of the tuples
Rpot—sec( 4t 4 c) and RPO'—5¢(a,#,#). Now consider the queries

& = (IXc)R(a,b,Xc),
&y = R(a,b,c) and
&3 = (IXa)(IXc)R(Xa, b, Xc).
The decision of censorgg is computed using the following SQL statements:

®; : SELECT COUNT(*) FROM R_pot_sec

WHERE (A = ’a’ OR A = ’#’) AND (B = ’b’ OR B = ’#’)
AND C = ’#°
®5 : SELECT COUNT(*) FROM R_pot_sec
WHERE (A = ’a’ OR A = °#’) AND (B = ’b’ OR B = ’#’) AND

(C="’c”0RC="%)

®3: SELECT COUNT(*) FROM R_pot_sec
WHERE (B = b’ OR B = ’#’)
AND A = ’#° AND C = ’#°

These statements return the values 1, 2 and 0, respectively. Consequently, the censor
decision for ®; and ®5 is true and the censor decision for ®3 is false. O

Remark. Note that there is potential to optimize the representation of policies.
For example, given the tuples pu; = RP'—¢°(a,b,c) and uy = RP°'—¢(a,b,#) of
a classification instance, it is easy to show that each query that is refused due
to pp would also have been refused due to pe, since us is a generalization of ;.
Consequently, p1 could be removed from the policy. Such optimization issues,
however, are not addressed in this thesis.
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Secondly, we consider the censor function censorgg (see Definition 7.41) which is
used for closed queries and potential secret with free variables. Similar to censorsg,
we assume the policy language -Z3r 5, here, since disjunctive secrets from the language
Z2g 5, are split into the single disjuncts when inserted into a classification instance.
Although the notion of relevance has not been defined formally for potential secrets
from #3R f,, the definition of c?ﬁ/sorgl,g; uses a characterization that is similar to
the notion of relevance according to Definition 6.4. An exemplary visualization
of this characterization can be found in Figure 9.1(b) on page 138: Compared to
Figure 9.1(a), the symbol ~ occurs in the potential secret, signifying a free variable.
According to Definition 7.41, for the censor function c?n\éa'g[,; to return true, the
following must hold: If ~ occurs as instantiation of an attribute in the potential
secret, then the same attribute must be instantiated with an arbitrary constant in the
query. This induces the construction of <condition_const> and <condition_var>
for cgn\é/org',;.

Definition 9.3 (SQL implementation of (fn\s?rgf;). Given a query © with
A1, Ag, ..., Am, denoting the attributes that are instantiated with constants in ® such
that ®[A;] = aj, and By, ..., Bn, denoting the attributes that are instantiated with
variables in ®, the conditions <condition_const> and <condition_var> (regarding
the general SQL implementation of censors on page 137) are defined as follows:

<condition_const> :=

(AL1=’a1>0RA1="’# ORA1="~") AND

(A2 =22 ORA2="’# ORA2="~) AND ... AND

(Aml=’aml’” ORAml="4% ORAml="~")
<condition_var> := B_1 = ’#’ AND B_2 = ’#’ AND ... AND B_m2 = ’#’

We illustrate the SQL implementation of the censor function censorgr with the
following example.

Example 9.4. Let a policy be given by pot_sec = {V} with
V = (3Xa)R(Xa,b,Xc).

The corresponding classification instance rP°*—¢¢ then consists of the single tuple
RPot—sec(4t b, ~). Now consider the queries

®; = (IXc)R(a,b,Xc) and
®y = (3Xa)R(Xa,b,c).

The decision of (_?n\éa'gf; is computed using the following SQL statements:
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®;: SELECT COUNT(*) FROM R_pot_sec

WHERE (A = ’a’ OR A = ’#’ OR A = ’>~’) AND
(B=’b’” ORB="# ORB = ’~")
AND C = ’#°
®5 : SELECT COUNT(*) FROM R_pot_sec
WHERE (B = b’ OR B = ’#> OR B = ’~’) AND
(C=7"c’ORC="# ORC="~)

AND A = ’#°

These statements return the values 0 and 1, respectively. Consequently, the censor
decision for ¢ is false and the censor decision for @5 is true. O

Finally, we show how the controlled evaluation of open queries can be performed
using the implementation of censorsg or censorag. According to Definition 7.26,
stateless CQE for open queries filters the elements of a refused-set from the ordinary
evaluation of a query and returns the resulting set as answer. Consequently, we need
not to compute the whole refused-set but only those elements of refused that occur
in the ordinary evaluation.

