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Abstract

This thesis concentrates on an aspect of experimental design for quality improve-

ment. It is often observed that there is a time trend that influences the experimental

data for a given design. For instance, this might be due to a machine part that

deteriorates during experimentation. This always leads to data with different distri-

bution under the same experimental setting when observed at a later period of time.

In this dissertation we want to deal with the problems of time trends for a given

process. The theoretical and practical aspects of such time trends were taken into

consideration. In the theoretical aspect we try to improve methods to get rid of time

trends influence by determination of trend resistance using factorial design. System-

atic run order in which the estimates for factorial effects of interest are time trends

resistant are considered. Here, time trends are modelled as linear and quadratic

functions. Several approaches for constructing systematic run order of two levels

fractional factorial designs are reviewed. All the reviewed approaches give the same

possible number of linear trend resistant contrasts for two levels fractional factorial

designs. An attempt to construct trend resistant Plakett Burman designs is also

presented.

In the practical aspect, a funnel experiment was used to demonstrate the time

trend problem and we also tried to identify the principal determiners of the time

trend problem established in the funnel experiment. The results of our experiment

show that (i) the run times get considerably larger when the ball bearing has run

several times (presence of time trend), (ii) two independent funnels of same type

behaved differently, and (iii) the funnel is responsible for the trend in the exemplified

experiment.

As another part of the practical work, comparison of the systematic run order with

the randomized and standard run orders of a 2k−p fractional factorial designs were

studied. The comparison study is divided into two parts. In the first part, half

normal plots was used to compare the standard run order with the systematic run
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orders to determine which of them is more sensitive to presence of active contrasts.

The sensitivity analysis shows that the systematic run order is more sensitive to

presence of active contrast than the randomized and standard run orders.

In the second part, a simulation study was used to compare the performance of the

run orders under consideration and to compute the critical values needed for deter-

mination of the performance criteria. The performance of the standard, randomized,

and systematic run orders was measured by taking the probabilities of false rejection

and the probabilities of effect detection of active contrasts. Our results show that

the randomized run order managed to keep the nominal level, while the systematic

run order did not. Additionally, when there were active factors, the systematic run

order did not achieve more power than the randomized run order.

In general, when factorial/fractional factorial experiments are conducted over

sequence of time for quality improvement, randomizing the run order of the design

is an appropriate proceeding. However, when randomization is expensive or not

feasible, then systematic run order that are time trends resistant should be used.
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Chapter 1

Introduction

The competitiveness in today market place has caused many companies to examine

how they can improve the quality of their products in order to maintain or increase

their market share. Also, the focus on quality improvement for some past decades is

shifting into the design and development phase of a product. Therefore, frequently

heard expressions such as “Quality by design” and “Do it right the first time” ex-

press the changing philosophy that quality should be built into the product at the

design stage.

An important application of statistical methods to industrial research is the

design and analysis of experiment in connection with the improvement of manu-

facturing processes. The objective of any statistical investigation is to improve the

quality of a product or to produce the product more economically without losing

its desired quality. Design of experiments can often speed the improvement or op-

timization process in major steps. This applies to most types of industrial research

where the research may involve the examination of many different factors and the

problem is how best to design the experiments in order to estimate the effects of

these factors. In many of the physical systems that engineers work on there are

usually many factors potentially affecting the response variable. Therefore, highly

fractionated two level factorial designs are employed in the industry as screening

designs to identify which of the many experimental factors are important to the

1



Chapter 1 Introduction 2

response variable. Screening experiments are used to sift through a set of factors to

identify those that have impacts on the response. Effects that are large enough to

be of practical importance will be called active effects, and factors that are involved

in one or more active effects will be called active factors. The primary goals of a

screening experiment are to (i) identify the active factors and (ii) to provide a simple

model that captures the essential features of the relationship between these active

factors and the response. Three empirical principles for most screening applications

as given by Miller and Sitter (2001) are effect sparsity, effect hierarchy and effect

heredity. These three principles justify the use of small fractions of factorial designs

to determine how many factors are apt to be active. Assuming that only a relatively

small portion of the factors in an experiment will be active is synonymous with the

factor sparsity principle. In the factor hierarchy principle, the assumption made is

based on the claim that main effects are more likely to be active than two factor

interactions, and two factor interactions in turn are more likely to be active than

three or more factor interactions. For the effect heredity, the assumption is based

on the statement that an interaction effect can only be active if at least one of the

factors involved has an active main effect.

1.1 Motivation and Coverage of Study

When engineers perform factorial experiments, they usually have one machine or a

pilot plant and they are therefore compelled to conduct their experimental runs in

sequence. However, when runs are made in time sequence, each observation may be

affected by a trend which is a function of time or position. Engineers are therefore

faced with the problems of time-trends.

The response from a factorial experiment carried out in a time sequence may be af-

fected by uncontrollable variables that are highly correlated with the time in which

they occur (Bailey, Cheng, and Kipnis;1992). The usual advice given to experi-

menters is that the order of runs should be randomized before the experiment is

performed. However, any particular random run order may or may not be adequate
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and hence randomization may lead to a run order whereby the estimates of fac-

tor effects of interest are adversely affected by the presence of trend. Therefore, a

systematic run order in the presence of time-trend may improve the efficiency with

which factor effects are estimated. It is therefore pertinent to consider systematic

run orders in which the estimates for factor effects of interest are trend resistant.

On the other hand, there are authors who do not even accept that randomizing the

run order of a factorial design is a useful precaution against time trends, see e.g.

Grima, Tort-Martorell and de León (2003). It is not clear that the randomization

argument really works for saturated fractional factorial designs: each design with n

runs has n− 1 contrasts that may become influenced by the time trend. Note that

there are only (n−1)n/2 possible run orders for each column. So there must always

be some columns of the design that are heavily influenced by the time trend.

The coverage of this study on one part is to choose those sets of ordered contrast

that provide efficient estimation of all desired effects and interactions (that is, a

trend resistant design) and on another part is to compare the performance of the

trend resistant run order with the randomized run orders of a fractional factorial

design. Hence, we will focus on construction of systematic fractional factorial run

order in which the estimates of the main effects of interest are time-trend resistant

for linear and quadratic (that is, first and second order trend resistant design). Ex-

tension of the time-trend resistant design for the two factor interactions (designs

that are time-trend resistant to both the main effects and the two factor interac-

tions) will also be considered. Run orders with small number of factor level changes

that at the same time provide good protection against biased estimates of the main

and two factor interaction effects resulting from a polynomial time-trend will also

be studied. Further, the time-trend problem will be demonstrated using the funnel

experiment and factors that produce the time-trend in the experiment will be identi-

fied. The results obtained from the exemplified experiment will be used to compare

the performance of the constructed systematic run order with the randomized and

standard run order of a fractional factorial design via simulation studies.

In Chapter 2, different approaches for constructing a time-trend resistant design
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are reviewed. In addition to the two levels fractional factorial time-trend resistant

design, a time-trend resistant Plackett Burman design is also presented. The exem-

plified experiment is discussed in Chapter 3 as a practical case to demonstrate the

time-trend problem. Chapter 4 deals with comparison of the constructed time-trend

resistant design with the standard and randomized run orders of an unreplicated two-

levels fractional factorial design. Finally, in Chapter 5 the conclusion and discussion

of results are presented.

1.2 Review of literature

The basic idea of trend resistant designs is that certain of the ordered contrasts

appearing in the system are orthogonal to linear and to quadratic trends. For an

experimental design with k factors and n runs, the time-trend resistance model for

the response of interest for the experiment can be represented in the form

yi = µ + f ′(xi)α + h′(ti)β + εi, (1.1)

where, yi, 1 ≤ i ≤ n, represent the observed response from an experiment, µ is

the grand mean, f(xi) is a k × 1 vector representing the settings of main effects

and interaction effects in the model at design point xi, h(ti) is a q × 1 vector of

the polynomial expansion for the time-trend expressed as a function of time t, α is

a k × 1 vector of parameters of interest, β is a q × 1 vector of parameters of the

polynomial time-trend, and εi, 1 ≤ i ≤ n, are the random errors which are assumed

to be independently normal with mean zero and constant variance σ2. Equation

(1.1) can be re-written in a matrix form as:

Y = 1nµ + Fα + Hβ + ε, (1.2)

where µ is as earlier defined, F is the n × k design matrix with ith row consisting

of the f ′(xi), H is the n × q matrix with ith row consisting of the h′(ti), Y is a
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column vector of n observations, and ε is the vector of errors. A design is said to be

time-trend resistant if the contrast effects are orthogonal to the polynomial trend

components. In Equation (1.2), if F ′H = 0, then the design matrix F will be said

to be time-trend resistant.

There has been a steady interest in the design of experiments in the presence

of time-trends. Cox (1951, 1952) initiated the study of systematic design for the

efficient estimation of treatment effects in the presence of a smooth polynomial

trend. Hill (1960) presented experimental designs which allow adjustment for time

trends. Draper and Stoneman (1968) gave good run orders for 23 factorial and

2k−p, k − p = 3, fractional factorial designs with eight runs when only the main

effects are of interest. They also considered the number of factor level changes for

each of the designs and in order to measure the correlation between a given ef-

fect contrasts and the row numbers in the design matrix, they used the statistic

”time count”. This statistic is employed later in this study to determine the resis-

tant property of run orders of two levels designs. Phillips (1964, 1968) considered

the use of magic squares, magic rectangles and similar concepts to construct some

factorial and other designs orthogonal to linear and occasionally quadratic trends.

Dickinson (1974) found sequences with minimal factor level changes for 24 and 25

experiments. He used the run order with the maximum correlation of the main

effects with a linear time-trend as an evaluation criterion for finding run orders with

minimum number of factor level changes. Dickinson showed that the statistic time

count is simply the numerator in the ordinary Pearson product moment correlation

between the given effect and the row number, and he presented the denominator as

the quantity
√

N [(N2 − 1)/12]. Therefore, the Pearson product moment correlation

coefficient between a given effect contrasts and time is ρd = TC√
N [(N2−1)/12]

, where N

is the number of runs in the design and TC is the statistic time count. Therefore,

a time count of zero implies a zero value of ρd. Joiner and Campbell (1976) gave

some specific examples as to when trend effects can occur in sequential experiments.

Cheng and Jacroux (1988) constructed run orders of 2k and 2k−p fractional factorial

designs in which the estimates of the main effects and the two-factor interaction
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effects are orthogonal to some polynomial trends. John (1990) treated 2k and 3k

factorial designs by using the foldover principle. Cheng (1990) concentrated on the

ordering of the treatment combination of 2k factorial designs by using the foldover

method. Cheng and Steinberg (1991) considered the problem of finding trend robust

run orders when the time effects are modelled via time series model. Bailey, Cheng,

and Kipnis (1992) extended and unified the work of Cheng and Jacroux (1988),

Coster and Cheng (1988), and Cheng (1990) to general symmetric and assymmetri-

cal factorial designs. Atkinson and Donev (1996) provided a general solution to the

design of experiment in the presence of time-trends. Tack and Vandebroek (2001)

proposed an optimality criterion that strikes a balance between cost-efficiency and

trend resistant designs. Some of the aforementioned works are reviewed extensively

later in this study.



Chapter 2

Construction of Trend Resistant

Run Orders of Two-Level Designs:

A Review

In this chapter, various methods of constructing some contrast sequences in which

the runs are orthogonal to at least a linear trend are reviewed. The chapter is divided

into two major sections. The first section deals with the construction of two levels

fractional factorial designs that are time-trend resistant to the main effects and all

or some two factor interaction effects. The second section deals with Plackett Bur-

man saturated designs that are time-trend resistant. For the two level designs under

consideration, we used the statistic time count to measure the degree of time-trend

for an effect column of the model design matrix of a given design. This is taken as

the inner product of the effect column and the row number, and it measures the

correlation between a given effect and time. The definition of time count as used in

this study is given below.

Definition: Time-count

For an experimental design with N runs and k factors each at two levels, let

X =[ x1, x2, ....,xN ]
′
, where x1, x2, ....,xN represent the row vectors with xji repre-

senting the vector of the standardized setting of factor i in the jth observation of the

7
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design matrix, X. Here, xji ∈ {1,−1} depending on whether in the jth observation,

factor i is at high or low level, respectively. Then we define time count as

TC(r)i =
N∑
j

xji • jr, (2.1)

i = 1, 2, ..., 2k − 1; j = 1, 2, ..., N ; r is the degree of resistance and it can take values

from 1 to k − 1.

If TC(r)i in Equation (2.1) equals zero, it implies that contrast i is r time-trend

resistant. A design with TC(r)1 = TC(r)2 = ... = TC(r)2k−1 = 0 is therefore, a

trend resistant design of order r.

Another feature of interest which is taken into consideration in constructing

time-trend resistant designs in the literature is the number of times the factor level

changes in the setting. This is because some factors may be more difficult to change

than others, more costly, or may require more time to return to a controlled state.

It should be noted, that when all the factor levels are equally expensive to change,

minimizing the cost of level changes is the same as minimizing the total number of

level changes (Cheng 1985). Therefore, a time-trend resistant design with minimum

total number of factor level changes is desirable.

2.1 Two level fractional factorial designs

For any number of variables in a full factorial experiment performed at two setting

levels, say high and low, the number of trials required equals the number of setting

levels raised to the power of the number of variables investigated. For instance, a

four variables orthogonal design at high and low levels setting will require 24 trials

in which each factor will have 8 trials at high setting and 8 trials at low setting. It

is possible that the experimenter will only need four trials at both settings in order

to determine if a specific variable has a major effect on the response. Fractional

factorial designs allow experimenters to remove some of the trials required by the

full factorial designs while the orthogonality of the designs are maintained.
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Before discussing the construction methods for trend resistant factorial designs,

we give a brief description of some notations used in this study. Suppose there are k

factors with each of the factors at two levels, the runs comprising the experimental

design are conveniently set out in either of two notations. In the first notation,

the factors are identified by capital letters and their two levels by the presence or

absence of the corresponding lower case letters. When all the factors are at their

”low” level a φ is used. In the second notation, the factors are identified also by

capital letters but the two levels of each factor are denoted by either a minus (-) or

by a plus (+) sign, or by minus and plus one (±1). The list of experimental runs is

called the design matrix. For example, consider a two factors experiment with each

of the factor at two levels. The four experimental runs of a 22 factorial design using

the notations described above can be represented as follows:



run 1

run 2

run 3

run 4


=



− −

+ −

− +

+ +


=



−1 −1

+1 −1

−1 +1

+1 +1


=



φ

a

b

ab


In general, let the two levels be identify with the elements of GF (2), the Galois

field of order 2. Then the set of all the 2k level combinations can conveniently be

represented by the k- dimensional linear space {x : x = (x1, x2, ..., xk),

xi = {−1, +1}} over GF (2), denoted by V k. A 2k−p fractional factorial designs can

be defined as a (k − p) dimensional subspace of V k, or equivalently as the solution

set of p simultaneous linear equations xai = 0, where ai, 1 ≤ i ≤ p, are linearly

independent vectors in V k, written as column vector. A Galois field usually denoted

as GF (s), is a finite field with sn elements where s is a prime integer and n is the

degree of polynomial. The s factor levels are usually denoted by 0, 1, ..., s− 1, with

0 the additive identity and 1 the multiplicative identity in GF (s).

The relationship that generates a 2k−p fractional factorial design can be written

as: name of the last(k) factor= product of names of the first (k-p) factors.
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This relationship is called the generator of the design. It specifies how the column

of signs are made up for the last factor. For each defining relation, the number

of letters in the right hand side of the expression that describes the relationship is

called length of the relation. If there is one or more defining relation (s) for a design,

then the length of the shortest defining relation is called resolution of the design.

For example, the generator for a 24−1 fractional factorial design is D = ABC, the

defining relation is I = ABCD, the length of the shortest defining relation is 3.

Therefore, the resolution of the design is III. There is a lot of literature in this area

(see e.g., Box and Hunter, part I & II (1961), Vardeman and Jobe (1999)).

The construction procedure for a 2k−p fractional factorial design used in this

study is hereby presented. Let N = 2k−p be the number of runs in the design, k the

number of factors in the experiment, and p the fractionation sought. The procedure

follows the stepwise sequence below:

(i) Define the generating equation (Defining relation)

(ii) Let the entries of the first column follow the sequence (N/2){+}, (N/2){−}.

(iii) Let the entries of the second column follow the sequence

(N/22){+}, (N/22){−}, (N/22){+}, (N/22){−}.

(iv) Let the entries of the third column follow the sequence

(N/23){+}, (N/23){−}, N/23{+}, ..., N/23{−}.

(v) Continue until the (k−p)th column is obtained. This column entries should fol-

low the sequence (N/2k−p){+}, (N/2k−p){−}, (N/2k−p){+}, ..., (N/2k−p){−}.

(vi) Obtain the entries for the kth column by taking the product of the first k − p

columns as stated in the defining relation in step (i).

(vii) Obtain the entries for two or more factor interaction (2k−p−1−(k−p)) columns

using the columnwise multiplicative rule (Finney 1945) on the columns ob-

tained in steps (ii) to (vi).
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It should be noted that for each of the 1, 2, ..., (k− p) columns and the columns

obtained in step (vi), there should be N entries. The entries for the two-factor

interaction columns are found by pairwise multiplication of the entries for the main

effect contrasts, while the higher (more than two) order factor interaction columns

are obtained by using the columnwise multiplication of the entries for the main effect

contrasts.

2.1.1 Trend resistant two level fractional factorial designs

There are various approaches that have been proposed for the construction of trend

resistant two levels factorial designs. This section reviews methods for constructing

two-levels run order fractional factorial designs that are robust against time trend

given by Daniel and Wilcoxon (1966), Coster and Cheng (1988), Cheng and Jacroux

(1988), John (1990), Cheng and Steinberg (1991), and Jacroux and Ray (1991).

Daniel and Wilcoxon (1966) used the linear Chebychev polynomial coefficient to

develop plans that are trend resistant for two-levels factorial experiments, Coster

and Cheng (1988) proposed a generalized fold over method from a sequence of gen-

erators, John (1990) generalized the results of Daniel and Wilcoxon and connected

it with class of foldover designs. An algorithm for the reverse foldover approach was

presented by Cheng and Steinberg (1991), and the Kronecker product was proposed

by Jacroux and Ray (1991). The Daniel and Wilcoxon approach is hereafter referred

to as DW approach, KP for Kronecker product, while we retain the term foldover,

reverse foldover, and generalized foldover as originally used.

Following the reverse foldover algorithm, we will present a modified version of the

reverse foldover algorithm to achieve a factorial design that is robust against linear

trend with minimum cost. Furthermore, an easy to implement algorithm will be

presented for each of the reviewed approaches.
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Daniel and Wilcoxon (DW) approach

Daniel and Wilcoxon approach is based on reassigning the contrast settings of higher

(more than two) order interactions of the standard run order that are orthogonal

to time-trend coefficient of the order sought to represent the main effect contrasts

(columns of the model design matrix). They used the Chebyshev polynomial co-

efficient to represent the j in Equation (2.1). Their procedure for constructing

time-trend resistant fractional factorial designs can be summarized in the following

steps:

(i) Write down the main effects entries to get the main effects design matrix.

(ii) Complete the model design matrix for all the contrasts in a canonical order

using the pairwise multiplicative rule for the two factor interactions and the

columnwise multiplicative rule for more than two factor interactions.

(iii) Determine the time count for each contrast using Equation (2.1).

(iv) Remove the columns in the model design matrix with non-zero time count.

(v) If the time count for the columns with the main effects are non-zero, then

reassign the columns with zero time count to represent the main effect columns.

(vi) Use the new assignment for the main effect columns in (v) to complete the

new model design matrix as in step (ii).

The model design matrix obtained in (vi) will be trend resistant for at least the

main effect contrasts and probably some two factor interaction contrasts. It should

be noted that there might be situations when the number of columns with zero time

count will be less than the number of main effect contrasts in the experiment. In

such situation, use of prior knowledge about the factors by the engineers (experi-

menter) should be employed so that assignment will be done according to order of

importance of the main effects. It should be noted that there is a great risk that

the resulting design on assigning as above might lead to designs whereby the main

effects are aliased with two factor interaction effects (resolution III design). Cheng

and Jacroux (1988) approach improve on Daniel and Wilcoxon’s work as described
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below.

Cheng and Jacroux approach

Cheng and Jacroux’s (1988) idea is based on designating some high-order interaction

contrasts in the standard ordering as the main effects. This is the same as Daniel

and Wilcoxon’s (1966) approach. They show that in the standard order of a two level

complete k factors design, any h- factor interactions is orthogonal to a h− 1 degree

polynomial trend, where h represents two or more factor interactions. Therefore,

designating the setting of some high order interaction contrasts of the standard order

as the main effects and some two factor interaction contrasts can give a run order of

factorial or fractional factorial experiment in which the main effects and some two

factor interaction contrasts are orthogonal to high degree polynomial trends. Cheng

and Jacroux give a number of theorems to summarize their results with accomplish

algorithms to each theorem for construction of both the main effects and two-factor

interactions trend resistant factorial/fractional factorial designs. In this study, we

focus on Cheng and Jacroux theorems for constructing trend resistant 2k−p fractional

factorial designs. These are described below.

Consider a 2k−p fractional factorial two levels design where k is the number of factors

in the experiment and p the fractionation sought. Let q = k − p and d = k − 3p,

then

(i) If p = 1, k ≥ 7 is odd, there exists a run order of a 2k−p fractional factorial

design defined by I = −A1A2....Ak such that all the main effect contrasts are

at least (k − 5)-trend resistant and all two factor interaction contrasts are at

least linear trend resistant.

(ii) If p = 1 and k ≥ 8 is even, there exists a run order of a 2k−p fractional factorial

design defined by I = −A1A2....Ak−3 such that all the main effect contrasts

are at least (k− 5)-trend resistant and all two factor interaction contrasts are

at least linear trend resistant.

(iii) If p = 2, q ≥ 8 is even, and d ≥ 4, then there exists a 2k−p fractional factorial
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design whose runs can be ordered such that all the main effect contrasts are

at least (d− 1)-trend resistant and all the two factor interaction contrasts are

at least linear trend resistant.

(iv) If p ≥ 3, q ≥ 8 is even, and d ≥ 2, then there exists a 2k−p fractional factorial

design whose runs can be ordered such that all the main effect contrasts are

at least (d + 1)-trend resistant and all the two factor interaction contrasts are

at least linear trend resistant.

(iv) If p ≥ 3, q ≥ 7 is odd, and d ≥ 3, then there exists a 2k−p fractional factorial

design whose runs can be ordered such that all the main effect contrasts are

at least (d)-trend resistant and all the two factor interaction contrasts are at

least linear trend resistant.

It should be noted that the defining relation I = A1A2....Ak will give the same

results as I = −A1A2....Ak. That is, if the defining relation is I = A1A2....Ak or

I = −A1A2....Ak, the results in (i) and (ii) which depend on the generating equation

used will still give all the main effect contrasts to be at least (k− 5)-trend resistant

and all the two factor interaction contrasts to be at least linear trend free as claimed

by Cheng and Jacroux (1988).

Foldover approach

The procedure proposed by John (1990) depends on the foldover principle which

in turn depends on the sequence of generators chosen and the order in which they

appear. A fold over design is a design with run order in which the complementary

points are run in the same order as the original points. Two design points are said

to be complementary if one of the design points is obtained by changing the levels

of all the factors in the second design point. For example, in a 24 factorial design

with factors designated as A, B, C, and D, the design points a and bcd are comple-

mentary to each other and are, therefore, a foldover pair. The foldover approach for

a 2k design, say H, with Q runs, say, involve the addition of a new 2k design, say

H ′, which also has Q runs in which the signs of some or all the factor columns of H
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are reversed. Therefore, if H∗ is the foldover design for design H with the sign of

all the factors in H reversed, then

H∗ =

 H

H ′

 =

 H

−H

 =



H11, H12, . . . , H1k

...
...

...

HQ1, HQ2, . . . , HQk

−H11, −H12, . . . , −H1k

...
...

...

−HQ1 ,−HQ2 , . . . , −HQk


.

From above, it is seen that a foldover design H∗ with 2Q runs is a design that

consists of Q foldover pairs. In a foldover approach, if we start with a design with

Q runs and fold it over, we get a design with 2Q runs in which all the main effect

factors are at least linear trend resistant. The procedure for constructing a trend

resistant design using the foldover approach is given as follows:

Let H∗ be a sequence of 2Q points from a 2k factorial design, where Q is the number

of runs in the design. Further, let H∗ be a partition into two sequences as above,

where the first subsequence of the 2Q points is denoted by H and the second sub-

sequence of the 2Q points is denoted by H ′. In H∗, each factor in both H and

H ′ appears at its high level (+1) and low level (-1) exactly Q/2 times. It should

be noted that the partition of H∗ depends on the sequence of generators used to

generate the initial design H. Consider the first point (run) of H to be φ (that is,

all the factors are at their low level). For a particular factor say A, of the design H,

let nA(−1) and nA(+1) be the vectors of the run numbers in H when factor A is at

its low and high levels, respectively. Further, let SA(−1) be the sum of the vector

of the run numbers in H in which A is at its low level (that is, (nA(−1))T 1) and

SA(+1) be the sum of the run numbers in H in which A is at its high level (that is

(nA(+1))T 1). Also let n
′
A(−1) and n

′
A(+1) denote the vector of the run numbers of

factor A in H ′ when factor A is at its low and high levels, respectively. We define

S
′
A(−1) and S

′
A(+1) to be the sum of the vectors of the run numbers in H ′ when

factor A is at its low and high levels, respectively. That is, S
′
A(−1) = (n

′
A(−1))T 1
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and S
′
A(+1) = (n

′
A(+1))T 1. Then the main effect of factor A will be linear trend

resistant if SA(−1) + S
′
A(−1) = SA(+1) + S

′
A(+1). This holds if the level of factor

A in the (Q + i)th run is the opposite of its level in the ith run.

