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Introduction to interval
censored data and overview of
the two parts of the thesis

Interval censored data arises naturally in medical longitudinal follow-up stud-
ies in which the event of interest can not be easily observed, for instance
cancer recurrence or the elevation of levels of a biomarker without noticeable
symptoms. In these situations, the patients are usually examined at clinical
visits that take place only in certain time intervals, and the event of interest
may then occur between two consecutive clinical visits. Then, one observes
only a certain time interval [Xp, Xg| which is known to include the true
time X of onset of the event of interest. This type of interval censoring is
called interval censoring case II. As special cases it includes left censoring and
right censoring for X, equal to zero and Xy infinity, respectively. Another
type of interval censoring occurs when the event is only known to be smaller
or larger than an observed monitoring time. This kind of data is referred
to interval censoring case I, or current status data. Finally, one speaks of
doubly censored data if one observes min {max{X, Xy}, Xg}. For a more
extensive review of the different types of interval censored data see Gémez et
al. (2001b). In this thesis, interval censoring case II will be considered and
the censoring intervals will be taken to be closed on both sides in order to
account for exact observations.

An example for interval censored data is given in Betensky and Finkel-
stein (1999) who introduce the AIDS clinical trial group protocol 181, a
natural history substudy of a comparative trial of three anti-pneumocystis
drugs. The patients were monitored periodically for evidence of bacterial and
viral infections, with the objective of understanding the relationship between
these two events, and eventually the natural history of AIDS. Many patients



missed several of the prescheduled clinic visits, and when they returned to
the hospital for examination, new laboratory indications for the two events
were found. Thus, their times until occurrence of the bacterial or viral infec-
tion were censored into the time intervals between their last and their new
clinic visits.

Another example is the AIDS clinical trial group protocol 359, a random-
ized clinical trial designed to compare six different anti-retroviral treatment
regimens for HIV-infected persons who had previously failed on the protease
inhibitor Indinavir (see Gulick et al., 2000). The patients were monitored
periodically for their viral load levels with the aim to determine the time
period these levels remained below the threshold of 500 viral copies/ml. Tt
happened that the viral load levels climbed above the threshold between two
consecutive clinic visits so that the exact time below 500 copies/ml was in-
terval censored into the time interval [X;, X;], where X is the elapsed time
between the first viral load observation below 500 copies/ml and the last
observation before the viral load is subsequently observed to be above 500
copies/ml. Similarly, X, is the elapsed time between the visit prior to the
first viral load observed below 500 copies/ml and the first visit that the viral
load is subsequently observed to be above this threshold.

Methods for interval censored data have been strongly developed in the
past decades. An approach for the estimation of the distribution function
when the data is interval censored is found in the article by Peto (1973).
Turnbull in 1976 presented a theory for nonparametrically estimating the
distribution function of interval censored variables, incorporating in the esti-
mation process the idea of self-consistency developed by Efron (1967). Turn-
bull’s work had a strong impact on the further development of all kind of
statistical methods for interval censored data, including the field of linear
regression. The statistical properties of Turnbull’s nonparametric maximum
likelihood estimator (NPMLE) have been studied very extensively. Concern-
ing uniqueness, consistency and asymptotic properties see for example Gen-
tleman and Geyer (1994), Yu, Schick, Li and Wong (1998), Pan and Chappell
(1999) or Yu, Li and Wong (2000). Resulting from problems in developing a
distribution theory of Turnbull’s NPMLE, Groeneboom and Wellner (1992)
characterized the NPMLE using isotonic regression theory and thereof de-
rived a distribution theory for it.

Some research has also been done on variance estimation of the estimated



survival function for interval censored data. Two methods for this problem
are studied in Sun (2001). Since the underlying survival function can be as-
sumed to be smooth in many applications, and the NPMLE as a step function
does not efficiently use this information, some proposals for smooth estima-
tion of the survival function for interval censored data have been made. See
for example Li, Watkins and Yu (1997) or Pan (2000). Recently, an exten-
sion of Turnbull’s NPMLE to the case of bivariate interval censored data was
proposed by Betensky and Finkelstein (1999).

Concerning parameter estimation in linear models with interval censored
data, Finkelstein and Wolfe in 1985 developed estimation theory for lin-
ear models when the response is interval censored. They proposed a semi-
parametric approach using an EM algorithm for the maximization of the
likelihood function under different parametric models for the covariate dis-
tribution, but without assuming a parametric form for the distribution of
the response variable. Li and Pu (1999) applied a least squares approach to
the log-linear model with interval censored response. For regression analysis
with an interval censored covariates, Gémez, Espinal and Lagakos (2002)
proposed a semiparametric approach by maximizing the data likelihood un-
der the assumption of a normal distribution for the response. The covariate
distribution is estimated nonparametrically via Turnbull’s (1976) method.
Recently, Gil, Lépez-Garcia, Lubiano and Montenegro (2001) considered lin-
ear relations between two interval censored variables by defining a metric for
the distance between the observed values of the response and those predicted
from the model.

The estimation of the regression parameters of a linear model is also
considered in the first part of this thesis where a new estimation theory is
presented for models with both interval censored response and covariate. Un-
like Gil et al. (2001), it does not use certain distances between the observed
and predicted data but is an extension of the method of Gémez et al. (2002)
and considers a semiparametric maximum likelihood approach.

Closely related to linear model estimation is the field of residual analysis.
In regression theory, the analysis of residuals is an integrated tool necessary to
complete the process of fitting linear models. However, in connection with in-
terval censored data, only very few research has been done. For proportional
hazard models, Farrington (2000) derived interval censored counterparts to
the right censored Cox-Snell, martingale, deviance, and Schoenfeld residuals.



For linear models, Gémez et al. (2002) proposed an intuitive definition of
residuals coming from linear models that incorporate interval censored co-
variates. The second part of this thesis presents a new residual theory for
regression analysis with interval censored covariates, which is shown to be
superior to that proposed by Gémez et al. (2002).



Introduction

The first part of this thesis deals with linear regression analysis when both
response and covariate are interval censored. Linear regression analysis is a
statistical technique for investigating and modelling relationships between
different variables. A statistical relation between two random variables (Y
and Z, say) is defined such that one variable can be expressed in terms of a
mathematical function of the other variable, for example Y = f(Z) + <. In
this case, Y is called the dependent variable or response, Z is the independent
variable or covariate, and ¢ is an error term. To examine the linear relation-
ship between Y and Z (or some more Z), an appropriate model should be
chosen on the nature of the statistical relation and the variable types under
consideration.

When saying a relationship between some variables is ’linear’; this usu-
ally refers to linearity in the parameters. In contrast, the value of the highest
power of the independent variable in the model is called the ’order’ of the
model. For example, Y = 3y + 3,7 + B,Z% + € is a second-order (in the
covariate Z) linear (in the parameters f3;, i = 0, 1, 2) regression model. The £
are called 'model errors’ and are a random component reflecting the inaccu-
racy of the relationship between the variables which can never be exact due
to e.g. measurement errors in the observations.

The history of linear models can be traced back to the early 19th century
where Legendre was the first to introduce a linear model. The principle for
the determination of the unknown parameters (3;, ¢ = 0,1,2, was to mini-
mize the sum of squares of the residuals e =Y — 3y — 3, Z — 3,Z?. Among
the various approaches of performing regression, the least squares method is
probably the most widely used.

Applications of linear regression analysis are numerous and occur in al-
most every field, including engineering, physical sciences, economics, man-
agement, life and biological science, and the social sciences. In this thesis,



the main focus is on variables coming from the field of medicine, and more
specifically, the interest will be on variables that are interval censored, that
is, the response Y and the covariate Z are not observed directly but only
known to lie in some interval [Y7, Y] and [Z},, Zg], respectively.

Chapter 1 of this part of the thesis presents the statistical methods nec-
essary for the development of the new regression theory. It contains an
introduction of the theory for nonparametrically estimating the distribution
function of interval censored variables, both in the one-dimensional case and
the two-dimensional case. Furthermore, it introduces the regression method
of Gémez et al. (2002) who proposed an approach for parameter estimation
in linear models with exactly observed response and interval censored covari-
ates. Their method will be extended in Chapter 2 when developing a new
regression theory for the case that the response variable is interval censored
as well. It uses a maximum likelihood approach for the estimation of the
regression parameters while estimating at the same time the unknown distri-
bution function of the interval censored covariate. The performance of the
proposed method is assessed via a simulation study as described in Chapter
3. Finally, Chapter 4 contains a discussion of possible alternative approaches
for the estimation of the regression parameters in the given context.
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Chapter 1

Methods for interval censored
variables

This chapter gives an overview of the methods used in the development of
the new regression theory for interval censored data. It describes density es-
timation in the context of interval censored random variables as introduced
by Turnbull (1976) for the one-dimensional case, and generalized by Beten-
sky and Finkelstein (1999) for the two-dimensional case. Furthermore, the
regression theory for linear models with observed response and interval cen-
sored covariate as proposed by Goémez et al. (2002) is presented. Their
method will be extended later to the case that both covariate and response
are interval censored.

1.1 Nonparametric estimation of the distri-
bution of an interval censored variable

Suppose X to be a continuous, interval censored random variable with distri-
bution function F' and realizations x;, ¢ = 1,...,n. Due to interval censoring,
the x; are not observed directly but only their respective censoring intervals
[xr,,R,]. These are known to include the true value x; with probability one.

Turnbull (1976) proposed a maximum likelihood approach for determin-
ing an estimate for the distribution function F'. It is a maximum likelihood
approach which makes use of the equivalence between maximum likelihood
estimates and self-consistent estimates as described in the following.

9
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The construction of the likelihood for the data in the given context follows
from the fact that the contribution of each individual i is F(zg,) — F(xy,),
which results from X being interval censored. The complete likelihood ac-
counting for all individuals is therefore given by

n

L(F) =[] (F(zr,) = F(xz,))-

=1

Maximizing this likelihood with respect to F' would yield the maximum like-
lihood estimate for the distribution function of X. Turnbull shows that this
maximization problem can be reduced to a simpler one: After sorting all
observed interval endpoints z, and g, in ascending order, one constructs a
set of disjoint intervals [g1, p1],- - -, [gm, Pm] in the following way: Firstly, each
[¢;, p;] must not contain any other member z;, or zp, except at their end-
points, and secondly, it must hold that ¢; < p; < ¢ < ... < ¢n < Pm. An
example for the construction of the Turnbull intervals [g;,p;], j = 1,...,m,
is given in Figure 1.1. It shows six observed patient time intervals [0,1], [4,6],
12,6], [0,3], [2,4], [5,7] and the resulting Turnbull intervals [0,1], [2,3], [4,4],
[5,6] obtained with the two construction rules given above.

Figure 1.1: Illustration of the construction of Turnbull’s intervals

patient

Turnbulf | | } 8 { {

a1 p1 az p2 a3=p3 aa pa
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Turnbull proved that:

1. Any cumulative distribution function which increases outside the set
Uj~ [, pj] can not be a maximum likelihood estimate of F, and

2. for fixed values of F'(p;j+) and F(¢;—), the likelihood is independent of
the behavior of F' within each interval [g;, p;].

This means that it suffices to consider only those distribution functions which
increase in some or all of the intervals [g;, p;| and are constant outside these
intervals. Furthermore, the behavior of the distribution function inside these
intervals is not defined but can be imagined to be arbitrary. Thus, the
problem of maximizing L(F') reduces to that of maximizing

L(s1,...y8m) = HZOéiij;

i=1 j=1

where s; = F(pj+) — F(¢;—) with 27:1 s; = 1, and ay; = 1 if [gj,p;] C
[z, zR,] and 0 otherwise. The meaning of the indicator «;; is that only
those individuals contribute to the likelihood, whose observed censoring in-
tervals contain one or more Turnbull intervals. The estimate of the density
of X is given through the weight vector s = (s1,...,sp).

In order to determine the maximum likelihood estimate of s, Turnbull
proposed to apply an algorithm which is based on the equivalence between
the maximum likelihood estimates and the self-consistent estimates and is
described in the following. For details on the self-consistency equations see
Efron, 1967.

Define I;;=1 if z; € [g;,p;] and 0 otherwise. Because of censoring the
value of I;; is not known, but its expectation is given by

E(Ii) = aisj = pii(s).

That is, ;;(s) represents the probability that the i-th observation lies in
[¢j, p;]. Furthermore, the proportion of observations in the interval [g;, p;] is

Z pij(8)/M(s) = m;(s),
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where
M(s) = ZZMU(S)-

The self-consistent estimate of the s; is then defined to be any solution
of the simultaneous equation

Sj :ﬂj(sl,...,sm).

Turnbull incorporates these formulas in an iterative procedure in order
to derive the nonparametric estimate for the s;:

Step 1: Chose initial estimates s?, j = 1,...,m. This can be any set of
positive numbers summing to unity, e.g. s; = % for all j.

Step 2: Evaluate 1;;(s®), M(s?) and 7;(s?) using the formulas given above.
Step 3: Obtain the improved estimates sj by setting sj = 7;(s%).

Step 4: Return to Step B replacing s® by s?.

Step 5: Stop when the values of s! and s° do not differ anymore.

Turnbull shows that the algorithm converges monotonely for those initial
vectors s° that are close to the true density vector s. Gentleman and Geyer
(1994) provide easily verifiable conditions for the self-consistent estimator to
be a maximum likelihood estimator and for checking whether the maximum
likelihood estimate is unique.

1.2 Nonparametric estimation of the distri-
bution of two interval censored variables

Betensky and Finkelstein (1999) generalized Turnbull’s estimation procedure
to bivariate discrete interval censored data. Unlike Turnbull, the likelihood
function is not maximized using a self-consistent algorithm, but an extension
of the method of Gentleman and Geier (1994) is applied.
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In the bivariate case, one observes for each individual 7, 7 = 1,...,n, the
data rectangle [zp,,, xRr,,| X [¥L,;, Tr,,] Which are known to contain the real-
izations of Xy; and Xs;. Denoting F'(z1, x5) the joint cumulative distribution
function of X; and Xs, the likelihood for the data in this setting is

n

[ (Fr,+, wrio+) = F(wr,+, w10,—)

=1

_F(l‘Lil_7 xRi2+) + F(I‘Lil_7 xLiQ_)) .

Similar to the one-dimensional case, the support of the maximum likelihood
estimate of F'is contained in that set of rectangles which is formed by inter-
secting the observed data rectangles such that no other rectangle is contained
within them. This mechanism is equivalent to the one used in the construc-
tion of the Turnbull intervals explained in the previous section. Figure 1.2
gives an illustration.

Figure 1.2: Final rectangles (thick lines), resulting from intersecting the
observed regions (thin lines)

[ ]

Denote the final rectangles as [r;, s;] % [t;,u ], j = 1,...,J. Define further-
more the probability associated with rectangle j to be p; = F(s;+,u;+) —
F(sj+,tj—) — F(rj—,u;+) + F(rj—,t;—). Then, adopting the argumenta-
tion of Turnbull (1976), the search for the maximum likelihood estimate for F’
can be restricted to those vectors p = (py, ..., ps) having strictly non-negative
components and summing to one. The maximum likelihood estimate even-
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tually results from maximizing

Lp)=[]>_ aun;.

i=1 j=1

where Qi equals 1if [Tj,Sj] g [.’L’Lli,.’L'Rli] and [tj,u]‘] g [ILQi,.’L'RQi], and 0
otherwise.

Under the constraints for the p; given above, the authors propose to max-
imize the likelihood L(p) directly by solving a concave programming problem
with linear constraints as described in Gentleman and Geier (1994).

1.3 Linear regression models with exactly ob-
served response and interval censored co-
variate

Goémez et al. (2002) proposed a theory for linear regression analysis with
interval censored covariates. The idea of their approach is to simultaneously
maximize the data likelihood and estimate the unknown distribution func-
tion of the covariate.

The authors consider a continuous response variable Y with exactly ob-
served realizations y;, and a discrete and interval censored covariate Z whose
realizations z; are not observed but only the corresponding covariate inter-
vals [zr,,2r,], © = 1,...,n. These intervals are known to include z; with
probability one. The model to be established is

Y=a+ 57 +¢, model 1

where the error term ¢ is said to be independent of Z and normally dis-
tributed with expectation zero and variance o2. The aim is to estimate the
parameter vector § = (a, 3,0?) from the observed data (y;, [2L., 2r.])-

Since 7 is taken to be a discrete random variable, the authors suppose
that it assigns positive mass w; to the points s;, 7 = 1,...,m. From the
normality of the model errors follows that the conditional density f of the
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response Y given s; as a realization of Z is also normally distributed, with
expectation « + (3s; and variance o%:

SYEUETETTaY

202

1
f(y|8j;9) = \/W

This density is used in the construction of the data likelihood

L(O,w;) = H Z aijw; f(yils;; 0),

i=1 j=1

where

o 1 : SjE[ZLi;ZRi] o .
a”—{ 0 i s ¢l o] and w; = P(Z = s;).

Due to the unknown covariate distribution w = (wy, ..., wy,), this like-
lihood can not be maximized directly to obtain the maximum likelihood
estimates for the model parameters. Therefore, the authors maximize L si-
multaneously for # and w using a two-step algorithm which first maximizes
L with respect to w for fixed 6, and then resolves the maximization problem
for @ with w known. These two steps are described in detail below.