Assume a declared policy with elements from Z5g, that is, existential R-sentences
without free variables, as in Definition 7.26. Observe that the elements of refused
satisfy the same condition that is checked for in the censor function censorgg. We
therefore suggest to invoke the implementation of censorsg for each element of the
ordinary query evaluation and remove those elements from the answer for which the
censor returns true, that is, a value > 1. Analogously, if the declared policy contains
elements of .A5r 5, that is, existential R-sentences with free variables, the censor
function é_n\sfrg’;? must be invoked for each element of the ordinary query evaluation.

9.2 Algorithms for Stateless CQE

Having sketched the SQL implementations of the censors censorsr and c?n\/sorgf,)?
in Section 9.1, we now propose and analyze two algorithms for stateless CQE.
Algorithm 1 evaluates closed queries from the language %45, whereas Algorithm 2
evaluates open queries from the language ZH/\R' - Although closed queries can be
seen as special case of open queries, we propose two separate algorithms. This is
justified by the different properties of “pure” closed query scenarios and “mixed”
scenarios with closed and open queries:

e In closed query scenarios, the user is allowed to be aware of the confidentiality
policy, whereas in mixed scenarios, the confidentiality policy must be unknown
to him (see Section 7.3).
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e If a closed query is answered by the empty set in a mixed scenario, the query is
either false in the database instance or harmful, but the user cannot distinguish
these alternatives. In a closed query scenario, however, this distinction can be
made: If the negation of the query is returned as answer, the query is false in
the database instance; if mum is returned as answer, the query is harmful with
respect to the declared confidentiality policy.

Consequently, the security administrator of a database system must decide which
algorithm should be used in his system. He thereby also determines the expressive
means of the database user (closed queries or open queries).

For both algorithms, we assume that the database user formulates a syntactically
correct SQL query as input. The classes of syntactically correct queries for Algorithm 1
and Algorithm 2 have been described in Subsections 8.1.3 and 8.1.5, respectively.
Observe that, due to the structure of the suggested SQL implementations, it is easy
for a suitable parser to split a query into its conjuncts; this feature is important,
since both algorithms actually operate on the single conjuncts rather than on the
whole query. Besides the query, the algorithms take the database instance and the
classification instance (see Section 8.2) as inputs and return an array ans as output
which contains the answers to the single conjuncts of the query.?*

Firstly, consider Algorithm 1 on page 144. For each conjunct ®; of the query &, the
function censor is invoked with the conjunct ®; and the classification instance rP°t—e¢
as parameters. This function corresponds to the SQL implementation of censorsg
according to Definition 9.1 or (gn\é/org'; according to Definition 9.3, depending on
whether the security administrator specified potential secrets from the language Z5%
or from the language ,,%SVR’fV, respectively.?> If the censor decision is true, the answer
to the conjunct under consideration ®; is refused by inserting the special value mum
into the array ans; otherwise, the result of the ordinary evaluation of ®; is inserted
into ans by invoking the function eval_closed on ®; and the database instance r.
This function returns true or false, depending on the truth value of ®; in r (see
the SQL representation of existential R-sentences in Subsection 8.1.2 for a detailed
description of the implementation). Finally, ans is returned to the user.

Since Algorithm 1 loops over a finite set of conjuncts and the functions censor
and eval_closed can basically be implemented by SQL statements, the algorithm
is guaranteed to terminate. We now analyze its computational complexity:

e The initialization of ans (line 1) takes time O(m).

e The for-loop (lines 2-8) is performed m times.

24For simplicity, this evaluation slightly deviates from the one suggested in Section 8.1: The answer
sets to the single conjuncts are returned rather than computing their Cartesian product.