For example, using the foldover approach to construct a 23 factorial design such

that all the three main effect factors are at least linear trend resistant. We start

by constructing a half fraction of the desired design (that is, a 23−1 design). This

design consist of 4 runs with defining relation I = ABC. Thus H is given by

H =



−1 −1 +1

+1 −1 −1

−1 +1 −1

+1 +1 +1


.

Folding over of H gives another design H ′. If we combine the two designs H and

H ′ as described earlier, then we have H∗ = 23 design. That is,

H∗ =

 H

H ′

 =



−1 −1 +1

+1 −1 −1

−1 +1 −1

+1 +1 +1

+1 +1 −1

−1 +1 +1

+1 −1 +1

−1 −1 −1



.

To show that the three main effect factors (columns) in H∗ are linear trend re-

sistant, we proceed as follows: For factor A (first column in H∗), nA(−1) = 1, 3;

nA(+1) = 2, 4; n′
A(−1) = 6, 8; and n′

A(+1) = 5, 7. These imply SA(−1) = 4;

SA(+1) = 6; S ′
A(+1) = 12; and S ′

A(−1) = 14. Thus, SA(−1) + S ′
A(−1) =

SA(+1)+S ′
A(+1) = 18. Therefore, factor A in H∗ is linear trend resistant. Similarly,

for factor B (second column in H∗), nB(−1) = 1, 2; nB(+1) = 3, 4; n′
B(−1) = 7, 8;

and n′
B(+1) = 5, 6. These imply SB(−1) = 3, SB(+1) = 7, S ′

B(+1) = 11, and

S ′
B(−1) = 15. Thus, SB(−1) + S ′

B(−1) = SB(+1) + S ′
B(+1) = 18. Therefore, factor
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B in H∗ is linear trend resistant. For factor C (third column in H∗), nC(−1) = 2, 3;

nC(+1) = 1, 4; n′
C(−1) = 5, 8; and nC(+1) = 6, 7. These imply SC(−1) = SC(+1) =

5, and S ′
C(+1) = S ′

C(−1) = 13. Thus, SC(−1) + S ′
C(−1) = SC(+1) + S ′

C(+1) = 18.

Therefore, factor C in H∗ is also linear trend resistant.

Suppose we want to have the first run in H∗ to be φ, then we have to use another

defining relation I = −ABC to construct H in order to have a foldover design that

will also be linear trend resistant for all the three main effect columns.

In what follows, we present an algorithm for the foldover approach for construct-

ing trend resistant designs. This algorithm is based on the principle of the reverse

foldover algorithm given by Cheng and Steinberg (1991). The steps for the algorithm

are as follows:

(i) Assign the longest linear sequence of letters in the design as the first generator.

This should contain k letters.

(ii) Select the remaining generators by choosing at each step the longest linear

sequence of letters in the design that preserves a generator set. These can be

any of the
(

k

k − 1

)
(k−1)-factor interactions. Ties may be broken arbitrarily.

(iii) start with φ as the first run in the design.

(iv) After writing down the first 2v runs, generate the next 2v runs by writing down

the first 2v runs and thereafter multiply each of the new runs by the (v + 1)st

generator, where 0 ≤ v < k.

(v) Repeat step (iv) until the entire design has been generated.

To illustrate the foldover algorithm, we consider a 24 design. Let the factors for

the design be represented as A, B, C, and D. Following the steps of the algorithm

above we have the following:

→ Assign abcd as the first generator.
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→ The remaining three generators should be any of the
(

4

3

)
3-factor interac-

tions. If we choose abc, abd, and acd as the remaining generators, then we

proceed as follows:

→ Let the first run be φ.

→ The first two runs will be

φ, abcd (2.2)

→ Multiplying (2.2) by the second generator (that is, abc) gives the run order

φ, abcd, abc, d (2.3)

→ Multiplying (2.3) by the third generator (that is, abd) gives the run order

φ, abcd, abc, d, abd, c, cd, ab. (2.4)

→ Multiplying (2.4) by the fourth generator (that is, acd) gives the run order

φ, abcd, abc, d, abd, c, cd, ab, acd, b, bd, ac, bc, ad, a, bcd. (2.5)

The design generated by run order (2.5) has the following properties. For fac-

tor A (first column), SA(−1) = SA(+1) = 18, and S ′
A(+1) = S ′

A(−1) = 50.

Thus, SA(−1) + S ′
A(−1) = SA(+1) + S ′

A(+1) = 68. Similarly for factor B (sec-

ond column), SB(−1) = SB(+1) = 18, and S ′
B(+1) = S ′

B(−1) = 50. Thus,

SB(−1) + S ′
B(−1) = SB(+1) + S ′

B(+1) = 68. Also for the third and fourth

columns of the design generated by run order (2.5), that is, factors C and factor D,

SC(−1)+S ′
C(−1) = SC(+1)+S ′

C(+1) = SD(−1)+S ′
D(−1) = SD(+1)+S ′

D(+1) = 68.

Therefore, all the main effect factors of the design generated by run order (2.5) are

linear trend resistant. If we use Cheng and Steinberg (1991) trend resistant criteria,

the generator sequence {abcd, abc, abd, acd} that produce run order (2.5) have the

letters a, b, c, and d appearing at least 3 times. Also the linear and quadratic time

counts (r=1 and r= 2 in Equation (2.1)) for each of the factors in the design equals

zero. Thus, all the main effect factors in the design generated by run order (2.5) are

both linear and quadratic trend resistant. Therefore, our foldover algorithm yields

a design that is at least linear trend resistant for all the main effects.
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Reverse foldover approach

The reverse foldover approach is another equivalent way to apply the foldover ap-

proach. It also depends heavily on the generator sequence used. The procedure is

described as follows:

Given a generator set, t1, t2, ..., tk−p for a 2k−p fractional factorial design, where a

set of k − p runs is a generator set if no product of some or all the runs in the set

equals φ. Then the runs in the 2k−p fractional factorial design will be generated by

starting with φ, followed by t1. After 2s factor combinations, s < (k− p), have been

generated, they are followed by their products with ts+1 in reverse order. That is,

the run order generated by the reverse foldover approach involve taking the products

of all the points in the generator set sequentially in a reverse order. For example,

suppose the generator set for a complete 22 design is {a, b}. Then, the run order

generated by reverse foldover approach will be {φ, a, ab, b}. This run order is linear

trend resistant for the first factor in the design.

Cheng and Steinberg (1991) presented an algorithm for the reverse foldover approach

for constructing two level factorial design in which almost all the factors are robust

against both linear and quadratic trend with maximum level changes. Following the

reverse foldover algorithm of Cheng and Steinberg (1991), we present a modified

version of the reverse foldover algorithm for constructing trend resistant 2k designs.

A modified version of the algorithm is presented because the run orders generated

using Cheng and Steinberg’s version give designs with maximum number of factor

level changes but not linear trend resistant for all the main effects (see Cheng and

Steinberg 1991). For instance, for a 24 design using the reverse foldover algorithm,

the sequence of generators will be {abcd, abc, abd, acd}. The design obtained with

this generator sequence has a linear Time-Count (r=1 in Equation 2.1) of 8,0,0,0

for the main effect factors A, B, C, and D, respectively. Hence, the obtained design

is not linear trend resistant for all the main effect factors. In addition, the number

of factor level changes for the design obtained with the reverse foldover algorithm

equals 53. This implies very high cost for achieving a nearly linear trend resistant

design.
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The modified reverse foldover algorithm and the reverse foldover algorithm of

Cheng and Steinberg (1991) both depend heavily on the sequence of generators

used. Also steps (iv), (v) and (vi) of the modified reverse foldover presented in this

study are the same as steps (iii), (iv) and (v) of the Cheng and Steinberg’s version.

The only differences in the two versions is the principle for selecting the generator

sequence.

The modified version of the reverse foldover algorithm involve the following steps:

(i) Assign as the first generator any of the letters for the main effect factors or

any linear sequence of two letters representing the two factor interactions in

the desired design.

(ii) Select the second generator to be any linear sequence of the two letters rep-

resenting the two factor interactions in the desired design. This should be

chosen such that the product of the first two generators will be exhaustive.

(iii) Select the remaining generators by choosing at each step any other letter in

the design representing the main effects or the factor interactions such that

the generator set are preserved. This should not be any of the
(

k

k − 1

)
(k−1)-

factor interactions.

(iv) Choose φ as the first run in the design.

(v) After writing down the first 2v runs, 0 ≤ v < k, generate the next 2v runs by

writing down the first 2v runs in reverse order and multiply each of the new

runs by the (v + 1)st generator.

(vi) Repeat step (v) until the entire design has been generated.

Caution should be taken in selecting the sequence of generators such that letters

from the main effect factors do not follow each other in an alphabetical order. In

the above algorithm, if we replace k by k − p, then we have an algorithm for con-
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structing a trend resistant 2k−p design.

In order to illustrate the modified reverse foldover algorithm, we consider a 24

design. Let the factors for the design be represented as A, B, C, and D as before.

Following the steps of the algorithm above we have:

→ Assign c as the first generator.

→ Assign ab as the second generator.

→ The remaining two generators should not be any of the
(

4

3

)
3-factor inter-

actions. Therefore, if we choose d and b as the remaining generators, then we

proceed as follows:

→ Let the first run be φ.

→ The first two runs will be

φ, c (2.6)

→ Reversing the order in (2.6) and multiplying by the second generator (that is,

ab), we have the run order

φ, c, abc, ab (2.7)

→ Reversing the order in (2.7) and multiplying by the third generator (d), we

have the run order

φ, c, abc, ab, abd, abcd, cd, d (2.8)

→ Reversing the order in (2.8) and multiplying by the fourth generator (b), we

have the run order

φ, c, abc, ab, abd, abcd, cd, d, bd, bcd, acd, ad, a, ac, bc, b (2.9)

The generator sequence that produces run order (2.9) is {c, ab, d, b}. The design

generated by run order (2.9) has the following properties. For factor A (first
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column) of the design, SA(−1) = SA(+1) = 18, and S ′
A(+1) = S ′

A(−1) = 50.

Thus, SA(−1) + S ′
A(−1) = SA(+1) + S ′

A(+1) = 68. Similarly for factor B (sec-

ond column), SB(−1) = SB(+1) = 18, and S ′
B(+1) = S ′

B(−1) = 50. Thus,

SB(−1) + S ′
B(−1) = SB(+1) + S ′

B(+1) = 68. These scenarios are the same for

factor C (third column). For factor D(fourth column), SD(−1) = 10, SD(+1) = 26,

S ′
D(+1) = 42, and S ′

D(−1) = 58. Thus, SD(−1)+S ′
D(−1) = SD(+1)+S ′

D(+1) = 68.

This implies a linear time count (r=1 in Equation (2.1)) of zero for each of the main

factors in the design. Therefore, all the main effect factors of the design generated

by run order (2.9) are linear trend resistant.

From the above results, it suffices to say that the modified reverse foldover al-

gorithm produces designs that are at least linear trend resistant. In addition, the

number of factor level changes for the design given in run order (2.9) equals 19.

This is far less than the number of factor level changes of 53 obtained with Cheng

and Steinberg’s (1991) reverse foldover algorithm. Thus, with the modified version

presented in this study, it is possible to have a linear trend resistant factorial design

with minimum number of factor level changes and hence minimum cost!.

Generalized foldover approach

The generalized foldover approach (GFA) is another equivalent way to apply the

foldover approach for constructing a trend resistant design. It was first proposed

by Coster and Cheng (1988). They made use of the technique based on general-

ized foldover scheme to construct systematic run order of fractional factorial designs

with minimum number of factor level changes which simultaneously have all main

effect factors being orthogonal to a polynomial time trend. Coster (1993) presents

a modification to the generalized foldover method of Coster and Cheng (1988). The

modified method involves the specification of sufficient conditions on the appearance

of factors at high levels in sequence of generators of a fractional factorial design in

such a way that two and higher order interactions together with the main effects are

orthogonal to trend.
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The generalized foldover technique for a factorial design, say H, with k factors

each and s (s is a prime number) levels, is defined as a design technique which

combines all the possible foldovers of 1/sp fractional run sequence of the factorial

design H to make another 1/sp+1 fractional run sequence of the factorial design

H, 1 ≤ p < k. For instance, consider an s levels complete factorial design H

say, with k factors. Let Z = (z1, z2, ..., zk) , zi ∈ GF (s), i = 1, 2, .., k, denote

the treatments or the treatments combination which consists of level combinations,

one level from each factor, where GF(s) is as earlier defined. Further, let U be

any 1/sp fractional run sequence of the design H, denoted by, U = [z1, z2, ..., zt]
′,

where zj ∈ Z, j = 1, 2, ...t, t = sk−p represent the (1 × k) row vector one level

from each factor of the design matrix. Then, for any given foldover generator g =

g1, g2, ..., gk, gi ∈ GF (s), i = 1, 2, ..., k, the run sequence U(g) is another run sequence

of H obtained by folding over of U by g. Therefore, the generalized foldover of the

run sequence U by g, for any given run sequence for the 1/sp fraction of a factorial

design H, say U , and foldover generator g /∈ U ∪ {0′}, is a run sequence for 1/sp+1

fraction of the factorial design H and is define as

U∗ =



U

U(g)

U(2g)
...

U((s− 1)g)


.

The construction of linear trend resistant run order using the GFA depends on

certain conditions. These are presented as follows. Let A1, A2, ..., Ak be k factors of

a two levels factorial design, H = (2k−p), and g, = [g1, ..., gk−p]
′, be a foldover gen-

erator matrix for constructing trend resistant design. Then, (i) Any of the factors

Aj, 1 ≤ j ≤ k is linear trend resistant if there are at least two high level elements of

factors Aj in g. (ii) For any two factors say, Ab and Ac, 1 ≤ b 6= c ≤ k, if there are

at least two pairs (zib, zic) ∈ g, 1 ≤ i ≤ k − p, such that one element is at low-level



Chapter 2 Construction of Trend Resistant Run orders 24

and the other element is at high-level, then the Ab x Ac interactions is linear trend

resistant. In other words, to achieve main effects r-trend resistant designs, we need

a foldover generator sequence that has each factor appearing at a high (+) level

and its foldover level in (r + 1) generators. Interactions involving two factors are

r-trend resistant if one factor is at high (+) level while the other is at low (-) level in

(r + 1) generators with the appropriate foldover levels. In the generalized foldover

approach, a design is said to be r trend resistant if each factor of the design appears

at least (r +1) times in the sequence of generators used to generate the design. The

above description reflects that the construction of linear trend resistant design by

GFA is decided by the choice of a generator matrix.

In order to illustrate the GFA, we consider the construction of a 24−1 linear trend

resistant fractional factorial design for the main effect factors. Following the GFA

procedure as stated above, we start by choosing k − p = 3 foldover generators. Let

the three independent foldover generators be bc, ac, and abc that is,

g =


g1

g2

g3

 =


bc

ac

abc

 . (2.10)

Further, let U0 = φ be the first run. Then the systematic run order using the GFA

as described earlier is determine as follows:

For the first generator g1 = bc, let the generalized foldover of U0 by g1 be denoted

by U1, then, we have

U1 =

 U0

U0(g1)

 =

 φ

bc

 .

Similarly, the generalized foldover of U1 by g2 = ac denoted by U2 is

U2 =

 U1

U1(g2)

 , U1(g2) =

 ac

ab

 .
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Thus,

U2 =


U0

U0(g1)

U1(g2)

 =



φ

bc

ac

ab


.

Also the generalized foldover of U2 by g3 denoted by U3 is given as

U3 =

 U2

U2(g3)

 , U2(g3) =



abc

a

b

c


.

Thus, the run sequence combining U0, U1, U2 denoted by U∗ is

U∗ = U3 =



U0

U0(g1)

U1(g2)

U2(g3)


=

[
φ bc ac ab abc a b c

]′
.

Therefore, the half fraction of 24 design using the generalized foldover approach with

the generator matrix in (2.10) is the run order

φ, bc, ac, ab, abc, a, b, c (2.11)

In the generator matrix in (2.10), all the three letters a, b and c appear at least

twice, hence, factors A, B and C are linear trend resistant. Also, the linear time

count (TC(1)) equals zero for all the factors in the design generated by run order

(2.11). This is a confirmation that the design is linear trend resistant for all the main

effect factors. It should be noted that the generalized foldover approach will give the

same run order with the foldover approach if the same sequence of generators is used.

The result from the example above (run order 2.11) can be obtained using the

modified reverse foldover algorithm with {bc, ab, c} as the sequence of generators.

Thus, the foldover, reverse foldover and the generalized foldover approaches can

yield the same result depending on the sequence of generators used.
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Kronecker product of matrices

The Kronecker product between matrices can be used to construct trend resistant

contrasts for two level factorial designs. Jacroux and Ray (1991) show that for two

vectors that are trend resistant of certain degrees, the Kronecker product of the

two vectors will be trend resistant. The procedure for constructing trend resistant

design is summarized in lemma 1 of Jacroux and Ray (1991). The first part of their

lemma is emphasized here for constructing time-trend resistant fractional factorial

run orders. The procedure is described as follows:

Let L1 be an m × 1 vector of +1’s and -1’s of a design matrix such that L1 is not

orthogonal to time-trend effects (that is, TC 6= 0). Further, let L2 be an n × 1

vector of +1’s and -1’s of the same design matrix which is k trend resistant. Then

the Kronecker product between L1 and L2, that is, L1⊗L2 will be k trend resistant,

where ⊗ is the Kronecker product between the two vectors.

As an example, if L1 = [a1, a2, ....., am]′ and L2 = [b1, b2, ....., bm]′, then

L1 ⊗ L2 = [a1b1, a1b2, .., a1bn, a2b1, a2b2, ...., a2bn, ......, amb1, amb2.....ambm]′.

With this approach, the highest degree polynomial trend that a contrast in a full 2k

design can be orthogonal to is k−1, where k is the number of contrasts in the design.

Jacroux and Ray Algorithm

An algorithm given by Jacroux and Ray (1991) for constructing r-trend resistant

designs is presented as follows:

For a 2k factorial design, let s1, s2, ..., sk represent the main effect contrasts derived

from the standard ordering. Then, the steps in the algorithm for constructing r-

trend resistant two levels k factors factorial designs are given below.

(i) Select a set of k generators from any 2 or more factor interaction letters gen-

erated in the standard ordering. This should contain at least r + 1 letters out

of s1, s2, ..., sk.

(ii) Assign each of the main effects to each of the generators in (i). That is, A1 to

say s1 ∗ s2, A2 to say s2 ∗ s3, and so on.
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(iii) Obtain the run order of the design indicated by the assignment in (ii).

The run order in step (iii) will be linear trend resistant for at least all the main

effect contrasts in the full 2k design. It should be noted that the above algorithm is

also applicable for 2k−p design.

2.1.2 Example: DW approach

In this example, the approach of Daniel and Wilcoxon described earlier in Section

2.1.1 is used to construct a linear trend resistant design. Suppose we are interested in

a 16 runs (N = 16) resolution V design, then we will construct a time-trend resistant

design of the form of a 25−1
V fractional factorial design. A resolution V fractional

factorial design is used because with this resolution type design, it is possible to

get estimates for all the main and two factor interaction effects separately without

”confusing” them. Let the five factors for a 25−1 experiment be represented by A,

B, C, D and E with each of them at two levels. Following the steps presented in

Section 2.1 for constructing factorial design and the algorithm for the DW approach

in Section 2.1.1, we have N = 25−1 = 16 for a 25−1
V design. Suppose the defining

relation is given by E = ABCD. Then, the entries of the first four columns will be:

[(16/2){+}, (16/2){−}]′,

[(16/4){+}, (16/4){−}, (16/4){+}, (16/4){−}]′,

[(16/8){+}, (16/8){−}, (16/8){+}, (16/8){−}, (16/8){+}, (16/8){−}, (16/8){+}, (16/8){−}]′,

[+,−, +,−, +,−, +,−, +,−, +,−, +,−, +,−]′.

The entries for the kth column, that is, the fifth column is obtained by taking the

product of the first (k−1) columns as stated in the defining relation. Thus, the five

columns representing the settings of the five main factors are presented in a matrix

form below.


+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −
+ − − + − + + − − + + − + − − +


′
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Using the five column vectors in the matrix above, we complete the construction by

obtaining all the possible pairs for the five columns using the pairwise multiplicative

rule. The structure for the obtained design for all the 2k−1 contrasts is presented in

Table 2.1.

Table 2.1: Standard run orders for 25−1 fractional factorial design

Contrast

Main factor Two factor interactions and aliased factor

Run A B C D E AB AC BC DE AD BD CE CD BE AE

No. (CDE) (BDE) (ADE) (ABC) (BCE) (ACE) (ABD) (ABE) (ACD) (BCD)

1 + + + + + + + + + + + + + + +
2 + + + - - + + + + - - - - - -
3 + + - + - + - - - + + + - - -
4 + + - - + + - - - - - - + + +
5 + - + + - - + - - + - - + + -
6 + - + - + - + - - - + + - - +
7 + - - + + - - + + + - - - - +
8 + - - - - - - + + - + + + + -
9 - + + + - - - + - - + - + - +
10 - + + - + - - + - + - + - + -
11 - + - + + - + - + - + - - + -
12 - + - - - - + - + + - + + - +
13 - - + + + + - - + - - + + - -
14 - - + - - + - - + + + - - + +
15 - - - + - + + + - - - + - + +
16 - - - - + + + + - + + - + - -

LTC -64 -32 -16 -8 0 0 0 0 0 0 0 0 0 0 0

QTC -1088 -544 -272 -136 0 256 128 64 0 64 32 0 16 0 0

() Represent the aliased structure for the two factor interaction contrasts. The aliased structure for the main effect contrasts

are: A ↔ BCDE, B ↔ ACDE, C ↔ ABDE, D ↔ ABCE, E ↔ ABCD. Where ↔ represent “Aliased to”. LTC = Linear time

count (r=1 in Equation (2.1)), QTC = Quadratic time count (r=2 in Equation (2.1).

It is observed from Table 2.1 that the two factor interaction contrasts with both

linear and quadratic time count of zero are the contrasts that are aliased with in-
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teractions ABC, ACD, ABD, BCD, and ABCD. Therefore, to get a design that

is both linear and quadratic time-trend resistant of resolution V with the defining

relation E = ABCD, we used the four two-factor interaction contrasts in Table 2.1

that have a zero value of linear and quadratic time-counts. On reassigning as fol-

lows: A −→ AE(BCD), B −→ DE(ABC), C −→ CE(ABD), D −→ BE(ACD),

and E as the product of all the four factors as stated in the defining relation, we get

a design that is robust against second order time-trend for all the main factors A,

B, C, D, and E. On taking the pairwise multiplication of the five main factors, we

get the contrasts for the two-factor interactions. Table 2.2 presents the structure of

the obtained design.

Table 2.2: Time-trends resistant 25−1 fractional factorial design

Contrast

Main factor Two-factor interactions and aliased factor

Run A B C D E AB AC AD AE BC BD BE CD CE DE

No. (CDE) (BDE) (BCE) (BCD) (ADE) (ACE) (ACD) (ABE) (ABD) (ABC)

1 + + + + + + + + + + + + + + +
2 - + - - - - + + + - - - + + +
3 - - + - - + - + + - + + - - +
4 + - - + + - - + + + - - - - +
5 - - - + - + + - + + - + - + -
6 + - + - + - + - + - + - - + -
7 + + - - + + - - + - - + + - -
8 - + + + - - - - + + + - + - -
9 - - - - + + + + - + + - + - -
10 + - + + - - + + - - - + + - -
11 + + - + - + - + - - + - - + -
12 - + + - + - - + - + - + - + -
13 + + + - - + + - - + - - - - +
14 - + - + + - + - - - + + - - +
15 - - + + + + - - - - - - + + +
16 + - - - - - - - - + + + + + +

LTC 0 0 0 0 0 -8 -16 -32 -64 0 0 0 0 0 0

QTC 0 0 0 0 0 -136 -272 -544 -1088 16 32 64 64 128 256

() Represent the aliased structure for the two factor interaction contrasts. LTC and QTC are as earlier define.
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Removing all the columns with non-zero LTC in the designs in Table 2.2, we

have a design that is linear time-trend resistant with eleven contrasts in 16 runs.

The design structure is presented in Table 2.3. It satisfies the orthogonal property

of saturated fractional factorial designs and has the same defining relation as the

design in Table 2.1 (standard order).

Table 2.3: Linear time-trend resistant 25−1 fractional factorial design

Run No. Contrast

Main factor Two-factor interactions and aliased factor

A B C D E BC BD BE CD CE DE

(ADE) (ACE) (ACD) (ABE) (ABD) (ABC)

1 + + + + + + + + + + +
2 - + - - - - - - + + +
3 - - + - - - + + - - +
4 + - - + + + - - - - +
5 - - - + - + - + - + -
6 + - + - + - + - - + -
7 + + - - + - - + + - -
8 - + + + - + + - + - -
9 - - - - + + + - + - -
10 + - + + - - - + + - -
11 + + - + - - + - - + -
12 - + + - + + - + - + -
13 + + + - - + - - - - +
14 - + - + + - + + - - +
15 - - + + + - - - + + +
16 + - - - - + + + + + +

LTC 0 0 0 0 0 0 0 0 0 0 0

() Represent the aliased structure for two factor interaction contrasts and LTC is as earlier define.

The design in Table 2.3 is linear time-trend resistant with eleven contrasts in 16

runs, this will be referred to as the linear time-trend resistant design in Chapter 4.