1.3.1 Nonparametric estimation of w when 6 is known

Assuming that the value for 6 is known, the maximization of the likelihood
L reduces to the problem of finding a vector w that maximizes

L*(w) = Hzaijwjf(yi|3j)a

i=1 j=1
subject to the constraints Z;":l w; = 1 and w; > 0 for all j.

The authors propose an algorithm for this maximization problem which
is similar to Turnbull’s density estimation procedure described in Chapter
1.1. Tt consists of the following steps: First, the authors fix a value for # and
chose start values for w. With these, they calculate the probability v;; that
the covariate of the i-th individual is equal to s;. This quantity is then used
to determine the expected number 7; of individuals with Z; = s;. Finally,



16

7; is taken to be an improved estimate of the covariate density w, and can
later be used to recalculate v;; and 7;. This procedure is repeated until the
improved estimate and the old estimate are sufficiently close. The following
scheme illustrates this estimation procedure:

Step la: Fix the value for 6 using 0° = (a°, 5%, 02), where

K.
0 e _ .
o = y n iz:;ela
BU — _ Z:%l (yz - g)éz
S (02— e2) — (1/n)(X0, é)?
noy =3 (g —a®)? = (6923 (02 +¢2),
=1 =1

and

~
~

ei:(l’Li—FfL’Ri)/2, and UZ-ZZ((I‘Li—éi)2+(l’Ri—éi)2)/2.

Step 1b: Chose initial estimates for the w9, for instance take w) = L.

Step 1c: Evaluate v;;(6, w®) defined as

ij f(yils; 0)w;
Vi-::PX:S'yini’xi - m] ,
j ( ilYis [, 2r.]) > ket Qi f (Yilsks 0)wi

replacing w; by w?, and calculate
1 n

Tj (97 WO) = E Z Vij (97 WO)'
i=1

Step 1d: Obtain the improved estimate w; by setting w; = 7;(0, w®).
Step le: Return to step lc replacing w® by wt.

Step 1f: Repeat steps 1c to le until the value of wl does not change any-
more. Denote it by Ww!.
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1.3.2 Maximum likelihood estimation of § when w is
known

When the covariate density w is known, the maximization of the likelihood

L(0) = [ D cujwif (wil6)

i=1 j=1

with respect to 6 can be achieved via the usual maximum likelihood approach:
The logarithm of L** is derived with respect to a, B and o2, and these
derivations are set to zero and solved for the parameters. The authors show
that the solution of the maximum likelihood equations ZlogL**(f) = 0 is

A= —SZQ(Q,W), (1)

s 2y (Y — a)ei(, w)
0= S nl6w) + 20, w))" )

n

ne® =3  (yi— 04)2—52_2 (vi(0, W) + €7 (0, W), (3)

i=1
where

m 1 1 2

=1 QikSkWk 75— €XP 1~ 5,2 \Yi — & — Bsk
ei(gjw):kal Varo { f ( 2)}, @

Y ket QW 7= €XP {=52 i — a — Bsi)?}

and

m: ik (sk — expi (0, w 2wk;exp —% yi —a — [Bsy 2
Ui(g,W)ZZk 1 ( ( )) V2ra { 22( )}(5)

Py aikwkﬁ exp {—#(yz —a— fBs)?}

The algorithm proposed by the authors maximizes L** by first choosing
initial values for equations (4) and (5), which are then used to calculate the
estimates given in (1) to (3). Afterwards, (4) and (5) are determined again
using the newly calculated estimates and the covariate density vector that re-
sulted from the algorithm of the previous section. This procedure is repeated
until the values for &, 3 and 62 stabilize. The following scheme illustrates
the estimation process.
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Step 2a: Calculate 0° from formulas (1) to (3) by choosing the initial values
for e;(6, w) and v;(#, w) to be

ZL; + ZR;
2

and

el (0, w) =
(ZLi — 69)2 + (ZRi — 69)2

5 :
Step 2b: Evaluate e;(0°, w!) and v;(6°, ') using equations (4) and (5) em-
ploying #° and Ww! from step 1f above.

U?(H, w) =

Step 2c: Obtain the improved estimate ' from formulas (1) to (3), replac-
ing e;(0, w) and v;(6,w) by €;(0°, W) and v;(0°, w1).

Step 2d: Return to step 2a replacing 8° by 6.

Step 2e: Repeat steps 2a to 2c¢ until the difference between 0° and 6! is
sufficiently small. Denote the final estimate by 6.

In total, the two-step algorithm for calculating simultaneously the den-
sity w of the interval censored covariate and the estimator for the parameter
vector 6, results in the combination of the two algorithms given above and
is summarized in the following scheme:

Step I: Execute Step la up to Step 1f.

Step II: Execute Step 2a up to Step 2e.

Step III: Return to Step lc replacing 6° by 6 and w® by w!.
Step IV: Repeat steps I to III until convergence of 6 and w.



Chapter 2

Linear regression with interval
censored response and covariate

This chapter presents a new estimation theory for linear regression models
when both covariate and response are interval censored. It is an extension of
the method of Gémez et al. (2002) introduced previously. The model to be
considered here is

Yi=a+pZ;+¢;, 1=1,...,n model 2

where the response Y; is continuous and censored into the interval [Y7,., Y],
and the covariate Z; is discrete and censored into the interval [Zy,, Zg,|. The
model errors € are assumed to have a normal distribution with mean zero
and variance 0.

Let s; be the possible values for Z with corresponding weights w;, j =
1,...,m, and denote the covariate density and distribution function as w
and W, respectively. From the errors’ normal distribution follows that the
distribution of Y given s; as a value of Z is also normal with mean o + fs;

and variance o?:
(y —a — Bs;)?
exp < 57 )

1
f(y|8j79) = \/W

Here, § = (o, 3,0?) is the vector of the model parameters which we want to
estimate.

19
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It will be assumed that the interval censoring for the covariate and the re-
sponse occurs noninformatively. If a variable X is subject to noninformative
censoring, this means that for any given values gy, x1, x3, the conditional
density of this variable is the same as the density of the uncensored variable
truncated into the observed censoring interval:

P(X:l‘o)

P(X =uy|Xp =21, X =139) = { (I)D(Xe[ml,:m]) zo € [11,22]

otherwise

Goémez et al. (2001b) show that the contribution to the likelihood of an
unique individual with observed censoring interval [z, xg] which includs the
true value of interest x, is proportional to f dW (z) where W = P(X < x).
With this fact, the hkehhood for the observed data of model 2 can be con-
structed as given in the next section.

2.1 Estimation procedure

The observed data for model 2 consists of n independent and identically
distributed realizations of ¥ and Z. Since these two variables are interval
censored, one observes the intervals ([yr., yr,|, [2L;, 2r:]), t = 1, ..., n. In order
to obtain the estimates for the model parameters o, 8 and o2, a maximum
likelihood approach will be proposed as described in the following.

The likelihood for the observed data can be constructed by noting the fol-
lowing facts: The contribution of an arbitrary individual 7 to the likelihood
consists of the contribution of this individual with respect to both the covari-
ate and the response. Since the covariate Z is interval censored, its density
must be estimated with a method similar to the one given in Turnbull (1976),
yielding as a result the weights w; (for more details on the method of Turn-
bull see Chapter 1.1). Thus, the contribution of individual ¢ with respect
to 7 is Z;nzl a;jw;, where the indicator variable «;; specifies whether or not
the covariate value s; is contained in the observed covariate interval [z, zg,].
On the other hand, the contribution of this individual with respect to the
response Y given a fixed value of Z, is determined by the conditional density
f(ylsj, @). Since the value of Y is not exactly observed but only its censoring
interval [yr., yg,], the conditional density must be integrated over the range
of this censoring interval in order to obtain the respective contribution to the
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likelihood. The total contribution of individual ¢ to the likelihood is then the
combination of these two single likelihood contributions, and the complete
likelihood accounting for all individuals is therefore given by

L(Q,wj) = HP(Y; € [YLivYRi]azi € [ZLHZRi])

=1

n m YRi
= HZ%‘%‘/Y S (yls;; 0)dy, (2.1)

i=1 j=1

1 S € [ZL”ZRZ-]
0 : otherwise

Y

where «;; = {
and w; = P(Z = s;) is the weight the covariate assigns to the point s;.

The estimation of the parameter vector # will be achieved through max-
imizing L. Similar as in the context of the regression theory of Gémez et al.
(2002), this maximization can not be carried out directly because of the un-
known covariate density function w = (wy,...,wy). Thus, L is maximized
through an algorithm that iterates between maximizing L with respect to w
while holding # fixed, and maximizing L with respect to # while holding w
fixed. These two steps are described in detail below.

Nonparametric estimation of w when 6 is known

For a fixed value of #, the maximum likelihood estimate of the vector w,
given the constraints Z;’;l w; = 1 and w; > 0 for all j, is determined by
using a procedure based on the equivalence between the maximum likelihood
and the self-consistent estimators as explained in Turnbull (1976): First, ini-
tial values for the covariate density weights w;, are chosen. With these, the
conditional probabilities v;; that the covariate Z; equals a given value s; are
calculated. Summing these probabilities over all individuals 7 leads to the
expected number 7; of individuals with a covariate value equal to s;. This
expected number is then taken to be an improved estimate of the covariate
density w, and can be used to recalculate v;; and 7;. The whole procedure
is repeated until the difference of the values of the improved and the old
estimate is sufficiently small. The following scheme gives a summary:
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Step A1 Take initial estimates for the w, for example w) = - for j =

1,...,m. Denote w° = (w}, ..., w?).

Step A2 Evaluate v;;(w?,0) and 7;(w?,6) defined as
vij(w®,0) = P(Z; = sjllz1,, 2], [y, yR.)
aijwi [ f(yls; 0)
T gl Jyr f(ylss; 0)’

1 n
T]‘(Wo,g) = ﬁ Zy”(wo,ﬂ)
i=1

Step A3 Obtain the improved estimate w! setting
w! =7;(w°0).

Step A4 Go to step A2 replacing w® by w! and repeat the whole procedure
until their values are sufficiently close.

Maximum likelihood estimation of § when w is known

When the covariate density is known, the maximization of the likelihood L
with respect to # can be achieved by solving the score equation %logL = 0.
The resulting estimates for a, 3 and o2 are derived in Appendix A. They are
calculated to

. d—ab

L 2.2
& =a— (b, 2.3
52 = & — 24a + &> — A%, (2.4)

where @, b, ¢, d and € is the average of a;, b;, ¢, d; and e;, i = 1,...,n,
respectively, defined as

a; = E(Yz‘HZLi, ZRi]; [YLi; YRi])a

bi - E(ZZHZLZJ ZRi]; [YLia YRi])a
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C; = E(Zﬂ[ZLi, ZRi]a [YLi; YRi])a
d; = E(Zz'YiHZLi, ZRi], [YLia YRi])a
ei = E(Y2|[Zniy Zril, [Y1is Yri))-

The following propositions show that the estimates &, B and 62 are similar

to the maximum likelihood estimators in a simple linear model with exactly
observed response and covariate.

Proposition 1
It holds that 3 as defined above converges in probability to the value CSZ%’Z);).

Proof
Applying the law of large numbers, it holds that

i= 30" Bla) = BB Zu,. Ze), Vi Ya))) = E(Y),
bi n—>_0>0 E(bl) = E(E(ZZHZLN ZRi]’ [YLH YRz])) = E(ZZ),

Lo~ oo
e=- > "% Ble;) = B(B(Z}|[Z1,, Zr), V1., Vi) = B(Z)),
and

d; =% E(d;) = E(E(ZYi||Z1,, Zr,), Y1,, Yr)])) = E(Z:Y)).

Thus, it holds for the numerator of 3 that
d—ab=""3 E(ZY) - E(Y)E(Z) = Cov(Z,Y),
and for the denominator that
c— 0" E(7% - E(Z)* =Var(Z,Y).
In total, this means that

b s Cov(Z,Y)
2 Var(Y) -~

d—

Cc —

l

A=

SH
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Proposition 2
It holds that & as defined above converges in probability to the value E(Y') —

BE(Z).

Proof
Applying the law of large numbers it holds that

1 n—00
a = ﬁ a; ; E(CLZ) = E(E(YH[ZLNZRJ) [YLHYRi])) = E(Y;)
and

b= bi TH_O)O E ] E(E(ZlHZLn ZRi]’ [YLi7 YRl])) = E(ZZ)

i=1

1
n

Thus, together with Proposition 1, this means that

~—

— B =3 E(Y) - BE(Z). O

Pr0p051t10n 3
It holds that 6% as defined above converges in probability to the value Var(Y)—

BVar(Z).

Proof
Again, with the law of large numbers and Proposition 1, one obtains

622X B(Y?) - 2aE(Y) + &% — B2E(Z?%)

=EB(Y?) - ( Y) - BE(Z)) E(Y)
+(B(Y) - BE(2))" - B°E(Z?)
=E(Y?) - E(Y)’ -5 (E(Z%) - E(Z)?)
=Var(Y) — B*Var(7). O

For the determination of the parameter estimates of model 2, a procedure is
proposed that uses start values for @ to €. It iterates between calculating &,
$ and 6% and re-determining the values for @ to € as explained in the scheme
given below.
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Step B1 Take initial estimates for a;, b;, ¢;, d; and e;, for example

0 __ yLi + yRi
a, = —/——,
2
P = P TR
2
0 (ZLi - b?)Z + (ZRi - b?)2
¢, = 5 ,
o — (e = bi)(ye, — ai) + (2r, = bi) (yr, — ai)
T 2 )
e(_) — (yLi _ CL?)2 + (yRi B ag)Z
(3 2 °

Step B2 Use these values in (2.2) to (2.4) to compute the initial estimate
0 = (a3, 59).

Step B3 Re-evaluate a; up to e; with their theoretical formulas given in
Appendix A by employing 6.

Step B4 Obtain the improved estimate 8" by solving equations (2.2) to (2.4).
Step B5 Go to step B3 substituting #° by 6.

Step B6 Cycle steps B3 to B5 until the difference between the values of #°
and 6! is sufficiently small.

The complete algorithm to obtain the joint maximum likelihood estimate
for w and 6 follows from the combination of the two conditional algorithms
given above. It has been implemented in the program semipara.cpp and can
be found on the floppy disc. The criteria for convergence of the estimates
was chosen to be the relative norm differences of the estimates at iteration
stage [:

[t — '] 101 — ')
[t [16:1]]
The estimates were defined to converge if the respective relative norm dif-

ference was less than 0.001. A flow-chart of the structure of this program is
given in Chapter 3.
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2.2 Confidence intervals for the model pa-
rameters

The MAPLE program given in Appendix B can be used to construct ap-
proximate confidence intervals for the parameter estimates resulting from
the newly proposed estimation procedure. It uses the observed information
matrix and quantiles of the normal distribution, and the different steps in
the calculation process of the program are explained in the following:

Consider a given data set which consists of values y;,, and yg, for the ob-
served response intervals, values s; for the discrete covariate with respective
density weights w;, and the estimated regression parameters a, B and 62. The
first part of the program reads this data into variables. With these, the log-
likelihood as defined in equation (2.1) is constructed and its first and second
derivatives with respect to the regression parameters are calculated. Then,
the Hessian matrix is formed from all second derivatives and the observed
information matrix is calculated by multiplying the Hessian with minus one.
Eventually, the inversion of the observed information matrix provides an es-
timate for the variances of &, 3 and 6%. These estimated variances are then
employed in the construction of the approximate confidence intervals.

2.3 Multiple regression

This section extends the proposed regression theory to the case that model 2
additionally incorporates an exactly observed covariate vector. This means,
the model now under consideration is

Y=a+FX+5Z+e

where X = (X,...,X,) is a vector of exactly observed covariates, /3] is the
corresponding p-dimensional parameter vector, Y is the interval censored re-
sponse, Z is an interval censored covariate, and ¢ is a continuous N (0, 0?)

random variable independent of X and Z.

The observed data for individual 7 is then #; = (z1,,...,2,), (21, 2r;]
and [yr,,yr,]- By defining 0 = (a, 3, 52,0?) and using the notation and
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assumptions of model 2, the likelihood function in the new context is given
as

L (w, ) HZan]/ Fl(Es 5,);0)). (2.5)

=1 j=1

where w = (w1,...,wy,), w; = P(Z = sj), ayj = I{s; € [21,,2r;]} and
f(y|(@i, s5);0)) is the conditional density of Y given (X = j, Z = s;):

—_— 2
f(y|(fl, S]), 0)) = 1 exp <_ (yz - — Blflfi - 623]')2) .

V2mo? 202

The idea of the estimation procedure for the model parameters o, E{, Bo
and o2 is the same as for model 2, only that the likelihood function is now
given by (2.5). This means, L* is maximized simultaneously for w and 6
by cycling between steps A und B of the earlier proposed algorithm. In the
present context, Step A now consists of the same self-consistent equations as
given earlier but using the new expression for v;;(w, @), which is

Qi Wj yR fl(@,55);0)

o ,9 :PZz: ; . il i) '7_)2-: m .
V](W ) ( SJH?JLZ sz] [ZLz ZRI] x) z; 1 Qi W; fyR y|(xu5]) 0)

Step B is modified in so far that it now incorporates the maximum likelihood
estimators resulting from the new context of the multiple regression. These
are obtained from maximizing the logarithm of likelihood (2.5) for fixed w
and are derived in Appendix C.