25We assume that the results of the SQL implementations of the censors are interpreted as truth
values, as described in Section 9.1.
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e According to Section 9.1, the censor decision (line 3) is basically a select-query
on the classification instance rP°*—¢¢ with constantly many comparisons. It can
be implemented by a relation scan or, if the tuples of rP°*—S¢¢ are appropriately
indexed by a B-tree (as already discussed in Section 6.4), by a tree search in
time O(log(|rP°'—=5¢|)) where |rP°'—¢¢| denotes the number of tuples in rPo'—e.

e Within the for-loop, we make the worst case assumption that the else-branch
(line 6) is executed (the execution of the if-branch (line 4) would take constant
time).

e The complexity of the evaluation of ®; is estimated as follows: ®; is a select-
project-query on r. Provided that r is appropriately indexed, the select op-
eration can be performed in time O(log(|r|)) where |r| denotes the number
of tuples in r. The projection operation first scans the relation and then, if
necessary, removes duplicates from the result. This duplicate removal can
be implemented, for example, by sorting and then again scanning the result.
The complexity can thus be estimated by O(|r| - log(|r|)) for the sorting which
exceeds the complexity of the select operation. As a result, the evaluation of
®, has a complexity of O(|r| - log(|r])).2

Since the complexity of the for-loop exceeds the complexity of the initialization,
Algorithm 1 has an overall complexity of

O(m - (log(|rP**=>|) + |r| - log(|r)))- (9.1)

Secondly, consider Algorithm 2 on the following page for the evaluation of open
queries. For each conjunct ®; of the query ®, the sets controlled_evaluation and
evaluation are initialized, the former of which is empty and the latter of which contains
the ordinary evaluation of ®; with respect to r (which is computed by the function
eval_open, see Subsection 8.1.4 for a detailed description of the implementation).
Then, each element of evaluation is checked by the censor function which is, as
in Algorithm 1, the SQL implementation of censorgg or (%g’;. If the censor
decision is false, the element under consideration is “harmless” and thus added
to controlled_evaluation. In doing so, the algorithm directly computes the set
“eval*\ refused” from Definition 7.26 without explicitly determining the refused-set.
For each conjunct ®;, the set controlled_evaluation is then inserted into the array
ans. Finally, ans is returned to the user.

Termination of Algorithm 2 is guaranteed, since it loops over finite sets and the
function eval_open as well as the function censor can basically be implemented with

26For the evaluation of closed queries according to Subsection 8.1.2, it is only important whether or
not the constructed SQL query returns the empty relation. Therefore, this evaluation might be
optimizable in order to achieve an even better complexity. We, however, do not address such
optimizations in this thesis.
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Algorithm 1 Stateless CQE for closed queries.

Input: query ¢ € 24, database instance r, classification instance rPet—se
Output: controlled answer ans

1: initialize array ans of length m (number of conjuncts in ®)

2: for all conjuncts ®; of ® do

3: if censor(®;,rP°—¢) is true then
4 ans/i] < mum

5 else

6: ansfi] < eval_closed(®;,r)

7 end if

8: end for

9: return ans

Algorithm 2 Stateless CQE for open queries.

Input: query ¢ € .24 ., database instance r, classification instance rPo'—=¢
Output: controlled answer ans

1: initialize array ans of length m (number of conjuncts in )

2: for all conjuncts ®; of ¢ do

3: controlled_evaluation < ()

4: evaluation < eval_open(®;,r)

5: for all y € evaluation do

6: if censor(u,rP°'—°) is false then

7 controlled_evaluation < controlled_evaluation U {u}
8: end if

9: end for

10: ansfi] < controlled_evaluation

11: end for

12: return ans

144



9.2 Algorithms for Stateless CQE

SQL statements. The computational complexity of the algorithm can be estimated
as follows:

The initialization of ans (line 1) takes time O(m).
The outer for-loop (lines 2-11) is performed m times.
The assignments in lines 3, 7 and 10 take constant time.

The evaluation of ®; (line 4) has a complexity of O(|r|-log(|r|)) (see the analysis
of Algorithm 1).

The inner loop (lines 5-9) is performed |eval*(®;)(r)| times. Since ®; is a
select-project-query on the single relation r, its evaluation contains at most |r|
tuples. Consequently, |eval*(®;)(r)| can be estimated by O(|r|).

The censor decision can be computed in time O(log(|rP°*—¢|)) (see the analysis
of Algorithm 1).