The general result obtained from above is presented in the Theorem below.
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Theorem

For any 2k factorial designs or 2k−p fractional factorial designs, there are 2k − 1− k

columns of the model design matrix for a full factorial and 2k−p−1−(k−p) columns

of the model design matrix for a fractional factorial design that are linear trend re-

sistant.

Proof

We give a proof for a 2k design, the proof for a 2k−p design follows the same pattern.

Let k be the number of factors in a design arranged in a standard order, and let

N = 2k. Then there will be

 k

2

 two- factor interactions,

 k

3

 three- factor interactions, . . .,

 k

h

 h- factor

interactions, and

 k

k

 k-factor interactions.

It is a known fact that any h-factor interactions is (h−1)-trend resistant (see Cheng

and Jacroux, 1988). That is, any two or more factor interactions have a linear time

count of zero(LTC=0). Hence taking the sum of all the possible interaction contrast

of a factorial design, that is

 k

2

 +

 k

3

 + . . . +

 k

h

 + . . . + 1

will give the number of possible linear trend resistant contrasts in a factorial design.

Now to show that

 k

2

 +

 k

3

 + . . . +

 k

h

 + . . . + 1 = 2k − 1− k. (2.12)

Solving the LHS of Equation (2.12), we have

k(k − 1)
2!

+
k(k − 1)(k − 2)

3!
+. . .+

k(k − 1)(k − 2) . . . (k − h− 1)
h!

+. . .+1 (2.12.1)
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=⇒ k(k − 1)
2

{
1 +

(k − 2)
3

+ . . . +
(k − 2)(k − 3) . . . (k − h− 1)

h(h− 1)(h− 2) . . . 3
+ . . .

}
+1 (2.12.2)

It can easily be shown by mathematical induction that the expression in (2.12.2)

equals 2k − 1− k.

An alternative proof which we found to be more straight forward than the one

above is presented as follows: In a standard run order of a 2k design, there are 2k−1

contrasts (columns) out of which
(

k

1

)
are main effects. These main effects are not

linear trend resistant (see Table 2.1 on page 28). If we take away the k main effects

from the possible number of contrasts in a 2k design, then we have 2k − 1 −
(

k

1

)
contrasts left for two and higher factor interactions. But the two and higher order

factor interactions of the standard run order of a 2k design are linear trend resistant

(see Table 2.1 on page 28). Therefore, it suffices to say that there are 2k − 1 − k

contrasts of a 2k design that are linear trend resistant.

To determine how many factor levels need to be changed in a fractional factorial

design, we use the 25−1
v fractional factorial design in Table 2.1 for illustration. This

principle of determining the number of factor level changes is the same for all other

designs in this chapter. The first five columns of the design in Table 2.1 represent

the main effect contrasts under study. In order to ascertain the number of factor

changes in a design, the number of changes in level is determined by counting the

number of differences in the plus and minus in a pair of rows in the design matrix.

For example, from run number 1 to run number 2, we have 2 differences (main effect

factor D and E). From run number 2 to run number 3, we have 2 differences (main

effect factor C and D); 3 to 4: 2 differences; 4 to 5: 4 differences; 5 to 6: 2 differences;

6 to 7: 2 differences; 7 to 8: 2 differences; 8 to 9: 4 differences; 9 to 10: 2 differences;

10 to 11: 2 differences; 11 to 12: 2 differences; 12 to 13: 4 differences; 13 to 14: 2

differences; 14 to 15: 2 differences; 15 to 16: 2 differences. Therefore, the design in

Table 2.1 has a total of 36 factor level changes. This is equivalent to the number
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of level changes for the standard run order for a five factors resolution V fractional

factorial design. Hence, the design in Table 2.1 will henceforth in this study be

referred to as the standard run order. In a similar way, the number of factor level

changes for the main effect contrasts in the constructed time-trend resistant design

of second order degree presented in Table 2.3 equals 48. This is higher than that of

the standard run order in Table 2.1. The number of factor level changes for the main

effect contrasts in the constructed time-trend resistant design of second order degree

obtained by using the other approaches reviewed were less than 48. For example,

using the foldover approach with generator sequence {abcd, abc, abd, acd}, the total

number of factor level changes is 43. Also, the generalized foldover approach and

the Jacroux and Ray algorithm with generator sequence {abc, abd, acd, bcd} give the

total number of factor level changes of 38. The Modified reverse foldover algorithm

with generator sequence {c, ab, d, b} produce a total number of factor level changes

of 19 as earlier mentioned.

The approach to be used when constructing trend resistant full/fractional fac-

torial designs depends on the aim and nature of the experiment. If all the ex-

perimental factors under consideration are equally expensive, then the total num-

ber of factor level changes will not be an issue to be considered and hence focus

could be on having a systematic run order that is polynomial trend resistant of

certain degree. It should be noted that the result obtained above using the DW

approach will also be obtained if we used the foldover scheme with generator se-

quence {abcd, abc, abd, acd} or the GFA and Jacroux and Ray’s (1991) algorithm

with generator sequence {abc, abd, acd, bcd}. Also, the modified version of reverse

foldover with generator sequence {c, ab, d, b} produce the same result with the other

approaches. Using the KP approach, a design that is robust against first and second

order trend with the same property as the design in Table 2.3 is plausible.
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2.2 Trend resistant Plackett Burman designs

Plackett Burman design is suitable for studying k factors, each with L levels, and N

runs. It is constructed by using a generating vector which is first written down as a

column/row. A second column/row is obtained by moving down the elements of the

previous columns/rows once and placing the last element in the first/last position.

The procedure is repeated until all the k columns/rows are obtained. Finally a row

of elements all representing the first factor level is added to complete the design.

When L = 2 (two levels), a final row of -1’s/+1’s is to be added ( see Plackett and

Burman, 1946). In this work, we are interested in a 12 runs Plackett Burman design

which will henceforth be referred to as PB12. Plackett Burman designs are identical

to fractional orthogonal designs when N is a power of two, hence a trend resistant

Plackett Burman design (TRPBd) is also identical to its fractional counterpart.

For r = 1 in Equation (2.1), none of the contrasts of a Plackett Burman design

gives a TC of zero. Thus, none of the contrast in PB12 is even linear trend resistant.

On taking the pairwise contrast, that is,
(

11

2

)
two factor interactions, 5 of these

are linear trend resistant but are not orthogonal to each other. Hence they can not

be taken to be any of the columns of a Plackett Burman design.

Following the approach suggested by Jacroux and Ray (1991) for constructing main

effects only fractional factorial designs when the number of available experimen-

tal units is a multiple of 4, we construct a trend resistant Plackett Burman design

(TRPBd). We start with a Plackett Burman matrix of order 12 (PB12). By rear-

ranging the rows within the PB12 design, we developed another set of columns that

are at least linear trend resistant using computer search approach. The obtained

result is presented in Table 2.4. To determine the degree of resistance for the ob-

tained design in Table 2.4, we compute the statistic time count. This is presented

in the last row of Table 2.4.
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Table 2.4: Linear trend resistant 12-runs Plackett Burman design

Run No. Contrast

A B C D E F G H I J K

1 - + + + - + - - + - -
2 - - + + + - + - - + -
3 + + + - + - - + - - -
4 + - - - + + + - + - -
5 - + - - - + + + - + -
6 + - + - - + - - - + +
7 + - - + - - - + + + -
8 + + + + + + + + + + +
9 - - + - - - + + + - +
10 - - - + + + - + - - +
11 + + - + - - + - - - +
12 - + - - + - - - + + +

LTC 0 2 -20 0 0 -10 0 6 4 2 34

The obtained design presented in Table 2.4 has only four linear trend resistant

contrasts. Our search in this study for constructing Plackett Burman trend resistant

design cannot achieve more than four linear trend resistant columns for a 12 runs

Plackett Burman design. Therefore, a twelve runs Plackett Burman design with

four columns being linear trend resistant is possible. Although, the number of

linear trend resistant columns for a 12 runs Plackett Burman design achieved here is

a slight improvement on the result by Jacroux and Ray (1991) which has only three

linear trend resistant columns, it is too small to be an acceptable design. Therefore,

an alternative approach is necessary.

The construction of orthogonal main effects with more than four linear trend

resistant contrast for a PB12 seems to be a very complex one. However, if the

orthogonality assumption is relaxed, it is possible using semifolding principle to

have a PB12 design with at least 10 out of the eleven contrasts being robust against

linear trend. Semifolding involves using half of a foldover design to fold the points

that are at the high /low level of a factor . For an overview of semifolding, see Mee

and Peralta (2000), John (2000) and Kowalski (2002).

On applying the semifolding principle, the first half of the rows of the PB12 design
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were folded. The obtained design is presented in Table 2.5. The last row of Table

2.5 represent the computed TC(1) for each of the factors. Thus, we have a PB12

design with ten contrasts being linear trend resistant. It should be noted that a

naive version of the semifolding principle is employed in this study.

Table 2.5: Non-orthogonal linear trend resistant PB12 design

Run No. Contrast

A B C D E F G H I J K

1 + + + + + + + + + + +
2 + + - + - - + - - - +
3 + + + - + - - + - - -
4 + - - - + + + - + - -
5 + - + - - + - - - + +
6 + - - + - - - + + + -
7 - - - - - - - - - - -
8 - - + - + + - + + + -
9 - - - + - + + - + + +
10 - + + + - - - + - + +
11 - + - + + - + + + - -
12 - + + - + + + - - - +

LTC -36 0 0 0 0 0 0 0 0 0 0

The information matrix for the design in Table 2.4 is 12I11, where I11 represents

an (11 × 11) identity matrix. Thus, the design in Table 2.4 is orthogonal. The

information matrix for the design in Table 2.5 given below shows that only factor A

is orthogonal to all the other main effect factors and all the other main effect factors

are in turn orthogonal to factor A. Each factor pair of the remaining 10 main effect

factors (B through K) has correlation ±1/3. Thus, the design in Table 2.5 is a non

orthogonal design.
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

12 0 0 0 0 0 0 0 0 0 0

0 12 4 4 4 −4 4 4 −4 −4 4

0 4 12 −4 4 4 −4 4 −4 4 4

0 4 −4 12 −4 −4 4 4 4 4 4

0 4 4 −4 12 4 4 4 4 −4 −4

0 −4 4 −4 4 12 4 −4 4 4 4

0 4 −4 4 4 4 12 −4 4 −4 4

0 4 4 4 4 −4 −4 12 4 4 −4

0 −4 −4 4 4 4 4 4 12 4 −4

0 −4 4 4 −4 4 −4 4 4 12 4

0 4 4 4 −4 4 4 −4 −4 4 12



.

Information matrix for the design in Table 2.5

Another possibility we consider is the use of the foldover approach described

earlier in Section 2.1.1. This approach is used here to construct linear trend resistant

Plackkett Burman design. On using the foldover principle on PB12, a 24 runs PB

design with 12 contrasts was obtained. Using Miller and Sitter (2001) notation, this

is designated as PB12+12 design. Using the foldover principle, we start by writing

down the first 12 rows (runs) for the PB12 design. This is follow by folding over

all the first 12 rows. The design obtained has all the eleven main-effect columns

to be linear trend resistant (that is, LTC of zero). The design is presented in

Table 2.6. For this design, each main effect column is orthogonal to all other main

effect columns and to all two factor interaction columns. In order to search for

more linear trend resistant columns for the PB12+12 design, we employ the pairwise

multiplicative rule on the columns of the design presented in Table 2.6. Out of the

55 two factor interaction columns, only four of them are found to be linear trend

resistant. These four two factor interactions are however, correlated with each other

and hence non-orthogonal.
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Table 2.6: Orthogonal linear trend resistant PB12+12 design

Contrast

Run No. A B C D E F G H I J K

1 - - + - - - + + + - +
2 - + - - - + + + - + -
3 + - - - + + + - + - -
4 - - - + + + - + - - +
5 - - + + + - + - - + -
6 - + + + - + - - + - -
7 + + + - + - - + - - -
8 + + - + - - + - - - +
9 + - + - - + - - - + +
10 - + - - + - - - + + +
11 + - - + - - - + + + -
12 + + + + + + + + + + +
13 + + - + + + - - - + -
14 + - + + + - - - + - +
15 - + + + - - - + - + +
16 + + + - - - + - + + -
17 + + - - - + - + + - +
18 + - - - + - + + - + +
19 - - - + - + + - + + +
20 - - + - + + - + + + -
21 - + - + + - + + + - -
22 + - + + - + + + - - -
23 - + + - + + + - - - +
24 - - - - - - - - - - -

LTC 0 0 0 0 0 0 0 0 0 0 0

The information matrix for the design in Table 2.6 is 24I11, where I11 is as earlier

defined. For this design, each of the two factor interaction columns is orthogonal to

all the other two factor interaction columns with which it shares a common factor.

While the columns for the pairs of the two factor interactions that do not share a

common factor has correlation ±1/3. Hence the design in Table 2.6 is an orthogonal

main effects linear trend Plackett Burman design.

Three different possibilities of constructing linear trend resistant Plackett Bur-

man design have been presented. Each of these possibilities gives different result.
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The first one shows that we can have 4 linear trend resistant contrasts (columns)

in 12 runs with the orthogonality property being satisfied. The second one shows

that we can have 10 linear trend resistant contrasts (columns) in 12 runs with the

orthogonality property being violated. The third one shows that we can have 11

linear trend resistant contrasts (columns) in 24 runs with the orthogonality property

being satisfied. Therefore, if the experimenter is interested in high number of linear

trend resistant PB12 design columns, he has to be prepared to pay the price of losing

the orthogonality property. However, to retain the orthogonality property with high

number of linear trend resistant columns, more number of experimental runs is the

price to pay.



Chapter 3

The Funnel Experiment: A Practical

Case Study of DoE

The funnel experiment is a simple physical experiment that is used as a teaching

aid for statistical design of experiment (Gunter B. 1993). It was first proposed by

Deming (1986) and later with a different view by MacGregor (1990) for teaching

the importance of design of experiment to quality improvement. In this study, the

funnel experiment is used as a practical case study to illustrate time-trends problem

in a fractional factorial setting. Our device for the funnel experiment which is based

on an idea of Joachim Kunert (Universität Dortmund) is an improvement on the

funnel experiment of Bert Gunter (1993) device. For our device, only one person can

handle the machine to conduct experiments, whereas according to Gunter (1993) at

least three people are needed to operate the machine in order to conduct an exper-

iment.

The practical aspect of this study is to show that there is a time-trend in the

exemplified (funnel) experiment and to identify and exclude the factors that are

responsible for the proclaimed time-trend in the process that we use as a practical

case study. Figure 3.1 presents the picture of the machine used in the experiment.

The funnel experiment is made up of the following materials: A funnel made of hard

plastic/ aluminium with very wide opening of about 25cm wide and a narrow long

tip of about 8.5cm long/ without tip. A rod of fixed length (100 cm long) with a

small opening at the rear end where the ball stopper is fixed. A pole made of steel

40
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which stand as a supporting tool where the rear part of the rod rests on. A pole

basement which holds the pole standing erect. A clapper used as a supporting tool

for the rod connected to the pole at the rear end. A device holding the rod at the

front. A box (funnel basement) made of wood with a wide opening at the upper

end on which the funnel is sited and a narrow opening at the lower end housing the

funnel tip. A ball bearing of fixed size of about 18mm in diameter. A digi-timer

stop watch which is used to measure the response variable. The machine is set on a

flat table for smooth conduct of the experiment as shown in Figure 3.1

Figure 3.1: Experimental settings

The pictures of the two types of funnels (plastic and aluminium) used in the

conduct of the experiments are presented in Figure 3.2.
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Figure 3.2: Funnel with tips(LHS) and American type Funnel(RHS)

The experiment is designed to evaluate the running time of the ball bearing

through a rod of fixed length spinning within the funnel in a spiral path and finally

exiting at the basement of the funnel. The response variable of the experiment is the

running time of the ball bearing. This is measured using the stop watch by taking

the time the ball bearing is released at the edge of the rod to the time it exits at

the basement of the funnel.

The following experimental settings are taken to be of importance in order to

measure the response from the experiment.

• The length between the point on the pole where the clapper holds the rod to

the pole and the pole basement, this is designated as height in back.

• The distance between the pole basement and the edge of the table where the

machine is placed, this is designated as distance in back.

• The length between the rod tip and the funnel opening, this is called the height

in front.

• The distance between the rod tip and the edge of the funnel basement top,

this is designated as distance in front.
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To achieve the set objective, we plan two major factorial experiments. The first

one is to show that there is a time-trend in the funnel experiment and the second is

to determine the factor(s) responsible for the time-trend.

3.1 Experiment to show time-trends in the funnel

In this section, all the experiments were conducted using the plastic type funnel

(funnel with tip). The aim of the first experiment is to demonstrate the time-trend

problem. Five factors each at two levels were selected to be the important design

factors of interest. These factors and their levels are presented in Table 3.1.

Table 3.1: Experimental Factors and Their Levels

Factors Description Level 1 level 2

A Distance in front 7.0cm 10.0cm

B Height in front 0.5cm 1.0cm

C Distance in back 5.0cm 10.0cm

D Height in back 40.0cm 50.0cm

E Size of ball Small(10mm) Big(18mm)

A pilot experiment was conducted using a resolution V fractional factorial de-

sign by varying each of the five experimental factors in Table 3.1 at two levels in

sixteen experimental runs. For each setting of level combinations, the experiment

was conducted by taking four consecutive runs in a row before resetting the level of

the factors. That is, there are four replicates per factor setting. This is to have a

preliminary knowledge of the funnel experiment. On ranking the outcomes it was

discovered that only the setting A (low– 7.0 cm), B (high– 1.0 c m), C (low– 5.0 cm),

D (high– 50.0 cm), and E (high– Big ball) shows evidence of presence of a time-trend.

The main experiment was then conducted by keeping the settings that showed evi-

dence of trend obtained from the pilot experiment fixed. For the main experiment,
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two different machines were used to run the experiments. The experiment with

Machine 1 was conducted at a particular time on a day while the experiment with

Machine 2 was conducted around the same time on another day. To run a complete

set of experiments (16 runs) approximately 10 minutes were needed. This implies

that the time lag between consecutive runs in the experiment is approximately 38

seconds. The following observations were made during the experiments:

(a) The running time from when the ball is released at the edge of the rod length

to when it exits from the rod is approximately constant for all runs.

(b) The ball bearing on exit from the rod length usually hits the same spot on the

funnel before spinning within the funnel.

Because of the second observation, we carried out another experiment by turning

the funnel approximately 180o in order to change the point which the ball hits on

the funnel. The experiment was repeated by keeping all other settings as before.

The observed running time for the experiment from the two machines are presented

in Table 3.2.

Table 3.2: Experimental Results for Machines 1 and 2

Observed running time(in sec.)

Machine 1 22.13 23.49 23.32 24.26 23.70 23.92 24.07 24.09

25.06 25.36 24.32 24.97 25.03 26.09 25.40 26.02

Machine 2 21.35 21.36 22.31 21.98 23.07 23.29 22.89 23.71

23.18 23.73 24.30 23.30 23.68 23.49 23.51 24.19

To determine whether there is a time-trend in the experimental results presented

in Table 3.2, a trend analysis was conducted. The nonparametric Spearman’s crite-

rion was used to detect the existence of trend in the series of the experimental data.

The Spearman rank-correlation is described as
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Rsp = 1− 6
∑n

i D2
i

n3 − n
, (3.1)

where n is the total number of observation in the series, i is the chronological order

number and Di is the difference between the rankings of the measured variable

in chronological order and the series of measurements. The test statistic for the

hypothesis of no trend, that is, H0 : Rsp = 0 (there is no trend), against the

alternative hypothesis, H1 : (Rsp < or > 0) (there is a trend) is given by:

tsp = Rsp

√√√√ n− 2

1−R2
sp

, (3.2)

where the statistic tsp is assumed to have a student’s t-distribution, with v = n− 2

degrees of freedom. A series is said to have no trend if at a given α level of significance

tsp lies in the interval:

t(v, α/2) < tsp < t(v, 1− α/2), (3.3)

otherwise the series is adjudged to have trend.

The two experimental results presented in Table 3.2 were tested for existence of

trend using Equations (3.1), (3.2), and (3.3). The obtained trend analysis results

give tsp values of 8.469 and 5.3140 for machines 1 and 2 data, respectively. Using

α = 0.05 level of significance, the interval given by Equation (3.3) for v = 14 is ob-

tained to be [-2.1448, 2.1448]. The p values for the obtained tsp values are p < 0.0001

and p = 0.0001 for machines 1 and 2 data, respectively. Since the computed tsp val-

ues for the results from the two machines lies outside the computed interval, and

their respective p values are less than 0.05, it suffices to conclude that there is trend

in the two experimental data and hence the process that produces them. The plot

of the experimental results in Figure 3.3 also shows that the running time increases

with time (run number). Therefore, we can conclude that there is a time-trend in

the funnel experiment.
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Figure 3.3: Experimental results showing time-trends

3.2 Experiment to determine factors responsible

for the time-trend

To determine the factor(s) that are responsible for the observed time-trend in the

funnel experiment discovered in Section 3.1, factorial and cross over experiments

were used. The experimental factors considered are the ball bearing, the funnel,

and the rod. These three factors are the movable (that is, assemble and disassem-

ble) factors in the experimental setting. In order to achieve the objective in this

section, we planned two different settings for each of the factors. The two settings

for each of the experimental factors used are of the same magnitude, size, shape,

and are made of the same materials.

To investigate which of the three experimental factors mentioned above has a

significant effect on the observed time-trend, different experiments were conducted

varying each of the three factors in different settings with 20 experimental runs.

The 20 experimental runs were partitioned into two sequences each containing 10

runs. These experiments are factorial experiments with two factors each at two lev-
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els and cross-over experiment with a factor at two levels conducted over two periods

of time. In the first experiment, a machine was used with the other two factors

being varied. The aim is to see which of the two varied factors has a significant ef-

fect on the time-trend in the experiment. The second experiment was planned with

two machines (funnels), one rod and one ball. The aim of the second experiment

is to check for the influence of the funnel on the observed time-trend. A factor is

adjudged to have a significant effect on the observed time-trend in the experiment

if the observed running time keep on increasing irrespective of changes in sequence.

That is, |tsp| ≥ t(v, 1− α/2) for the two sequences.

3.2.1 Factorial experiment for ball and rod influence

Two levels factorial experiment was conducted to determine the ball and rod in-

fluence on the observed time-trend in the funnel experiment. We started the ex-

periment by excogitating the ball and the rod with the funnel fixed. That is, the

experiment was conducted by varying the ball and the rod using a machine (fixed

funnel). Hence, we have a case with n = 2 factors each at two levels. The experiment

was conducted on a standard order setting with the sequence

{φ, 1, 2, 12}, (3.4)

where the entries in the sequence represent no changes, changes in factor 1, changes

in factor 2, and changes in both factors 1 and 2 (interaction), respectively.

To conduct the factorial experiment with n = 2, the first run with the setting φ was

used, that is keeping all the factors at (-) level. 10 runs were first conducted and

we waited for a time lag of 30 minutes before conducting the second set of 10 runs.

Hence we have a total number of 20 runs for the setting where all the factors are

at (-) level. Experiment with factor 1 was conducted on the second day. Here the

experiment involved changing the ball bearing. We did the first 10 runs by using

ball 1 and we waited for the same time lag as before, thereafter we used ball 2 to

do the second 10 runs. On the third day, the experiment with changes in factor 2
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was conducted. Here the first 10 runs were done by using ball 1 with rod 1. After

waiting for the period of 30 minutes, we changed to the second rod (rod 2), and

used the same ball as in the first part of the experiment to do another set of 10

runs. On the fourth day, the experiment involved changing of the rod and the ball.

This is to determine the influence of the interaction between the ball and the rod

on the time trend. The first 10 runs were done by using ball 1 and rod 1. After

the waiting time, the second 10 runs were done by using ball 2 and rod 2. Thus,

a period of four days was used to conduct a complete two factors experiment. The

experimental setting and the observed responses are presented in Table 3.3.

Table 3.3: First Experiment: Observed Results For Factorial Experiment

No changes in both Changes in ball Changes in rod Changes in both

run r1b1 r1b1 r1b1 r1b2 b1r1 b1r2 r1b1 r2b2

1 22.56 24.85 24.55 29.87 26.82 26.63 28.60 28.88
2 22.89 24.32 25.53 26.04 25.78 25.56 28.34 28.62
3 24.32 25.33 25.89 26.29 26.96 26.63 27.84 27.60
4 24.63 25.69 26.00 26.28 26.56 21.82 28.63 28.77
5 25.59 25.40 26.43 27.11 27.17 27.09 29.77 28.77
6 25.06 25.07 27.16 26.96 26.63 27.29 29.25 29.57
7 24.42 25.65 26.99 27.19 26.99 28.29 28.93 29.25
8 25.50 25.23 26.69 28.08 27.07 27.86 28.86 29.70
9 24.55 25.59 27.38 27.47 26.46 27.83 28.41 28.39
10 25.73 25.87 27.73 26.97 27.27 27.26 28.89 28.26

Mean 24.52 25.3 26.44 27.23 26.77 26.63 28.75 28.78

stand. dev 1.08 0.46 0.96 1.11 0.44 1.86 0.53 0.63

Coff.of var. 4.39 1.82 3.64 4.08 1.64 6.97 1.83 2.18

tsp 2.94 2.26 8.75 0.84 1.3 3.07 1.26 0.07

An examination of the observed running time in Table 3.3 and the graphical

display of the results in Figure 3.4 shows that the running times increase with days

(see the mean for each factor sequence in Table 3.3) and with the run numbers for

some of the factor sequence.
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Figure 3.4: Influence of the ball and rod effects on the time-trend in the funnel

experiment

Examination of the graphs in Figure 3.4 reveals the following:

(i) The running time increases with the run numbers for the case where no changes

in experimental setting was made. That is, when the factors setting is fixed,

there is trend in the experiment.