2.4 Model errors coming from the exponen-
tial family or Weibull distribution

In the previous sections, the regression parameters were estimated assuming
the model errors to be normally distributed with mean zero and variance o2.
The normal distribution is known to be a member of the so-called exponen-
tial family of distributions, which is defined in the following way:
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Definition

Let X be a random variable with density function f determined by the pa-
rameter vector n. One says that f belongs to the exponential family of dis-
tributions if it can be expressed as

f(z;n) = h(z)e(n)expl@(n)t(z)],

where Q(n) and t(x) are vectors of common dimension k such that Q(n)t(x) =

Sh L Qun)ti(x).

For example, the N(0,c?)-distribution is obtained when taking h(z) = 1,
c(n) = 2m0?) 2, Q(n) = (0, 7) and t(z) = (z,—x*). Other members of
the exponential family are the gamma, binomial and Poisson distribution.

In what follows it will be shown that the proposed regression theory still
holds when the model errors come from any distribution which is a member
of the exponential family. This means that the likelihood to be considered
now is

n m Yr;
L™(0,w;) = HZ%‘%‘/ fyilsj; 0)dy,
YLi

i=1 j=1

where

f(wilsj;0) = hy: — a — Bsj)e(n)explQ()t(y; — o — Bs;)]
and 0 = («, 8, 1).

The proceeding for obtaining the maximum likelihood estimate for # in
the new context is the same as in the original setting, namely maximizing the
logarithm of L** with respect to the parameters o, § and 7. The resulting
partial derivatives are given in Appendix D. It can be shown that the solu-
tions (F'1) — (F'3) of Appendix D include equations (E1) — (E3) for normally
distributed e:

Corollary 1
Equation (F1) reduces to equation (E1) when the model errors are normal.

Proof

When the £ are normally distributed, it holds that h(g;) =1, ¢(n) = \/2;7,
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Q(n) = —5 and t(¢;) = (y; — o — Bs;)?. With that, equation (F1) results

m YR, _W(ei .
n (T sy [o = F(yil 53 0)dy

(F1) = Z icz-(e)

Soy gy [y f(yilss 0) Q) ()] dy
- Ci(0)

n [ D00 cijw; fff — 2 f (sl 555 0)dy
Ci(9)

Do ijwj féR F(wilsj; 0)[— 552 (=2) (yi — - = Bs;)]dy
Ci(0)

_ Eoww oy fOilsi Ol o - Bsldy .
- C.(0 ~ (Y

Corollary 2
Equation (F2) reduces to equation (E2) when the model errors are normal.

Proof

When the ¢ are normally distributed, it holds that h(e;) =1, ¢(n) = W
Q(n) = —55 and t(5;) = (y; — @ — Bs;)?. With that, equation (F2) results
to

(F2) =2 Om

i=1

- ( j= 1amw]f Sj (yz|517 0)dy

Z;n:l QW fffl f(yilss; O)[Q(n)s;t' (€:)ldy
Ci(0)

m Yr. 550
- (2j1aijwjfyL = f(yilsj; 0)dy

Ci(0)
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Z] 1 Qi W fy fyilsj; 0)[— #(_2)(%‘ — o — Bsj)s;ldy
Ci(0)

Dl gy fgLR Fyilss; )5z (ys — o = Bsy)sildy E2 O
- Ci(0) -

Corollary 3
Equation (F3) reduces to equation (E3) when the model errors are normal.

Proof

When the ¢ are normally distributed, it holds that h(g;) =1, ¢(n) = 271'0'
Q(n) = —5 and (¢;) = (v — @ — Bs;)?. With that, equation (F3) results
to

m Yr. ¢!
n (S iy [y =S f (ilss; 0)dy

F3)=2 C(0)

=1

Soy gy [y F(yilss 0)1Q ()t (=) dy
' Ci0)

T s [ (=S8 4+ 1Q ()H]) s 0)dy
Z Ci(0)

=1

o1 Qg fyL (=55 4[5 (wi — = Bs;)%]) f(yils;; 0)dy

Z Ci(0) =(#3)0

=1

2.4.1 Weibull distribution

The proposed regression theory can also be applied when the model errors
come from the Weibull distribution, as will be shown in the following. The
likelihood of the data in this context is

L0, w;) Hzamw]/ I (yilsj; 0)dy,

i=1 j=1
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where
f(yils;; 0) = 0465?71 exp (—as?)
and 0 = («, ).

Setting the partial derivatives of [*** = log L*** to zero and solving for o and
B yields the maximum likelihood estimates given in Appendix E.
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Chapter 3

Simulations

Since theoretical results for the goodness of the proposed estimates are dif-
ficult to obtain, their performance is checked through a simulation study.
It involves different data scenarios for model 2 with the aim to assess to
what extend the proposed parameter estimates are able to reflect these data
situations. Table 3.1 shows the simulation scenarios used in the study.

Table 3.1: Scenarios for the simulation study
number of observations | 200 and 500
covariate distributions | Exp(z), Weib(z, 3), N(6,4)
percentage of censoring | 0.3 and 0.7

value for o 4
values for 3 2 and 5
value for o2 1

The simulations are carried out by the program semipara.cpp on the floppy
disc, and a short summary of how this program works is given now: The
model errors € are generated from a N(0, 1)-distribution, and the values for
the covariate Z are simulated from the exponential, Weibull or normal dis-
tribution. These values are used to construct the covariate intervals [Z},, Z|
after the following scheme: Depending on the covariate distribution, there
is a certain number of values j, 7 = 1,...,k, which the covariate can take
on. An indicator variable ¢;; determines with a given probability p, whether
or not the covariate for individual 7 is observed at value j. Then, one looks
at each value z; and goes back to the nearest observed value j and takes

33
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it as the value for z7,. Similarly, zg, is that observed value j coming first
after z;. The corresponding response intervals [yr,, yg,| result from the for-
mulas yr, = o+ Bzr, +&; and yr, = a + Bzg, + &;. Eventually, the two-step
algorithm described in Chapter 2 is applied to the generated response and
covariate intervals for the estimation of the model parameters a, 8 and 2.

The following flow-chart illustrates the simulation process of the program
semipara.cpp. The steps of the program are written inside the boxes and the
arrows indicate which step enters in the calculation of another step. As most
calculations are executed by procedures within the program, their names are
written outside the corresponding box which will make it easier to find one’s
way when looking at the code of the program.

erpon
wel
covariate values |"0T values for §
covariate intervals model errors
. Resp
response intervals
Steps

parameter estimation via
the two-step algorithm

Other procedures used in this program are listed below together with a short
description of their usage:

FileOpen: opens all files needed for reading and writing.

Spalloc: allocates memory for the vectors and matrices.

ran2: generates random uniform variates.

Stmpson: integrates an user-defined function applying Simpson’s method.
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The last mentioned procedure Simpson is used for the calculation of dif-
ferent integrals over the conditional density f(y|s;;#) which is needed among
others in the calculation of the conditional means a; to ¢; given in Chapter 2.
As these integrals cannot be calculated analytically in C, a numerical approx-
imation applying Simpson’s method is used. The idea of Simpson’s method
is to approximate the area under a given graph by a sequence of quadratics.
That is, the range of the upper and lower interval limit is divided into an
even number of subintervals and their width is calculated. Then, the func-
tion value at the left endpoints of the first three subintervals in calculated as
well as the area of the parabola through these three points. This process is
repeated moving two subintervals to the right. Simpson’s method is said to
be the most exact among those existing for numerical integration. Though,
it is obviously not as exact as the analytical form. This must be taken into
consideration when assessing the simulation results of the estimates.

The performance of the program semipara.cpp with respect to speed and
convergence is highly satisfying. Running it on a 400 megahertz Pentium
IT processor with 128 MB RAM main memory using the SUSE LINUX 7.1
operating system yielded convergence of the parameter estimates after 5 to
30 iterations depending on the number of observations and the level of cen-
soring. The time needed for the calculations varied between 5 and 60 seconds.

3.1 Simulation theory

The simulation study involves the generation of data coming from different
statistical distributions. The theory applied for the generation of these dis-
tributions is given now (for references see Box and Miiller, 1958, or Morgan,
1984).

Uniform distribution

For the generation of a Uniform(0,1) random variable, a Congruential Pseudo-
Random Number Generator is used. By applying the recursion formula
Tn_1 = ax, + b mod m with seed zy and a, b, m given numbers, a sequence
of integers will be obtained, each of which lies between 0 and m — 1. An
approximation to Uniform(0,1) random variables u; can then be achieved by
setting u; = x;/m.
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Exponential and Weibull distribution

As the Exponential and Weibull distributions are continuous, one can make
use of the Inversion Method to generate their distribution functions. Sup-
pose one wishes to simulate a continuous random variable X with distribution
function F(z) = P(X < x), and suppose further that the inverse function
F~'(u) is well-defined for v € [0,1]. Then, it is well known that if U is a
(0, 1)-Uniform random variable, X = F~'(U) has the required distribution.

Normal distribution

For the simulation of the Normal distribution, the Polar Marsagliar Method
is applied: If U is a Uniform(0,1) random variable, then V' = 2U — 1 is a
Uniform(-1,1) random variable. By selecting two independent Uniform(-1,1)
random variables V; and V3, a random point in the square [—1, 1] x[~1, 1] can
be specified which has polar coordinates (R, ©) given by R? = V2 + V3 and
tan(©) = V5/Vi. The repeated selection of such points provides a random
scatter of points inside this square, and rejection of points outside the unit-
circle produces a uniform random scatter of points within this circle. For
any of these points, the polar coordinates 2 and © are independent random
variables, © is a Uniform(0,27) random variable and R? is a Uniform(0,1)
random variable. One can write

sin(©) = e_ % cos(©) = 4

A R

Eventually, a pair of independent N (0, 1)-variables is obtained by defining
M, and M, as

~ Vo ~ Vi
M, = \/—2l0g(R?) ——2 M, =1/—2l0g(R?) ———.
V) G MmN

3.2 Results of the simulations

Table 3.2 and 3.3 show the results of the simulation study for model 2 under
the different scenarios given in Table 3.1 above. Each column gives the
median and mean value [standard deviation] calculated using 500 replicates
for the estimated model parameters.
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Table 3.2: Estimated regression parameters when o =4, f =2 and 02 =1

Median | Mean [Std] | Median | Mean [Std] | Median | Mean [Std]
for o for for o2
Exponential(é)
n=200,p=0.3 3.801 3.799 [0.228] 2.011 2.011 [0.032] 1.193 1.192 [0.130]
n=500,p=0.3 3.827 | 3.823[0.141] | 2.007 | 2.007 [0.032] | 1.199 | 1.201 [0.084]
n=200,p=0.7 3.971 | 3.972[0.159] | 1.997 | 1.997[0.021] | 0.994 | 1.100 [0.111]
n=500,p=0.7 3.974 | 3.9770.099] | 1.997 | 1.997 [0.013] | 1.005 | 1.010 [0.068]
Weibull($,2)
n=200,p=0.3 4.030 4.028 [0.246] 1.973 1.972 [0.069] 1.309 1.317 [0.134]
n=>500,p=0.3 4.043 4.033 [0.163] 1.971 1.973 [0.044] 1.330 1.327 [0.091]
n=200,p=0.7 3.977 | 3.9790.183] | 1.999 | 1.999 [0.049] | 0.958 | 0.961 [0.101]
n=500,p=0.7 3.981 | 3.981[0.117] | 2.001 | 2.000[0.032] | 0.978 | 0.980 [0.071]
Normal(6,4)
n=200,p=0.3 4219 | 4.215[0.497) | 1.937 | 1.940[0.085] | 0.950 | 0.945 [0.118]
n=>500,p=0.3 4.213 4.223 [0.303] 1.939 1.938 [0.052] 0.948 0.952 [0.069]
n=200,p=0.7 4.055 4.033 [0.358] 1.983 1.984 [0.059] 0.930 0.933 [0.105]
n=>500,p=0.7 4.059 4.058 [0.222] 1.980 1.981 [0.037] 0.931 0.938 [0.069]
Table 3.3: Estimated regression parameters when o =4, =5 and 02 =1
Median | Mean [Std] | Median | Mean [Std] | Median | Mean [Std]
for o for for o2
Exponential(é)

n=200,p=0.3 3.531 3.510 [0.288] 5.062 5.064 [0.045] 1.882 1.879 [0.235]
n=500,p=0.3 3.559 3.549 [0.180] 5.056 5.058 [0.028] 1.866 1.885 [0.138]
n=200,p=0.7 3.944 | 3.939[0.168] | 5.004 | 5.003[0.022] | 1.093 | 1.093 [0.123]
n=>500,p=0.7 3.952 3.951 [0.100] 5.003 5.002 [0.012] 1.106 1.105 [0.072]
Weibull($,2)
n=200,p=0.3 3.817 3.817 [0.306] 5.040 5.043 [0.090] 2.233 2.253 [0.303]
n=>500,p=0.3 3.836 3.833 [0.193] 5.038 5.039 [0.056] 2.267 2.258 [0.203]
n=200,p=0.7 3.970 | 3.974[0.198] | 5.005 | 5.004 [0.053] | 1.042 | 1.042[0.110]
n=500,p=0.7 3.972 | 3.974[0.118] | 5.004 | 5.005[0.032] | 1.078 | 1.076 [0.071]
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Normal(6,4)
n=200,p=0.3 | 4.423 | 4.409 [0.568] [0.100] [0.166]
n=500,p=0.3 4.436 | 4.433 [0.347] | 4.918 | 4.917 [0.060] | 1.277 | 1.282 [0.100]
[0.378] [0.063] [0.110]
[0.232] [0.039] [0.075]

0.568 4.921 | 4.920 [0.100 1.283 | 1.294 [0.166

n=200,p=0.7 | 4.107 | 4.125 [0.378 4.971 | 4.969 [0.063 0.960 | 0.970 [0.110

0.232 4.970 | 4.970 [0.039 0.984 | 0.984 [0.075

n=500,p=0.7 | 4.124 | 4.124

Both tables show that the values of the median and the mean do not differ
much within the simulation scenarios. For [ = 2, the estimation results for
the parameter a are best when the covariate distribution is Weibull. For an
exponential covariate distribution, this parameter is slightly underestimated,
and for a normal distribution it is slightly overestimated. It can be also no-
ticed that the standard deviation is twofold when the covariate distribution is
normal. The estimation of the parameter [ is very accurate for all covariate
distributions and the standard deviations are also smaller than those for the
parameter . The results for the estimation of the error variance o2 is most
satisfying for an exponential and Weibull covariate distribution with a low
level of censoring (p = 0.7). At a high censoring level, the value of the error
variance is overestimated. The results for a normally distributed covariate
are similar for both low and high censoring levels but generally underesti-
mate the error variance.

For 8 = 5, the estimation results for the parameter o are most satisfy-
ing when the percentage of censored data is low, regardless of the covari-
ate distribution. When the percentage of censoring is high, the value of «
is underestimated in case of the exponential and Weibull distribution, and
overestimated in case of the normal distribution. Among these three co-
variate distributions, the Weibull performs best. With respect to the model
parameter (3, the simulation results show that the estimation procedure per-
forms well for all three covariate distributions and estimates close to the true
parameter value are obtained. The error variance o? is estimated most sat-
isfactorily for a low censoring level, otherwise it is overestimated. The value
of the slope [ has obviously an effect in the estimation of the error variance
because the overestimation was not that high for g = 2.

It can be also noticed that the number of observations affects the value
of the standard deviation of the estimates in so far that it gets smaller if the
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number of observations gets larger.

Table 3.4 gives a summary of those simulation scenarios for which the

parameter estimates perform best.

Table 3.4: Summary of the simulation results
best performance for =5

best performance for § = 2
Q Weib, exp/norm and p=0.7 | exp/norm/Weib and p=0.7
I} all scenarios all scenarios
o2 exp/Weib and p=0.7 exp/norm/Weib and p=0.7
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Chapter 4

Discussion of other approaches

Two other approaches for the estimation problem of model 2 were investi-
gated in addition to the semiparametric approach described in Chapter 2.
The first approach is an empirical one with the idea of adapting the well-
known uncensored regression estimators to the context of interval censored
data. The second approach imitates the least squares method of uncen-
sored regression analysis and transfers it to the interval censored setting.
The following sections summarize the problems encountered in the process
of examining these approaches.

4.1 Empirical approach

Consider the linear model Y = o+ 7 4+ & where Y is the response variable
and Z the covariate, both uncensored. It is known from regression theory
that for this model the least squares estimates

:7) and dzE(Y)_ﬁE(Z) (+)

are unbiased and have minimum variance when the conditions of the Gauss-
Markov theorem are met.

When Y and Z are interval censored, one could think in trying to estimate
the involved covariance, variance and expected values through the common
density function of Z and Y, which can be calculated with the method devel-
oped by Betensky and Finkelstein (1999) described in Chapter 1.2. From the

41



42

estimated common density iL, say, one could then calculate the marginal den-
sities f and g, say, of Y and Z, respectively. From these three distribution
functions one could finally estimate the covariance, variance and expected
values from

B(Z) = / (e, B(Y) = /Y "y )z,
vir(Z) = / (- B(2))g(2)dz,
cou(Y, Z) = / /Y (2 = B(2))(y — B(Y))h(y, )dydz.

and calculate the estimators & and 3 with the formulas given in ().