Again, the complexity of the initialization of ans in line 1 can be neglected and
consequently, the overall complexity of Algorithm 2 is

O(m- (|r| - (log(Ir]) + |r| - log(|rP*'=**¢])))). (9.2)

Considering m+ |r| 4 |rP°*—¢¢| as the input length of Algorithm 1 and Algorithm 2,
the estimations (9.1) and (9.2) indicate that both algorithms are efficient in terms of
computational complexity.
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Chapter 10
Summary and Evaluation

In this thesis, we proposed the policy-driven technique of stateless Controlled Query
Evaluation, or stateless CQE for short, as an approach to efficient inference control
in relational databases. Basically, stateless CQE can be seen as a mediating layer
between a relational database system and the querying users of this system. In
order to preserve confidentiality of sensitive or personal information, stateless CQE
inspects each user query and refuses to give an answer to this query if necessary. In
particular, stateless CQE never lies to a user. To provide information security rather
than only data security, stateless CQE does not attach labels to the contents of the
database (like most access control approaches), but relies on a confidentiality policy
that has been declared by a security administrator.

We took the inference control mechanism of Controlled Query Evaluation (CQE)
as a starting point for our investigations. CQE has been developed for a general logic
framework and is thus suitable for relational databases which can be modeled using
first-order logic. For each database query, CQE decides by means of a censor function
if the honest answer to this query together with the (assumed) user knowledge allows
for the disclosure of confidential information, and modifies the answer if necessary.
Due to its general applicability, however, CQE involves a major drawback in the
context of relational databases: The underlying decision problem of the mechanism is
undecidable in first-order logic. Even if the problem is suitably restricted, it remains
computationally expensive, since it is basically theorem proving. While original CQE
is stateful, that is, it relies on the usage history of the system by keeping track of the
knowledge of the user, stateless CQE renders this user log redundant by preventing
“sophisticated inferences”. More precisely, our approach restricts the query language of
the database system so that a user cannot exploit his knowledge in order to disclose
confidential information. As a consequence, it suffices to inspect each query isolatedly
in order to decide whether or not the answer to this query must be refused.

We investigated stateless CQE for a single user system and assumed a single
database relation which is complete (that is, it does not contain null values) and
has functional dependencies as semantic constraints. Moreover, we supposed the
contents of the database to be static, meaning that we did not consider update
operations. We assumed the database user to be capable of (deductive) reasoning in
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first-order logic and to be aware of the declared confidentiality policy which consists
of so-called potential secrets. Due to the logic framework, query languages and policy
languages were supposed to be fragments of the relational calculus. We started our
investigations with closed select-queries and partial tuples as potential secrets, and
showed that this combination is easy to handle with a stateless CQE mechanism:
For the censor function of stateless CQE, it suffices to perform a pattern matching
between the query and the declared secrets in order to decide whether or not the
query must be refused to preserve confidentiality. Unlike the censor functions in
(stateful) CQE, this pattern matching can be implemented in logarithmic time.

As an enhancement of the query language, we then investigated select-project-
queries. This enhancement seems to be minor, but we showed that it has the potential
to compromise confidentiality: Since the user is able to learn parts of tuples when
using select-project-queries, he might express several harmless queries and combine
the respective answers to a confidential piece of information afterwards by using,
for example, a functional dependency. We therefore had to suitably restrict the
policy language and the semantic constraints of the database relation in order to
prevent such unwanted inferences. Besides functional dependencies, also implicative
structures in queries can be exploited to infer confidential information. We elaborated
on this issue when examining Boolean combinations of select-project-queries and
showed that only conjunction and a restricted form of negation in queries can
be handled with stateless CQE. Moreover, we investigated Boolean operations for
potential secrets and found that only disjunction should be integrated into the policy
language when aiming at guaranteeing preservation of confidentiality. The next step
in enhancing the query language was the introduction of free variables, enabling the
user to express open queries. The assumption that the database user is aware of
the confidentiality policy turned out to be harmful in the context of open queries.
We showed, however, that dropping this assumption suffices to regain the property
of confidentiality preservation. We also considered free variables for the policy
language which enable the security administrator to express “secret schemas”, that
is, several potential secrets with a single policy element. For proving such policies
confidentiality preserving, we (conceptually) expanded potential secrets with free
variables by replacing these variables with all possible constant combinations (which
yields an infinite policy).