(ii) The result with ball effect shows increase in the running time with the run

numbers for the first 10 runs (that is experiment with ball 1), but thereafter

there is a slight fall and then a stable increase in the running time with ball 2.

(iii) The behavior of the observed running time with rod 1 is totally different from

that of rod 2. The variation in the running time with rod 1 is approximately

constant, while there is a large variation in the observed running time with

rod 2. Also an outlier point is observed in the result for rod 2.

(iv) The plot for the interaction between the rod and the ball shows not much

difference when the ball and the rod were changed. In this plot, no trend is

observed.
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The degree of variations of the observed running time for each of the factor se-

quence was computed using the standard deviation and the coefficient of variation.

The absolute differences in the standard deviations and the coefficient of variation

equal 0.62(2.57), 0.15(0.44), 1.42(5.33) and 0.1(0.35) for the factor settings: no

changes (φ), changes in ball, changes in rod, and interaction in both factors, respec-

tively. Here, the values in the parenthesis above represent the absolute difference

for coefficient of variation of each setting. The high difference in both the standard

variation and the coefficient of variation for the rod effect might be due to the outlier

point at the fourth run in the second sequence.

A trend analysis was conducted on the results using Equation (3.1) through (3.3).

The computed tsp values for each sequence of factor settings are presented in the last

row of Table 3.3. Using α = 0.05, the decision interval for n = 10 is [−2.306, 2.306].

Therefore, a sequence (level) for each of the factor settings is adjudged to have a

trend if its tsp lies outside the interval

−2.306 < tsp < 2.306. (3.5)

That is, if |tsp| ≥ 2.306 for a factor sequence, then we say that there is presence of

trend in that factor sequence. Using the interval in (3.5) to analyze the computed

tsp in the last row of Table 3.3, the following are inferred:

(a) For settings with no changes and changes in ball, there is trend in Sequence 1

whereas there is no trend in Sequence 2.

(b) For the setting with changes in rod, there is no trend in Sequence 1 (Rod 1)

whereas there is existence of trend in Sequence 2 (Rod 2).

(c) There was no existence of trend for the setting where both factors were changed.

Generally speaking, in Figure 3.4, the observed running time can be said to in-

crease with time for the plots for no changes, ball effect, and rod effect (if the outlier

point is removed). However, using the combination of the trend analysis results and

eye inspection of Figure 3.4, we can say that neither the ball nor the rod have a

significant effect on the time-trend in the experiment. Further, a one-one compari-

son of the running time (response) for the changes in ball show that the responses
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for ball 2 are greater than those of ball 1 in 80% of the cases considered. While

for the changes in rod, the responses for rod 2 are greater than those of rod 1 in

40% of the cases. In 60% of the cases considered, the responses from the interaction

between rod 2 and ball 2 are greater than those from rod 1 and ball 1. This could

be interpreted to mean that the ball is likely to have a higher effect (”red X”) and

the interaction as the ”pink X”.

The above results do not give a clear picture of the possible factor that is respon-

sible for the observed time-trend in the funnel experiment. In order to achieve the

set aim, more experiments were conducted using the sequence in (3.4) in a random-

ized manner. The mode of operation was the same as above but the waiting time

was reduced from 30 minutes to 5 minutes. This was done to remove the influence of

long time lag from the experiment. All together eight experiments were conducted.

The observed results for the remaining seven different factorial experiments along

with the experimental settings are presented in Tables 3.4 through 3.10.

Table 3.4: Second Experiment: Observed Results For Factorial Experiment

No changes in both Changes in rod Changes in ball Changes in both

run r1b1 r1b1 r1b1 r2b1 b1r1 b2r1 r1b1 r2b2

1 35.59 36.67 34.73 36.70 37.01 35.67 36.95 37.26

2 35.99 36.17 34.60 36.89 37.58 37.91 36.99 35.07

3 35.99 35.86 34.64 36.94 35.57 37.49 36.99 39.04

4 36.60 36.97 36.63 37.00 36.97 35.99 38.31 36.76

5 36.18 36.78 34.78 36.24 37.90 37.38 37.06 36.77

6 36.55 36.37 34.53 36.46 36.97 37.29 37.47 35.27

7 36.93 36.27 34.65 34.74 37.03 37.53 37.73 37.47

8 36.53 36.07 33.87 36.87 38.49 37.63 37.27 36.33

9 36.23 35.98 36.14 37.61 36.85 37.77 35.83 36.83

10 36.40 35.94 36.68 37.59 37.30 37.09 36.87 36.99

mean 36.3 36.31 35.12 36.7 37.17 37.17 37.15 36.78

stand.dev 0.38 0.38 0.98 0.81 0.76 0.75 0.64 1.12

coeff.of var. 1.06 1.05 2.79 2.21 2.05 2.02 1.73 3.04

tsp 1.91 -1.26 0.69 0.76 0.4 0.61 -0.38 0.05
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Table 3.5: Third Experiment: Observed Results For Factorial Experiment

Changes in ball No Changes in both Changes in both Changes in rod

run b1r1 b2r1 r1b1 r1b1 b1r1 b2r2 r1b1 r2b1

1 34.82 34.90 36.82 38.03 33.43 35.20 36.37 34.67
2 37.03 36.83 36.60 37.49 36.06 35.12 33.65 36.49
3 37.59 37.50 37.19 36.94 33.90 37.02 35.13 36.70
4 36.98 36.31 37.31 34.83 34.75 38.19 34.93 37.62
5 37.94 36.69 36.54 36.12 36.09 37.87 36.53 37.00
6 36.32 34.88 36.72 34.58 36.51 37.42 38.19 35.54
7 37.05 36.53 37.84 35.53 36.41 38.36 35.78 36.80
8 37.13 34.90 37.13 35.03 34.35 37.83 35.83 37.27
9 37.11 35.63 37.14 35.78 36.51 37.23 34.43 34.70
10 36.40 38.39 37.55 34.74 34.91 36.43 36.32 36.84

mean 36.84 36.26 37.08 35.91 35.29 37.07 35.72 36.36

stand.dev 0.85 1.19 0.42 1.22 1.16 1.15 1.27 1.04

coeff. of var. 2.32 3.27 1.13 3.39 3.3 3.11 3.55 2.85

tsp 0.43 0.07 1.35 -2.66 1.57 0.96 0.26 0.76

Table 3.6: Fourth Experiment: Observed Results For Factorial Experiment

No changes in both Changes in ball Changes in rod Changes in both

run b1r1 b1r1 b1r1 b2r1 r1b1 r2b1 r1b1 r2b2

1 22.97 24.13 24.51 24.57 24.49 26.69 26.46 27.25
2 23.21 24.03 24.60 25.69 25.49 26.67 25.87 26.24
3 23.45 24.38 24.54 26.33 25.91 26.99 25.37 26.98
4 23.72 24.38 24.35 26.27 26.23 26.97 26.49 26.03
5 23.23 24.90 25.09 26.31 26.43 27.11 26.38 26.15
6 23.38 24.53 25.29 26.14 26.18 27.26 26.40 26.72
7 23.89 24.54 25.33 26.07 26.77 26.93 26.86 26.83
8 24.01 24.13 24.54 26.20 27.19 27.20 26.49 26.79
9 24.19 24.55 24.75 26.59 26.87 26.52 26.68 27.03
10 24.12 24.69 25.03 26.43 26.83 27.31 26.58 26.59

mean 23.62 24.43 24.8 26.06 26.24 26.96 26.34 26.66

stand.dev 0.43 0.27 0.35 0.58 0.8 0.27 0.43 0.4

coeff. of var. 1.81 1.12 1.42 2.21 3.03 0.99 1.63 1.52

tsp 5.55 2.21 1.57 2.19 6.42 1.21 3.89 -0.02
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Table 3.7: Fifth Experiment: Observed Results For Factorial Experiment

Changes in both No Changes in both Changes in rod Changes in ball

run b1r1 b2r2 b1r1 b1r1 r1b1 r2b1 r1b1 r1b2

1 32.77 35.96 33.27 32.72 32.90 35.50 33.74 34.64
2 32.92 34.66 22.65 33.42 33.79 36.02 33.52 34.24
3 34.16 34.84 33.78 33.53 32.95 35.38 33.58 33.47
4 33.43 35.75 34.07 33.63 36.52 33.63 35.57 33.33
5 36.59 34.68 33.91 33.94 34.09 36.19 33.87 36.19
6 34.77 36.12 32.81 33.13 33.03 36.21 35.29 34.86
7 35.21 37.27 32.91 33.14 34.23 35.98 35.35 35.66
8 36.89 36.01 33.53 32.97 35.55 33.94 33.83 35.17
9 37.66 34.08 33.73 33.52 33.49 36.07 36.02 35.38
10 34.99 35.89 33.30 32.99 33.88 35.63 36.77 34.53

mean 34.94 35.53 32.4 33.3 34.04 35.46 34.75 34.75

stand.dev 1.69 0.94 3.45 0.37 1.17 0.93 1.18 0.91

Coeff. of var. 4.84 2.66 10.65 1.11 3.44 2.62 3.4 2.62

tsp 4.02 0.43 0.22 -0.4 1.17 0.47 3.41 1.35

Table 3.8: Sixth Experiment: Observed Results For Factorial Experiment

Changes in ball No Changes in both Changes in rod Changes in both

run b1r1 b2r2 b1r1 b1r1 r1b1 r2b1 r1b1 r1b2

1 26.98 27.89 28.67 28.56 29.09 28.41 27.88 28.51
2 27.57 27.95 28.93 28.83 30.74 29.00 28.22 30.71
3 27.33 28.23 28.63 29.35 30.27 30.08 28.10 30.96
4 27.34 27.89 29.17 28.42 29.67 29.97 28.23 29.72
5 28.43 29.03 28.96 30.06 31.13 30.29 28.47 31.46
6 27.87 28.37 29.15 30.00 30.82 30.76 28.16 31.15
7 27.41 28.50 30.39 29.81 30.58 29.87 28.98 31.00
8 28.31 28.73 28.75 30.44 30.19 30.79 28.97 31.46
9 28.23 28.80 29.29 30.51 30.57 30.77 29.08 31.53
10 28.21 28.50 29.92 30.35 30.34 31.18 28.74 31.42

mean 27.77 28.39 29.19 29.63 30.34 30.11 28.48 30.79

stand.dev 0.51 0.4 0.57 0.79 0.59 0.86 0.43 0.97

coeff. of var. 1.83 1.41 1.94 2.67 1.95 2.86 1.51 3.14

tsp 2.49 2.88 2.57 4.42 0.54 4.65 4.02 3.8



Chapter 3 The Funnel Experiment 54

Table 3.9: Seventh Experiment: Observed Results For Factorial Experiment

Changes in rod Changes in ball No Changes in both Changes in both

run b1r1 b2r2 b1r1 b1r1 r1b1 r2b1 r1b1 r1b2

1 30.56 30.43 28.83 30.27 31.10 32.01 31.28 31.90
2 30.71 31.25 28.95 31.19 31.73 31.25 31.98 33.03
3 31.27 30.83 29.76 30.93 31.63 31.69 30.84 31.74
4 31.67 30.54 29.37 32.00 31.93 31.86 32.76 32.61
5 31.51 30.67 29.91 30.52 31.53 31.95 32.29 33.33
6 31.24 30.98 30.87 30.81 31.76 31.60 32.29 33.13
7 32.29 31.16 31.57 32.07 30.48 31.08 31.95 32.70
8 31.53 31.48 30.47 31.10 32.11 32.28 31.22 33.02
9 31.21 31.33 30.93 31.46 31.20 32.53 32.96 33.12
10 30.69 31.67 31.23 31.62 32.10 31.43 32.87 33.52

mean 31.27 31.03 30.19 31.2 31.56 31.77 32.04 32.81

stand.dev 0.53 0.41 0.97 0.6 0.51 0.45 0.74 0.59

coeff. of var. 1.68 1.33 3.2 1.91 1.61 1.42 2.3 1.79

tsp 0.47 3.41 5.55 1.54 0.88 0.22 1.63 2.19

Table 3.10: Eight Experiment: Observed Results For Factorial Experiment

Changes in rod No Changes in both Changes in Ball Changes in both

run b1r1 b1r2 b1r1 b1r1 r1b1 r1b2 r1b1 r1b2

1 32.18 32.28 32.13 31.83 32.81 35.50 32.25 34.89
2 31.36 33.09 31.52 32.67 34.73 34.75 32.60 33.39
3 30.71 32.48 31.84 34.31 34.64 34.73 34.69 34.83
4 31.25 31.93 31.78 34.97 32.53 35.59 33.49 35.22
5 32.42 32.45 31.83 31.89 35.03 35.10 35.14 35.88
6 32.50 32.00 31.92 34.34 34.40 35.26 32.84 36.21
7 31.61 32.88 31.57 34.28 34.41 34.49 34.97 34.36
8 32.09 32.27 34.59 32.85 34.27 34.85 35.30 33.41
9 31.88 32.33 32.11 34.41 34.59 35.47 33.13 34.58
10 31.98 32.33 31.73 34.27 34.91 35.69 35.47 35.60

mean 31.8 32.4 32.1 33.58 34.23 35.14 33.99 34.84

stand.dev 0.56 0.36 0.9 1.15 0.86 0.42 1.25 0.95

coeff. of var. 1.77 1.1 2.79 3.44 2.51 1.19 3.66 2.73

tsp 0.58 -0.42 0.19 1.04 0.61 0.58 2.57 0.22
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The summary of results of the preliminary analysis for the seven experiments in

Table 3.4 through 3.10 are presented as follows:

7→ From Table 3.4, the absolute differences of the standard deviation and the

coefficient of variation for each of the factor settings are 0(0.01), 0.17(0.58),

0.01(0.03), 0.48(1.31) for the φ, rod , ball, and interaction effects, respectively.

The values in the parenthesis above and thereafter in this section represent the

absolute difference in the coefficient of variation. For this experiment, none of

the computed tsp fall outside the interval given in (3.5). Further, the mean of

the second sequence is greater than the mean of the first sequence only for the

rod effect. This suggests that there is no trend in the experiment, and hence

no conclusion is visible from the experiment.

7→ In the results for the third experiment (see Table 3.5), the absolute differences

of the standard deviation and the coefficient of variation for each of the factor

settings are 0.34(0.95), 0.8(2.26), 0.01(0.19), 0.23(0.7) for the ball, φ, interac-

tion, and rod effects, respectively. In this experiment, only the tsp for the φ

effect fall outside the interval in (3.5), this suggests that there is no trend in

the sequence for both the rod and the ball. Using the mean value, the mean of

the second sequence is greater than the first sequence for both the interaction

and rod effects. Therefore, no conclusion is visible from the experiment.

7→ From the fourth experimental results (see Table 3.6), the absolute differences

of the standard deviation and the coefficient of variation for each of the factor

settings are 0.16(0.69), 0.23(0.79), 0.53(2.04), 0.03(0.11) for the φ, ball, rod,

and interaction effects, respectively. The computed tsp for the φ, rod, and

interaction effects are greater than the critical value (that is, they lie outside

the interval given in (3.5)). Hence there is presence of trend in the sequences

for the said factors. Also the mean of the second sequence is greater than the

mean of the first sequence for all the factors in this experiment. Since the

absolute difference in the coefficient of variation for the rod effect is relatively

high compared to the other factors with trend, then the rod might be a possible

candidate responsible for the trend in the experiment.
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7→ In the results for the fifth experiment (see Table 3.7), the absolute differences

of the standard deviation and the coefficient of variation for each of the factor

settings are 0.75(2.18), 3.08(9.54), 0.24(0.82), 0.27(0.78) for the interaction,

φ, rod, and ball effects, respectively. Also, the mean of the second sequence is

greater than the mean of the first sequence for all the factors except for the

ball effect that has equal mean value. Further, the computed tsp implies that

trend is present only in the interaction and ball effects sequence and since the

absolute differences in the computed degree of variation for the ball effect is

not so high in comparison to effects of other factors, then the interaction effect

is taken to be the only candidate that can be considered.

7→ Table 3.8 shows the results for the sixth experiment. For this experiment, the

absolute differences of the standard deviation and the coefficient of variation

for each of the factor settings for the ball, φ, rod, and interaction effects are

0.11(0.42), 0.22(0.73), 0.27(0.91), and 0.54(1.63), respectively. The computed

tsp for all the factor settings lies outside the interval in (3.5). This implies

that there is presence of trend in the experiment. Examination of the mean

shows that the mean of the second sequence is greater than the mean of the

first sequence for all the factors except for only the rod effect. The interaction

effect which has an outstanding absolute different coefficient of variation is a

likely candidate responsible for the observed trend in the experiment.

7→ The results of the seventh experiment (see Table 3.9) reflect that there is

presence of trend in the experiment since the mean of the second sequence is

greater than the mean of the first sequence for all the factors. However, an

examination of the tsp reflect that only the ball effect could be adjudged to be

a possible candidate responsible for the trend in the experiment.

7→ In Table 3.10 (the eight experimental result), the absolute differences in the

standard deviation and the coefficient of variation for each of the factor set-

tings are 0.2(0.67), 0.25(0.65), 0.44(1.32), 0.3(0.93) for the rod, φ, ball, and

interaction effects, respectively. There is presence of trend in the experiment

since the mean of the second sequence is greater than the mean of the first
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sequence for all the factors. However, only the computed tsp value for one of

the sequence for interaction effect implies presence of trend. Therefore, for

this experiment we cannot make any viable conclusion.

The experimental results in Tables 3.3 to 3.10 are summarized according to the

experimental factors and are presented graphically in Figure 3.5.

Figure 3.5: Summary plot for factorial experimental result for the ball and rod effects

From the graphs in Figure 3.5, the following are inferred: (a) the ball has an effect

on the time-trend in five of the experiments, (b) presence of trend due to the rod
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effect are seen in two of the experiments, and (c) the interaction between the ball

and the rod has an effect on the time-trend in four of the experiments.

Since only one-quarter of the eight experiments shows the rod to be a possible can-

didate, then the rod can be said to have no or very little effect on the trend in

the experiment. Therefore, we are left with only two possible factors that could be

responsible for the time-trend in the experiment. These two possibilities are the ball

and the interaction between the ball and the rod. It should however, be noted that

the above submission is based on the preliminary analysis of the experimental data.

In order to make a comprehensive analysis of the experimental data in Tables

3.3 to 3.10, we summarized the data into a two factorial experiment according to

the experimental factors. The response is taken to be the sum of differences for each

experimental columns in Tables 3.3 to 3.10. Thus we have thirty-two runs with two

factors. The design matrix and the summarized response are presented in Table

3.11.
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Table 3.11: Summary of Factorial Experimental Results

Factors

Run Ball Rod Response

1 -1 -1 7.75
2 1 -1 7.91
3 -1 1 -1.45
4 1 1 0.29
5 -1 -1 0.09
6 1 -1 0.08
7 -1 1 15.79
8 1 1 -3.68
9 -1 -1 -11.77
10 1 -1 -5.81
11 -1 1 6.47
12 1 1 17.75
13 -1 -1 8.09
14 1 -1 12.57
15 -1 1 7.26
16 1 1 3.23
17 -1 -1 9.03
18 1 -1 -0.07
19 -1 1 14.12
20 1 1 5.87
21 -1 -1 4.47
22 1 -1 6.21
23 -1 1 -2.28
24 1 1 23.09
25 -1 -1 2.11
26 1 -1 10.08
27 -1 1 -2.34
28 1 1 7.66
29 -1 -1 14.80
30 1 -1 9.11
31 -1 1 6.06
32 1 1 8.49

To analyze the data in Table 3.11, we used the two levels factorial model given in

matrix form by

y = βX + ε (3.6)

where y is an (n×1) vector of response, X is an (n×p) matrix of the regressor factors,
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β = [β0, β1, β2, β12]
′ is a (p× 1) vector of unknown parameters with β0 representing

the overall mean effect, β1 representing the ball effect, β2 representing the rod effect,

and β12 representing the interaction between ball and rod effect. ε is an (n×1) vector

of random errors, with ε ∼ NID(0, σ2). On analyzing the data in Table 3.11, the

parameter estimates (β̂) for the model given in (3.6) are found to be 5.6556, 0.7681,

0.99, and 0.4237 for the overall mean, ball, rod, and interaction effects, respectively.

That is, β̂ = [0.6556, 0.7681, 0.99, 0.4237]′ . The analysis of variance table to test for

the significance of the estimated parameter effects is presented in Table 3.12 below.

Table 3.12: Analysis of Variance Table For Factorial Experimental Results

Source DF Sum of Square Mean Square F-value p-value

ball 1 18.881 18.88051 0.3268800 0.5720637

rod 1 31.363 31.36320 0.5429939 0.4673245

ball& rod 1 5.746 5.74605 0.0994819 0.7547911

Residuals 28 1617.273 57.75977

Total 31 1673.263

The estimated p-values on the above ANOVA table imply that the ball, rod, and in-

teraction between ball and rod effects are not significantly different from zero. Thus

we can conclude that neither the ball, the rod nor the interaction between ball and

rod have a significant effect on the running time of the ball bearing. Furthermore, us-

ing the parameter estimates and the information on the ANOVA table, we computed

the confidence interval for the mean response of the running time. A 100(1-α) per-

cent confidence interval on the mean response at the point say, X0 = [1, x01, ..., x0k]
′

given by

ŷ0 − tα/2,n−p

√
σ̂2X

′
0(X

′X)−1X0 ≤ y ≤ ŷ0 + tα/2,n−p

√
σ̂2X

′
0(X

′X)−1X0

was used. Here ŷ0 = β̂X
′
0 is the mean response at point X0, x0i ∈ {1,−1}, i =

1, 2, ..., k, n is the number of run in the model design matrix X, and p the number
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of estimated parameter. Therefore, the 95% confidence interval on the mean for the

sum of differences in the running time for the two sequence experiments conducted

with ball 1 rod 1 is [-0.2497, 8.8922], and for ball 1 rod 2 is [0.8828, 10.0247]. Simi-

larly for ball 2 rod 1 we have [0.4391, 9.5809] and for ball 2 rod 2, we have [3.2666,

12.4084]. Hence, the smallest mean for the sum of differences in the running time

for the two sequences in the experiments should be approximately -0.25, and the

maximum sum of differences of the running time should be 12.41.

An alternative way in which the experimental results in Tables 3.3 to 3.10 can be

analyzed is to arrange the different experiments as block factorial experiment. This

is done by using each of the eight factorial experiments as block. The differences

in the sum of the experimental results of the two sequences for each factor in Table

3.3 to 3.10 are taken to be the response variable. This is obtained by taking the

sum of the first sequence of a factor away from the sum of the second sequence

of that factor. Table 3.13 presents the summary for the differences in the sum of

the experimental results of the two sequences for each factor arranged as a blocked

factorial experiment.

Table 3.13: Two Factorial Experiment With Block Effect

Factors

Block φ Rod Ball interaction Total

1 7.75 7.91 -1.45 0.29 14.5

2 0.09 0.08 15.79 -3.68 12.28

3 -11.77 -5.81 6.47 17.75 6.64

4 8.09 12.57 7.26 3.23 31.15

5 9.03 -0.07 14.12 5.87 28.95

6 4.47 6.21 -2.28 23.09 31.49

7 2.11 10.08 -2.34 7.66 17.51

8 14.80 9.11 6.06 8.49 38.46

Total 34.57 40.08 43.63 62.7 180.98
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The model for a two factorial experiment with block effect is

yijkl = µ + ξi + βj + ξβij + γk + εijkl (3.7)

where µ represents the overall mean effect, ξ represents the ball effect, β represents

the rod effect, ξβ represents the interaction between ball and rod effect, γ repre-

sents the block effect, and ε represents the random error term. Using the model in

Equation (3.7) to analyze the data in Table 3.13, the analysis of variance table is

similar to that of Table 3.12. The sum of square for the rod, ball and interaction

between ball and rod effects are the same as that of Table 3.12. The sum of square

for the block and error effects equal 224.1837 and 1393.0895, respectively. Hence,

the p-values for the rod, ball, interaction, and block effects are 0.50, 0.60, 0.77, and

0.84, respectively. Thus, none of the ball, the rod, nor the interaction between ball

and rod has a significant influence on the trend in the experiment.

Examinations with the eye during the conduct of the experiments show that the

time it takes the ball to roll through the rod is approximately constant at 1.25 sec-

onds for all the experiments conducted irrespective of changes in factor. However,

the time it takes the ball to spiral through the funnel to the uppermost part of

the funnel tip and within the funnel tip varies (does not remain constant) from one

experiment to another. Therefore, the funnel is suspected to have an influence on

the time trend in the experiment.

3.2.2 Experiment for funnel influence

In order to determine the influence of the funnel and the interaction between ball

and funnel on the observed time-trend in the experiment, we planned another fac-

torial experiment. The experiment involves two similar balls of the same size (as

before), a rod and two similar funnels. For this experiment one machine was used.

We started by conducting the first 10 runs with Ball 1 and Funnel 1. The second

10 runs were obtained by using the same funnel with the second ball (Ball 2) after
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a time lag of 5 minutes. The process was repeated with another funnel (Funnel

2). Hence the experiment is a two factors experiment conducted over a day. The

obtained results are presented in Figure 3.6.

