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Zusammenfassung

Bei der statistischen Modellbildung im Rahmen von Regressionsmodellen muss der funk-
tionale Zusammenhang zwischen der Zielgréfle und den Einflussfaktoren spezifiziert wer-
den. In der vorliegenden Arbeit werden verschiedene Methoden zur Bestimmung der
funktionalen Form des Effekts einer stetigen Kovariable im proportionalen Hazardmodell
fiir Uberlebenszeiten untersucht. Dabei werden datenabhangige und datenunabhangige
Methoden betrachtet.

Datenunabhingigkeit bedeutet hier, dass die generelle funktionale Form vorgegeben ist.
Ublicherweise wird im proportionalen Hazardmodell angenommen, dass die logarithmierte
Hazardfunktion linear von einer stetigen Kovariable abhangt. Neben dieser linearen
Risikofunktion werden aus der Klasse der datenunabhiangigen Methoden die folgenden
Methoden betrachtet: eine Risikofunktion mit einem linearen und quadratischen Term, ein
an den Réndern linearisierter kubischer Spline mit fest vorgegebenen Knoten (restricted
cubic spline) und die Kategorisierung der stetigen Kovariable anhand eines oder mehrerer
fester Cutpoints. Die Parameter dieser Funktionen werden aus den Daten geschitzt.
Bei den datenabhéngigen Methoden wird zusétzlich die funktionale Form aus den Daten
geschatzt. Fine in dieser Arbeit untersuchte Methode besteht darin, die stetige Kovariable
anhand eines oder mehrerer datenabhiangiger Cutpoints zu kategorisieren. Als weitere
Methode wird die Modellierung der Risikofunktion durch fractional polynomials unter-
sucht.

Fiir alle Methoden wird die klassische Annahme einer linearen Risikofunktion als Ref-
erenzmodell betrachtet. Hierbei wird untersucht, ob eine komplexere Risikofunktion zu

einer signifikanten Verbesserung in der Likelihood fiihrt.

Die Auswirkungen der Modellbildung lassen sich besonders gut bei der Anwendung daten-
abhangiger Methoden untersuchen. Die Kategorisierung einer stetigen Kovariable anhand
datenabhangiger Cutpoints kann dabei als Prototyp fiir komplexere Strategien der Modell-
bildung, wie z.B. der Variablenselektion, angesehen werden. Die Selektion eines Cutpoints
mittels maximal selektierter Teststatistik fiihrt dazu, dass das relative Risiko zwischen
den resultierenden Risikogruppen in der Regel deutlich iiberschatzt wird. Dies ist darauf
zuriickzufiithren, dass sowohl die Modellbildung als auch die Schatzung des resultierenden
Effekts im selben Datensatz vorgenommen wurde. Des Weiteren ist aus der Literatur
hinreichend bekannt, dass der P-Wert der maximal selektierten Teststatistik korrigiert
werden muss. Korrigierte P-Werte werden daher auch in der vorliegenden Arbeit verwen-
det. Basierend auf eigenen, friiheren Forschungsaktivitdten werden auflerdem Shrinkage-
Methoden zur Korrektur des geschatzten relativen Risikos verwendet. Die Kategorisierung
anhand mehrerer datenabhéngiger Cutpoints ist eine Erweiterung des oben beschriebenen
Cutpoint-Problems. Die Modellierung der Risikofunktion durch fractional polynomials

basiert ebenfalls auf einem intensiven Prozess der Modellbildung: aus einer Klasse von
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fractional polynomials wird anhand der Daten die beste Risikofunktion ausgewihlt. Wie
oben beschrieben wurde, wird auch bei der Anwendung datenunabhéngiger Methoden eine
einfache Modellselektion verwendet, indem entweder die komplexere Risikofunktion aus-
gewahlt, oder bei nicht signifikanter Verbesserung der Likelihood die lineare Risikofunk-
tion benutzt wird. Da Modellselektion auch bei weniger intensiven Selektionsmethoden
dazu fithrt, dass der wahre Effekt der Einflussgrofle haufig zu optimistisch beurteilt wird,
ist es wiinschenswert stabile Methoden zur Schatzung der Risikofunktion zu finden. Zu
diesem Zweck wurde das sogenannte bootstrap aggregating (bagging), das urspriinglich
zur Reduzierung des Vorhersagefehlers von Pradiktoren entwickelt wurde, auf das vor-
liegende Problem iibertragen. Die Idee des bagging besteht darin, die Risikofunktion
in einer Menge von Bootstrap-Stichproben zu schatzen und die geschatzten Funktionen
iiber alle Bootstrap-Stichproben zu mitteln. In allen Bootstrap-Stichproben wird dabei
die gleiche Modellselektionsstrategie angewendet wie in den Originaldaten. Neben der
Berechnung der aggregierten Risikofunktion werden die Resultate aus den Bootstrap-

Stichproben zudem dazu verwendet, um die Stabilitat der Schatzung zu untersuchen.

Das primére Ziel der vorliegenden Dissertation besteht darin, alle genannten Verfahren zu
vergleichen, und die auf bootstrap aggregating basierende Erweiterung der Schatzverfahren
zu untersuchen. Zentrale Fragen sind:

e Welche Methoden sind am besten geeignet, um typische Risikofunktionen adaquat

zu schatzen ?

e Inwieweit hingen die geschitzten Risikofunktionen von einer mehr oder weniger

intensiven Modellbildung ab?

e Ist bagging dazu geeignet, die negativen Auswirkungen der Modellbildung zu kor-

rigieren und zuverlassigere Risikofunktionen zu schatzen?

In Kapitel 2 werden die verwendeten Methoden beschrieben und auf die Daten von
zwei Brustkrebsstudien angewendet. Des Weiteren gehe ich hier kurz auf den potentiell
zeitabhangigen Effekt der Kovariable ein und stelle weitere Methoden aus der Literatur

VOr.

Um die einzelnen Methoden beurteilen zu konnen, wurde eine Simulationsstudie durchge-
fiihrt. Neben dem Nullmodell, in dem die stetige Einflussgrofie keinen Effekt hat, wurden
drei proportionale Hazardmodelle mit verschieden Risikofunktionen generiert: 1. ein Cut-
pointmodell mit einem fest vorgegeben Cutpoint, II. eine lineare Risikofunktion, III. eine
Risikofunktion, bei der das Risiko mit zunehmenden Abstand von einem festen Cutpoint
linear ansteigt (V-Typ). Da starke Effekte in der Praxis eher selten sind, habe ich dabei
einen moderaten Effekt zu Grunde gelegt.
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Die Ergebnisse der Simulationsstudie werden in Kapitel 3 beschrieben. Des Weiteren gehe
ich in diesem Kapitel darauf ein, wie man die mit verschiedenen Methoden geschéitzten
Risikofunktionen im proportionalen Hazardmodell vergleichbar macht, und es werden ver-
schiedene Fehlermafle zur Beurteilung der Methoden diskutiert. Neben den quantitativen
Fehlermaflen Mean Squared Error und Mean Absolute Error wird in der Arbeit auch ein
qualitatives Fehlermafl vorgestellt. Die Auswirkungen der Modellbildung wird anhand
einzelner Beispiele dargestellt. Fiir das Cutpoint-Problem wird dabei auf die Problematik
der Schatzung von Konfidenzintervallen nach Modellbildung eingegangen. Es wird gezeigt,
wie man durch die Anwendung von Shrinkage-Methoden und Bootstrap-Resampling zu

zuverlassigen Ergebnissen gelangt.

Die wichtigsten Resultate der Arbeit lassen sich folgendermaflen zusammenfassen:

e Bei der Analyse der Brustkrebsstudien konnte ein deutlicher nichtlinearer Effekt
der stetigen Kovariable Alter auf die progressionsfreie Uberlebenszeit nachgewiesen
werden. Fiir die meisten Methoden war die mit bagging geschatzte Risikofunktion
fast identisch mit der in den Originaldaten geschatzten Funktion.

e In der Simulation waren die fractional polynomials am besten geeignet, die vorgegebe-
nen Risikofunktionen zu beschreiben.

e Es konnte eine deutliche Uberschiitzung des vorgegebenen Effekts beobachtet wer-

den, wenn bei der Modellbildung die komplexere Risikofunktion ausgewahlt wurde.

e Durch die Anwendung von bagging konnten die Fehler haufig reduziert werden,
bagging kann aber nicht in allen Fallen empfohlen werden. Generell kann bagging
nur dann funktionieren, wenn sich die in den Bootstrap-Stichproben geschétzten
Risikofunktionen unterscheiden. Diese Resultate bestatigen die aus der Literatur

bekannten Ergebnisse fiir Klassifikationsprobleme.

e Die Anwendung von Shrinkage Methoden beim Cutpoint-Problem ermdoglicht eine
Bias-Reduktion des aufgrund der Modellbildung iiberschatzten relativen Risikos.
Zur Korrektur der Varianzschiatzung wurde in dieser Arbeit die Varianz aus den
Bootstrap-Stichproben geschiatzt. Die simultane Anwendung von Shrinkage und

Varianzkorrektur ermoglicht es, korrekte Konfidenzintervalle zu schatzen.

e Dasin dieser Arbeit vorgeschlagene qualitative Fehlermafl zur Beurteilung der geschatz-

ten Risikofunktionen ist nur eingeschrankt anwendbar.

e Die geschatzten quantitativen Fehler hangen nur wenig von der Methode ab, mit

der die verschiedenen Risikofunktionen vergleichbar gemacht wurden.



1 Introduction

In the analysis of many medical studies the effect of covariates, measured on a continuous
scale, on an outcome variable or some transformation of outcome is often assumed to be
linear. However, a specific prognostically relevant covariate may exhibit an effect that is
markedly nonlinear. Consequently, the assumption of linearity may lead to wrong conclu-
sions. A nonlinear effect can be detected, for example when categorizing the continuous
covariate into several categories and estimating the effect with respect to a reference cat-
egory. However, this approach can be very unstable if the resulting subgroups are too
small. Furthermore, even when using several subgroups there is a loss of information.
On the other hand, categorization is often preferred due to an easy interpretation of the
results. For categorizing a continuous covariate one or several cutpoints need to be de-
termined. This can either be done by using prespecified cutpoints taken from specific
medical knowledge or from previous studies, or by selecting the cutpoints from the data.
Taking the continuous structure of the covariate into account a nonlinear effect can also
be detected by considering a linear and quadratic term or, more generally, by modeling
the effect by polynomials or splines. Applying the former methods the general functional
form is fixed in advance whereas it is usually estimated within the data when using splines.
In the analysis of survival time data interest centers on the time between a starting point,
e.g. diagnosis or start of therapy, and the occurrence of a specific event, e.g. death or
progressive disease. As outcome variable we usually consider the hazard function, which
is the conditional probability for the occurrence of an event during an infinitesimal small
time interval given that the event did not occur before. Modeling the effect of one or
several covariates by using the Cox proportional hazards regression model (Cox, 1972)
the hazard function depends on this/these covariate(s) and on time. In the Cox model
the assumption of a linear effect corresponds to a log-linear dependency, more details are
given in section 2.

In this thesis I investigate several methods to estimate the functional form of the effect of
one continuous covariate in the framework of the Cox model. In addition, I use bootstrap
resampling to extend the chosen methods and to investigate problems of model selection.
More details on the contents of this work will be given after illustrating the problem
by using an example in oncology. In particular, I consider the effect of the continuous
covariate age on the prognosis of breast cancer. After discussing a few examples taken

from the literature the problem is motivated by using the data of two breast cancer studies.

1.1 Example: The effect of age on the prognosis of breast cancer

In breast cancer the effect of more than 100 potential prognostic factors were controver-

sially discussed during the last years. Independent from the therapy the strong effect of the



number of positive lymph nodes on the prognosis has been proven in the past and, there-
fore, this covariate can be considered as a standard prognostic factor. Other covariates,
e.g. tumor size, tumor grade, the progesterone and estrogen receptor and the patient’s
age are often assumed to influence the prognosis, too. Especially, the potential prognostic
effect of age has been discussed controversially. Table 1.1 shows the results of 5 studies on
this topic. Except for the study of Kroman et al. (2000) at least two of the following end-
points were considered: overall survival, disease-free survival and cancer-specific survival.
Disease-free survival, which is also referred to as relapse-free or event-free survival, is usu-
ally defined as time from diagnosis or treatment start until relapse/progressive disease or
death. Patients without any of these event were censored at the last follow up. For cancer
specific survival, also called cause- or disease-specific survival, non-disease-related deaths
were not considered as event and, therefore, the corresponding deaths were considered as
censored observations.

In most of the cited papers the effect of age were investigated by univariate and multi-
variate analysis. In an univariate analysis age is taken into account as single covariate,
whereas the estimated effect of age is adjusted to other covariates when performing a mul-
tivariate analysis. Here, I neither comment on the statistical methods used in the cited
studies, nor on the different designs and the quality of the selected studies. The results
described in table 1.1 show that there seems to be an increased risk for young patients.
However, this result was not confirmed in all studies and for all endpoints. Although age
is a continuous covariate age subgroups were used in all 5 studies. The categorization
of continuous covariates is often preferred because results can be interpreted easily: the
estimated parameters in the Cox regression model can be referred to as log relative risks
between the subgroups. However, the few examples cited above already show that cut-
points can differ between studies. Therefore, it may be difficult to compare the results.
Besides the categorization into 3 age subgroups De la Rochefordiere et al. (1993) also
assume a linear, a quadratic and a logarithmic effect of age on the log hazard rate. Out
of these risk functions the linear effect led to the best fit. In a recently published paper
investigating several pathologic and clinical factors for the prognosis of invasive breast
carcinoma Fisher et al. (2001) used a risk function with a linear and a quadratic term for
age and found a highly significant effect. To model the potential nonlinear but continuous
effect of age and other covariates Sauerbrei and Royston (1999) use fractional polynomi-
als. Using the data of a controlled clinical trial, which will be referred to as GBSG-2
study, they showed that younger women have an increased risk with respect to event-free
survival whereas age showed no effect when assuming a (log-)linear relationship. Com-
paring therapies in the first analysis of the GBSG-2 study age was included as categorized
covariate using the subgroups < 45, 45 — 60 and > 60 years (Schumacher et al., 1994). In
the cited paper there was no significant effect of age with regard to event free survival in
the univariate analysis. Therefore, age was not used in the multivariate analysis.



Throughout my thesis I will use the data of the GBSG-2 study, and the data of a sec-
ond somewhat smaller study, which will be referred to as the Freiburg DNA-study, for
illustration. Due to its larger sample size I focus on the GBSG-2 study.

GBSG-2 study

The GBSG-2 study is a prospective, controlled clinical trial on the treatment of node
positive breast cancer patients conducted by the German Breast Cancer Study Group
(GBSG) (Schumacher et al., 1994). The principal eligibility criterion was a histologically
verified primary breast cancer of stage T1la-3aN+MO0, i.e. with positive regional lymph
nodes but no distant metastases. Primary local treatment was by a modified radical
mastectomy with en bloc axillary dissection with at least six identifiable lymph nodes.
Patients should not be older than 65 years of age and should present with a Karnofsky
index of at least 60. The study was designed as a Comprehensive Cohort Study (Schmoor
et al., 1996), i.e. randomized as well as non-randomized patients who fulfilled the entry
criteria were included and followed-up according to the study procedures.

The study had a 2x2 factorial design with four adjuvant treatment arms: three vs. six
cycles of chemotherapy with and without hormonal treatment. Prognostic factors eval-
uated in the trial were patient’s age, menopausal status, tumor size, estrogen and pro-
gesterone receptor, tumor grade according to Bloom and Richardson (1957), histological
tumor type and number of involved lymph nodes. Histopathologic classification was re-
examined, and grading was performed centrally by one reference pathologist for all cases.
Event-free survival (EFS) was defined as time from mastectomy to the first occurrence of
either locoregional or distant recurrence, contralateral tumor, secondary tumor or death.
During six years 720 patients were recruited, of whom about two thirds were randomized.
After a median follow-up time of nearly 5 years, 299 events for EFS and 171 deaths were
observed. Event-free survival was about 50% at five years. Complete data of the standard
prognostic factors mentioned above were available for 686 (95.3%) patients, who where

taken as the basic patient population.

Freiburg DNA study

The database of this study consisted of all patients with primary, previously untreated
node positive breast cancer who were operated between 1982 and 1987 in the Department
of Gynecology at the University of Freiburg and whose tumor material was available for
DNA investigations. Some exclusion criteria (history of malignoma, 7 and/or M; tumors
according to the UICC classification system, without adjuvant therapy after primary
surgery, older than 80 years etc.) were defined retrospectively. This left 139 patients out
of 218 originally investigated for the analysis.



Table 1.1: Results of 5 sel

study described

in the paper of

sample

size

cted studies investigating the effect of age on the prognosis of breast cancer
e

Age subgroups

Main results

De la Rochefordiere et al. (1993)

Chung et al. (1996)

Vanlemmens et al. (1998)

Ezzat et al. (1998)

Kroman et al. (2000)

1703

3722

1751

710

10356

<3,34-—40,> 40
continuous: linear, quadratic &
logarithmic effect

< 40,41 — 50,51 — 60,61 — 70,71 — 80, > 80

< 3,34 — 40, > 40

< 40,40 — 50, > 50
and
< 30,30 — 40,40 — 50,50 — 60, > 60

< 35,35— 39,40 — 44,45 — 49

Younger women had an increased risk for cause specific
and disease free survival in univariate and multivariate
analyses. Assuming a (log-)linear effect of age led to a

better fit as compared to the other two continuous risk
functions, a significant linear deCrease 1n risk is obtained
for disease free survival only.

The worst cancer specific and disease free survival rate
were obtained for the oldest (> 80) and the youngest
(< 40) patients. Except for the stratification by tumor
stage, the authors performed no multivariate analysis

The univariate analysis showed a significant deCrease in
risk with increasing age for overall survival, cancer specific

and relapse free survival. In the multivariate analysis a
significant prognostic effect of age was found for cancer
specific survival only

There was no effect of age on relapse free survival and

overall survival in univariate and multivariate analyses

An increased risk for younger women with respect to
overall survival was exclusively found in patients with low

risk disease who did not receive any adjuvant treatment.



Eight patients characteristics were investigated. Besides age, number of positive lymph
nodes and size of the primary tumor, the grading score according to Bloom and Richardson
(1957) as well as estrogen- and progesterone receptor status were recorded. DNA flow
cytometry was used to measure ploidy status of the tumor (using a cutpoint of 1.1 for
the DNA index) and S-phase fraction, which is the percentage of tumor cells in the DNA
synthesizing phase obtained by cell cycle analysis.

The median follow-up was 83 months. At the time of analysis, 76 events have been
observed for event-free survival which was defined as the time from surgery to the first
of the following events: occurrence of locoregional recurrence, distant metastases, second
malignancy or death. Event-free survival (EFS) was estimated as 50% after five years.
Further details of the study can be found elsewhere (Pfisterer et al., 1995).

A first example

I focus on the continuous covariate age and investigate its functional relationship with
respect to EFS. The age distribution displayed in figure 1.1 show that the patients are
slightly older in the Freiburg DNA-study. The patient’s age ranges from 26 to 80 years
with a median of 56 years in the Freiburg DNA study, whereas the median age is 53
(range: 21 to 80) in the GBSG-2 study.
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Figure 1.1: Empirical distribution function of age in the GBSG-2 study and the Freiburg
DNA study, dotted lines denote the median of age in the two studies



To get an idea of the effect of the continuous covariate age on the hazard of EFS we

consider three assumptions with respect to the functional form.

e assuming a linear effect of age

e categorizing the continuous covariate age into two subgroups using 35 and 40 years,

respectively, as cutpoints

e allowing a curved functional form, which is modeled by a two term fractional poly-

nomial
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Figure 1.2: Risk function estimates in the GSGG-2 study (G) and the Freiburg DNA
study (F) for different methods used to model the effect of age for EFS

The general shape of the first two functions is fixed in advance whereas we use the data

in order to find the ‘best’ fractional polynomial in each study. More details on this model

building process, the model and further methods to describe the functional form of a

continuous covariate are given in section 2. Figure 1.2 illustrates the log relative risk as a

function of age estimated in a univariate Cox proportional hazard model in the GBSG-2

study and the Freiburg DNA study. In the GBSG-2 study the continuous covariate age is

significantly (likelihood ratio test with p < 0.05) related to EFS when age is categorized

into subgroups or the effect of age is described by a fractional polynomial. Assuming a



linear functional form, however, we obtained no significant effect of age. All functions show
a decreasing risk with increasing age, where the amount of this decrease depends strongly
on the chosen model. Interpreting these results it should be taken into account that there
are only a few patients younger than 30 years. Thus, the strong decrease in risk obtained
by the estimated two term fractional polynomial should be interpreted carefully. In the
Freiburg DNA study none of the functions show a significant effect of age. However, due
to the small sample size the estimated variance is very large. Considering the resulting
functional form, the results of both studies correspond very well. Using 35 years as a
cutpoint the risk difference between the resulting subgroups is nearly the same although
there are only 5 patients (3 events) younger than 35 years in the Freiburg DNA study.
The fractional polynomial approach shows the strongest decrease in risk with increasing
age up to 45 years. However, in the GBSG-2 study we observed again a slight increase
for older patients whereas the risk seems to be constant for patients between 45 and 80
years in the Freiburg DNA study. So, should we believe the results of the larger study or
is the risk increase for older patients solely caused by the model building process used to
find the ‘best’ two term fractional polynomial? It should be mentioned briefly, that the
results with respect to the functional form of the effect of age only change slightly, if we
estimate additionally the effects of the other potential prognostic factors in a multivariate
proportional hazards model. In my thesis I restrict myself to the univariate situation.
Because of the well known problem that an extensive process of model building is more
likely to produce artefact in small studies and/or when the true effect is small (see e.g.
Schumacher et al. (1997)), I will use, in contrast to figure 1.2, the Freiburg DNA study
only for validation. Thus, the GBSG-2 study is used to determine the functional form
(if not fixed in advance) of the effect of age, with respect to EFS and to estimate the
corresponding effect. In the Freiburg DNA study we try to validate results by estimating
the effect while assuming the functional form obtained in the GBSG-2 study.

1.2 Outline

Considering the effect of age with respect to event-free survival section 1.1 illustrated,
that answers to questions like Is there an effect? How can this effect be described? may
depend strongly on the choice of the risk function. The prespecification of a functional
relationship, i.e. as done when assuming a (log-) linear effect may be not suitable to
describe the true effect correctly, whereas the data-dependent choice of the functional
form can lead to a drastic ‘over-fitting’. In order to determine the functional form of a
continuous covariate I consider several data-dependent and data-independent methods,
where the general functional shape is given for data-independent methods. Thus, the
data are used only to estimate the parameter(s) of the risk function. In contrast with
data-dependent methods we also try to find the best functional form within the data

before estimating the parameters. Besides categorizing the covariate by using fixed and
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data driven cutpoints, respectively, I consider a linear relationship commonly assumed in
regression models. Furthermore, I use a risk function including a linear and a quadratic
term, and I estimate the functional form by a fractional polynomial (Royston and Altman,
1994) and by a restricted cubic spline (Harrell, 1997). All methods are extended by
adopting a method called ‘bootstrap aggregating’ that has been proposed by Breiman
(1996).

In section 2 I describe the methods in the framework of the Cox proportional hazard
model and apply them to the data of the GBSG-2 study and the Freiburg DNA study. In
this context it will be investigated how far results can be validated using an independent
data set. An overview of all standard methods is given in section 2.8. In section 2.1.10 I
comment on potential time-dependency. Some further methods to estimate the functional
form of a continuous covariate that were not used in this thesis will be described in section
2.1.11.

In order to investigate the capability of the chosen methods to describe a given functional
relationship correctly, I performed a simulation study. In my investigation I focused

especially on the following questions:

e Which method is most appropriate to describe typical functions?

e How far does the estimated functional form depend on a more or less extensive

process of model building?

e How far is the use of bootstrap resampling helpful to obtain more ‘robust’ functions

and/or to overcome problems of model building?

The design of the simulation study is described in section 3.1. In section 3.2 I discuss
two methods to make results comparable, which is a specific problem when analyzing
survival time data. After introducing error measures in section 3.3 the results of the null
model of no prognostic relevance of the continuous covariate with respect to survival are
given in section 3.4. The results of further non-zero risk functions are summarized in
sections 3.5 - 3.7. Section 3.8 contains a short comparison of different error measures.
Furthermore, I discuss some problems caused by model building and the calculation of
confidence intervals after model building by using specific examples from the simulation
study. After investigating selected methods again in a further small simulation that is
based on the data of the GBSG-2 study, the main results of section 3 are summarized in

section 3.9. In section 4 this thesis ends with a final discussion.



2 Methods for estimating the functional form of a

continuous covariate

2.1 Standard procedures

A standard tool for analyzing survival time data is the Cox proportional hazards model
(Cox, 1972; Andersen et al., 1993). Considering only one continuous covariate X the

model is given by

A(t|X = z) = Ao(t) exp(h(z, B)), (1)

where A(t|-) denotes the hazard function of the event-free or overall survival time random
variable T and A¢(¢) is an unspecified baseline hazard. The effect of the continuous
covariate is described by the function h(z, 8), that will be referred to as risk function. The
parameter estimates ﬁA of this risk function are obtained by maximizing the corresponding
partial likelihood (Cox, 1972). It should be noted that h(z, 8) contains no intercept term,
because all information not related to the covariate is included in the baseline hazard.
Since

At| X = x)

m = exp(h(z, §))

the risk function is referred to as log hazard ratio or log relative risk for an individual with
X = z having an event (e.g. death) as compared to an individual with X = 0. For details
on the analysis on survival data I refer to the literature, e.g. the textbooks of Kalbfleisch
and Prentice (1980) or Marubini and Valsecchi (1995).

In practical situations, we consider usually several covariates Xi,..., Xx that may be
continuous, binary and/or ordinal. However, in this thesis my interest centers around
the estimation of the functional form A(x, 3) of one continuous covariate and, therefore,
I restrict to this simple situation. Although the risk function depends on one or more

parameters, I use the notation h(z) instead of h(z, ) throughout my thesis.

2.1.1 Linear relationship

Modeling the effect of a continuous covariate on survival time the classical assumption is

a linear relationship given by

h(x) = Ba. (2)

In this situation a log-linear relationship holds between the hazard function and the

covariate X. The parameter exp(3), therefore, represents the increase or decrease in risk



if X is increased by one unit, e.g. one year when X denotes the age of a patient. However,
it is unlikely that this assumption is reasonable under all circumstances. Therefore, it is
important to investigate the use of the linear risk function in a nonlinear situation and to
compare it to models that are based on nonlinear risk functions.

Besides specifying the functional form correctly, one may also be interested, whether the
covariate has an influence on the hazard function and, therefore on survival, at all. In order
to test the hypothesis Hy : f = 0 one may use the Wald test statistic B/SE(B) which is
asymptotically distributed as a standard normal distribution under the null hypothesis.
Alternatively one could use the likelihood ratio test comparing the likelihood of the model
with covariate against the so called null model omitting all covariates. Throughout this
thesis the linear relationship is considered as some kind of basic assumption, i.e. I assume
a linear effect (2) if the other methods described in the sequel do not suggest a nonlinear
relationship. The test procedure used to select between the linear and the nonlinear risk
function depends on the method and will be given when describing the corresponding

method. All tests are based on a significance level o = 0.05.

2.1.2 Linear and quadratic term

One common approach to investigate potential nonlinearity is to add a quadratic term to

the risk function, i.e. considering

h(z) = Biz + Boa’. (3)

A deviation from linearity corresponds to a significant effect of the quadratic term, i.e.
if the hypothesis Hy : B2 = 0 is rejected. In order to test Hy I use the likelihood ratio
test comparing the model based on (3) against that based on the linear risk function (2).
Alternatively, one could also use the corresponding Wald test.

2.1.3 Categorization based on prespecified cutpoints

In many applications a continuous covariate (e.g. age) is categorized in two or three
categories using one (or two) prespecified cutpoint(s). Using one fixed cutpoint pg the

risk function is given by

h(z) = px*, (4)

where z* = 145 ,,}- The corresponding proportional hazards model can be written by

A(IX > po) = exp(B)A(HIX < o). (5)
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The parameter [ is referred to as log-relative risk for observations with X > uq relative
to observations with X < p.
Assuming three categories, which are defined by two cutpoints po; and pge With g < oo,

we consider

h(x) = Bia} + Paxs (6)
with

‘$§M01 o1 < X < o2 T > g2
2| 0 1 0
5|0 0 1

The first interval defined by = < g7 serves as reference category, 81 and (3, are referred to
as log relative risks for observations within the second and the third interval, respectively,
relative to observations in the reference category.

This simple interpretation of the results may be seen as the main reason for the catego-

rization of a continuous covariate.

2.1.4 Categorization using data driven cutpoints

Cutpoints are often chosen according to common schemes (e.g. age > 60 years versus
age < 60 years) or the determination of a cutpoint is based on specific medical knowledge
(e.g. progesterone receptor > 20 fmol versus progesterone receptor < 20 fmol). However,
for a factor where no such prior information is available the data are often used in order

to find so called data driven cutpoints.

One cutpoint
Considering only one cutpoint p the risk function is

h(z) = BE (7)

with = 1> ,),the corresponding proportional hazards cutpoint model is given by

A X > p) =exp (B)A(L]| X < p), (8)

which is identical to formula (5) except for the fact, that here the cutpoint y is unknown
and has to be estimated from the data. A popular approach for a data dependent cate-
gorization is the so-called minimum P-value method where - within a certain range of the

distribution of X, the selection interval - the cutpoint j is taken such that the P-value for
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the comparison of observations below and above the cutpoint is a minimum. Here I use
the P-value of the logrank-test and consider all covariate values between the 10 and 90
percent quantile as potential cutpoints. It should be mentioned that the cutpoint of 35

years used for the example described in the introduction is outside this selection interval.

Several cutpoints

Applying the minimum P-value method to the whole population we obtain one cutpoint
i1 and, consequently, two subgroups, namely those with the best separation with respect
to patient’s survival. With this approach it is implicitly assumed that each resulting
subgroup is homogeneous and this assumption may not be adequate. Therefore, it may be
sensible to repeat the procedure within each of the two subgroups separately. The gradual
selection of subgroups is the basic idea of the method of classification and regression trees
(CART).

A comprehensive description of CART can be found in the book of Breiman et al. (1984),
an overview including modifications and extensions of CART is given by Zhang et al.
(1998). Ome extension of CART is the application to survival data (Gordon and Olshen,
1985; Le Blanc and Crowley, 1992, 1993; Segal, 1988).

Briefly, the idea of CART is to construct subgroups which are internally as homogeneous
as possible with regard to the outcome variable and externally as separated as possible.
Usually CART is applied to several covariates, which may be quantitative, ordinal or
nominal. Here I restrict to one continuous covariate. We define a minimum number of
patients within a subgroup, n,,;, say, and prespecify an upper bound for the P-value of

the logrank-statistic, psiep. The tree building algorithm is defined by the following steps:

i) Within a prespecified selection interval - all values of X between the 10% and 90%
quantile are considered as potential cutpoints - the minimal P-value of the logrank
statistic is computed.

ii) The whole group of patients is split into two subgroups based on the cutpoint /i

with the minimal P-value, if the minimal P-value is smaller or equal to psop.

iii) The partition procedure is stopped if there exists no allowable split, i.e. if the min-
imum P-value is greater than pg,, or because the size of the subgroup is smaller

than n,,,-

iv) For each of the two resulting subgroups the procedure is repeated.

Note that steps i) to iii) correspond to the ‘one cutpoint situation’ described above.
It should be briefly mentioned that the classical CART procedure consists - as described
in the cited references - of a tree building and a tree pruning algorithm. Usually, in the

tree building step the partitition process is performed with hardly any stopping rules.
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Consequently, the resulting tree has very small final subgroups, the so called final nodes.
In the tree pruning step final nodes may again be combined by some amalgation. However,
we use only a tree building step and control the size of the tree by the selection interval
and 1y, (Lausen et al., 1994). Furthermore, the number of the final nodes is limited by
allowing only one repetition in step iv) leading to maximally 3 cutpoints and, therefore, to
maximally 4 final subgroups. However, in principle the procedure can be repeated more
than once. The cutpoints obtained by the tree building algorithm are used to categorize
the continuous covariate X. Assuming a maximum of 4 final subgroups defined by three

cutpoints u; < po < ug the corresponding risk function is given by

h(z) = BiZ1 + Pa2 + B373 (9)
with
‘-TS,UI <z < pg po <z <z T > U3
1 0 1 0 0
To 0 0 1 0
T3 0 0 0 1

As described in 2.1.3 the first interval serves as reference category. Due to its relation to
the CART procedure this method will be referred to as CART-based categorization.

