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THE USE OF THE CORRELATED WEIBULL AND LOGISTIC 

REGRESSION MODELS IN EPIDEMIOLOGY 
 

 

ABSTRACT 
 

An important factor in the analysis of family data is the dependence structure. In order to 

incorporate dependence within families into regression models, Bonney (1998) introduced the 

disposition model for the analysis of correlated binary data. In this work, the disposition 

model has been extended to allow for situations where quaternary-group dispositions are 

required. Estimation procedures for the correlated Weibull and logistic regression models 

have been provided for the non-nested and nested disposition models. 

 

The correlated Weibull regression model was contrasted with the correlated logistic 

regression model. The results showed that both regression models were useful in explaining 

the familial aggregation of oesophageal cancer. The correlated logistic regression model fitted 

the oesophageal cancer data better than the correlated Weibull regression model. Furthermore, 

the correlated logistic regression model was computationally more attractive than the 

correlated Weibull regression model. The implications of higher level nesting of the 

disposition model in relation to the dimension of the parameter space have been examined and 

the performance of the disposition model compared to that of Cox’s model using breast 

cancer data. It has been observed that the disposition model has a very large number of 

unknown parameters, and is therefore limited by the method of estimation used. In the case of 

the maximum likelihood method, reasonable estimates are obtained if the number of 

parameters in the model is at most nine. This corresponds to about four to seven covariates. 

Since each covariate in Cox’s model provides a parameter, it is possible to include more 

covariates in the regression analysis. On the other hand, as opposed to Cox’s model, the 

disposition model is fitted with parameters to capture aggregation in families, if there should 

be any. The choice of a particular model should therefore depend on the available data set and 

the purpose of the statistical analysis.  
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1 Background and literature review 
 

1.1 Introduction 
 

The outcomes of family members are correlated because they share common risks. Thus 

standard methods of epidemiology, which assume independence of outcomes, are unsuitable 

for the analysis of family data. The disposition model is one of the possible models for the 

analysis of correlated binary data. It enables the characterisation of the dependence structure 

of a family and the response probabilities associated with it. The development of the 

disposition model involves the derivation and parameterisation of the joint distribution on 

which the likelihood function is based. Here, the experimental unit is the nuclear family and 

the response is the disease status. In such studies, the methods of estimating the parameters of 

the models are of particular importance. Here, the maximum likelihood method will be used 

to analyse the models. Since closed-form solutions are not possible, the Newton-Raphson 

iteration method is applied to obtain maximum likelihood estimates of the parameter vector. It 

should however be pointed out that maximum-likelihood becomes increasingly intractable as 

the model becomes more complex. Despite this limitation, the maximum likelihood is widely 

used, because it can provide accurate estimates and has some attractive optimum properties, 

such as asymptotically normally distributed estimators and best asymptotically normal 

sequence of estimators (Mood et al., 1974). Also, the maximum likelihood estimators possess 

the quality of functional invariance: if $λ  is the maximum likelihood estimator for λ , then 

h( $ )λ  will be the maximum likelihood estimator of h( )λ  for any function h(.) (Stuart, Ord 

and Arnold, 1999). In this way, the maximum likelihood estimators for a wide variety of 

parameterisations can be determined. With this study, potential risk factors for a disease such 

as smoking, age and alcohol use can be examined. Also, it can be assessed whether the 

disease tends to aggregate in families as a result of common shared risks. Such knowledge is 

decisive for counselling in the aetiology of familial disease.  

 

The rest of the thesis is organised as follows: Section 1.2 briefly reviews the correlated 

regression models. Section 1.3 explains why the disposition model of the Weibull-type 

regression can provide more reasonable solutions than that of the logistic-type regression. In 

Chapter 2, the standard Weibull distribution and its parameters will be discussed. Chapter 3  
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briefly reviews Cox’s regression model (Cox, 1972) for the analysis of failure data when 

explanatory variables are available. In Chapter 4, the disposition model (Bonney, 1998) and 

its associated likelihood function will be introduced. The first and second level extensions of 

the disposition model will be considered in Chapter 5. Inference for the models will be treated 

in the first three sections of Chapter 6. To estimate the parameters in the model, the joint 

function of all the clusters is required. However, there is no loss of generality if the joint 

function of a cluster is considered. Section 6.4 discusses the properties of the score function. 

The likelihood ratio test and the Wald’s test will be introduced in Section 6.5 to test for the 

independence of familial aggregation of a disease. Section 6.6 is devoted to the comparison of 

the model fit of models. Chapter 7 is divided into three sections. The first, Section 7.1, 

contains the descriptions of two data sets: oesophageal cancer data and breast cancer data. 

Section 7.2 illustrates the methods with the oesophageal cancer data. The application to the 

breast cancer data is presented in Section 7.3. Chapter 8 gives a summary of the work and 

discusses experiences gained.  
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1.2 Review of correlated regression models 
 

In models for clustered binary data, measures of association are of primary interest when a 

particular pattern of infection is suspected in a family. In the search for an appropriate model 

for inference on response probabilities and correlations, the equations for the estimation of the 

parameters become more complex. Thus, the estimation of all parameters becomes more 

difficult as the cluster size gets larger. 

 

Cox (1972) reviewed several methods that had been proposed for the analysis of multivariate 

binary data and outlined some new proposals. He suggested the use of logistic 

representations, in which the joint response probability is a quadratic exponential form, as the 

simplest, most flexible, and in many ways the most important models. In the paper ‘Partial 

likelihood’, Cox (1975) gave a definition of partial likelihood which generalises the ideas of 

conditional and marginal likelihood. Here, he transformed the random variable Y into a 

sequence { , }X Sj j ,    j = 1,...,m, and decomposed the full likelihood of the sequence into two 

products, the second product being the partial likelihood based on S in the sequence { , }X Sj j . 

He pointed out that the partial likelihood is especially useful when it is appreciably simpler 

than the full likelihood. This is the situation when constructive procedures for finding useful 

partial likelihoods are provided, so that the partial likelihood involves only the parameters of 

interest and not nuisance parameters. To support this point, he made mention of the failure of 

the method of maximum likelihood as a general technique, especially in the sampling theory 

and pure likelihood approaches, due to excessive nuisance parameters, and hence the need to 

reduce dimensions. Care should however be taken to ensure that all or nearly all the relevant 

information is contained in the partial likelihood.  

 

Liang and Zeger (1986) introduced the use of ‘generalised estimating equations’ (GEE), an 

extension of generalised linear models, for estimating regression parameters in situations 

when the vector of association parameters is a nuisance parameter. The approach is to use a 

working generalised linear model for the marginal distribution of the outcome variable. The 

method gives efficient estimates of regression coefficients, although estimates of the 

association among the binary outcomes can be inefficient. Liang, Zeger and Qaqish (1992) 

discussed the use of ‘generalised estimating equations’ (GEE1 and GEE2) for regression  
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analysis of multivariate binary data, focusing on the regression and association parameters. 

They recommended the use of GEE1, introduced by Liang and Zeger (1986), when the 

association parameter is considered as a nuisance and the number of clusters is large relative 

to the size of each cluster. On the other hand, GEE2, introduced by Zhao and Prentice (1990), 

is preferable to GEE1 when there are few clusters and/or the association parameter is of 

primary interest. Connolly and Liang (1988) introduced the conditional logistic regression 

models for correlated binary data which are most useful when the dependence among 

observations is of main interest (such as in family data). Although the estimating functions are 

easily computed and have high efficiency compared to the computationally intensive 

maximum likelihood approach, more work is needed to determine the form of the weights 

used for the estimating functions U( , )β θ . Prentice (1988) considered regression methods for 

the analysis of correlated binary data when each binary observation may have its own 

covariates. In the case of the stratified and mixture models, he generalised the binary logistic 

regression model for the response iY  given the covariate ix  to blocked binary data by setting 

( )
)xexp(1
]Y)xexp[(

x,i,Y|YPr
is

iis
is β+α+

β+α
=≠ll , where α s  is a parameter for the sth block. In the 

case of the conditional models, he specified a distribution (e.g., the logistic regression model) 

for each binary variate given all of the other variates in the block. Here, unlike the stratified 

and mixture models, one may allow the logistic location parameter to depend on the other 

binary responses in the same block. 