Simulations using the same simulation scenarios as in the semiparametric
approach showed that the estimates for a resulting from the empirical ap-
proach are not very accurate. Table 4.1 below gives the means [mean squared

errors| of & and B, calculated from 1000 replications of each setting.

Table 4.1: Simulation results for the empirical approach where a =4 and g = 2

distribution parameters a [MSE] 5 [MSE]
Exponential(%) n=100, p=0.3 | 4.390 [0.41 2.086 [0.02]
n=500,p=0.3 | 4.329 [0.41] | 2.086 [0.02]
n=100,p=0.7 | 4.547 [0.40] | 2.022 [<0.01]
n=>500,p=0.7 | 4.478 [0.25 2.024 [<0.01]

Weibull($,3) n=100,p=0.3 | 4.611 [0.52 1.984 [0.03]

n=500,p=0.3 | 4.662

]
[0.41]
[0.40]
[0.25]
[0.52]
[0.47] | 1.939 [<0.01]

n=100,p=0.7 | 4.593 [0.42]
[0.33]
[0.98]
[0.20]
[0.48]
[0.10]

1.995 [<0.01]

n=500,p=0.7 | 4.559 [0.33] | 1.976 [<0.01]

Normal(6,4) n=100,p=0.3 | 4.145[0.98] | 2.112 [0.05]
n=500,p=0.3 | 4.099 [0.20] | 2.103 [0.02]

n=100,p=0.7 | 4.168 [0.48] | 2.111 [0.03]

n=>500,p=0.7 | 4.091 [0.10] | 2.103 [0.01]
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It can be seen that the value of « is strongly overestimated when the
covariate distribution is exponential or Weibull. Only in case of a normally
distributed covariate, this estimate is near the true value. The mean squared
error is quite high for all three covariate distributions, so it must be con-
cluded that the values of the estimator differ considerately within the 1000
replications. With respect to the parameter (3, the simulation results show
that the estimates are quite accurate and the mean squared errors are small.

One could conclude from Table 4.1 that the estimation results for a nor-
mally distributed covariate are not too bad, but this conclusion is not very
appropriate due to the high mean squared errors for &. Furthermore, the es-
timation results are only stable when the number of observation is very high
(n = 500), which does indicate a poor performance on small data sets. Also,
the percentage of censoring effects the value of the mean squared error, but
the influence seems not to be as high as that of the number of observations,
especially in the case of a normally distributed covariate.

The main disadvantage, though, of the empirical approach is that it does
not provide an estimate for the model error variance 0. In the uncensored
data setting, 62 is calculated from the formula

. RS A
6% = Z(yz —a—fz)°,

n—14%
=1

which has no proper equivalent in the interval censored data setting. The
method of replacing the unobserved values y; and z; by the midpoints of their
observed censoring intervals is generally known to lead to considerable biases
in the estimators and is also not a methodologically correct approach.

4.2 Least squares approach

The least squares method in uncensored regression analysis achieves param-
eter estimation by minimizing the sum of squares

n

Z(yl —a— Bzi)27

=1

that is, the vertical distances between the observed data points and the fitted
line. One could think in applying this method to the interval censored data
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setting by minimizing the distances between the observed data rectangles
and the fitted line. To avoid the definition of such a distance, one could
directly try to minimize

ZE ((yl —a— le)2|zz S [ZLN ZRi]a Yi € [yLia le]) )
=1

which is the expected sum of squares conditioned on the observed data rect-
angles [z, 2r;] X [yL.:,Yr;].- This would be equivalent to minimizing

n ZR; YR;
Z/ / (y — = B2)*hi(z, y)dydz, (%)
i=1 Y ?L; yL;

where h;(z,y) is the joint density of Z and Y truncated into the rectangle
[ZLH ZRi] X [yLw yRi]'

The solution of this equations would require the calculation of the den-
sity h;, which can be achieved with the method of Betensky and Finkelstein
(1999), as well as the mathematical minimization of the given sum with
respect to the parameters a and 3, which could be carried out by a math-
ematical software like MAPLE. For the purpose of running simulations in
order to assess the performance of the estimators, the problem occurrs how
to connect these two steps so that they can be executed consecutively by the
computer without interference from the outside. This problem could not be
solved until now because of two facts: The MAPLE software is too ineffi-
cient to calculate the common density h;, and the C language can not be
used to solve minimization problems. Trying to calculate first h; in C and
then solving the minimization problem in MAPLE fails because it does not
seem to exist a command that automatically starts a MAPLE program from
the C interface. Theoretical calculations of the properties of the parameter
estimates resulting from minimizing (*x) are quite complex and difficult to
interpret.



Chapter 5

Outlook

For the purpose of assessing the goodness of the estimated model 2, a residual
theory should be developed in the future to complete the proposed regression
theory. It is not sufficient to consider an ad-hoc approach like Gémez et al.
(2002) did, because it could be seen from the results of the simulation study
in Chapter 3 that these residuals perform quite unsatisfactorily in most of
the considered data situations. It is rather desirable to extend the concept of
the residual theory given in Part II of this thesis to the case that the response
variable is interval censored as well.
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Appendix A

Derivation of the ML equations
when the errors are normally
distributed

Consider the likelihood function
n o m Y&, n m Vg,
L=TI Y [ s 0wy =TT > e [ flsi. 00,
i=1 j=1 Y, i=1 j=1 Y,

where «a;; equals one if s; € [z1,, 2g,] and zero elsewhere. 0 = (a, 3,07%) is
the parameter vector to be estimated, and f(y|s;,0) is given by

1 1
Flylsy.0) = Z—geap(—5 5y —a = Bs,)°).
Define
L:=[]c0),

where C;(f) is the contribution of the i-th individual to the likelihood L.
Then,

logL = Z logC;(6).

=1
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In order to get the ML-estimators of #, the ML equations are solved:

OlogL

dlogL
(E2) 55 =

dlogL
(E3) 507 = 0.

Consider the quantities a;, b;, ¢;, d; and e; defined as

D iy Qi inR yf(ylss, 0)dy
Ci(0) ’

a; = E(YHZLH ZRi]7 [YLH YRz]) =

YR,
Z;nzl Sj QW fyjl f(yls;, 0)dy

b; = E(ZHZL“ ZRi]a [YLiayRi]) =

C;(0) ’
Sy staiwg [3R f(yls;, 0)dy
i B2 20 2 Wi V) = = ,
STy syoiwy [y uf (yls, 0)dy
d; = B(ZY|[Z,, Zr), [V, Y]) = 22 1 J |
S Ci(0)
Sy cigw; [ R f (ylsj, 0)dy
oo = B(O|(Z1,, Za ), Vi, Vi) = = o)
Then, solving equation (E1) leads to
n 1 m YRi y—a— 53]
(E1) & Z Ci(0) Zaijwj —————f(yls;,0)dy =0
i=1 "\ = YL, g




<:>Zaz ZCZ ZO‘ZJWJ/% (o + Bs;) f(ylsj, 0)dy

] iy Qijw ny f(yls;, 0)dy

@Zaz—az 2(9)

S sjeizw; [y f(yls;, 0)dy

2 Ci(0)
@iai:na—l—ﬁibi@na:iai—ﬁibi
i=1 i=1 i=1 i=1

12 Zb =a — (3b.

i=1

=«

Equally, solving equation (E2) results in

1 s YRi Y — o — BS'
(E2) < az"w‘/ s f(y|ss,0)dy =0
Z:‘Q(Q); i Wi Vi 2 if (yls;, 0)
I Vi
@ 20 Zaijwﬂsa/ (y —a)f(yls;, 0)dy
i=1 ! j=1 L
S S oyt [ fulss )
— QWi 0 S; yls;, y
i=1 Cz(e) j=1 J Vi,
- 1 i YR, n
@) 0 Zaz’jszj/ (y— ) f(yls;, 0)dy = B> ci
i=1 ¢ j=1 Yi, i=1
n 1 m YRi m YRi
= Z Ci(0) Z O‘ijszj/y | yf (yls;, 0)dy — O‘Z ijwisi | f(yls;, 0)dy
=1 ]:1 L; ]:1 L;
=8> ¢
i=1

1 Vg, n n
& 0 Zaijszj/ yf(yls;,0)dy — aZbi = BZCZ-
j Yo i=1 i=1

j=1 i
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@idl—aibz :ﬁicl
i=1 i=1 i=1

o [ —ab
ed—ab=peep=? EO‘,

and replacing « by its estimate & from (E1) results that

— ab

2"

&\
@l

b=

Q\
Q“I

Finally, from equation (E3) one obtains

npo& Yy 1 (y—a—Bs)*\
(E3) & Zz:; 0] ;aijwj f(yls;,0) <@ + By dy =0

Yz,

Yri

: Z Zamw] f(y|8]; Ny —a— st)Zdy

1 1 R;
T2 Z Ci(0) Zaijwj/y fyls;, 0)dy
i=1 j=1 L;

n 1 m /YRi , )
& — W5 fyls;, 0)(y — a — Bsj)°dy = no”.
- Crz(g) ]z:; J ) YLi J J

Noting that (y —a — fs;)* = (y — a)® + 3%s5 — 20s;(y — «), this is equal to

n n

Ya,
i [ =P fls 00y =00t =2 Y283

=1 =1

=1 ~ N\ o Vi
<:>Z wwy/ )Qf(y|sj,9)dy:n02+6220i
=1 Yz

CZ i=1

=1 J

i
n

e / (1 — 200 +0®) fy]s;, Oy = no* + 523 "

=1

MM

& Cz

n

@ZC

Z

R; m YR,
Za”w]/ 2f(y|sj,0)dy—2a2aijwj/y yf(yls;, 0)dy

J=1



+o zamw]/ f(yls;, 0)dy = no® —i—ﬁQZcz
<:>Zez—2a2az+na =no +522

i=1

= Zei — QOzZai + na? —6220i = no?
i—1 i—1 i—1

= 02 = ¢ — 2aa + &* — B’

ol
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Appendix B

Maple program for the
calculation of approximate
confidence intervals

> with(LinearAlgebra):

Specifying the number of observations n and the number of
examinations m

> n:=2; m:=6;
Reading the data
> data:=matrix(9,6,readdata(‘A:\\data.txt‘,9));

Assigning the variables needed in the loglikelihood

\4

ID:=matrix(n,m) ;

for i from 1 to n do for j from 1 to m do
ID[i,j]:=datali,j] end do end do;

for j from 1 to m do w[jl:=datal3,j] end do;
for j from 1 to m do s[jl:=datal4,j] end do;
for i from 1 to n do yl[i]:=datal[5,i] end do;
for i from 1 to n do yr[il:=datal[6,i] end do;
alphahat:=datal7,1];

\4

V V V V V
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> betahat:=datal8,1];
> sigma2hat:=datal9,1];

Definition of the log-likelihood

> i:=’i’; J'::)j);
> for j from 1 to m do
f[j1:=(1/(sqrt(2xPixsigma~2)))*exp(-((y-alpha-beta*s[jl)~2)/
(2xsigma~2)) end do;
> loglike:=
sum(’log(sum(’ID[i, jl*w[jl*int (£[j]1,y=y1[i]..yr[il)’,
’j’=1..6))7,’1i’=1..n);

Calculation of the score function of loglike

> 1i:="17; j:="3’;

> der11l:=diff (loglike,alpha);

> der12:=diff (loglike,beta);

> der13a:=algsubs(sigma~2=V,loglike);
> der13b:=subs(sigma=sqrt (V) ,der13a);
> der13c:=diff (der13b,V);
> der13:=subs(V=sigma~2,der13c);

Calculation of the second derivatives of loglike

der111:=diff(derll,alpha);
der112:=diff(derill,beta) ;
der113a:=algsubs(sigma”2=V,derll);
der113b:=subs(sigma=sqrt (V) ,der113a);
der113c:=diff (der113b,V);
der113:=subs(V=sigma~2,der113c);

der122:=diff (deri12,beta) ;
der123a:=algsubs(sigma~2=V,der12);
der123b:=subs (sigma=sqrt (V) ,der123a);
der123c:=diff (der123b,V);
der123:=subs (V=sigma~2,der123c) ;

VVVVVVVVVYVVYVYVYV

der133a:=algsubs(sigma~2=V,der13);
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> der133b:=subs(sigma=sqrt (V) ,der133a);
> der133c:=diff (der133b,V);
> der133:=subs (V=sigma~2,der133c);

Construction of the Hessian matrix

> matt:=Matrix(1..3,1..3,[[der111,der112,der113],
[der112,der122,der123], [der113,der123,der1331]1);

Calculating the observed information matrix

> alpha:=alphahat;beta:=betahat;sigma:=sqrt(sigma2hat) ;
> evalf(matt);
> fish:=evalf (-1*matt);

Inverting the observed information matrix which is an estimate
for the variance of \hat{alpha}, \hat{beta} and \hat{sigmal}~2

> variance:=MatrixInverse(fish);

Constructing the confidence intervals for the
regression parameters

> alpha:=’alpha’;beta:=’beta’;sigma:=’sigma’;
> CI(alpha):=[alphahat-1.96*sqrt(variancel[1,1])/sqrt(n),
alphahat+1.96*sqrt (variance[1,1])/sqrt(n)];
> CI(beta):=[betahat-1.96*sqrt(variance[2,2])/sqrt(n),
betahat+1.96*sqrt(variance[2,2])/sqrt(n)];
> CI(sigma):=[sigma2hat-1.96*sqrt(variance[3,3])/sqrt(n),
sigma2hat+1.96%sqrt(variance[3,3])/sqrt(n)];
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Appendix C

Derivation of the MLE for the
multiple regression setting

With the notations given in Appendix A, setting the partial derivations of
the likelihood to zero and solving for the parameters, one yields the following
solutions:

For the parameter « it holds that

n

OlogL* iy—a— BT — Bs !
da Zc ZO‘”U}]/ 1 =L F(y|(F,5,); 0)dy = 0

o2

n

1 « /YRi
& W, yf(yl(7s,s5);0)dy
p— Cz(e) Jz:; J ] YLi ( |( ]) )
n 1 m /YRz _),_‘ .
= QW o+ BT + Bas;) [(y|(Ts, 85); 0)dy
ot Ci(e)jz:; 7Y vi, ( 1 2 J) ( |( ]) )
n n 1 m YR
= Zai = TLCM—FZ 0(9) Zaijwj . ﬁll' f(y|(:vz, S] dy—i—BQZb
i=1 i=1 " j=1 L;
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For the parameter 51 it holds that

n

OlogL* PTG i
—a— = C;(0 Z&zywﬂ/ B = le BZS])f(?JKxZaSJ) 0)dy

ap,

o2

=0

n n P n n

54 E TpiG; = Q E Tpi + E B g Tk + B2 E Zpibi,
i=1 i=1 I=1 i=1 i=1
n n n p n

& E Tpili — g T — Po E Tib; = E B 5 T1iThis
i=1 i=1 i=1 =1 i=1

for k=1,...,p.
For the parameter (35 it holds that

OlogL* - Y&, g T; — (oS .
5 Zc Zamwa/ =02 BB =) 15, )00

552 02

For the parameter o? it holds that

8logL - 1 20y — a — g{fl — Bas;)?
o Z% . (‘T.z* o0t

fyl(Zi, 85);0)dy =0

n

1
T‘.QZC Za”wj f (y](Zi, 55); 0)dy

=1 Z



29

n

1 1 <
:T‘Z}Zm;aijwj/

i=1 Y,

Yr

(y—a—FBFi—Bos) 2 (U] (T 50 O)y. (%)

Noting that (y — o — /& — Bes4)? is equivalent to (y — o — B E)? + 3355 —

2528j(y - — 5152), it holds that

() oo B 283 e
=1 =1

m Y&,

1 ,
20 > aiju / (y — a— Bi7)* F(yl(Ti, s;); 0)dy
i=1 "

n n n P n
<:>n02+52§ ci:E ei—2a§ ai—2E BUE Ty
i=1 i=1 i=1 I=1 i=1
p n p n
_9 _ 2 2 2
Q B Zyi +na” + B Ly
=1 i=1 =1 i=1
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Appendix D

Derivation of the MLE when
the errors come from the
exponential family

Setting logL** to zero and solving for the parameters yields the following
maximum likelihood estimates:

With respect to a one gets

OlogL**
do 2 Ci(0)

=1

m Yr. Oh(y;—a—@s;
" (zjl gy [y PUGEE e (n)eaplQ(n)t(y: — o — Bsy)]

| X iy 5 Flalsis0) | QU212 | ay
C;(0)

m Yr. K (g; .
" (zjl iy [~ £(]3;:0)dy

N ; Ci(6)

)

= (F1).

Sy gy [y F (s 0) QU ()] dy
Ci(9)
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With respect to [ one gets

m Yr. i—a—fs;
dlogL” & (zﬂ gy [y P e()eaplQ )ty — o — Bs)]

0p 2 C:(0)

i=1

SO gy [y f (il 0) | Q) 20| ay
: 0

- Z Ci(0)

=1

Ya, sih'(ei
- (Z;nl Qi Wy fY:l _SJh(g(S)f(yi|3j§ 0)dy

Yo 0w fy f(yiSj;9)[Q(77)5jt'(€i)]dy> _ (F2).