2.1.5 Fractional polynomial

In order to model a curved relationship between an outcome variable (in this paper survival
time) and a continuous covariate Royston and Altman (1994) propose the use of so-called
fractional polynomials in the context of regression models.

A fractional polynomial (F'P) is an extension of the ordinary polynomial that offers greater

flexibility. A fractional polynomial of degree m is defined by:

m

FP,(z) = By + Z B xP (10)
j=1

where m is a positive integer. As with ordinary polynomials one has to select the number

of terms. Here I restrict myself to one and two term F'P’s. In principle the powers p;,

j = 1,2 may take any real value but for pragmatic reasons Royston and Altman (1994)

suggest considering only values from the restricted set S, = {—2,—-1,-0.5,0,0.5,1,2, 3}

where, per definition z° = log z.

In the context of the proportional hazards model 5y can be moved to the baseline hazard

and the risk function is given by
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m

h(z) = Z B, xPi (11)

j=1
where m < 2.

For m = 1 and p; = 1 the model reduces to the linear relationship described in 2.1.1
and m = 2 with p; = 1 and p; = 2 lead to a linear and a quadratic term as described in
2.1.2. However, the best one-term FP (m = 1) is found by fitting regression models cor-
responding to every power in the restricted set S,, namely 2, ™!, ..., 2% The power
which corresponds to the model with the lowest deviance D = —2 log-likelihood is se-
lected. Similarly, to find the best two term F'P, regression models are fitted corresponding
to every possible pair of powers from S,.

As done in this thesis it was also postulated by Royston and Altman (1994) to use the
linear relationship as basic assumption. Thus, the relationship between X and survival
time is only described by a m-degree F'P if it is better, i.e. has lower deviance, than the
model with the linear risk function. The gain of the F'P model is measured by a deviance
based test using

G = Drin — Drpm), (12)

where Dpp () is the deviance for the model in question. Tt should be mentioned that
the test is somewhat conservative (Royston and Altman, 1994). Since I consider m < 2
only I have to choose between the best one and the best two term fractional polynomial,
denoted as F'P, and F'P,, and the linear relationship, here denoted by LIN. Note that G
is simply the likelihood ratio test statistic when testing against LI N. However, comparing
F'P, to F'P, the models are not necessarily nested. In this thesis I will not discuss how
far this could be a problem.

Initially the fit of F'P; is compared to the fit of LI N with the corresponding test statistic
G, which is asymptotically distributed as x? with three degrees of freedom when model
LIN (the smaller model) is adequate. The degree of freedom is equal to the difference
in the number of estimated parameters in the two models. If F'P, is significantly better
than LIN the procedure is continued. Otherwise the procedure is stopped and LIN is
accepted as the final model. If the procedure is continued the fit of F'P, is compared to
that of F'P;, the corresponding G has 2 DF'. If the fit of F'P, is significantly better the
procedure is stopped and F'P, is kept as the best model. Otherwise we choose F'P; as
final model.

2.1.6 Restricted cubic spline

The basic concept of splines is to fit piecewise functions rather than using the complete
data set at once. Piecewise cubic polynomials were shown to have nice properties with
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good ability to fit sharply curving shapes. Cubic splines can be made to be smooth at
the so called knots, by forcing the first and second derivates of the function to agree at
the knots. Stone amd Koo (1985) have found that cubic splines do have a drawback in
that they can be poorly behaved in the tails, i.e. before the first and after the last knot.
Their restricted cubic spline function, also called natural spline by De Boor (1978), with
k knots a1 < as < ... < ay is given by

RCS(z) = fo + Brx + Baxa + ... + Br_1Tk-1, (13)

where £y =z and for j =1,...,k — 2,

L T e B e T

Qp — Qg—1

and

)y = u, u>0 (15)
=0, u<O. (16)

It can be shown that z; is linear in x for > a;. Besides a better potential fit of the
tails (which was also cited as an argument to use fractional polynomials) the restricted
cubic spline has the additional advantage that only £ — 1 parameters must be estimated
(besides the intercept) as opposed to k + 3 parameters with the unrestricted cubic spline.
Once By ... Pr—1 are estimated, the restricted cubic spline can be restated in the form

RCS (z) = Bo + Brx + Pa(x — al)i + B3(x — az)i + ... Brpi(z — ak)i (17)

by computing

1
Br = (=) [52(a1 —ag) + Bslag —ag) + ... + Br_1(ag—2 — ak)] (18)

1

(%—1 - alc)

Br+1 =

Balar —ak—1) + Bs(as —ax-—1) + ... + Br-1(ak2 — akl)]- (19)

Following Stone and Koo (1985) and Harrell (1997) we assume that the location of the
knots are specified in advance, i.e. the knot locations are not treated as free parameters
to be estimated. Usually no prior knowledge on knot locations is available and, therefore,
knots are placed at fixed quantiles of the empirical distribution of X. The following
equally spaced quantiles are recommended:
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k quantiles

3 0.05 050 0.95

4 0.05 035 065 0.95

5 0.05 0.275 0.50 0.725 0.95

To ensure that enough points are available in each interval the outer quantiles should be
replaced by the 5th smallest and the 5th largest data points, respectively, if the sample
size is less than 100. The choice of k£ should be guided by the sample size. According
to Stone (1986) more than 5 knots are seldomly required in a restricted cubic spline
model. For many data sets, k = 4 offers an adequate fit of the model and is a sufficient
compromise between flexibility and loss of precision caused by over-fitting small samples
(Harrell, 1997). Fixing the number of knots in advance, restricted cubic splines cannot be
expected to perform as flexible as fractional polynomials and, therefore, the comparison
of both approaches may not be adequate. Nevertheless, in this thesis I use restricted cubic
splines with k=4 knots.

In the framework of the proportional hazards model the risk function is given by

h(z) = prx + Boy + ... + Br-1%k-1, (20)

where z,, ..., z;_1 are defined as above. Estimates of the coefficients of the spline function
are derived with standard techniques allowing statistical inference to be drawn (Harrell
et al., 1988). The gain of a restricted cubic spline model as compared to the linear risk

function can be investigated by
G = Dpin — Dresw) (21)

where Drogky = —2 log likelihood of the fitted & knots restricted cubic spline model and
Dy denotes the corresponding deviance of the proportional hazards model assuming a
linear risk function. In contrast to the fractional polynomial test statistic G is always
based on nested models and is equal to the likelihood ratio test statistic. Under the null
hypothesis , i.e. assuming a linear relationship, G is asymptotically distributed as x? with
k — 1 degrees of freedom. As done for the other risk functions we select the restricted

cubic spline model if the test result is significant and the linear risk function otherwise.

2.1.7 A note on bias caused by model building

So far, we considered six approaches in order to determine the functional form of a con-
tinuous covariate. Four of these methods are based on risk function that are specified in
advance, the data are used to estimate the parameters of the risk function only. Assuming
a linear and quadratic relationship (section 2.1.2) and describing the effect by a restricted

cubic spline (section 2.1.6) model building is performed in so far, that the more complex
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model is used only if the likelihood ratio test against the model with a linear risk function
was significant. Furthermore, the restricted cubic spline uses data dependent quantiles
as knots. A more complex process of model building is involved when categorizing the
continuous covariate using data driven cutpoints (2.1.4) and when applying the fractional
polynomial approach, where the data is used to find the best functional form. These steps
of model building may lead to a considerable amount of over-optimism with respect to
the predictive ability of the 'final’ regression model. This problem is especially relevant
if model building, here the specification of the functional form, and estimation of the re-
sulting effect is performed with the same data set. We have illustrated this phenomenon
when categorizing a continuous covariate X by using the minimum P-value in a simulation
study (Schumacher et al., 1997).

The selection of one data driven cutpoint is usually based on many tests. In particular,
the number of logrank tests used to select [i is equal to the number of different covariate
values in the selection interval. Due to the well known problems resulting from multiple
testing it is obvious that the minimum P-value method cannot lead to correct results.
However, this problem can be solved by using a corrected P-value as proposed in Lausen
and Schumacher (1992), which has been developed by taking the minimization process

into account. The formula reads

Peor = #(2) [Z - %] log l(l ;28)2] + 46(;) (22)

where ¢ denotes the probability density function and z the (1 — ppin/2) - quantile of the
standard normal distribution, p,,;, is obtained by the minimum P-value method. The
selection interval characterized by the proportion ¢ of the smallest and largest values of
x that are not considered as potential cutpoints. In this thesis I use € = 0.1. It should be
mentioned that other approaches of correcting the minimum P-value could be applied; a
comparison of three approaches can be found in a paper by Hilsenbeck and Clark (1996).
However, using p., instead of p,,;, does not solve all problems, because the cutpoint
estimate (1 and the estimated log-relative risk A is still obtained by using the same data
set. This may lead to a drastic overestimation of the log-relative risk 3, if the true value is
small or moderate (| 8 |< 0.7) (Altman et al., 1994; Schumacher et al., 1997). In order to
correct for overestimation it has been proposed (Van Houwelingen and Le Cessie, 1990) to
shrink the parameter estimates by a so called shrinkage factor. Considering the cutpoint

model the log-relative risk should then be estimated by

Bcor =c- B (23)

where £ is based on the minimum P-value method and ¢ is the estimated shrinkage factor.
Values of ¢ close to one should indicate a minor degree of overestimation whereas small
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values of ¢ should reflect a substantial overestimation of the log-relative risk. Obviously,

with maximum partial likelihood estimation of ¢ in a model

At X > p) = exp (¢ A X < p) (24)

using the original data we get ¢ = 1 since ,3 is the maximum partial likelihood esti-
mate. In a recent paper we compared several methods for estimation of ¢ (Schumacher
et al., 1997). Here I use the so called heuristic estimate ¢ = (52 —var(8))/5? where 3 and
var(B) are resulting from the minimum P-value method (Van Houwelingen and Le Cessie,
1990). Besides this heuristic estimator Van Houwelingen and Le Cessie (1990) and Ver-
weij and Van Houwelingen (1993) propose cross-validation calibration. For leave-one-out
cross-validation, let B(,i) denote the estimated regression coefficient obtained when the
patient ¢ with covariate value Z; = 1,55 and observed survival time T; is removed from
the data, where fi denotes the estimated cutpoint in the original data set. Then the
'score’ (Z; — 5)3(_@ can be seen as a 'predictor’ for the 'new’ observation 7;, where the
parameter estimate B(_i) is independent of Z;. In order to assess its predictive potential
(Z; — E)ﬁ(_i) is included as the only covariate for the patient 7 with survival time 7; in a
Cox regression model using all data. The estimated regression coefficient of this covariate
obtained by maximizing the corresponding partial likelihood can be used as a shrinkage
factor. It should be stressed that the standardization of the binary variable Z; is nec-
essary, because the estimation of the shrinkage factor should be based on all estimated
regression coefficients B(_i) and not only on those where z; = 1. For the categorization
using one data driven cutpoint the heuristic estimate performed quite well when com-
pared to cross-validation calibration and other more elaborated resampling approaches
(Schumacher et al., 1997).

Categorizing = by using several data-driven cutpoints several parameters has to be esti-

mated (cf. formula ( 9)). An overall cross-validation calibration shrinkage factor can be
3 .
obtained by including }° (#i; — %;) B(—i);, as the only covariate for patient ¢ with survival
j=1

time 7; in a Cox regression model using all data (here assuming the maximum of 4 final
subgroups). The adjusted ’predictor’ is then estimated by iz(ac) = 6(51561 + Bodin + 53:33).
Note, that the same shrinkage factor is applied to all parameter estimates BZ However, this
may not be sensible in practical application and, therefore, we use a slight generalization
of the cross-validation approach. Considering all factors (Z;; — 7;) B(_i)l, (T2 — 3::2)8(_,)2
and (Z;3 — 53)3(_@3 instead of their sum as covariates for the i-th individual in a Cox
regression model, we obtain three shrinkage factors ¢;, éo and ¢3. The resulting estimated

risk function is given by

h(z) = é161%1 + éafois + C3Ba (25)
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Since this approach lead to one shrinkage factor for each estimated parameter ¢; are re-
ferred to as parameterwise shrinkage factors (Sauerbrei et al., 1999). In this thesis I
investigate the effect of parameterwise shrinkage factors for the CART based categoriza-
tion.

It should be briefly mentioned that Van Houwelingen and Le Cessie (1990) propose a
simple extension of the heuristic shrinkage factor in multiple linear regression. However,
for survival data this approach would be more complicated.

Describing the functional relationship by a fractional polynomial the fitted risk function is
also resulting from multiple testing. However, since the number of tests is smaller (when
using a restricted set for p;) as compared to the cutpoint model and prior investigations
show that this approach holds the type I error rate (Royston and Altman, 1994) over-
optimism of the final regression model may be less extreme. An adaption of the shrinkage
procedure to fractional polynomials seems to be rather complicated. Note that both, the
parameters [3; and the powers p;, was estimated in the selected model.

In the simulation study I will investigate for potential over-optimism of all methods. Fur-
thermore, type I error rates will be estimated for all methods and different model selection
strategies. Stability of the model selection process and, therefore, of the estimated risk
function is investigated by applying the same model building strategy as in the original
data set to a set of bootstrap samples. In order to extend the methods described so far
the results of the bootstrap samples are aggregated to determine a so called bagged risk
function (cf. section 2.2).

Generally, the results obtained by the ’'final’ regression model should be validated using
an independent study - particularly if model building and estimation of the resulting risk
function is performed within the same data set. As mentioned earlier the Freiburg DNA
study is used to validate the results obtained in the GBSG-2 study.
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2.1.8 Overview

All methods described above are summarized in table 2.1 For the CART based catego-
rization and the fractional polynomial approach the table contains the risk function of
the highest order only, i.e. a step function describing the relative risk between 4 final sub-
groups and a fractional polynomial of degree 2, respectively. For each method I selected
a label (cf. table 2.1), which will be used in the sequel when describing the results of the
application and the simulation study. As described earlier the linear risk function is used
as basic assumption or reference model for all approaches.

Table 2.1: Standard procedures to estimate the functional form of a continuous covariate

(1{z>..} denotes the indicator function)

effect estimated risk function A(z) label
linear! Bz LIN
linear & quadratic Bix + B 22 LINQ
Categorization based on

- one prespecified cutpoint pg B 1> u0} FIX

- two prespecified cutpoints po1 < pio2 Bl Lpor<z<pos} + Bg 142> p00} FIX2
Categorization based on
one data driven cutpoint [

- using pyin without shrinkage Bl{,c> 3 CurT

- using ppin with shrinkage éﬁl{z>ﬂ} CUTS

- using pcor without shrinkage Bl{w 3 CUTC

- using peor with shrinkage ¢Blipsp) CUTCS
CART based categorization

- uSing prmin without shrinkage Bi L <a<in) + B2 Lipn<ao<is) + B3lios s} CART

- using Pmsn with shrinkage élﬂAll{ﬁKzSM} + 62B21{[L2<w§ﬁ3} + é3,831{w>ﬁ3} CARTS

- using peor Without shrinkage ,5’1 Lipi<a<poy + ,5’2 Lpo<a<psy + ,5’3 Laspsy CARTC

- using pe,r with shrinkage &1B11 s <oia} + EP2liacagiio) + 3Pl (s>p, | CARTCS
restricted cubic spline b1z + Paxa + ...+ Bp1Tn_1 RCS
fractional polynomial BraPt + By FP

! a linear functional relationship is assumed as basic assumption /reference model

2.1.9 Application I: Estimation and Validation of the effect of age in the two
breast cancer studies

In this section the procedures summarized in table 2.1 are applied to the data of the
GBSG-2 study and the Freiburg DNA study. As mentioned in the introduction the former
study is used for a data-driven selection of the functional form (if not prespecified) as well
as for estimating the effect of age on event free survival (EFS). In contrast to the first

example in the introduction the Freiburg DNA study is only used for validation, i.e. the
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effect is estimated within the model selected in the GBSG-2 study. The categorization by
prespecified cutpoints (FIX2) is based on the two cutpoints 45 years and 60 years. Except
for LIN (the linear function is already displayed in figure 1.2) all estimated risk functions
obtained in the GBSG-2 study and the Freiburg DNA study are displayed in figure 2.1.
Categorizing age by data driven cutpoints I plotted CUTS and CART only. More details
on the parameter estimates can be found in appendix A. All functions are standardized
such that the mean log-relative risk in the data is zero. I will discuss this point in detail
in section 3.2.

In the GBSG-2 study all methods show a decreasing risk with increasing age up to the
age of 50 years. However, except for LIN and CUT we observe again a slight increase
in risk for older patients. For RCS there is additionally a decrease in risk for patients
older than 65 years. However, using only 3 knots the shape of the restricted cubic spline
is similar to that obtained by the two term fractional polynomial (not shown, estimates
in figure 2.1 are based on 4 knots). Considering the improvement of the log-likelihood as
a measure of the model fit we obtained a better fit for the data based methods (CUT,
CART, FP). However, the smallest value of the log-likelihood is obtained when using a
RCS to describe the effect of age (cf. table A 2.1 in the appendix). With this approach,
a data dependent model building is only performed in so far that the knots are quantiles
of the data (cf. section 2.1.6). It is obvious from figure 2.1 that nearly all methods used
to estimate the functional relationship of the effect of age with respect to EFS in the
GBSG-2 study suggest a nonlinear effect. Testing LINQ, FP and RCS against LIN by
the corresponding likelihood-ratio test the gain of the more complex function is always
significant. These method also show a significant effect of age when testing the model
against the null model whereas there is no effect at all for LIN. Since the model building
process used with CUT and CART led to a significant cutpoint the corresponding value
of the likelihood ratio test comparing these models to the null model is also significant.
However, the corrected P-values are not significant (we obtained p.,,=0.07 for the first
split) and therefore CUTC and CARTC would reduce to LIN with our model building
approach. A test of CUT, CART and FIX2 against LIN is formally not allowed, since the
underlying models are not nested.

In the Freiburg DNA study none of the fitted functions lead to a significant reduction of the
log-likelihood indicating that there may be no influence of age on EF'S at all. However, this
study is rather small and the variability of the estimated parameters are large. The best
improvement in terms of the likelihood was obtained for the RCS (table A 2.1). Again, all
methods show a decrease in risk with increasing age (cf figure 2.1). However, this decrease
is substantially smaller as in the GBSG-2 study. Furthermore, there is no increase of the
log relative risk for older patients as observed with FIX2, CART, FP and LINQ in the
GBSG-2 study. For LINQ the quadratic effect can be neglected in the Freiburg DNA
study, whereas the functional shape of FP and RCS are similar in both studies. The
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difference between the two subgroups obtained by CUT is substantially smaller in the
Freiburg DNA study. The results obtained by using CART should be interpreted very
cautiously in the Freiburg DNA study, because the reference group (patients < 32 years)
contains only 2 patients and, therefore, the resulting parameter estimates exhibit a very

large variability.
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Figure 2.1: Risk function estimates of the effect of age in the GBSG-2 study (solid line)
and validation in the Freiburg DNA-study (dashed line)

Recapitulating all results the use of different risk functions may lead to differences with
respect to the interpretation of the effect of age on EFS. The results obtained in the
GBSG-2 study could only be partially verified by the data of the Freiburg DNA study.
The large change in log relative risk observed with CUT and CART in the GBSG-2 study
is obviously resulting from the extensive process of model building involved when selecting
one or more cutpoints. Furthermore, the huge decrease in risk observed with FP is not
very likely, too. And last but not least: Is there an increase in risk for older patients or
not? In order to illuminate these questions it is worthwhile to investigate the stability of

all risk functions and to search for more robust methods.
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2.1.10 Time dependent covariates

All approaches described so far focus on the functional form of the effect of the continuous
covariate rather than on the deviation from the proportional hazards (PH) assumption.
However, the assumption of a constant effect in time may be wrong. A common example
is the treatment effect that decreases with time. In oncological studies patients are usually
observed for several years where the effect of the patient’s age may also change with time.
In this section I investigate the potential time-dependency of age on EFS in the GBSG-
2 study. Furthermore, it will be illustrated that the functional form of the effect of a
covariate is also related to the PH assumption.

Several graphical methods and tests are available to assess the proportionality of hazards
(Marubini and Valsecchi, 1995). I restrict myself to a test proposed in the original paper
by Cox (1972) and a simple but effective graphical approach by Grambsch and Therneau
(1994).

To investigate the PH assumption Cox proposed to define a time-dependent transform of
the continuous covariate by multiplying it by a function ¢(t) of time, and include it in the

classical model:

A(X = ) = Ao(t) exp(Bz + v29(t)) (26)

In general, a non-zero value of v (corresponding to a significant gain as compared to LIN)
would indicate a variation in time of the hazard ratio between two individuals with a
different value of z. Common choices for g(t) are the identity function g(¢) = ¢ and its
logarithmic transformation g(¢) = log(¢). These functions are often centered around an
arbitrary constant to improve interpretability and to avoid instability of the estimates.
Investigating the potential time-dependency of age in the GBSG-2 study this constant
is chosen as the observed median survival time and the log median survival time, re-
spectively. The resulting models are denoted by LIN & LIN(t) and LIN & LOGLIN(t),
respectively. Table 2.2 lists the values of the likelihood ratio test statistic (LRT) against
the null model in the GBSG-2 study for several models with and without a time-dependent
risk function. For LIN & LIN(t) and LIN & LOGLIN(t) we obtained a significant effect
of age. The values of LRT are 8.59 and 8.72, respectively, which is larger than the cor-
responding value of x? distribution with 2 degrees of freedom x324; = 5.99. Comparing
LIN & LIN(t) to LIN the resulting test statistic with 1 degree of freedom has the value
8.59-0.58=8.01 indicating a strong effect of the time-dependent term LIN(t). Adding a
time-dependent term to LIN the improvement in terms of likelihood is as large as with
LINQ. However, the value of LRT is substantially smaller than those of FP and RCS.
It should be briefly mentioned that the results are similar for the multivariate model
including the other prognostic factors as time-independent covariates with a linear risk
function. So what to do? Is there a time-dependent effect of age or is the assump-
tion of a linear effect wrong? Last but not least there may be both, a nonlinear and a
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time-dependent effect. Adding e.g. a linear time-dependent effect to LINQ increases the
likelihood ratio test statistic significantly from 8.99 for LINQ to 14.76 for LINQ & LIN(t).

Table 2.2: Investigating time-dependency of the effect of age on the hazard of EFS in the
GBSG-2 study

risk function df LRT! p PH-Test
LIN 1 0.58 0.147  17.76
LIN & LIN(t) 2 8.59 - -
LIN & LOGLIN(t) 2 8.72 - -
LINQ 2 8.99 -0.073  2.082
LINQ & LIN(t) 3 14.76 - -
FP 4 17.63 0.007  0.55%
RCS 3 21.69 -0.040 0.01?

! likelihood ratio test statistic against the null model

2 based on multiple regression coefficients

Considering the same model as described above Grambsch and Therneau (1994) show
that smoothed plots of the standardized Schoenfeld residuals can reveal the form of g(t).
Restricting to the observed events j = 1,...,J the Schoenfeld residuals are defined by
7; = x; — E(x; | R;), which is the difference of the observed covariate for the individual
dying at time point j and the expected value of this covariate under the model (R; denote
the risk set at time j). Standardized or scaled Schoenfeld residuals r; can be obtained
by dividing #; by its variance estimate. Note that for more than one covariate 7; and
77 are vectors, and that standardization is based on the inverse of the covariance matrix
of 7; . Since the covariance matrix tends to be fairly constant over time Grambsch and
Therneau (1994) propose an easy approximation to calculate r;. Furthermore, they show

that 7; and their approximation have a mean at time ¢ of approximately

E(r(t)) =~ g(t) (27)
This result suggests that a plot of the scaled Schoenfeld residuals over time including a
smoothing line may be used to visually assess whether the coefficient v is equal to zero
and, if not, of what nature the time dependence may be. Grambsch and Therneau derive
a generalized least squares estimator for v (all v;, i = 1, ..., k, if there are k covariates)
and a score test (denoted as PH-test) to test the hypothesis Hy: v = 0. Under the null
hypothesis the PH-Test statistic has asymptotically a x? distribution with 1 degree of
freedom. It should be briefly mentioned that many tests of proportional hazards are closely
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Figure 2.2: Plot of scaled Schoenfeld residuals versus time with smoothing lines for LIN
and RCS in the GBSG-2 study

related to this score test. For instance, the score test of Grambsch and Therneau (1994)
is equal to that proposed by O’Quigley and Pessione (1989) if g is piecewise constant
on non-overlapping time intervals with the intervals and constants chosen in advance.
Additionally to the ‘correlation with time’ score test and the corresponding residual plot
time-dependency can also be described by the correlation p between 7} and survival time,
here p is simply Pearson’s correlation coefficient. Assuming a linear risk function we obtain
a correlation of p = 0.147, the resulting residual plot (figure 2.2) suggests a slight increase
of the effect of age with increasing time. Although the PH-test also show a significant
time-dependent effect (x? = 7.76, p = 0.005, corresponding well to the results obtained
above for LIN & LIN(t) and LIN & LOGLIN(t)) this effect seems to be rather small. The
smoothing line, which is obtained by fitting the scaled Schoenfeld residuals by a 4 knots
restricted cubic spline, increases only slightly with increasing time. A time-dependent
effect can not be seen easily without this smoothing line.

Considering multiple regression coefficients for one covariate as done when assuming
LINQ, FP or RCS an approximate analysis can be performed in which the covariate

is transformed by the estimated risk function (Harrell, 1997) leading again to one term
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per covariate. Then, the analysis is performed as described above. Doing so it should be
taken into account that the score test is based on the false number of degrees of freedom
(namely one), and that the risk function used for the transformation was estimated from
the data.

As listed in table 2.2 the PH score test does not indicate a time dependent effect of age
when using LINQ, FP or RCS as risk function. The value p is approximately zero for
all models and the smoothing line is constant over the time. As an example the residual
plot is displayed for RCS in figure 2.2, similar plots would be obtained for LINQ and FP.
Although the choice of RCS provides the best fit in terms of the log-likelihood, this risk
function is not appropriate for the complete data set. As shown in figure 2.2 there are
several observations with extremely large residuals ;.

Analyzing the data of the GBSG-2 study with respect to potential time-dependency of
age, we can at least exclude a strong time-dependent effect on EFS. Furthermore, the
residual plots have shown that the choice of a specific risk function is also related to the
PH assumption. Generally, it would be desirable to investigate both assumptions, the
functional form of the risk function and potential time-dependency together. However, in

this thesis I focus on the functional form.

2.1.11 Further approaches

In this section I give a short overview on some further data-driven methods for determining
the risk function. Some of the methods described in this section are similar to the data
driven cutpoint model and the CART based categorization.

Studying also the effect of age on survival in breast cancer Contal and O’Quigley (1999)
used a data driven cutpoint to divide the patients population into a high risk and a
low risk group. In contrast to the approach described in section 2.1.4 their approach
avoids arbitrarily eliminating potential cutpoints near the extremities’. They point out
that cutpoints near to the boundaries of the covariate’s distribution ’may be real or may
reflect the presence of outliers’. 'To identify the ’optimal’ cutpoint and to estimate its
significance Contal & O’Quigely construct a process that asymptotically behaves like a
Brownian bridge and use classical properties of the Brownian bridge. Doing so Contal &
O’Quigely are able to consider all observed values of the continuous covariate as potential
cutpoint. Remember, that the cutpoint of 35 years (used as fix cutpoint in section 1.2)
was outside the selection interval when using the minimum P-value approach. Since this
cutpoint produced a higher risk difference as compared to the categorization by 42 years
(obtained by the minimum P-value method), 35 years would probably have been selected
when applying the method of Contal & O’Quigely.

Another method to estimate the functional form is the local likelihood approach of Tib-

shirani and Hastie (1987). Considering only a subset of the data within a given window
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(around each value of the continuous covariate X) a Cox regression model is fitted using
the linear (or another continuous) risk function. Displacing the window step by step from
small to large values of X one obtains a set of risk estimates. Then, the trapezoidal rule
is used to combine these estimates leading to an estimate of the functional form of the
effect of X. Using this local likelihood method to investigate the effect of S-Phase fraction
on EFS in the Freiburg DNA study we have shown that the resulting risk function may
strongly depend on the size w of the window (Schumacher et al., 1996). Tibshirani and
Hastie (1987) propose to try a range of spans (= window sizes) and ‘ezamine the resulting
estimate and the value of the global likelihood that it produces’. The authors propose also
an automatic method for selecting w that is based on a form of Akaike’s information
criterion (AIC) (Akaike, 1973).

As already mentioned in section 2.9 the functional form of a continuous covariate may be
visualized by using residual plots. Therneau et al. (1990) suggested the use of martingale

based residuals. These residuals are estimated by

M; = 6; — ]\O(ti) exp(BX,-), (28)

where t; is the observation time and ¢; the censoring indicator for the i-th individual,
Ao(t;) denotes the cumulative baseline hazard and the risk function is assumed to be
linear. The martingale residual can be interpreted as the difference of the number of
observed events (0 or 1) and the number of expected events under the model. Suppose
now that the covariate x (one covariate xj out of z if z is a vector) strongly influences
survival in a nonlinear fashion, for example with earlier failures occurring at higher values
of x. It is likely that in the Cox model without = - and that is the basic assumption of
Therneau et al. (1990) - the residuals M; plotted against # would not be centered around
zero as expected. They could tend instead to be positive for larger values and negative
for smaller values of x. The functional form of the effect of x may then be visualized by
a smoothing line. Plotting the martingale-based residuals of the null model against age
for the data of the GBSG-2 study the smoothing line — I used lowess (Cleveland, 1979)
— suggests a similar functional shape as obtained when fitting a 4 knot RCS to the data
(figures 2.1 and 2.3). This illustrates that different concepts may lead to similar results.
As done in the data driven cutpoint model (CUT, CUTS) Le Blanc and Crowley (1995)
also consider piecewise constant relative risk functions to describe the effect of one or
more continuous covariates on survival. Similar to section 2.1.4 they propose a two step
technique for fitting an adaptively chosen step function for a continuous covariate X. In
addition to X their model may contain also additional covariates. The models reads

At] X,2Z) = Xo(t) exp(B] Z + B2 9(Z) L x<py) , (29)

where Z is the vector of additional covariates and ; denotes the corresponding parame-

ter vector. In order to find the approximate maximum likelihood estimates first, a ‘good
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Figure 2.3: Martingale residuals for the null model versus age in the GBSG-2 study
including a lowess smoother

value’ for the cutpoint is estimated by a weighted least-squares method which allows ‘ef-
ficient updating’ for different values of p. To do so Le Blanc and Crowley (1995) proposed
a standardized approximate score statistic that is based on the weighted sum of squares
including the term ¢g(Z)1;x<,} in a linear model. Considering only one continuous covari-
ate, i.e. for the special case g(Z) = 1 and 5, = 0, the approximate score statistic is just
the logrank test for two groups defined by the cutpoint. After estimating p by maximiza-
tion of the score statistic over a selection interval a < p < b the parameters (B;r , Bg(/l)
are obtained by maximizing the corresponding partial likelihood. Tail probabilities of the
score statistic and corrected P-values for testing Hy:8; = 0 for an adaptively chosen step
function are obtained by a permutation approach. As outlined by Le Blanc and Crowley
(1995) for the special case g(Z) = 1 the weighted least squares approach has connection
to the residual analysis idea proposed by Therneau et al. (1990) that I described above.
Developing models with step functions may often involve repeated use of the step function
algorithm, since a model may contain more than one step function. To find an appropriate
final model Le Blanc and Crowley (1995) propose a modified Akaike information criterion

penalizing — in addition to the number of parameters — the model building process.
In a further paper Le Blanc and Crowley (1999) use adaptive regression splines to ex-

plore the effect of continuous covariates. With this approach the risk function consists
of piecewise linear terms. Knot positions are selected adaptively, additional constraints
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are used to avoid placing knots to close to the extremes of the data. Model selection is
based on backward elimination using a modified version of AIC, which is similar to that
described in their step function paper. Although adaptive regression splines may suggest
departures from the linear risk functions Le Blanc and Crowley (1999) point out that
their ‘modeling technique does not test whether the piecewise term is better than the linear

term, the technique stmply finds the best piecewise linear term’.