We then brought together our results and proposed comprehensive query and policy
languages that are suitable for our stateless CQE mechanism. Since negation turned
out to be problematic in the context of open queries, we refrained from integrating
it into the comprehensive query language. For all combinations of query language
and policy language, we were able to formally prove that stateless CQE preserves
confidentiality. Summarized, our stateless CQE approach works on select-project-
queries with conjunction and free variables, and on potential secrets with disjunction
and free variables. With several examples, we justified that within the assumed
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parameters, these query and policy languages are “quite complete”, that is, they
basically cover the space of possibilities for stateless CQE in relational databases.

Finally, we proposed an implementation of the stateless CQE mechanism. We
described an algorithm for closed queries and an algorithm for open queries, and
showed that these algorithms are computationally efficient. Both algorithms basically
use SQL statements for computing the censor decisions and thus they are in principle
suitable to be integrated into relational database management systems as an inference
control layer.

Our stateless CQE mechanism has several advantages over previous approaches to
confidentiality preservation in relational databases, the most important of which are
sketched in the following.

e Many previous approaches basically enforce access control mechanisms rather
than inference control and are thus not able to prevent unwanted information
flows, as discussed in Section 1.1. In contrast, stateless CQE not only provides
data access control but also information flow control.

e Some inference control approaches are extensions of access control, see, for
example, the works of Su and Ozsoyoglu [SO91], Stickel [Sti94], Dawson,
De Capitani di Vimercati and Samarati [DDS99], and Brodsky, Farkas and
Jajodia [BFJ00]. Consequently, these approaches assign labels to database
entries and base the decision whether or not a user query may be answered
honestly on these labels. Stateless CQE, however, is policy-driven, that is, the
decision whether or not a query must be refused is based on a confidentiality
policy that is independent of the actual data. Therefore, when being integrated
into existing databases, stateless CQE mechanisms do not require to elaborately
(re-)classify the data.

e Approaches to confidentiality preservation often do not consider the knowledge
a user might have about the inner workings of the system. For example, the
work of Brodsky, Farkas and Jajodia [BFJ00] neglects that a user might disclose
confidential information from the fact that a query is refused. Stateless CQE
takes such “meta reasoning” into account. For example, we showed that a user
who is aware of the confidentiality policy and the actual functionality of scqe®?
might exploit open queries to disclose confidential information. Consequently,
we hide the policy from the user in open query scenarios.

e While previous CQE approaches maintain a user log in order to be able to
preserve confidentiality, stateless CQE only needs to inspect the query and the
confidentiality policy. This results in smaller space requirements and a lower
computational complexity.
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10 Summary and Evaluation

e Finally, stateless CQE is fairly easy to implement: Provided that the confiden-
tiality policy is given as a database relation, the censor decisions of stateless
CQE can be determined using SQL statements. Consequently, the mecha-
nism mainly relies on the functionality of the underlying relational database
management system.

Nevertheless, the stateless CQE approach that has been developed in this thesis
still has a few shortcomings, approaches to some of which are discussed in Chapter 11.
For example, the assumption of a single database user is not tenable for a practical
application of the approach. In multi-user scenarios, however, it should be easy to
maintain and enforce a separate confidentiality policy for each user of the system.
Moreover, database relations are usually dynamic in the sense that their contents
may be changed by users performing update operations; stateless CQE does not
support updates so far. The exploration in Chapter 8 shows that the query languages
of stateless CQE only cover a fragment of SQL. In particular, joins, subqueries and
aggregate functions are not supported yet. A related issue is the assumption of
a single database relation: While in practice relational databases often consist of
several relations, stateless CQE only works on single relations in order to prevent
harmful inferences due to inter-relational constraints.

Despite these shortcomings, we believe that stateless CQE is a suitable approach to
inference control in relational databases. Our investigations, however, give evidence
to the fact that effective and efficient inference control comes at the price of a
restricted framework.
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Chapter 11
Directions for Future Work

In the final chapter of this thesis, we outline some directions for future research in
the field of stateless CQE. Although being an exemplary selection, we believe that an
investigation of the following issues is especially important in order to make stateless
CQE a convenient inference control mechanism for relational databases.

In Section 11.1, we consider relations that are not in ONF: When subjecting an
existing database to inference control, the relations of this database possibly do
not adhere to the ONF restriction; consequently an extension of stateless CQE to
relations with arbitrary FDs is desirable. In Section 11.2, we address databases
with more than one relation, an investigation of which would be an important step
towards the treatment of join queries. Finally, in Section 11.3, we roughly outline
approaches to more expressive query languages.