 

Zhao and Prentice (1990) reparameterised probability distribution of the model advocated by 

Cox (1972) in terms of marginal parameters of ready interpretation. Since this approach yields 

models with very complicated marginal response probabilities and pairwise correlations, they 

suggested the transformations of the canonical parameters ( , )θ λk k , k = 1,...,K, to response 

means (µ µ βk k= ( ) ) and covariances (σ σ β αk k= ( , ) ), where β  and α  are parameter 

vectors. Scoring estimating functions can then be used to evaluate mean and correlation 

parameters under the quadratic exponential family. Qaqish and Liang (1992) presented a 

model for correlated binary data, in which the marginal expectation of each binary variable 

and the association between pairs of outcomes are modelled separately in terms of 

explanatory variables. With examples, they described some drawbacks of conditional models,  
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especially in situations where observations are missing or cluster sizes differ. On the other 

hand, the marginal model is reproducible, since the marginal distribution of any proper subset  

( ,..., )Y Yn1  is of the same form. Hence the situation where a subset of the cluster ( ,..., )Y Yn1  

is missing causes no problem. Carey, Zeger and Diggle (1993) proposed the use of odds ratios 

to measure association among responses. The approach, which alternates between two steps, 

estimates the association parameters by modelling the conditional distribution of one response 

given another. The alternating logistic regression avoids the computational burdens 

encountered in many problems, and its estimates are reasonably efficient relative to solutions 

of second-order methods. 

 

In order to accommodate the many complicating features associated with real data, Bonney 

(1998) derived joint distributions for constructing likelihood functions. The central aspects of 

his work concern the notion of disposition to an outcome. He used a moment series 

representation to derive the joint distributions. Kötting, Bonney and Urfer (1998) used the 

ordinal-disposition-transitional model, an extension of the disposition model, to analyse 

dynamic changes of damage in forest-ecosystems. Odai et al. (2002) discussed the use of the 

correlated Weibull regression model for the analysis of multivariate binary data. The results 

have shown that the model provides feasible means of analysing family data. 

 

In this dissertation, computationally attractive models with readily interpretable dependence 

structure for the regression analysis of correlated binary data will be presented. Estimation is 

based on the log-likelihood function, whose solutions can be solved by the Newton-Raphson 

iteration. The implications of higher level nesting in relation to the dimension of the 

parameter space will also be examined. 
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1.3  Motivation 
 

Logistic regression is by far the most common approach to modelling the relationship 

between some explanatory variables and a binary response variable. This approach sometimes 

leads to biased estimates of covariate effects since it does not take care of dependence of 

outcomes. In order to incorporate dependence within families into regression models, Bonney 

(1998) developed the disposition models for the analysis of family data. He considered the 

logistic-type regression (Bonney, 1998) as the basic regression function in the non-nested 

disposition model. However, there are situations in which the response of interest is not a 

binary risk, but rather the time to failure. This is especially the case if one, for instance,  

wishes to know if a particular disease occurs at a certain point in time or at a certain age. The 

standard Weibull distribution is also inadequate for the analysis of family data, because it is 

not equipped with a dependence structure to take care of correlated outcomes. Furthermore, 

explanatory variables cannot be included in the statistical analysis. It will therefore be 

appropriate to consider the Weibull-type regression (Bonney, 1998) as the basic regression 

function in Bonney’s disposition model (Bonney, 1998). Thus, in general, the correlated 

Weibull regresion model distinguishes itself from the correlated logistic regression model in 

the sense that it takes into account the special features of the underlying data (e.g., it is more 

suitable for the analysis of data drawn from failure distributions). 
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2     The standard Weibull distribution 
 

The purpose of this section is to review some basic concepts of survival theory of the standard 

Weibull distribution. This is necessary since there is a link between the constructions of the 

likelihood functions of the standard Weibull distribution and the correlated Weibull 

regression model. This link will be discussed at the end of Chapter 4. 

 

Consider the two-parameter Weibull distribution denoted by ),(W~T ρφ  )0,0( >ρ>φ , 

where T is the lifetime of a living organism or a product, or the time until the occurrence of 

some specified event, φ  is the shape parameter and ρ  is the scale parameter, and let 

n21 T,...,T,T  be a random sample of size n from T. 

 

The probability density function (PDF), which is sometimes also called the unconditional 

failure rate, is given by 

 

                                          


 >ρ−φρ

=ρφ
φ−φ

otherwise    0,
 0  t ),texp(t 

),;t(f
1

T , (2.1) 

 

where φ  > 0, ρ  > 0 are real parameters (Gross and Clark, 1975). 

 

The cumulative distribution function (CDF)  

 

                                       




>ρ−−

≤
=≤=ρφ

φ  0  t ),texp(1 
0   t0,

)tT(P),;t(FT  (2.2) 

 

is called the lifetime distribution or failure distribution. If T represents time at death of an 

individual, ),;t(FT ρφ  is the probability that an individual dies before time t. On the other 

hand, if T represents age of first occurrence of a certain event (e.g., chronic disease), then 

),;t(FT ρφ  represents age of onset distribution of the event (disease) (Gross and Clark, 1975; 

Elandt-Johnson and Johnson, 1980). 
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The survival function (SF), which is defined as the probability of an individual surviving 

beyond time t, is given by 

 

                                      )texp(),;t(F1)tTPr()t(S TT
φρ−=ρφ−=>=  (2.3) 

 

(Gross and Clark, 1975; Elandt-Johnson and Johnson, 1980). In survival analysis, )t(ST  is 

more commonly used, instead of its complementary function, ),;t(FT ρφ .   

 

The hazard function (HF), which characterises the instantaneous failure rate when T = t, 

conditional on survival to time t, is defined mathematically as 

 

                                       





∆
>∆+<<

=
→∆ t

)tT|ttTtPr(lim)t(h
0tT  (2.4) 

 

(Gross and Clark, 1975). The hazard function, also termed the failure rate, may also be 

defined as a measure of  proneness to failure. This can also be expressed as 

 

                                      1
Te

T

T

T t)t(Slog
dt
d

)t(S

)t(S
dy
d

)t(h −φφρ=−=−=  (2.5) 

 

(Gross and Clark, 1975; Nelson, 1972). For values of the shape parameter, φ , less than 1, the 

hazard function is a decreasing function, for φ  = 1, the Weibull distribution is an exponential 

distribution and has a constant failure rate, and for φ  > 1, it is an increasing function of t 

(Nelson, 1972). An increasing hazard rate indicates that a unit of age t is more likely to fail in 

a given increment of time than it would be in the same increment of time at an earlier age. For 

example, the probability that an individual survives to age 71, given that he has lived to age 

70, is greater than the probability that an individual survives to age 72, given that he has lived 

to age 71. Similarly, a decreasing hazard rate means that the unit is improving with age. For 

example, children who have undergone an operative procedure to correct a congenital 

condition such as a heart defect represent a population exhibiting a decreasing hazard rate. 

This is because the principal risk of death is the surgery or complications immediately  
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thereafter (Gross and Clark, 1975). A constant hazard rate results due to chance failures (e.g., 

accidents). Such random occurrences are often independent of age.  

 

The failure rate function of a discrete distribution { }∞=0kkp  (e.g., geometric, binomial, poisson, 

etc.) is  

 

                                                            
∑
∞

=

=

kj
j

k

p

p)k(h , (2.6) 

 

where k is the number of failures (Barlow and Proschan, 1965). We note that in this case 

1)k(h ≤ . 

 

From (2.1), (2.3) and (2.5), it follows that 

 

                                                          )t(S)t(h)t(f TTT = . (2.7) 

 

Any distribution of survival times can be characterised by the three equivalent functions 

)t(fT , )t(hT  and )t(ST .  

 

In observational studies of the time to failure of units (e.g., breakdown of a machine, death of 

an individual), a group of data may be incomplete in the sense that some units may not have 

failed by the end of the study, or may have been withdrawn before the end of the study. Such 

data are said to be censored (Daintith and Nelson, 1989).  

 

Censoring is said to be on the right when the item or subject is observed prior to failure or 

death. Since the event time is larger than the time of observation, such an observation 

provides information on the survival function, )t(ST , evaluated at the time of observation       

(Klein and Moeschberger, 1997).  

 

On the other hand, censoring is said to be on the left when failure or death occurs prior to 

some designated censoring time. Since the event time has already occurred, such an  
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observation provides information on the cumulative distribution function, )t(FT , evaluated at 

the time of observation (Klein and Moeschberger, 1997). 

 

An observation corresponding to an exact event time provides information on the density 

function of T, )t(fT , at this time (Klein and Moeschberger, 1997). 