In a recently published paper Xu and Adak (2001) use a tree based approach to approx-
imate the time-varying regression effect of several prognostic factors in breast cancer as
piecewise constants. A fast algorithm that relies on maximized modified score statistics
is designed for recursive segmentation of the time axis. Following segmentation, i.e. the
tree growing step, some of the segments are then recombined by using a pruning algo-
rithm similar to that of the classical CART procedure (Breiman et al., 1984). Based on
the finally selected change-points (=cutpoints) step functions of the time-varying effect
of the prognostic factors are estimated in the proportional hazards model. Similar to
CUT/CART that I used to estimate a step function for the effect of a time-constant con-
tinuous covariate the approach of Xu and Adak is also based on an extensive process of
model building. In order to correct for over-optimism due to change-point optimization
the authors propose a bootstrap procedure for the final segmentation of the time axis.
With this procedure the model selection process is repeated in a set of bootstrap samples.
An average of the results over all bootstrap samples are used together with a penalty term
for the final determination of change-points. Alternatively to the bootstrap procedure the
final model can also be selected by using a measure of the explained variation (Xu and
Adak, 2001).

There are lot of further approaches to determine the functional form of the effect of time
varying or time-constant covariates. However, it is beyond the scope of my thesis to
describe all of them.
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2.2 Extensions based on bootstrap resampling

The categorization of a continuous covariate or the specification of its functional rela-
tionship with respect to the outcome variable is an important step of model building.
However, building a statistical model and estimating the resulting risk function within
the same data set may lead to a considerable amount of over-optimism with respect to
the predictive ability of the ’final’ model. The bootstrap is often used to investigate the
influence of data-dependent decisions in model building-strategies (Sauerbrei, 1998).

In order to reduce the variability due to model building Breiman (1996) proposed the
concept of bootstrap aggregating (bagging). Considering a series of samples L1, ..., L,
and building a predictor in each of these samples he suggested to use an aggregated
predictor. The exact method of aggregation depends on the response type. For the
regression case the arithmetic mean is used, while for the classification case, e.g. using
CART in order to predict a class, a simple voting procedure is involved, so that the
aggregated predictor assigns that class to an element which was predicted most often in
the r single predictors. Breiman shows that, in the case of independent samples L, ..., L,,
the aggregated predictor is always at least as good as a single predictor. However, since
the luxury of independent samples is available in simulations only, Breiman suggested to
use bootstrap samples instead.

In this thesis bagging is adapted to the current situation. I consider B bootstrap samples
Si,...,Sp of the complete patient’s vector (i.e. the survival time variable, the censoring
indicator and the covariate X) sampled with replacement out of the original data (Efron
and Tibshirani, 1993). In each of the B bootstrap samples the functional form of the
covariate X is determined with the methods described in section 2.1. Doing so, the same
model selection process as in the original data is applied in each bootstrap sample. Using
LIN and FIX2 there is no model selection involved and, therefore, the general functional
form is the same in all bootstrap samples. Consequently, the aggregated function that
will be referred to as bagged risk function hp,gg is obviously of the same type as that of
the corresponding standard procedure. For the other approaches the form of the fitted
function may differ between bootstrap samples (e.g. F'P; or F'P,) and, therefore, it may
be difficult to determine a specific form for the resulting bagged function. However, it is
sufficient to aggregate the bootstrap results for fixed values of the continuous covariate.
I use all observations of the original data, more details will be given below. Formally, a
bagging estimate of the functional form of the continuous covariate X is given by

Pbagg (T) = — g5 (30)

where hy(z) is the risk function obtained in the b-th bootstrap sample (b=1,..., B).
Besides the determination of a bagged function, that may be more stable than one single
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function, we explore the results of bootstrap resampling in order to get further insight
into the stability of the estimated risk functions obtained by the underlying standard
procedure. In particular, the results of all bootstrap samples are illustrated graphically.

Furthermore, we count the frequencies of linear and higher order risk functions.

a) Linear relationship (LIN)
Since the assumption of a linear relationship is considered as basic assumption (significant

and non-significant effects are both considered as linear) the bagging estimator

—B —
hbagg(m) =pz= = (31)
is also linear in z.

b) Linear and quadratic term (LINQ)

For this approach the functional form of the b-th bootstrap sample is assumed to be
linear (hy(x) = Bix) if the hypothesis Hy : S = 0 cannot be rejected and the effect is
assumed to be linear and quadratic (hy(z) = Bz + Box?) if Hy : By = 0 is rejected. Due
to the fact that the functional form differs between bootstrap samples hyq44 is determined
for all observations zi,...,z, in the original data. The functional form of hy.e, can be
obtained by using 8 = 0 for all bootstrap samples with a linear relationship. Let [ be the
number of bootstrap samples with a linear risk function and ¢ the number of bootstrap
samples where the risk function contains a linear and a quadratic term (B = [ + ¢) with

corresponding sets M (l) and M (g). Then hyq4y can be written by

h,bagg(x) = %Z 1b.’1?+—< Z /82{)./11‘ + Z 037)

beM(q) be M(l
—B | 5B
= By z+ B, a7,
i.e. hpegq comsists of a linear and a quadratic term.

c) Categorization based on prespecified cutpoints (FIX)

This approach uses the same categorization in each bootstrap sample and, therefore,
hbagg is glven by hbagg( ) = BB x* with 2* = 1g;5,,} when using one cutpoint p, and
hbage(z) = Bl zT + 62 xy (x7, x5 as defined in section 2.1.3) when using two cutpoints.

d) Categorization using data driven cutpoints (CUT, CART)

In contrast to c) the cutpoint(s) may differ between the bootstrap samples and, conse-
quently, the functional form of hy,g, cannot be given explicitly. As described in b) hpqgq
is determined for all observed values of X. If there is at least one significant cutpoint

(Pmin < 0.05) the functional relationship between X and the survival time variable T
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is described by a step function describing a change in relative risk at each cutpoint (cf.
2.1.4). Consequently the bagged function is also a step function with changes in risk
at each cutpoint obtained in any bootstrap sample. For all bootstrap samples with no
significant cutpoint (p, > 0.05) we assume a linear relationship and correct the bagged
step function by the mean linear effect: Let k be the number of bootstrap samples with
at least one significant cutpoint with corresponding set M (k). Based on M (k) I calculate
hlgagg
samples is then obtained by

by aggregating k single step functions. The bagged risk function for all bootstrap

k I —
hbagg(l') = E h’]bcagg(m) + E/B z, (32)

where Bl is the mean linear effect of the [ = (B — k) bootstrap samples with no significant

cutpoint.

e) Fractional polynomials (FP)

The functional form of the b-th bootstrap sample is either described by a two term frac-
tional polynomial (F'P,) or a one term fractional polynomial (F'P;) or it is assumed to
be linear (cf. section 2.1.5). Furthermore, the power(s) of the one or two term fractional
polynomial may differ between bootstrap samples. Therefore, the functional form of Ay,
would be more complex as the linear and quadratic function obtained when including a
linear and a (potential) quadratic term only. However, in principle hpq4, could be de-

scribed as fractional polynomial by setting non selected terms to zero as done with LINQ.

f) Restricted cubic spline (RCS)

A restricted cubic spline is only selected if the corresponding likelihood ratio test show
a significant improvement as compared to the assumption of a linear risk function (cf.
section 2.1.6). It should be noted that the knots can differ slightly between the bootstrap
samples. As for the fractional polynomials Ay, is calculated for all observed values of X

in the original data set.

2.2.1 Application II: Estimation of bagged risk functions for the effect of age
in the GBSG-2 study

In order to estimate the bagging estimates of the functional form of the effect of age I
drew 100 bootstrap samples of the complete patients vector (EFS, the censoring indicator,
age) out of the original data of the GBSG-2 study. In each of these bootstrap samples
the functional form and/or the corresponding parameters were estimated by using the
standard methods. As in the original data in each bootstrap sample the functions are

standardized such that the mean log relative risk of all patients is zero. Furthermore, the
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model building process described in sections 2.1.2 - 2.1.6. is applied in each bootstrap

sample.
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Figure 2.4: Estimated risk functions in 100 bootstrap samples of the GBSG-2 study and
comparison of the estimated bagged risk function to the risk function obtained in the
original data, the black dashed line describes the risk function obtained in the original

data,hpeg4 is given by the black solid line

For LINQ the quadratic effect was significant in 77 bootstrap samples, whereas the model
reduced to a linear risk function in 23%. A restricted cubic spline was selected in all 100
bootstrap samples. For FP a linear risk function was selected in 12, a fractional poly-
nomial of degree 1 in 16, and a two-term fractional polynomial in 72 bootstrap samples.
None of these FPs had the same powers as obtained in the original data of the GBSG-2
study (p; = —0.5 and p, = —2). However, the functional form obtained in most bootstrap
samples is similar to that estimated in the original data. Using CUT/CUTS or CART
the continuous covariate age was categorized in 97 bootstrap samples. In 3 bootstrap
samples there was no significant cutpoint and, therefore, I assumed a linear risk function.
Taking the corrected instead of the minimum P-value the rate of categorized risk func-
tions reduced to 63 percent. The estimated standardized risk functions for LINQ, FIX2,
CUTS, CART, FP and RCS of all bootstrap samples are displayed in figure 2.4. As in
the original data for each method most functions show a decrease in risk with increasing
age up to 50 years. Some of the methods show again also a slight risk increase for older

patients. It is obvious from figure 2.4 that the variability of the estimated risk functions
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between bootstrap samples is — except for FIX2 — more relevant in the tails of the age
distribution. These results should be taken into account when considering the bagged risk
function (solid black lines in figure 2.4). Comparing ilbagg to the corresponding risk func-
tion obtained in the original data of the GBSG-2 study (dashed black line in figure 2.4)
there is no difference for LIN (not shown) and FIX2. This is not astonishing, because the
functional shape is completely prespecified with both approaches and, therefore, is the
same in all bootstrap samples. Consequently, the variability between bootstrap samples
is only small. Averaging over a set of random bootstrap samples led us to the same result
as in the original data. This explanation also holds for RCS. In all bootstrap samples
the restricted cubic spline produced a better fit than the linear risk function. Due to the
small variation with respect to the knots the functional shape is similar in each bootstrap
sample. Therefore, Bbagg differs only slightly from the RCS obtained in the original data.
For LINQ and FP the bagged risk function is less extreme in the tails of the age distri-
bution resulting from the fact that a linear risk function was selected in some bootstrap
samples. However the difference as compared to the ‘original’ function is only small. The
largest difference can be observed for CUT/CUTS and CART, respectively. However the
functional shape of the bagged risk function is still similar to that obtained in the original
data, but i’bagg is more smooth.

The results described above agree with the Breimans basic result that bagging may work
if the underlying model building process is unstable (Breiman, 1996). In the current situ-
ation instability occurs when the model selection process produce different risk functions
in different bootstrap samples. In the GBSG-2 study the nonlinear effect of age on EFS
seems to be relatively strong. Therefore, the models building process led to similar results

in most bootstrap samples.
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2.3 Summary

In section 2.1 I introduced different methods to estimate the risk function for the effect of
a continuous covariate in the Cox proportional hazards model. Section 2.2 describes how
to calculate aggregated risk functions based on bootstrap samples. To do so it is necessary
to repeat the whole model building process in each bootstrap sample. This allows also to

investigate for stability of the risk function estimated in the original data.

Applying the proposed methods to estimate the effect of age on event-free survival of

breast cancer patients I obtained the following results:

e All methods showed a decrease in risk with increasing age up to 45-50 years. For
patients older than 50 years the risk seems to be rather constant. Thus, the effect

of age cannot be described correctly by a linear risk function

e The results obtained in the GBSG-2 study could be partially verified in the Freiburg
DNA study. However, especially the decrease in risk is substantially smaller in the
latter study. Although the Freiburg DNA study is very small and a comparison of

result may not be fair, there seems to be a certain amount of over-optimism in the
GBSG-2 study

e In most bootstrap samples the estimated risk function is similar to that obtained
by the corresponding methods in the original data of the GBSG-2 study. More
complex risk functions reduced to the linear effect in a few bootstrap samples only.
The highest rate (23%) of linear risk functions is obtained for LINQ, whereas a
restricted cubic spline was selected in all 100 bootstrap samples. These results

indicate a strong nonlinear effect of age on event-free survival

e Except for the categorization by data-driven cutpoints there is hardly any difference
between the bagged risk function and that obtained in the original data. This may
be caused by the strong nonlinear effect of age and, therefore, the stability of the

risk functions in the bootstrap samples
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3 Simulation Study

The application to the data of the two breast cancer studies has shown, that the choice
of different risk functions may lead to different results. However, the true functional
relationship between age and EFS is of course unknown and, therefore, the stability of
the functional form in the bootstrap samples (observed for example for RCS) cannot
guarantee that the chosen method is generally adequate. Therefore, I investigate the
capability of all methods to provide good estimates of the true functional form of a
continuous covariate by a simulation study.

The design of this simulation is presented in section 3.1, and in section 3.2 it will be
discussed how to make different risk functions comparable. Measures for assessing the fit
of the estimated functions are described in section 3.3. Some notes on software and the
concept of programming will be given in appendix B. The results are described in sections
3.4 - 3.7. After discussing further topics, e.g. the estimation of confidence intervals after
model building, in section 3.8 a short summary is given in section 3.9.

3.1 Design

A continuous covariate X taken as uniformly distributed on the interval [1, 2] is considered.
This interval was selected to avoid problems that may be caused by the logarithmic
term of the fractional polynomial risk function for values close to 0. The survival time
random variable 7' is taken from an exponential distribution by using the transformation
T = —(1/),) log(U), where U is uniformly distributed on [0, 1] and ), is chosen according
to the underlying functional relationship. For simplicity, only uncensored survival times
are considered. The simulation is performed using n = 100 observations, R = 1000
replications and B = 100 bootstrap samples in each replication for the procedures, which
are based on bootstrap resampling. To avoid too small subgroups when using the CART
based categorization we set 7, = 20 (cf. section 2.1.4).

As given models we consider four situations:
1. The null model with given risk function h(z) = 0 for all values x

0 At X =) = Xo(t) exp(0) = Ao(2). (33)

2. A proportional hazards cutpoint model

I At X =x) = Ao(t) exp(B - 1iz>py) (34)
with g = 1.5, 5 =0.5 and A\(t) = 1.
3. A linear relationship, in the sequel also referred to as linear model

IT At|X =2) = \(t) exp(Br) (35)
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with g = 0.5.
4. A V-type risk function, i.e. a model where the risk increases linearly to the distance

from a given cutpoint u:

I AC|X =12) = Ao(t) exp(2B |z — ), (36)
where 5 = 0.5 and p = 1.5. This model will also be referred to as V-type model.

All models are displayed in figure 3.1. In models I-1II it is assumed that the change in
risk 3 is rather moderate. This assumption corresponds well to practical situations, where

a large effect of a (new) prognostic factor cannot be expected.
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continuous covariate X

Figure 3.1: Risk function used in the simulation study

3.2 Making results comparable

Using e.g. two different risk functions, say h; and hy, to estimate the true functional
relationship g of the effect of a (continuous) covariate X both functions cannot be com-
pared directly, because they refer to two different baseline hazards Aj'(¢) and \}*(¢) in
the underlying Cox regression model (cf. formula (1)). This is illustrated by using one
selected simulated data set generated for the V-type model (Figure 3.2 a). For instance,
the shape of the estimated fractional polynomial is similar to that obtained by LINQ.
However the difference with respect to the corresponding baseline hazards lead to a shift
in location. To investigate the fit with respect to g and to compare all methods with
each other we have to make the results comparable. The estimated risk functions of the
two breast cancer studies were standardized such as the mean log-relative risk is zero (cf.

figure 2.1). Formally, we considered
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~

hey (i) = h(w:) = = 3 h(z:) (37)
for all observed values z; (i = 1,...,n) instead of the fitted values h(z;) leading to
the standardization 77" izcl (x;) = 0. The standardized functional forms obtained in the
selected simulated data set is shown in figure 3.2 b.

As mentioned above, lack of comparability is resulting from the difference with respect to

the baseline hazard. Since A¢(t) contains the intercept term we calculate

hey(:) = log(Mo(t)) + h(z;) (38)
using the Breslow estimator of A\y(¢*) for a fixed time point t*, which is obtained by

Ao(t) = 4 = :
(ty) — tg-1)) X exp(h(x:))

1€ER;

(39)

where ¢;) — t(j_1) is the time interval between two consecutive failure times and t* €
(t(i—1),t))- The term d; is the number of observed deaths at ;) and R; denotes the risk
set at time t(;) (Marubini and Valsecchi, 1995). In contrast to the standardization to zero
mean of the log relative risk BCZ depends on time via \o(¢*), where ¢* has to be chosen
out of the time range between the first and the last observed failure time. Considering
two functions h; and hs (one of them may be the true function g) the difference between

the corresponding estimated logarithmic baseline hazards

D5,y = log(M (1)) — log(Ake(t)
= log(d;) — log(ty) — t(-1)) — log Y exp(hi())

—log(d;) + log(t(jy — t(j-1)) + log Z exp(hs(z))
= log ¥ eap(hu()) — log 3" exp(hi ()

R; R;

depends on ¢ via the risk set R;.

In order to investigate the effect of time figure 3.2 ¢ shows the estimated logarithmic
baseline hazard for the linear risk function in the simulated data set. Furthermore we
consider the difference Dy ) with respect to the linear / linear & quadratic risk function
and the linear / fractional polynomial risk function, respectively. Although log(Ao(%))
depends substantially on ¢ the difference between the three functions seems to be the
same for all values of . This phenomenon is also observed when considering further
functions, the restriction to three functions is only for better illustration. These results
show that we may choose any value of ¢ as fixed time point ¢*. However, the value of D5,
cannot expected to remain constant over time if the risk set R; gets small and /or h;(z) and

38



ho(z) differ substantially for individual observations X = z;. The standardized functions
obtained by using the median survival time as fixed value t* to calculate the corresponding
functions iLCz are displayed in figure 3.2 d. The fact that D;\O(t) remains constant in time in
the simulated data set may be caused by the design of the simulation study: the survival
time was generated from an exponential distribution, which is characterized by a constant
hazard rate. However, in the GBSG-2 study, where the distribution of survival time may
differ from an exponential distribution, we observed similar results (not shown) indicating

that lALCQ can also be used in practical situations.
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Figure 3.2: Results obtained in the selected simulated data set: a: without any standard-
ization b: standardization to zero mean log relative risk c: log S\O(t) and Dy ) versus
survival time for LIN, LINQ-LIN and FP-LIN, respectively d: making the functions com-

parable by adding log 3\0 (t*) with ¢* corresponding to median survival time

Due to the results of this section it can be expected that both methods for making risk
functions comparable would lead to similar results. However, using the standardization
to a zero mean log relative risk one should be aware that this approach neglects potential
time dependency and censoring. Censoring is taken into account when estimating the
baseline hazard whereas time dependency is not investigated when choosing one fix value
T*.
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3.3 Assessment of the fit

Several risk functions have been proposed in order to estimate the true functional re-
lationship ¢ of the effect of a continuous covariate. Here I discuss a few measures for

comparing the estimated risk function h(z) with the true function g(z).

Quantitative Error
A commonly used measure is the estimated mean squared error, which is - in our design

- given by

MSE / _gc( )) dF %i il -Tz gc(xz))Za

where g is given by the simulation design (e.g. g(z) = - 1{z>,) for model I) and F,
denotes the empirical distribution function. Note, that we have to use the standardized
risk functions h, and ge, respectively, instead of h and g respectively.

In addition to the estimated M SE we will calculate the mean absolute error by

n

M/ZE:/:\BC(Q:) ge(z)| dF,(x ;Z\hc (i) — ge(s)],

a measure that puts the same weight on each observation.

Since the distribution F' of X is known in the simulation study, we can also calculate

MSE = [ (ho(z) - 0.(2))” dF(2)

and

MAE = [ " he(@) — golx)| dF(2).

However, the calculation of M SE and M AFE is not straight forward when A is estimated
by bootstrap aggregating, because the form of the resulting function lAzbagg cannot be

determined explicitly for all methods. Due to the Glivenko-Cantelli theorem F;, converges
to F for n — oo and, therefore MSE ~ MSE and for MAE ~ MAF for large samples.

Qualitative Error
If the true effect of the continuous covariate is rather moderate as in our simulation study
a small quantitative error does not guarantee that the corresponding h describes the true

functional relationship adequately. Considering the standardized functions obtained in
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the selected simulated data set (cf. figure 3.2) the quantitative error (e.g. M SE) of the
linear risk function can expected to be smaller than the error of the fitted fractional
polynomial, although the latter describes the change in risk with increasing values of X
better. To take account for this problem we propose a measure of the qualitative error by
comparing the change in risk of h. and the true function ge (or between two function hy

and hy) for consecutive values of z. For two consecutive values z(;) and ;1) we consider

,

if }:lc(iv(j)) > }:lc(ﬂc(jﬂ)) Noge(ziy) > ge(x(i+1))

0 or he(zg) < hlzgey) A ge(o) < gelzgy)

or ho(ry) = he(zgiy) AN ge(zG) = 9e(T(G11))

if f:lc(fv(j)) = f:lc(f'«“(jﬂ)) AN ge(ziy) < ge(®(i+1))

Err(j) =14 0.5 or i}c(x(j)) = l}c(x(jﬂ)) A gc(ac(j)) > gc(ac(Hl)) (40)

or he(z)) < he(xgsn) A gewG) = gelwin)

or he(zg) > he(xgry) AN ge(T() = ge(T(i41))

Lif helwg) > helgn) A geeg) < gelwgen)

\ or he(zy) < hel(zgin) A ge(zi) > ge(@(itn)

If both functions ilc and g. are continuous Err(j) can also be written in a shorter form
by using the derivatives iz’c and g.. The qualitative error that will be denoted by Er7 gy
is defined by

1 n—1

Erroua = p—] > Err(j). (41)

j=1
Obviously, the values of Errg,q lies between 0 and 1, where Errg,q = 0 if the qualitative

change in risk (e.g. increase / decrease) is the same for h. and g, for all observed pairs

(@) Tan)s G =1,.-.,m — 1.

Illustration based on the selected simulated data set for the V-type model
Quantitative and qualitative errors were calculated for the simulated data set used in
section 3.2, the results are listed in table 3.1. The MSE and the MAE were calculated
for both procedures proposed to make results comparable, whereas MSE and MAFE
are based on h,(z) and g.,(z) using the median survival time as fixed time point t*.
The values of MSE and M AFE indicate, that the standardization to a zero mean log-
relative risk and the addition of log(Ao(t*)) may lead to similar results in the simulation
study. Except for the data driven cutpoint model the values of the M SE and the M AF,
respectively, are always slightly larger than the corresponding values of the MSE and
M/EE, respectively.

Comparing the quantitative errors between the different methods used to estimate the
functional relationship, LIN turned out to be the best method, whereas the results differ
only slightly between the other approaches. However, the linear approach suggests a slight
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decrease of the log relative risk with increasing values of x although there is an increase in
risk with increasing values of x for x > 1.5. In contrast the fitted curve obtained by LINQ
and FP describe the given functional form adequately (cf. figure 3.2). The qualitative
error E7r7g,q for both methods is close to 0 showing that this measure is sensible in the
current situation. For LIN we obtained Errgy,, = 0.475, a value that seems also to be
sensible, since there is a decrease in risk for increasing values of  up to z = 1.5.
However, there are still problems for categorized functions as obtained by CUT. A change
in risk can only be obtained for a few pairs (z(;), z(;+1)) and, therefore, Err,q is always
close to 0.5 - even if the categorized function is a good approximation to the given function.
However, in this situation, there is a small quantitative error. Consequently the qualitative
error cannot be considered separately. This is also true for continuous functions as e.g.
a fractional polynomial. Note, that the change in risk is substantially overestimated by
the fitted fractional polynomial. In spite of the value Errg,, = 0.030 this overestimation
may lead to wrong interpretations. In order to combine the information of a quantitative
and the qualitative error, the latter one may be used as kind of penalty term for the first
measure. This may be done by considering

MSE guat = MSE + w - Errgua, (42)
where w is a weight that should take the value of MSE into account.

Table 3.1: Quantitative and qualitative errors with respect to the given function (model III) in the selected
simulated data set

wseY | msed | aae? | map? Errqual MSqua,

LIN 0.0196/0.0204 | 0.0233 | 0.1184/0.1175 | 0.1285 0.525 0.0402
LINQ | 0.0518/0.0524 | 0.0575 | 0.1901/0.1845 | 0.1946 0.010 0.0528
CUT | 0.0575/0.0579 | 0.0579 | 0.1984/0.2030 | 0.1987 0.495 0.1144
FP 0.0522/0.0527 | 0.0588 | 0.1907/0.1858 | 0.1982 0.030 0.0553

1) first value correspond to the standardization to zero mean, second value obtained, when
adding log(Ao(t*)) for t* =median survival time
2) based on the addition of log(A(t*)) for t* = median survival time

3) based on the standardization to zero mean, w = 2 - MSE

We consider w = 2 - MSE leading to values of M/gEqual between MSE (if Erreua = 0)
and 3- MSE (if Errgua = 1), the results are also displayed in table 3.1. Due to the very
small quantitative error the linear risk function is still the best choice in the simulated
data set. However, considering M/S\Equal the advantage of the linear risk function is not

as obvious as for MSE. Analogous to M/S\'Equal one may also calculate M/ZEWL[.

42



Concluding remarks

Although the estimated risk functions of the selected simulated data set clearly showed
the need of a qualitative error, the proposed measure E7r74,, seems to be sensible for
continuous and monotone functions only. For the null model (0) and the cutpoint model
(I) the qualitative error is not sensible, because there is no difference in risk between all
(0) and all but one (I), respectively, consecutive values z(;) and z(;41y, j=1,...,n—1.
Therefore, I focus on quantitative errors in order to assess the results of the simulation
study. For better illustration I will focus on the MAE. This measure may also be preferred
to the M/§E, because the advantage of the wrong linear risk function is less extreme for
MAE in the selected simulated data set. Results with respect to the more common MSE
are given in appendix A. In section 3.8.1 I compare M//TE, MSE and M?Equal for the
V-type model.
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3.4 The null model

This section summarizes the results for the null model of no prognostic relevance of the
continuous covariate X on survival time. Section 3.4.1 describes the results obtained by
using the standard procedures. Furthermore, I illustrate the effect of using P-value cor-
rection and shrinkage methods in the data driven cutpoint model and for the CART based
categorization. Type-1 error rates will be given for different model selection strategies.
Section 3.4.2 describes the differences obtained when using the two approaches to make re-
sults comparable. The bagged risk functions and its error estimates as compared to those
of the corresponding standard procedures are considered in section 3.4.3. Additionally I

give some results of the model selection process in the bootstrap samples.

3.4.1 Using standard procedures

To illustrate the fit of the estimated risk function to the given function h = 0 figures 3.3
and 3.4 show the results of the first 100 replications. In each replication the estimated
risk function is standardized to a zero mean log relative risk. A comparison to the results
obtained when adding the logarithm of the estimated baseline hazard is given in section
3.4.2.

The visual inspection of the estimated risk functions clearly show that the best fit is
obtained with LIN. Note, that the null model is also linear with 8 = 0. In most replications
more complex risk functions reduce to the linear risk function because of the underlying
model building process (cf. section 2.1.7). A risk function containing a linear and a
quadratic term is only chosen in 5%, and the restricted cubic spline is preferred in 6.3%
of all replications (cf. table A 3.1 in appendix A). A fractional polynomial is selected
in 10 out of 1000 replications (1%). Thus, FP seems to respond to a strong curvature
in the data only, whereas other approaches may be more sensible to slight deviations
from linearity. Note, that the variability in the data generation process may also produce
deviations from the null model). As shown in figure 3.3 the fitted curve for the log
relative risk function obtained by LINQ, RCS and FP are similar in some replications.
In the present simulation we obtained with CUT 43.2% significant minimum P-values of
the logrank test and, therefore, 432 cutpoint models. This result confirm prior findings
and theoretical results that the minimum P-value approach produce type I error rates
of about 40% when selecting the cutpoint out of all potential values between the 10%
and 90% quantile of the empirical distribution of the continuous covariate (Lausen and
Schumacher, 1992; Schumacher et al., 1997).

Due to its construction a CART based categorization is also obtained in 432 replications.
However, figure 3.4 shows that the deviation from the null model is larger than that of
CUT.

As described in section 2.1.7 corrected instead of minimum P-values should be used in the
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data driven cutpoint model and for the CART based categorization. Using the P-value
correction according to formula 22 there are 67 cutpoint models (6.7%) with pe. < 0.05
left. Since the first split of the CART based categorization corresponds to that of the
cutpoint model the resulting piecewise linear risk function also obtained in 67 replications.
A slight correction of the overestimated log relative risks in the cutpoint model and
for the CART based categorization is obtained when applying the shrinkage procedures
introduced in section 2.1.7. However, as illustrated for the first 100 replications the
corrected risk functions are still far away from the given null model (figure 3.4). The
heuristic estimates of the shrinkage factor used in the data driven cutpoint model is
positive with ¢ < 1 in all replications with a significant cutpoint model. However, at least
one of the parameterwise shrinkage factors that we obtained when using the modified
form of cross-validation calibration (cf. section 2.1.7) was negative in several replications

and, therefore, there may be no shrinkage effect. The results are shown in table 3.2.

Table 3.2: Estimated parameterwise shrinkage factors ¢; used to correct for overestimation in the CART
based risk function

number of selected cutpoints
0 = linear 1 2 3
value of ¢;

<0 €0,1] >1 <0 €0,1] >1 <0 €0,1] >1

¢1 — — 193 — 1 163 18 1 40 16
&) — — — — 5 127 — 10 32 15
s — — — —_ — — — 27 26 4
no. of 568 193 182 o7
replications

In 27 out of 57 replications, where the model building process leads to a risk function
with 3 cutpoints, the estimated shrinkage factor ¢; is negative. Negative and/or values of
¢ (i =1,2,3) that are several times larger than 1 may be caused by the small size of the
patients subgroups and small values of 5; (i = 1,2, 3). Note, that we allowed a maximum
of 4 subgroups for n = 100 observations in our simulation. Using ¢ =0 (i = 1,2, 3) for
negative estimates of the shrinkage factors we adopt the proposal of Van Houwelingen
and Le Cessie (1990) to the modified cross-validation calibration procedure.