Figure 3.6: Influence of the ball and funnel effects on the time-trend in the exper-

iment. B1F1 = result from Ball 1 with Funnel 1, B2F1 = result from Ball 2 with

Funnel 1, B1F2 = result from Ball 1 with Funnel 2, B2F2 = result from Ball 2 with

Funnel 2

The computed |tsp| values for the experimental data plotted on Figure 3.6 are 1.85

for Funnel 1, and 9.16 for Funnel 2. For these experimental data sets, the interval

given in Equation (3.3) equals [-2.100, 2.100]. Therefore, there is no trend in the

data obtained with Funnel 1 while there is trend in the data obtained with Funnel

2. Although the above result may have happened by chance, it is an indication that

the process behaved differently in the two funnels. This result leads us to the next

section.
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Cross-over experiment for funnel influence

In this section, because of the differences in the behavior of the funnel, we planned

a cross-over experiment to determine the influence of the funnel on the observed

time-trend in the experiment. This is to take care of the possibility of any carry

over effect on the experimental response. The experiment was conducted with a

ball, a rod, and two funnels over a period of two days. We made use of cross-over

experimental design setting with two funnels conducted over two periods in two se-

quences. Hence, we have a 2× 2 cross-over experiment. It should be noted that the

period effect in the carry over setting represents the time-trend effect in this case.

The experiment is conducted as follows: On day 1, the first 10 runs were done by

using Funnel 1 along with a ball and a rod. Thereafter we changed to Funnel 2.

Using the same rod and ball, we conducted another 10 runs. A transition period

of five minutes is between the two partition of runs, this is the period we used to

change the funnel. On day 2, the first 10 runs were conducted with Funnel 2 along

with the same rod and ball used on day 1. The funnel was changed to Funnel 1 and

we conducted the remaining 10 runs using the same ball and rod as before. The

setting of the experiments and the observed results are presented in Table 3.14.

Table 3.14: Cross-Over Experimental Setting and Observed Results

Sequence 1 Sequence 2

(Funnel 1) (Funnel 2)

Day 1 25.55 26.40 26.70 27.00 26.38 14.89 15.68 16.24 16.60 16.70

27.18 27.52 27.20 28.04 26.34 16.87 17.51 17.55 17.13 17.47

(Funnel 2) (Funnel 1)

Day 2 17.23 16.81 17.05 16.76 17.19 25.15 25.57 25.99 25.89 26.77

16.65 17.69 17.20 17.99 17.33 26.52 27.77 26.93 28.18 27.13

The averages of the observed running time for the four cells in Table 3.14 are 26.831,

16.664, 17.19, and 26.59 for (Funnel 1 day 1), (Funnel 2 day 1), (Funnel 2 day 2),
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and (Funnel 1 day 2) respectively. The average running time in the first sequence

decreases with days but reverse is the case for the second sequence. A close examina-

tion shows that the average running time for Funnel 1 is higher than that of Funnel

2, hence the pattern for the sequence. To determine existence of trend in each cell

of Table 3.14, a trend test was carried out using Equations (3.1) through (3.3). The

obtained tsp and its corresponding p- values giving in parenthesis thereafter for day

1 are 1.5425(0.0808) and 5.9457(0.0002) for funnels 1 and 2, respectively. Similarly

for day 2, we have 6.4212 (0.0001) and 1.7(0.0638) for funnels 1 and 2, respectively.

If we compare the obtained tsp values with the interval [-2.1, 2.1], it implies none

existence of trend, existence of trend, no existence of trend, and existence of trend

in the order (Funnel 1 day 1), (Funnel 2 day 1), (Funnel 2 day 2), and (Funnel 1

day 2), respectively. A striking behavior in the above results is the consistency of

the trend pattern for the funnels with days. That is, irrespective of the changes in

days, there seems to be trend in the results obtained with Funnel 2. The plot of the

observed results for the two days are presented in Figure 3.7.

Figure 3.7: Influence of the funnel on the time-trend in the experiment. The exper-

iment was conducted over a period of two days

The pattern of the plotted results in Figure 3.7 and the large difference in the
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averages of the observed response for the two funnels depicts differences in the per-

formance of the funnels. On comparing the plot for the two days (see Figure 3.7), it

is observed that the response increases with time on the second day despite changes

in funnel, but on the first day, the scenario is totally different. The running time in

Funnel 1 has a similar pattern on both days, which is similar for Funnel 2. Thus,

the pattern of the observed running time (experimental response) for the funnels on

both days are almost alike. In addition, the observed running time for Funnel 2 is

far less than that of Funnel 1 irrespective of changes in day and sequence. From the

above results and inference, it is clear that the funnel behaved differently and there

is no possibility that day has some influence on the observed trend in the experiment.

To confirm that periods (days) have a significant influence on the trend in the

experiment, we conducted another cross over experiment on a single day using the

”abba” design setting. Two identical funnels, a ball and a rod were used. We started

with Funnel 1 and conducted 10 runs. The funnel was changed and we waited for

five minutes before conducting another 10 plus 10 runs using the same ball and rod.

Therefore 20 runs were conducted on Funnel 2 before we changed back to Funnel

1 and conducted another 10 runs. The observed results are display in Figure 3.8.

For more on the ”abba” design (see for example, Toutenburg ;1995 and Ratkowsky,

Evans, & Alldredge; 1993).

The computed tsp and p-values (in parenthesis) for the data that generated Fig-

ure 3.8 are 7.75(0.0000), 3,28(0.0056), 5.21(0.0004), and -0.26(0.4007) for Sequence

1 Funnel 1 (S1F1), Sequence 1 Funnel 2 (S1F2), Sequence 2 Funnel 1 (S2F1), and

Sequence 2 Funnel 2 (S2F2), respectively. Similarly the computed tsp and p-values

for the data for funnels 1 and 2 are 19.64(0.0000) and 3.88(0.0005), respectively.

Therefore, the trend analysis on the data that generated Figure 3.8 confirmed pres-

ence of trend in the two funnels. Hence, there is time trend in the two funnels and

therefore changes in days have little or no influence on the trend in the experiment.
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Figure 3.8: Influence of the funnel on the time-trend in the experiment. The exper-

iment was conducted on a single day

The plots in 3.7 and 3.8 reflect that the carry over and period effects have no signifi-

cant effects on the observed responses. It should be noted that the two experiments

that produce figures 3.7 and 3.8 were conducted independently with two funnels,

one ball and one rod. Furthermore, since the results from these two experiments

show an indication of trend, we are convinced that we do not need to carry out

further experiments in this study. A likelihood explanation for what is happening

within the experiment, is that either the funnel is being warmed up by the ball or

that the ball gets warmed up by the rod and hence the spinning (running) time of

the ball with in the funnel keeps on getting larger as we proceed in the experiment.

The later is evident in the results from the second sequence for Funnel 1 (S2F1

in Figure 3.8) which is the last sequence in the conduct of the ”abba” experiment

conducted over one day (see Figure 3.8). Therefore, we can conclude that there is

no other factor except the funnel that is responsible for the observed time-trend in

the experiment. It should however be noted that in order to have a comprehensive

analysis of the cross-over experiment, more experiments will have to be conducted.

This will be an area of interest for future work.
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3.3 Experiment with the American type funnel

Examination with the eye during the conduct of the experiments show that the ball

behaves in a random manner within the ”funnel tip”. The running time of the ball

bearing in this region keeps changing for different repetition of experiment. Thus,

an indication that the trend in the experiment may be due to the behavior of the

ball within the funnel tip.

To confirm that the behavior of the ball within the funnel tip is responsible for

the trend in the experiment, we constructed another funnel without the tip, this we

called the American type funnel (see Figure 3.2 on page 42). This funnel is identical

in shape and geometry with the upper part of the funnel with tip (the earlier used

funnel) and it is made of aluminium. Using the American type funnel, we repeated

the earlier experiments for showing time trend using the same ball and rod as be-

fore. The experiments were conducted on the same day keeping all factors settings

fixed as before. We started with Funnel 1 by conducting 16 runs as before. After a

waiting time of five minutes, we conducted another 16 runs with Funnel 2. In the

same manner we conducted another 16 runs with Funnel 3. The obtained running

time for funnels 1, 2, and 3 are presented in Figure 3.9.

The computed tsp and p- values (in parenthesis) for the series of the three fun-

nels in Figure 3.9 are 8(p < 0.0001), 16.94(p < 0.0001), and 19.65(p < 0.0001) for

funnels 1, 2 and 3, respectively. Therefore, there is trend even in the American type

funnel. From the above results, the following are inferred:

(i) The running time keep on increasing as we proceed in the experiment despite

changes in funnel (see Figure 3.9). The average running times for the experiment

conducted with the first funnel is less than that of the second funnel and that of

the second funnel is less than that of the third funnel. This point to our earlier

submission that either the ball or the funnel keeps on warming up as we proceed in

the experiment. (ii) Two identical funnels behaved differently. (iii) The funnel tip

does not have any role to play on the observed trend in the experiment. (iv) Days
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do not have any significant influence on the trend in the experiment.

Figure 3.9: Experimental results with three identical funnels

The conclusion from the graphical, the factorial analysis, and the cross-over experi-

mental results all lead to one point; the funnel has the highest influence on the trend

in the experiments and hence responsible for the observed trend in our exemplified

experiment.

To remove the observed time-trend in the funnel experiment, we concentrate

on the funnel. This is due to the fact that the analysis on the data from the

conducted experiments pointed to the fact that the funnel is responsible for the

trend. On cleaning the funnel with a static cloth before conducting the experiment,

the observed running time did not show presence of trend. Also, on increasing the

time lag between consecutive runs in the experiment from 38 seconds to 120 seconds,

the observed running time did not reflects presence of trend. Therefore, using any

of the two aforementioned possibilities, the observed time-trend in the experiment

was eliminated.



Chapter 4

Comparison of Run Orders of

Unreplicated Fractional Factorial

Designs

The main focus in this chapter is on the performance of run orders of unreplicated

two-levels factorial/fractional factorial designs. However, the approach discussed

here can be extended to more than two level factors. Our objective is to compare

the performance of these run orders with regards to active contrast in situations

where there is a trend influencing the experimental data. A contrast is said to be

active if it has a true effect on the behavior of the response. The response used for

the comparison is based on the two data sets produced from the funnel experiment

where we have observed a strong time-trend as shown in Chapter 3. In order to

achieve the set objective, three types of run orders of a fractional factorial design

are considered. These are the standard, randomized and systematic run orders for a

non-replicated 2k−p experiment, where, k − p = 4 and therefore the number of runs

equals 16.

The chapter is divided into two parts. In the first part, a systematic run order

that is linear trend resistant is compared with the standard run order of unreplicated

2k−p design. While in the second part, performance of the standard, randomized,

70



Chapter 4 Comparison of Run Orders 71

and systematic (time-trends resistant) run orders are measured. The constructed

25−1 designs in Chapter 2 are used to make the comparison. The design in Table 2.1

is taken to be the standard run order, the reduced design in Table 2.3 which is linear

time-trends resistant is taken to be the systematic run order, and randomization of

the run order of the design in Table 2.1 as the randomized run order. Note that

the trend resistant design does not allow estimation of some two factor interactions,

the corresponding columns are confounded with the time trend. These two factor

interactions are therefore not estimable.

To compare the standard run order and the systematic run order (linear time

trend resistant design), sensitivity to presence of active contrast of the run orders

is used as an evaluation standard. Performance of the standard, randomized, and

systematic run orders are measured by probability of false rejection of active

contrast and probability of effect detection of active contrast via simulation

studies. Thus, we make use of three evaluation standards for comparison of the run

orders.

To determine the three evaluation standards mentioned above to compare the

run orders of a fractional factorial design, we use the censored data approach in

conjunction with the half normal plot principle.

The censored data approach is defined as follows. Let yj, where j = 1, 2, ...n and

n = 2k−p, denote the response from a 2k−p experiment. Further, let m be a constant

value. To censor the data, the constant value m is added to the experimental

response yj for all runs j where the active factor i is at the high level. More precisely,

y
(m)
j =

 yj + m, if factor i is at the high level (+) in run j

yj, if factor i is at the low level (–) in run j
(4.1)

where i ∈ {1, 2, ..., n− 1} represents the contrast used to censor the data. The new

variable from the censored data approach, that is, y
(m)
j is referred to as a censor

data. For example, using the setting of one contrast, say the first column of a model
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design matrix, add m ≥ 1 to the data (yj) whenever the entries of the first column

of the model design matrix of the design under study are at + level, and zero to yj

when the entries of the first column are at - level. For two contrasts, add m ≥ 1 to

yj whenever the entries of, say, the first or the second columns of the model design

matrix are at + levels, 2m to yj whenever the first and the second columns are at

+ levels, and zero otherwise. For three active contrasts, add m ≥ 1 to yj whenever

the entries of say, the first or second or third columns of the design matrix are at +

levels, 2m to yj when two of the three columns are at + levels, 3m to yj when the

first three columns are at + levels, and zero otherwise. In general, if we assume two

or more factors to be active, then y
(m)
j is derived by adding m for each of the active

factors that is at level (+) in the run j. The vector with entries y
(m)
j , 1 ≤ j ≤ n, is

called censored observations.

The half normal plot was proposed by Daniel (1959, 1976) and later improved on

by Zahn (1975a, 1975b). It is a tool for assessing the significance of contrasts and in-

terpreting unreplicated two-levels fractional factorial designs. The visual inspection

of a half normal plot is a popular procedure for interpreting data from unreplicated

factorial experiments (Olguin and Fearn, 1997). A random variable, Y , say, is said

to have the half normal distribution if its density g can be written as

g(y) =

 [2/ (πσ2)]
1/2

exp [−y2/ (2σ2)] , y ≥ 0

0, otherwise
(4.2)

If σ2 = 1.0, the distribution in (4.2) will give a standard half normal distribu-

tion. The procedure for half normal plot for a fractional factorial design is pre-

sented as follows. For a 2k−p design, let X represent the model design matrix with

b = 2k−p − 1 contrasts. Also let β̂1, β̂2, ..., β̂b be the b estimates of contrast ef-

fects, where β̂i, 1 ≤ i ≤ b is given by β̂ = (X ′X)−1X ′y, and y is the observed

experimental response. Let |β̂[1]| ≤ |β̂[2]| ≤ ... ≤ |β̂[b]| represent the ordered ab-

solute effects for the vector of parameters in the model design matrix X. The

half normal plot involves plotting each of the ordered absolute contrast effects β̂i

against the corresponding (i− 1
2
)/b percentile of the standard half normal distribu-
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tion on half normal probability paper. That is, plotting |β̂[1]| ≤ ... ≤ |β̂[b]| against

Φ−1 (1/2 + (i− 1/2)/(2b)) , 1 ≤ i ≤ b, b = 2k−p − 1, where Φ−1(.) represent the

inverse of cumulative distribution function of the normal distribution. Assuming

normality of the response, the estimates corresponding to non active contrasts on

the half normal plot should form an approximately straight line while the significant

contrasts (active contrasts) should appear at a distance as outliers. There are many

other versions of half normal plot (see e.g., Zahn 1975b).

The general assumption for the approaches used in this study for comparing the

run orders is as follows: (1) When we assume that none of the contrast is active, the

original experimental data is used to estimate the contrast effects of the run order.

(2) If a contrast is assumed to be active, it is used to censor the data.

4.1 Sensitivity to active contrast

Sensitivity to presence of active contrast is used as a standard to measure the per-

formance of the standard and systematic run orders. To determine the run order

that is more sensitive to presence of active contrast, we use some of the columns

of the model design matrix X to censor the observed response. This is done by

adding a constant value to the response variable when the setting of the column in

question is at + levels and zero otherwise as given in Equation (4.1). The new data

set y
(m)
j is then used to estimate the contrasts (βi). It is expected that the absolute

estimate of the contrast used to censor the response from the experiment (experi-

mental data) should be higher than the absolute estimate of all other contrasts in

the model design matrix, and hence should become an outlier to all other contrasts

(that is, maximum absolute contrast) on the half normal plot. The algorithm for

the procedure is presented in sequence as follows:

(i) Censor the experimental data (response variable) as described in Equation

(4.1) using a column of the model design matrix X. This gives a new data set.

(ii) Use the new data set obtained in step (i) to estimate the effect of all the b
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contrasts in the model design matrix X.

(iii) Plot the ordered absolute contrast estimates (|β̂[1]| ≤ |β̂[2]| ≤ ... ≤ |β̂[b]|)

against the corresponding (i − 1
2
)/b percentile of the standard half normal

distribution (Φ−1 (1/2 + (i− 1/2)/(2b))).

(iv) Record the contrast effect with the maximum absolute estimate on the half

normal plot.

(v) If the m value used does not make the contrast used to censor the data the

maximum absolute contrast effect on the HNP, increase m by 1 and repeat

steps (i-iv).

(vii) Stop the process and record the m as soon as the estimated effect of the

contrast used to censor the data is the maximum absolute contrast effect on

the half normal plot.

Following the algorithm above, for a chosen run order, we start by adding m = 1

to the response variable using the setting of a contrast. If the value m = 1 does not

make the contrast used to censor the data to be the maximum absolute contrast on

the half normal plot for the run order under study, then we use m = 2, and so on

until we get a m value that makes the estimated effect of the contrast used to censor

the data to be declared as the maximum absolute contrast on the half normal plot.

A run order that declares the estimated effect of the contrast used to censor the

data as the maximum absolute contrast on the half normal plot with the smallest

m value is adjudged to be more sensitive to presence of active contrast.

4.2 Simulation Study

The purpose of the simulation study is to compare the behavior of the randomized

run order with a systematic order (linear trend resistant design) and the standard

run order of an unreplicated fractional factorial designs. For each of the run orders

under consideration, we based our simulation study on 10,000 simulations for a 16
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runs experiment. In our study, a design identified some contrasts as active when-

ever the largest absolute value of the test statistic is greater than a given (simulated)

critical value at a desired α level of significance. The proportion of simulated de-

signs with false rejection is an estimate of the probability of false rejection (PFR)

while the proportion of simulated designs with correct detection of an active effect

estimates the probability of effect detection (PED).

Our analysis is based on an easy formal version of the half normal plot. The half

normal plot test statistic for a given set of b contrasts under the null hypothesis of

no active contrast, that is, H0 : β1 = β2 = ..... = βb = 0, is given by

tih =
β̂i

σ̂h

, i = 1, 2, ..., b (4.3)

Here h represents the statistic used to estimate σ, and σ̂ is the estimate of the

standard deviation of the contrasts. In this study, three statistics are used indepen-

dently to estimate σ. These are based on the median of absolute contrasts (MAC),

the pseudo standard error (PSE) proposed by Lenth(1989), and the asymptotic

standard error (ASE) proposed by Dong (1993). Hence, h in Equation (4.3) can

take MAC, PSE, and ASE depending on what is used as an estimate of σ. The

estimate of the standard deviation of the contrasts based on MAC, PSE and ASE

is given by

σ̂h =



1.5 •median|β̂i|, h = MAC

1.5 •median|β̂i|≤ 2.5•σ̂MAC
|β̂i|, h=PSE

√
1
z

∑
|β̂i|≤ 2.5•σ̂MAC

β̂2
i , h=ASE

(4.4)

respectively. Here z is the number of contrasts with |β̂i| ≤ 2.5 • σ̂MAC .

We say that there is an active factor in the design if the largest of the tih is larger



Chapter 4 Comparison of Run Orders 76

than a critical value that depends on the number b of contrasts considered.

4.2.1 Probabilities of false rejection and effect detection

The probability of false rejection (PFR) describes the proportion of designs that

falsely declare the presence of an active contrast. This is synonymous with the type

1 error (Level of a test). Usually, we allow for a PFR ranging between 1% and 5%.

A test is valid, if the true probability of false rejection is not larger than the nominal

PFR α. In our simulation study we estimate PFR by the proportion of designs

that falsely declare that there is at least one active contrast if in reality there is

none.

The probability of effect detection (PED) measures the proportion of designs

that rightly declare presence of active contrasts. It is the probability of making a

correct decision (power of a test).

The probabilities of false rejection and effect detection are, therefore, taken to

be the expected proportion of designs with max(ti) > C(b, α), where C(b, α) is

an appropriate critical value which depends on the number b of contrasts plotted

on the half normal plot and on the desired α level of significance. Hence, the

probabilities of false rejection and effect detection of active contrast are given by

PFR = pr(max |th| > C(b, α)), when m = 0 is used to censor the data, and

PED = pr(max |th| > C(b, α)), when m = 1, or 2, or 3 or more is used to censor

the data. Thus,

pr(max|th| > C(b, α)) =

 PFR, if m = 0 is used to censor the data

PED, if m > 0 is used to censor the data
(4.5)

We used two approaches to estimate the probabilities of false rejection and effect

detection of active contrasts for the three run orders under study. The first approach

is for the randomized run order, while the second approach is for the standard and

systematic run orders. In the first approach, the experimental data is used directly

and the test statistics are calculated from several realizations of the randomized
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ordering. In the second approach, artificial data are generated from a time series

model that is derived from the experimental data. The reason for the differences

in the data used in the two approaches is explained fully in the description of the

approaches. Further, to solve the differences in the data used in the two approaches,

an approach we called the harmonized approach is presented later in this section.

4.2.1.1 Probability of False Rejection (PFR)

The two approaches that we used to determine the probability of false rejection

are called Approaches 1 and 2. The first approach (Approach 1) is used for the

randomized run order while the second approach (Approach 2) is used for the

standard and systematic run orders.

Approach 1: PFR for randomized run order

In this approach, we created 10,000 artificial designs by permuting the rows of the

model design matrix in the standard run order. For each of the permuted designs,

we used the same vector of responses. Using this fixed vector, the estimates for

the contrasts (β̂i) are computed for each randomized run order. The PFR is then

estimated by comparing the maximum of the absolute half normal test statistic given

in Equation (4.3) with C(b, α) for each design. The algorithm of the procedure is as

follows:

(i) Permute the rows of the model design matrix .

(ii) For the permuted model design matrix, obtain the estimate of the contrast

effect using the experimental results in the original order.

(iii) Determine the estimate of the error variance σ̂h using any one of the Equations

in (4.4).

(iv) Compute the half normal plot test statistic using Equation (4.3).

(v) Determine the maximum of the absolute half normal test statistics (max |tih|)

obtained in (iv).
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(vi) Repeat step (i) to (v), 10000 times

(vii) Determine the proportion of designs with the statistic in step (v) greater than

C(b, α).

This proportion estimates the PFR for the run order under study.

Permuting the rows of either the standard or the systematic run order will result

in a loss of the features of both run orders. For example, permutation of the rows

of the systematic run order leads to a run order without a single column being time

resistant. Therefore, the above algorithm can only be used for the randomized run

ordering. Hence the need for an alternative approach to determine their PFR such

that the features of both the standard and systematic run orders will be retained.

The alternative approach, Approach 2, uses an artificial set of data generated

from a model fitted to the experimental data. Therefore, before Approach 2 can

be employed, we need to first fit an appropriate model to the experimental data

set. The ARIMA modelling approach is used to model the experimental data in this

study. Thus, we give a brief description of the ARIMA modelling procedure below.

Modelling of Experimental Results

Our intention is to find a good model that will be appropriate to represent the

behavior of the experimental results. In this study the univariate Box - Jenkins

ARIMA (UBJ - ARIMA) modelling approach (Box and Jenkins; 1976) along with

the model building approach of Box, Hunter, and Hunter (1978) are used to find an

appropriate model to the experimental data series.

The UBJ - ARIMA method applies only to stationary data series. A stationary

time series has a mean, variance, and autocorrelation function that are essentially

constant through time. The stationarity assumption simplifies the theory underlying

UBJ models and helps to ensure that we can get useful estimates of parameters from

a moderate number of observations. If a time series is stationary, then the mean
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and variance of any major subset of the series should not differ significantly from

the mean and variance of any other major subset of the series. In practice, most

time series data are non stationary and hence stationarity requirement may seem

quite restrictive. However, quite often non stationary series can be transformed to

stationary series through differencing.

A homogenous non-stationary model using the backshift operator B is of the form

φ(B)wt = θ(B)at, (4.6)

where wt = (1−B)dyt, yt is the response variable at time t, θ(B) represents the MA

process operator and is given by θ(B) = 1−θ1B−θ2B
2− ....−θqB

q, φ(B) represents

the AR process operator and it is given by φ(B) = 1 − φ1B − φ2B
2 − .... − φpB

p,

at represents the white noise, and d is the number of times the data series must be

differenced to induce a stationary mean (Box, Jenkins, and Reinsel; 1994). It implies

therefore, that homogenous non-stationary behaviors can sometimes be represented

by a model that calls for the dth difference of the process to be stationary. In practice,

d is usually 0, 1, or at most 2 (Pankartz, 1983 ). The model in Equation (4.6) is an

ARIMA process of order p, d, q abbreviated as ARIMA(p, d, q) process. In general

the ARIMA(p, d, q) process is described by

wt = φ1wt−1 + φ2wt−2 + ... + φpwt−p + at − θ1at−1 − θ2at−2 − ...− θqat−q, (4.7)

where wt, φ and θ are as defined earlier, p is the AR order, and q is the MA order.

The Box et.al (1978) approach for model building include tentative model iden-

tification, estimation of model parameter, and diagnosis of fitted model. The two

major tools used at the identification stage of model building are the autocorrelation

function (ACF ) and partial autocorrelation function (PACF ). The ACF at lag k

is the correlation between the observed data, yt , say, and yt+k. This is given by

ρk =
E [(yt − µ) (yt+k − µ)]√

E
[
(yt − µ)2

]
E

[
(yt+k − µ)2

] (4.8)
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where k is the time lag which can take values 0, 1, 2, ... , and µ =E[yt] = E[yt+k].

One important use of the ACF in modelling is its use in determining whether a

series is stationary or not. If the mean of a series is stationary, then the estimated

ACF’s for the series should drop off rapidly to zero. If the mean of a series is not

stationary, the estimated ACF’s of the series will drop off slowly towards zero.