 

The likelihood function may take the following form: 

 

                                               ∏ ∏∏
∈ ∈∈

∝
Rj Lj

jTjT
Dj

jT )t(F)t(S)t(fL , (2.8) 

 

where, D is the set of death times, R the set of right-censored observations and L is the set of 

left-censored observations (Klein and Moeschberger, 1997). If the data set comprises only 

right-censored and left-censored observations, the above likelihood function reduces to 

 

                                                      ∏ ∏
∈ ∈

∝
Rj Lj

jTjT )t(F)t(SL . (2.9) 

 

The following are some examples on censored data. 

 

Ex. 1: In a particular clinical trial, suppose that all n patients are followed until death. Their 

recorded survival times are n1 t,...,t , and it is assumed that the death density function for the 

jth patient is given by the Weibull density function. The likelihood function ),;t(L ρφ  is given 

by 

 

                                      ∏∏
=

φ−φ

=

ρ−φρ=ρφ=ρφ
n

1j
j

1
j

n

1j
j )texp(t),;t(f),;t(L  (2.10) 

 

(Gross and Clark, 1975). 
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Ex. 2: Suppose that we only know that out of n individuals starting at time zero, r died before 

time 't , and (n – r) survived beyond 't  (i.e., censored data). The statistical model for this set 

of data is binomial, so that the likelihood function is 

 

                                           rn
T

r
T )];'t(S[)];'t(F[

r
n

),;t(L −θθ







=ρφ  (2.11) 

 

(Elandt-Johnson and Johnson, 1980). 
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3  Cox’s  regression model 
 

The Cox model (also known as the proportional hazards model) is a model that can be used 

for the analysis of failure data when explanatory variables are available. There will be a brief 

review of this model and its estimation procedure in this chapter.  

 

 

3.1  The model 
 

Let )x;t(h  be the hazard rate at time t for an individual with risk vector )x,...,x(x p1
T = .  

Cox (1972) specified his model as follows: 

 

                                                      )xexp()t(h)x;t(h T
0 β= , (3.1.1) 

 

where )t(h 0  is an arbitrary baseline hazard rate and ),...,( p1
T ββ=β  is a vector of unknown 

parameters. 

 

The above model is often called a proportional hazards model because, the ratio of the hazard 

rates of two individuals with covariate values x and 'x  can be expressed as 

 

                                               







−β= ∑

=

p

1k

'
kkk )xx(exp

)'x;t(h
)x;t(h , (3.1.2) 
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which is a constant (see, for example, Klein and Moeschberger, 1997). This indicates that the 

hazard rates are proportional. The quantity (3.1.2), called the relative risk (hazard ratio), gives 

the factor by which the risk of an individual with covariate x is increased in comparison to an 

individual with risk factor 'x . 

 

 

3.2  Parameter estimation  

 

In order to estimate the parameters in Cox’s model with the maximum likelihood method, the 

baseline hazard, )t(h 0 , must be specified. To deal with this situation, Cox exploited the 

definition of partial likelihood. Specifically, he considered the baseline hazard, )t(h 0 , as a 

nuisance parameter function and concentrated mainly on the regression parameters. 

 

Let )n()2()1( t...tt <<<  denote the ordered event times and define the risk set at time )i(t , 

)t(R )i( , n,...,1i = , as the set of all individuals who are still under study at a time just prior to 

)i(t . Further, let jx  denote the value of x for the jth individual, and )i(x  the value for the 

individual failing at time )i(t , n,...,1i = . Then, Cox (1972) gave the partial likelihood based 

on the hazard function specified by (3.1.1) as 

 

                                                     ∏ ∑=
∈

β

β
=β

n

1i
)t(Rj

j
T

)i(
T

)i(

)xexp(
)xexp(

)(L . (3.2.1) 

 

It should be noted that the numerator of the likelihood in (3.2.1) depends only on information 

from the individual who experiences the event, whereas the denominator utilises information  
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about all individuals who have not yet experienced the event (Klein and Moeschberger, 

1997). 

 

Direct calculation from the log-likelihood gives the score equation 

 

                                          ∑ ∑ ∑

∑

= =
∈

∈

β

β

−=β
n

1i

n

1i
)t(Rj

j
T

)t(Rj
j

T
j

)i(

)i(

)i(

)xexp(

)xexp(x
x)(U , (3.2.2) 

 

from which we obtain the Hessian matrix 

 

                                      ∑ ∑

∑

=
∈

∈

β

β

−ββ=β
n

1i
)t(Rj

j
T

)t(Rj
j

TT
jj

T
)i()i(

)i(

)i(

)xexp(

)xexp(xx
)(A)(A)(H , (3.2.3) 

 

where 
∑

∑

∈

∈

β

β

=

)t(Rj
j

T

)t(Rj
j

T
j

)i(

)i(

)i(

)xexp(

)xexp(x
A , n,...,1i = . 
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The Fisher information matrix is given by 

 

       
















β

β

















β

β

−
β

β

=β
∑

∑
∑ ∑

∑
∑ ∑

∑

∈

∈

=
∈

∈

=
∈

∈

)t(Rj
j

T

)t(Rj
j

TT
jn

1i
)t(Rj

j
T

)t(Rj
j

T
jn

1i
)t(Rj

j
T

)t(Rj
j

TT
jj

)i(

)i(

)i(

)i(

)i(

)i(

)xexp(

)xexp(x

)xexp(

)xexp(x

)xexp(

)xexp(xx
)(I  (3.2.4) 

 

(Klein and Moeschberger, 1997). Cox (1975) has shown that the usual maximum likelihood 

properties hold for estimates and tests based on partial likelihoods. 
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4  Introduction of the non-nested disposition model 
 

Disposition, as defined by Bonney, is the tendency of an individual or group to manifest an 

outcome (e.g., to be affected by a disease). The central aspect of the development of the 

disposition model is the derivation of joint distributions that directly capture aggregation, if 

there should be any. In this chapter, there will be a brief presentation of the disposition model 

(Bonney, 1998) and its associated joint distribution function. 

 

Consider a binary outcome Y = 1 or 0, with q 0  group-specific covariates, )Z,...,Z(Z
0q001

T
0 = , 

and p individual-specific covariates, )X,...,X(X jp1j
T
j = , n,...,1j = , measured on several 

groups of individuals. We consider two types of dispositions here: the group disposition, δ 0 , 

which is determined by the group-specific covariates, Z0, and the individual disposition, δ j , 

which is determined by the group-specific covariates, Z0, and the individual-specific 

covariates, jX , n,...,1j = . 

 

Define the group or overall disposition, δ 0 , by 

                                                                δ
µ
α0

0

0

= , (4.1) 

where µ 0  is the baseline disposition under no aggregation and α 0  is the relative disposition. 

Then, α 0  < 1 corresponds to positive aggregation, α 0  = 1 corresponds to no aggregation, and 

α 0  > 1 corresponds to negative aggregation. 

 

The logit of the group disposition can be written as 

 

                                                )Z(D)Z(M
1

log 0000
0

0 +=
δ−

δ , (4.2) 
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where 

                                                       M Z0 0
0

01
( ) log=

−
µ
µ

 (4.3) 

and 

                                               D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ
δ

µ
µ

. (4.4) 

 

We term M Z0 0( )  the logit of group disposition assuming no aggregation or the cluster logit 

mean risk and D Z0 0( )  the excess disposition due to aggregation or the excess cluster logit 

disposition due to dependence among members of a group. 

 

From (4.3) and (4.4), it follows that 

 

                     µ 0
0 0

1
1

=
+ −exp{ [ ( )]}M Z

, δ 0
0 0 0 0

1
1

=
+ − +exp{ [ ( ) ( )]}M Z D Z

 (4.5) 

and therefore 

                                        α
µ
δ0

0

0

0 0 0 0

0 0

1
1

= =
+ − +

+ −
exp{ [ ( ) ( )]}

exp{ [ ( )]}
M Z D Z

M Z
. (4.6) 

 

Now, we decompose the logit of the individual disposition as 

                               )X(W)Z(D)Z(M
1

log jj0000
j

j ++=
δ−

δ
 =: jθ , (4.7) 
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j = 1,…,n, where )Z(M 00  and )Z(D 00  are as defined above, and W Xj j( )  is a function of the 

individual-specific covariates. It follows that 

 

                         
)]}X(W)Z(D)Z(M[exp{1

1
)exp(1

1

jj0000j
j ++−+

=
θ−+

=δ , (4.8) 

 

j = 1,…,n. 