11.1 Relaxing the Schema Constraints

In Part II of this thesis, we developed query and policy languages that are as
expressive as possible within the given parameters. It turned out that the schema of
the underlying database relation should be in ONF in order to guarantee preservation
of confidentiality. This assumption, however, might be too restrictive for practical
databases. In existing database relations, possibly more semantic constraints than
one unique key dependency hold. Note that although such additional semantic
constraints are not necessarily represented in the relation schema, the database
user might be aware of them due to external information sources or commonsense
knowledge. In the following, we sketch how relation schemas with arbitrary FDs
(that is, schemas that are not in ONF') could be treated.

Recall that FDs can be exploited to infer potential secrets in several query steps
if the policy language is not suitably restricted. This is performed by querying
the parts of the potential secret separately and then connecting these parts using
FDs. More precisely, given an FD A — B, the occurrence of an attribute value
combination of two attributes By and By (with By, By € B) can be disclosed by first
asking for the attribute value combination of A, By and then asking for the attribute
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11 Directions for Future Work

value combination of A, Bs; exploiting the FD then discloses the attribute value
combination of A, By, By (see also Example 7.4).

Consequently, when allowing relation schemas with arbitrary FDs, potential secrets
consisting of two (or more) values of attributes that occur on the right-hand side of
an FD cannot be protected with stateless CQE. Therefore, the policy language has
to be suitably restricted in order to guarantee preservation of confidentiality. This
restriction could be a generalized form of the basic facts restriction from Section 7.1.

11.2 Multiple Relations and Join Queries

So far, stateless CQE only works on single relations. Our investigations can straight-
forwardly be transferred to databases with multiple relations if there are no inter-
relational semantic constraints and if each query is still constrained to refer to
only one of these relations. Otherwise, the database user might be able to disclose
confidential information as justified in the following.

Firstly, consider inclusion dependencies as an example for inter-relational con-
straints. An inclusion dependency basically says that all instantiations of a set of
attributes occurring in one relation R also occur as instantiations of these attributes
in another relation S. If one of these instantiations is declared a potential secret
in § but not in R, the user can ask for this instantiation in R and, if the answer is
positive, infer that it also occurs in S by exploiting the inclusion dependency. He
thereby discloses a secret.

Secondly, it might be desirable for the database user to express join queries, that
is, queries that refer to more than one relation. This, however, might be exploited
to disclose confidential information in the following way: Consider two instances r
and s of the relation schemas (R, AB, A — B) and (S, BC, B — C), respectively, and
suppose that the potential secret W = S(b,c) is declared. The natural join t =r x s
of these instances is an instance with the schema (T, ABC, ¥) such that for each
tuple p in t it holds that the projection of p to the attributes A, B is in r and the
projection of u to the attributes B, C is in s. For the set ¥ of semantic constraints
of T it particularly holds that ¥ = A — BC. Regarding join queries, T is usually
not materialized but constructed as a view relation over R and S. For example,
&, = (IXg)(R(a,Xg) A S(Xg,c)) and ®2 = (IX¢)(R(a,b) A S(b,Xc)) are join queries.
If both ®; and ®5 are answered with true by a stateless CQE mechanism, the user
knows that (3Xg)T(a,Xg,c) and (IXc)T(a,b,Xc) are true in the join relation T.
Then, exploiting the FD A — BC, the user can infer that T(a,b,c) is true, and by
the definition of the natural join, it follows that S(b,c) is true as well. This fact,
however, discloses the potential secret V.

On the contrary, not every join query is harmful with respect to the declared
policy. This is due to the fact that the user is able to compute the join of two
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11.3 Relaxing the Query Language Constraints

instances by himself if he knows the tuples of these instances. Consequently, if he
is already allowed to know these tuples, it would not be reasonable to reject the
join query. For example, reconsider the instances r and s and the potential secret
V = S(b,c) from above: The user can compute the join t = r x s by sending the
queries @) (Xa,Xg) = R(Xa,Xg) and ®4(Xg,Xc) = S(Xg,Xc) to the database and
afterwards “manually” joining the answer sets. Consequently, the system could
also directly accept the join query ®%5(Xa,Xg,Xc) = R(Xa,Xg) A S(Xg,Xc). In this
case, however, the single conjuncts of ®4 must be inspected by the stateless CQE
mechanism and as a consequence, the tuple S(b,c) is filtered from the answer set to
S(Xg,Xc¢) and does not occur as part of the join.