The PACF of a process {yt} at lag k, φkk, is defined as the correlation between the

adjusted values of yt and yt−k (Boxet.al 1994). This is represented as

φkk =
E [(yt − ŷt) (yt−k − ŷt−k)]

E
[
(yt−k − ŷt−k)

2
] (4.9)

where ŷt = φk−1,1 yt−1 + φk−1,2 yt−2 + .... + φk−1,k−1 yt−k+1,

ŷt−k = φk−1,1 yt−k+1 + φk−1,2 yt−k+2 + .... + φk−1,k−1 yt−1, and

φk−1,j = φkj + φkkφk−1,k−j, j = 1, 2, ...k − 1. Thus, φkk measures the correlation

between yt and yt−k after adjusting for the effects of yt−1, yt−2, ..., yt−k+1.

At the identification stage, the estimated ACF and PACF are usually com-

pared with the various theoretical characteristics of the common time series model

to find a match. The selection of a tentative model depends on the behavior of the

computed ACF and PACF . The primary distinguishing properties of theoretical

ACF ′s and PACF ′s for stationary process are stated by Pankratz (1983, pp.123).

Using these properties, we can find a match to the behavior of ACF and PACF of

any series.

Having tentatively selected a model, the next step is to estimate the param-

eters of the model. Various approaches have been discussed in the literature for

estimating parameters in models for time series data. In this work, the Maximum

Likelihood approach which has been proved to reflect all useful information about

the parameters contained in the data is used.

The third stage in model building is diagnostic check. The residual ACF is used

as a device for testing the independence assumption of the random shocks. The

residual ACF is given as
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ρk
ˆ(a) =

E [(ât − a) (ât+k − a)]

E
[
(ât − a)2

] , (4.10)

where ât = φ̂(B)wtφ̂
−1(B). A test for adequacy of the fitted model is the chi-squared

test for goodness of fit. This is called Ljung-Box test in the literature, see e.g. Ljung

and Box (1978). This test is based on all the residual ACF as a set. Given K residual

autocorrelations, the hypothesis to be tested is H0 : ρ1(a) = ρ2(a) = ... = ρk(a) = 0.

The test statistic is given by

Q = n(n + 2)
K∑

j=1

(n− j)−1r2
j (â), (4.11)

where r2
j (â) is the estimate for ρk

ˆ(a) given in Equation (4.10), and n is the number

of observations used to estimate the model. The statistic Q follows approximately

a chi-squared distribution with K − v degrees of freedom, where v is the number

of parameters estimated in the model. If Q is large, it implies that the residual

autocorrelation function is significantly different from zero, and the random shocks

of the estimated model are probably autocorrelated. We should then consider refor-

mulating the model. If we accept the null hypothesis that the random shocks are

independent, it implies that the residual autocorrelation function is not significantly

different from zero and therefore the model fitted will be adjudged to be suitable.

Approach 2: PFR for systematic and standard run orders

In this approach, sets of data were generated from the ARIMA model described

above. Here, the response is not assumed to be fixed, instead we assumed that the

model design matrix is fixed. This is to protect the trend resistance property of the

run order for the design under study. Using the data generated from the ARIMA

model, we then estimate the effects of the contrasts. The PFR is taken to be the

proportion of designs with maximum absolute half normal plot test statistic that is

greater than the simulated critical value for a desired α level.

The following steps give the algorithm for Approach 2:
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(i) Generate a set of data from the model fitted to the experimental results.

(ii) Obtain the estimates of the contrasts from the model design matrix using the

generated data in (i) and the run order under consideration.

(iii) Determine the estimate of the error variance σ̂h using any one of the Equations

in (4.4).

(iv) Compute the half normal plot test statistic using Equation (4.3).

(v) Determine the maximum of the absolute half normal test statistics (max |tih|)

obtained in (iv).

(vi) Repeat step (i) to (v), 10000 times.

(vii) Determine the proportion of designs with the statistic in step (v) greater than

C(b, α). This proportion estimates the PFR for the run order under study.

It should be noted that both Approaches 1 and 2 have the same fundamental

objective. That is, the proportion of design with maximum absolute half normal plot

test statistics greater than the critical value when there is no active contrast. By

implication, this is the proportion of designs that falsely declare an active contrast.

4.2.1.2: Probability of Effect Detection (PED)

To determine the PED for the standard, randomized and systematic run orders,

we employed the censored data approach by using the setting of the columns in the

model design matrix to get a new data set. In this section, again two approaches

were used. We called them approaches A and B. Approach A is for the randomized

run ordering only while Approach B is for the standard and systematic run orders

as well. The procedures for the two approaches are similar to those presented in Sec-

tion 4.2.1.1 with the introduction of an additional step after step (i) of the algorithm

for both approaches in Section 4.2.1.1. The additional step is to censor the experi-

mental data using Equation (4.1). In Approach A, the experimental results were

censored by adding some constant m whenever the corresponding column setting in

the model design matrix is at its high level (+) and zero when the setting is at its
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low level (-), where m ≥ 1. The new data set (that is, y
(m)
j ) along with the model

design matrix of the run order under study is then used to get the proportion of

designs that rightly declare active contrasts. The value of m that gives at least 50%

of the design that correctly declare presence of an active contrast is also of interest.

This is taken to be the m-value for sensitivity to presence of active contrast for the

randomized run order. In Approach B, the data generated from the fitted model to

the original data are used along with the run orders under consideration to obtain

the PED. An algorithmic description of the two approaches in steps are presented

as follows:

Approach A: PED for randomized run ordering

(i) Permute the rows of the model design matrix.

(ii) For each column (contrast) of the model design matrix X assumed to be active,

censor the experimental data using Equation (4.1). Thus, we have a new data

set.

(iii) For the permuted model design matrix, determine the estimates of the contrast

effects (β̂i) using the new data in (ii).

(iv) Determine the estimate of the error variance σ̂h using any one of the Equations

in (4.4).

(v) Compute the half normal plot test statistic using Equation (4.3).

(vi) Determine the maximum of the absolute half normal test statistics (max |tih|)

obtained in (v).

(vii) Repeat step (i) to (v), 10000 times.

(viii) Determine the proportion of designs with the statistic in step (vi) greater than

C(b, α). This is taken to be the PED for the run order under study.

The above algorithm can be used to achieve two things. One is the sensitivity

to presence of active contrast and the second is the PED for the randomized run
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order. To achieve the first aim, we start by adding m = 1 to the response variable

using the setting of a contrast as described in Equation (4.1). If the value m = 1

does not give a PED of 50% then we proceed to use m = 2. If adding m = 2 to the

experimental data does not give a PED of 50%, then we proceed to use m = 3 and

so on until we get a m-value that gives at least a PED of 50%. The m-value that

gives at least 50% PED is taken to be the m-value for sensitivity of the randomized

run order to presence of active contrast.

Approach B: PED for standard and systematic run orderings

(i) Generate a set of data from the model fitted to the series of the experimental

results.

(ii) Use a column (contrast) of the model design matrix to censor the generated

data using Equation (4.1).

(iii) Obtain the estimates of the contrast effects (β̂i) using the censored generated

data in (ii).

(iv) Determine the estimate of the error variance σ̂h using any one of the Equations

in (4.4).

(v) Compute the half normal plot test statistic (tih) using Equation (4.3).

(vi) Determine the maximum of the absolute half normal test statistics (max |tih|).

(vii) Repeat step (i) to (vi), 10000 times.

(viii) Determine the proportion of designs with the statistic in step (vi) greater than

C(b, α). This is taken to be the PED for the run order under study.

It should be noted that the number of contrasts to be used for censoring in order

to determine the PED using any of the two Approaches A and B, depends on the

number of active contrasts under consideration.



Chapter 4 Comparison of Run Orders 85

4.2.1.3: Harmonized approach

The harmonized approach is developed to resolve the differences in the data used

for the algorithms given earlier for estimating the PFR and PED for the random-

ized run order. The approach involves the combination of the two approaches for

computing the PFR (Approaches 1 and 2) and PED (Approaches A and B).

Thus, generated data from an appropriate model fitted to the experimental data

along with the permuted rows of the model design matrix of the standard run order

are used to estimate the PFR and the PED. The procedures for the approach are

presented stepwise below:

(i) Permute the rows of the model design matrix for the standard run order.

(ii) Generate data set from an appropriate model fitted to the experimental data.

(iii) Censor the generated data in step (ii) using Equation (4.1)

(iv) Use the permuted model design matrix in step(i) and the censor data in step

(iii) to estimate the contrast effects.

(v) Compute the half normal plot test statistic (tih) for the estimated effects in

(iv) using Equation (4.3).

(vi) Determine the maximum of the absolute half normal test statistics (max |tih|)

obtained in (v).

(vii) Repeat step (i) to (vi), 10000 times.

(viii) Determine the proportion of designs with max |th| > C(b, α). This is taken to

be the PFR when m = 0 is used to censor the data and as the PED when

m ≥ 1 is used to censor the data.

The principle of the harmonized approach is synonymous with the principle of

the approaches for computing the PFR and PED for the standard and systematic

run orders.



Chapter 4 Comparison of Run Orders 86

The graphical display for probabilities of false rejection and effect detection in-

volve plotting of the ordered max|tih| statistic on the horizontal axis with its corre-

sponding proportion of designs on the vertical axis. Thus, on the graph, the PFR

and PED is taken to be 1-η, where η is the point of intersection of the critical value

(C(b, α)) with the plotted points. It should be noted for clarity that the η value is

to be read on the vertical axis.

4.2.2 Simulation of Critical Values (C(b, α))

Two kinds of error rates are mostly of concern when evaluating an approach. These

are the individual error rate (IER) and the experimentwise error rate (EER). The

IER is the proportion of inactive individual effects declared active, and the EER

is the proportion of experiments with at least one inactive effect declared active.

In this work the EER is of interest. The simulation of experimentwise error rate

(EER) critical values is conducted to obtain the critical values for a given α levels

of significance and b number of contrasts. The approach we used for the simulation

of the critical value is similar to Ye, Hamada, and Wu (2001) approach, which was

earlier proposed by Ye and Hamada (2000) and Loughin (1998) for obtaining EER

critical value.

Following Ye, Hamada, and Wu (2001), the calculation of critical values was based

on 10,000 samples of b effects generated from the standard normal distribution with

mean, µ=0 and standard deviation, σ=1. The procedure used is as follows:

Let β̂1, β̂2, ....., β̂b be the b estimates of factorial effects, under the null hypothesis

of no active contrast, that is, H0 : β1 = β2 = ..... = βb = 0, the EER critical value

at significant level α with b contrasts is the (1 − α)100 percentile of the statistic

in Equation (4.3). The algorithm used for the simulation of EER critical values is

given below:

(i) Generate a set of b estimates of contrasts from a standard normal distribution.

(ii) Compute the estimate of the error variance σh using any one of the Equations

in (4.4)
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(iii) Calculate tih using equation (4.3).

(iv) Compute max |tih| .

(v) Repeat steps (i) to (iv), 10000 times to get a set of 10000 max |tih| statistics.

(vi) The EER critical value is then the (α • 10000)th largest max |tih| statistics.

4.3 Simulation Results

4.3.1 Critical Values

The algorithms described above were implemented using the S-plus programming

language. For the critical values (C(b, α)), the range of values of α used in this study

are 0.01, 0.05, 0.10 and 0.20. The obtained critical values based on the MAC, PSE

and ASE as an estimate of the error variance of βi for the most common sizes of two

levels factorial/fractional factorial and Plackett Burman designs used in screening

experiment are presented in Table 4.1.

Table 4.1: Simulated EER Critical Values (C(b, α))

α b

7 11 15 19 31

0.01 6.0245 5.2713 4.9624 4.7629 4.4726

0.05 3.9045 3.7236 3.6978 3.6331 3.5966

MAC 0.10 3.1356 3.1434 3.1445 3.1633 3.2036

0.20 2.4273 2.5712 2.6513 2.7282 2.8305

0.01 9.7498 7.4204 6.3221 5.8692 5.1624

0.05 4.8868 4.5607 4.1550 4.1242 3.9012

PSE 0.10 3.6936 3.5721 3.5067 3.4532 3.4512

0.20 2.4273 2.7381 2.8213 2.8903 2.9694

0.01 9.2532 6.1387 5.3453 4.9634 4.5379

0.05 4.8947 4.1488 4.0026 3.8855 3.7684

ASE 0.10 3.6933 3.4987 3.4438 3.4014 3.4063

0.20 2.1584 2.5108 2.7217 2.8350 3.0126
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A visual inspection of the simulated critical values in Table 4.1 show that the

PSE based critical values are higher than the other two. This might be due to the

fact that σ̂PSE has a larger variance (Kunert 1997) and hence, more conservative

than the other estimates.

In what follows, we compare our EER critical values based on the PSE in Table

4.1 with the Ye, Hamada, & Wu (2001), Ye & Hamada (2000), and Loughin (1998)

critical values. The results are presented in Table 4.2. Henceforth, we will refer to

Ye, Hamada, and Wu (2001), Ye and Hamada (2000), and Loughin (1998) critical

values as YHW’01, YH’00 and L’98, respectively.

Table 4.2: Comparison of Simulated EER Critical Values Based on PSE

b α Our result Ye,Hamada,and Wu’01 Ye and Hamada’00 Loughin’98

0.01 9.7498 9.75 9.715 -

0.05 4.8868 4.87 4.867 4.878

7 0.10 3.6936 3.69 3.689 3.677

0.20 2.4273 2.42 2.420 2.427

0.01 7.4204 7.45 7.412 -

0.05 4.5607 4.45 4.438 -

11 0.10 3.5721 3.56 3.564 -

0.20 2.7381 2.74 2.738 -

0.01 6.3221 6.40 6.446 -

0.05 4.1550 4.24 4.240 4.242

15 0.10 3.5067 3.51 3.507 3.502

0.20 2.8213 2.84 2.845 2.837

0.01 5.8692 5.86 5.884 -

0.05 4.1242 4.11 4.118 -

19 0.10 3.4532 3.48 3.481 -

0.20 2.8903 2.89 2.896 -

0.01 5.1624 5.10 5.095 -

0.05 3.9012 3.93 3.925 3.910

31 0.10 3.4512 3.45 3.450 3.453

0.20 2.9694 2.98 2.983 2.977
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Examination of the results in Table 4.2 show that our results are almost the

same with YHW’01, YH’00, and L’98 except for some slight differences for b = 11

when α = 0.05, b = 15 when α = 0.01, 0.05, b = 19 for α = 0.10, and b = 31

for α = 0.01. Our critical values are slightly higher than others when b = 11 for

α = 0.05 and when b = 31 for α = 0.01. However, our critical values are slightly less

than others when b = 15 for α = 0.01, 0.05 and b = 19 for α = 0.10. The YHW’01

has an outstanding higher critical value when α = 0.01 for b = 11, while YH’00

has an outstanding higher critical value when α = 0.01 for b = 15. In general, our

simulated critical values have the same pattern with those in which comparison were

made. That is, the critical values decreases as the number of contrasts (b) increases,

also for a particular number of contrasts, the critical values decreases with increase

in the level of significance (α).

In a similar way as above, our critical values based on the ASE is also compared

with Kunert (1994) critical values which were also based on ASE as an estimate of

the error variance. Kunert’s (1994) critical values were computed only for the 5%

level of significance. His critical values are 3.47, 3.52, 3.56, 3.60, 3.64, and 3.68 for

10, 11, 12, 13 , 14 and 15 contrasts, respectively. Our critical values and Kunert’s

(1994) critical value for b = 15 and 11 are compared. For these two numbers of

contrasts, our critical values are higher than those of Kunert (1994). This could be

due to the fact that Kunert (1994) used approximations instead of exact calculations

in the computation formula for estimating σASE.

4.3.2 Performance standard results

We now use the algorithms presented in Sections 4.1 and 4.2 to determine the perfor-

mance of the three run orders under study with respect to active contrasts. These

algorithms are demonstrated on two examples. The two examples used are the

experimental results from two repetitions of 16 runs from the funnel experiments

presented in Table 3.2 of Chapter 3. We assumed that the data in Table 3.2 were
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from an unreplicated fractional factorial experiment with 16 observations. The ex-

perimental result for machine 1 is used as Example 1 while the result for machine 2 is

used as Example 2. Henceforth in this study, the experimental results for machines

1 and 2 will be referred to as cases 1 and 2 data, respectively.

4.3.2.1 Example 1

4.3.2.1a Estimation of Sensitivity For Standard and Systematic Run

Orders

To measure the sensitivity to presence of active contrast for the standard run order

of an unreplicated 2k−p design, the model design matrix in Table 2.1 and the experi-

mental results for case 1 are used. Using the procedure given in Section 4.1, the case

1 data is censored using the linear time-trend resistant columns (contrasts) settings

in Table 2.1. We used the linear trend resistant contrasts of the design in Table 2.1

to censor the data in order to have a fair comparison of the standard ordering with

the systematic ordering. However, if any of the contrasts of the standard run order

is used to censor the data, the results will not be different from the results obtained

here.

In the standard run order, there are eleven linear time-trend resistant columns,

therefore, there are eleven different data sets (see Appendix E). For each of the

data sets, we obtain the estimates for all the 15 contrasts in the model design ma-

trix. The ordered absolute estimates for the 15 contrasts are then plotted against

Φ−1 (1/2 + (i− 1/2)/(2 • 15)) , 1 ≤ i ≤ 15. The half normal plots for the original

data and a censored data set based on one of the linear trend resistant column (fifth

column) of the design in Table 2.1 are presented in Figure 4.1
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Figure 4.1: Standard run order half normal plots for the original and censored data.

The circled factor in each graph is the factor used as a basis for censoring the data

for different m values.

From Figure 4.1, the observed results are itemized as follows:

a) On the half normal plot for the original data, the estimated effects of contrasts

A, B, D, AC, and DE are above the straight line with the estimated effect

of factor A clearly above the straight line and hence the maximum absolute

contrast.

b) On the half normal plot for the data obtained by adding m = 1 to the original

experimental data when the setting of factor E (fifth column) in Table 2.1 is

at + level and zero otherwise, estimated effects of contrasts A, E, B, D, and

AC are above the straight line with the estimated effect of factor A clearly

remaining as the maximum absolute contrast.

c) On the half normal plot for the data set obtained with m = 2 using the setting

of factor E (fifth column) in Table 2.1, estimated effects of contrasts E, A, B,

D, and AC are above the straight line with the estimated effect of factor E

clearly above the straight line and hence the maximum absolute contrast.
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The measure of sensitivity to presence of active contrast was repeated using the

setting of the other linear time-trend resistant columns in Table 2.1 to censor the

original data. Thus, we have ten new data sets. The half normal plots for the ten

new data sets are presented in Figures B11 and B12 in Appendix B. The scenario

of the figures in Appendix B reflects that we need as much as m = 2 to make the

estimated effect contrast used to censor the data to be the maximum absolute con-

trast on the half normal plot.

For the systematic run order, the design in Table 2.3 along with the experimental

results for case 1 are used to determine the m value that makes the estimated effect

of the contrast used to censor the data as the maximum absolute contrast on the half

normal plot. The design in Table 2.3 has eleven linear time-trend resistant columns.

Therefore, there are eleven new data sets (see Appendix C). The half normal plot for

this design is called reduced half normal plot in this study. Following the procedure

in Section 4.1, the setting of only one column (Factor A) of the design matrix was

used to censor the data for illustration. The reduced half normal plot for both the

original data and the censored data are presented in Figures 4.2.

From Figure 4.2 the following were observed:

a) For the half normal plot of original data, the estimated effects for contrasts

CE, B, C, and BD are seen to be above the straight line with the estimated

effect of the two factor interactions contrast CE as the maximum absolute

contrast.

b) On the half normal plot for the data obtained by adding m = 1 to the original

data when the setting of Factor A in Table 2.3 is at + level and zero otherwise,

the estimated effects of contrasts A, CE, B, and C are seen to be above the

median straight line with the estimated effect of factor A as the maximum

absolute contrast.
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Figure 4.2: Reduced (systematic run order) half normal plot for the original and

censored data. The circled factor in the graph is the factor used as a basis for

censoring the data.

The measure of sensitivity to presence of active contrast was repeated using the

setting of the remaining columns (2-11) of the design in Table 2.3 to censor the data.

The half normal plots for the obtained data sets (see Appendix C) are presented in

Figure B21 in Appendix B. The scenario of the graphs in Figure B21 show that,

adding m = 1 makes the estimated effect of the contrast used for censoring to be

the maximum absolute contrast on the half normal plots.

From the obtained results for the measure of sensitivity for both the standard

and systematic run orders, the following findings were obtained:

(1) For the standard run order, when m = 1 is used to censor the data, the

estimated effects of the contrasts that are used for censoring the data are not

the maximum absolute contrasts on the half normal plots.

(2) For the standard run order, when m = 2 is used to censor the data, about

73% of the HNPs declares the estimated effects of the contrasts that are used
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for censoring the data as the maximum absolute contrasts.

(3) On the standard run order HNPs for the data set with m = 3, the estimated

effects of all the contrasts that are used to censor the data are seen to be the

maximum absolute contrasts on the half normal plots.

(4) For the systematic run order, the estimated effects of the contrasts that were

used to censor the data are the maximum absolute contrasts on the HNPs for

all the data set obtained with m = 1 (see circle contrasts in Figure 4.2 and

Figure B21 in Appendix B).

From the aforementioned points, it is clear that the systematic run order is more

sensitive to presence of active contrast than the standard run order.

4.3.2.1.1a Estimation of PFR and PED using the MAC as an estimate

of error variance

The proportion of designs with false rejection (PFR) and the proportion of designs

with effect detection (PED) are computed using the estimate of error variance based

on the median of the absolute contrasts, that is, h = MAC in Equations (4.3) and

(4.4).

Estimation of Probability of False Rejection(PFR)

To obtain the proportion of false rejection for the randomized run order, we used

the design in Table 2.1 with b = 15 estimable contrasts as a starting point of the

randomization. For b = 15 and α = 0.05, a simulated critical value (C(15, 0.05)) of

3.6978 (see Table 4.1) was used. Therefore, the proportion of simulated designs with

max|tMAC | > 3.6978 will estimate the PFR. Permuting the rows of the model de-

sign matrix in Table 2.1, and using the experimental result for machine 1 presented

in Table 3.2, we estimate the contrast effects and follow the algorithm as stated in

Approach 1. With 10,000 repetitions, the observed proportion of designs where

max|ti| > 3.6978 was 4.7%. We therefore estimate that indeed approximately 5 %

of the randomized run orders will falsely give an active contrast. Note that this is
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already an important result. It supports the view that randomized orderings will

keep the nominal level α.

In order to determine the PFR and PED for the standard and systematic run

orders, we need to generate data set from a fitted model. Using the procedures in

the sub-section of 4.2.1.1, a model was fitted to the experimental data for machine

1 (case 1 data). Since the behavior of yt and ỹt = yt − y have been found to be the

same (Box and Jenkins 1976), we therefore, replace yt with ỹt in Equations (4.6)

through (4.11) in Section 4.2.1.1 for simplicity.

An examination of the plot of the experimental data in Figure 3.2 shows that

the series of the data is a non stationary one. On dividing the data of the series into

two major subsets (equally half), the obtained means are 23.6225 and 25.2813 for

the two subsets. This suggests that the series is non stationary. Also a plot of the

estimated ACF in Figure 4.3(a) drops off slowly towards zero, this confirms that

the series is a non stationary one.

Figure 4.3: ACF and PACF for the experimental data and the data for the first order

difference

To make the series stationary, we calculate the first differences and find the

estimated ACF and PACF for the new series. Figures 4.3(c) and 4.3(d) are plots

of the estimated ACF and PACF respectively for the new series. Inspection of
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Figure 4.3(c) suggest that the mean is now stationary since the estimated ACF

drops off to zero after lag 1. The spike at lag 1 followed by a cut off to zero in the

estimated ACF implies that an MA model is appropriate. The plot of the PACF

for the new series in Figure 4.3(d) tail off towards zero starting from lag 1. The

combination of the features of the ACF and PACF for the first differences suggest

an MA(1) model. From the above analysis, we therefore, select an ARIMA(0, 1, 1)

model given by (1−B)ỹt = (1− θ1B)at as a tentative model for the data series.

Using the maximum likelihood approach, the estimate for the ARIMA(0, 1, 1) model

is θ̂1 = 0.3. This satisfies the invertibility condition, since |θ̂1| < 1. Therefore, the

tentative fitted model is

ŷt = yt−1 − 0.3ât−1 + ât. (4.12)

On diagnosing the model in Equation (4.12), the residual ACF cuts off after

lag 1. Therefore, the hypothesis that the shocks of the model in Equation (4.12)

are independent can be accepted, which implies that the model is appropriate. The

computed Q statistic for the residual ACF equals 3.867 with 5 degree of freedom,

and p-value of 0.57. The obtained Q value is relatively small when compared to

the chi-square quantiles at 5 degree of freedom for 1%, 5%, and 10%. Also the

corresponding p-value of the Q value is large enough to accept the hypothesis of

no correlation between the residual ACF . Therefore, the model given by Equation

(4.12) is statistically adequate representation of the data series for case 1.

The model given by Equation (4.12) will then be used to generate artificial data

set to represent the data series in our simulation study for comparing the probabil-

ities of false rejection and effect detection of active contrast for the standard and

systematic run orders.
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In order to obtain the proportion of false rejections for the standard run order, the

design in Table 2.1 was used. For this design the number of contrast (b) is 15, and for

α = 0.05, C(15, 0.05) from Table 4.1 equals 3.6978 as before. Then 10,000 data sets

were generated from the fitted ARIMA (0,1,1) model of Equation (4.12). Following

the algorithm of Approach 2, the observed proportion of simulated designs with

max |tMAC | > 3.6978 equals 0.328. Hence, for 33 % of the simulated observations,

the standard run order falsely identified an active contrast. This is catastrophically

much, and thus, the standard run order is clearly not usable in the presence of this

time trend.