 

The joint probability for a group or cluster becomes 

 

                        ∏∏
=

−

=

δ−δα+−α−===
n

1j

y1
j

y
j0

n

1j
j0nn11

jj )1()y1()1()yY,...,yY(P , (4.9) 

 

with α 0  and δ j  as defined in (4.6) and (4.8). Explicit derivation of the joint distribution can 

be found in Bonney (1998). If α 0 1=  or 0)Z(D 00 = , equation (4.9) reduces to 

 

                                          ∏
=

−δ−δ===
n

1j

y1
j

y
jnn11

jj )1()yY,...,yY(P , (4.10) 

 

that is, the independence case. Explicit parameterisations for M Z0 0( )  and D Z0 0( )  are 

obtained by the linear models 
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                                             M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ  (4.11) 

and 

                                             D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ . (4.12) 

 

The set of parameters to be determined in the model is 

),...,,,...,,,...,(),,( p1q000q00000 00
ββγγξξ=βγξ=λ . 

 

It is now convenient to compare and contrast the standard Weibull distribution with the 

correlated Weibull regression model. We denote the likelihood function of the joint 

distribution in Equation (4.9) by )y|(Lk λ , K,...,1k = : 

 

∏∏
=

−

=

δ−δα+−α−=λ
n

1j

y1
j

y
j0

n

1j
j0k

jj )1()y1()1()y|(L , 

 

  
))]}X...Xexp(1()Z(D)Z(M[exp{1

1

jpp1j10000
j β++β−++−+
=δ , j = 1,…,n, and recall that  

 

the likelihood function for the standard Weibull distribution based on (2.9) is  

 

 

    ∏ ∏
∈ ∈

∝
Rj Lj

jTjT )t(F)t(SL .      

 

The following differences are observed. (1) In the case of the standard Weibull distribution, 

the response variable is a variable of time (continuous or discrete), whereas the response 

variable in Bonney’s disposition model presented in this dissertation is the disease status, and  
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therefore binary. (2) As opposed to the standard Weibull distribution whose most applied 

characterisation revolves around its role in extreme value theory (e.g., daily maximum or 

minimum temperatures, precipitation, etc.), Bonney’s model is fitted with parameters like jδ  

and 0α  to model the effect of influential factors and to capture aggregation in families, if 

there should be any. Here, variables of time (e.g., age) are regarded as covariates in the 

model. Our concern, however, is to determine the link between the standard Weibull 

distribution and the correlated Weibull regression model. Suppose T is the length of time until 

the occurrence of a certain disease, and consider a group of size n with survival times 

n1 T,...,T , where jT  is censored or not at time jt  with the censoring indicator 0y j =  if 

censored, and 1y j =  if uncensored. Then, in the above likelihood functions, 0y j =  in the 

correlated Weibull regression model corresponds to the survival function in the standard 

Weibull distribution, and 1y j =  in the correlated Weibull regression model corresponds to 

the cumulative distribution function in the standard Weibull distribution. In other words,  

 

∏
=

δ−α+α−=λ
n

1j
j00k )1()1()y|(L  

             ∏
= β++β−++−+

β++β−++−
α+α−=

n

1j jpp1j10000

jpp1j10000
00 ))]}X...Xexp(1()Z(D)Z(M[exp{1

))]}X...Xexp(1()Z(D)Z(M[exp{
)1(   

 

corresponds to ∏
∈

∝
Rj

jT )t(SL  = ∏
∈

φρ−
Rj

j )texp( ,  

and 

∏
= β++β−++−+

α=λ
n

1j jpp1j10000
0k ))]}X...Xexp(1()Z(D)Z(M[exp{1

1)y|(L  

 

corresponds to ∏∏
∈

φ

∈

ρ−−=∝
Lj

j
Lj

jT )}texp(1{)t(FL , with the above parameters as previously 

defined. Thus, in this sense, the two likelihood functions are equivalent. 



5 EXTENSIONS OF THE DISPOSITION MODEL   
__________________________________________________________________________________________ 

21 

 
5 Extensions of the disposition model 
 

In Chapter 4, we concerned ourselves with the non-nested disposition model. Consideration of 

the nested cases of the disposition model are to be the subjects of this chapter. 

 

 

5.1  First level nesting 

 

Consider a binary outcome Y = 1 or 0, with q 0  group-specific covariates, )Z,...,Z(Z
0q001

T
0 = , 

q subgroup-specific covariates, )Z,...,Z(Z iq1i
T
i = , m,...,1i = , and p individual-specific 

covariates, )X,...,X(X ijp1ij
T
ij = , m,...,1i = , in,...,1j = , measured on several individuals. 

Bonney (1998) considered three types of dispositions here: the group (cluster) disposition, δ 0 , 

which is determined by the group-specific covariates, Z0 , the subgroup disposition, δ i , 

m,...,1i = , which is determined by the group-specific covariates, Z0 ,  and the subgroup-

specific covariates, Zi , m,...,1i = , and the individual disposition, δ ij , m,...,1i = , in,...,1j = , 

which is determined by the group-specific covariates, Z0, the subgroup-specific covariates, 

Zi , m,...,1i = , and the individual-specific covariates, Xij , m,...,1i = , in,...,1j = . 

 

Then, δ 0  and δ i  are given by 

                                                                 δ
µ
α0

0

0

=  (5.1.1)  

 

and 
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                                                                 δ
µ
αi

i

i

= , (5.1.2) 

i = 1,…,m, where µ 0  is the group baseline disposition under no aggregation, µ i  is the 

subgroup baseline disposition under no aggregation, α 0  is the relative disposition with 

respect to the group and α i  is the relative disposition with respect to subgroup i, i = 1,…,m.  

 

The logit of the individual disposition is then  

 

               )X(W)Z(D)Z(M)Z(D)Z(M
1

log ijijiiii0000
ij

ij ++++=
δ−

δ
 =: ijθ , (5.1.3) 

 

i = 1,…,m, j = 1,…, in , where 

                                                     M Z0 0
0

01
( ) log=

−
µ
µ

 (5.1.4) 

is the cluster logit mean risk, 

                                              D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ
δ

µ
µ

 (5.1.5) 

 

is the excess cluster logit disposition due to dependence among members of the group, 

 

                                             M Zi i
i

i

( ) log log=
−

−
−

µ
µ

δ
δ1 1
0

0

, (5.1.6) 
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i = 1,…,m, is the excess on the logit scale of the mean risk in subgroup i above that due to the 

cluster disposition,  

                                              D Zi i
i

i

i

i

( ) log log=
−

−
−

δ
δ

µ
µ1 1

, (5.1.7) 

i = 1,…,m, is the excess on the logit scale of the disposition in subgroup i that cannot be 

explained by the overall cluster disposition and the differences in µ i , i = 1,…,m, and  

                                                               W Xij ij( ) , (5.1.8) 

i = 1,…,m, j = 1,…, in , is a function of the individual-specific covariates. 

 

From (5.1.4) - ( 5.1.7), it follows that 

µ 0
0 0

1
1

=
+ −exp{ [ ( )]}M Z

, δ 0
0 0 0 0

1
1

=
+ − +exp{ [ ( ) ( )]}M Z D Z

, 

µ i
i iM Z D Z M Z

=
+ − + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( )]}

, i = 1,…,m, 

                        δ i
i i i iM Z D Z M Z D Z

=
+ − + + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( ) ( )]}

, i = 1,…,m, (5.1.9) 

and therefore 

                                   α
µ
δ0

0

0

0 0 0 0

0 0

1
1

= =
+ − +

+ −
exp{ [ ( ) ( )]}

exp{ [ ( )]}
M Z D Z

M Z
, (5.1.10) 

                     α
µ
δi

i

i

i i i i

i i

M Z D Z M Z D Z
M Z D Z M Z

= =
+ − + + +

+ − + +
1

1
0 0 0 0

0 0 0 0

exp{ [ ( ) ( ) ( ) ( )]}
exp{ [ ( ) ( ) ( )]}

, (5.1.11) 

i = 1,…,m, and 
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,
)]}X(W)Z(D)Z(M)Z(D)Z(M[exp{1

1
)exp(1

1

ijijiiii0000ij
ij ++++−+

=
θ−+

=δ

 (5.1.12) 

i = 1,…,m, j = 1,…, in . 