Ci(0)

With respect to i one gets

OlogL**
on Z C;(0)

=1

" (Z}f”l W f;LR h(yi — a — Bs;)c' (n)exp[Q(n)t(y; — o — Bs;)]

D i Qijw; fYYLR fyilss; 0) [Q (Mt(yi — o — Bsy) dy
i Ci(0)

m Yr. c
B zn: > igw; [y = 8 £ (4] 5; 0)dy
Ci(0)

= (F3).

Sy iy [ (ilsy: 0)[Q (n)t(ei)]dy
* 0
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Setting these equations to zero and solving for the parameters one obtains
the maximum likelihood equations

i=1 i=1

> 2hi=—Q) Y 2t
~ )N,
;nc(n) =—Q (n);t“
where
ti=E (t(g)HyLw yRi]; [xLH sz]) )
t; = E( I(€)|[yLi7yRi]; [xLiﬂxRi])a

N

I 6)|[yLi7 yRi]; [xLiaxRi]) )

b
b= B (b))

ot = 8 25 o on] )

=
—

(O}
~—
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Appendix E

Derivation of the MLE when
the errors come from the
Weibull distribution

Setting [*** to zero and solving for the parameters yields the following solu-
tions:
For the parameters & it holds that

o 1y e 5 B-1 8 8
S = ; . (0) ;aijwj /YL. Bs; exp (—asj>—ozﬁsj exp (—asj) s;dy
> g S [ s 0) (157 )y
=2 i 2 YW yilsj;0) | — —s; | dy =0
— Cl(e) = J ] Vi, J o J

n n
@g:Zfi = a=n/Y f
=1 =1

For the parameters B it holds that

n

al*** 1 m Y] i
= s [, (o s =05 ) e (as))
i=1 j=1 Li

+a53?71 exp (—as?) (—aﬁsé.#l) dy

1 u Yr; 1 ’
:ZmZazng‘/y f(yils;; 0) <E+(5_1)Sj_a58?1> dy =0
Jj=1 L;

=1

65



66
@%+(6—1)Zbi:aﬁzgi
=1 i=1

@%4-5251'—&5291-:2@.
=1 i=1 i=1

In these expressions, the following conditional expected values are used:

1 m Yr,
C-—@?) Zaijwj/ Sjﬁ'f(yi|8j; 0)dy = E(Z°|[yr., yr.l, [21., 2r]) = fi
1 le

Y,

and

1 n Yr, B )
Ci(0) Zaijwj/ Sf‘ 1f(yi|8j;9)dy = B(Z° yp, ynl, (20, 20]) = gi
! j=1 Y,
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Introduction

The second part of this thesis deals with residual analysis in the context
of linear regression models with interval censored data. Residual analysis is
the general class of techniques for detecting problems in regression models,
based on the fact that residuals carry important information concerning the
appropriateness of the assumptions made in linear regression analysis.

Many of today’s common methods of residual analysis were developed in
the early 1960s in works by F. Anscombe, J.W. Tukey, G.E.P. Box and D.R
Cox. During the late 1970s interest in residual analysis was renewed by the
development of methods for assessing the influence of individual observations
in model estimation. Residual based methods for detecting model deficien-
cies or influential observations include informal graphics to display general
features of the residuals as well as formal tests to detect specific departures
from underlying model assumptions.

In uncensored regression analysis, the residuals are defined as the dif-
ference between the observed and the fitted response, and a plot of these
quantities against the covariate or the fitted response values is a standard
tool for the evaluation of the fitted model. An overview of the properties of
uncensored residuals and the different ways of using them for model evalua-
tion is given in Chapter 1.1.

When a linear model incorporates censored data, the difficulty of defining
appropriate residuals occurs. Since the realizations of the censored variables
are not directly observable, one can not calculate the difference between the
observed and the fitted response. One approach to solve this problem is given
in Hillis (1995), who developed a residual theory for linear models with right
censored data, which is presented in Chapter 1.2. A definition of residuals
in the context of regression analysis with interval censored covariates was
proposed by Gémez et al. (2002) and is summarized in Chapter 1.3.
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The method of Gémez et al. (2002) is the only one existing for linear mod-
els with interval censored data, and their performance has not been investi-
gated yet. For this reason, Chapter 2 of this thesis develops a new residual
theory for regression models incorporating interval censored covariates. It is
shown that the residuals resulting from this context are interval censored as
well, which leads to the proposal of determining these unobserved residuals
through their distribution function inside the respective censoring intervals.
The performance of the so-defined residuals is investigated in Chapter 3 by
means of a simulation study. The study includes the residuals defined by
Goémez et al. (2002) as well as residuals resulting from taking the midpoints
of the covariate intervals as the observed covariate values. The results show
that the residuals proposed in this thesis are superior to the other two. In
Chapter 4, an application of the new method to a real data set is given.
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Chapter 1

Residual analysis in regression
models

This chapter gives an overview of some of the existing theories for residual
analysis in linear regression models. The first section introduces residual
analysis for uncensored data: important properties of uncensored residuals
are presented along with the most common devices for using them in model
evaluation. The second section presents right censored residuals as intro-
duced by Hillis (1995). This concept will be the basis for the construction of
new residuals in context with interval censored data as proposed in Chapter
2. Finally, a residual theory for linear models with interval censored covari-
ates as proposed by Gémez et al. (2002) is presented.

1.1 Uncensored residuals

In the uncensored data situation, one considers the linear model

yi = a+0z+e;, i=1,...,n, model 1
where the pair (y;, z;) for the response variable and the covariate is observed
directly. The model errors g; are usually assumed to be independent and
identically distributed and to have a normal distribution with mean zero and

constant variance. In this context, the so called least squares estimates &
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and B for the unknown regression parameters o and [ are defined as

1 < 1< . i — 2Ty S
&:—Zyi—ﬁ—z,m and = ZZ*I(Z 5 n?ZIny 2151 .
L N3 D1 Tf n (Xim 2i)

The fitted values y; are §; = &+ Bzi, and the least squares residuals é; result
from the difference between the i-th observed response value and the corre-
sponding fitted value: é; = y; — y;. That is, one can think of the residuals
as the observed errors if the model is correct, or the quantity the regression
equation has not been able to explain.

The least squares residuals have some important properties which are
summarized in the following proposition (Montgomery and Peck, 1982, p.16f):

Proposition 1
Under the assumptions of the model 1, the least squares residuals have the
following properties:

Sometimes it is useful to work with the standardized residuals cZZ =

They have zero mean.

Their approximate average variance is ﬁ »_,(é;—é)*. This quantity
is also known as the mean squared error (MSE).

The residuals ar(q r}o)t independent and the correlation between é; and
s o cov(é;,e; S

€ 1S pjj NSO ,7=1,...,n.

The sum of the residuals in any regression model that contains an
intercept is zero: Y . & = 0.

The sum of the residuals weighted by the corresponding value of the
regressor variable always equals zero: > zé; = 0.

The sum of the residuals weighted by the corresponding fitted value
always equals zero: > | y;¢; = 0.

é;
MSE

which have zero mean and approximately unit variance.

Another type of residuals is the so called studentized residual. They re-
sult from standardizing each residual with an estimate s(; of the residuals’
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standard deviation independent of that residual: s(; is calculated by ap-
plying the formula of the MSE but leaving out the i-th observation. The

studentized residuals are then defined as 7; = s’% In a regression model

where p parameters are estimated, each studentized residual is distributed
as Student’s t with n — p — 1 degrees of freedom when normality of the error
term ¢ holds. Like the standardized and ordinary residuals, the studentized
residuals are not independent of each other (Rawlings, 1988, p.249f).

1.2 Regression diagnostics with uncensored
residuals

Residuals can generally be used to assess both the validity of the data and
how well the assumptions of the model are satisfied. The main focus here
will be on the latter issue, an extensive review of methods for the detection
of influential observations is given in Cook and Weisberg (1982).

Usually, the following assumptions are to be checked after the model is
fitted to the data:

Distribution

Most analytical methods for fitting regression models assume some paramet-
ric distribution of the dependent variable, in most cases the normal distribu-
tion. This distribution is usually determined via the model errors, and the
residuals are considered to be able to reflect it. Since it is known that an
incorrect specification of the error distribution leads to not efficient parame-
ter estimates and invalid inferential statements, it is important to check the
assumed distribution.

Fit of the relationship

Residuals can also be used to assess whether the assumed relationship be-
tween the dependent and the independent variable adequately fits the data.
For example, one may check whether or not the mean of the dependent vari-
able is a linear function of a given independent variable.
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Error variance
Furthermore, residual diagnostics can be used to assess whether or not the
variance of the model errors is constant (homoscedastic).

Available methods for studying these assumptions via residuals include
both graphical and nongraphical procedures. The most common ways for
examining residuals for the validation of the estimated model is using graph-
ical devices. The principal ways of plotting residuals are overall plots, plots
against the fitted values and plots against the covariate:

The overall plot

If the n residuals are plotted overall and the fitted model is correct, then one
should obtain n observations from a normal distribution with mean zero. To
prove if the residuals contradict this idea one can construct a normal plot
where the observations should fall approximately on a straight line. When
the number of residuals is very large, a histogram can be used which should
then have the form of a Gauss curve with mean zero. (Draper and Smith
1981, p.142f).

Plot of the residuals versus the fitted values

A plot of the residuals é; versus the corresponding fitted values g; is useful
for detecting several common types of model inadequacies. It is important,
though, not to use the observed values y; in the plot, because the é; and the
y; are usually correlated while the é; and the g; are uncorrelated (for a proof
see Draper and Smith, 1981, p.147f).

If the residual plot resembles data points which are distributed in the same
way above and below the zero-axis, that is, one can include the points in a
horizontal band, then there are no obvious model defects.

In contrast, if the plotted positive residuals get larger as the y; get larger,
and the plotted negative residuals get more negative as the ; get larger
(that is, it appears an outward opening funnel pattern), then this indicates
that the variance of the errors is not constant but an increasing function of
Y. An inward-opening funnel would mean that the variance increases as Y
decreases. The usual approach to deal with inequality of the variance is to



75

apply a suitable transformation to either the regressor or the response vari-
able.

On the other hand, a curved pattern of the plotted residuals would indi-
cate nonlinearity. This means that other regressor variables, for example a
squared term, are needed to be included in the model.

A plot of the residuals versus the fitted values g; may also reveal one or more
unusually large residuals. These points are potential outliers. But large
residuals occurring at the extreme ¢;-values can also indicate that either the
variance is not constant or the true relationship between y and z is not linear.
These possibilities should be investigated before the points are considered as
outliers.

Plot of the residuals versus an independent variable

Alternatively, one can construct a plot of the residuals against the corre-
sponding values of a regressor variable. This will reveal wrong model spec-
ifications in the same way as described for the plot of the residuals against
the fitted values.

Formal tests based on residuals

Formal test procedures for regression diagnostics are also available. Tests for
normality based on uncensored residuals usually make use of the score test or
the Lagrange multiplier test. See for example Jarque and Bera (1987) who
also provide a comparison study between various of these tests. A Monte
Carlo study comparing the performance of procedures like the Kolmogorov-
Smirnov or Chi-square test when applied to regression residuals is given in
Huang and Bolch (1974). Diagnostic tests of the distributional shape other
than the normal are given for example in Spiegelhalter (1983). Though, a
common feature of all the existing tests is that they require independent ob-
servations to be tested on. Therefore, one has to assure that the residuals
one wishes to apply to these tests are independent.

Diagnostic tests for homoscedasticity in uncensored regression analysis
are manifold. Goldfeld and Quandt (1965) distinguished between construc-
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tive and nonconstructive tests: constructive testing procedures are designed
to test for and at the same time estimate the specific form of heteroscedastic-
ity. This means that in case of the rejection of homoscedasticity, an estimate
of the covariance matrix is directly available. See for example Rutemiller
and Bowers (1968), Glejser (1969) or White (1980). Nonconstructive pro-
cedures as those of Goldfeld and Quandt (1965), Theil (1971) and Harrison
and McCabe (1979) are designed to establish the absence or presence of het-
eroscedasticity without regard to subsequent estimation. Also, different types
of heteroscedasticity can be specified, for example that the error variance is
a function of the independent variable or that it depends on the values of
the dependent variable. Most of the test procedures for heteroscedasticity
are parametric and assume a normal distribution of the residuals. Those not
assuming an underlying parametric distribution are rather complicated to
compute or rely on weight functions and other parameters that have to be
specified according to somewhat difficult patterns.

Test diagnostics for the linear relationship between uncensored variables
in regression models do not exist in the current literature.

1.3 Residuals for right censored data

Hillis (1995) proposed residuals for linear models when the response variable
is not exactly observed but censored to the right. He considers the model

t; = Bzit+e;,, i=1,...,n model 2

where the g; are independently and identically distributed with distribution
function F', t; is the survival time of the i-th individual, and z; is the value
of the corresponding covariate. The censoring time for ¢; is denoted as ¢;
with the assumption that the distribution of the ¢; does not depend on the
value of z; or ¢;. The observed data for model 2 is the triple (y;, 2;, ;), where
y; = min(t;, ¢;) and 6; = I(t; < ¢;) with I the indicator function.

For the development of the residuals in this context, the author defines a
sequence of random variables

8? = 52'62' + (1 — 6Z)U27
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where each U; comes from the distribution function F; defined as

7 4y 7 > x 7 Ci ’Zi/é F(x)—F ci—zi[)’
(]—)F(CE—Ziﬁ) ) T > Ci — ZZ. 6

This means that ¢} equals ¢; for an uncensored observation, and for a cen-
sored observation ¢ is equal to a randomly generated observation from the
conditional distribution of ¢; given that ¢; > ¢; — 2;.

The author shows that the €7 have the same joint distribution as the ¢;
and suggests to replace 5 and F with their estimates for defining the residuals
of model 2:

& = 6;6; + (1= 6,)i,

where the 4; are randomly generated observations from the distribution E;
given by

F( ) { 0 v <6 — ZZB
i\T) = Fk)_Flei-zf) . R
lfFA'(cifziﬁA) T > G ZZB

In this expression F is the product-limit estimate based on the censored and
uncensored residuals é; = y; — z;5, and S is the Buckley-James estimate for
the parameter [ (see Buckley and James, 1979).

If the model assumptions are correct, plots of the ¢ versus the indepen-
dent variable or the fitted values exhibit a random scatter.

1.4 Residuals in models with an interval cen-
sored covariate

For models where the response variable Y is continuous and exactly observed
and the covariate Z is discrete and interval censored, Gémez et al. (2002)

proposed residuals to graphically assess the fit of the model. The authors
consider the model

Yi = a+ Bz + ¢, 1=1,...,n



78

where the y; are the exactly observed response values and z; is the realization
of the interval censored covariate Z; for which only the corresponding cen-
soring intervals [zr,, zg,] can be observed. The model errors ¢; are assumed
to be normally distributed and independent of Z;.

For the estimation of the regression parameters, the authors propose an
algorithm that simultaneously maximizes the data likelihood and estimates
the distribution function of the covariate. For details see Chapter 1.3 of the
first part of this thesis.

The authors define the residuals of this context to be r; =y, — & — le
Because of the fact that the value of z; is not directly observed but only the
corresponding censoring interval [z, zg,], they propose to replace it by the
conditional expected value z; = Ey, (Z|zr,, 2r,). Here, Wr is the estimated
distribution function of the covariate that results from applying Turnbull’s
(1976) method on the observed covariate intervals (for details on the method
of Turnbull see Chapter 1.2 of the first part of this thesis). So, the model
residuals proposed by the authors are 7; = y; — & — Béz

The authors show that E(7;) = E(r;) = 0, so that a plot of 7; versus 2;
should show a random scatter around zero if the regression model is correctly
specified.



Chapter 2

New residuals for models with
interval censored covariates

This chapter presents a new methodology for residual analysis in linear mod-
els that incorporate an interval censored covariate. It is based on the as-
sumption of normality for the model errors and the fact that they can not be
observed directly but only their respective censoring intervals, as explained
in the following.

The linear regression model considered here is given by
Yi=a+07Z;+¢;, i=1,...,n model 3

where Y; is the continuous response variable with realizations y;, Z; is the
discrete, interval censored covariate with realizations [zz,, 2g,]|, and the model
errors ¢; have distribution function F = N (0, 0?) and are independent of the
Z;. An extension of this situation to a more general setting is when allowing
both interval censored and exactly observed data for the covariate. This case
will be considered here, and the observed data then consists of the triple
(vi, [2L;» 2R;], 0i), where ¢; equals zero if the covariate for the i-th individual
is interval censored, and ¢; equals one if the covariate is exactly observed. In
the latter case the interval [zy,, zg,] becomes the point {z;}.

The aim is to assess the goodness of the fitted model 3 using residuals.
The regression parameters o, 8 and o2 will be estimated by applying the

method of Gémez et al. (2002) described in Chapter 1.3 of the first part of
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this thesis.

Consider model 3 for an individual ¢ with exactly observed covariate value
z;. This case resembles the situation in the simple linear model with uncen-
sored data where the respective model errors ¢; are given by

g, =y —a— [z (2.1)

The situation changes when the covariate for individual ¢ is interval cen-
sored, that is, only the interval [2z,, zg,] is observed. Then, it follows from
model 3 that the resulting model errors are interval censored as well, and are
included by the error intervals

lyi —a— Bzr,yi —a— Pzg,] if <0 and (2.2)

In the following only the case 5 > 0 will be considered.