From these examples, it can be seen that extensions of stateless CQE to databases
with multiple relations and query languages that allow to express join queries require
thorough investigations of the possible effects. Regarding inclusion dependencies, a
stateless CQE censor should not only consider the relation R the query refers to,
but also relations in which R or parts of R are included. The problem that might
arise with join queries is related to the problem with relaxed schema constraints in
Section 11.1, since the join of two ONF relations is in general not an ONF relation
but a relation with arbitrary FDs. Thus, a solution to the former problem might be
inspired by a solution to the latter problem.

11.3 Relaxing the Query Language Constraints

Although in Chapter 7 we proposed several enhancements for the basic query language
from Chapter 6, the resulting language OQ”SAR’,;V is still restricted. In particular, it is
not possible to express disjunction and negation. On the one hand, for a database
user it would be desirable to have a more expressive language at disposal; on the
other hand, however, in Chapter 7 we justified that XHARIV is already “maximal”, that
is, further enhancements would possibly compromise confidentiality. In the following,
we sketch some ideas regarding potential enhancements of the query language.

As an approach to disjunctive queries, we suggest to refine the answering strategy
for conjunctive queries (see Section 7.2), as outlined for positive closed queries in the
following. Consider a query ¢ that is a positive Boolean combination of existential
R-sentences, that is, it may contain conjunction and disjunction. For simplicity,
assume that the elements of ® are variable-disjoint, that is, each variable occurs at
most once in ®. According to Definition 7.14, a conjunctive query is split into its
single conjuncts before being forwarded to the censor function; analogously, ¢ can be
split into its elements, each of which is then forwarded to the censor function. More
precisely, we suggest to bring ® in disjunctive normal form (DNF) in the first step and
get a result of the form ®pnr = (VL1 (AL, (T} ;) i) with ®;; denoting a quantifier-

free formula and 37 j being a shortcut for the existential quantification of the variables
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that occur in ®; ;. Due to the variable disjointness, this transformation from ® to
®pnrE is always possible and it holds that ®pye = ®. In the second step, disjunction
(which has been shown to be harmful regarding preservation of confidentiality) is
transformed into conjunction, and we get ¢’ = ( 7;1(/\1"’:1(3;“ ;)®ij)). Observe that
' € Z4L%, and consequently ¢’ can be answered by scge™” (see Definition 7.14).
However, ' # ®pyr and thus also ®’ # ® which means that the original user query
is semantically modified before being answered. But note that ¢’ = ® holds, so if ¢’
is answered by the stateless CQE mechanism, the user at least gets information that
is related to his original query ®.

In Example 7.45, we learned that queries containing free variables and negation
might be unsafe. There are, however, conditions under which negation does not lead
to unsafe queries, as illustrated by the following example: Consider an instance r of
the relation schema (R, AB, {)) and the query ®(Xg) = (3Xa)R(Xa.X5) A =R(a,Xp).
The first part of ¢ asks for the values of attribute B that occur in r, whereas
the second part of ¢ asks for the values of attribute B that do not occur in r in
combination with the value a of attribute A. Consequently, the evaluation of ¢
can be interpreted as the intersection of the evaluation of (3Xa)R(Xa,Xg) and the
evaluation of —R(a,Xg), which yields a finite set of tuples and makes ® safe. In
general, each conjunction x1 A x2 of two elements x1, x2 of the language 3 5 can
be interpreted as a join (which is a generalized form of intersection); moreover, if all
variables that occur freely in y9o also occur freely in y1, x2 may also be negated, as
argued above.

Since negation leads to safe queries if suitably “guarded” by a positive query part,
it is not reasonable to categorically exclude it from the query language. Moreover,
multiple usage of free variables may be allowed in order to express general joins, as
already discussed in Section 11.2. In order to integrate these enhancements into our
approach, the query language, the stateless CQE mechanism, the SQL translation
and the algorithmic implementation must be adapted suitably. We believe, however,
that these enhancements, although being a step towards a more user-friendly query
language, would not substantially change the core of our stateless CQE approach.

2TThe language %%k has been introduced in Subsection 8.1.3.
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