 

With these, the joint probability for the first level nesting becomes 

 

P Y y Y y ymn mn ij
j

n

i

m

i i

i

( ,..., ) ( ) ( )11 11 0
11

1 1= = = − −
==
∏∏α  

                                           + α α α δ δ0
1

111

1 1 1( ) ( ) ( )− − + −








−

===
∏∏∏ i ij i ij

y
ij

y

j

n

j

n

i

m

y ij ij
ii

. (5.1.13) 

 

The derivation of the joint distribution can be found in Bonney (1998). Explicit 

parameterisations for M Z0 0( ) , D Z0 0( ) , M Zi i( )  and  D Zi i( )  are obtained by the linear 

models 

                                             M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ , (5.1.14) 

                                             D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ , (5.1.15) 

                                                  iqq1i1ii Z...Z)Z(M ξ++ξ= , (5.1.16) 

i = 1,…,m, and 

                                                  D Z Z Zi i i q iq( ) ...= + +γ γ1 1 , (5.1.17) 

i = 1,…,m. 
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The set of parameters to be determined in the model is 

),...,,,...,,,...,,,...,,,...,(),,( p1q1q000q1q000 00
ββγγγγξξξξ=βγξ=λ . 

 

If 1i =α  or 0)Z(D ii = , i = 1,…,m, Equation (5.1.13) reduces to the non-nested case. Also, if 

10 =α  and 1i =α , or equivalently, if 0)Z(D 00 =  and 0)Z(D ii = , Equation (5.1.13) reduces 

to the independence case. 
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5.2  Second level nesting 

 

Consider a binary outcome Y = 1 or 0, with q 0  primary-group-specific covariates (i.e., 

cluster-specific covariates), )Z,...,Z(Z
0q001

T
0 = , iq  secondary-group-specific covariates (i.e., 

subgroup-specific covariates), )Z,...,Z(Z
iiq1i

T
i = , m,...,1i = , ijq  tertiary-group-specific 

covariates, )Z,...,Z(Z
ijijq1ij

T
ij = , m,...,1i = , in,...,1j = , and p unit-specific covariates, 

)X,...,X(X ijhp1ijh
T
ijh = , m,...,1i = , in,...,1j = , ijn,...,1h = , measured on several units. Four 

types of dispositions are considered here: the group (cluster) disposition, δ 0 , which is 

determined by the group-specific covariates, Z0 , the subgroup disposition, δ i , m,...,1i = , 

which is determined by the group-specific covariates, Z0 ,  and the subgroup-specific 

covariates, Zi , m,...,1i = , the tertiary-group disposition, ijδ , which is determined by the 

primary-group-specific covariates, Z0 ,  the secondary-group-specific covariates, Zi , and the 

tertiary-group-specific covariates, ijZ , and the unit disposition, ijhδ , m,...,1i = , in,...,1j = , 

ijn,...,1h = , which is determined by the primary-group-specific covariates, Z0 , the 

secondary-group-specific covariates, Zi , the tertiary-group-specific covariates, ijZ , and the 

unit-specific covariates, ijhX , m,...,1i = , in,...,1j = , ijn,...,1h = . 

 

We define δ 0 , δ i  and δ ij  as follows: 

                                                           δ
µ
α0

0

0

= , (5.2.1) 

                                                           δ
µ
αi

i

i

= , (5.2.2) 

m,...,1i = , and 
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                                                          δ
µ

αij
ij

ij

= , (5.2.3) 

m,...,1i = , in,...,1j = , where µ 0  is the primary group baseline disposition under no 

aggregation, µ i  is the secondary group baseline disposition under no aggregation, 

µ ij  is the tertiary group baseline disposition under no aggregation, α 0  is the relative 

disposition with respect to the primary group, α i  is the relative disposition with respect to the 

secondary group and α ij  is the relative disposition with respect to the tertiary group. 

 

The logit of the unit disposition is decomposed as  

 

ijh

ijh

1
log

δ−

δ
 = M Z0 0( )  + D Z0 0( )  + M Zi i( )  + D Zi i( )  + )Z(M ijij  + )Z(D ijij  + )X(W ijhijh  

              =: ijhθ , (5.2.4) 

 

m,...,1i = , in,...,1j = , ijn,...,1h = , where  

 

                                                           M Z0 0
0

01
( ) log=

−
µ
µ

 (5.2.5) 

is the cluster logit mean risk, 

                                                    D Z0 0
0

0

0

01 1
( ) log log=

−
−

−
δ
δ

µ
µ

 (5.2.6) 
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is the excess cluster logit disposition due to dependence among members of the group, 

 

                                                   M Zi i
i

i

( ) log log=
−

−
−

µ
µ

δ
δ1 1
0

0

, (5.2.7)  

 

m,...,1i = , is the excess on the logit scale of the mean risk in secondary group i above that 

due to the cluster disposition,  

 

                                                   D Zi i
i

i

i

i

( ) log log=
−

−
−

δ
δ

µ
µ1 1

, (5.2.8) 

 

m,...,1i = , is the excess on the logit scale of the secondary group i disposition that cannot be 

explained by the overall primary group disposition and the differences in µ i ,  

 

                                                   
i

i

ij

ij
ijij 1

log
1

log)Z(M
δ−

δ
−

µ−

µ
= , (5.2.9)  

 

m,...,1i = , in,...,1j = , is the excess on the logit scale of the mean risk in the tertiary group j 

above that due to the secondary group disposition, 

 

                                                  
ij

ij

ij

ij
ijij 1

log
1

log)Z(D
µ−

µ
−

δ−

δ
= , (5.2.10)  
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m,...,1i = , in,...,1j = , is the excess on the logit scale of the tertiary group disposition that 

cannot be explained by the overall cluster disposition, the subgroup disposition and the 

differences in ijµ , and   

                                                                  )X(W ijhijh , (5.2.11) 

 

m,...,1i = , in,...,1j = , ijn,...,1h = , is a function of the unit-specific covariates. 

 

From (5.2.5) - (5.2.10), we have 

 

µ 0
0 0

1
1

=
+ −exp{ [ ( )]}M Z

, δ 0
0 0 0 0

1
1

=
+ − +exp{ [ ( ) ( )]}M Z D Z

, 

µ i
i iM Z D Z M Z

=
+ − + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( )]}

, m,...,1i = , 

δ i
i i i iM Z D Z M Z D Z

=
+ − + + +

1
1 0 0 0 0exp{ [ ( ) ( ) ( ) ( )]}

, m,...,1i = ,  

)]}Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijiiii0000
ij ++++−+
=µ , 

  

m,...,1i = , in,...,1j = , and 

)]}Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijijijiiii0000
ij +++++−+
=δ , 

 (5.2.12) 

m,...,1i = , in,...,1j = . 
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Hence, 

                                          α
µ
δ0

0

0

0 0 0 0

0 0

1
1

= =
+ − +

+ −
exp{ [ ( ) ( )]}

exp{ [ ( )]}
M Z D Z

M Z
, (5.2.13) 

 

                        α
µ
δi

i

i

i i i i

i i

M Z D Z M Z D Z
M Z D Z M Z

= =
+ − + + +

+ − + +
1

1
0 0 0 0

0 0 0 0

exp{ [ ( ) ( ) ( ) ( )]}
exp{ [ ( ) ( ) ( )]}

, (5.2.14) 

 

m,...,1i = , 

 

  
)]}Z(M)Z(D)Z(M)Z(D)Z(M[exp{1

)]}Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1

ijijiiii0000

ijijijijiiii0000

ij

ij
ij ++++−+

+++++−+
=

δ

µ
=α , (5.2.15) 

 

m,...,1i = , in,...,1j = , and  

 

}exp{1
1

ijh
ijh θ−+
=δ  

       = 
)]}X(W)Z(D)Z(M)Z(D)Z(M)Z(D)Z(M[exp{1

1

ijhijhijijijijiiii0000 ++++++−+
,  

 (5.2.16) 

m,...,1i = , in,...,1j = , ijn,...,1h = . 
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The joint probability for a cluster is 

 

∏∏∏
= = =

−α−===
m

1i

n

1j

n

1h
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                                           + 
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
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
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

δ−δα ∏
=

−
ij

ijhijh

n

1h

y1
ijh

y
ijhij )1( . (5.2.17) 

 

The following parameterisations are considered:  

 

                                           M Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +ξ ξ ξ , (5.2.18) 

                                           D Z Z Zq q0 0 00 01 01 0 00 0
( ) ...= + + +γ γ γ , (5.2.19) 

                                                
iiqq1i1ii Z...Z)Z(M ξ++ξ= , (5.2.20) 

m,...,1i = , 

                                               
iiqq1i1ii Z...Z)Z(D γ++γ= ,  (5.2.21) 

m,...,1i = , 

                                             
ijijqq11ij11ijij Z...Z)Z(M ξ++ξ= , (5.2.22) 

m,...,1i = , in,...,1j = , and 

                                            
ijijqq11ij11ijij Z...Z)Z(D γ++γ= , (5.2.23) 
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m,...,1i = , in,...,1j = . 