For illustrative purposes, and in order to be able to distinguish clearly
between those residuals resulting from exact and those coming from interval
censored covariate observations, we introduce the following notation: Those
model errors coming from exactly observed data as given in equation (2.1)
will be denoted as ;. The model errors coming from interval censored data
will be called 7;.

When we deal with an interval censored Z;, the resulting model error n;
is not known directly but we observe only the corresponding error intervals
in equations (2.2) and (2.3) which are known to contain 7; with probability
one. In order to obtain some more information about where 7; may be
located inside this error interval, one can look at its distribution function.
The distribution of the n; is determined by the assumption that the model
errors have a N (0, 0?)-distribution and the above stated fact that they are
interval censored. This leads to the conclusion that the n; have a N (0, 0?)-
distribution truncated in the error interval limits A; and B; as illustrated in
Figure 2.1.
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Figure 2.1: distribution of the interval censored model errors
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Its formula is given by

0 or < Az
Gi(w) = P(m < zlm € [A;, B)) = 4 aiaiaiis © w €[4, B , (2.4)

where @ is the distribution function of the standard normal distribution.

From this follows that the model errors accommodating simultaneously
for exact and interval censored covariate observations in model 3 are given

by:
e = 0igi + (1= 6;)mi, (2.5)
with €7 equal to €; = y; — o — [z; if the i-th covariate is not censored, and &}

equal to 7; coming from the conditional distribution G; defined above when
the covariate is interval censored.

Then, the residuals corresponding to the model errors defined in (2.5)
result to

e; = d0ie; + (1 — ;) (2.6)
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where @, B and 62 are the estimates for the model parameters resulting from
the procedure of Gémez et al. (2002). This means that & equals é; =
Yi —Q — Bzz if the i-th covariate is not censored, and for an interval censored
covariate, €] equals 7); defined as the expected value of the distribution Gi
given by

0 < Az
A ®(z/5)—P(A; )6 O >
Gi(z) = m . zeld, B, (2.7)
1 x> B;
where [/All,ffz] = [y; — & — BzRi,yi — & — Ble] are the estimated residual

intervals.

The value of the residual 7);, where 7); is the mean of a N (0, 6?)-distribution
truncated in A; and B;, can be calculated by using standard results of prob-
ability theory (see for example Hartung et al., 1993):

- _ (Aif0) — p(Bif5) (2.8)
" o(Bi)6) - ®(Af5)

where ¢ is the density function of the standard normal distribution.

2.1 Theoretical properties of the residuals

It is usually of interest to calculate the expected value and the variance of the
proposed estimates. As can be seen in the formulas of the previous section,
the proposed estimate for the residuals of model 3 result quite complicate and
straightforward computations of the mean and the variance of these estimates
are not possible. Nevertheless, some approximate results will be given below.

Consider the estimated residual vector & = (é7,...,é}) where € equals
7; when individual 7 has an interval censored covariate, and €} equals é¢; when
the covariate of individual 7 is exactly observed. The expected value of the
residual vector &* is therefore composed of the expected value of the vector
é of all uncensored residuals and the expected value of the vector 7 of all
residuals coming from an interval censored covariate.
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Proposition 1

The expected value of the estimated residual vector €, which has entry é;
at position i for all individuals © with exactly observed covariate, and zero
otherwise, is given by

~

E(é) = o — E(&) + fz — E(P)z,
where z is the vector of all exactly observed covariate values.

Proof

= E(a+ Bz +¢) — E(&) — E(B)z = a + fz — E(&) — E(B)z,
where y and ¢ is the vector of the response values and model errors, respec-
tively, of those individuals who have an exactly observed covariate. 0]

Proposition 2

The expected value of the estimated residual vector 7, which has entry n; at
position i for all individuals i with an interval censored covariate, and zero
otherwise, can be approximated by

_ #AJ0) = ¢(BJo)
3(B/0) — B(A/0)

20)

under the assumption that the parameter estimates for a, B and o? are un-
biased.

Proof
E() = F p(A/6) — (B/5) 5 ~ E(p(A/5)) — E(p(B/5)) E(5)
! ®(B/5) — ®(A/6) E(®(B/5)) — E(®(A/6)) .

If &, $ and &% are unbiased estimates, this expression is equivalent to

p(Afo)—p(B/o)
B(BJo) —b(Ajo) * " -




84

Summarizing above two terms, the approximated expected value of the resid-
ual vector é* is given by

o(A/7) —0(BJo) _
3(B/7) - 0(A/0) 7

where the components J; of 6 equal one when the covariate is exactly ob-
served, and zero when it is interval censored.

(&) =6 (a— B(@) +2(8 - E(3)) + (1-9)

In the uncensored case, the residuals are known for the property of having
mean zero. The expression above for the approximated expected value for
the interval censored residuals é* is zero only if the model parameters &, B
and 62 are unbiased and the A; and B; are symmetric around zero.

The computations of the variance of &* is also divided into one part re-
garding the residual vector & and another part concerned with the residual
vector 7).

Proposition 3

The variance of the estimated residual vector &, which has entry é; at position
1 for all individuals © with exactly observed covariate, and zero otherwise, is
given by

Var(e) = Var(e) + Var(a — fz).

Proof
Var(e) = Var(y — & — fz) = Var(a + fz + ¢ — & — fz)

= Var(e)+Var(a—pz). 0O

Proposition 4

The variance of the estimated residual vector 7}, which has entry n; at position
1 for all individuals © with an interval censored covariate, and zero otherwise,
can be approximated by

Var(n) ~ 52 ¥ p(Va (g)

/6
®(Var(B)/5?
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Here, A and B is the vector with entry A; and Bi, respectively, at position t
for individuals © with an interval censored covariate, and zero otherwise.

Proof
Var() = Var (%0 A/o) ~ o(B/s &) v ( A/o) - goaé/&))
®(B/5) — ®(A/o B/6) — d(A/5)
~ 52 cp(Var(%/A —go(Var(: )
®(Var(B/o)) — ®(Var(A/o)

The value of this expression depends on the variance of the interval cen-
sored covariate and the estimated model parameters as well as on the value of
the observed covariate interval as can be seen in the following two formulas:

Var(A) = Var(y — & — fzr) = Var(a + BZ + ¢ — & — fzg) =
= 8V ar(Z) + o + Var(a — fzd)
and

Var(B) = 82Var(Z) + o + Var(a — fz).

Consistency of the residual distribution function

The residuals 7 were defined as the mean of the truncated residual distri-
bution function G. In the following, it will be shown that G is a consistent
estimate of the truncated error distribution G.

Proposition 5

It holds that 6% resulting from the estimation procedure of Gémez et al. (2002)
is an consistent estimate of the true error variance o>.
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Proof

As explained in Chapter 1.3 of the first part of this thesis, the estimation pro-
cedure for o? consists of two steps: the estimation of the unknown covariate
distribution via a self-consistent algorithm and the maximization of the re-
sulting likelihood function. Yu et al. (1989) proved the strong consistency of
the generalized maximum likelihood estimate resulting from a self-consistent
procedure. Thus, the estimated covariate distribution resulting from the first
step is a consistent estimate for the true covariate distribution.

In the second step, this consistent estimate is used when deriving the for-
mulas for the maximum likelihood estimate of o2. So, it can be said that, for
n large, this estimate is equivalent to the 'true’ maximum likelihood estimate
which would result from using the true covariate distribution in the likeli-
hood instead of the estimated one. And as commonly known, the maximum
likelihood estimator is a consistent estimate for the true parameter under
consideration (a proof is given for example in Wald, 1949).

Proposition 6 X
The estimated error distribution function F' = N(0,6?) is a consistent esti-
mate of the true error distribution function F = N(0,0?).

Proof

F'is a simple plug-in estimate obtained by replacing the unknown variance o2
of F' by an estimate. As shown in Proposition 5, this estimate is consistent.
Bickel and Fan (1996) showed that in density estimation, plug-in estimates
are consistent when the estimator used to substitute the unknown parameter
is consistent itself.

With this result and the fact that G is a continuous function of F, the
consistency of G follows straightforwardly.



Chapter 3

Simulations

In order to find out whether the newly proposed residuals can be used to
check the underlying assumptions of the model, it will be examined if they
reflect the normal distribution of the model errors and if they are sensitive
to deviations from the model assumptions. For this purpose, several simu-
lation studies are conducted which include the newly proposed residuals é*
as well as three other types of residuals: The ordinary least squares (OLS)
residuals é, the residuals é,,;; resulting from taking the midpoints of the in-
tervals [z, zg] as the observed values for the covariate, and the residuals é;,,
proposed by Gémez et al. (2002) defined in Chapter 1.3:

The four types of residuals involved in the simulation study are

e the least squares residuals: é; = y; — ays — Bis2i,

. . . ~ ZL.—I—ZR.
e the midpoint residuals: €niq, = ¥i — s — BisZmid; » Where 2,4, = —5—,

e the residuals following Gémez et al. (2002): ép,p, = v; — & — leupia
where 2, = EWT(Z ETPET R

e the newly proposed residuals: éf = §;6; + (1 — 6;)7; with é; as defined

L p(Ai)6)—p(Bi]5)
above and 1; = 45 = A /a)
The behavior of these residuals is studied under different data scenarios in-

cluding various covariate distributions, high and low percentages of censoring
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in the data, and different number of observations. A summary is given in
Table 3.1.

Table 3.1: Scenarios for the simulation study
number of observations | 200 and 500
covariate distributions | Exp(z), Weib(s, 5), N(6,4)
percentage of censoring | 0.3 and 0.7

value for « 4
values for 2 and 5
value for o2 1

The application of test procedures for normality mentioned in Chapter
1 requires independent observations. But neither the OLS residuals nor the
three other residuals to be examined are independent. Thus, for checking
the normality of the residuals, the measures skewness and kurtosis are used.
It is known that the value for the skewness is zero for symmetric data distri-
butions. The more negative (positive) this value is, the more skewed to the
left (right) is the data distribution. The kurtosis is a measure for unimodal
distributions and compares the data distribution’s absolute maximum with
that of the density of a normal distribution. A value bigger (smaller) than
zero indicates that the data’s absolute maximum is bigger (smaller) than
that of the normal distribution. This means that the theoretic distribution
of the underlying population is not normal if the values for the skewness and
the kurtosis differ substantially from zero. The formulas for the calculation
of the skewness S and the kurtosis K of n observations z;, 2 = 1,...,n, are
(Hartung et al., 1993, p.48f):

L e S ()
JES =) G i (o = 2

n =1

S = — 3.

When checking the model assumptions of linearity and constant error vari-
ance, residual plots will be used instead of formal test procedures for the
same reason as mentioned in the context with normality.

The simulations are carried out by the computer program residuals.cpp
which can be found on the floppy disc. It includes the following steps: First,
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the values z; for the covariate are generated from an exponential, Weibull
or normal distribution. The model errors ¢; are simulated from a N(0,0?)
distribution. The values for the true model parameters o, 3 and o? are
fixed, and from these and the two previously generated variables one can
calculate the values y; of the response variable via. The estimators &;, and
st for the model parameters of the uncensored data are determined via the
least squares method, and the resulting uncensored residuals é; can then be
calculated straightforwardly. The covariate intervals [zr, zr| are generated
using the following scheme: Depending on the covariate distribution, there
is a certain number of values j, 7 = 1,...,k, which can be assigned to the
covariate. An indicator variable ¢;; determines with a given probability p if
the covariate for individual 7 is observed at value j or not. Then, one looks
at each value z; and goes back to the nearest observed value j and takes
it as the value for z7,. Similarly, zg, is that observed value j which is the
first after z;. For the midpoint residuals é,,;4,, one takes the center 2,4, of
each covariate interval [zr,, zg,] and calculates €4, = y; — Qus — Blszmidi-
For the residuals €, defined by Gémez et al. (2002), one needs to apply
their algorithm in order to estimate the parameters & and B The ¢, are
then calculated using the formula é;,,, = y; — & — lewi, where 2, is the
expected value of Z under the covariate distribution resulting from applying
Turnbull’s algorithm to the intervals [zy, zg]. Finally, our newly proposed
residuals ¢ are calculated via formula 2.6 in Chapter 2.

The following flow-charts illustrate the simulation process of the program
residuals.cpp. The steps of the program are written inside the boxes and
the arrows indicate which step enters in the calculation of another step. The
first flow-chart represents that part of the program where the uncensored
residuals are generated, and the second flow-chart describes the simulation
process of the three types of residuals resulting from the data of the interval
censored covariate. As most calculations are executed by procedures within
the program, their names are written outside the corresponding box, which
will make it easier to find one’s way when looking at the program code.
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Other procedures used in this program are listet below, together with a short
description of their usage:

FileOpen: opens all files needed for reading and writing.

Spalloc: allocates memory for the vectors and matrices.

ran2: generates random uniform variates.

probnormal: calculates for any given value the value of the N(0,0?) distri-
bution function.

schiefe: calculates the skewness of a given data set.

kurto: calculates the kurtosis of a given data set.

sign: determines the sign of a given expression.

Turnbulls1: calculates the distribution function of an interval censored vari-
able using the method proposed by Turnbull (1976).

The performance of the program residuals.cpp with respect to speed and
convergence is highly satisfying. Running it on a 400 megahertz Pentium
IT processor with 128 MB RAM main memory using the SUSE LINUX 7.1
operating system yielded the values of the four types of residuals within
seconds regardless of the number of observations and percentage of censoring.

Simulation theory

The simulation study involves the generation of data coming from different
statistical distributions. The theory applied for the generation of the used
distributions is given in the following (for references see Box and Miiller,
1958, or Morgan, 1984).

1. Uniform distribution
For the generation of a Uniform(0,1) random variable, a Congruential
Pseudo-Random Number Generator is used. By applying the recursion
formula x,,_y = ax, +b mod m with seed xy and a, b, m given numbers,
a sequence of integers will be obtained, each of which lies between 0
and m —1. An approximation to Uniform(0,1) random variables u; can
then be achieved by setting u; = x;/m.

2. Ezponential and Weibull distribution
As the Exponential and Weibull distributions are continuous, one can
make use of the Inversion Method to generate their distribution func-
tions. Suppose one wishes to simulate a continuous random variable X
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3.1

with distribution function F'(z) = P(X < z), and suppose further that
the inverse function F~!(u) is well-defined for v € [0,1]. Then, it is
well known that if U is a (0, 1)-Uniform random variable, X = F~1(U)
has the required distribution.

. Normal distribution

For the simulation of the Normal distribution, the Polar Marsagliar
Method is applied: If U is a Uniform(0,1) random variable, then V' =
2U — 1 is a Uniform(-1,1) random variable. By selecting two indepen-
dent Uniform(-1,1) random variables V; and V3, a random point in the
square [—1,1] x [—1,1] can be specified which has polar coordinates
(R,©) given by R? = V2 + Vi and tan(©) = Va/Vi. The repeated
selection of such points provides a random scatter of points inside this
square, and rejection of points outside the unit-circle produces a uni-
form random scatter of points within this circle. For any of these points,
the polar coordinates R and © are independent random variables, ©
is a Uniform(0,27) random variable and R? is a Uniform(0,1) random
variable. One can write

sin(©) = L cos(©) = Vi

TRV NizEa
Eventually, a pair of independent N (0, 1)-variables is obtained by defin-
ing M, and M, as

5 Vs 5 Vi
M, =/ —2log(R2) ——2—, M, =/ —2log(R2) ————.
VTR T MV g

Checking for normality

Tables 3.2 to 3.5 show the simulation results for the skewness and kurtosis
of each of the four types of residuals. For each scenario, median and mean
values [standard deviation] are calculated using 1000 replicates.

The uncensored residuals é (Table 3.2) resemble the normal distribution

of the model errors satisfactorily in each of the studied scenarios. Their me-
dian and mean values are about the same and always around zero. It can be
noticed that the standard deviation of the skewness and kurtosis for n = 100
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is two fold that for n = 500. This means that the residuals fit better to the
normal distribution for large n than for small n. This phenomenon occurs
with all four types of residuals.

The newly proposed residuals é* (Table 3.3) have a symmetric distribu-
tion for those scenarios involving a low percentage of censoring (p = 0.7).
Otherwise their distribution seems to be skewed to the right. The values
for the kurtosis are quite large at a high percentage of censoring, but also
those for a low censoring level are too big for possibly coming from a normal
distribution.

The distribution of the residuals é,,;; coming from the covariate midpoints
(Table 3.4) seems to be symmetric only in the case of a Weibull-distributed
covariate, but then the kurtosis is substantially above zero and therefore not
similar to that of the corresponding normal distribution. In all other scenar-
ios the values for the skewness and kurtosis differ substantially from zero.

The distribution of the residuals é,,, (Table 3.5) is even less normal than
the one of the é,,;4. They perform best within some scenarios for the Weibull
distribution but as in the case of the é,,;4 the kurtosis differs substantially
from zero.

In summary, the results of the simulation study show that of the three
types of residuals coming from interval censored data, the newly proposed
residuals é* perform best.