In the case of only one cutpoint, where the CART based approach is identical to the data
driven cutpoint model all shrinkage factors ¢; are between 0 and 1. Furthermore, there
was hardly any difference between the values of the cross-validation shrinkage factor ¢;
and the corresponding heuristic estimate (not shown). These results agree with those
of a simulation that we performed a few years ago for the data driven cutpoint model
(Schumacher et al., 1997).
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Quantitative errors

For each method figure 3.5 show the boxplot of the distribution of the MAE based on
all replications. Results in terms of empirical quantiles of these distributions and the
corresponding distributions of the MSE are given in tables A 3.1 and A 3.2 in appendix
A. Naturally, the error estimates correspond to the results described above. Except for
the categorization by data-driven cutpoints the distribution of MAE / MSE is similar
for all methods, since the more complex models reduced to the linear risk function in
most replications. The error reduction obtained when using CUTC instead of CUT and
CARTC instead of CART is resulting from the higher rate of linear risk functions (cf.
figures 3.4 and 3.6). The P-value correction reduce the number of cutpoint models and
CART based risk function. Due to the smaller error of the linear risk function a reduction
of the MAE is obtained in nearly all replications with p,.;, < 0.05 and p.o > 0.05. For
those replications with a significant corrected P-value (peorr < 0.05) the error is reduced
by applying shrinkage methods. However, especially for the CART based categorization
the results should be interpreted carefully, because so far there is no theoretical justifi-
cation to use parameterwise shrinkage factors. Furthermore, cutting negative shrinkage
factors at zero and values larger than 1 to 1 would force the error of the shrinked risk
function to be smaller than the error of the unshrinked estimated risk function. In the
present simulation negative values of ¢, and ¢3 are observed more often than values that
are extremely larger than 1 and, therefore, we set negative values to zero. Comparing the
categorization by data-driven cutpoints to LIN the former methods lead to risk functions
with larger errors in nearly all replications with a significant cutpoint (figure 3.6, table
A 3.1). This could have been expected, because the functional form of the null model is

correctly specified when assuming a linear effect.
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Figure 3.6: Effect of P-value correction and shrinkage on the MAE in the data driven cut-
point model and the CART based categorization (CUTCS vs CUT, CARTCS vs CART),
comparison of CUTS, CUTCS, CARTS and CARTCS to LIN, points on the diagonal
denotes the M AE obtained by LIN;, triangles (A) correspond to the MAE of replications
with a linear risk function after P-value correction, filled triangles describe replications
with a categorized risk function before and after P-value correction. (* for CARTS the
MAE was larger than 0.6 in 3 replication, the axis of the plot CARTS vs LIN has been
cut off at 0.6 for better illustration).
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Type I error rates

Under the simulated null model the rate of selected cutpoint models can be taken as type
I error rate for CUT. However, according to our model selection procedure, which will be
denoted by M in this section, the linear risk function is used to describe the effect of X if
there is no significant cutpoint. Therefore, the type I error rate for CUT (CART) based
on M is the rate of significant cutpoint models (CART based categorizations) plus the
rate of significant linear risk functions in the case of non-significant cutpoints. Using M
for all other risk functions the type I error rate is also based on the higher order model
(if selected) and the linear risk function if the higher order function is not selected.

To estimate type I error rates I used the likelihood ratio test testing the model with the
selected estimated risk function against the null, i.e. the model with risk function h = 0.
This was done for all methods except for the categorization by data driven cutpoints
(CUT, CART, CUTC and CARTC). Here, the logrank test is used, because this test is
implemented in the C programme used to select cutpoints.

In addition to strategy M two further model selection strategies were considered:

H: Using the model of the highest order as e.g. a two term FP in all replications

B: Using the best model measured by the smallest P-value of the corresponding likelihood

ratio test against the null model.

M: Using the higher order model if the likelihood ratio against the linear model is
significant, assuming a linear effect otherwise

Estimated type I error rates denoted as p., are taken as the rate of replications with a
significant test result (p<0.05). Using B instead of M it is neglected whether the higher
order model is better than the linear risk function

Since only one parameter has to be estimated for CUT and FIX, these risk functions are
of the same order as LIN. However, the categorized risk function will be considered as
higher order model for strategy H. Thus, the type I error rate for CUT is simply the rate
of significant cutpoint models when using H. Since FIX and LIN are not nested, FIX is
tested against the null model for strategy M. Therefore, M leads to the same results as
B. Additionally to pe,» the corresponding 95% confidence intervals where calculated by

ﬁerr(l - ﬁerr) ]

[ ﬁerr + Ul—a/2 R

where u;_,/5 is the 1 — /2 quantile of the standard normal distribution.
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Table 3.3: Estimated type I error rates with 95% confidence intervals based on different

model selection strategies

risk function model selection | Perr 95% confidence
strategy interval
LIN H=M=DB |0054 [0.040;0.068]
LINQ H 0.049  [0.036;0.062]
M 0.074  [0.058;0.090]
B 0.075  [0.059;0.091]
FIX! H 0.056  [0.042;0.070]
M=8B 0.076  [0.060:0.092]
CUT!/CART  H 0.4322  [0.401;0.463)
M =B 0.432%2  [0.401;0.463]
CUTC!/CARTC H 0.067  [0.052;0.082]
M=8B 0.091  [0.073;0.109)]
RCS H 0.052  [0.038;0.066]
M 0.084  [0.067;0.101]
B 0.086  [0.069;0.103]
FP H 0.014  [0.007;0.021]
M 0.057  [0.043;0.071]
B 0.057  [0.043;0.071]

! categorization in all replications are considered as higher order model

2 values are slightly smaller when using the likelihood ratio test instead of the
logrank test

Table 3.3 summarizes the estimated type I error rates. Using LIN the estimated value pey,
corresponds well to the given test level o = 0.05. However, the given « is also correctly es-
timated when using LINQ or RCS in all replications (selection strategy H). As described
earlier the type I error rate is inflated for CUT and CART. P-value correction led us to a
estimated type I error rate of p,, = 0.067, which is at least close to the given level. These
results disagree with that of Lausen and Schumacher (1992, 1996). In the cited papers
the test based on corrected P-values tends to be conservative. Lausen and Schumacher
used the standardized rank statistic with logrank scores whereas my calculation is based
on the common logrank test. However, both test should be identical without censored
observations. The differences with respect to the estimated type I error rate cannot be
explained so far. Considering a fractional polynomial of degree 2 in all replications (FP
based on strategy H) the true error rate is underestimated. This finding corresponds
well to remarks of Royston and Altman (1994) who stated that the fractional polynomial
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approach tends to be conservative.

Generally, the model selection strategy M results in higher estimated type I error rates
than strategy H. For FP based on strategy M p.,, corresponds well to the given level
whereas we observed a slight overestimation of the true level for LIN and RCS. Using the
P-values correction, i.e. CUTC and CARTC strategy M produces larger type I errors than
strategy H whereas there is no significant linear risk function when using the minimum
P-value (CUT and CART).

It is not astonishing that there is hardly any difference between strategy M and B, because
strategy M also tries to find the “best” model. Generally, the rate of significant models
obtained by strategy B is at least as large as that based on strategy M. For instance,
testing RCS and LIN against the null (h(z) = 0) we obtained

method LIN
LRT! p>005 p<0.05] X
RCS p > 0.05 914 34 948
p < 0.05 32 20 52
by 946 54 1000

! Jikelihood ratio test against the null model (h(z) = 0)

Using strategy B a significant effect is obtained in 34+32+20 replications leading to

Perr = 86/1000 = 0.086. In the first step of strategy M the higher order restricted cubic

spline is tested against the linear risk function:

— In 28 out of the 914 non significant replications the restricted cubic spline was better
than the linear risk function.

— All 34 replications, which were significant against the null for LIN and not significant

for RCS, cannot be improved by a restricted cubic spline.

— In 30 out of 32 replications, which were significant against the null for RCS and not

significant for LIN, the restricted cubic spline was better than the linear risk function.

—In 5 out of the 20 replications, where both methods showed a significant effect, the
restricted cubic spline is better than the linear risk function

All in all, for strategy M a significant effect was found in 34 + 30 + 20 = 84 replications,
2 less than for strategy B.

In appendix A the rate of nonlinear risk functions is given for all methods, cf. e.g. table
A 3.1. Considering the results described above I obtained 28 4+ 0 + 30 + 5 = 63 nonlinear
risk functions for RCS.

Although the model selection strategy M tends to overestimate the type I error rate we
restrict to this model building process in order to estimate the given functional relation-
ship. Thus, the bagging estimator is also based on strategy M. Doing so, I produce
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variability between bootstrap samples whereas one would expect only slight differences
with respect to the functional shape of the estimated risk function when using strategy
H. Remember, that the bagged risk function was identical to the function obtained in
the GBSG-2 study for FIX2 and RCS due to the lack of variability between bootstrap

samples.

3.4.2 Comparing the strategies to make results comparable with respect to

the error estimation

For the simulated data set that has been used in section 3.2 for illustration the two
strategies proposed to make results comparable lead to similar results: The values of MSE
and MAE obtained when adding log Xo(t*) using t* with S(¢*) = 0.5 differ only slightly
from those based on the standardization to a zero mean log relative risk. Furthermore,
the dependence of the log baseline hazard on time (i.e. the question which value ¢* should
be chosen) seemed to be not very important, because the difference Dj, between two risk
functions was constant over time.

In this section I consider several values of the fixed time point ¢* and investigate the
effect on the estimation of the MSFE and the MAE. The resulting estimates for all
replications in the null model are compared to the corresponding error estimates obtained
after standardization to a zero mean log relative risk. The MSE and MAE of the latter
approach are taken as a baseline (100%). The ratios MSE(adding \)/MSE (zero mean)
and MAE (adding \o)/ M AE(zero mean), respectively, are then used (in terms of %) to
compare results. It should be mentioned that the former ratio is always larger than the
baseline, because MSE is minimal if ¥7 , h(z;) = X7, g(z;). This condition must not
hold for the MAE and, therefore, we observed deviation in both directions.

For LIN, LINQ and CUT the distributions of the error ratios using values t* with S(t*) =
0.9,0.75,0.5,0.25 and 0.1 are displayed in figure 3.7. For better illustration the whiskers
of the boxplots end at the maximal and minimal value, respectively. The results for
LIN indicate hardly any difference between S (t*) = 0.9,0.75,0.5 and as compared to the
standardization to zero mean log relative risk. However, especially for #* with S (t*) =0.1
there is a strong deviation from the baseline and the variability of the distribution of the
ratios is very large. These results may be caused by the fact that the risk set used to
estimate Ao(t*) is rather small for S(¢*) = 0.1. Therefore, we have to deal with a large
variability. Furthermore, the influence of single observations can be extremely strong.
According to the our model selection procedure LINQ and CUT, respectively, reduces
to LIN, if there is no significant quadratic effect and cutpoint, respectively. Therefore, I
illustrate the distribution of error ratios for replications with a nonlinear risk function only.
Similar to LIN the difference between S (t*) = 0.9,0.75,0.5 is rather small, whereas the
variability increases substantially for S(#*) = 0.25 and S(¢*) = 0.1. Considering S(t*) >

0.5 the deviation of the corresponding error estimates is less than 10% as compared to
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the standardization to a zero mean risk for LINQ, whereas we observed a larger difference
for CUT. The results for the other risk functions are listed in the appendix (table A 3.4).
For FIX, RCS and FP there is again hardly any difference between the chosen values t*
and as compared to the baseline. The results for CART are similar to those obtained for

CUT: The variability of the error estimates as well as the deviation from the baseline is

larger.
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Figure 3.7: Comparing error estimates based on the addition of ZOQS\O(t*) using differ-
ent values of t* to those obtained when standardizing to a zero mean log relative risk:
Distribution of the ratio M AFE (adding \o)/M AE(zero mean) in % (top) for LIN, LINQ
for replications with quadratic term and CUT for replications with significant cutpoint,
corresponding distributions for MSE at the bottom

Concluding remarks

Adding the logarithm of the underlying estimated baseline hazard to each risk function
in order to make different functions comparable t* should be chosen such that the risk
set is large enough to calculate log S\O(t*). Even if this is the case results may depend on
the choice of this fix time point for specific risk functions. Therefore, and due to the fact

that the simulation is restricted to the situation of no censoring, I will mainly use the

54



standardization to a zero mean log relative risk to make results comparable. Generally, it
would be worthwhile to investigate the dependency of the standardization on the choice
of t*. In this context it should be taken into account that log \,(¢*) also depends on
the chosen risk function. Thus, if the true risk function is completely misspecified (as
done when selecting several data-driven cutpoints in the null model) log Ao(t*) is also

misspecified.

3.4.3 Application of the bootstrap

For each replication 100 bootstrap samples were generated in order to estimate the bagged
risk functions. As mentioned above the model selection strategy M is used in each boot-
strap sample to select between the higher order and the linear risk function. Investigating
the capability of the bagged risk function to estimate the given risk function (i.e. the null
model) more adequately than the underlying standard procedure I compare MAE and
MSE , respectively, of ﬁbagg to the corresponding error estimates obtained when using h.
Restricting again to the first 100 replications the estimated values of MAE are illustrated
for LINQ, FIX, RCS, CUTS, CART and FP in figure 3.8. Dots are used for replications
with nonlinear risk functions in the original data. Points below the diagonal line indicate
an error reduction of the bagged risk function as compared to the corresponding standard
procedure.

The results for all replications and all approaches are summarized in table A 3.3 in the
appendix: Error ratios (bagged versus original) are given for MAE and MSE. These
ratios were also calculated separately for replications with a linear and a nonlinear risk
function in the original data set. Additionally to the distribution of the error ratios table
A 3.3 show the number of replications with a smaller estimated MAE (MSE) for the
bagged risk function. As observed in the GBSG-2 study there is hardly any difference
between the bagged risk function and the estimated function in the original data for LIN.
This is not astonishing since there is no variability between bootstrap samples. For all
other approaches — except for CART — bagging lead to an error reduction in replications
with a nonlinear risk function in the original data set. This is especially true for CUT
(CUTS, CUTC, CUTCS), where the error estimates are smaller in (nearly) all cases.
For these approaches we also observed the highest error reduction: the median MAE is
about 3 times smaller as compared to the corresponding value obtained in the original
data. The ratio for MSE range between 6% for CUTCS and 18% for CUT. Note, that
the ratio would be equal to 100% if errors are identical. For the other approaches the rate
of replications with a better bagged risk function range between 75 and 98%.

For the CART based categorization bagging cannot be recommended at all — even in repli-
cations with huge errors in the original data set the bagged risk function may be worse.
Note, that the axes for CART used in figure 3.8 has been cut at 0.4. In 4 out of the first

100 replications the MAE was larger than 0.4, 3 of these replications showed a smaller
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Figure 3.8: MAE of the bagged risk function as compared to the the MAE obtained in
the original data set for the first 100 replications of the simulated null model, dots denote
replications with a nonlinear risk function in the original data (* MAE larger than 0.4 in

4 replications, axes cut off at 0.4)

MAE of the bagged risk function. As described earlier the application of parameterwise
shrinkage factors seemed to be not sensible to correct for over-optimism of the categorized
risk function, because the estimates ¢; were negative or larger than 1 in many replications.
This is probably resulting from the fact that the CART based categorization may produce
very small subgroups. In many bootstrap samples parameterwise shrinkage factors could
not be calculated at all due to missing convergence of the log-likelihood. Therefore, in
the sequel I consider CART only.

As figure 3.8 shows bagging increases the error, if the risk function is linear in the under-
lying replication. Considering RCS for example these findings could be explained easily:
as shown in section 3.4.1 the linear risk function turned out to be the best method to
estimate the null model. Given the data of one replication in which RCS reduced to
the linear risk function it can be expected that the model selection strategy M lead to
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Figure 3.9: Comparing MAE of the bagged risk function for CUTS and CART to the
MAE obtained for LIN in the original data set (all replications)

a linear risk function in most of the bootstrap samples, too. However, there may be a
few bootstrap samples with a restricted cubic spline selected. The resulting functions of
these bootstrap samples may be far away from the linear risk function and the null model.
Thus, the influence of a few bootstrap samples on the estimation of the bagged risk func-
tion could be very strong and, therefore, may lead to larger errors. The same argument
may be used for the other approaches. One exception to this rule is CUT (CUTS, CUTC,
CUTCS), where the bagged risk functions produces smaller errors in 51 to 84 per cent
of the corresponding replications. Comparing the distribution of the MAE and MSE
for the bagged risk functions to those obtained in the original data set it is obvious that
bagging reduces errors mainly in replications with larger errors. For CUTS this can also
be seen in figure 3.8: For all replications (liner or cutpoint model in the original data)
with an MAE larger than 0.05 points are below the diagonal line. In contrast, bagging
is worse for CART in nearly all replications with a linear risk function. This may be
explained by the fact that CART led to the most extreme results (cf. section 3.4.1) and,
therefore, to the largest errors.

As described earlier the error obtained when categorizing X by one or several data driven

cutpoint(s) in the original data is larger than LIN in nearly all replications. This is not
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astonishing, because the assumption of a linear risk function is the best we can do in the
null model. In contrast the risk function is misspecified if X is categorized. Comparing
the MAE and MSE of the bagged risk function based on CUT (CUTS, CUTC, CUTCS)
to the corresponding errors of LIN in the original data we obtained smaller errors for the
former in more than 70 per cent of all replications (cf. table A 3.3). Therefore, bagging
can produce better estimates of the true risk function even if this function is misspecified
in a part of the bootstrap samples. However, as described above bagging does not work
at all with CART. Figure 3.9 compares the the values of the MAE for CUTS and CART,
respectively, to the MAE of LIN in the corresponding original data set.
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Figure 3.10: Distribution of the number of nonlinear risk functions selected in 100 boot-
strap samples for all replications and separated by linear/nonlinear risk function in
the original data set, R denotes the corresponding number of replications with a lin-

ear/nonlinear risk function

Selection frequencies in the bootstrap samples

As in the GBSG-2 study the stability of the estimated risk functions can be investigated
by analyzing the results of the model selection procedure M in the bootstrap samples. For
each replication I counted the number of bootstrap samples with a higher order model
and the number of bootstrap samples, where the risk function reduced to the linear effect.
Categorizing X by data-driven cutpoints it is not distinguished between one, two or three
cutpoints. Therefore, CUT and CART lead to the same results. Similar, one and two term
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fractional polynomials are considered together as higher order model when using FP. The
empirical distributions of the count of higher order models are displayed in figure 3.10.
Besides considering all replication, these distributions are also shown for replications with
a linear and nonlinear risk function, respectively, in the original data. The corresponding
number of replications are displayed in the heading of the plots (cf. also table A 3.1).

If the higher order risk function was selected in the original data the number of boot-
strap samples with a nonlinear risk function is large, too. This is resulting from the fact
that bootstrap samples are not independent of the underlying original data set. A strong
quadratic effect found by LINQ in the original data set, for example, will carry through
to the bootstrap samples. Therefore, the number of bootstrap samples showing also a sig-
nificant quadratic effect can expected to be high. For instance, for the R=>50 replications
with a quadratic term in the original data, a quadratic term is usually chosen in more
than 50% of the corresponding bootstrap samples, too. The median rate of bootstrap
samples with a quadratic term is about 63%. In contrast, the rate of bootstrap samples
with a linear risk is high if the corresponding higher order risk function reduced to the
linear one in the original data set. As shown in table A 3.1 in 100 replications FP reduced
to the linear risk function in all 100 bootstrap samples. In contrast, the rate of bootstrap
samples with a linear risk function is smaller than 50 per cent for the 10 replications with
a fractional polynomial selected in the original data set (cf. figure 3.10). Due to its con-
struction CUT/CART shows the highest rate of bootstrap samples with a nonlinear risk
function. Furthermore, this rate is also relatively high in replications with no significant

cutpoint (i.e. a linear risk function) in the original data.
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3.5 The cutpoint model

In this section I present the results obtained when assuming a cutpoint model with given
cutpoint 4 = 1.5 and log relative risk § = 0.5. Using the given cutpoint to categorize
X and estimating the resulting log relative risk 8 is the best we can do in the current
situation. Therefore, this approach that is equal to FIX without model selection can be
considered, besides LIN, also as some kind of reference for the assessment of the other
risk functions. Comparability of all risk functions is obtained by standardization to a
zero mean log relative risk. Some results obtaned when adding the estimated logarithmic

baseline hazard are summarized in appendix A.

3.5.1 Using standard procedures

Risk function estimates based on the standard procedures of the first 100 replications
are displayed in figures 3.11 and 3.12. The error estimates based on all replications and
results with respect to model selection are given in appendix A. As shown in figure 3.11
the linear risk function seems to be a good approximation to the given cutpoint model.
The given increase in risk was recognized in nearly all simulated data sets, the estimated
linear effect is positive in 982 (98.2%) replications. Consequently, the values of MAE
and MSE are rather small for LIN (figure 3.13 and tables A 3.5, A 3.6). The good fit of
the linear risk function may be the reason that more complex continuous risk functions
reduced to LIN in most replications: The rate of replications with a linear risk function
is 94.4% for LINQ), 88.8% for RCS and 98.9% for FP (cf. table A 3.5). Error estimates
for replications with a nonlinear effect are larger than those based on a linear effect. For
instance, the median MAE of RCS is 0.128, whereas this value is increased to 0.222
when considering the 112 replications with a selected restricted cubic spline only. The
fact that nonlinear risk functions tend to larger errors is also obvious from figure 3.11.
Categorization based on the given cutpoint (FIX) leads to a significant effect in 67.2%
of all replications, otherwise we used the linear risk function. As mentioned above we
also consider FIX without model selection, i.e. the categorization by p in all replications
(FIXALL). Using FIXALL the resulting estimated log relative risks center around the
given value § = 0.5, whereas the estimates 8 tends to be larger than 0.5 for the cutpoint
models selected with FIX (cf. figure 3.11). Smaller values of 3 are often not significant
and, therefore, FIX reduced to the linear risk function. Using the minimum P-value ap-
proach we obtained a significant cutpoint in 908 of 1000 replications. There are several
replications, in which the selected cutpoint is close to 4 = 0.5 and the estimated log
relative risk obtained by CUT are not far away from the given value § = 0.5. However,
the rate of estimated risk functions which ar far away from the given cutpoint model is
also high. As for the null model the deviation from the given model is more extreme

for CART. Using the corrected instead of the minimum P-value the rate of significant
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Figure 3.11: Estimated risk functions obtained by using the standard procedures, results

of the first 100 replications in the simulated cutpoint model (thick line), standardization

to zero mean log relative risk
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Figure 3.12: Estimated categorized risk functions based on data-driven cutpoints and

effect of P-value correction and shrinkage, results of the first 100 replications in the sim-

ulated cutpoint model (thick line), standardization to zero mean log relative risk
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cutpoint models and CART based categorizations, respectively, reduced to 44.9%. Due
to the higher rate as well as due to the good fit of linear risk functions CUTC/CARTC
have smaller errors than CUT/CART. A further reduction of the error estimates can be
obtained by shrinkage. However, it can easily be seen that the data driven categorization
leads to larger errors as compared to the methods based on continuous risk functions.
As in the null model the highest error is observed for CART. A slight reduction of the
MAE and MSE can be obtained by applying shrinkage methods. However, many of
the categorized risk functions are still far away from the given model (cf. figure 3.12).
Furthermore, for several replications I obtained parameterwise shrinkage factors larger
than 1 and, therefore, an increase in the error of the shrinked risk functions (CARTS,
CARTCS) as compared to CART and CARTC, respectively. As in the null model, this
problem is relevant only if the number of selected cutpoints is at least 2. In some of these
replications I obtained also values smaller than 0. All in all the results with respect to the
estimated parameterwise shrinkage factors are similar to those described in 3.4.1 for the
null model. Selecting only 1 cutpoint all values of the cross-validation based shrinkage fac-

tor are close to the heuristic estimate of the shrinkage factor and both are between 0 and 1.
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3.5.2 Application of the bootstrap

To investigate the effect of bagging error estimates obtained for the bagged risk functions
are compared to those of the underlying standard procedures. Figure 3.14 compares the
MAE of the bagged risk function to those obtained for A in the original data set for the
first 100 replications. More details on the distribution of the MAE and MSE , Trespec-
tively, as well as error ratios of bagged versus original risk functions are given in appendix
A. In contrast to the null model I considered bootstrap results of the of the first 100
replications only. Except for a higher accuracy it cannot be accepted that results would
change when using bootstrap samples of all 1000 replications.

Since there is no model selection strategy involved with LIN and, therefore, there is no
variability between bootstrap samples we obtained nearly the same error estimates for
the bagged risk function as compared to the linear risk function estimated in the original
data set. Slight differences can be observed for LINQ, RCS and FP. For these approaches
bagging leads to an error reduction in replications with a nonlinear risk function in the
original data set. From figure 3.11 it can easily be seen that the deviation from the given
cutpoint model is usually higher for nonlinear risk functions leading to larger error es-
timates. This is especially true if the estimated risk function shows a strong curvature.
Although nonlinearity in these replications often carry through to the corresponding boot-
strap samples, the resulting bagged risk function is also based on bootstrap samples, in
which the more complex risk function reduced to LIN. Thus, the curvature of izbagg can
expected to be less extreme than that of the underlying function h. Consequently, the
deviation from the given cutpoint model tends to be smaller and, therefore, the estimated
error is smaller, too. If LINQ, RCS and FP reduced to the linear risk function in the
original data set, bagging can either lead to a reduction or to an increase of the error.
Using FIX bagging leads to smaller error estimates mainly for those replications with a
linear risk function in the original data set. The largest differences between the error
estimates of fzbagg and & is obtained for CUT (CUTS) and CART. In contrast to the null
model, where bagging leads to a reduction of the error for replications with a cutpoint
model in the original data, we observed both, replications with a large increase as well
as replications with a large decrease of the MAE. As mentioned above CUT (CUTS)
the estimated data driven cutpoint model corresponds well to the given cutpoint model
in several replications (cf. also section 3.8.2). For these replications the fit of the bagged
risk function cannot be expected to be better than that obtained in the original data. In
contrast there are also many replications where the estimated data driven cutpoint model
differ substantially from the given model. Here, bagging has a good chance to improve
the fit. Similar results are obtained for CART although the values of MAE are generally
larger.
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Selection frequencies in the bootstrap samples

Reporting on the results of the model selection strategy M in the bootstrap samples I
restrict myself again to CUT when considering data driven cutpoints and I neglect the or-
der of the fractional polynomial if this nonlinear risk function is chosen by FP. Analogous
to figure 3.10 describing the results obtained in the null model figure 3.15 shows the dis-
tributions of the number of nonlinear risk function in the bootstrap samples. Generally,
the results obtained in the original data sets also carry through to bootstrap samples.
For LINQ and FP the results are similar to that obtained in the null model: the number
of nonlinear risk function is large for replications with a nonlinear risk function in the
underlying original data and it is small if the risk function reduced to the linear effect in
the original data set. As compared to the null model the rate of significant data driven
cutpoint models is higher and, therefore, the number of bootstrap samples with at least
one significant data driven cutpoint tends to be larger, too. In 27 out of the the first 100
replications CUT selected a cutpoint model in all 100 bootstrap samples. For FIX the
number of nonlinear risk functions in the bootstrap samples is also higher as in the null
model: the median number is about 30 (null model: 10) for the R = 32 replications with
a linear risk functions in the original data and about 85 (null model: 65) for the R = 68
replications with a categorized risk function in the original data. For RCS the selection
frequencies in the bootstrap samples of the cutpoint model are similar to that obtained
for the bootstrap samples in the null model.
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3.6 The linear effect model

This section summarizes the results obtained when assuming the classical standard as-
sumption of a linear risk function with 8 = 0.5. Thus, the given functional form is
correctly specified by LIN. All risk functions are made comparable by standardization to
a zero mean log relative risk. A short comparison to the results based on the addition of

the logarithmic baseline hazard is given in appendix A.

3.6.1 Using standard procedures

The estimated risk functions obtained in the first 100 replications are shown in figures 3.16
and 3.17. The distribution of the MAE for all approaches is displayed in figure 3.18,
empirical percentiles with respect to both error estimates, the MAE and the MSE , are
given in tables A 3.9 and A 3.10 in the appendix. Obviously, the best fit is obtained when
using LIN, which is equal to the given risk function in the current situation. LINQ and
RCS, respectively, reduced to the linear risk function in 93.9% and 94.1%, respectbely, of
all replications. There is hardly any difference between FP and LIN, because FP reduced
to the linear risk function in 99.1% (cf. table A 3.9). Using FIX a significant categorized
risk function is obtained in 215 out of 1000 replications. As shown in figure 3.16 the
categorized risk function is a good approximation of the given linear risk function, the
corresponding values of B range from 0.41 to 0.91. This is also true for FIXALL, where
B is larger than O for more than 80% of all replications. All in all the distribution of
the MAF is nearly equal for LIN, LINQ, FIX, RCS and FP, which is caused by the high
rate of linear risk functions. Larger errors and a worse fit is obtained for all approaches
based on data driven cutpoints. At least one significant data driven cutpoint is obtained
in 68.9% of all replications. Using corrected P-values this rate reduced to 21.9%. The
resulting categorized risk functions seems to be a good approximation to the given linear
risk function especially for CUTCS: In 218 of the 219 replications with a categorized risk
function the estimated log relative risk is larger than 0 describing the given increase in risk
with increasing values of X correctly. The corresponding number for CUT is 663 out of
689. Only one significant cutpoint was found in 97 out of 219 (367 out of 689) replications.
Thus, CARTCS is equal to CUTCS in these replications. Although the increase in risk
is often specified correctly by the approaches based on data driven cutpoints, the MAE
obtained for CUTCS and CARTCS is still larger than that obtained by all approaches

based on continuous risk functions.
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3.6.2 Application of the bootstrap

As for the cutpoint model I used bootstrap samples of the first 100 replications only.
Comparing the MAE of the bagged risk function to the corresponding error estimates
obtained in the original data there is hardly any difference for LIN and FIX. Especially
for LIN this could have been expected in advance, because bagging is based on the same,
namely the linear risk functions only. For LINQ, RCS and FP bagging leads to a small
error reduction for those replications with a nonlinear risk function in the original data
set. However, if the more complex risk function reduced to the linear effect in the orig-
inal data, bagging may lead to a substantial increase of the error. Similar to the given
cutpoint model described in section 3.5 the deviation from the given model, here a linear
risk function, is usually higher if the selected risk function is nonlinear. Thus, to explain
the effect of bagging we can use the same arguments as for the given cutpoint model:
The curvature of the bagged risk function is less extreme as compared to the underlying
nonlinear risk function obtained in the original data set. Otherwise, if a linear risk func-
tion is chosen in the original data bagging may produce curvature and, consequently, a
stronger deviation from the given linear risk function. The largest difference between the
risk function obtained in the original data and the corresponding bagged risk function is
obtained for CUT(S) and CART. If a significant cutpoint was selected in the original data
bagging leads to an error reduction in nearly all replications for CUTS (94%) and in more
than 70% for CART. Especially for CUTS the improvement may be substantially (cf.
figure 3.19, table A 3.11). If CUTS reduced to the linear risk function in the original data
set, we observed both replications with an increase as well as replications with a decrease
of the error estimates. For CART the error of the bagged risk function is substantially
larger as compared to that of the linear risk function obtained in the original simulated

data set in nearly all replications.
Selection frequencies in the bootstrap samples

Figure 3.20 shows the distribution of the number of nonlinear risk functions obtained for
the bootstrap samples of the first 100 replications. For LINQ and FP the numbers of
bootstrap samples with a nonlinear risk function is similar to that observed in the null
model. Note, that the risk function reduced to the linear effect in most of the original data
sets (cf. table A 3.9). Therefore, the number of nonlinear risk functions is also small in the
corresponding bootstrap samples. If a higher order model was selected in the original data,
a nonlinear risk function is also chosen in most of the corresponding bootstrap samples.
For FIX, CUT and RCS the rate of nonlinear risk functions obtained in the original data
sets was higher as compared to the null model. These results also carry through to the
bootstrap samples. However, except for this shift towards higher rates, the distribution

of the number of nonlinear risk function in the 100 bootstrap samples is similar to the
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corresponding selection frequencies obtained in the null model (cf. figure 3.10).
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3.7 The V-type model

The V-type model describes the situation of a linear increase in risk with increasing
distance from a given value u. Using the transformation of the simulated V-type model,
ie.y =2 | x — p | and estimating the log relative risk 8 in the model A\(¢|Y = y) =
Mo(t) exp(By) is the best one can do in the current situation. Doing so for all replications
this method is denoted by TRANSALL. Using the transformation only if the resulting
effect estimate is significant (likelihood ratio test) as compared to the null model and
taking the linear risk function otherwise, this method will be referred to as TRANS. All
risk functions are standardized to a zero mean log relative risk. Appendix A lists some

results obtained when adding the estimated logarithmic baseline hazard.