 

The set of parameters to be determined in the model is therefore 

),...,,,...,,,...,,,...,,,...,,,...,,,...,(),,( p1q111q1q000q111q1q000 iji0iji0
ββγγγγγγξξξξξξ=βγξ=λ . 

 

If 1ij =α  or 0)Z(D ijij = , m,...,1i = , in,...,1j = , Equation (5.2.17) reduces to the first level 

nesting. If 1i =α  and 1ij =α , or equivalently, if 0)Z(D ii =  and 0)Z(D ijij = , Equation 

(5.2.17) reduces to the non-nested case. Finally, if 10 =α , 1i =α  and 1ij =α , or 

0)Z(D 00 = , 0)Z(D ii = and 0)Z(D ijij = , Equation (5.2.17) reduces to the independence 

case. 
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6  Inference 
 

The method of maximum likelihood is used to determine estimates of the unknown model 

parameters, ),,( βγξ=λ , and make inference about them. Since closed-form solutions are not 

possible here, the Newton-Raphson iteration method is applied to obtain estimates of the 

parameter vector. The Newton-Raphson method requires the first and second derivatives of 

the log-likelihood functions. To estimate the parameters in the model, the joint function of all 

the clusters is required, but there is no loss of generality if the joint function of a cluster is 

considered. Unless otherwise stated, the estimation procedures developed apply to the 

correlated Weibull regression model.  

 

 

6.1  Parameter estimation for the non-nested disposition model 
 

Denote the likelihood function of the joint probability in Equation (4.9) by )y|(Lk λ , 

K,...,1k = : 

 

∏∏
=

−

=

δ−δα+−α−=λ
n

1j

y1
j

y
j0

n

1j
j0k

jj )1()y1()1()y|(L             

  

               = j0

n

1j
j0 L)y1()1( π

=

α+−α− ∏ , (6.1.1) 

 

where ∏
=

π =
n

1j
jj LL , jj y1

j
y
jj )1(L −δ−δ= , 

)]}X(W)Z(D)Z(M[exp{1
1

jj0000
j ++−+
=δ ,  

and 

)x...xexp(1)X(W jpp1j1jj β++β−= , ,n,...,1j =  for the correlated Weibull regression model.  
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This gives the score function 
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k = 1,…,K, where )(*
0 λα = ( ) )Z(M1)Z(D)1( 0000000 δλ

δ
α−δ+

δλ
δ

δ−−  (see Appendix D1 

for the derivation), 
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T ββ=β  and )X,...,X(X jp1j
T
j = , n,...,1j = .  

 

The Hessian matrix is given by 
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K,...,1k = , where  
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n,...,1j = . 

 

The Fisher Information matrix is 
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k = 1,…,K, where  
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n,...,1j = , and *
kA , *

kB , *
jU , and T*

jU  are the resulting values of kA , kB , jU , and T
jU  

evaluated at y = 0 (see also Bonney, 1998). 
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For the correlated logistic regression model, the following are the corresponding expressions 

for jδ , )(U j λ , )(H j λ  and )(I j λ : 
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See Appendix D4 for an equivalent form of the Fisher information matrix in Equation (6.1.4). 
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6.2    Parameter estimation for the first level nesting 
 

Denote the likelihood function of the joint probability in Equation (5.1.13) by )y|(Lk λ ,           

K,...,1k = : 
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m,...,1i = , in,...,1j = , for the correlated Weibull regression model.  

 

The corresponding score function is 
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k = 1,…K, where 
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The Fisher information matrix for the first level nesting is 
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k = 1,…,K, where 
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See Appendix D5 for an equivalent form of the Fisher information matrix in Equation (6.2.4). 
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6.3    Parameter estimation for the second level nesting 
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6.4 Properties of the score function 
 

Following Henze (1995) and Van der Vaart (1998), the following properties of the score 

function must be satisfied, under the regularity conditions, in order for the maximum 

likelihood estimators to be asymptotically optimal: 

 

(a) E[U(λ)] = 0, 

(b) Var[U(λ)] = I(λ). 

 

Proofs: 

 

6.4.1 The independence case: 

 

Let n be the number of observations in a cluster and n1 Y,...,Y  independent and identically 

distributed random variables with common distribution function: 
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j
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)]}X(W)Z(M[exp{1
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=δ , ,n,...,1j =   

 

)x...xexp(1)X(W pp11jj β++β−=  for the correlated Weibull regression model 

and 

pp11jj x...x)X(W β++β=  for the correlated logistic regression model. 

 

It follows that jj y1
j

y
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Then, 
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  = T)1(
j
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j )(I  (see Equation (6.1.4)). 
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By reformulating and inserting (6.1.1) in the above expression, we obtain  
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Grouping all terms in Lk , we obtain 

 

Var Uk( )  = k
y

T*
0

*
0k

T*
0

m

1i
i

Tm

1i
i

*
0k

Tm

1i
i

m

1i
ik LAUUBUUB

~

∑ ∑∑∑∑












αα+











α







+








α+

















====

  

       - ∑ ∑∑∏∏




























−α−

=== =
~

i

y

Tm

1i
i

m

1i
ik

m

1i

n

1j
ij0 UUB)y1()1(  

      - ∑ ∑∑∏∏























α







+








α−

=== =
~

i

y

T*
0

m

1i
i

Tm

1i
i

*
0k

m

1i

n

1j
ij UUB)y1(  

       - ( ) * *

~

1
11

0 0−






==

∏∏∑ y Aij
j

n

i

m

k
T

y

i

α α  

 

      = ∑ ∑∑∏




































α

===
~
y

Tm

1i
i

m

1i
i

m

1i
i0 UUL  + ∑ ∑∏





























αα

==
~
y

Tm

1i
i

m

1i
i

*
00 UL  

      + ∑ ∑∏
























αα

==
~
y

m

1i
i

m

1i
i

T*
00 UL  + ( )∑ ∏∏ 








−−α

= =
π

~

i

y

m

1i

n

1j
iji0 y1L  

      - 
Tm

1i

*
i

m

1i

*
i

*
k0 UUB)1( 
















α− ∑∑

==

 - 











α







+








α ∑∑

==

T*
0

m

1i

*
i

Tm

1i

*
i

*
0

*
k UUB  

- A k
T* * *α α0 0  

 

 

 



6 INFERENCE 
__________________________________________________________________________________________ 

55 

 

= ∑ ∑∑∏
















δλ
δ









δλ
δ









α

===
~
y

i

m

1i
Ti

m

1i

m

1i
i0 LlogLlogL  

+ ∑ ∏∏
















δλ
δ









αα

==
~
y

m

1i
iT

m

1i
i

*
00 LlogL  

+ ∑ ∏∏
















δλ
δ









αα

==
~
y

m

1i
i

m

1i
i

T*
00 LlogL  + 0 - 

Tm

1i

*
i

m

1i

*
i

*
k0 UUB)1( 
















α− ∑∑

==

 

- 











α







+








α ∑∑

==

T*
0

m

1i

*
i

Tm

1i

*
i

*
0

*
k UUB  - A k

T* * *α α0 0  

 

 = ∑ ∏∏∏ 



























δλ
δ

















δλ
δ









α

===
~
y

m

1i
iT

m

1i
i

m

1i
i0 LlogLlogL  + 

444 3444 21

∑ ∏

















δλ
δ

αα












δλ

δ
=

=

=

∑ ∏

y
~

m

1i
iT

~

L

y

m

1i
iT

*
00 L  

+ 

44 344 21

∑ ∏

















δλ
δ

αα












δλ
δ

=

=

=

∑ ∏

y
~

m

1i
i

~

L

y

m

1i
i

*T
00 L  - 

Tm

1i

*
i

m

1i

*
i

*
k0 UUB)1( 
















α− ∑∑

==

 

  - 











α







+








α ∑∑

==

T*
0

m

1i

*
i

Tm

1i

*
i

*
0

*
k UUB  - T*

0
*
0

*
kA αα  

 

 = ∑ ∏∏∏




































δλ
δ

















δλ
δ

α
−

===
~
y

1m

1i
i

Tm

1i
i

m

1i
i0 LLL  + 0 + 0 

- 
Tm

1i

*
i

m

1i

*
i

*
k0 UUB)1( 
















α− ∑∑

==

 - 











α







+








α ∑∑

==

T*
0

m

1i

*
i

Tm

1i

*
i

*
0

*
k UUB  

- A k
T* * *α α0 0  

 

= ∑
=

λα
m

1i
i0 )(I  - T*

0
*
0

*
kA αα  - 

Tm

1i

*
i

m

1i

*
i0

*
k UU)1(B 
















α− ∑∑

==

 

 



6 INFERENCE 
__________________________________________________________________________________________ 

56 

 

- 











α







+








α ∑∑

==

T*
0

m

1i

*
i

Tm

1i

*
i

*
0

*
k UUB  = I k ( )λ  

 

(see Ibragimov and Has’minskii, 1981; Eberl, 1982). 