3.2 The residuals when the model is correctly
specified

Residual plots will be used to examine whether the four types of residuals
can be applied to validate the assumption of linearity. For that purpose it
must be investigated first how the residuals behave when there are no model
misspecifications. Therefore, residual plots are simulated for each residual
type under the assumptions of model 3 in Chapter 2. For each of the 24
data scenarios, the simulated residuals are plotted versus the corresponding
fitted values as shown in Appendix A. The first plot is always the one coming
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Table 3.2: Skewness and kurtosis for the least squares residuals é
Skewness Kurtosis
Median | Mean [Std] | Median | Mean [Std]
Exponential(;)
n=100,p=0.3,4 =2 | -0.044 -0.042 [0.23] -0.009 0.055 [0.45]
n=500,p=0.3,8 = 2 0.004 0.004 [0.11] -0.010 0.013 [0.22]
n=100,p=0.7,0 =2 | -0.031 -0.029 [0.23] 0.006 0.078 [0.46]
n=>500,p=0.7,5 = 2 0.003 0.008 [0.11] -0.001 0.010 [0.21]
n=100,p=0.3,6 =5 | -0.035 -0.037 [0.24] -0.031 0.052 [0.46]
n=>500,p=0.3,5 =5 0.006 0.007 [0.11] -0.009 0.003 [0.22]
n=100,p=0.7,6 =5 | -0.043 -0.037 [0.23] 0.008 0.061 [0.44]
n=500,p=0.7,8 =5 0.008 0.007 [0.11] -0.012 0.012 [0.22]
Weibull(,3
n=100,p=0.3,6 =2 | -0.038 -0.034 [0.22] -0.017 0.057 [0.44]
n=>500,p=0.3,5 = 2 0.008 0.006 [0.11] -0.015 0.005 [0.21]
n=100,p=0.7,0 =2 | -0.021 -0.027 [0.23] -0.032 0.056 [0.45]
n=>500,p=0.7,8 = 2 0.004 0.006 [0.11] 0.012 0.021 [0.21]
n=100,p=0.3,6 =5 | -0.041 -0.042 [0.23] -0.008 0.072 [0.45]
n=500,p=0.3,8 =5 0.005 0.006 [0.11] -0.002 0.022 [0.22]
n=100,p=0.7,6 =5 | -0.016 -0.024 [0.22] -0.003 0.065 [0.43]
n=>500,p=0.7,56 =5 0.009 0.010 [0.11] -0.007 0.016 [0.23]
Normal(6,4)
n=100,p=0.3,8 = 2 0.009 0.012 [0.24] -0.039 0.038 [0.46]
n=500,p=0.3,8 = 2 0.007 0.011 [0.11] -0.006 0.010 [0.22]
n=100,p=0.7,0 =2 | -0.001 -0.004 [0.23] -0.033 0.039 [0.45]
n=>500,p=0.7,8 = 2 0.006 0.005 [0.11] -0.014 0.009 [0.21]
n=100,p=0.3,6 =5 0.018 0.013 [0.24] -0.044 0.034 [0.48]
n=>500,p=0.3,5 =5 0.001 -0.0003 [0.11] | -0.009 0.011 [0.21]
n=100,p=0.7,6 =5 0.016 0.021 [0.24] -0.035 0.037 [0.47]
n=>500,p=0.7,56 =5 0.010 0.008 [0.11] -0.014 0.008 [0.22]




Table 3.3: Skewness and kurtosis for the residuals n
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Skewness Kurtosis

Median | Mean [Std] | Median | Mean [Std]
Exponential(;)
n=100,p=03,3 =2 | 0.215 | 0.204 [0.50] | 2.539 | 2.793 [1.39]
n=500,p=03,6 =2 | 0.275 | 0.274[0.21] | 2.503 | 2.586 [0.65]
n=100,p=0.7,0 = 2 -0.030 | -0.030 [0.29] 0.664 0.775 [0.66]
n=500,p=0.7,8 = 2 -0.002 0.002 [0.13] 0.650 0.677 [0.29]
n=100,p=0.3,3 =5 | 0.270 | 0.205 [0.50] | 2.992 | 3.231 [L.54]
n=>500,p=0.3,8 =5 0.300 0.315 [0.25] 2.995 3.057 [0.65]
n=100,p=0.7,6 =5 | -0.064 | -0.065 [0.30] | 0.864 | 0.947 [0.66]
n=>500,p=0.7,8 =5 -0.013 | -0.013 [0.14] 0.819 0.847 [0.33]

Weibull(z,3
n=100,p=0.3,3 =2 | 0.153 | 0.182 [0.57] | 3.145 | 3.502 [1.64]
n=500,p=0.3,0 =2 | 0.248 | 0.253[0.24] | 3.248 | 3.302 [0.71]
n=100,p=0.7,0 = 2 -0.027 | -0.035 [0.30] 0.766 0.857 [0.66]
n=500,p=0.7,3 =2 | 0.005 | 0.006[0.14] | 0.785 | 0.812 [0.31]
n=100,p=03,6 =5 | 0.200 | 0.223 [0.67] | 3.816 | 4.107 [1.72]
n=500,p=03,6 =5 | 0.316 | 0.315[0.28] | 4.004 | 4.094 [0.87]
n=100,p=0.7,8 = 5 -0.029 | -0.038 [0.31] 0.976 1.070 [0.68]
n=500,p=0.7,0 = 5 0.001 -0.002 [0.15] 0.958 1.004 [0.36]
Normal(6,4)

n=100,p=0.3,8 = 2 0.087 0.106 [0.39] 1.291 1.463 [0.90]
n1=500,p=03,6 =2 | 0.087 | 0.090 [0.17] | 1.422 | 1.470 [0.43]
n=100,p=0.7,6 =2 | -0.081 | -0.074 [0.27] | 0.375 | 0.452 [0.58]
n=500,p=0.7,3 = 2 | -0.044 | -0.048 [0.13] | 0.394 | 0.413 [0.27]
n=100,p0=0.3,8 =5 | 0.145 | 0.161[0.42] | 1.375 | 1.536 [1.02]
n=500,p=0.3,3 =5 | 0.127 | 0.129 [0.19] | 1.526 | 1.583 [0.45]
n=100,p=0.7,3 =5 | -0.062 | -0.061 [0.29] | 0.438 | 0.514 [0.62]
n=>500,p=0.7,8 =5 -0.070 | -0.070 [0.13] 0.491 0.516 [0.28]
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Table 3.4: Skewness and kurtosis for the midpoint residuals é,,;4

Skewness Kurtosis

Median | Mean [Std] | Median | Mean [Std]
Exponential(;)
n=100,p=0.3,8 =2 | 0.244 | 0.220[0.52] | 2.088 | 2.213 [L.14]
n=500,p=0.3,6 =2 | 0.293 | 0.288[0.23] | 2.442 | 2.484 [0.54]
n=100,p=0.7,5 = 2 0.142 0.118 [0.46] 0.653 1.026 [1.51]
n=500,p=0.7,0 = 2 0.158 0.170 [0.23] 0.986 1.215 [0.96]
n=100,p=0.3,3 =5 | 0.216 | 0.244 [0.50] | 2.575 | 2.818 [L.33]
n=500,p=0.3,8 =5 0.328 0.322 [0.26] 3.059 3.083 [0.56]
n=100,p=0.7,6 =5 | 0.544 | 0.545[1.10] | 4591 | 5.556 [4.24]
n=500,p=0.7,6 =5 | 0.642 | 0.637 [0.64] | 6.327 | 7.055 [3.22]

Weibull(z,3
n=100,p=0.3,/ =2 | -0.038 | -0.035 [0.22] 0.841 0.925 [0.68]
n=500,p=0.3,8 = 2 0.008 0.006 [0.11] 0.992 0.991 [0.30]
n=100,p=0.7,0 =2 | -0.021 | -0.027 [0.23] | 0.364 | 0.645 [1.01]
n=500,p=0.7,3 =2 | 0.004 | 0.006[0.11] | 0.650 | 0.782 [0.62]
n=100,p=03,6 =5 | -0.041 | -0.042 [0.23] | 1.490 | 1.606 [0.80]
n=500,p=0.3,8 =5 0.005 0.006 [0.11] 1.590 1.596 [0.32]
n=100,p=0.7,0 =5 | -0.016 | -0.024 [0.22] | 3.660 | 4.522 [3.62]
n=500,p=0.7,3 =5 | 0.000 | 0.010 [0.11] | 5.517 | 6.025 [2.54]
Normal(6,4)

n=100,p=0.3,5 =2 | 0.723 | 0.720[0.23] | 0.362 | 0.435 [0.58]
n=500,p=03,6 =2 | 0.725 | 0.723[0.10] | 0.397 | 0.410 [0.24]
n=100,p=0.7,3 =2 | 0.396 | 0.439 [0.42] | 0.599 | 1.020 [1.46]
n1=500,p=0.7,6 =2 | 0.446 | 0.458 [0.19] | 0.906 | 1.075 [0.80]
n=100,p=0.3,8 =5 0.924 0.932 [0.23] 0.572 0.619 [0.58]
n=500,p=0.3,8 =5 0.946 0.942 [0.10] 0.577 0.586 [0.26]
n=100,p=0.7,6 =5 1.432 1.459 [0.67] 3.484 4.520 [3.62]
n1=500,p=0.7,3 =5 | 1.554 | 1.576 [0.38] | 4.964 | 5.590 [2.60]
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Table 3.5: Skewness and kurtosis for the midpoint residuals é,,,,

Skewness Kurtosis

Median | Mean [Std] | Median | Mean [Std]
Exponential(3)
n=100,p=0.3,3 =2 | 1.046 | 0.732 [1.20] | 3.013 | 3.511 [2.37]
n1=500,p=03,5 =2 | 1.372 | 0.983 [1.17] | 4361 | 4.609 [1.69]
n=100,p=0.7, = 2 -0.141 -0.169 [0.89] 1.649 2.818 [3.92]
n=500,p=0.7,3 = 2 | -0.271 | -0.348 [0.58] | 2.328 | 3517 [4.14]
n=100,p=0.3,8 =5 1.087 0.738 [1.32] 3.252 3.961 [2.65]
n=500,p=0.3,8 = 5 1.499 1.054 [1.31] 5.063 5.290 [1.95]
n=100,p=0.7,3 =5 | -0.297 | -0.337 [L.70] | 6.768 | 8.538 [6.51]
n=500,p=0.7,3 =5 | -0.882 | -0.042 [1.32] | 10.509 | 13.273 [10.11]

Weibull(z,3)
n=100,p=0.3,8 = 2 0.497 0.488 [0.37] 0.302 0.394 [0.57]
n=500,p=0.3,8 = 2 0.463 0.476 [0.176] 0.351 0.384 [0.27]
n=100,p=0.7,3 = 2 | 0.395 | 0.408 [0.596] | 1.319 | 1.741 [L.64]
n=500,p=0.7,8 = 2 0.529 0.517 [0.384] 2.039 2.177 [0.98]
n=100,p=0.3,8 =5 0.596 0.609 [0.402] 0.564 0.654 [0.66]
n=>500,p=0.3,8 =5 0.559 0.580 [0.201] 0.486 0.522 [0.30]
n=100,p=0.7,3 =5 | 0.767 | 0.774 [0.986] | 3.804 | 4.702 [3.13]
n=500,p=0.7,3 = 5 | 1.181 | 1.087 [0.735] | 5.629 | 6.008 [2.11]
Normal(6,4)

n=100,p=0.3,8 = 2 -1.239 -1.263 [0.41] 1.835 2.282 [1.91]
n=500,p=0.3,3 = 2 | -1.321 | -1.320 [0.19] | 2.292 | 2.403 [0.91]
n=100,p=0.7,6 = 2 | -0.828 | -0.894 [0.54] | 1.448 | 2.163 [2.5]
n=500,p=0.7,3 = 2 | -0.875 | -0.006 [0.28] | 2.171 | 2.527 [L.64]
n=100,p=0.3,6 =5 | -1.638 | -1.641 [0.47] | 2.682 | 3.095 [2.30]
n=500,p=0.3,3 =5 | -1.811 | -1.807 [0.21] | 3.495 | 3.621 [1.12]
n=100,p=0.7,0 =5 | -2.201 | -2.260 [0.72] | 5.880 | 7.321 [5.19]
n=500,p=0.7,3 =5 | -2.500 | -2.541 [0.41] | 8.921 | 9.666 [3.04]
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from the uncensored residuals é, the second one using the newly proposed
residuals €*, the third one coming from the midpoint residuals é,,;4, and the
last one using the residuals é;,,.

Considering the different residual plots in Appendix A, one can observe
that the least squares residuals é; scatter randomly in the plane and show no
special patterns throughout the different simulation scenarios, thus confirm-
ing the correctly specified model.

In the plots using the €*, a curve can be noticed that is mostly zero but at
large values goes up and at small values goes down (see for example Scenario
2). In the following this special shape will be referred to as ”S-shape”. To
understand where this pattern comes from, one has to look at the generation
mechanism for the residuals 7);, those residuals which come from the interval
censored data: Their values depend on the residual intervals [A;, B;], which
on their part determine where the corresponding error normal distribution is
to be truncated. So, if both A; and B; are large (small), then the resulting
n; gets large (small) as well. In case that A; and B; are of opposite sign,
the resulting value for 7; is more probable to be around zero. Figure 3.1
illustrates this idea.

Figure 3.1: Truncation schemes for the residual distribution depending on
the values of the residual intervals [A;, B;]

/ N 7
/ T\ / \ / \
oy, wi#’ oy, . oy,

In a correctly specified model, the values for A; and B; will be mostly of
opposite sign, but in some occasions both A; and B; will be small or large,
leading to the appearance of the S-shape. So, when interpreting a residual
plot using the €*, it is nothing unusual to encounter the S-form pattern but
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it is not imperative either. The S-shaped curve does not point at possible
model violations but is an inherent structure of these residuals when the
model is correctly specified. The generation mechanism of the S-shape will
be studied more extensively in Chapter 3.5.

The performance of the é,,;, differs from scenario to scenario. It can be
noticed that especially for a high percentage of censoring (p=0.3), the plot
resembles a growing and then falling variance of the residuals (see for exam-
ple Scenario 6) which would lead to the wrong conclusion of a not constant
error variance. This makes it difficult to use them for regression diagnostics.

In the plots coming from the é,,, one finds very often a certain y-value
for which these residuals have a far bigger variance than otherwise (for ex-
ample in Scenario 6). The distribution of these residuals within the plot does
not seem to follow a special pattern but they are not evenly spread in the
plane, either. Using this plot in regression diagnostic could therefore cause
irritations about possible model deviations.

3.3 Checking for deviations from linearity

Appendix B shows the simulated residual plots when the true model includes
a quadratic term but the fitted model is only linear. That is, the true re-
sponse values y; are generated from the model y; = a+ (3, 2;+ 3222 +¢; but the
residuals are calculated using only the linear relationship y; = a + (1 2; + &;.
Following the residual theory for uncensored data, the residual plots should
reveal the misspecified model by showing a quadratic structure in the plotted
points.

As the previous simulation showed that the performance of the residuals
does not vary between n = 100 and 500, and because it is of general inter-
est to examine the small sample size behavior of the residuals, n = 500 is
dropped and replaced by n = 30, but n = 100 is still kept.

From the 24 simulation scenarios shown in Appendix B, it can be seen
that the least square residuals é perfectly reproduce the hidden quadratic
structure in the data.
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The é* reflect the quadratic structure well in all scenarios where the co-
variate distribution is exponential and in most scenarios for a Weibull dis-
tributed covariate. For the normal distribution, the quadratic structure can
be seen in those scenarios where n = 100 whereas for n = 30 the pattern is
not that clear. What strikes in especially those plots where the percentage
of censoring is high (p=0.3), is the line of residuals at zero (for example in
Scenario 1). These points are the values of those 7 which are calculated from
the estimated truncated error distribution and result mostly zero because of
the following facts: the y; are generated from the model with the additional
quadratic term [,z7. As a consequence, the values for the y; result very
large. These large y;-values are used in the estimation of the «, 3 and 42
(the formulas are given in Chapter 1.3 of the first part of this thesis) with
the consequence that these estimates result very large as well. As the values
of the estimated model parameters enter in the calculation of the residual
intervals [flz, f)’z], and above all 3 has a huge influence as a multiplier of the
z-values, the values of A; and B; result being of opposite sign more often as
in the correctly specified model, and large or small values for both A; and B,
do almost not occur. Though, the line at zero does not disturb the quadratic
pattern of the uncensored residuals in the plot and it still can be clearly
recognized. For a low percentage of censoring, the quadratic structure of the
uncensored residuals is very dominant anyway.

The residuals é,,,4 and é;,, do not seem to be able to reflect the miss-
ing quadratic term in the model and neither do they seem to support the
quadratic structure of the uncensored residuals. In contrary, they often make
it rather impossible to recognize the pattern of the uncensored residuals (see
for example Scenario 5). In all scenarios for the normal distribution as well
as in most scenarios for the Weibull distribution, the residual plots do not
show a quadratic curve. In case of a exponentially distributed covariate the
quadratic structure is only reflected when the percentage of censoring is low.

3.4 Checking for constant variance

All computationally reasonable test procedures for heteroscedasticity are
based on the assumption of normality of the residuals. As seen previously,
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normality is not given for the €,,4, €1, and €*. So, the ordinary residual plot
is used again to check this assumption for the four different types of residuals.

Simulations are carried out for a linear model where the error variance is
not constant but depends on the covariate. Appendix C shows the 24 simu-
lated scenarios where ¢; is generated from a normal distribution with mean
zero and variance z?. All four types of residuals perform similarly and it can
be seen that for n = 100 most scenarios show the growing variance of the
residuals as the values of the covariate get larger (see for example Scenario
1). For a small number of observations, though, the variance structure is
not resembled at all, which leads to the conclusion that there should be a
reasonable large number of observations when using the residual plots for
regression diagnostics.