3.7.1 Using standard procedures

As done for the other models of the simulation study the standardized risk functions
obtained in the first 100 replications are illustrated graphically (figure 3.21 and 3.22).
Error estimates are listed in tables A 3.13 and A 3.14 in the appendix, the distribution
of the MAF is displayed in figure 3.23. Obviously, the best fit is obtained when using
TRANSALL whereas the given risk function cannot be described adequately by LIN.
Consequently, the error estimates obtained for TRANS are slightly larger as compared
to TRANSALL. Considering only those 280 replications with a nonlinear risk function
selected by TRANS the given effect seems to be overestimated (cf. figure 3.21). However,
in spite of this over-optimism the errors are still smaller as compared to LIN (cf. Tables A
3.13 and A 3.14). Replications with small effect estimates 5 of the transformed covariate
reduced to the linear risk function. The same phenomenon was observed with FIX and
FIXALL in the cutpoint model (section 3.5). Although the linear risk function cannot
fit the given V-type model correctly, the rate of replications with a linear risk function is
rather high for LINQ, RCS and FP (69.8%, 75.9% and 87.4%). If the more complex risk
function is chosen the functional shape is usually described adequately. This is especially
true for LINQ and FP. However, again the change in risk seems to be overestimated by
the nonlinear risk function. Due to its restricted functional shape neither CUT (CUTC,
CUTS) nor FIX can describe the given V-type risk function correctly. FIX reduced to
the linear risk function in nearly all replications (93.9%), whereas the extensive process
of model building leads to a significant data driven cutpoint model in 68.4% of all repli-

cations.
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3.7.2 Application of the bootstrap

The plot of the MAE of the bagged risk function versus the corresponding error estimates
obtained in the original data set for the first 100 replications are displayed in figure 3.24.
More results can be found in appendix A.

Similar to the previous models there is hardly any effect of bagging for LIN and FIX. For
FIX the linear risk function was selected in nearly all replications. This is also true for the
corresponding bootstrap samples and, therefore, the bagged risk function is similar to the
linear risk function obtained in the original data sets. For LINQ, CUTS, RCS, FP and
TRANS the deviation of the bagged risk function from the given V-type risk function is
smaller in most replications as compared to the deviation of the underlying risk function
obtained in the original data set. In contrast to the simulated models 0, I and II the
improvement is also obtained in the majority of replications with a linear risk function
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in the original data set. For instance, the MAE of Ebagg is smaller in 62 out of the 74
(83.8%) replications in which RCS reduced to the linear risk function. The corresponding
numbers were 122 out of 937 (13%) in the null model, 49 out of 87 (56.3%) in the cutpoint
model and 18 out of 93 (19.4%) in the linear model. These results can be explained by
the incapability of the linear risk function to specify the V-type risk function adequately.
Since Bbagg uses also nonlinear risk functions bagging had a good chance to improve the
fit. Considering CUTS neither the categorized nor the linear risk function are able to fit
the given function correctly. Thus, bagging can be expected to work for CUTS, too. Due
to the large errors produced by CART we observed both, replications with smaller and

replications with higher errors of the bagged risk function.
Selection frequencies in the bootstrap samples

Assuming the V-type risk function LINQ, RCS, and FP selects a nonlinear risk function
more often as compared to model 0, I and II. Again, these results observed in the original
data sets also carry through to the bootstrap samples. Since the linear risk function can-
not describe the given functional form correctly, the number of bootstrap samples with
a nonlinear risk functions tends also to be higher (as compared to the other models) for
those replications, where the more complex function reduced to the linear risk function in
the original data sets. This can especially be seen for FP when comparing the distribution
displayed in figure 3.25 to the corresponding distributions obtained for model I and II:
The 75% quantile of the distribution of the number of nonlinear risk functions selected
in the bootstrap samples (of the R = 85 replications, in which FP reduced to LIN in the
original data) is about 30 for the V-type model, whereas the corresponding quantiles were
less than 10 for the simulated cutpoint model (figure 3.15) and the simulated linear model
(figure 3.20). However, as for all other models higher selection frequencies are of course
obtained for replications with a nonlinear risk function selected in the original data set.
For CUT the selection frequencies are similar to that obtained when assuming a linear
effect (model II) and for FIX the results corresponds to that of the null model. Note,
that the number of significant categorized risk functions obtained by FIX is nearly equal
in the null model and the V-type model.
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3.8 Further topics

3.8.1 Comparing qualitative and quantitative errors

In order to investigate the capability of all standard procedures to estimate the given
risk function adequately I focused on graphical methods and the estimated mean absolute
error MAE. One reason to prefer MAE was that the difference between an observation
X = z; with a large deviation from the the given function at x; and an observation
X = x5 with a small deviation from the given function at x5 is less extreme as compared
to the more common measure MSE. Furthermore, the MAE was chosen for better il-
lustration of the results. Using one specific simulated data set I discussed the need of an
qualitative error. However, my proposal defined in section 3.3 showed that it is difficult to
define such an error adequately, especially if the risk function or its estimate is constant
for all or nearly all values of X. Therefore, I did not use this measure for the assessment

of the standard procedures and the corresponding bagged risk functions.

In this section I compare the qualitative errors obtained for LINQ, RCS, FP and CUT
to those obtained for LIN in the linear model (model II) and for the V-type risk function
(model IIT). Qualitative errors of the bagged risk functions were not calculated. Further-
more, I will investigate, how far results differ when using MAE , MSE and MSE

respectively, for the assessment of the estimated risk functions.

qual>

Qualitative errors as defined in section 3.3 for the more complex models are plotted
against those obtained for LIN: figure 3.26 show the results obtained for the linear effect
assumption (model IT) and figure 3.27 display the corresponding results for the V-type
risk function. Obviously, if LINQ, RCS, FP or CUT reduced to the linear risk function
the value of E/Frqual is equal to that obtained for LIN.

Let us first consider the results obtained for the simulated linear model (figure 3.26),
where the given linear effect was § = 0.5. If the estimated risk function is also linear
l?”qua
B < 0). In the first case the qualitative error of the more complex risk function can only

| is either equal to its minimum 0 (if B is positive) or equal to its maximum 1 (if

be larger whereas it must be smaller in the latter situation. The curvature produced by
the nonlinear risk functions of LINQ, RCS and FP usually leads to both, an increase as
well as a decrease in risk between two consecutive values (;) and x(j;1). The value of
E}\Tqual decreases with an increasing rate of pairs (z(;), (j+1)) with izc(x(j)) < izc(x(jﬂ)).

Therefore, depending on the rate of those pairs the value of Err ] centers around 0.5.

ua,
For the categorized risk function obtained by CUT this value isqnearly equal to 0.5 ac-
cording to the definition of the qualitative error.

For the V-type risk function the value of E/T\rqual obtained for CUT is, per definition, also
nearly equal to 0.5 (figure 3.27). As mentioned earlier the V-type risk function cannot

be estimated adequately by LIN, because this approach models either an increase or a
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Figure 3.28: Comparing MSE , MSE qual and MAE for the simulated V-type model

decrease in risk. Therefore, the qualitative error obtained for the estimated linear risk
function centers also around 0.5. In contrast, the given functional form may be specified
correctly by the nonlinear risk functions obtained by LINQ, RCS and FP. For LINQ and
FP we obtained an improvement with respect to the qualitative error as compared to LIN
in all replications with a nonlinear risk function. For RCS there are a few replications
with a slightly larger value E/’T\Tqual than that of the corresponding estimated linear risk
function.

The fact that the qualitative error of LINQ, RCS and/or FP is close to 0 in many repli-
cations indicate that these approaches are capable to model the decrease as well as the
increase in risk of the V-type risk function correctly. However, it was shown in the last
sections that the difference in risk may be overestimated substantially. Therefore, the
qualitative error should not be used without considering a quantitative measure of the
deviation between estimated and given risk function.

In order to combine the quantitative and the qualitative error a so called qualitative MSE
that uses the qualitative error as some kind of penalty term was defined in section 3.3.
Here I use again the weight w = 2MSE to calculate this error. For the V-type model
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figure 3.28 plots the values of MSE qual obtained for LINQ, RCS and FP, respectively,
against those calculated for LIN. Furthermore, these results are compared to those based
on MSE and MAE. Generally, the number of replications with a smaller error of the

nonlinear risk function as compared to LIN is higher when using MSE ] instead of

ua,
M?E, the corresponding numbers are listed in table 3.4. For instance, (IlJINQ is better
than LIN in 161 out of 302 replications with a nonlinear risk function when using MSE
for the assessment, whereas the number is 251 when using M/gEqual' Using the latter
error measure the correct functional shape obtained by LINQ is rewarded or — in other
words — M/‘?Equal penalizes the wrong functional form of LIN. However, interpreting
these results it should be taken into mind that the choice of w to calculate M/gEqual
is somewhat arbitrary. Taking MAE for the assessment the results are similar to those
based on MSE. However, the number of nonlinear risk functions with a smaller error
than LIN is slightly larger as compared to MSE indicating that the small quantitative
deviation of the linear risk function from the give V-type risk function has a smaller in-

fluence when using M AE.

Table 3.4: Comparing the fit obtained by LINQ, RCS and FP to that obtained by LIN

in the V-type model by using different error measures

no. replications with | no. of replications with a smaller error than LIN
method | linear/nonlinear | MSE MSE .1 MAE
risk function
LINQ 698/302 161 251 175
RCS 759/241 18 105 32
FP 874/126 1 46 5

Concluding remarks

Although it may be sensible to define a qualitative error in addition to a quantitative
error for the assessment of the estimated risk functions E/Frqual seems to be useful for
the V-type model and monotone risk functions only. Furthermore, the examples described

in this section support the use of MAE rather than MSE in the current situation.
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3.8.2 Visualizing the effect of bagging

In order to illustrate the capability of bagging to improve the estimation of a risk function
on the one side, and to show the negative effect of bagging when the risk function estimate
is quite good in the original data I consider two examples. Each of these examples is based
on one selected simulated data set and the corresponding 100 bootstrap samples only, the

results are displayed in figure 3.29 and error estimates are listed in table 3.5.
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Figure 3.29: The effect of bagging on the estimation of the risk function: Examples based
on one simulated data set (replication) for the cutpoint model and the V-type model,
(* LIN, RCS and FP)

For the selected data set from the simulated cutpoint model the categorized risk function
obtained by CUTS corresponds well to the given cutpoint model. The estimated data
driven cutpoint as well as the estimated log relative risk between the resulting risk groups
are close to the given value and, therefore, the resulting MAE is very small. Using RCS
or FP the risk function reduced to the linear effect for both approaches, the estimated
linear effect seems to be a good approximation to the given cutpoint model in the current
situation. The bagged risk function based on CUTS is more smooth and the change in
risk is less extreme as compared to the risk functions obtained in the original data. Conse-
quently, the resulting difference to the given cutpoint model measured by the MAE gets
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larger. Similar results were obtained in other replications, remember that (in contrast
to models 0, IT and IIT) bagging does not necessarily lead to an decrease of the error for
CUTS in the given cutpoint model (cf. figure 3.14). For LIN and FP the error estimates
are similar to that obtained in the original data resulting from the fact that the bagged
risk function is the average over 100 linear risk functions. Note that for the selected
simulated data set FP reduced to LIN in all 100 bootstrap samples. Consequently, the
bagged risk function based on FP is equal to that of LIN. RCS reduced to the linear risk
function in 14 out of the 100 bootstrap samples.

The second example is based on one simulated data set from the V-type model. Neither
by CUTS nor by LIN the given risk function can be specified correctly. However, the
MAE of LIN is rather moderate indicating that a restriction to this quantitative measure
may lead to a false interpretation. Although the given functional form is described quite
well by RCS and FP, the resulting error estimates are large due to the huge change in
risk. Bagging leads only to a slight error reduction for FP and LIN, whereas the error
of the bagged risk function based on RCS is substantially smaller than that estimated in
the original data. The smallest MAE is obtained for the bagged risk function of CUTS,
which is a good approximation to the given V-type model in the current situation. Thus,
bagging may lead to a substantial improvement, even if the underlying method used to
estimate the risk functions in the bootstrap samples is misspecified.

Table 3.5: The effect of bagging on the MAE for the two examples described in figure 3.29

method cutpoint model V-type model
original data bagging | original data bagging
LIN 0.113 0.123 0.139 0.137
CuUTS 0.028 0.174 0.262 0.067
RCS 0.113! 0.110 0.244 0.075
FP 0.113 0.1232 0.230 0.209

I reduced to the linear risk function

2 FP reduced to the linear risk function in all 100 bootstrap samples
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3.8.3 The influence of model building on the estimation of parameters

In section 2.1.7 I have already discussed the problem of bias caused by model selection.
In order to correct for overestimation of the log relative risk in the data driven cutpoint
model we used shrinkage procedures. Considering a given cutpoint model in previous
simulations (Schumacher et al., 1997) we have shown that the selection of a data-driven
cutpoint (CUT) led to overestimation of the resulting log relative risk 3, if 8 is small or,
as in the current simulation study, of moderate size. However, overestimation caused by
the model building process may also be relevant to other models and when applying less
intensive selection strategies, e.g. the selection between a higher order risk function and
the linear risk function. Throughout the simulation the higher order risk function was
only taken if it led to an improvement in terms of log-likelihood as compared to the linear
risk function. Except for the simulated null model it was not investigated whether there
was an effect at all, i.e. if the model including the risk function is significantly better
than the model with a null risk A(z) = 0 for all values z. For the simulated null model
we tested the selected model against the null in order to estimate type I error rates. In
this section we investigate the effect of the continuous covariate for the other simulated
models (cutpoint, linear, V-type). As for the simulated null model we considered the
model selection strategies H, M and B (cf. section 3.4).

Applying the best method for each simulated model, namely the estimation of the risk
function by using the given functional form, figure 3.30 plots the P-Values of the likeli-
hood ratio test testing the model with the best risk function against the model with a
null risk versus the estimated parameters B of the corresponding risk function for all 1000
replications. A significant log relative risk is obtained, if the P-value of the likelihood ratio
test is smaller than 0.05. In figure 3.30 a significant log relative risk B corresponds to a
value below the horizontal line. Averaging B over all replications the resulting mean B
corresponds well to the given value § (vertical line) in all models. This would not be true
when restricting to replications with a significant effect only (cf. table 3.6). For instance,
FIXALL led to 8 = 0.507 when using all replications, whereas the given value 5 = 0.5 is
overestimated when averaging over the 672 (67.2%) replications with a significant effect
only (8 = 0.618). For the linear and the V-type model the model selection process (the
rate of significant replications in table 3.6 is based on strategy H) would led to average
parameter estimates, which are nearly twice as large as the given £.

The rate of significant replications obtained in the cutpoint model (67.2 %) corresponds
well to power calculations: using the simulated median survival times of the two subgroups
defined by the given cutpoint p and assuming subgroups with 50 patients I obtained a
power between 65% and 70% (depending on the assumption for the accrual and follow
up times). However, using the given risk functions (LIN and TRANS) in the simulated

linear and V-type model, respectively, a significant effect is obtained in 27.9 and 28.0%,
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Figure 3.30: P-values of the likelihood ratio test against the null (h(z) = 0) versus
parameter estimates /3 based on the given risk function, vertical lines denote the given
effect 3, horizontal line denote P=0.05

respectively, of all replications only. Thus, even if the model is correctly specified, it seems

to be difficult to detect a moderate effect of the covariate on survival in these models.

Table 3.6: The effect of model selection when estimating the risk function by using the
prespecified function: Estimated mean log hazard ratio B obtained in all replications to

that based on replications with a significant effect only

model given 3 method all (R=1000) | based on significant B only
B No. of replications B
null (0) 0 LIN 0.005 541 0.1362
cutpoint (I) 0.5 FIX(ALL) 0.507 672 0.618
linear (II) 0.5 LIN 0.503 279 0.955
V-type (III) 0.5 TRANS(ALL) 0.504 280 0.951

! corresponding to the estimated type I error pe,, = 0.054 (cf. section 3.4.1)

2 model selection lead to large positive and negative values of B (cf. figure 3.30)
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Table 3.7: Rate of replications with a significant effect obtained for all risk functions in

the cutpoint model, the linear model and the V-type model

method cutpoint model linear model V-type model
strategy strategy strategy
H M B H M B H M B
LIN 53.1 - - 1279 - - 4.0 - -
LINQ 41.6 55.0 55.5 | 227 30.8 32.0 221 223 23.2
FIX! 67.2 718 718|215 310 31.0| 61 78 7.8

CUT/CART! 90.8 90.8 90.8 | 68.9 68.9 689|684 684
CUTC/CARTC! | 44.9 575 57.5|21.9 31.6 31.6| 183 18.3

RCS 45.0 58.0 60.0 | 21.1 31.2 332|204 215 220
FP 236 53.5 53.5| 9.5 28.6 286 |10.1 13.0 13.1
TRANS! - - - - - 28.0 31.3 31.3

! not nested to LIN, strategy M is equal to B, because the risk functions are not tested against LIN.

Table 3.7 summarizes the results obtained for all standard procedures in the cutpoint
model, the linear model and the V-type model. The highest rate of replications with a
significant effect is obtained in the simulated cutpoint model. This may be caused by
the clear separation of risk groups making it probably easier to detect the increase in
risk. For instance, LIN led to 53.1% significant models. As described in section 3.5 the
linear risk function was a good approximation of the given cutpoint model. In contrast,
for the simulated linear model the rate of replications with a significant linear effect is
27.9% only. In the V-type model LIN showed a significant effect in 4% of all replications
only. This is not astonishing, since the given V-type risk function cannot be described
appropriately by a linear function.

For the simulated cutpoint model and the simulated linear model we obtained smaller
rates for LINQ, RCS and FP as compared to LIN when using strategy H. However, the
rate is larger than LIN when using strategies M and B. For instance with strategy H we
obtained a significant restricted cubic spline in 45% of all replications in the simulated
cutpoint model. This rate is increased to 56% and 60% respectively, when using M and
B, respectively. Generally, a nonlinear risk function should be used only if it is better
than the linear risk function. Doing so, the chance to detect an effect of a continuous
covariate is increased as compared to LIN. Investigating the effect of age on event-free
survival in the GBSG-2 study (cf. section 2.1.9), there was no effect at all when assuming
a linear risk function but a highly significant effect when using a nonlinear risk function,
e.g. RCS.

However, as shown in the simulation study a significant nonlinear risk function is no guar-
anty for a good fit. Simulating the V-type model for example, a significant data-driven
cutpoint is obtained in 68.4% of all replications, although the V-type model cannot be
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described correctly by a cutpoint model. In contrast, a good approximation of the V-type
shape can be obtained when using LINQ or FP. For these methods the rate of replica-
tions with a significant effect is increased from 4% for LIN to 22.1% for LINQ and 10.1%
for FP, respectively (table 3.7). A further increase of this rate is obtained when using
strategies M or B, e.g. 13% for FP when using M. However, since this increase is based
on significant linear risk functions only there is no improvement with respect to the fit
of the given functional shape. Note that all significant fractional polynomials have been
used to calculate the rate 10.1% for strategy H.
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3.8.4 A note on the estimation of confidence intervals

In the simulation study I focus especially on the capability of the chosen methods to
estimate the given function correctly. Categorizing X by using one or more data driven
cutpoints I have already addressed the problem of bias caused by model building. In
order to correct for overestimation of the log relative risk I used shrinkage methods.
Furthermore, corrected P-values should be used to get reliable test results (cf. section
2.1.7). I have also mentioned that selected cutpoints may differ between studies and,
therefore, it is difficult to compare results. Figure 3.31 shows that both, a large variability
of selected cutpoints as well as overestimation of the resulting log relative risk, is more
relevant in the null model than in the cutpoint model. Applying shrinkage methods we
can at least correct for overestimation. Notice, that figure 3.31 uses the same results as
figure 3.4 and 3.12.

However, so far I have not investigated the validity of the estimated variances and con-
fidence intervals of the selected model. As illustrated above variable selection may lead
to overestimation of effects in the selected model. This phenomenon is well known in the
multivariate situation, where specific variables are selected and included into a final re-
gression model. Besides overestimation of the effect the corresponding variance estimates
and, consequently the resulting confidence intervals may be too small (Miller, 1990).
Using the selection of a data driven cutpoint referred to as CUT as a prototype for other,
more complicated problems of model selection I illustrate the (potential) impact of the
model building process on the estimation of confidence intervals in the null model. After
categorizing X by using the selected cutpoint /i the estimated log relative risk B be-
tween the resulting subgroups is obtained by maximization of the corresponding partial

likelihood (cf. section 2). A confidence interval for 3 is then calculated as

B + Z1-a/2 \ @mod (B)

where z;_qo/2 is the (1 —a/2)-quantile of the standard normal distribution and var,;,,q (B)
is the model-based estimated variance of B that is also derived from the proportional
hazards cutpoint model based on fi. Figure 3.32 A shows the estimated log relative risk
with corresponding 95% confidence intervals obtained in the first 100 replications of the
null model. The samples are ordered according to the value of 3 from smallest to largest.
As mentioned previously there are no values of B close to 0 resulting from the optimization
process of the minimum P-value approach. 40 of the 100 model based confidence intervals
do not contain the given log relative 0. These results correspond well to the inflated type
I error obtained for CUT (& = 0.432, cf. section 3.4). Overestimation can be reduced
by considering the shrinked estimates éB instead of B In this thesis I used a heuristic
mod (8))/B% Figure 3.32 B and figure 3.31 N2 show that

the shrinked estimated log relative risk is closer to 0. However, we still obtain 14 out of

shrinkage factor é = (3% — var
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Figure 3.31: Estimated log relative risk versus selected data driven cutpoint obtained for
CUT/CUTS in the null model (N1/N2) and the cutpoint model (C1/C2)
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Figure 3.32: Estimated log relative risk versus selected data driven cutpoint obtained for
CUT/CUTCS in the null model, black lines denote confidence intervals that do not cover

the null, all samples are ordered according to the value of 5 from smallest to largest
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100 significant confidence intervals when calculating

B £ 21_ay2 VAT p0q (B) (43)

The reason is that the variance of the estimated log relative is still model based, i.e.
is derived from a proportional cutpoint model where a fixed and predefined cutpoint is
assumed. Thus, the variance estimate and the resulting confidence intervals tends to be
too small in the current situation.

In order to take the additional variability of both the estimated cutpoint i and the
estimated shrinkage factor into account, the results of the bootstrap samples can be used
for variance estimation. For each replication we simply take the empirical variance of the
shrinked log relative risk over the corresponding bootstrap samples given by

. 1 B O 2
Valhoot (¢B) = B_1 Z:l (éjﬂj - cﬂboot)
j=

where Eboot denotes the average of the shrinked estimated log relative risks over the B
bootstrap samples. Replacing var, 4 in formula (43) by vary,; the coverage of the re-
sulting confidence intervals corresponds well to the results obtained by P-value correction.
For the first 100 replications in the null model 4 out of 100 confidence intervals do not
contain the value 0 (figure 3.32 C). Using corrected P-values we obtained an estimated

type I error of e, = 0.067 (cf. section 3.4.1).
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3.8.5 Simulating the null hypothesis from the data

Estimating the effect of age on event-free survival (EFS) in the GBSG-2 study nearly all
risk functions showed a strong decrease in risk with increasing age up to 50 years. Fur-
thermore, there were only slight differences between the bagged risk functions and those
estimated in the original data. Using e.g. RCS a restricted cubic spline was selected in all
100 bootstrap samples and for FP the risk function reduced to the linear risk function in
12 out of 100 bootstrap samples only. These results suggest a strong nonlinear effect of
age on EFS.

In order to connect real data to the simulation study I artificially generated indepen-
dence between age and EFS. Independence was obtained by a random re-allocation of the
observed values of patient’s age to the observed EFS, which is equivalent to the null hy-
pothesis of no prognostic relevance of age with respect to EFS. This problem was repeated
100 times and in each repetition the risk function was estimated by LIN, LINQ, FIX2,
CUTS, RCS and FP. Since the results of CART was not very promising in the simulation
study I did not use this approach in this section. The estimated risk function that were
standardized to a zero mean log relative risk in all 100 repetitions are displayed in figure
3.33. All in all the random re-allocation example confirms the results that I obtained for
the null model. The best fit is obtained for LIN. Using model selection strategy M , i.e.
using the higher order model if it leads to a significant improvement as compared to LIN,
a nonlinear risk function was selected in 3, 4 and 1, respectively, repetitions when using
LINQ, RCS and FP, respectively. Furthermore, all three models hold the type I error.
For FIX2 a categorized risk function was selected in 7 out of 100 repetitions. CUT selects
a significant data driven cutpoint in 30 repetitions indicating again the inflation of the

type I error rate of the minimum P-value approach.

To investigate the effect of bagging in the current situation I consider an example based
on one selected data set only: I use the data from one repetition of the 100 random re-
allocations, in which LINQ, RCS and FP selected the higher order risk function. From
this selected data set 100 bootstrap samples were generated. Risk functions were esti-
mated in each of these bootstrap samples using again the model selection strategy M.
The resulting risk functions for LINQ and RCS are shown in figure 3.34. In 20 bootstrap
samples LINQ reduced to the linear risk function, for RCS model selection yields to 29
bootstrap samples with a linear risk function. Considering the results of all bootstrap
samples nonlinearity as obtained in the selected data set cannot be assumed for RCS
and is at least questionable when interpreting the risk functions based on LINQ. Espe-
cially for RCS the risk functions show more heterogeneity between bootstrap samples
than those based on the original data set of the GBSG-2 study (cf. figure 2.4). This may
be caused by the fact that the risk difference is smaller in the selected data set of the

random re-allocation experiment whereas the effect of age was strong in the original data.
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Figure 3.33: Estimated risk functions for in 100 random reallocations of the data of the
GBSG-2 study

However, although the curvature of the bagged risk function (solid lines in figure 3.34)
is less extreme as compared to that estimated in the selected repetition (dashed lines in
figure 3.34), and therefore ilbagg has a smaller deviation from the given null risk, the
functional shape is still similar. In general the variability of the risk functions should be
taken into account when interpreting i’bagg' This is of course also true for A. Pointwise
confidence bounds for A and/or hbagg may be constructed based on the risk functions
obtained in the original data set. Since the bagged risk function is based on the model
selection strategy M the corresponding confidence bounds should be based on all (e.g. the
linear and the restricted cubic splines for RCS) risk functions estimated in the bootstrap

samples.
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Figure 3.34: Estimated risk functions in 100 bootstrap samples of the selected data set
in the random reallocation example, the black dashed line describes the risk function

obtained selected data set, 4, is given by the black solid line
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3.9 Summary of the simulation study

In order to investigate the capability of the standard procedures and the corresponding
bagged risk functions to describe a given functional form adequately I performed a simu-
lation study considering four different situations: the null model (0), the cutpoint model
(I), a linear (II) and a V-type (III) risk function. Assessment of all procedures is based on
the deviation between the estimated and the given risk function, where the latter is based
on the given parameter 5. The classical assumption of a linear risk function was taken
as a reference. Furthermore, I used also the given model and estimated the underlying
parameter in each data set. Using a linear risk function, for example, is the best we can
do in the null model, whereas the categorization by using the given cutpoint (denoted
as FIXALL) is the best choice for the given cutpoint model. The main results of the

simulation study can be summarized as follows:

e The best fit and, therefore, the smallest errors are obtained when estimating the
risk function by using the given functional form in all replications

e The linear risk function (LIN), which is the best for the null model and model II
performs also quite good in the cutpoint model. However, this risk function is not
suitable for model IIL.

e Estimated type I error rates p.., depend on the model selection strategy. Using the
model of the highest order, the given type I error is held by LIN, LINQ FIX, RCS
and FP whereas the categorization based on data driven cutpoints (CUT, CART)
lead to a drastic inflation of the type I error. Using corrected P-values (CUTC,
CARTC) the estimate pe. is close to the given value. Selecting the higher order
model if it leads to a significant improvement in terms of likelihood and using the

linear risk function otherwise (strategy M) the given « is obtained for FP only.

e For models I, II and III the power to detect the given effect was rather small.

However the log relative risk was only moderate in the simulation study

e Using the model selection strategy M LINQ, RCS and FP reduce often to the linear
risk function, even for model III. The smallest rate of nonlinear risk functions is
obtained for FP (e.g 1.1% for model I). Due to the underlying optimization process
I obtained the highest rate of nonlinear risk function for CUT and CART corre-

sponding to the large type I error rate when considering the null model

e Besides TRANS the shape of the V-type risk function given by model I1I is described
best by the nonlinear risk functions obtained by LINQ and FP. However, the change
in risk is overestimated as a result of the model selection process and, therefore,

quantitative errors are large.
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e The qualitative error proposed in section 3.3 is sensible for continuous and monotone
risk functions only. Thus, assessment of results was mainly based on quantitative

errors

e Bagging is capable to reduce errors, but cannot be recommended in all situations.
For models 0, T and IT the error of the bagged risk function is similar or even larger
in replications with a linear risk function. An improvement is mainly obtained in
replications with a nonlinear risk functions in the original data set. This is caused
by the good fit of the linear risk function, which is the best choice for models 0 and
IT and a good approximation for model I. In contrast, for model III bagging also
leads to an improvement in replications, in which the higher order model reduced
to the linear risk function in the original data set. Note, that the V-type model
cannot be estimated correctly by LIN

e Generally bagging can work only, if the selected risk function differ between boot-
strap samples. Note that there was no effect at all for LIN, whereas the highest
error reduction is obtained for CUT/CUTS.

e Comparing the two strategies to make risk functions comparable we obtained rather
small differences between error estimates (cf. also appendix A). However, larger
differences may be observed when the risk set used to estimate the baseline hazard
gets too small and/or the risk function shows an extremely nonlinear change in in
risk with increasing values of the continuous covariates of X. The effect of censoring

was not investigated so far

e Using the selection of a data driven cutpoint as a prototype of model building it was
shown that the log relative risk between the resulting subgroups is overestimated and
that confidence intervals calculated with the model based variances are too small.
These deficiencies, that are caused by the extensive process of model building when
selecting data driven cutpoints, can be corrected by applying shrinkage methods and
by using the results of the bootstrap samples to estimate the variance. The coverage
of the corrected confidence intervals corresponds well to the results obtained by using

corrected P-values.

e The application of shrinkage methods for CUT and CART led to an error reduction
in nearly all replications. However, the parameterwise shrinkage factors used for
CART were negative or took values that were substantially larger than 1 in several
replications. Therefore, there was no shrinkage effect at all in these replication. In
many bootstrap samples parameterwise shrinkage factors could not be calculated at

all due to missing convergence.

e Generally, the results obtained when simulating the null hypothesis from the data
confirms the results of the null model.
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4 Discussion

In this thesis I investigated several methods to estimate the functional form of the effect
of a continuous covariate on survival time. To determine the so called risk function of a
continuous covariate in the proportional hazards model, data-dependent as well as data-
independent methods were considered. The former approaches are often based on an
extensive process of model building, whereas the general functional form is prespecified
when using the latter. Out of the class of data dependent methods I investigated the
categorization of the continuous covariate by one or more data-driven cutpoints, and the
use of fractional polynomials. For the categorization by data-driven cutpoints corrected
P-values and shrinkage methods were used to correct for over-optimism of the selected
model. A linear risk function, assuming a linear and a quadratic effect, the categorization
by prespecified cutpoints, and the fit of a restricted cubic spline with fixed knots were
taken as data independent methods. For each method the classical assumption of a
linear risk function was taken as some kind of basic assumption, i.e. the more complex
nonlinear risk function (e.g. a fractional polynomial) was used only if it improved the fit as
compared to the linear effect. In so far, there was also one step of model building involved
for the data independent methods. All methods were extended by adopting an approach
called bootstrap aggregating (bagging) that has been proposed by Breiman (1996) for
improvement of the error rate of predictors. Bootstrap samples were generated from the
original data. In each bootstrap sample the risk function was estimated by using the
same methods as in the original data. A so called bagged risk function was estimated
as average over the corresponding risk functions of all bootstrap samples. Furthermore,
the results of the bootstrap samples were used to investigate the stability of the model
selection process.

Applying the methods to estimate the effect of age on event-free survival of breast cancer
patients we observed a clear nonlinear effect: Up to 50 years there was a decrease in
risk with increasing age, whereas the risk seemed to be rather constant for patients older
than 50 years. However, the change in the observed risk differed between methods and
the results could only partially be verified in the second, smaller Freiburg DNA study.
Except for the categorization by data driven cutpoints there was hardly any difference
between the bagged risk functions and the corresponding risk functions estimated in the
original data. For most methods the estimated risk functions are similar in nearly all
bootstrap samples confirming a strong nonlinear effect of age.