 

 

6.4.4 Second level nesting 
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Proceeding in the same manner as in the first level nesting, we obtain 
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Following the same steps as in the first level nesting, we obtain 
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Thus in all the four cases, the expectation of the score function is equal to zero and the 

variance of the score function is equal to the Fisher information matrix. With these proofs, the 

maximum likelihood estimates will be consistent, under the usual regularity conditions. This 

is because the condition for consistency (that the mean of the score statistic be 0) is unaffected 

by dependence (see the suggestions by Smith (1992) in the discussion of Liang et al. (1992)). 

Also, under fairly mild regularity conditions, the sampling distribution of the vector of 

parameters, λ̂ , approaches a normal distribution as the sample size grows larger. That is, 
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 (Bickel, 1977). 
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In other words, the maximum likelihood estimators satisfy  

 

( ))(I,0N~)ˆ( 1 λλ−λ − . 

 

This implies that the maximum likelihood estimators are asymptotically optimal (Van der 

Vaart, 1998). 
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6.5  Tests of independence 
 

The null hypothesis of ‘no aggregation within a cluster’ is obtained by setting the relative 

disposition, )(λα , to one, or equivalently by setting the excess disposition due to aggregation, 

D(Z), to zero. The likelihood ratio test and the Wald’s test will be presented in this section to 

test for the presence or absence of familial aggregation of a disease. 

 

 

(a) The likelihood ratio test 

 

Consider the problem of testing the null hypothesis 0)Z(D:H0 =  versus the alternative 

0)Z(D:H1 ≠ , where D(Z) is the excess disposition due to aggregation. A likelihood ratio 

(LR) test statistic 

 

                                                           LR
L
L

= −






2 0

1

ln  (6.5.1) 

 

may be used for testing the hypothesis, where L1  is the maximised likelihood of the model in 

which all the parameters are estimated and L0  is the maximised likelihood from which the 

parameters are omitted (or set at some value). The likelihood ratio test statistic is 

asymptotically distributed as a chi-square with s degrees of freedom, where s is the difference 

in the number of parameters fitted between the full model and the reduced model (Wilks, 

1938). We reject the above hypothesis at the significance level α  if 

 

                                                               2
1,sLR α−χ> . (6.5.2) 
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(b) The Wald’s test 
 

Let ),,( βγξ=λ  be the vector of parameters, γ  being the parameters of interest and ξ  and β  

nuisance parameters. Suppose that we wish to test the null hypothesis 0:H0 =γ  against the 

alternative 0:H1 ≠γ , where ),...,( q0
T γγ=γ  is the vector of parameters that characterise 

dependence. Further, let )ˆ,ˆ(I γγγγ  denote the ((q+1)x(q+1)) sub-matrix of the information 

matrix I( )λ  corresponding to γ . The quadratic form 

 

                                               )0ˆ)(ˆ,ˆ(I)0ˆ(W T −γγγ−γ= γγ  (6.5.3) 

 

provides a Wald statistic, where $γ  is a set of maximum likelihood estimators of the vector 

parameter γ . The test statistic has an asymptotic chi-square distribution with (q+1) degrees of 

freedom, if the null hypothesis is true (Garthwaite, 1995). This is equivalent to stating that 

)0ˆ( −γ  has an asymptotic multivariate normal distribution with mean 0 and variance-

covariance matrix )ˆ,ˆ(I 1 γγ−
γγ . The hypothesis is rejected for large values of W. 

 

For a single parameter, jγ , say, the standard normal test statistic 

 

                                                          
]ˆ[Var

ˆ
Z

j

j
j

γ

γ
=  (6.5.4) 

 

is used. jZ  has an asymptotic N(0,1) distribution, if the null hypothesis that 0j =γ  is true 

(Kleinbaum, 1994). The hypothesis is rejected at significance level α  if 

 

                                                              |Z| j
21

u α−
> . (6.5.5) 
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6.6  Comparison of model fit 
 

The Akaike’s information criterion (Akaike, 1974) is a tool used for the comparison of 

competing models. It is defined as  

 

                                     )ˆ(AIC λ  = (-2)log(maximum likelihood) + 2k, (6.6.1) 

 

where λ̂  is the maximum likelihood estimate of the vector of parameters, λ , )ˆ(AIC λ  is an 

estimate of a measure of fit of the model, and k is the number of estimated parameters in the 

model.  

 

The more parameters a model contains, the less accurately they can be estimated. Thus, the 

term 2k adjusts for the increase of the variability of the estimates when the number of 

parameters in the model is increased. When there are several models, the model with the 

minimum AIC gives the best fit to the data. 

 

The justification of the use of the maximum likelihood as a criterion of “fit” of a model is that 

its estimates are, under certain regularity conditions, asymptotically efficient. Thus the like-

lihood function tends to be a quantity which is most sensitive to the deviations of the model 

parameters from the true values (Akaike, 1974). 
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7 Application to real data sets 
 

In this chapter, two examples will be used to illustrate the methods described in Chapters 4 

and 5. The main objective of these analyses is to assess the presence of familial aggregation 

of diseases. In Section 7.1, details of the two data sets will be reported. Section 7.2 gives 

results of the oesophageal cancer data. The results of the breast cancer data will be given in 

Section 7.3. 

 

 

7.1 Description of the data sets 
 

Data were collected in the Yangcheng County, Shanxi Province, the Peoples Republic of 

China, designed to assess the presence of familial aggregation of oesophageal cancer. There 

were 2951 clusters (families), parents and siblings forming two subgroups of individuals. 

Cluster sizes were distributed as follows: 

 

 Cluster size     3       4       5       6       7       8       9      10    11   12   13 

 Number of clusters 623   819   659   412   232   129   43    23     8     2     1 

 

The independent variables were smoking status, alcohol, age, sib size (sibsize) and mean sib 

age (meansibage). There were no group-specific covariates. The subgroup-specific covariates 

consisted of sibsize and meansibage, and the individual-specific covariates consisted of 

smoking status, alcohol and age. Smoking status was coded as 0 for non-smokers and 1 for 

smokers, alcohol was coded as 0 for non-drinkers and 1 for drinkers, and age was measured in 

years. The response variable Y was coded as 0 for unaffected and 1 for affected. 

 

In the second example, data are available on 240 families with breast cancer in the national 

database and at the Howard University, Washington, D. C., U.S.A.. The data set comprises 

family data and epidemiology data. The variables to be assessed are annual household income 

(hinc), age at time of examination (ageat), obesity, and tumour of the breast other than breast 

cancer (tumour). Family-specific data consist of hinc in thousands 
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(<5, 5-15, 15-25, 25-35, 35-50, 50+), whereas subject-specific data consist of ageat in years 

and obesity (0 - not obese ; 1 - obese), and unit or breast-specific data consist of tumour        

(0 – absence; 1 - presence). The response variable indicates whether or not a breast is affected 

with breast cancer. This is coded as 0 for unaffected and 1 for affected. Two levels of nesting 

exist in these data: two breasts are nested within each subject and subjects are nested within 

families (compare with the second example of Qaqish and Liang, 1992). The objective of the 

analysis is to assess the presence of familial aggregation of breast cancer. 
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7.2    Analysis of the oesophageal cancer data 
 

7.2.1  Descriptive analysis 
 

The oesophageal cancer data consists of the variables age, alcohol, smoking status, sib size 

(sibsize) and mean sib age (meansibage). The results from the data analysis are summarised in 

Appendices E.1 and F.1. The sample size in the study is 14,310, consisting of 12,260 

unaffected people and 2,050 affected people (see Table E.1.3). The ages of individuals in this 

study lie between 1 and 136. The mean age is 48.26 with standard deviation 18.18 (see Table 

E.1.1). Figure F.1.1 shows the distribution of age for the various age groups. The shaded area 

represents the proportion of affected people within the age groups. People within the ages 50 

and 60 have the most affected cases of oesophageal cancer. It appears that the distribution of 

affected people (the shaded area) is well approximated by a normal distribution with mean 

age 57.61 and standard deviation 9.47 (see Table E.1.2 and Figure F.1.4). This is contrary to 

the case of the variable meansibage in Figure F.1.2, where the distribution of affected people 

(the shaded region) has a long left tail. This observation is confirmed by the normal Q-Q plot 

in Figure F.1.5. In Figure F.1.5, one clearly observes the deviation from a normal distribution, 

whereas the points on the plot in Figure F.1.4 form approximately a linear pattern. In other 

words, the distribution of age approximately matches the theoretical distribution. 