3.5 Examining the S-shape

As seen in the previous simulations, the performance of the residuals é* vary
considerately depending on the percentage of censoring in the data. Another
important factor affecting these residuals is the width of the residual interval,
as mentioned in connection with the appearance of the S-shape. The influ-
ence of these two factors will now be examined more extensively by studying
one data scenario under various censoring levels and interval widths. The
censoring level p will range from 0.1 to 0.9 (in steps of 0.2), and the residual
interval width will be increased by 0, 0.3, 0.5 and 1 times the original interval
width. The model under consideration will be specified by o = 4 and § = 2,
the distribution of the covariate is chosen to be exponential with mean %,
and the number of observations n will be 100.

First, simulations for a correctly specified linear model and constant er-
ror variance are carried out and the results are shown in Figures 1-5. As
expected, at high censoring levels (p=0.1 to 0.5) and a small residual inter-
val width, the typical ”S-form” as described before can be observed. With
growing interval width, though, this structure disappears, and at the end
there is only one straight line at zero. This behavior is reasonable because
with growing interval width the truncated normal error distribution approx-
imates better to the not truncated N(0,0?) distribution, and the resulting
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means are therefore mostly zero.

When the true model is quadratic but the residuals are calculated using
only a linear term (see Figures 6-10), it can be observed that the quadratic
structure is not visible at a high percentage of censoring (p=0.1), especially
when the residual intervals are very wide and produce residuals with values
near zero. In contrast, the quadratic data structure is resembled quite well
for higher percentages of censoring, again with the observation that wide
residual intervals produce a line of residuals at zero.

Figures 11-15 show the residual plots for the case that the model is linear
but the error variance depends on the covariate values. Here, it can be seen
that both the percentage of censoring and the residual interval width do not
affect the shape of the residuals in the plots, and the growing error variance
is resembled well in all cases.

3.6 Summary of the simulation results

The simulation results can be summarized in the following way: For check-
ing an underlying normal distribution of the model errors, none of the three
types of residuals coming from interval censored data can be used, though
the newly proposed residuals é¢* perform best. With respect to checking
whether the included variables specify the fitted model correctly, the simu-
lations showed that the residuals 7 are able to detect missing terms in the
model in all scenarios when the number of observations is sufficiently large.
For a small number of observations, they still perform satisfactorily in case
of an exponential or Weibull distributed covariate. In contrast, the residu-
als €y, and é,,;¢ perform well only in case of a low percentage of censoring
and an exponentially distributed covariate. All three types of residuals can
be used to detect a covariate depending error variance as long as there is a
sufficiently large number of observations.
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Figure 1: Correctly specified model, censoring level 0.1. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 2: Correctly specified model, censoring level 0.3. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 3: Correctly specified model, censoring level 0.5. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 4: Correctly specified model, censoring level 0.7. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 5: Correctly specified model, censoring level 0.9. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 6: Quadratic model, censoring level 0.1. First graph: original residual interval width, second graph:

0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original interval width.
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Quadratic model, censoring level 0.3. First graph: original residual interval width, second graph:

increased, third graph: 0.5 times increased, fourth graph: double of the original interval width.
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Figure 8: Quadratic model, censoring level 0.5. First graph: original residual interval width, second graph:

0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original interval width.
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Figure 9: Quadratic model, censoring level 0.7. First graph: original residual interval width, second graph:

0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original interval width.
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Figure 10: Quadratic model, censoring level 0.9. First graph: original residual interval width, second

graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original interval
width.
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Figure 11: Covariate depending model, censoring level 0.1. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 12: Covariate depending model, censoring level 0.3. First graph: original residual interval width,
second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.

0 0
200 A 8
200 o
0 o o 8
4 o] 0 ¢} o
100 8 o b o 8 o
100 A 0
¢} o o © 8 o o (o]
0 o 0 O o
2 © 0o ) o ©
0 'g 8 g § B g o 8 g
g 8 _
o SEEILE NS S EEERETRRNY
a ) o 2 2 0 o o
T 100 1 °© 0 o 8 g0 { ° ° 0o 0 0
0 0
0 0 o o
-200 H1 2200 4
-300 - 2300 -
0 0
-400 ° -400 o 0
T T T T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
icovc30 icovc303
200 A g o
200 o 8
0
o} ; o . o
i 0
100 0 o ° 8 100 4 . o 0
o o 8
° 9 % o © o 0 ° 0
o{8 88 @ i cogg° 0 8
BBoooso 84 o{9BgBBooge g8
o o 0 8 8
¢] I} o O 0
8 o 8 = 6 o 0
. 4 o [o} 8 o o
;% 100 o o o B -100 - o o 9 o
o o o o
-200 o -200 4
-300 4 -300 1
0 0
0 0
_400 L T T T T T T _400 L T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12

icovc305 icovc3l



115

Figure 13: Covariate depending model, censoring level 0.5. First graph: original residual interval width,
second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 14: Covariate depending model, censoring level 0.7. First graph: original residual interval width,
second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Figure 15: Covariate depending model, censoring level 0.9. First graph: original residual interval width,

second graph: 0.3 times increased, third graph: 0.5 times increased, fourth graph: double of the original

interval width.
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Chapter 4

Data application

To illustrate the proposed new residual theory, it is applied to data of the
randomized clinical trial ACTG358. This trial was designed to compare six
different antiretroviral treatment regimens for HIV-infected persons who had
previously failed combination therapy involving the protease inhibitor Indi-
navir. For details of the study see Gulick et al. (2000).

The covariate Z is taken to be the patient’s time between Indinavir failure
and enrollment. It is of interest examining whether there is an association
between Z and age X with the logl0 viral load level Y at the time of enroll-
ment. The covariate Z was of interest because delays in initiating ACTG359
led to concerns that patients who had failed Indinavir several months before
might behave differently from those who had just recently failed.

The analysis includes 81 patients whose viral load dropped below 500
copies during their prior treatment with Indinavir. Because the viral load
was monitored only periodically, the exact time at which a patient’s viral
load fell below or climbed above 500 could not be observed directly. Thus,
the covariate Z, the time between Indinavir failure and enrollment, is cen-
sored into the interval of the elapsed time between the first viral load record
above 500 copies and randomization, and the elapsed time between the last
viral load below 500 copies and randomization.

Fitting the model Y = a+ 7 + vX + ¢ to the data yields estimates for
the regression parameters (estimated standard errors) of & = 4.0877 (0.1596),
B = —0.0028 (0.0031), 4 = 0.0071 (0.0031), and £2 = 0.2732 (0.0455). Thus,
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the positive coefficient for Z suggests that patients with longer delays be-
tween Indinavir failure and study entry tend to have higher baseline viral
load levels (p=0.02). Similar results were obtained when X was not included
in the model. Age was not significantly associated with the baseline viral
load (p=0.37), see Gémez et al. (2002).

Goémez et al. (2002) evaluate the goodness of the fitted model with their
proposed residuals €p,,. As seen in the simulation results of Chapter 3,
these residuals are not generally able to detect violations of the underlay-
ing model assumptions. Hence, we repeat the residual analysis of the data
from ACTG359 and re-check the fitted model with a residual plot applying
the newly proposed é*. The resulting plot of the é* against the fitted response
values y; is given in Figure 4.1.

Figure 4.1: Residual plot for the fitted model of the ACTG358 data
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It can be seen that the residuals scatter randomly in the plane. They show
no special patterns indicating possible model violations like missing regressor
variables or non-constant error variance. So, it can be concluded that the
fitted model represents the data adequately and support the hypothesis that
patients with longer delays between Indinavir failure and study entry tend
to have higher baseline viral load levels.
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Residual plots when the model
is correctly specified
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Scenario 1: covariate distribution
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p=0.3, n=>500:

f=2,

covariate distribution Exp(%),

Scenario 2:
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p=0.7, n=100:

f=2,

covariate distribution Exp(%),

Scenario 3:
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p=0.7, n=500:

f=2,

covariate distribution Exp(%),

Scenario 4:
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p=0.3, n=100:

B=5,

covariate distribution Exp(%),

Scenario 5:

O cCOmW® coamy P

e

0
000 @ amom 0 o ® ®

o)
o
)

0 - oom
0
0

qer

O OOWOCOO GO O O

o O oo oo @ O
a a @ a

o o o o
o oo O oo

oO@O OO O a@
T T T
— o 1..
=5

60

50

20 30

10

60

40

30

20

10

etay5

ey5

ooo o
e
oo @
=] o
© o
o
o
° o oo oo
(<02 O 0O oo OO coo POy @ oo
© o o o oo
oo o [e] oo
ao
@
8
ao
T T T T T .
o o o o o .
32] 99 — = N
gdn|
oo
aooo
o oo o
oY)
co (o]
o []
© o o
o o
(s} a o
oo o °
o a o
o
° o om @ o o
o
ocap o
o o o
o om o
o
s} @ o
o oo
O @ OO
o
amo
T T T T T
Q o o o o
™ N — 1..
gpiw

60

50

30

20

10

60

30

20

10

lupy5

midy5



133

p=0.3, n=>500:

B=5,

covariate distribution Exp(%),

Scenario 6:
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p=0.7, n=100:

B=5,

covariate distribution Exp(%),

Scenario T:
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p=0.7, n=500:

B=5,

covariate distribution Exp(%),

Scenario 8:
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p=0.3, n=100:

f=2,

covariate distribution W(%,%),

Scenario 9:
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n=>500:

0.3,

covariate distribution W(%,%), =2, p

Scenario 10:
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n=100:

0.7,

covariate distribution W(%,%), =2, p

Scenario 11:
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n=>500:

0.7,

covariate distribution W(%,%), =2, p

Scenario 12:
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n=100:

0.3,

covariate distribution W(%,%), B=5, p

Scenario 13:
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n=>500:

0.3,

covariate distribution W(%,%), B=5, p

Scenario 14:
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n=100:

0.7,

covariate distribution W(%,%), B=5, p

Scenario 15:
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n=>500:

0.7,

covariate distribution W(%,%), B=5, p

Scenario 16:
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=2, p=0.3, n=100:

covariate distribution N(4,4),

Scenario 17:
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500:

n=

2, p=0.3,

B=

covariate distribution N(4,4),

Scenario 18:
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=2, p=0.7, n=100:

covariate distribution N(4,4),

Scenario 19:
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500:

n=

2, p=0.7,

B=

covariate distribution N(4,4),

Scenario 20:
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f=5, p=0.3, n=100:

covariate distribution N(4,4),

Scenario 21:
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500:

n=

9, p=0.3,

B=

covariate distribution N(4,4),

Scenario 22:
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f=5, p=0.7, n=100:

covariate distribution N(4,4),

Scenario 23:
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500:

n=

5 p=0.7,

B=

covariate distribution N(4,4),

Scenario 24:
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Appendix B

Residual plots when a
quadratic term is missing
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Scenario 3:
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Scenario  4: covariate distribution Exp(g), /=2, p=0.7, n=30:
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Scenario 5:  covariate distribution Exp(%), f=5, p=0.3, n=100:
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Scenario T:

covariate distribution Exp(%),
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Scenario  8: covariate distribution Exp(g), (=5, p=0.7, n=30:
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Scenario 9:

10

[
£
°©
0
-5
40
% 20
3
£

O oocommo O

GD @O G

o

O Coommmm O
O CcoOamp D

20 40 60 80

eylin9

20 40 60 80

midylin9

etalin9

luplin9

10

-5

20

-20

-40

covariate distribution W(%,%),

=2, p=0.3, n=100:
o
0
8
00
o
8
§
O e @ @ R
g o
8
0
0
0
20 40 60 80
etaylin9
8
g o)
8
8 8
B 8
3 0
o
0 ]
8
8
o)
20 40 60 80

lupylin9




163

Scenario 10:  covariate distribution W(%,%), B=2, p=0.3, n=30:
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Scenario 11:
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Scenario 12:  covariate distribution W(%,%), B=2, p=0.7,
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Scenario 13:  covariate distribution W(

N [wW
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Scenario 14:  covariate distribution W(%, %), B=5, p=0.3, n=30:
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Scenario 15:  covariate distribution W(%,%), B=5, p=0.7, n=100:
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Scenario 16:  covariate distribution W(%,%), B=5, p=0.7,
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Scenario 17:  covariate distribution N(6,4), (=2, p=0.3, n=100:
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Scenario 18:  covariate distribution N(6,4), (=2, p=0.3, n=30:
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Scenario 19:  covariate distribution N(6,4), (=2, p=0.7, n=100:
20
o]
4 )
(0]
15 8 8
2 (o]
10
g
. 0 T o0 ® a'é ® g
)
2]
0 2] 0 -2 g é
o] g E
5 8 o
(o] -4 (0]
T T T T T T T T T T
20 40 60 8 100 20 40 60 80 100
eylinl9 etaylin19
° 8
30 !
0
8
(0]
20 0 -10
()] )]
Z E 2 20 %
S 10 8 i
= ) 5
1S o = 8
g -30
0 :
o] -40
-10
50 )
(o] (0]

20 40 60 80

midylin19

100

20

40 60 80 100

lupylin19




Scenario 20:  covariate distribution N(6,4), f

173

=2, p=0.7, n=30:
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Scenario 21:
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Scenario 22:  covariate distribution N(6,4), (=5, p=0.3, n=30:
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Scenario 23:
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elin24
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Appendix C

Residual plots when the error
variance depends on the
covariate
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p=0.3, n=100:

f=2,

covariate distribution Exp(%),

Scenario 1:
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Scenario  2: covariate distribution Exp(%), f=2, p=0.3, n=30:
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p=0.7, n=100:

f=2,
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Scenario  4: covariate distribution Exp(%), f=2, p=0.7, n=30:
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p=0.3, n=100:

B=5,

covariate distribution Exp(%),

Scenario 5:
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Scenario  6: covariate distribution Exp(%), B=5, p=0.3,
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p=0.7, n=100:

B=5,

covariate distribution Exp(%),

Scenario T:
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. . . . . . 1 _ _ _ .
Scenario  8: covariate distribution Exp(g), (=5, p=0.7, n=30:
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p=0.3, n=100:

f=2,

covariate distribution W(%,%),

Scenario 9:

o o o000 OO oo

o o @pod am a A

OaD OCmIDO O OO0

aD O AmDd O

ocmo @ o
T T T
o o o
~ N
6XReneP
OoO@ O @o o
o o™ @ o

O @I O @O

OaQmD CEED @O O O

60

40

20 ~
0
-20
40

6Xens

x9

x9

=] (o] o @ [e's) @ O |

o © o @ o ) o |

o O commmp oaD O @ L

OQDD D Ao O O L

O 0O Commmm © O L

o oo om o L

T T T T T

8 ¢ & ° 8 g
exfendn|

© o o cwmo o L

o o [elele) [« ) o |

o O @OoOW O @O L

aDip @pOaooO O O L

O OocCoTmmOO O L

o oapoaD L

T T T T T

@ 8 ° 8 g
GXenpiw

x9

x9



189

n=30:

0.3,

p:

B=2,

covariate distribution V\/(%,%)7

Scenario 10:
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n=100:

0.7,

covariate distribution W(%,%), =2, p

Scenario 11:
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n=30:

0.7,

p:

B=2,

covariate distribution V\/(%,%)7

Scenario 12:
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n=100:

0.3,

covariate distribution W(%,%), B=5, p

Scenario 13:
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Scenario 14:  covariate distribution W(%,%), B=5, p=0.3, n=30:
o
0
o o
20 o 20 8
o
8 8 )
0 E g 0 0 g o
< 3 g
b x
x 8 [0}
g g
g -20 o g 0 o]
-40
-40
-60
) -60 0
T T T T T T T T
2 3 6 2 3 4 5 6
x14 x14
40
40 (o]
o
) o °
20 0 8
20
0 8 8
s g 8 :
< <+ 0 8 )
- -
X X E
§ 0 g 0
3 2
g -20 =
-20 0
-40
-40
-60
) -60 )
T T T T T T T T
2 3 6 2 3 4 5 6
x14 x14




194

n=100:

0.7,

covariate distribution W(%,%), B=5, p

Scenario 15:
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Scenario 16:
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covariate distribution W(%,%), B=5, p=0.7, n=30:
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=2, p=0.3, n=100:

covariate distribution N(6,4),

Scenario 17:
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n=30:

0.3,

p:

B=2,

distribution N(6,4),
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=2, p=0.7, n=100:

covariate distribution N(6,4),

Scenario 19:
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Scenario 20:  covariate distribution N(6,4), (=2, p=0.7, n=30:
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f=5, p=0.3, n=100:

covariate distribution N(6,4),

Scenario 21:
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£5=5, p=0.3, n=30:
(o]
0
o
(o]
(o]
o 8
o
0 o ° 8
(o]
8 0
o
(o]
8
o
T T T T T
3 4 5 6 7
x22
0
(o]
o
o 0
(o]
]
(o]
o § o
o )
o o]
o 8
(o]
o o
o
T T T T T
3 4 5 6 7

x22




202

f=5, p=0.7, n=100:

covariate distribution N(6,4),

Scenario 23:
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n=30:

5, p=0.7,

b=

covariate distribution N(6,4),

Scenario 24:
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