To assess the capability of all methods to describe a given functional form correctly I
performed a simulation study considering 4 different models. Except for the null model
assuming no effect at all the change in risk was assumed to be rather moderate. This as-
sumption corresponds well to practical situations, since a large effect of a (new) prognostic
factor on survival cannot be expected in most circumstances. Naturally, the best results

are obtained when using the given assumption to estimate the risk function. However,
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analyzing real data the given functional form is of course unknown. Taking all models
into account the method based on fractional polynomials performed best: If the given risk
function is linear FP reduced to LIN in nearly all replications, whereas this rate was lower
for the other methods. Although the functional shape of the V-type model is described
correctly by the nonlinear risk functions of FP and LINQ the change in risk is rather over-
estimated. For the simulated cutpoint model the more complex risk functions of LINQ),
FP and RCS reduced to LIN in nearly all replications indicating that it is rather difficult
to fit a cutpoint model by continuous functions. However, the linear risk function serves
as good approximation to the cutpoint model. The worst fit of all simulated models is
observed for CART.

The application of bootstrap aggregating can improve the fit, but cannot be recommended
in all situations. Bagging was efficient only if the estimated risk function is nonlinear
and/or the given risk function is nonlinear. However, as illustrated in section 3.8.2 for
CUTS bagging may also increase the error if the risk function estimate in the original data
corresponds well to the given function. All in all the positive effect of bagging observed in
the simulation study is not as large as we have expected in advance. Generally, the bagged
risk function should be considered together with the results of all bootstrap samples.
Doing so, we get insight into the variability between bootstrap samples and, therefore,
also into the stability of the risk function estimated in the original data.

The fact, that bagging works only if the selected functional form differ between bootstrap
samples agree with the statement that the ‘vital element’ [of bagging] ‘is the instability
of the prediction method’ (Breiman, 1996). In a forthcoming paper Biithlmann and Yu
(2000) formalize the notation of instability. Furthermore, they derive theoretical results
to explain a variance reduction effect of bagging for so called ‘hard decision problems’like
classification and regression trees or variable selection in regression models.

The impact of model building on the estimation of risk functions was especially illus-
trated in sections 3.8.3 and 3.8.4. For instance, it was demonstrated that parameters
of risk functions tend to be overestimated when considering the selected nonlinear risk
function only. Methods used to correct for errors caused by model building were investi-
gated in the data-driven cutpoint model only. Although the application of shrinkage and
bootstrap methods lead to more reliable results, the selected data-driven cutpoint may
differ substantially between studies. Therefore, this approach should be applied only if
the selected cutpoints are similar in most bootstrap samples and if the risk function do
not disagree to other continuous risk functions. In any case results should be based on
corrected P-values and shrinked estimates. Unfortunately, there are still publications in
the medical literature using data-driven cutpoints without any correction, although the
dangers of using this approach were discussed extensively in the statistical and medical
literature (Lausen and Schumacher, 1992; Altman et al., 1994; Lausen and Schumacher,
1996; Schumacher et al., 1997; Altman, 1998; Hollander and Schumacher, 2001). Just to
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give one example from the huge literature on prognostic factors in breast cancer, in a
recent paper by Linderholm et al. (2000) the minimum P-value approach was used to find
a data-driven cutpoint for vascular endothetical growth factor (VEGF). As main result
the authors found a significant difference of the resulting subgroups with respect to overall

survival.

What did we learn on the estimation of a risk function?

It is not possible to fix definitive rules for future data analysis. None of the methods
can be recommended in all situations. This would also be true for other approaches not
investigated in this thesis. Out of the methods considered here the CART based cate-
gorization should not be used. Generally, one should not focus on one specific method
and neglect all the other. Bootstrap methods and other resampling methods can help to
overcome some problems caused by model building, at least it can be used to investigate
for stability of the model selection process. Based on the results of the simulation and

the application to the data I would recommend the following strategy:

— Investigate always for potential nonlinearity of the risk function, use several
method to do so

— If all methods reduce to the linear risk function when applying an appropriate
model selection strategy, assume a linear effect

— If one or more methods suggest a strong nonlinear effect use the same model build-
ing process as in the original data to estimate the risk functions in a set of bootstrap

samples
a) If the risk functions corresponds well to that obtained in the original data in

nearly all bootstrap samples, and results are similar for different methods, there
is a strong evidence for a nonlinear effect. The bagged risk function would be
nearly equal to the original estimate and, therefore, bagging is not necessary

b) If the risk functions reduce to the linear effect in several bootstrap samples
the nonlinear effect is not as strong as seen in the original data. The bagged
risk function may be used to correct for over-optimism, but should be considered

together with the results of all bootstrap samples

— Consider always the distribution of the underlying covariate when interpreting
results
— Investigate also for potential time-dependency of the covariate

— Validate all results by using one or more independent data sets
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In practical situations we should of course not restrict to univariate analyses. In a recent
paper Sauerbrei and Royston (1999) proposed a model selection strategy for multivariable
prognostic and diagnostic models. Their approach is based on the transformation of the
covariates by using fractional polynomials and incorporates also medical knowledge into
the analysis.

For the assessment of all approaches I considered the deviation between the estimated
and the given risk function. On the one hand the risk function of each covariate can be
interpreted itself. On the other hand the answer to the question Is there an effect of a
specific covariate on survival? can also depend on the functional form. Remember, that
in the GBSG-2 study age showed no effect on event-free survival when assuming a linear
effect. In contrast the effect of age was highly significant when using a restricted cubic
spline. This question is not limited to the analysis of survival data, but has also relevance
for other situations.

However, analyzing survival data it should be taken into account that the effect of co-
variates can change over time. Therefore, it would be worthwhile to model both, the
functional form and the effect over time, by using one risk function. As I did in my work
all approaches cited in section 2.1.11 referred to one of these problems only.
Furthermore, I have not investigated how far the use of appropriate risk functions can
improve the prediction. It should be noted that survival of an individual patient cannot
adequately be predicted (Henderson, 1995). Actually, there seems to be no sound and
commonly agreed statistical methodology to assess the accuracy of predictions derived
from a survival model. An outline on some recent developments is given in Schumacher
et al. (2001), more details can be found elsewhere Graf et al. (1999).

All in all there remain a lot of questions calling for further research. The results of this

thesis can be useful for some additional investigations.

101



5 Appendix A: Tables of results

The main results obtained in the breast cancer studies and the simulation study were
illustrated graphically in sections 2 and 3. This appendix lists additional results: Table
A 2.1 describes the estimated risk functions in the GBSG-2 study and the Freiburg DNA
study displayed in figure 2.1. Tables A 3.1 - A 3.16 describe results of the simulation

study. I have already referred to all tables when interpreting the results in the text.
For each simulated model of the simulation study the following tables are given:

R1 : Estimated M AFE obtained in the original data set and for the bagged risk functions
R2: Estimated M SE obtained in the original data set and for the bagged risk functions
R3 : The effect of bagging on the estimated M AE and MSE

R4: The comparison of the procedures used to make results comparable

Furthermore, all tables contain information on the results of model selection. A detailed
description is given in the heading of each table.

Overview:
simulated model R1 R2 R3 R4
null model (model 0) table A 3.1 table A 3.2 table A 3.3  table A 3.4

cutpoint model ( model I) | table A 3.5  table A 3.6  table A 3.7 table A 3.8
linear effect (model II) table A 3.9  table A 3.10 table A 3.11 table A 3.12
V-type effect (model III) | table A 3.13 table A 3.14 table A 3.15 table A 3.16
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Table A 2.1: Estimated fufictions of the effect of age with respect to event-free survival time:
Results obtainelly using the standard procedures in the GBS-2 study and validation in the Freiburg DNA study

functional GBGS-2 study Freiburg DNA study
relationship | DF' LRT?  estimated risk function LRT?  estimated risk function

LIN 1 0.58  —0.0048 - age 0.71  —0.0080 - age

LINQ 2 9.00 —0.1395 - age + 0.0013 - age? | 0.73 —0.0185 - age + 0.0001 - age?

FIX2 2 3.83  —0.2866 - 1(45age <o} 101 —0.0891 - 1145 age< oo}
—0.2032 - 1{age > 60} —0.2890 - 1{age> 60}

CUT 1 779 04441 liages ) 0.19  —0.159 - l{ages 49)

CUTS ~0.3942 - 1{age > 42)

CART 3 2340  —0.8022 - 1{32cage <42} 0.19  —0.299 - Ipzocage< a2
—1.4697 - 1142 < age <49} —0.409 - 1s9<age <19}
—0.9879 - 1{age > 19) —0.437 - 1{age > 49

FP 4 17.62  1.527- (age/50) 9° 1.38  2.18- (age/50) °
—6.38237 - (age/50) 2 —2.207 - (age/50) 2

RCS 3 21.69 —0.09315 * age 2.17 —0.05582 * age
+0.00024 * max(age —630)3 +0.00014 * max(age -630)3
—0.00076 * max(age — 48,0)3 —0.00044 * max(age — 48, 0)3
+0.00075 * max(age — 58,0)3 +0.00044 * max(age — 58,0)3
—0.00023 * max(age — 68,0)3 —0.00014 * max(age — 68, 0)3

1 degrees of freedom = number of parameters

2 value of likelihood-ratio test statistic testing the model against the null model
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Table A 3.1:

mpirica] distribution in terms of quantil

es of the MAE for the standard and bagged risk functions in the simulated null model
and results of model selection

standardization to zero mean log relative risk)

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0 0.0053 0.0118 0.0284 0.0594 0.1027 0.1462 0.1744 0.372 1000/0
LINQ 0 0.0054 0.0121 0.0301 0.0619 0.1103 0.1694 0.2124 0.372 950/50 0.1682 0.176 0.1797 0.1944 0.2207 0.2549 0.2819 0.3088 0.3263
FIX 0 0.0053 0.0118 0.0284 0.0594 0.1042 0.1536 0.2134 0.4191 944/56 0.2021 0.2048 0.2068 0.2197 0.2407 0.2782 0.3103 0.3514 0.4191
cuT 0 0.0062 0.0133 0.0338 0.0844 0.2003 0.2449 0.274 0.4664 568/432 0.1227 0.14 0.1535 0.1775 0.2086 0.2408 0.2888 0.3198 0.4664
CuUTs 0 0.0062 0.0133 0.0338 0.0842 0.1604 0.209 0.2436 0.4405 568/432 0.0765 0.1093 0.1183 0.1416 0.1683 0.2055 0.2525 0.2853 0.4405
CuTC 0 0.0053 0.012 0.0289 0.0601 0.1051 0.1617 0.2346 0.4664 933/67 0.1856 0.2068 0.2127 0.2355 0.2657 0.3233 0.3466 0.3938 0.4664
CUTCS 0 0.0053 0.012 0.0289 0.0601 0.1051 0.1617 0.2179 0.4405 933/67 0.166 0.1844 0.1905 0.2103 0.2433 0.2941 0.3221 0.3661 0.4405
CART 0 0.0062 0.0133 0.0338 0.0844 0.2331 0.313 0.3602 0.5758 568/432 0.1161 0.1472 0.1606 0.1979 0.249 0.3081 0.3738 0.4064 0.5758
CARTS 0 0.006 0.0133 0.0337 0.0808 0.1885 0.2821 0.3229 1.0939 568/432 0 0.0975 0.1168 0.1537 0.2019 0.2698 0.3299 0.3834 1.0939
CARTC 0 0.0053 0.012 0.0289 0.0601 0.1051 0.1617 0.2328 0.5758 933/67 0.1912 0.2033 0.2162 0.2294 0.2637 0.327 0.3822 0.4432 0.5758
CARTCS 0 0.0053 0.012 0.0289 0.0601 0.1051 0.1617 0.2096 0.5061 933/67 0.163 0.1788 0.1879 0.2045 0.2429 0.2947 0.3492 0.4085 0.5061
RCS 0 0.0053 0.0121 0.0302 0.0626 0.1131 0.1887 0.2467 0.3724 937/63 0.2055 0.2148 0.2239 0.2369 0.2581 0.2804 0.3063 0.3318 0.3724
FP 0 0.0053 0.012 0.029 0.0601 0.1043 0.1514 0.1866 0.372 990/10 0.2406 0.2455 0.2505 0.2674 0.2797 0.2844 0.3219 0.3268 0.3317

bagged risk functions
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.0001 0.0063 0.0131 0.0297 0.0612 0.1054 0.1488 0.1843 0.3658 1000/0 1000
LINQ 0.0039 0.0161 0.0229 0.0453 0.0776 0.124 0.1663 0.2063 0.3658 950/50 5 0.1075 0.1296 0.1323 0.1489 0.1925 0.2257 0.2649 0.3016 0.3072
FIX 0.001 0.0085 0.015 0.0325 0.0668 0.1179 0.1649 0.2039 0.4308 944/56 1 0.1462 0.171 0.179 0.2057 0.2388 0.2744 0.2964 0.3545 0.4308
cuT 0.0063 0.0161 0.02 0.0302 0.0489 0.0807 0.116 0.145 0.3026 568/432 0 0.0133 0.0283 0.0337 0.0507 0.0841 0.1145 0.15 0.1855 0.3026
CUTS 0.0057 0.0135 0.0168 0.0261 0.0422 0.0712 0.1036 0.1292 0.2876 568/432 0 0.0113 0.0245 0.0292 0.0443 0.0738 0.101 0.1363 0.1718 0.2876
CUTC 0.0012 0.0048 0.0061 0.0101 0.0179 0.0357 0.0695 0.0944 0.2887 933/67 0 0.0129 0.0196 0.0224 0.0401 0.0793 0.1463 0.1831 0.2073 0.2887
CUTCS 0.0012 0.0042 0.0057 0.009 0.0153 0.0294 0.0591 0.0821 0.271 933/67 (4] 0.0084 0.012 0.0137 0.0283 0.0634 0.1326 0.1654 0.1862 0.271
CART 0.0437 0.0656 0.0825 0.1128 0.1548 0.2081 0.2632 0.3013 0.5132 568/432 (4] 0.1032 0.1405 0.1503 0.1716 0.2108 0.2563 0.308 0.3326 0.5132
RCS 0.003 0.0231 0.0341 0.0567 0.0906 0.138 0.1916 0.2241 0.3756 937/63 1 0.1361 0.1655 0.1734 0.1943 0.2118 0.2516 0.2963 0.3185 0.3666
FP 0.0008 0.0119 0.018 0.0366 0.0691 0.1141 0.1595 0.1963 0.3658 990/10 100 0.1916 0.2031 0.2145 0.2231 0.2329 0.2762 0.281 0.288 0.295
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Table A 3.2: Empirical distribution in terms of quantiles of the MSE for the standard and bagged risk functions in the simulated null model

(standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0 0 0.0002 0.0011 0.0048 0.0141 0.029 0.0407 0.1741 1000/0
LINQ 0 0 0.0002 0.0012 0.0052 0.0165 0.0396 0.0612 0.1741 950/50 0.0386 0.0435 0.0469 0.053 0.0678 0.0942 0.1272 0.1427 0.1486
FIX 0 (4] 0.0002 0.0011 0.0048 0.0143 0.0311 0.0494 0.1757 944/56 0.0409 0.0421 0.0435 0.0488 0.0583 0.0782 0.0986 0.1243 0.1757
cuT 0 0.0001 0.0002 0.0015 0.0097 0.0555 0.0853 0.1071 0.2248 568/432 0.0285 0.0413 0.0428 0.0483 0.0585 0.0826 0.1094 0.1289 0.2248
CuUTs 0 0.0001 0.0002 0.0015 0.0097 0.0356 0.0646 0.0859 0.2006 568/432 0.0109 0.023 0.0245 0.029 0.0392 0.0613 0.0886 0.1059 0.2006
CuTC 0 (4] 0.0002 0.0011 0.0049 0.0148 0.0359 0.1071 0.2248 933/67 0.0944 0.0972 0.0997 0.1071 0.1155 0.1391 0.1828 0.1944 0.2248
CUTCS 0 0 0.0002 0.0011 0.0049 0.0148 0.0359 0.0859 0.2006 933/67 0.0743 0.077 0.0798 0.0859 0.095 0.1162 0.1598 0.1723 0.2006
CART 0 0.0001 0.0002 0.0015 0.0097 0.0996 0.1655 0.2056 0.4468 568/432 0.0285 0.044 0.0488 0.0675 0.1125 0.1615 0.2118 0.2568 0.4468
CARTS 0 0 0.0002 0.0015 0.0093 0.0639 0.1228 0.1673 1.2464 568/432 0 0.0189 0.0256 0.0411 0.0761 0.1175 0.178 0.2435 1.2464
CARTC 0 0 0.0002 0.0011 0.0049 0.0148 0.0359 0.1071 0.4468 933/67 0.0944 0.0983 0.1001 0.1072 0.1161 0.1394 0.1963 0.2643 0.4468
CARTCS 0 0 0.0002 0.0011 0.0049 0.0148 0.0359 0.0803 0.3491 933/67 0.0587 0.0754 0.0771 0.0805 0.0947 0.1148 0.1721 0.1953 0.3491
RCS 0 0 0.0002 0.0012 0.0052 0.0173 0.0471 0.0845 0.1931 937/63 0.0577 0.0681 0.0699 0.0816 0.0953 0.1141 0.1447 0.1697 0.1931
FP 0 0 0.0002 0.0011 0.0049 0.0143 0.0303 0.0469 0.1741 990/10 0.0817 0.0894 0.0971 0.1006 0.1134 0.1197 0.1423 0.1476 0.1529

bagged risk functions
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples

min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0 0.0001 0.0002 0.0011 0.005 0.0148 0.0296 0.0446 0.1684 1000/0 1000
LINQ 0 0.0004 0.0008 0.0028 0.0083 0.0214 0.0388 0.0583 0.1684 950/50 5 0.017 0.0248 0.0259 0.0323 0.051 0.0749 0.1142 0.128 0.1425
FIX 0 0.0001 0.0003 0.0013 0.0053 0.0158 0.0297 0.0442 0.1856 944/56 1 0.0227 0.0295 0.0324 0.0438 0.0584 0.0759 0.0885 0.1265 0.1856
cuT 0.0001 0.0004 0.0006 0.0013 0.0036 0.0088 0.0191 0.0297 0.1274 568/432 0 0.0003 0.0012 0.0017 0.0039 0.0089 0.018 0.0344 0.0486 0.1274
CUTS 0 0.0003 0.0004 0.001 0.0027 0.0067 0.0153 0.0242 0.1151 568/432 0 0.0002 0.0009 0.0013 0.003 0.0071 0.014 0.0281 0.042 0.1151
CUTC 0 0 0.0001 0.0002 0.0005 0.002 0.0067 0.0137 0.116 933/67 0 0.0004 0.0009 0.0012 0.003 0.0079 0.038 0.053 0.0667 0.116
CUTCS 0 0 0.0001 0.0001 0.0004 0.0014 0.0049 0.0112 0.1022 933/67 (4] 0.0001 0.0003 0.0005 0.0013 0.0051 0.0312 0.0437 0.0559 0.1022
CART 0.003 0.0071 0.0108 0.0194 0.0361 0.0652 0.1009 0.129 0.342 568/432 (4] 0.023 0.0312 0.0355 0.0468 0.0675 0.0961 0.1308 0.1538 0.342
RCS 0 0.0008 0.0019 0.0048 0.0119 0.0265 0.0501 0.0689 0.207 937/63 1 0.0255 0.0385 0.041 0.0524 0.0672 0.0882 0.1283 0.1616 0.207
FP 0 0.0002 0.0005 0.0019 0.0067 0.0179 0.0354 0.0515 0.1684 990/10 100 0.0481 0.057 0.0659 0.0733 0.0813 0.1118 0.1173 0.1184 0.1194
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Table A 3.3: The effect of bagging on the estimated error in the simulated null model:
Comparing the M AE /M SE obtained in the original data to the corresponding errors of the bagged risk function

risk linear nonlinear all (R=1000)

linear nonlinear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller 1\714\E‘ for quantiles of smaller I\TA\E for quantiles of smaller I\m for quantiles
hpagg h 0.25 0.5 0.75 hpagg h 0.25 0.5 0.75 hpagg h 0.25 0.5 0.75
LIN 1000 0 441(44.1)  559(55.9) 91 102 115 C ) ) ) D)
LINQ 950 50 285(28.5) 715(71.5) 98 110 143 238(25.1) 712(74.9) 100 112 147 47 (194) 3(6) 76 86 93
FIX 944 56 355(35.5) 645(64.5) 94 108 131 318(33.7) 626(66.3) 94 110 133 3 7(66.1) 19 (33.9) 92 98 101
cuT 568 432 744(74.4)  256(25.6) 38 58 101 312(54.9)  256(45.1) 59 91 181 432(100) 0 ( 0 ) 25 39 52
CuUTS 568 432 787(78.7) 213(21.3) 37 57 89 356(62.7) 212(37.3) 51 78 156 43 1(99.8) 1 (0.2) 27 43 57
CuUTC 933 67 829(82.9) 171(17.1) 18 34 67 762(81.7) 171(18.3) 18 34 70 67 (100) 0(0) 18 30 52
CUTCS 933 67 851(85.1) 149(14.9) 16 28 61 784( 84 ) 149( 16 ) 16 28 64 67 (100) 0(0) 13 28 53
CART 568 432 335(33.5) 665(66.5) 87 146 347 10(1.8) 558(98.2) 176 299 635 325(75.2) 107(24.8) 73 84 100
RCS 937 63 242(24.2)  758(75.8) 101 121 185 180(19.2)  757(80.8) 104 125 198 62 (98.4) 1 (1.6) 79 84 91
FP 990 10 323(32.3) 677(67.7) 96 107 132 315(31.8) 675(68.2) 96 107 132 8 (80) 2 (20) 82 85 90
risk linear nonlinear all (R=1000) linear linear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller I\TS\E for quantiles of smaller Am for quantiles of smaller I\?S\E for quantiles
Bbagg h 0.25 0.5 0.75 Bbagg h 0.25 0.5 0.75 Bbagg h 0.25 0.5 0.75
LIN 1000 0 441(44.1)  559(55.9) 82 103 132 C ) C ) ) D)
LINQ 950 50 266(26.6) 734(73.4) 98 126 223 218(22.9) 732(77.1) 103 130 240 48 ( 96 ) 2( 4) 59 75 87
FIX 944 56 453(45.3)  547(54.7) 81 104 148 417(44.2)  527(55.8) 81 105 152 36(64.3) 20(35.7) 84 97 103
cuT 568 432 722(72.2) 278(27.8) 15 36 118 290(51.1) 278(48.9) 38 93 411 43 2(100) 0( 0) 6 15 29
CcuTSs 568 432 770( 77 ) 230( 23 ) 15 35 86 338(59.5) 230(40.5) 27 67 299 432 (100) 0( 0) 8 18 35
CUTC 933 67 819(81.9)  181(18.1) 4 12 49 752(80.6)  181(19.4) 4 13 57 67 (100) 0( 0 ) 2 7 26
CUTCS 933 67 837(83.7)  163(16.3) 3 9 40 770(82.5)  163(17.5) 3 9 43 67 (100) 0( 0 ) 6 27
CART 568 432 373(37.3) 627(62.7) 76 223 1490 6 (1.1) 562(98.9) 366 1015 4811 367(85 ) 65(15) 47 69 89
RCS 937 63 184(18.4) 816(81.6) 108 154 392 122( 13 ) 815( 87 ) 113 167 420 62 (98.4) 1(1.6) 61 73 87
FP 990 10 307(30.7) 693(69.3) 94 117 183 298(30.1) 692(69.9) 95 118 185 9 (90) 1(10) 67 75 80
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Table A 3.4: Empirical quantiles of the ratios 100* ( MSEigg0(+))/ M SEzero mean ) and 100% ( MAEy(x 1)/ M AEzero mean )

for the simulated null model

risk function

S(tx)

—
Empirical quantiles of the ratio for MSE (R=1000)

number of

Empirical quantiles (only nonlinear replications)

min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 100 100 100.1 100.3 100.7 102.1 105.5 0
0.75 100 100 100 100.1 100.4 101.2 103.3 0
0.90 100 100 100 100.1 100.3 100.9 103 0
LINQ 0.50 100 100 100.1 100.3 100.7 102.3 105.5 50 100 100 100.1 100.3 101.3 103.3 104.6
0.75 100 100 100 100.1 100.4 101.2 104.2 50 100 100 100.2 100.4 101.2 102.5 104.2
0.90 100 100 100 100.1 100.4 101.3 103.6 50 100.1 100.2 100.8 101.3 102.1 102.9 103.6
FIX 0.5 100 100 100.1 100.3 100.7 102.1 105.5 56 100 100 100.1 100.3 100.8 102 103.6
0.75 100 100 100 100.1 100.4 101.2 103.3 56 100 100 100.1 100.4 100.9 101.9 102.6
0.90 100 100 100 100.1 100.4 101.1 103.1 56 100 100.2 100.5 101.2 101.6 102.6 103.1
cuT 0.50 100 100 100.1 100.3 100.8 102.6 112.4 432 100 100 100.1 100.4 101.1 103.4 112.4
0.75 100 100 100.1 100.2 100.6 101.7 105.5 432 100 100 100.1 100.4 101 102.3 105.5
0.90 100 100 100 100.3 100.9 102.7 111.3 432 100 100.2 100.6 101.1 101.9 103.4 111.3
CART  0.50 100 100 100.1 100.4 101 103.7 113.9 432 100 100 100.2 100.6 101.8 104.9 113.9
0.75 100 100 100.1 100.2 100.7 102.3 105.8 432 100 100 100.2 100.6 101.5 103.3 105.8
0.90 100 100 100.1 100.3 101.7 105.4 118.4 432 100 100.3 101 102 103.7 106.9 118.4
RCS 0.50 100 100 100.1 100.3 100.7 102.1 105.5 63 100 100 100.1 100.4 100.9 102.6 104.1
0.75 100 100 100 100.1 100.4 101.2 103.3 63 100 100 100.2 100.5 101.2 102.5 104.1
0.90 100 100 100 100.1 100.4 101 104.7 63 100.2 100.5 101.1 101.6 102.4 103.5 106.9
FP 0.50 100 100 100.1 100.3 100.7 102.1 105.5 10 100 100 100.2 100.8 101.2 104.3 104.5
0.75 100 100 100 100.1 100.4 101.2 103.3 10 100 100 100 100.3 100.6 101.8 102.3
0.90 100 100 100 100.1 100.4 101 104.7 10 100.3 100.4 100.8 101.5 103 104.2 104.7
risk function Empirical quantiles of the ratio for l\m (R=1000) number of Empirical quantiles (only nonlinear replications)
S'(t*) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 98.6 99.5 99.9 100.1 100.4 101.2 103.1 0
0.75 98.8 99.6 99.9 100 100.2 100.8 102.9 0
0.90 98.9 99.6 99.9 100 100.2 100.7 102.4 0
LINQ 0.50 95.6 99.4 99.9 100.1 100.4 101.3 104.4 50 95.6 97 98.3 99.5 100.3 103.3 104.4
0.75 96.8 99.5 99.9 100 100.3 101 110.7 50 96.8 98.1 99.2 100.7 102.3 104.4 110.7
0.90 96.8 99.5 99.9 100 100.2 101.1 111.5 50 96.8 97 99.2 102.2 103.9 106.3 111.5
FIX 0.5 96.8 99.5 99.9 100.1 100.3 101.2 103.1 56 96.8 98.9 99.7 100 100.3 100.9 101.2
0.75 98.1 99.6 99.9 100 100.2 100.8 102.9 56 98.1 98.8 99.7 100 100.3 101.7 102
0.90 97.7 99.5 99.9 100 100.2 100.7 102.5 56 97.7 98.3 99.4 100.1 100.9 102.1 102.5
cuT 0.50 55.6 88.9 99.4 100 100.4 103.7 114.7 432 55.6 81.6 94.5 99 101.1 106.9 114.7
0.75 83.3 95.2 99.8 100.1 100.6 108.6 124.4 432 83.3 92.8 98.4 100.6 104.7 112.5 124.4
0.90 86.3 93.6 99.9 100.1 101.8 114.5 141.9 432 86.3 90.6 97.9 102.9 109.4 119.9 141.9
CART 0.50 69.6 88.3 99.5 100 100.5 105.5 120.1 432 69.6 82.2 94 99 101.6 109.3 120.1
0.75 85.1 95.1 99.8 100.1 100.8 111 134.6 432 85.1 92.6 98 101 106.1 115.3 134.6
0.90 82.5 94 99.9 100.1 103.3 118.8 151.7 432 82.5 90.3 98.3 105.3 112.7 124.9 151.7
RCS 0.50 95.8 99.5 99.9 100.1 100.4 101.3 103.1 63 97.2 98 99.6 100 101 102.5 104.2
0.75 98.8 99.6 99.9 100 100.2 100.8 104.4 63 97.5 98.6 99.8 100.2 101.3 102.6 109
0.90 98.2 99.6 99.9 100 100.2 100.7 107.8 63 97 98.4 99.6 100.5 102.1 105.1 114.3
FP 0.50 95.8 99.5 99.9 100.1 100.4 101.3 103.1 10 95.8 97 98.7 99.1 99.6 101.3 102.3
0.75 98.8 99.6 99.9 100 100.2 100.8 104.4 10 98.9 99 99.8 100.4 101.2 103.5 104.4
0.90 98.2 99.6 99.9 100 100.2 100.7 107.8 10 98.2 98.3 101 102.1 103.8 106.9 107.8
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Table A 3.5: Empirical distribution in terms of quantileS of the MAE for the standard and bagged risk fu.nctions in the simulated
cutpoint model (standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max
LIN 0.0877 0.0978 0.1014 0.1078 0.1235 0.1535 0.1883 0.2165 0.4102 1000/0
FIXALL 0.0003 0.0066 0.0129 0.0323 0.0673 0.1178 0.1673 0.2107 0.4856 0/1000
LINQ 0.0877 0.0978 0.1016 0.1085 0.1252 0.1633 0.2045 0.2311 0.4102 944/56 0.1724 0.1839 0.1865 0.1946 0.2156 0.2425 0.2768 0.2909 0.3534
FIX 0.0003 0.0066 0.0129 0.0324 0.0932 0.1381 0.1901 0.2255 0.4856 328/672 0.0003 0.0048 0.009 0.0218 0.0464 0.0981 0.1603 0.209 0.4856
cuT 0.0016 0.029 0.042 0.0905 0.1582 0.223 0.2716 0.3013 0.4856 92/908 0.0016 0.0271 0.0396 0.0841 0.1513 0.2248 0.2736 0.3028 0.4856
CuUTSs 0.0003 0.0293 0.0453 0.0777 0.1429 0.2101 0.2585 0.286 0.4657 92/908 0.0003 0.0287 0.0418 0.073 0.1313 0.2079 0.2599 0.2876 0.4657
CuUTC 0.0646 0.0947 0.1002 0.1099 0.1417 0.201 0.2585 0.2876 0.4856 551/449 0.0646 0.093 0.104 0.1372 0.1907 0.2482 0.2887 0.3145 0.4856
CUTCS 0.0307 0.0751 0.0933 0.1056 0.1306 0.1873 0.247 0.274 0.4657 551/449 0.0307 0.0597 0.0719 0.1084 0.1697 0.2257 0.2736 0.2952 0.4657
CART 0.0055 0.057 0.0959 0.154 0.219 0.2819 0.3381 0.372 0.5858 92/908 0.0055 0.0541 0.0917 0.1517 0.2264 0.2883 0.3406 0.3757 0.5858
CARTS 0.0004 0.0531 0.0845 0.1418 0.2016 0.2577 0.3145 0.3638 1.0129 92/908 0.0004 0.0497 0.0749 0.135 0.2039 0.261 0.3199 0.3671 1.0129
CARTC 0.0646 0.095 0.101 0.1102 0.1432 0.2074 0.2651 0.3007 0.5858 551/449 0.0646 0.0947 0.1076 0.1401 0.1985 0.2538 0.3013 0.324 0.5858
CARTCS 0.0307 0.0764 0.0939 0.1061 0.1323 0.1893 0.2558 0.2799 0.9335 551/449 0.0307 0.0597 0.0735 0.11 0.1752 0.2355 0.2829 0.3072 0.9335
RCS 0.0877 0.0981 0.102 0.109 0.1282 0.1724 0.219 0.2542 0.4393 888/112 0.1408 0.1657 0.1807 0.1961 0.2221 0.2575 0.2981 0.3086 0.4393
FpP 0.0877 0.0978 0.1014 0.1078 0.1241 0.1549 0.192 0.2218 0.4102 989/11 0.1582 0.2 0.2418 0.2591 0.2665 0.2819 0.3099 0.3154 0.3208
bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.0911 0.0984 0.1007 0.1058 0.1199 0.1469 0.1816 0.2159 0.2672 100/0 100
LINQ 0.0905 0.1 0.1021 0.1081 0.1248 0.1593 0.1957 0.2172 0.2701 91/9 0 0.1283 0.134 0.1398 0.1524 0.1809 0.2126 0.2245 0.2416 0.2586
FIX 0.0113 0.0189 0.0276 0.0466 0.076 0.1301 0.1813 0.2209 0.2563 32/68 0 0.0113 0.0134 0.0236 0.0344 0.0646 0.1272 0.1752 0.1985 0.2563
cuT 0.041 0.0566 0.0668 0.0984 0.132 0.1659 0.1973 0.2172 0.26 6/94 0 0.041 0.0548 0.0659 0.0931 0.1305 0.1562 0.1914 0.1992 0.2531
CuUTSs 0.0379 0.06 0.0791 0.1042 0.1412 0.1732 0.2026 0.2216 0.257 6/94 (4] 0.0379 0.0588 0.0757 0.1016 0.1358 0.1642 0.1924 0.2027 0.2537
CuTC 0.0462 0.0642 0.0783 0.119 0.1684 0.215 0.2415 0.2452 0.2601 52/48 0 0.0462 0.0543 0.0637 0.0892 0.1185 0.1416 0.1697 0.1905 0.2048
CuUTCS 0.0342 0.0744 0.0976 0.1336 0.1807 0.2235 0.2467 0.2495 0.2567 52/48 (4] 0.0342 0.0655 0.0728 0.0997 0.1323 0.1577 0.1823 0.1959 0.2158
CART 0.0892 0.1118 0.1245 0.1611 0.2053 0.2426 0.2786 0.2931 0.4734 6/94 (4] 0.0892 0.1111 0.1221 0.1596 0.204 0.2431 0.2795 0.2945 0.4734
RCS 0.0607 0.0732 0.0803 0.0977 0.1305 0.1721 0.2229 0.2374 0.2994 87/13 0 0.138 0.142 0.1456 0.1592 0.2136 0.2373 0.2854 0.298 0.2994
FpP 0.0894 0.0981 0.1002 0.1064 0.1209 0.1556 0.1897 0.2336 0.2685 97/3 9 0.1629 0.1699 0.177 0.198 0.233 0.2455 0.2529 0.2554 0.2579
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Table A 3.6: Empirical distribution in terms of quantiles of the MSE for the standard and bagged risk functions in the simulated

original data

cutpoint model (standardisation to zero mean log relative risk) and results of model selection