To obtain the proportion of false rejections for the systematic run order, the

design in Table 2.3 was used. For this design the number of contrasts, b equals

11. Therefore, we had to use another critical value. For b = 11 and α = 0.05,

the simulated critical value (C(11, 0.05)) from Table 4.1 equals 3.7236. Hence, the

proportion of simulated designs with max |tMAC | > 3.7236 will estimate the PFR for

the systematic run order. Following the algorithm of Approach 2, the proportion

of simulated designs with max |tMAC | > 3.7236 equals 10.8%. This means that

in approximately 11 % of the simulated data-sets, the systematic run order falsely

identified an active contrast. Hence, the systematic run order performed better than

the standard ordering. However, it seems that the systematic run order does not

suffice to provide sufficient protection against the realistic trend considered here.

A plot that displays the empirical distribution function of the ordered max|tMAC |

for the systematic, standard, and randomized run orders is presented in Figure 4.4.
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Figure 4.4: Empirical distribution function for the systematic, standard, and ran-

domized run orders without active contrast. The two vertical lines in the figure

represent the critical values. Note that they are very near to each other.

Estimation of Probability of Effect Detection

The procedure of Approach A of Section 4.2.1.2 was used to estimate the PED for

the randomized run order. Again, the rows of the design in Table 2.1 were permuted

10,000 times. This implies 10,000 randomized run orderings. For each time that the

rows of the design were permuted, the setting of the first column of the run order

was used to censor the data. This simulated an effect of factor 1. Then the censored

data set was used to obtain estimates for the contrasts of all factors and two factor

interactions. When adding m = 1 to the data, we observed a PED of 7.3%. When

adding m = 2, we obtained 36%. Similarly by adding m = 3, we obtained 86.2 %.

We then continued by assuming two or three active contrasts. For simplicity, we

assumed that the active contrasts were all of the same size. The graphical display

of the obtained ordered max|tMAC | with the proportion of designs for one, two and

three active contrasts are presented in Figure 4.5.
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(a)

(b)

(c)

Figure 4.5: Empirical PED for randomized run order with different sizes of active

contrasts. (a) Empirical PED for one active contrast, (b) Empirical PED for two

active contrasts, (c) Empirical PED for three active contrasts. The vertical line in

each graph represents the critical value.

From Figure 4.5, It can be seen that the results for two and three active con-

trasts did not differ much from the results for one active contrast. Furthermore,

using the obtained PED for one active contrast, m > 2 gives approximately the

desired probability of effect detection for the approximate sensitivity analysis for
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the randomized run order.

The probability of effect detection (PED) for the standard and systematic run

orders was estimated using the design in Tables 2.1 and 2.3, respectively. Follow-

ing the algorithm of Approach B, we generated data sets using the fitted ARIMA

(0,1,1) model of Equation (4.12). The generated data sets were then censored and

the censored data were used to determine the proportion of designs with one, two,

and three active contrasts that correctly identified at least one active contrast.

For one active contrast, we first add m = 1 to the generated data when the first

column of the model design matrix under study is at + level and zero otherwise.

The new data set (censored data) is then used to get maximum of the absolute half

normal test statistics which was compared with the simulated critical value 3.6978

for the standard run order and 3.7236 for the systematic run order. The steps are

repeated for m = 2 and m = 3.

For two active contrasts, we add m = 1 to the generated data when the first column

or the second column of the model design matrix under study are at + level, 2m to

the generated data when both the first and second columns are at + level, and zero

otherwise. The new data set (censored data) is then used to get the maximum of the

absolute half normal test statistics which is thereafter compared with the simulated

critical value as before. The steps are repeated for m = 2 and m = 3.

Similarly for three active contrasts, we add m = 1 to the generated data when the

first or second or third columns of the model design matrix under study are at +

level, 2m when two of the three columns are at + levels, 3m when all the three

columns are at + levels, and zero otherwise. The new data set is then used to get

the maximum of the absolute half normal test statistics which is thereafter compared

with the simulated critical value. The steps are repeated for m = 2 and m = 3.

Figure 4.6 presents the empirical distribution function for the standard and system-

atic run orders for one, two, and three active contrasts.
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One active contrast

Two active contrasts

Three active contrasts

Figure 4.6: Empirical distribution function of max|tMAC | for the standard and sys-

tematic run orders with different sizes (m) of active contrast. The vertical line in

each graph represents the critical value
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In order to have a fair comparison of the randomized run order with the sys-

tematic run order, we did two more series of experiments. First of all, we used the

harmonized approach to compute the PFR and PED for the randomized run order.

Here, the results were very similar to what we had for the experimental data.

Since the systematic run order did not keep the nominal level α = 0.05, it is easy

for the systematic run order to get a high estimated power. Thus, the second series

of experiment involved the systematic run order where a pseudo critical value was

used. The pseudo critical value is then used to compute the PFR and PED for the

systematic run order.

The pseudo critical value is taken to be the value of the max|tMAC | that gives the

same proportion of false rejections as was derived by the randomized design. Thus,

the pseudo critical value is data driven. Unfortunately, a pseudo critical value can-

not be determined in practice.

To derive the same PFR of 0.0509 obtained with the harmonized approach for the

randomized run, we need a pseudo critical value of 4.6019. This pseudo critical value

was then used to compute the PED for the systematic run order. The correspond-

ing proportions could be seen in Figure 4.6 if we moved the vertical line from 3.72

to 4.60.

The PFR and PED for the randomized run order using the harmonized approach

and the PFR and PED for the systematic run order using the pseudo critical value

yield similar results as those obtained earlier (see Table 4.3 on page 116).

4.3.2.1.1b Estimation of the PFR and PED based on the PSE as an

estimate of error variance

The probability of false rejection and the probability of effect detection for the three

run orders using the pseudo standard error (PSE) to estimate the standard devi-

ation of the contrasts of the run orders are considered. Here h in Equations (4.3)

and (4.4) equals PSE. The approaches for estimating both the PFR and the PED

presented in Section 4.2.1 were used. Here the simulated critical values based on

the PSE presented in Table 4.1 were used. For b = 15 and α = 0.05, we used the

simulated critical value (C(15, 0.05)) of 4.1550 for the standard and randomized run
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orders. For b = 11 and α = 0.05, we used 4.5607 (C(11, 0.05)) for the systematic

run order. Following Approach 1, with 10,000 repetition as before, the observed

proportion of designs where max|tPSE| > 4.1550 equals 33% and 5% for the stan-

dard and randomized run orders, respectively. Similarly, the observed proportion of

designs where max|tPSE| > 4.5607 equals 9% for the systematic run order. The plot

of the obtained results for the empirical PFRs for the standard, randomized and

systematic run orders are presented in Figure 4.7, while the plot for the obtained

results for the empirical PED for the three run orders for one, two and three active

contrasts are presented in Figure A11 in Appendix A.1.

Figure 4.7: Empirical distribution function of max|tPSE| for the standard, random-

ized, and systematic run orders without active contrast. The blue vertical line rep-

resents the critical value for the randomized and standard run orders while the red

vertical line represents the critical value for the systematic run oder.
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The PFR and PED values from Figure 4.7 and Figure A11 in Appendix A1 are

presented in Table 4.4. Using the harmonized approach, the PFR for the random-

ized run order equals 0.0585. In a similar way as before, the harmonized approach

was used to estimate the PED of the randomized run order for one, two and three

active contrasts. To derive the same PFR of 0.0585 obtained with the harmonized

approach for the randomized run order, we need a pseudo critical value of 5.2809.

This pseudo critical value was then used to compute the corrected PED for the

systematic run order. The PFR and PED for the randomized run order using the

harmonized approach and the PFR and PED for the systematic run order using

the pseudo critical value are documented in the columns marked with an asterisk in

Table 4.4 on page 119.

4.3.2.1.1c Estimation of PFR and PED based on the ASE as an estimate

of error variance

In this section, we estimated the PFR and PED for the three run orders under

study using the adaptive standard error (ASE) proposed by Dong (1993) as an es-

timate of the standard deviation of the contrasts. That is, h = ASE in Equations

(4.3) and (4.4). Following the approaches in section 4.2.1, we estimated the PFR

and PED for the run orders under study. Using the simulated critical value based

on the ASE presented in Table 4.1, that is, 4.0026 for the standard and randomized

run orders C(15, 0.05) and 4.1488 for the systematic run order C(11, 0.05), the ob-

tained PFRs are 37%, 4%, and 12% for the standard, randomized and systematic

run orders, respectively. The plot of the obtained results for the probability of false

rejection for the three run orders under study are presented in Figure 4.8
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Figure 4.8: Empirical distribution function of max|tASE| for the standard, random-

ized, and systematic run orders. The blue and red vertical lines are as earlier defined.

From the graph in Figure 4.8, it is evident that the randomized run order has the

smallest PFR. The PFR obtained with the harmonized approach equals 0.0539.

This is almost the same as the PFR obtained with both the MAC and PSE esti-

mated error variance. To derive same PFR of 0.0539 obtained with the harmonized

approach for the randomized run order, we need a pseudo critical value of 5.2338

for the systematic run order. This pseudo critical value is then used to compute the

corrected PED for the systematic run order. The obtained results are presented in

Table 4.5 on page 120. The obtained results for the empirical distribution function

of max|tASE| with one, two, and three active contrasts for the standard, randomized

and systematic run orders are plotted in Figure A21 in Appendix A2.

4.3.2.2 Example 2

We repeat all the analyses of Example 1 with another data set. In this example,

the experimental result from machine 2 presented in Table 3.2 is used to evaluate
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the performance of the three run orders under consideration. As in Example 1, the

measure of sensitivity to presence of active contrasts, the probabilities of false rejec-

tion of active contrasts, and the probabilities of effect detection of active contrasts

are estimated.

4.3.2.2a: Estimation of Sensitivity for Standard and Systematic Run

Orders

The model design matrix in Table 2.1 was used to measure how sensitive the stan-

dard run order is to presence of active contrasts. The experimental case 2 data was

censored using the procedure of Section 4.1. The half normal plots for the original

data and censored data based on one of the linear trend resistant column (fifth col-

umn) of the design in Table 2.1 are presented in Figure 4.9

Figure 4.9: Standard run order half normal plots for the original and censored data.

The circled factor in each graph is the factor used as a basis for censoring the data

for different m values.

The observed results from the half normal plots in Figures 4.9 are listed as
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follows:

a) On the half normal plot for the original data, the estimated effects of contrasts

A, B, AB, AE, and C are seen to be above the straight line with the estimated

effect of factor A as the maximum absolute contrast.

b) On the half normal plot for the data set obtained with m = 1 using the setting

of factor E (fifth column) in Table 2.1, the estimated effects of contrasts E, A,

B, AB, and AE are above the straight line with the estimated effect of factor

E as the maximum absolute contrast.

c) On the half normal plot for the data obtained by adding m = 2 to the original

data when the setting of factor E (fifth column) in Table 2.1 is at + level

and zero otherwise, estimated effects of contrasts E, A, B, AB, and AE are

above the straight line with the estimated effect of factor E as the maximum

absolute contrast.

The remaining ten trend resistant columns (columns 6-15) of the design in Table

2.1 were also used to censor the data. Thus, there are ten different new data sets

(see Tables C4, C5 and C6 in Appendix C). For these ten data sets, the half normal

plots for the estimated effects contrasts were plotted, these are presented in Figures

B13 and B14 in Appendix B. The resulted HNPs for the eleven data sets show that

when m = 1 is added to the data, only two out of the HNPs have the contrast effect

that were used to censor the data as the maximum absolute contrast. However, all

the eleven HNPs have the contrast effect that were used to censor the data as the

maximum absolute contrast when m = 2 was used.

To measure how sensitive the systematic run order is to presence of active con-

trast, the design in Table 2.3 was used. Following the algorithm as before, the

experimental data was censored using the setting of factor A (first column) in the

model design matrix in Table 2.3. The half normal plots for both the original data

and the censored data are presented in Figures 4.10
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Figure 4.10: Reduced (Systematic run order) half normal plots for the original and

censored data. The circled factor in the figure is the factor used as a basis for

censoring the data (case 2 )

From Figure 4.10 the following observations were made:

a) On the half normal plot for the original data, the estimated effects of contrasts

DE, E, and BD are seen to be above the straight line with the estimated effect

of contrast DE as the maximum absolute contrast.

b) On the half normal plot for the censored data obtained with the setting of

Factor A (first column) in Table 2.3 when m = 1, the estimated effects of

contrasts A, DE, E and BD are seen to be above the straight line with the

estimated effect of factor A as the maximum absolute contrast.

As in example 1, the setting of the remaining ten columns of the design in Table

2.3 were used to censor the data. The half normal plots for the new data sets are

presented in Figure B21 in Appendix B.

From the plots in Figures 4.9, 4.10 and the Figures in B13, B14 and B22 in Appendix

B, the following findings were inferred:
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(a) For the standard run order, when m = 1 is used to censor the data, the

estimated effects of the contrasts that were used for censoring the data are not

the maximum absolute contrasts on the half normal plots in 82% of the cases.

(b) For the standard run order, when m = 2 is used to censor the data, the

estimated effects of the contrasts that were used to censor the data are the

maximum absolute contrasts on the HNPs for all the data sets.

(c) For the systematic run order, in 82% of the data sets obtained with m = 1,

the estimated effects of the contrasts that were used to censor the data are the

maximum absolute contrasts.

From the aforementioned points, It is clear that the systematic run order is more

sensitive to presence of active contrast than the standard run order. This is similar

to the conclusion drawn in example 1.

4.3.2.2.1a: Estimation of PFR and PED using MAC as an estimate of

error variance

Estimation of Probability of False Rejection

To obtain the proportion of false rejection for the randomized run order, we used

the design in Table 2.1 as a starting point for randomization. Permuting the rows of

the model design matrix in Table 2.1, and using the experimental result for machine

2 presented in Table 3.2, we estimated the contrast effects and follow the algorithm

as stated in Approach 1. Here, h in Equations (4.3) and (4.4) equals MAC. The

obtained PFR value is 0.049. similarly, the harmonized approach yields a PFR of

0.0543 for the randomized run order. This verifies once more that approximately

5 % of the randomized run order will falsely give an active contrast.
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To evaluate the PFR and PED for the standard and systematic run orders, new

data sets were generated from an ARIMA model. The procedures in Section 4.2.1.1

are used to fit model to the case 2 experimental data. On following the procedure,

an ARIMA(0, 1, 2) model given by

yt = yt−1 − 0.3at−1 + 0.5at−2 + at (4.13)

was fitted to the data. Following the algorithm of Approach 2, data were gener-

ated from the ARIMA(0, 1, 2) model of Equation (4.13). The observed proportion

of simulated data sets with max|tMAC | > 3.6978 for the standard run order equals

0.555. This indicates that with data of this kind, the standard run order will falsely

identify an active contrast in about 56 % of all cases. Similarly for the systematic

run order, we used the design in Table 2.3. Following the algorithm of Approach

2, the observed proportion of simulated data sets with max |tMAC | > 3.7236 is

0.213. This implies that the systematic run order will falsely give an active contrast

in about 21% of all cases of data of this kind. Though the obtained PFR for the

systematic run order is smaller than the PFR for the standard order, it is still too

large. Therefore, the systematic run order does not provide sufficient protection

against this kind of trend as modelled here. The plot of the obtained proportion

along with the ordered absolute half normal plot test statistic (max|tMAC |) of the

systematic, standard, and randomized run orders are presented in Figure 4.11



Chapter 4 Comparison of Run Orders 111

Figure 4.11: Empirical distribution function for the systematic, standard, and ran-

domized run orders without active contrast. The two vertical lines in the figure are

as earlier defined.

Estimation of Probability of Effect Detection

The procedure of Approach A of Section 4.2.1.2 was used to compute the PED

for the randomized run order. Using a 0.05 level of significance with b = 15, adding

m = 1 to the data whenever the setting of the first column of the permuted design is

+, gives a PED of 9.8%, adding m = 2 gives 54%, and adding m = 3 gives 98.2 %.

Thus, adding m = 2 gives approximately the desired probability of effect detection

for the approximate measure of sensitivity for the randomized run order. Figure

4.12 presents the empirical distribution function of max|tMAC | for the randomized

run order for one, two and three active contrasts.



Chapter 4 Comparison of Run Orders 112

(a) (b)

(c)

Figure 4.12: Empirical distribution function of max|tMAC | for the randomized run

order with different sizes of active contrasts. (a)one active contrast, (b)two active

contrasts, (c) three active contrasts. The vertical line in each graph represents the

critical value.

The probability of effect detection (PED) for the standard and systematic run

orders was estimated using the data generated from the ARIMA(0, 1, 2) model of

Equation (4.13). Following the algorithm of Approach B, the PED for the run

orders for one, two, and three active contrasts was determined. The resulted pro-

portion of design along with the ordered max|tMAC | are plotted for different effect

sizes for one, two, and three active contrasts for both the standard and systematic

run orders. These are presented in Figure 4.13.
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One active contrast

Two active contrasts

Three active contrasts

Figure 4.13: Empirical distribution function of max|tMAC | for the standard and

systematic run orders with different sizes (m) of active contrasts. The vertical line

in each graph represents the critical value
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The harmonized approach yields a PFR of 5% with similar PEDs as those ob-

tained with the other approaches. Using the PFR obtained with the harmonized

approach for the randomized run order, the pseudo critical value that we should

use for the systematic run order equals 5.8556. Using this pseudo critical value, we

computed the PED with different sizes of m for one, two and three active contrasts

for the systematic run order. The results are presented in Table 4.3.

4.3.2.2.1b Estimation of PFR and PED using the PSE and ASE as an

estimate of error variance

The analyses of the case 2 data and the model fitted to the data. were repeated using

the PSE and ASE as an estimate of error variance. The obtained empirical PFRs

using the PSE as an estimate of error variance (that is, h = PSE in Equations

(4.3) and (4.4)) are 56%, 6%, and 19% for the standard, randomized and systematic

run orders, respectively. The ASE estimate (that is, h = ASE in Equations (4.3)

and (4.4)) produces a PFR of 59%, 6%, and 23% for the standard, randomized and

systematic run orders, respectively. Figure 4.14 presents the graphical display of the

results based on the PSE and the ASE.

Figure 4.14: Empirical distribution function for th standard and systematic run

orders (LHS= PSE estm., RHS= ASE estm.). The blue and red vertical lines in

each graph are as earlier defined.
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In a similar way, we computed the PED with different sizes for one, two and

three active contrasts based on the PSE and the ASE. The obtained empirical

PED based on the PSE and ASE for the three run orders are presented in Figures

A12 in Appendix A1 and in Figures A21 in Appendix A2, respectively.

The harmonized approach was used to compute the PFR for the randomized run

order. For the PSE estimate, we have a PFR of 6%, and for the ASE estimate, we

have a PFR of 5%. These values are approximately the same as the PFR obtained

earlier with approach 1. The behavior of the obtained PED for the randomized

run order using the harmonized approach is similar to those obtained earlier with

approach A (see Tables 4.3 to 4.5). The pseudo critical value for both the PSE and

the ASE equals 7.1249 and 6.6330, respectively. These pseudo critical values were

used to compute the PED for the systematic run order with different sizes(m) for

one, two and three active contrasts. The obtained results are presented in Table 4.4

for the PSE based estimates and on Table 4.5 for the ASE based estimates.

4.4 Summary and Conclusion for the performance

standard simulation results

The obtained probabilities of false rejection and effect detection of the different sizes

of active contrasts for the standard, randomized, and systematic run orders based

on MAC, PSE and ASE for the two cases used to evaluate the performance algo-

rithms are summarized and presented in Tables 4.3, 4.4 and 4.5, respectively. On the

aforementioned tables, the columns marked with an asterisk represent the PFR and

PED for the randomized run order obtained with the harmonized approach and the

PFR and PED for the systematic run order obtained with the pseudo critical value.
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Table 4.3: Summary of The Empirical PFR and PED Based on MAC

1

Case 1 Case 2

AC m SO RO RO* Sys Sys* SO RO RO* Sys Sys*

0 0.3283 0.0473 0.0509 0.1076 0.0509 0.5553 0.0494 0.0543 0.2130 0.0543

1 0.4168 0.0726 0.0944 0.1469 0.0692 0.5850 0.0979 0.0759 0.1919 0.0392

One 2 0.6010 0.3587 0.3749 0.5864 0.3858 0.6519 0.5398 0.2293 0.5536 0.1699

3 0.7829 0.862 0.7056 0.9254 0.7841 0.7420 0.9824 0.4709 0.8764 0.4837

10 1.00 1.00 0.9995 1.00 1.00 0.997 1.00 0.9887 1.00 1.00

1 0.4338 0.0829 0.1078 0.1601 0.0749 0.5988 0.1150 0.0798 0.2042 0.0355

Two 2 0.6834 0.4144 0.4159 0.5939 0.3721 0.7006 0.6069 0.2551 0.5356 0.1679

3 0.8947 0.9013 0.7386 0.9096 0.7587 0.8264 0.9889 0.5059 0.8490 0.4421

10 1.00 1.00 0.9998 1.00 1.00 0.9999 1.00 0.9905 1.00 0.9995

1 0.3970 0.0778 0.102 0.1004 0.041 0.5486 0.1128 0.0724 0.1409 0.0625

Three 2 0.6878 0.3703 0.3828 0.4453 0.249 0.6750 0.5585 0.2368 0.4001 0.2313

3 0.9268 0.8582 0.7051 0.8054 0.5998 0.8641 0.9753 0.4712 0.7230 0.5264

10 1.00 1.00 0.9995 1.00 1.00 1.00 1.00 0.9880 1.00 1.00

Results on the PFR and PED Based on the MAC

The PFR results on the first row of the Table 4.3 show similarity in the run orders

for the two illustrative cases used to evaluate our algorithms. In the two cases (cases

1 and 2), the standard run order performed poorly with as high as 56% probability

of false rejection. This is catastrophically high!. The PFR for the randomized run

order when both the experimental data and the generated data were used equals

1SO ⇒ Standard run order, RO ⇒ Randomized run order, and Sys ⇒ Systematic run order.

RO* columns represents the results obtained from the simulated data for the randomized run order

(harmonized approach) and Sys* represents the results obtained by using the pseudo critical value

for the systematic run order.
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5%. This is a good result for the performance of the randomized run order since we

based our critical value on 5% level (that is, α = 0.05). The systematic run order

has a PFR value that almost double the size (case 1) and four times higher (case

2) the value obtained for the randomized run order. This is an advantage point in

favor of the randomized ordering.

The resulted PFR for the systematic run order with the pseudo critical value

has the same PFR with the randomized run order. This is deliberately done so that

we can have a fairer comparison of the probability of effect detection for both the

randomized and systematic run orders as mentioned earlier. Therefore, the results

in columns 3, 5, and 7 for case 1 and columns 8, 10, and 12 for case 2 in Table 4.3

are used to interpret the probability of effect detection for the three run orders un-

der study. These columns give the summarized PED for the standard, randomized

and systematic run orders obtained with the generated data from the fitted model in

Equations (4.12) and (4.13) for cases 1 and 2, respectively. The results are discussed

as follows:

PED with one active contrast:- The standard run order performed better than

both randomized and systematic run orders when the effect size equals to one and

two (that is, m = 1 or 2). This is not surprising since the standard order started

with very high level. However with m increased to 3, the three run orders have

approximately the same power. Thus, the randomized and systematic run orders

have approximately the same power for detecting an active contrast. Also the PED

for the three run orders increases with the effect size(m). That is, as the effect size

increases, the probability of effect detection also increases.

PED with Two active contrasts:- The pattern of the obtained PEDs are sim-

ilar as for one active contrast. When m = 1, 2, 3, the standard run order has as

high power as 89% (case 1, when m = 3) and 83% (case 2 when m = 3). Also the

randomized run order has as high power as 74% (case 1, when m = 3 ) and 51%

(case 2, when m = 3). Thus, The performance of the randomized and systematic

run orders are very close. For the case with m = 3, the scenario remains as it is

with one active contrast.
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PED with Three active contrasts:- The patterns of the PED remain as for one

and two active contrasts (see Table 4.3, Figures 4.6 and 4.13).

If we used the results for the systematic run order obtained with the simulated

critical value instead of the pseudo critical value to compare the results for the

randomized run order, then columns 6 and 11 of Table 4.3 will be used. Using the

results on the aforementioned columns, it is clear that the systematic run order has

higher power than the randomized run order for one, two, and three active contrasts.

However, considering the level for the systematic run order which is as high as 21%

(case2) and 11% (case 1), then the resulted power for the systematic run order can

not be adjudged to be higher than that of the randomized run order.

Results on the PFR and PED based on the PSE

The results from Figure 4.7 and the Figures in Appendix A1 are summarized into

Table 4.4. These results are similar with the results obtained with the MAC (see

Table 4.3on page 116). One point that is worth to be mentioned here, is that the

obtained PFR with the PSE are slightly higher than the PFR obtained with the

MAC. This could be due to the fact that the PSE critical values are higher than

the MAC critical values. From the results on Table 4.4, the standard run order still

performed poorly with the same percent as obtained with the MAC based estimates.