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max
LIN 0.0121 0.0143 0.0149 0.0166 0.0203 0.0292 0.0444 0.0566 0.2431 1000/0
FIXALL 0 0 0.0002 0.0011 0.0046 0.0141 0.0285 0.0444 0.2359 0/1000
LINQ 0.0121 0.0143 0.0151 0.0167 0.021 0.0321 0.056 0.0717 0.2431 944/56 0.0524 0.0587 0.0607 0.0671 0.0769 0.1028 0.1203 0.1426 0.1825
FIX 0 0 0.0002 0.0011 0.0093 0.0221 0.0369 0.0515 0.2359 328/672 0 0 0.0001 0.0005 0.0022 0.0097 0.0259 0.0438 0.2359
cuT 0 0.0033 0.0066 0.0176 0.0378 0.0686 0.1014 0.134 0.2849 92/908 0 0.003 0.0059 0.0161 0.0383 0.0715 0.1045 0.1368 0.2849
CuUTSs 0 0.0033 0.0059 0.0136 0.0323 0.0588 0.0874 0.1146 0.2654 92/908 0 0.003 0.0055 0.0121 0.0316 0.0599 0.0898 0.1199 0.2654
CuUTC 0.0048 0.0138 0.0149 0.0174 0.0262 0.0558 0.0955 0.1172 0.2849 551/449 0.0048 0.0108 0.0167 0.0292 0.0566 0.0901 0.1194 0.1453 0.2849
CUTCS 0.0012 0.0111 0.014 0.0167 0.024 0.0473 0.0823 0.1027 0.2654 551/449 0.0012 0.0057 0.0104 0.0208 0.0456 0.0774 0.1046 0.1295 0.2654
CART 0 0.0102 0.0199 0.0419 0.0815 0.1406 0.1963 0.2361 0.4686 92/908 0 0.0093 0.0195 0.0509 0.0911 0.1455 0.2018 0.2403 0.4686
CARTS 0 0.0074 0.0158 0.0345 0.0625 0.1086 0.1698 0.2249 1.5306 92/908 0 0.007 0.0143 0.0371 0.0673 0.1141 0.1772 0.2303 1.5306
CARTC 0.0048 0.0139 0.015 0.0175 0.0267 0.0591 0.1055 0.1385 0.4218 551/449 0.0048 0.0113 0.0177 0.0311 0.0609 0.1 0.1451 0.1814 0.4218
CARTCS 0.0012 0.0117 0.0142 0.0168 0.0245 0.0502 0.0894 0.1215 1.5306 551/449 0.0012 0.0066 0.0112 0.0229 0.0499 0.0841 0.1223 0.1586 1.5306
RCS 0.0121 0.0144 0.0151 0.0169 0.0218 0.036 0.0649 0.0859 0.2431 888/112 0.0323 0.0396 0.0462 0.0592 0.0764 0.0961 0.1181 0.1597 0.2324
FpP 0.0121 0.0143 0.015 0.0166 0.0204 0.0298 0.0461 0.061 0.2431 989/11 0.0416 0.0695 0.0975 0.1007 0.1152 0.1295 0.1423 0.156 0.1697
bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.012 0.014 0.0147 0.0165 0.0192 0.0288 0.0461 0.0546 0.0903 100/0 100
LINQ 0.0119 0.0148 0.0159 0.0178 0.0215 0.0364 0.054 0.0718 0.091 91/9 0 0.034 0.0342 0.0344 0.042 0.0499 0.0763 0.0806 0.0858 0.091
FIX 0.0002 0.0005 0.001 0.0029 0.0067 0.0183 0.0333 0.0489 0.0664 32/68 0 0.0002 0.0002 0.0006 0.0016 0.0048 0.0164 0.0308 0.0396 0.0664
cuT 0.0039 0.0073 0.0089 0.0127 0.0228 0.0332 0.0438 0.0543 0.0687 6/94 0 0.0039 0.0073 0.0086 0.0126 0.0215 0.0305 0.039 0.0517 0.0665
CuUTSs 0.0049 0.0083 0.0096 0.0147 0.0246 0.0358 0.0459 0.0545 0.0668 6/94 (4] 0.0049 0.0081 0.0094 0.0138 0.0236 0.0313 0.0409 0.05 0.0653
CcuTC 0.0053 0.0085 0.0102 0.0183 0.0326 0.0493 0.0593 0.0619 0.0683 52/48 0 0.0053 0.0073 0.0085 0.0117 0.0177 0.0244 0.0314 0.0471 0.0655
CuUTCSs 0.0049 0.01 0.0131 0.0221 0.0364 0.0512 0.0612 0.0639 0.0663 52/48 (4] 0.0049 0.009 0.0097 0.0137 0.021 0.0272 0.0364 0.0481 0.0605
CART 0.0116 0.0206 0.0224 0.0422 0.0632 0.0944 0.1182 0.1329 0.2932 6/94 (4] 0.0116 0.0203 0.0219 0.0419 0.0632 0.0976 0.1223 0.1337 0.2932
RCS 0.0072 0.0105 0.0111 0.0138 0.0227 0.0412 0.066 0.0746 0.1277 87/13 0 0.026 0.0288 0.0323 0.0433 0.06 0.0692 0.1075 0.1189 0.1277
FpP 0.0117 0.0142 0.015 0.0167 0.02 0.0331 0.0488 0.068 0.0958 97/3 9 0.0439 0.0486 0.0532 0.0672 0.0906 0.0932 0.0948 0.0953 0.0958
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Table A 3.7: The effect of bagging on the estimated error in the simulated cutpoint model:

Comparing the MAE / M SE obtained in the original data to the corresponding errors of the bagged risk function

risk linear nonlinear all (R=1000) linear nonlinear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller I\TA\E for quantiles of smaller I\m for quantiles of smaller I\TA\E for quantiles
Bpagg h 0.25 0.5 0.75 Bhagg h 0.25 0.5 0.75 hpage h 0.25 0.5 0.75
LIN 100 0 49(49) 51( 51 ) 97 100 103 C ) «C ) C ) D)
LINQ 91 9 42(42) 58( 58 ) 97 101 106 34(37.4)  57(62.6) 98 102 107 8(88.9) 1(11.1) 80 83 92
FIX 32 68 55(55) 45( 45 ) 80 97 111 29(90.6) 3(9.4) 64 79 89 26(38.2) 42(61.8) 94 106 135
cuT 6 94 58(58) 42( 42 ) 57 90 136 2 (33.3) 4 (66.7) 100 109 126 56(59.6) 38(40.4) 56 84 138
cuUTS 6 94 48(48)  52( 52 ) 65 103 186 2(33.3)  4(66.7) 99 111 129 46(48.9) 48(51.1) 65 101 192
cuTC 52 48 39(39) 61( 61 ) 67 130 181 3(5.8) 49(94.2) 146 178 200 36( 75 ) 12( 25) 43 66 94
CUTCS 52 48 34(34) 66( 66 ) 83 153 199 3(5.8) 49(94.2) 154 186 208 31(64.6) 17(35.4) 60 81 137
CART 6 94 57(57)  43( 43 ) 77 94 133 3(50) 3(50) 98 103 132 54(57.4) 40(42.6) 76 91 132
RCS 87 13 61(61) 39( 39 ) 82 92 104 49(56.3) 38(43.7) 84 95 106 12(92.3) 1(7.7) 80 83 89
FP 97 3 51(51) 49( 49 ) 95 100 103 48(49.5) 49(50.5) 96 100 103 3(100) 0( 0) 72 83 86
risk linear nonlinear all (R=1000) linear linear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller Am for quantiles of smaller I\TS\E for quantiles of smaller I\TS\E for quantiles
Bpagg h 0.25 0.5 0.75 Bpagg h 0.25 0.5 0.75 Bbagg h 0.25 0.5 0.75
LIN 100 0 51(51) 49( 49 ) 96 100 105 ) C ) C ) C
LINQ 91 9 38(38) 62( 62 ) 97 103 116 30( 33) 61( 67 ) 99 105 118 8 (88.9) 1(11.1) 57 74 81
FIX 32 68 55(55) 45( 45 ) 60 95 127 31(96.9) 1(3.1) 40 56 78 24(35.3)  44(64.7) 90 115 204
cuT 6 94 71(71)  29( 29 ) 34 60 114 2(33.3) 4(66.7) 101 118 145 69(73.4) 25(26.6) 32 57 103
CcuUTSs 6 94 60(60) 40( 40 ) 46 86 148 2 (33.3) 4 (66.7) 100 122 152 58(61.7) 36(38.3) 43 78 146
CUTC 52 48 43(43)  57( 57 ) 42 136 244 3(5.8) 49(94.2) 187 239 277 40(83.3) 8(16.7) 23 41 70
CUTCS 52 48 37(37) 63(63) 61 171 274 3(5.8) 49(94.2) 198 261 305 34(70.8) 14(29.2) 33 54 127
CART 6 94 58(58) 42( 42 ) 56 89 155 1(16.7) 5(83.3) 107 134 183 57(60.6) 37(39.4) 55 81 153
RCS 87 13 60(60) 40( 40 ) 72 91 112 48(55.2)  39(44.8) 74 94 116 12(92.3)  1(7.7) 64 68 78
FP 97 3 52(52) 48( 48 ) 95 99 110 49(50.5) 48(49.5) 95 100 110 3(100) 0( 0) 56 67 74
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Table A 3.8: Empirical quantiles of the ratios 100* ( MSEiog0(+))/ M SEzero mean ) and 100% ( MAEy(xt+))/ M AEzero mean )

for the simulated cutpoint model

risk function

—
Empirical quantiles of the ratio for MSE (R=1000)

number of

Empirical quantiles (only nonlinear replications)

S(tx) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 100 100 100.1 100.5 101.2 103.5 109.5 0
0.75 100 100 100.2 100.6 101.6 103.5 107.9 0
0.90 100 100 100.4 101 102 103.9 114.3 0
LINQ 0.50 100 100 100.1 100.5 101.2 103.4 109.5 56 100 100 100.1 100.3 100.9 102.4 104.3
0.75 100 100 100.1 100.6 101.6 103.4 107.9 56 100 100 100.1 100.3 101.3 102.4 105
0.90 100 100 100.3 101 102 104 114.3 56 100 100 100.1 100.8 102 105.8 112.2
FIX 0.50 100 100 100.1 100.6 101.6 103.3 109.1 672 100 100 100.1 100.6 101.6 103.3 107.5
0.75 100 100.2 101.3 102.8 104.4 107.1 112 672 100.2 101.1 102.4 103.8 105.1 107.7 112
0.90 100 100.6 102.2 104.7 106.5 109.3 116.3 672 102.1 103.3 104.7 105.9 107.2 109.7 116.3
cuT 0.50 100 100 100.1 100.5 101.2 103.2 110 908 100 100 100.1 100.4 101.2 103.2 110
0.75 100 100 100.2 100.8 102.4 105.5 111.1 908 100 100 100.1 100.7 102.3 105.6 111.1
0.90 100 100 100.3 101.4 103.8 107.8 115.1 908 100 100 100.2 101.2 104.1 107.9 115.1
CART 0.50 100 100 100.1 100.6 101.8 105.5 117.2 908 100 100 100.1 100.6 101.8 105.7 117.2
0.75 100 100 100.2 100.8 102.2 104.8 110.8 908 100 100 100.2 100.8 102.2 104.9 110.8
0.90 100 100 100.6 102.1 104.6 109.9 137 908 100 100 100.6 102.2 105 110.2 137
RCS 0.50 100 100 100.1 100.5 101.2 103.5 109.5 112 100 100 100 100.3 100.8 102 102.8
0.75 100 100 100.1 100.6 101.6 103.5 107.9 112 100 100 100.2 100.9 102.1 105.3 108.4
0.90 100 100 100.4 101 102 104 114.3 112 100 100.1 100.7 102.3 104 107.7 113.1
FP 0.50 100 100 100.1 100.5 101.2 103.5 109.5 11 100 100 100.3 100.8 101.7 102.5 102.8
0.75 100 100 100.1 100.6 101.6 103.5 107.9 11 100 100 100.1 100.4 101 102.2 102.2
0.90 100 100 100.4 101 102 104 114.3 11 100.1 100.2 100.9 102 103.3 105.2 106.1
—
risk function Empirical quantiles of the ratio for MAE (R=1000) number of Empirical quantiles (only nonlinear replications)
S(tx) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 95.4 99.3 99.9 100.1 100.6 102.1 105.7 0
0.75 95 99.3 99.9 100.1 100.7 102.1 104.8 0
0.90 96.5 99 99.9 100.2 100.9 102.5 107.8 0
LINQ 0.50 86.5 99.1 99.9 100.1 100.6 102.1 107.2 56 86.5 96.6 98.3 99.9 100.6 102.2 107.2
0.75 92.6 99.2 99.9 100.1 100.7 102.4 111.7 56 92.6 97.4 100 100.5 102.6 105.7 111.7
0.90 91.1 98.9 99.9 100.2 100.9 103 128.9 56 91.1 97.3 100 100.7 103.8 111.4 128.9
FIX 0.50 94 98.4 99.6 100 100.5 101.8 107.2 672 94 98.2 99.5 100 100.3 101.4 107.2
0.75 93 97.3 99 100 101 102.9 108.9 672 93 96.9 98.6 100 101 103.1 108.9
0.90 92.7 96.6 98.8 100.1 101.3 103.4 109.1 672 92.7 96.2 98.2 100 101.4 103.8 109.1
cuT 0.50 57.2 93.1 98.9 100 101.6 112.2 152.6 908 57.2 92.4 98.8 100 101.8 113.1 152.6
0.75 57.4 93.8 98.4 100 101.9 108.2 124.3 908 57.4 93.6 98.1 100 102 109 124.3
0.90 74.1 94.2 97.9 100 102.4 109.6 132.1 908 74.1 93.8 97.6 100 102.6 109.7 132.1
CART 0.50 54.3 85.4 97.1 99.9 101.4 109.2 152.5 908 54.3 84.8 96.6 99.8 101.6 109.5 152.5
0.75 57.4 92.7 98.5 100.6 103.7 113.5 134.3 908 57.4 92.4 98.2 100.7 104.3 114.5 134.3
0.90 75.8 92.1 98.4 101.4 107 129.4 180.9 908 75.8 91.8 98.2 102 108.4 130.1 180.9
RCS 0.50 95.2 99.2 99.9 100.1 100.5 102.1 105.7 112 95.4 98.7 99.8 100.1 100.5 102.5 108.7
0.75 95 99.2 99.9 100.1 100.7 102.1 104.8 112 95.9 98.9 99.8 100.3 101 104.2 106
0.90 96.5 98.9 99.9 100.2 100.9 102.7 107.8 112 97.1 98.8 99.9 100.6 101.9 104.6 114.2
FP 0.50 95.2 99.2 99.9 100.1 100.5 102.1 105.7 11 95.2 95.8 97 98.6 100 101.1 101.7
0.75 95 99.2 99.9 100.1 100.7 102.1 104.8 11 97.3 98.1 99.5 100.9 102.1 103.4 104.2
0.90 96.5 98.9 99.9 100.2 100.9 102.7 107.8 11 97.7 98 101.5 103.4 105.2 106.6 106.9
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Table A 3.9: Empirical distribution in terms of quantileS of the MAE for the standard and bagged risk fynctions in the simulated
linear model (standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.0001 0.0054 0.0121 0.0286 0.0597 0.1043 0.1546 0.1869 0.3188 1000/0
LINQ 0.0001 0.006 0.0134 0.0306 0.0636 0.1153 0.186 0.2132 0.3314 939/61 0.1708 0.1791 0.1831 0.1968 0.2159 0.2409 0.2779 0.2964 0.3314
FIX 0.0001 0.0059 0.013 0.0311 0.0664 0.1137 0.1684 0.1923 0.323 785/215 0.077 0.0865 0.0913 0.1035 0.1365 0.1746 0.2063 0.2452 0.323
cuT 0.0004 0.035 0.0525 0.1042 0.1486 0.1922 0.238 0.2747 0.3957 311/689 0.0887 0.1072 0.1179 0.1415 0.167 0.2125 0.2579 0.2904 0.3957
CuTs 0.0004 0.035 0.0525 0.0865 0.1262 0.1716 0.2146 0.2474 0.3716 311/689 0.0606 0.077 0.0871 0.1164 0.1427 0.1883 0.2308 0.2633 0.3716
CuTC 0.0001 0.0059 0.0126 0.0309 0.0639 0.1766 0.2287 0.2669 0.3957 781/219 0.1764 0.1904 0.1949 0.2085 0.2259 0.2587 0.2983 0.3116 0.3957
CUTCS 0.0001 0.0059 0.0126 0.0309 0.0639 0.1626 0.2086 0.2433 0.3716 781/219 0.1503 0.1643 0.1712 0.1844 0.1976 0.2361 0.2736 0.2859 0.3716
CART 0.0004 0.035 0.0525 0.1068 0.166 0.243 0.3076 0.3537 0.6016 311/689 0.0887 0.1191 0.1346 0.157 0.2076 0.27 0.3281 0.3695 0.6016
CARTS 0.0004 0.035 0.0525 0.0947 0.1398 0.2017 0.2668 0.3288 1.145 311/689 0.0617 0.0855 0.1018 0.1286 0.1691 0.2279 0.2949 0.3568 1.145
CARTC 0.0001 0.0059 0.0126 0.0309 0.0639 0.1766 0.2337 0.272 0.6016 781/219 0.1764 0.1889 0.196 0.2089 0.2281 0.2694 0.3052 0.3459 0.6016
CARTCS 0.0001 0.0059 0.0126 0.0309 0.0639 0.1604 0.2116 0.2509 0.6275 781/219 0.1325 0.1606 0.166 0.1837 0.1985 0.2429 0.2807 0.318 0.6275
RCS 0.0001 0.0059 0.0126 0.0306 0.0634 0.1137 0.1891 0.2431 0.3639 941/59 0.2019 0.2151 0.2291 0.2385 0.268 0.291 0.3308 0.3464 0.3639
FP 0.0001 0.0057 0.0121 0.0287 0.0601 0.1055 0.1624 0.1913 0.3603 991/9 0.2236 0.2371 0.2506 0.2704 0.3074 0.3236 0.3527 0.3565 0.3603
bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.0025 0.009 0.0135 0.0272 0.0513 0.1083 0.1722 0.1978 0.2405 100/0 100
LINQ 0.008 0.0157 0.0209 0.0406 0.0775 0.1259 0.1847 0.2218 0.2529 94/6 0 0.1402 0.1534 0.1666 0.1997 0.2206 0.2444 0.2525 0.2527 0.2529
FIX 0.0103 0.0176 0.0238 0.0352 0.0593 0.1237 0.1823 0.2109 0.294 81/19 0 0.0846 0.1148 0.1183 0.1311 0.1565 0.1898 0.1997 0.2185 0.294
cuT 0.026 0.0453 0.0471 0.058 0.0792 0.0979 0.1266 0.1457 0.1883 28/72 0 0.026 0.0376 0.0467 0.0541 0.0753 0.0889 0.1085 0.1306 0.1883
CcuTs 0.0234 0.0416 0.0485 0.0618 0.0809 0.0952 0.1236 0.1429 0.1764 28/72 0 0.0234 0.0398 0.0467 0.0532 0.0742 0.0874 0.1063 0.1216 0.1764
CUTC 0.0298 0.05 0.0549 0.0796 0.1046 0.1185 0.1263 0.1312 0.1787 92/18 0 0.0314 0.0373 0.0423 0.0506 0.0634 0.0808 0.1171 0.1302 0.1787
CUTCS 0.0387 0.0495 0.0566 0.085 0.1076 0.1206 0.1268 0.1351 0.166 92/18 0 0.0387 0.0424 0.0436 0.0498 0.0617 0.088 0.1078 0.1274 0.166
CART 0.0527 0.0948 0.1014 0.1282 0.1714 0.2138 0.2645 0.2793 0.4029 28/72 0 0.066 0.0935 0.1053 0.1353 0.1803 0.2254 0.2736 0.2936 0.4029
RCS 0.0129 0.0276 0.0385 0.0594 0.0943 0.1511 0.2184 0.2351 0.2694 93/7 0 0.2151 0.216 0.2169 0.2193 0.2247 0.2423 0.2565 0.2629 0.2694
FP 0.0034 0.0151 0.0204 0.0341 0.0718 0.122 0.1797 0.2159 0.2411 99/1 14 0.2157 0.2157 0.2157 0.2157 0.2157 0.2157 0.2157 0.2157 0.2157
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Table A 3.10: Empirical distribution in terms of quantiles of the MSE for the standard and bagged risk functions in the simulated

linear model (standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0 0 0.0002 0.0011 0.0047 0.0146 0.0325 0.0458 0.126 1000/0
LINQ 0 0 0.0002 0.0012 0.0054 0.0178 0.0465 0.062 0.1595 939/61 0.0419 0.0462 0.0467 0.0532 0.062 0.0834 0.1186 0.1322 0.1595
FIX 0 (4] 0.0002 0.0013 0.0059 0.0173 0.0357 0.0459 0.126 785/215 0.0091 0.0115 0.0124 0.0154 0.0237 0.0359 0.0482 0.0655 0.1091
cuT 0 0.0016 0.0037 0.0147 0.0305 0.0538 0.0846 0.1125 0.222 311/689 0.0115 0.0158 0.0184 0.0284 0.0415 0.066 0.101 0.1234 0.222
CuUTs 0 0.0016 0.0037 0.0103 0.0218 0.0422 0.0676 0.0919 0.201 311/689 0.0059 0.0087 0.0104 0.0178 0.029 0.0515 0.0807 0.1034 0.201
CuTC 0 (4] 0.0002 0.0013 0.0054 0.0404 0.0748 0.0983 0.222 781/219 0.0402 0.0477 0.0528 0.0609 0.0724 0.095 0.1248 0.1375 0.222
CUTCS 0 0 0.0002 0.0013 0.0054 0.0347 0.0608 0.084 0.201 781/219 0.0287 0.035 0.0396 0.0473 0.0566 0.0782 0.1073 0.1182 0.201
CART 0 0.0016 0.0037 0.0157 0.0434 0.1069 0.1654 0.2057 0.5778 311/689 0.0115 0.0191 0.0252 0.0388 0.0745 0.1338 0.1847 0.2214 0.5778
CARTS 0 0.0016 0.0037 0.0123 0.0285 0.069 0.1281 0.1728 1.3282 311/689 0.006 0.0106 0.0141 0.023 0.0507 0.0967 0.1557 0.1941 1.3282
CARTC 0 0 0.0002 0.0013 0.0054 0.0404 0.0786 0.1075 0.5778 781/219 0.0402 0.0484 0.0526 0.0626 0.0744 0.1048 0.1394 0.1815 0.5778
CARTCS 0 0 0.0002 0.0013 0.0054 0.0343 0.0636 0.09 0.6327 781/219 0.024 0.0346 0.0375 0.0459 0.0585 0.0873 0.1191 0.1516 0.6327
RCS 0 0 0.0002 0.0012 0.0054 0.0174 0.0481 0.0811 0.1856 941/ 59 0.056 0.071 0.0727 0.0803 0.0972 0.1236 0.1477 0.1615 0.1856
FP 0 0 0.0002 0.0011 0.0048 0.0148 0.035 0.0484 0.1794 991/9 0.0741 0.085 0.0959 0.1032 0.1325 0.1521 0.1734 0.1764 0.1794

bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0 0.0001 0.0002 0.001 0.0035 0.015 0.0393 0.05 0.0751 100/0 100
LINQ 0.0001 0.0003 0.0006 0.0023 0.0088 0.0219 0.0471 0.0701 0.1048 94/6 0 0.0268 0.0334 0.0401 0.055 0.0653 0.0843 0.0968 0.1008 0.1048
FIX 0.0002 0.0004 0.0008 0.0016 0.0044 0.0181 0.0402 0.0488 0.0912 81/19 0 0.01 0.0145 0.0156 0.0184 0.026 0.0382 0.0451 0.0525 0.0912
cuT 0.001 0.0031 0.0034 0.005 0.0083 0.0126 0.0241 0.0311 0.0621 28/72 0 0.001 0.0022 0.0032 0.0043 0.0077 0.0103 0.0168 0.0279 0.0621
CuUTs 0.0008 0.0024 0.0034 0.0054 0.009 0.0123 0.0222 0.0293 0.0535 28/72 0 0.0008 0.0023 0.0033 0.0043 0.0078 0.01 0.0148 0.0233 0.0535
CUTC 0.0013 0.0032 0.0046 0.0089 0.0146 0.0184 0.0216 0.0231 0.0549 82/18 0 0.0014 0.002 0.0024 0.0034 0.0055 0.0092 0.0184 0.027 0.0549
CUTCS 0.0024 0.0033 0.0046 0.0095 0.0157 0.019 0.0218 0.0238 0.0463 82/18 0 0.0025 0.0027 0.0029 0.0033 0.0054 0.0107 0.015 0.0245 0.0463
CART 0.0049 0.0141 0.0164 0.0257 0.043 0.0715 0.0963 0.1134 0.2462 28/72 0 0.0077 0.015 0.0169 0.0289 0.0508 0.0815 0.1073 0.1236 0.2462
RCS 0.0002 0.001 0.0024 0.0051 0.0149 0.0349 0.0583 0.0707 0.11 93/7 0 0.0578 0.0591 0.0603 0.0643 0.0704 0.0777 0.0914 0.1007 0.11
FP 0 0.0003 0.0007 0.0015 0.0074 0.0201 0.0442 0.0648 0.0772 99/1 14 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677 0.0677
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Table A 3.1: The effect of bagging on the estimated error in the simulated linear model:

Comparing the M/EE/ MSE obtained in the original data to the corresponding errors of the bagged risk function

risk linear nonlinear all (R=1000) linear nonlinear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller I\TA\E for quantiles of smaller I\m for quantiles of smaller I\TA\E for quantiles
Bpagg h 0.25 0.5 0.75 Bhagg h 0.25 0.5 0.75 hpage h 0.25 0.5 0.75
LIN 100 0 51(51) 49( 49 ) 88 100 116 C ) «C ) C ) D)
LINQ 94 6 34(34) 66( 66 ) 95 108 153 28(29.8)  66(70.2) 97 109 156 6(100) O0( 0 ) 93 94 96
FIX 81 19 38(38) 62( 62 ) 91 108 131 33(40.7) 48(59.3) 90 108 140 5(26.3) 14(73.7) 100 105 113
cuT 28 72 85(85) 15( 15 ) 38 58 82 14( 50 ) 14( 50 ) 83 100 215 71(98.6) 1(1.4) 34 47 60
CUTS 28 72 82(82) 18( 18 ) 43 67 89 14( 50 ) 14( 50 ) 85 102 229 68(94.4) 4(5.6) 37 61 70
cuTC 82 18 36(36) 64( 64 ) 67 157 365 18( 22 ) 64( 78 ) 117 226 440 18(100) 0( 0) 21 29 35
CUTCS 82 18 36(36) 64( 64 ) 69 160 390 18( 22 ) 64( 78 ) 118 234 465 18(100) 0( 0) 23 29 40
CART 28 72 54(54) 46( 46 ) 79 96 119 2(7.1) 26(92.9) 108 162 353 52(72.2) 20(27.8) 74 87 102
RCS 93 7 25(25) 75( 75 ) 100 126 210 18(19.4) 75(80.6) 105 134 225 7 (100) 0( 0) 88 90 92
FP 99 1 38(38) 62( 62 ) 93 106 142 37(37.4) 62(62.6) 94 107 142 1(100) 0( 0) 80 80 80
risk linear nonlinear all (R=1000) linear linear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller Am for quantiles of smaller I\TS\E for quantiles of smaller I\TS\E for quantiles
Bpagg h 0.25 0.5 0.75 Bpagg h 0.25 0.5 0.75 Bbagg h 0.25 0.5 0.75
LIN 100 0 51(51)  49( 49 ) 77 100 135 ) C ) C ) C
LINQ 91 6 32(32) 68(68) 93 118 244 26(27.7)  68(72.3) 96 122 271 6(100) 0( 0 ) 87 90 91
FIX 81 19 45(45) 55( 55 ) 84 108 163 36(44.4) 45(55.6) 83 110 207 9 (47.4) 10(52.6) 94 105 113
cuT 28 72 84(84) 16( 16 ) 15 30 69 12(42.9)  16(57.1) 75 124 514 72(100)  0( 0 ) 11 20 32
CuUTS 28 72 80(80) 20( 20 ) 19 43 90 12(42.9)  16(57.1) 76 123 557 68(94.4) 4(5.6) 14 32 46
CUTC 82 18 36(36) 64( 64 ) 44 256 1439 18(22) 64(78) 143 535 1906 18(100) 0( 0 ) 5 9 13
CUTCS 82 18 36(36)  64( 64 ) 47 262 1511 18( 22 ) 64(78) 146 552 2121 18(100) 0( 0 ) 6 10 16
CART 28 72 52(52)  48( 48 ) 56 95 151 1(3.6) 27(96.4) 135 323 1544 51(70.8) 21(29.2) 49 78 111
RCS 93 7 16(16) 84( 84 ) 109 165 511 9(9.7) 84(90.3) 117 202 583 7 (100) 0( 0) 79 81 83
FP 99 1 37(37) 63( 63 ) 89 113 212 36(36.4) 63(63.6) 90 115 212 1(100) 0( 0) 64 64 64
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Table A 3.12: Empirical quantiles of the ratios 100% ( MSE\og(xg(t+))/ M SEzero mean ) and 100* ( M AE\og(rg(t+))/ M AEzero mean )
for the simulated linear model

risk function Empirical quantiles of the ratio for I\TS\E (R=1000) number of Empirical quantiles (only nonlinear replications)
S’(t*) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 100 100 100.1 100.4 101.1 102.7 106.6 0
0.75 100 100 100.5 101 102 103.7 108.2 0
0.90 100 100.2 100.8 101.6 102.7 104.8 109.3 0
LINQ 0.50 100 100 100.1 100.4 101.1 102.8 106.6 61 100 100 100.1 100.4 100.9 103.2 104.8
0.75 100 100 100.4 101 101.9 103.6 108.2 61 100 100 100.1 100.2 100.8 102 102.7
0.90 100 100.2 100.8 101.6 102.6 104.8 109.3 61 100 100 100.4 101 101.8 104.4 108.7
FIX 0.50 100 100 100.1 100.4 101.1 102.8 108 215 100 100 100.1 100.3 101 103.1 108
0.75 100 100 100.4 100.9 101.8 103.4 108.2 215 100 100 100.4 101.1 102 103.7 107.6
0.90 100 100.2 100.8 101.4 102.3 103.9 107.3 215 100.1 100.4 101 101.6 102.7 104.5 107.3
cuT 0.50 100 100 100.1 100.3 101 102.8 118.8 689 100 100 100.1 100.3 100.9 102.8 118.8
0.75 100 100 100.2 100.6 101.5 103.3 108.7 689 100 100 100.2 100.6 101.6 103.4 108.7
0.90 100 100.1 100.6 101.2 102.2 104.9 113 689 100 100.1 100.7 101.5 102.8 105.7 113
CART 0.50 100 100 100.1 100.5 101.4 104.2 118.8 689 100 100 100.1 100.5 101.5 104.9 118.8
0.75 100 100 100.2 100.7 101.6 103.5 108.2 689 100 100 100.2 100.7 101.7 103.8 108.1
0.90 100 100.1 100.7 101.4 102.9 107 119.8 689 100 100.2 101 102 103.9 108.5 119.8
RCS 0.50 100 100 100.1 100.4 101.1 102.8 106.6 59 100 100 100.1 100.4 101.3 104.4 107.1
0.75 100 100 100.4 101 101.9 103.7 108.2 59 100 100 100.3 100.6 101.1 102.2 103.8
0.90 100 100.2 100.9 101.6 102.7 104.8 109.3 59 100 100.2 100.9 101.6 102.5 105.1 106.8
FP 0.50 100 100 100.1 100.4 101.1 102.8 106.6 9 100 100 100.2 100.9 103.3 105.8 106.5
0.75 100 100 100.4 101 101.9 103.7 108.2 9 100 100 100.1 100.3 100.4 100.9 101
0.90 100 100.2 100.9 101.6 102.7 104.8 109.3 9 100.1 100.2 100.7 101.3 101.9 102.2 102.4
risk function Empirical quantiles of the ratio for l\m (R=1000) number of Empirical quantiles (only nonlinear replications)
S(tx) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 98.6 99.6 99.9 100.1 100.5 101.4 104.2 0
0.75 98.2 99.3 99.9 100.3 100.8 102 105 0
0.90 98.1 99.3 100 100.4 101.1 102.5 104.8 0
LINQ 0.50 96.2 99.4 99.9 100.1 100.5 101.6 107.9 61 96.2 97.1 98.7 99.7 100.7 102 107.9
0.75 95.6 99.2 99.9 100.3 100.8 102.1 105 61 95.6 98.1 99.1 99.7 100.7 103.1 104.6
0.90 95.2 99.2 99.9 100.4 101.2 102.7 112.1 61 95.2 97.1 98.7 100.2 101.7 105 112.1
FIX 0.50 97.9 99.4 99.9 100.1 100.5 101.5 104.2 215 97.9 99.1 99.9 100.1 100.5 101.8 104.1
0.75 96.3 99.1 99.9 100.2 100.7 102 105.3 215 96.3 98.4 99.7 100.1 100.7 102 105.3
0.90 94.7 99 99.9 100.4 100.9 102.2 105.4 215 94.7 98.1 99.5 100.2 100.9 102.4 105.4
cuT 0.50 87.2 96.7 99.5 100 100.5 102.1 114.3 689 87.2 96 98.9 99.8 100.5 102.2 114.3
0.75 90.2 96.7 99.6 100.1 101 105.4 115 689 90.2 96 99.1 100 101.5 106.3 115
0.90 88.5 96.1 99.5 100.3 101.6 109.1 135.2 689 88.5 95.2 99 100.5 103 111.2 135.2
CART 0.50 75 93.6 98.9 100 100.4 102.2 114.1 689 75 91.6 97.9 99.7 100.4 102.6 114.1
0.75 86.8 96.4 99.7 100.2 101.8 107.9 126.5 689 86.8 95.9 99.3 100.4 103 109.8 126.5
0.90 85.8 95.9 99.8 100.6 104.3 116.3 165.4 689 85.8 94.7 99.5 101.7 107.1 119.9 165.4
RCS 0.50 96.9 99.5 99.9 100.1 100.5 101.4 106.6 59 96.5 98.6 99.7 100 100.9 103.2 106.9
0.75 98.2 99.3 99.9 100.3 100.8 102 105 59 97.9 98.4 99.6 100 100.6 102.2 105.5
0.90 97.2 99.3 100 100.4 101.1 102.5 104.8 59 96.6 97.8 99.6 100.3 101.4 103.2 111.2
FP 0.50 96.9 99.5 99.9 100.1 100.5 101.4 106.6 9 96.9 97 97.7 98.9 100.8 105.1 106.6
0.75 98.2 99.3 99.9 100.3 100.8 102 105 9 98.8 98.8 98.9 99.4 100.4 102.8 103
0.90 97.2 99.3 100 100.4 101.1 102.5 104.8 9 97.2 97.4 98.1 100.8 102.6 104.4 104.4
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Table A 3.13: Empirical distribution in terms of quantiles of the MAE for the standard and bagged risk f.unctions in the simulated
V-type model (standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.1049 0.115 0.118 0.1243 0.1334 0.1513 0.1856 0.2113 0.3273 1000/0
TRANSALL 0.0004 0.0055 0.0112 0.0279 0.0611 0.1033 0.1531 0.1863 0.335 0/1000
LINQ 0.0501 0.0883 0.1088 0.1223 0.1334 0.1591 0.1957 0.2255 0.342 698/302 0.0501 0.072 0.0804 0.1004 0.1346 0.1799 0.2233 0.2468 0.342
FIX 0.1049 0.115 0.118 0.1243 0.1335 0.1534 0.1979 0.2239 0.3338 939/61 0.1906 0.1978 0.2093 0.2163 0.2335 0.2623 0.2807 0.2847 0.333¢
TRANS 0.0391 0.067 0.0829 0.118 0.1303 0.1507 0.1893 0.2149 0.335 720/280 0.0391 0.0554 0.0591 0.0721 0.0998 0.1431 0.1909 0.2168 0.335
cuT 0.105 0.118 0.1236 0.136 0.167 0.2074 0.2516 0.2771 0.4569 316/684 0.1302 0.1444 0.1501 0.1655 0.1894 0.2237 0.27 0.2902 0.456¢
CUTS 0.1045 0.1165 0.1198 0.1288 0.147 0.1828 0.2245 0.2486 0.4375 316/684 0.1045 0.1197 0.1275 0.1435 0.1665 0.1996 0.2381 0.2631 0.437!
CuUTC 0.1049 0.1157 0.1188 0.1254 0.136 0.1733 0.2311 0.2672 0.4569 828/172 0.1824 0.1954 0.1985 0.2149 0.235 0.2706 0.3063 0.3258 0.456¢
CUTCS 0.1049 0.1157 0.1188 0.1254 0.136 0.1727 0.2156 0.2404 0.4375 828/172 0.1694 0.1774 0.1813 0.1964 0.2165 0.243 0.2788 0.2996 0.437!
CART 0.105 0.118 0.1236 0.1363 0.1924 0.2709 0.3296 0.3547 0.5595 316/684 0.1308 0.1518 0.1628 0.1892 0.2423 0.2967 0.3442 0.3732 0.559:!
CARTS 0.0646 0.1122 0.1179 0.1284 0.1568 0.2288 0.2929 0.3387 0.9063 316/684 0.0646 0.1126 0.1256 0.1516 0.2008 0.2572 0.316 0.3628 0.906:
CARTC 0.1049 0.1157 0.1188 0.1254 0.136 0.1733 0.239 0.2906 0.4602 828/172 0.1824 0.1956 0.1997 0.2173 0.2516 0.3109 0.3714 0.3918 0.460:
CARTCS 0.1 0.1155 0.1188 0.1253 0.1359 0.1685 0.2195 0.2606 0.9063 828/172 0.1 0.1682 0.1761 0.1904 0.2238 0.2632 0.3212 0.379 0.906:
RCS 0.0926 0.1153 0.1191 0.1265 0.139 0.1774 0.223 0.2558 0.3756 759/241 0.0926 0.121 0.1298 0.1511 0.1918 0.2351 0.2681 0.288 0.375¢
FP 0.1049 0.1151 0.1187 0.1254 0.1369 0.165 0.2077 0.232 0.329 874/126 0.1126 0.1429 0.1495 0.1701 0.1971 0.229 0.2598 0.2861 0.329
bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.1091 0.1124 0.1166 0.1251 0.1331 0.1489 0.1788 0.2027 0.3124 100/0 100
LINQ 0.0301 0.0414 0.0571 0.0804 0.1095 0.149 0.189 0.2176 0.2932 63/37 0 0.0381 0.0413 0.0547 0.0803 0.1199 0.1823 0.2129 0.2265 0.2932
FIX 0.1092 0.1119 0.1168 0.1263 0.1361 0.1528 0.1775 0.191 0.3027 95/5 0 0.1419 0.1462 0.1505 0.1634 0.2875 0.2988 0.3011 0.3019 0.3027
cuT 0.0624 0.0811 0.0847 0.092 0.1036 0.126 0.1433 0.1626 0.2385 28/72 0 0.0624 0.0792 0.0842 0.092 0.1072 0.1304 0.15 0.1699 0.2385
CuUTSs 0.0671 0.0842 0.0863 0.0942 0.1039 0.1216 0.1355 0.1552 0.2284 28/72 0 0.0671 0.0821 0.0857 0.0917 0.1071 0.1226 0.1421 0.16 0.2284
cuTC 0.0808 0.175 0.1962 0.2187 0.2342 0.2482 0.2562 0.266 0.3099 81/19 0 0.0808 0.1375 0.1512 0.1944 0.235 0.2627 0.2934 0.3073 0.3099
CUTCS 0.1009 0.182 0.1996 0.2203 0.2327 0.2467 0.2538 0.2595 0.2959 81/19 0 0.1009 0.141 0.1492 0.1927 0.2283 0.256 0.283 0.2951 0.2959
CART 0.0741 0.0967 0.1123 0.1443 0.1804 0.2376 0.3066 0.3286 0.3948 28/72 0 0.0975 0.1165 0.1445 0.1641 0.1942 0.2879 0.3182 0.3389 0.3948
RCS 0.0361 0.0561 0.0587 0.0943 0.1255 0.1626 0.232 0.2515 0.29 74/26 0 0.0892 0.0935 0.1012 0.1305 0.1862 0.2377 0.2562 0.2681 0.2885
FP 0.037 0.0526 0.0595 0.0905 0.1183 0.1521 0.1838 0.2092 0.2925 85/15 4 0.079 0.0902 0.1006 0.1457 0.1663 0.1948 0.2166 0.2231 0.2258
TRANS 0.0098 0.0198 0.0249 0.0526 0.0947 0.1303 0.1594 0.2008 0.2501 68/32 0 0.0118 0.0206 0.0306 0.0657 0.0961 0.129 0.1498 0.1768 0.2501
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Table A 3.14: Empirical distribution in terms of quantileS of the MAE for the standard and bagged risk f.unctions in the simulated
V-type model (standardisation to zero mean log relative risk) and results of model selection

original data

risk Empirical quantile based on all replications (R=1000) no. replications Empirical quantile based on replications with nonlinear risk function only
function with linear/nonlinear
risk function
min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.0149 0.0186 0.0197 0.0216 0.0258 0.0349 0.0494 0.0616 0.1356 1000/0
TRANSALL 0 0 0.0002 0.0011 0.0049 0.0146 0.0309 0.0468 0.1461 0/1000
LINQ 0.0041 0.0132 0.0176 0.0212 0.0263 0.0386 0.0563 0.0711 0.1708 698/302 0.0041 0.0082 0.0106 0.0161 0.0291 0.0485 0.0735 0.0932 0.170:¢
FIX 0.0149 0.0186 0.0197 0.0216 0.0258 0.0357 0.055 0.0694 0.1372 939/61 0.0547 0.0589 0.0608 0.0656 0.0751 0.0887 0.0986 0.1022 0.137:
TRANS 0.0021 0.0059 0.0091 0.0197 0.0239 0.0336 0.0497 0.0632 0.1461 720/280 0.0021 0.0041 0.0047 0.0069 0.0134 0.0274 0.049 0.064 0.146
cuT 0.015 0.0195 0.0212 0.0263 0.045 0.0706 0.0983 0.1178 0.2714 316/684 0.0259 0.0322 0.035 0.0439 0.0589 0.0831 0.1088 0.1259 0.271-
CUTS 0.015 0.0191 0.0206 0.0234 0.033 0.0541 0.0799 0.097 0.2498 316/684 0.0156 0.0213 0.0239 0.0308 0.0435 0.0663 0.0896 0.1045 0.249¢
CcuUTC 0.0149 0.0188 0.0199 0.0219 0.0268 0.0433 0.0939 0.1139 0.2714 828/172 0.0612 0.0708 0.0752 0.0838 0.0966 0.1177 0.1417 0.1535 0.271-
CUTCS 0.0149 0.0188 0.0199 0.0219 0.0268 0.0433 0.0773 0.0953 0.2498 828/172 0.0467 0.0559 0.0589 0.0678 0.0796 0.099 0.122 0.1317 0.249¢
CART 0.015 0.0195 0.0212 0.0263 0.058 0.1161 0.1847 0.2219 0.5361 316/684 0.0259 0.0358 0.0415 0.0569 0.0925 0.1453 0.2104 0.2397 0.536:
CARTS 0.0061 0.0179 0.0195 0.0228 0.0373 0.0846 0.145 0.1875 0.8366 316/684 0.0061 0.0177 0.0219 0.0348 0.0651 0.1095 0.1692 0.2104 0.836¢
CARTC 0.0149 0.0188 0.0199 0.0219 0.0268 0.0433 0.0964 0.135 0.2837 828/172 0.0612 0.0716 0.0755 0.088 0.1019 0.1426 0.1772 0.2117 0.283
CARTCS 0.0142 0.0187 0.0199 0.0219 0.0267 0.0424 0.0756 0.1001 0.8366 828/172 0.0142 0.0473 0.0523 0.0655 0.0775 0.1074 0.1516 0.1833 0.836¢
RCS 0.0138 0.0188 0.0202 0.0224 0.0291 0.0463 0.072 0.0919 0.1918 759/241 0.0138 0.022 0.0264 0.0374 0.0569 0.0831 0.1067 0.1189 0.191¢
FP 0.0149 0.0187 0.0199 0.022 0.0276 0.0417 0.0634 0.0815 0.2245 874/126 0.0248 0.0316 0.0378 0.0482 0.0648 0.0863 0.1057 0.1154 0.224!
bagged risk functions (first 100 replications only)
no.
risk Empirical quantile based on all replications (R=1000) no. h linear Empirical quantile based on replications with nonlinear risk function only
function linear/ in all
nonlinear bootstrap
samples

min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max. min. 0.05 0.1 0.25 0.5 0.75 0.9 0.95 max.
LIN 0.017 0.0181 0.019 0.0214 0.0258 0.034 0.0454 0.0563 0.1186 100/0 100
LINQ 0.0014 0.0026 0.0041 0.0095 0.0167 0.0314 0.0489 0.0669 0.1256 63/37 0 0.0024 0.0027 0.0055 0.0112 0.0206 0.0439 0.0676 0.0757 0.1256
FIX 0.017 0.018 0.0191 0.0221 0.0265 0.0347 0.0449 0.0513 0.1117 95/5 0 0.0312 0.0329 0.0345 0.0395 0.1025 0.1091 0.1106 0.1111 0.1117
cuT 0.0056 0.0093 0.0103 0.0122 0.0155 0.0222 0.0293 0.0419 0.1056 28/72 0 0.0056 0.0087 0.0098 0.0122 0.0159 0.0253 0.0311 0.0473 0.1056
CuUTs 0.0064 0.0099 0.0109 0.0125 0.0151 0.021 0.0262 0.0366 0.0951 28/72 0 0.0064 0.0094 0.0103 0.0123 0.0164 0.0224 0.028 0.0409 0.0951
CcuUTC 0.0084 0.0372 0.0442 0.0514 0.0575 0.063 0.0674 0.0752 0.1001 81/19 0 0.0084 0.0282 0.0323 0.0476 0.0627 0.0808 0.0926 0.0997 0.1001
CUTCS 0.0117 0.0387 0.0449 0.0511 0.057 0.0616 0.0656 0.0701 0.0906 81/19 0 0.0117 0.03 0.0326 0.0469 0.0582 0.0747 0.0857 0.0905 0.0906
CART 0.009 0.0145 0.0189 0.0317 0.0494 0.0878 0.1428 0.1487 0.2081 28/72 0 0.0159 0.0237 0.0308 0.0414 0.0581 0.1102 0.1468 0.1701 0.2081
RCS 0.0021 0.0046 0.0057 0.0138 0.023 0.0381 0.0692 0.0905 0.1293 74/26 0 0.0131 0.0139 0.0149 0.0243 0.0515 0.0741 0.099 0.1115 0.1293
FP 0.0024 0.0042 0.0053 0.0126 0.0196 0.0341 0.0497 0.0636 0.1153 85/15 4 0.0108 0.0133 0.0169 0.0302 0.0495 0.0591 0.0667 0.0714 0.0775
TRANS 0.0001 0.0006 0.001 0.0036 0.0121 0.0245 0.0396 0.0543 0.0814 68/32 0 0.0001 0.0004 0.0008 0.0032 0.0067 0.0222 0.0525 0.0755 0.0814
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Table A 3.15: The effect of bagging on the estimated error in the simulated V-type model:
Comparing the MAE / M SE obtained in the original data to the corresponding errors of the bagged risk function

risk linear nonlinear (R=100) linear nonlinear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
of smaller I\m for quantiles of smaller I\m for quantiles of smaller I\TA\E for quantiles
Bpage h 0.25 0.5 0.75 Bpagg h 0.25 0.5 0.75 Bpage h 025 0.5 0.75
LIN 100 0 43(43) 57( 57 ) 99 100 102 C ) C ) ( ) )
LINQ 63 37 87(87) 13( 13 ) 66 85 94 56(88.9) 7 (11.1) 63 80 92 31(8 3.8) 6(16.2) 78 90 97
FIX 95 5 46(46) 54( 54 ) 98 100 102 44(46.3) 51(53.7) 99 100 102 2( 40 ) 3(60) 7 105 112
cuT 28 72 98(98) 2( 2 ) 56 66 7 26(92.9)  2(7.1) 76 79 83 72(100) 0( 0 ) 50 60 68
CUTS 28 72 98(98) 2( 2 ) 62 74 81 26(92.9)  2(7.1) 76 81 85 72(100) 0( 0 ) 58 69 76
CuTC 81 19 9(9) 91( 91 ) 133 167 191 1(1.2) 80(98.8) 158 176 195 8 (42.1) 11(57.9) 80 105 113
CUTCS 81 19 7(7) 93(93) 135 167 190 1(1.2) 80(98.8) 159 174 195 6(31.6) 13(68.4) 88 111 121
CART 28 72 63(63) 37( 37 ) 76 90 108 13(46.4) 15(53.6) 82 105 133 50(69.4) 22(30.6) 72 86 102
RCS 74 26 85(85) 15( 15 ) 74 87 96 62(83.8) 12(16.2) 69 85 97 23(8 8.5) 3 (11.5) 85 89 94
FP 85 15 90(90) 10( 10 ) 67 86 95 75(88.2) 10(11.8) 66 88 96 15(100) 0( 0) 73 82 88
TRANS 68 32 91(91) 9( 9 ) 53 73 91 62(91.2)  6(8.8) 48 73 90 29(90. 6) 3(9.4) 62 73 92
risk linear nonlinear all (R=1000) linear linear
function number (percent) ratio bagging/original number (percent) ratio bagging/original number (percent) ratio bagging/original
— — —
of smaller MSE for quantiles of smaller MSE for quantiles of smaller M SE for quantiles
Bhage h 0.25 0.5 0.75 Bhage h 0.25 0.5 0.75 Bhage h 0.25 0.5 0.75
LIN 100 0 10(40) 60( 60 ) 98 101 104 C ) C ( ) C
LINQ 63 37 89(89) 11( 11 ) 43 71 87 57(90.5) 6(9.5) 39 62 82 32(86 .5) 5 (13.5) 63 83 90
FIX 95 5 43(43) 57( 57 ) 96 101 104 41(43.2) 54(56.8) 96 101 103 2( 40 ) 3(60) 65 108 120
cuT 28 72 98(98) 2( 2 ) 28 41 60 26(92.9)  2(7.1) 61 63 72 72(100) 0( 0 ) 25 33 45
CUTS 28 72 98(98) 2( 2 ) 35 51 66 26(92.9)  2(7.1) 63 66 73 72(100) 0( 0 ) 34 46 55
cuTC 81 19 22(22) 78( 78 ) 126 206 267 3(3.7) 78(96.3) 178 235 274 19( 100 ) 0( 0) 55 69 76
CUTCS 81 19 19(19) 81( 81 ) 129 206 264 3(3.7) 78(96.3) 179 229 271 16(84.2) 3 (15.8) 65 4 88
CART 28 72 63(63) 37( 37) 58 T 118 10(35.7) 18(64.3) e 123 189 53(73.6) 19(26.4) 54 69 102
RCS 74 26 82(82) 18( 18 ) 56 75 90 59(79.7) 15(20.3) 48 71 91 23(8 8.5) 3 (11.5) 67 78 90
FP 85 15 89(89) 11( 11 ) 47 74 87 74(87.1)  11(12.9) 47 75 90 15(100) 0( 0 ) 55 68 79
TRANS 68 32 93(93) T( 7)) 28 53 83 63(92.6) 5(74) 20 53 81 30(93. 8) 2(6.2) 40 53 84
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risk function

—
Empirical quantiles of the ratio for MSE (R=1000)

number of

Table A 3.16: Empirical quantiles of the ratios 100% ( MSEiogr(t+))/MSEzero mean ) and 100% ( M AE1qg((e+))/ M AEzero mean )
for the simulated V-type model

Empirical quantiles (only nonlinear replications)

S(tx) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 100 100 100.1 100.3 101.2 103.4 107.1 0
0.75 100 100 100 100.2 100.5 101.4 103.5 0
0.90 100 100 100 100.2 100.4 101 102.3 0
LINQ 0.50 100 100 100.1 100.3 101 102.7 109 302 100 100 100.1 100.3 101.1 102.8 109
0.75 100 100 100.1 100.3 101 103.5 108.4 302 100 100 100.4 101.2 102.7 105.5 108.4
0.90 100 100 100.1 100.4 101.6 105.3 111.4 302 100 100.8 102 102.9 104.4 107.6 111.4
FIX 0.50 100 100 100.1 100.4 101.2 103.4 107.1 61 100 100 100 100.2 100.7 102.3 105.2
0.75 100 100 100 100.2 100.5 101.4 103.5 61 100 100 100.1 100.2 100.5 102.2 102.9
0.90 100 100 100 100.2 100.4 101.1 103 61 100 100 100.1 100.2 100.7 101.5 103
cuT 0.50 100 100 100.1 100.4 101.2 103.4 111.9 684 100 100 100.1 100.4 101.2 103.6 111.9
0.75 100 100 100.1 100.4 101 102.6 111.5 684 100 100 100.1 100.4 101.1 102.8 111.5
0.90 100 100 100.2 100.6 101.5 103.9 111.5 684 100 100 100.3 101 102 104.4 111.5
CART 0.50 100 100 100.1 100.5 101.5 104.7 115.8 684 100 100 100.1 100.6 101.7 105.1 115.8
0.75 100 100 100.1 100.5 101.4 103.6 113.4 684 100 100 100.2 100.8 101.8 104.3 113.4
0.90 100 100 100.3 101.3 103.3 107.7 114.7 684 100 100.1 101 102.4 104.4 108.7 114.7
RCS 0.50 100 100 100.1 100.3 101 103.1 109.3 241 100 100 100.1 100.4 101.1 102.7 107.1
0.75 100 100 100 100.2 100.7 102.5 109.3 241 100 100 100.6 101.2 102.6 105 111.4
0.90 100 100 100.1 100.2 100.6 105.3 113 241 100.1 100.9 101.8 103.2 104.7 108.2 111.5
FP 0.50 100 100 100.1 100.3 101 103.1 109.3 126 100 100 100.1 100.4 101.2 105.7 109.3
0.75 100 100 100 100.2 100.7 102.5 109.3 126 100 100.1 100.7 101.5 103.3 106 109.3
0.90 100 100 100.1 100.2 100.6 105.3 113 126 100.1 101.4 103.2 104.7 106.7 109.2 113
—
risk function Empirical quantiles of the ratio for MAE (R=1000) number of Empirical quantiles (only nonlinear replications)
S(tx) min. 0.05 0.25 0.5 0.75 0.95 max. replications min. 0.05 0.25 0.5 0.75 0.95 max.
LIN 0.50 92.8 97.9 99.7 100.1 100.9 103.1 114.2 0
0.75 93.8 98.1 99.8 100.1 100.5 102.1 105 0
0.90 95 98.5 99.9 100.1 100.6 101.4 103 0
LINQ 0.50 89.6 96.8 99.5 100.1 101.2 104.4 114.2 302 89.6 95.2 98 99.8 101.6 105.5 110.7
0.75 93.8 98.6 100 100.5 102.3 107.7 114.6 302 98 100.1 102.2 104 106.6 109.5 114.6
0.90 95 98.8 100 100.6 104.3 109.9 115.1 302 99.8 102.9 105.1 106.8 108.9 111.6 115.1
FIX 0.50 92.8 98 99.8 100.1 100.8 102.9 114.2 61 98.2 99.4 99.9 100 100.3 101.1 101.2
0.75 94.7 98.5 99.9 100.1 100.5 102 105 61 97.2 99.3 99.9 100.1 100.3 101.1 103.8
0.90 95.3 98.8 99.9 100.1 100.5 101.4 103.5 61 97.5 99.3 99.9 100 100.3 100.9 103.5
cuT 0.50 89.9 96.3 99.4 100 100.6 103 114.2 684 89.9 95.4 98.8 99.8 100.5 103.3 109
0.75 95.9 99.3 100 100.4 101.7 106 129.2 684 95.9 99 100 100.7 102.6 107 129.2
0.90 94.9 99.6 100.1 100.8 103 110.7 128.7 684 94.9 99.6 100.3 101.8 104.9 112 128.7
CART 0.50 84.4 93.8 98.9 99.9 100.5 102.9 114.2 684 84.4 92.6 97.9 99.6 100.4 103.2 111
0.75 91 97.8 99.9 100.4 102.1 107.9 123.5 684 91 97.1 99.8 100.8 103.1 110.3 123.5
0.90 89 97.6 100 100.8 105 116.1 138.6 684 89 96.7 100.1 102.7 107.7 117.9 138.6
RCS 0.50 83.8 97.2 99.7 100.1 100.9 103.2 114.2 241 87.3 95 99.2 100 100.6 102.1 108.4
0.75 93.8 98.3 99.9 100.2 101.1 105.4 115.3 241 96.1 98.5 100 101.4 103.5 109.1 114
0.90 95 98.6 99.9 100.3 100.9 109.3 129.5 241 95.9 97.8 100.2 102.8 106.3 115.9 127.1
FP 0.50 83.8 97.2 99.7 100.1 100.9 103.2 114.2 126 83.8 90.4 97 99.6 100.6 102.7 107.7
0.75 93.8 98.3 99.9 100.2 101.1 105.4 115.3 126 95.8 99.8 102 104 107.5 110.8 115.3
0.90 95 98.6 99.9 100.3 100.9 109.3 129.5 126 98.7 101.2 105.1 107.9 111.3 119.1 129.5




6 Appendix B: Software and concept of program-
ming

In this appendix I comment briefly on the software used in data generation and estimation
of risk functions. Most computations have been performed using S-Plus, Version 3.4 (Sta-
tistical Sciences, 1993) on Sparc workstations under UNIX. To estimate the parameters
of the restricted cubic spline I used the procedure rcspline from Frank Harrell, which is
part of the Hmisc library (available from the S-library via

http://lib.stat.cmu.edu/S/). Fractional polynomials were calculated by using the proce-
dure fp of Stata 5.0/Stata 7.0 (StataCorp, 1997, 2001) . Meanwhile fractional polynomials
can also be estimated in S-Plus, the corresponding programs by Gareth Ambler are also
available in the S-library http://lib.stat.cmu.edu/S/fracpoly). Data driven cutpoints for
CUT and CART as well as the corresponding minimum and corrected P-values were cal-
culated by using a program written in C. This program was developped years ago at
our institute. It was extended by my colleague Willi Sauerbrei with technical support
by Martin Nehring and offers several possibilities to build and validate classification and
regression trees (not only for survival data). In order to use this interactive programm in
my simulation study it was necessary to write a connection to S-Plus. Thanks to Martin
Nehring who made this connection possible. Running loops, the data set of each iteration
has to be read into an ASCII file, which can then be used by the C program. Besides the
fact that simulation is rather slow (e.g. several days when using 1000 simulated data sets
with 100 bootstrap samples of each data set, i.e. 100.000 data sets at all) enormous mem-
ory is needed. Therefore, it was necessary to run the simulation programm in small steps
using only up to 1000 data sets in each step. Besides these difficulties the main advantage
of the C programe (with respect to my purpose) is its possibility to control the tree build-
ing algorithm by determining e.g. the selection interval for cutpoints or the depth of the
tree (cf section 2.1.4). Furthermore, not only minimal P-values but also corrected P-values
are calculated for each split. Alternativeley, to our C program there are a few programs
available to caculate classification and regression trees for survival data in the S-library.
To transfer the results of our C program into S-Plus the connection of both programms
was constructed similar to that of tssa by Mark Segal http://lib.stat.cmu.edu/S/tssa).
However, tssa do not need an extra ASCII file but can use the S-Plus data directly. In
contrast to our C program tssa is based on the classical tree building and tree pruning
steps (cf. section 2.1.4) and it do not calculate corrected P-values.

To generate bootstrap samples I used the library http://lib.stat.cmu.edu/S/bootstrap. funs),
that contains all functions described in the textbook of Efron and Tibshirani (1993).
The connection between the different programs of the simulation study is illustrated in
figure A 3.1. To avoid problems caused by the lack of memory I used two steps for es-

timating risk functions and making the estimated risk functions commparable. For the

120



analysis of the breast cancer studies the concept is similar to figure A 3.1, instead of the
simulated data sets I used the data of the study. Error estmation is of course not possible,

because the true functional form of age is unknown.

Data gener ation Estimation of risk Aggregation and
functions presentation of results
S-Plus 34 C & SPlus34 S-Plus 34 S-Plus 34
Generate ™ cuT Maki error
— > ing >
R data sets CART estimation
(replications) risk
functions
S-Plus3.4
Y LIN comparable Y
S-Plus 34 ] LINQ = ithin S-Plus 34
FIX
Generate TRANS results
each >
B bootstrap RCS graphics
samples ] data set
from each Stata 5.0/7.0
L | >
data set FP

Figure A 3.1: Flow chart of programs of the simulation study
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