Whereas, the PFR for the randomized run order slightly increases to 6%, but this is

not a bad performance for the randomized run order. The relationship of the PFR

for the randomized and systematic run orders is as with the results obtained with

the MAC based estimates. The PED for the standard, randomized and systematic

run orders for one, two, and three active contrasts have the same pattern as those

obtained with the MAC based estimates.
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Table 4.4: Summary of Empirical PFR and PED Based on PSE

1

Case 1 Case 2

AC m SO RO RO* Sys Sys* SO RO RO* Sys Sys*

0 0.3299 0.0506 0.0585 0.0900 0.0585 0.555 0.0614 0.0587 0.1853 0.0587

1 0.4095 0.0807 0.0944 0.1325 0.0845 0.585 0.114 0.078 0.1707 0.0522

One 2 0.5983 0.3366 0.3558 0.5097 0.3741 0.654 0.5041 0.215 0.4928 0.1741

3 0.7772 0.8228 0.6817 0.8727 0.7554 0.7404 0.9676 0.4519 0.8296 0.4386

10 0.9999 1.00 0.9991 1.00 1.00 0.9970 1.00 0.9863 1.00 0.9999

1 0.4389 0.0887 0.1132 0.1518 0.1027 0.5974 0.1257 0.0826 0.1863 0.0565

Two 2 0.6919 0.4263 0.4244 0.5882 0.4616 0.7061 0.6274 0.2606 0.5466 0.2361

3 0.8961 0.9155 0.7500 0.9113 0.8283 0.8320 0.9894 0.5177 0.8667 0.5276

10 1.00 1.00 0.9996 1.00 1.00 0.9999 1.00 0.9912 1.00 0.9999

1 0.4098 0.0841 0.1108 0.1069 0.0728 0.5613 0.1251 0.0794 0.1360 0.0934

Three 2 0.7282 0.4295 0.4276 0.5223 0.4152 0.7043 0.6458 0.2600 0.4790 0.3908

3 0.9418 0.9406 0.7599 0.8891 0.8077 0.8899 0.9952 0.5178 0.8242 0.7441

10 1.00 1.00 0.9999 1.00 1.00 1.00 1.00 0.9923 1.00 1.00

Results on the PFR and PED based on ASE

The results from Figure 4.8 and the Figures in Appendix A2 are summarized in

Table 4.5. These results are similar to the results obtained with both the MAC and

PSE based estimates. Here the PFR are slightly higher than the PFR obtained

with the MAC, but do not have a fixed relationship with the obtained PFR based

on the PSE. For example, the PFR for the standard run order based on the

ASE are higher than those of the PSE for the two cases, while the PFR for the

randomized run order based on the PSE are higher than those of the ASE. A

close examination of the obtained PED in Table 4.5 reflect that the randomized

run order has higher power than the systematic run order in some cases, while in



Chapter 4 Comparison of Run Orders 120

some cases, both of them have approximately equivalent power. These results are

equivalent to the results obtained earlier with the MAC and ASE based estimates.

Table 4.5: Summary of Empirical PFR and PED Based on ASE

1

Case 1 Case 2

AC m SO RO RO* Sys Sys* SO RO RO* Sys Sys*

0 0.3708 0.0422 0.0539 0.1233 0.0539 0.5851 0.0588 0.0561 0.2304 0.0561

1 0.4576 0.0815 0.1026 0.1667 0.0719 0.6200 0.1216 0.0794 0.2045 0.0448

One 2 0.6374 0.4523 0.4439 0.6853 0.4392 0.6777 0.6729 0.2713 0.6211 0.1887

3 0.8066 0.9998 0.7788 0.9710 0.8645 0.7603 1.00 0.5359 0.9283 0.5360

10 0.9999 1.00 0.9999 1.00 1.00 0.9976 1.00 0.9941 1.00 1.00

1 0.4749 0.0812 0.1167 0.1756 0.0882 0.6315 0.1291 0.0835 0.2032 0.0467

Two 2 0.7316 0.4979 0.4894 0.6859 0.5035 0.7293 0.7679 0.2946 0.6005 0.2493

3 0.9204 0.9980 0.8145 0.9665 0.8958 0.8467 1.00 0.5758 0.9096 0.5938

10 1.00 1.00 0.9999 1.00 1.00 0.9999 1.00 0.9963 1.00 1.00

1 0.4243 0.0887 0.1046 0.1038 0.0534 0.5634 0.1181 0.0771 0.1336 0.0670

Three 2 0.7354 0.4198 0.4341 0.5213 0.4137 0.7016 0.6827 0.2625 0.4478 0.3489

3 0.9551 0.9827 0.7764 0.9065 0.8438 0.8936 1.00 0.5292 0.8017 0.7185

10 1.00 1.00 0.9999 1.00 1.00 1.00 1.00 0.9945 1.00 1.00



Chapter 5

Conclusion and Discussion of

Results

The algorithms presented for the various methods of constructing trend resistant

designs are easy and straight forward to implement. Furthermore, the modified ver-

sion of the reverse foldover algorithm produces a factorial design that is linear trend

resistant for all the main effects with a minimum number of factor level changes.

This is an improvement in the area of trend resistant designs. Table 5.1 below gives

a summary of the results obtained with the algorithms for the various approaches

reviewed in this study.

Table 5.1: Summary Table For Methods of Constructing Trend Resistant Designs

Method Design No. of linear trend No. of factor

resistant contrasts level changes

DW 24 11 37

Foldover 24 11 43

Reverse foldover(RF) 24 11 53

Modified RF 24 11 19

Generalized foldover 24 11 43

All the reviewed procedures for the construction of trend resistant factorial/ frac-

121
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tional factorial designs yield the same possible number of linear time-trend resistant

contrasts. The summary of the obtained number of possible linear time-trend re-

sistant contrasts for some factorial/ fractional factorial designs using the theorem

in Chapter 2 and the obtained number of time-trends contrasts for the constructed

linear trend Plackett Burman designs are presented in Table 5.2.

Table 5.2: Maximum Number of Trend Resistant Contrasts

Design Number of contrasts No. of linear trend resistant contrasts

23/24−1 7 4

24/25−1 15 11

25/26−1 31 26

PB12 11 4

PB12+12 11 11

The summarized results in Table 5.2 reflect that for 8 runs designs, it is possible

to have 57% of the contrasts to be at least linear trend resistant, for 16 runs designs

73%, for 32 runs 83%, for 12 runs PB designs 36%, and for 24 runs PB designs

with eleven contrasts 100%. Therefore, for two levels factorial/fractional factorial

designs, the best design in terms of linear trend resistance will be 16 runs designs,

since with this design it is possible to have as much as 73% of the contrasts to be

at least linear trend resistant. For Plackett Burman designs, a price has to be paid

for achieving high number of trend resistant columns.

From the results of the experiment which is used as a practical case study to

show presence of time trend in a factorial experiment, the following were inferred:

− The running time of the ball bearing gets considerably larger when the ball

bearing has run several times. That is, there is a time-trend in the funnel

experiment.

− Two or more identical and independent funnels behaved differently.

− Two or more identical and independent rods behaved alike, that is, no differ-

ences in the running time within the rod.
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− Two identical and independent balls behaved some times differently.

The results from the factorial experiments in section 3.2 show that none of the rod,

the ball nor the interaction between ball and rod have a significant effect on the

observed time-trend in the experiment. The computed confidence interval for the

mean response (sum of differences in the two sequences) for the ball, the rod and

their interactions shows that the smallest mean for the sum of differences in the

running time for the two sequences in the experiments should be approximately -

0.25, and the maximum sum of differences of the running time should be 12.41. The

results from the cross over experiment in section 3.3 show that the funnel has the

highest influence on the time-trend.

A possible explanation for these results is either that the ball gets warmed-up by the

rod and hence the ball takes a longer time to spin within the funnel as we go on in

the experiment (increase with time) or that the funnel gets warmed-up by the ball

as we proceed in the experiment. From the aforementioned points, we are convinced

that the funnel is responsible for the time trend in the exemplified experiment.

One way to eliminate the time trend problem in the funnel experiment is to clean

the funnel before conducting the experiments. Another point is to increase the time

lag between successive run to say about 120 seconds.

On the results from the funnel experiment, there is the possibility of human error

in taking the measurements. Thus, to eliminate the human error, one approach will

be to automate the measurement procedure as suggested by an Engineer. This will

give more accurate and precise measurements and hence an improvement on the

results that are manually measured as done in this study.

From the sensitivity analysis, the obtained results for the standard and system-

atic run orders to presence of active contrast for the two examples presented in this

study are summarized in Table 5.3.
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Table 5.3: Summary Table For Sensitivity Analysis

Standard systematic

m 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 ? ? ? ? ? ? ? ? ? ? ? ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

Case1 2 ∇ ∇ ? ∇ ? ∇ ∇ ? ∇ ∇ ∇

1 ∇ ? ? ? ? ? ∇ ? ? ? ? ∇ ∇ ∇ ∇ ? ∇ ∇ ∇ ∇ ∇ ?

case2 2 ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇

In Table 5.3, ∇ represents the cases where the estimated effect of the contrast

used to censor the data is the maximum absolute contrast on the half normal plot

and ? represents the cases where the estimated effect of the contrast used to censor

the data is not the maximum absolute contrast on the half normal plot. From the

results in Table 5.3, we can infer that for the standard order, m = 2 makes the

estimate effect of the contrasts that were used to censor the data as the maximum

absolute contrast on the half normal plot in 73% of the data sets for case 1 and in

all the data sets for case 2. Similarly, for the systematic run order, m = 1 makes the

estimate effect of the contrasts that were used to censor the data as the maximum

absolute contrast on the half normal plot in all the eleven data sets for case 1 and in

82 % of the data sets for case 2. Thus, for the two examples used in this study, m = 1

makes the contrast used to censor the data to be the maximum absolute contrast

on the HNP for the systematic run order, while we obtained m = 2 for the standard

run order. For the randomized run order, a minimum of m = 2 gives the desired

PED for sensitivity analysis. Therefore, we can conclude that the systematic run

order is more sensitive to presence of active contrast than both the randomized and

standard run orders.

The obtained PFRs (m = 0) based on the two examples studied show that the

randomized run order has the best probability of false rejection out of the three run

orders under consideration. Further, the closeness in the empirical PFR for the
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randomized run order obtained with the experimental data and the generated data

confirm the appropriateness of the fitted models to the experimental data.

The obtained PED when m equals 1 or 2 for one active contrast shows that the

standard run order has the highest power in both case studies. Also, the results

for two and three active contrasts show that the standard run order has the highest

PED followed by the systematic run order and then the randomized run order for

the situations when m =1, 2, and 3. As mentioned earlier, this is not surprising,

since the standard run order started with a very high level.

On the other hand, since our result from the sensitivity analysis shows that before

an active contrast will be declared to be active, at least m = 2 is needed to censor

the data for the randomized run order and m = 1 is needed for the systematic run

order, then it is sensible to use the PED obtained for these values for comparison.

Using these values, that is, m = 2 for the randomized order and m = 1 for the

systematic run order, the obtained probability of effect detection for the random-

ized run order for one, two and three active contrast(s) are greater than those for

systematic run order.

In summary, the randomized run order performed better than the systematic run

order. However, the results obtained with the pseudo critical value for the system-

atic run order reflect that if both the randomized and systematic run order have

the same level, then their respective powers are approximately the same irrespec-

tive of the method used to estimate the error variance for the contrasts. Thus, the

systematic order does not achieve a higher power than the random ordering, when

we corrected the critical value to keep the nominal level.

Based on the aforementioned points, the following conclusions are drawn:

− The systematic run order is more sensitive to presence of active contrast than

both the standard and randomized run orders.

− When there are no active contrasts, the randomized run order managed to

keep the nominal level. The systematic run order was nearer the nominal level
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than the standard run order, but both did not manage to keep the nominal

level.

− For the situation with one active contrast, the systematic run ordering and the

randomized order have PED′s that are similar to the PED of the standard

order, if the size of the active contrast increases.

− when there are two active contrasts, both randomized and systematic run

orders produced smaller PEDs than the standard order. The increase of the

PED for the randomized order is much less.

− When there are three active contrasts, both randomized and systematic run

orders performed alike.

− When we adapted the critical value such that the systematic order kept the

nominal level, then the power of the systematic order decreased considerably.

In that case the power was no longer higher than the power derived from the

randomized order.

It is evident from the two cases used as illustrative example that the randomized

run order performed better than the systematic run order with regards to PFR,

while the systematic run order performed better than the standard run order.

In summary, the systematic run order is more sensitive to presence of active contrast

than the randomized run ordering, while the latter has a more reliable level than the

former. In addition, though both the randomized and systematic run orders have

similar power for detecting active contrasts, there is no outstanding advantage of

the systematic run order over the randomized run order visible in this study.

In general, when factorial/fractional factorial experiments are conducted over

sequence of time for quality improvement, randomizing the run order of the design is

an appropriate proceeding. However, when randomization procedures are expensive

(in time and money) or not feasible, then systematic run orders that are time-trend

resistant should be used.
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A.1 EMPIRICAL PED FOR PSE ESTIMATE.

A.1.1 Empirical PED for standard, randomized and system-

atic run orders (CASE 1)

Figure A11.1- One active contrast

Figure A11.2- Two active contrasts

Figure A11.3- Three active contrasts
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A.1.2 Empirical PED for standard, randomized and system-

atic run orders (CASE 2)

Figure A12.1:- One active contrast

Figure A12.2:- Two active contrasts

Figure A12.3:- Three active contrasts
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A.2 EMPIRICAL PED FOR ASE ESTIMATE.

A.2.1 Empirical PED for standard, randomized and system-

atic run orders (CASE 1)

Figure A21.1:-One active contrast

Figure A21.2:-Two active contrasts

Figure A21.3:-Three active contrasts
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A.2.2 Empirical PED for standard, randomized and system-

atic run orders (CASE 2)

Figure A22.1:-One active contrast

Figure A22.2:-Two active contrasts

Figure A22.3:- Three active contrasts
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B.1 Half Normal Plot for Standard run order

Figure B11: HNP for original data and m = 1 data (CASE 1)
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Figure B12: HNP for m = 2 data (CASE 1)
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Figure B13: HNP for original data and m = 1 data (CASE 2)
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Figure B14: HNP for m = 2 data (CASE 2)
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B.2 Half Normal Plot for Systematic Run Order

Figure B21: HNP for original data and m = 1 data(CASE 1)
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Figure B22: HNP for original data and m = 1 data (CASE 2)
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C.1 Censored and Uncensored data (CASE 1)

Table C1: Original data and censored data for m =1 for standard run order

OD Censored data sets

Run case 1 1 2 3 4 5 6 7 8 9 10 11

1 22.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13

2 23.49 23.49 24.49 24.49 24.49 24.49 23.49 23.49 23.49 23.49 23.49 23.49

3 23.32 23.32 24.32 23.32 23.32 23.32 24.32 24.32 24.32 23.32 23.32 23.32

4 24.26 25.26 25.26 24.26 24.26 24.26 24.26 24.26 24.26 25.26 25.26 25.26

5 23.70 23.70 23.70 24.70 23.70 23.70 24.70 23.70 23.70 24.70 24.70 23.70

6 23.92 24.92 23.92 24.92 23.92 23.92 23.92 24.92 24.92 23.92 23.92 24.92

7 24.07 25.07 24.07 24.07 25.07 25.07 25.07 24.07 24.07 24.07 24.07 25.07

8 24.09 24.09 24.09 24.09 25.09 25.09 24.09 25.09 25.09 25.09 25.09 24.09

9 25.06 25.06 25.06 25.06 26.06 25.06 25.06 26.06 25.06 26.06 25.06 26.06

10 25.36 26.36 25.36 25.36 26.36 25.36 26.36 25.36 26.36 25.36 26.36 25.36

11 24.32 25.32 24.32 25.32 24.32 25.32 24.32 25.32 24.32 24.32 25.32 24.32

12 24.97 24.97 24.97 25.97 24.97 25.97 25.97 24.97 25.97 25.97 24.97 25.97

13 25.03 26.03 26.03 25.03 25.03 26.03 25.03 25.03 26.03 26.03 25.03 25.03

14 26.09 26.09 27.09 26.09 26.09 27.09 27.09 27.09 26.09 26.09 27.09 27.09

15 25.40 25.40 26.40 26.40 26.40 25.40 25.40 25.40 26.40 25.40 26.40 26.40

16 26.02 27.02 27.02 27.02 27.02 26.02 27.02 27.02 26.02 27.02 26.02 26.02
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Table C2: Original data and censored data for m =2 for standard run order

OD Censored data sets

Run case 1 1 2 3 4 5 6 7 8 9 10 11

1 22.13 24.13 24.13 24.13 24.13 24.13 24.13 24.13 24.13 24.13 24.13 24.13

2 23.49 23.49 25.49 25.49 25.49 25.49 23.49 23.49 23.49 23.49 23.49 23.49

3 23.32 23.32 25.32 23.32 23.32 23.32 25.32 25.32 25.32 23.32 23.32 23.32

4 24.26 26.26 26.26 24.26 24.26 24.26 24.26 24.26 24.26 26.26 26.26 26.26

5 23.70 23.70 23.70 25.70 23.70 23.70 25.70 23.70 23.70 25.70 25.70 23.70

6 23.92 25.92 23.92 25.92 23.92 23.92 23.92 25.92 25.92 23.92 23.92 25.92

7 24.07 26.07 24.07 24.07 26.07 26.07 26.07 24.07 24.07 24.07 24.07 26.07

8 24.09 24.09 24.09 24.09 26.09 26.09 24.09 26.09 26.09 26.09 26.09 24.09

9 25.06 25.06 25.06 25.06 27.06 25.06 25.06 27.06 25.06 27.06 25.06 27.06

10 25.36 27.36 25.36 25.36 27.36 25.36 27.36 25.36 27.36 25.36 27.36 25.36

11 24.32 26.32 24.32 26.32 24.32 26.32 24.32 26.32 24.32 24.32 26.32 24.32

12 24.97 24.97 24.97 26.97 24.97 26.97 26.97 24.97 26.97 26.97 24.97 26.97

13 25.03 27.03 27.03 25.03 25.03 27.03 25.03 25.03 27.03 27.03 25.03 25.03

14 26.09 26.09 28.09 26.09 26.09 28.09 28.09 28.09 26.09 26.09 28.09 28.09

15 25.40 25.40 27.40 27.40 27.40 25.40 25.40 25.40 27.40 25.40 27.40 27.40

16 26.02 28.02 28.02 28.02 28.02 26.02 28.02 28.02 26.02 28.02 26.02 26.02
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Table C3: Original data and censored data for m =1 for systematic run order

OD Censored data sets

Run case 1 1 2 3 4 5 6 7 8 9 10 11

1 22.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13 23.13

2 23.49 23.49 24.49 23.49 23.49 23.49 23.49 23.49 23.49 24.49 24.49 24.49

3 23.32 23.32 23.32 24.32 23.32 23.32 23.32 24.32 24.32 23.32 23.32 24.32

4 24.26 25.26 24.26 24.26 25.26 25.26 25.26 24.26 24.26 24.26 24.26 25.26

5 23.70 23.70 23.70 23.70 24.70 23.70 24.70 23.70 24.70 23.70 24.70 23.70

6 23.92 24.92 23.92 24.92 23.92 24.92 23.92 24.92 23.92 23.92 24.92 23.92

7 24.07 25.07 25.07 24.07 24.07 25.07 24.07 24.07 25.07 25.07 24.07 24.07

8 24.09 24.09 25.09 25.09 25.09 24.09 25.09 25.09 24.09 25.09 24.09 24.09

9 25.06 25.06 25.06 25.06 25.06 26.06 26.06 26.06 25.06 26.06 25.06 25.06

10 25.36 26.36 25.36 26.36 26.36 25.36 25.36 25.36 26.36 26.36 25.36 25.36

11 24.32 25.32 25.32 24.32 25.32 24.32 24.32 25.32 24.32 24.32 25.32 24.32

12 24.97 24.97 25.97 25.97 24.97 25.97 25.97 24.97 25.97 24.97 25.97 24.97

13 25.03 26.03 26.03 26.03 25.03 25.03 26.03 25.03 25.03 25.03 25.03 26.03

14 26.09 26.09 27.09 26.09 27.09 27.09 26.09 27.09 27.09 26.09 26.09 27.09

15 25.40 25.40 25.40 26.40 26.40 26.40 25.40 25.40 25.40 26.40 26.40 26.40

16 26.02 27.02 26.02 26.02 26.02 26.02 27.02 27.02 27.02 27.02 27.02 27.02
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C.2 Censored and Uncensored data (CASE 2)

Table C4: Original data and censored data for m =1 for standard run order

OD Censored data sets

Run case 2 1 2 3 4 5 6 7 8 9 10 11

1 21.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35

2 21.36 21.36 22.36 22.36 22.36 22.36 21.36 21.36 21.36 21.36 21.36 21.36

3 22.31 22.31 23.31 22.31 22.31 22.31 23.31 23.31 23.31 22.31 22.31 22.31

4 21.98 22.98 22.98 21.98 21.98 21.98 21.98 21.98 21.98 22.98 22.98 22.98

5 23.07 23.07 23.07 24.07 23.07 23.07 24.07 23.07 23.07 24.07 24.07 23.07

6 23.29 24.29 23.29 24.29 23.29 23.29 23.29 24.29 24.29 23.29 23.29 24.29

7 22.89 23.89 22.89 22.89 23.89 23.89 23.89 22.89 22.89 22.89 22.89 23.89

8 23.71 23.71 23.71 23.71 24.71 24.71 23.71 24.71 24.71 24.71 24.71 23.71

9 23.18 23.18 23.18 23.18 24.18 23.18 23.18 24.18 23.18 24.18 23.18 24.18

10 23.73 24.73 23.73 23.73 24.73 23.73 24.73 23.73 24.73 23.73 24.73 23.73

11 24.30 25.30 24.30 25.30 24.30 25.30 24.30 25.30 24.30 24.30 25.30 24.30

12 23.30 23.30 23.30 24.30 23.30 24.30 24.30 23.30 24.30 24.30 23.30 24.30

13 23.68 24.68 24.68 23.68 23.68 24.68 23.68 23.68 24.68 24.68 23.68 23.68

14 23.49 23.49 24.49 23.49 23.49 24.49 24.49 24.49 23.49 23.49 24.49 24.49

15 23.51 23.51 24.51 24.51 24.51 23.51 23.51 23.51 24.51 23.51 24.51 24.51

16 24.19 25.19 25.19 25.19 25.19 24.19 25.19 25.19 24.19 25.19 24.19 24.19
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Table C5: Original data and censored data for m =2 for standard run order

OD Censored data sets

Run case 2 1 2 3 4 5 6 7 8 9 10 11

1 21.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35 23.35

2 21.36 21.36 23.36 23.36 23.36 23.36 21.36 21.36 21.36 21.36 21.36 21.36

3 22.31 22.31 24.31 22.31 22.31 22.31 24.31 24.31 24.31 22.31 22.31 22.31

4 21.98 23.98 23.98 21.98 21.98 21.98 21.98 21.98 21.98 23.98 23.98 23.98

5 23.07 23.07 23.07 25.07 23.07 23.07 25.07 23.07 23.07 25.07 25.07 23.07

6 23.29 25.29 23.29 25.29 23.29 23.29 23.29 25.29 25.29 23.29 23.29 25.29

7 22.89 24.89 22.89 22.89 24.89 24.89 24.89 22.89 22.89 22.89 22.89 24.89

8 23.71 23.71 23.71 23.71 25.71 25.71 23.71 25.71 25.71 25.71 25.71 23.71

9 23.18 23.18 23.18 23.18 25.18 23.18 23.18 25.18 23.18 25.18 23.18 25.18

10 23.73 25.73 23.73 23.73 25.73 23.73 25.73 23.73 25.73 23.73 25.73 23.73

11 24.30 26.30 24.30 26.30 24.30 26.30 24.30 26.30 24.30 24.30 26.30 24.30

12 23.30 23.30 23.30 25.30 23.30 25.30 25.30 23.30 25.30 25.30 23.30 25.30

13 23.68 25.68 25.68 23.68 23.68 25.68 23.68 23.68 25.68 25.68 23.68 23.68

14 23.49 23.49 25.49 23.49 23.49 25.49 25.49 25.49 23.49 23.49 25.49 25.49

15 23.51 23.51 25.51 25.51 25.51 23.51 23.51 23.51 25.51 23.51 25.51 25.51

16 24.19 26.19 26.19 26.19 26.19 24.19 26.19 26.19 24.19 26.19 24.19 24.19
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Table C6: Original data and censored data for m =1 for systematic run order

OD Censored data sets

Run case 2 1 2 3 4 5 6 7 8 9 10 11

1 21.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35 22.35

2 21.36 21.36 22.36 21.36 21.36 21.36 21.36 21.36 21.36 22.36 22.36 22.36

3 22.31 22.31 22.31 23.31 22.31 22.31 22.31 23.31 23.31 22.31 22.31 23.31

4 21.98 22.98 21.98 21.98 22.98 22.98 22.98 21.98 21.98 21.98 21.98 22.98

5 23.07 23.07 23.07 23.07 24.07 23.07 24.07 23.07 24.07 23.07 24.07 23.07

6 23.29 24.29 23.29 24.29 23.29 24.29 23.29 24.29 23.29 23.29 24.29 23.29

7 22.89 23.89 23.89 22.89 22.89 23.89 22.89 22.89 23.89 23.89 22.89 22.89

8 23.71 23.71 24.71 24.71 24.71 23.71 24.71 24.71 23.71 24.71 23.71 23.71

9 23.18 23.18 23.18 23.18 23.18 24.18 24.18 24.18 23.18 24.18 23.18 23.18

10 23.73 24.73 23.73 24.73 24.73 23.73 23.73 23.73 24.73 24.73 23.73 23.73

11 24.30 25.30 25.30 24.30 25.30 24.30 24.30 25.30 24.30 24.30 25.30 24.30

12 23.30 23.30 24.30 24.30 23.30 24.30 24.30 23.30 24.30 23.30 24.30 23.30

13 23.68 24.68 24.68 24.68 23.68 23.68 24.68 23.68 23.68 23.68 23.68 24.68

14 23.49 23.49 24.49 23.49 24.49 24.49 23.49 24.49 24.49 23.49 23.49 24.49

15 23.51 23.51 23.51 24.51 24.51 24.51 23.51 23.51 23.51 24.51 24.51 24.51

16 24.19 25.19 24.19 24.19 24.19 24.19 25.19 25.19 25.19 25.19 25.19 25.19
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