 

The bar chart in Figure F.1.3 displays the distribution of sib sizes in the study. Families with 

two or three sibs have the highest frequency and families with eleven sibs have the lowest 

frequency. The mean sib size in the study is 3.37 (see Table E.1.1). Table E.1.3 gives 

descriptive statistics of the categorical data (i.e., the variables smoking status, alcohol and 

status). 
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7.2.2 Model for the non-nested disposition model 
 

In this subsection, we shall determine the correlated logistic and the correlated Weibull 

regression models. We shall also compare the model fit of the two regression models. 

 

We note that there are no group-specific covariates in the data set. Therefore, the cluster logit 

mean risk, )Z(M 00 , and the excess cluster logit disposition due to dependence among 

members of a group, )Z(D 00 , become 0000 )Z(M ξ=  and 0000 )Z(D γ= , respectively (see 

Equations (4.11) and (4.12)). We also note that in the non-nested case aggregations in sub-

groups are not considered. The only variables in the model are therefore the individual-

specific covariates: smoking status ( )X1 , alcohol ( )X2  and age ( )X3 . Thus, the function that 

describes the effects of the individual-specific covariates, )X,X,X(X 321
T = , becomes 

)XXXexp(1)X(W 3j32j21j1jj β+β+β−= , j = 1,…,n, for the correlated Weibull regression 

model and 3j32j21j1jj XXX)X(W β+β+β= , j = 1,…,n, for the correlated logistic regression 

model, for the jth individual. The set of parameters to be determined is therefore 

),,,,(),,( 3210000 βββγξ=βγξ=λ . 

 

Table 7.2.2.1 presents the results of the correlated Weibull regression model (left panel) and 

of the correlated logistic regression model (right panel). The table shows regression parameter 

estimates, standard deviations of the parameter estimates and Wald statistics for determining 

whether the parameters in the model are needed. 

 

We note that as opposed to the correlated logistic regression model, where a positive value of 

the coefficient of the individual-specific covariate indicates increased probability for a 

disease, a negative value of the coefficient of the individual-specific covariate is indicative of 

increased probability for a disease for the correlated Weibull regression model. For both 

models, a positive value of the coefficient of the group-specific covariate increases the 

probability for a disease. For example, the negative coefficient of age in the correlated 

Weibull regression model indicates that age increases the probability for oesophageal cancer. 

All the coefficients in Table 7.2.2.1 are statistically significant in both the correlated Weibull  
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regression model and the correlated logistic regression model, when compared to the (1- 2
α )th 

quantile of the standard normal distribution at an α-level of 0.05 (i.e., 96.1u 975.0 = ). 

 

Table 7.2.2.1: Parameter estimates, standard deviations and Wald statistics using the 

correlated Weibull and the correlated logistic regression models  

Variable Parameter Correlated Weibull regression model Correlated logistic regression model 

  Parameter 

estimate 

Standard 

deviation

Wald 

statistic 

Parameter 

estimate 

Standard 

deviation 

Wald 

statistic 

constant 00ξ  -2.4630 0.0387 63.6434 -3.7617 0.0934 40.2752 

constant 00γ  0.1272 0.0319 3.9875 0.0510 0.0250 2.0400 

smoking 1β  -0.6657 0.2673 2.4905 0.5006 0.0597 8.3853 

alcohol 2β  2.1720 0.2581 8.4153 -1.1208 0.1701 6.5891 

age 3β  -0.0262 0.0027 9.7037 0.0364 0.0016 22.7500 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

To test the hypothesis of ‘no aggregation of oesophageal cancer in a cluster’, we test the 

hypothesis that 0)Z(D 00 = , or more specifically, 000 =γ . We do this by performing the 

likelihood ratio test and the Wald’s test. 

 

For the correlated Weibull regression model, the log likelihood under the null hypothesis is 

0479.5673Llog 0 −=  and the log likelihood based on the full data is 1874.5665Llog 1 −= . 

The likelihood ratio test statistic is therefore WLR  = -2[-5673.0479-(-5665.1874)] 

= 15.7210, which is significant when compared to a chi-square distribution with one degree of 

freedom )8415.3.,e.i( 2
1 =χ . For the correlated logistic regression model, the corresponding 

values are 8614.5494Llog 0 −=  and 7594.5492Llog 1 −= .  The likelihood ratio test statistic 

is therefore LLR  = -2[-5494.8614 – (-5492.7594)] = 4.2040, which is also significant (see 

Section 6.5). 
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We now perform the Wald’s tests. In Table 7.2.2.1, the value of 00γ  is 0.1272 for the 

correlated Weibull regression model. The value of the Wald statistic is 9875.3ZW = , and the 

critical value is 96.1u 975.0 = . Because WZ  > 975.0u , the null hypothesis will be rejected (see 

Section 6.5). The conclusion is that there is evidence of familial aggregation of oesophageal 

cancer. For the correlated logistic regression model, the Wald statistic is 0400.2ZL = . Since 

the Wald statistic is large, the null hypothesis will be rejected, indicating that there is 

significant aggregation of oesophageal cancer in the families. 

 

We finally compare the model fit of the correlated Weibull regression model with that of the 

correlated logistic regression model using the Akaike’s Information Criterion (AIC) (Akaike, 

1974). 

 

The AIC of the correlated Weibull regression model is 

1W Llog2AIC −= + 2(number of estimated parameters) = 11330.3748 + 10 = 11340.3748, 

 

and that of the correlated logistic regression model is 

1L Llog2AIC −= + 2(number of estimated parameters) = 10985.5187 + 10 = 10995.5187. 

 

The correlated logistic regression model has minimum AIC, and therefore fits the 

oesophageal cancer data better (see Section 6.6). 
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7.2.3 Model for the first level nesting  
 

Since there are no group-specific covariates in the data set, the cluster logit mean risk, 

)Z(M 00 , and the excess cluster logit disposition due to dependence among members of a 

group, )Z(D 00 , become 0000 )Z(M ξ=  and 0000 )Z(D γ= , respectively (see Equations 

(5.1.14) and (5.1.15)). Two subgroups are nested within each family: parents form the first 

subgroup (i.e., i = 1) and siblings the second (i.e., i = 2). No variables are available for 

subgroup 1. The variables for subgroup 2 are sibsize and meansibage. Therefore, the excess 

on the logit scale of the mean risk in group 2 above that due to the cluster disposition, 

)Z(M 22 , and the excess on the logit scale of the disposition within group 2 that cannot be 

explained by the overall cluster disposition and differences in baseline disposition under no 

aggregation in the group, )Z(D 22 , become 22221122 ZZ)Z(M ξ+ξ=   

and D Z Z Z2 2 1 21 2 22( ) = +γ γ , respectively (see Equations (5.1.16) and (5.1.17)). 

 

The individual-specific covariates are smoking status )X( 1 , alcohol )X( 2  and age )X( 3 . 

Thus, the function that describes the effects of the individual-specific covariates becomes 

)XXXexp(1)X(W 3ij32ij21ij1ijij β+β+β−= , i = 1,…,m, j = 1,…, in , for the correlated Weibull 

regression model and 3ij32ij21ij1ijij XXX)X(W β+β+β= , i = 1,…,m, j = 1,…, in , for the 

correlated logistic regression model, for the jth individual in group i. The set of parameters to 

be estimated is therefore ),,,,,,,,(),,( 32121002100 βββγγγξξξ=βγξ=λ . 

 

Table 7.2.3.1 provides analysis of the oesophageal cancer data. The table gives maximum 

likelihood estimates, standard deviations and Wald statistics for the correlated Weibull 

regression model (left panel) and the correlated logistic regression model (right panel). 
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Table 7.2.3.1: Parameter estimates, standard deviations and Wald statistics using the 

correlated Weibull and the correlated logistic regression models  

Variable Parameter Correlated Weibull regression model Correlated logistic regression model 

  Parameter

estimate 

Standard 

deviation 

Wald 

statistic 

Parameter

estimate 

Standard 

deviation 

Wald 

statistic 

constant 00ξ  -4.4426 0.1154 38.4974 -4.6036 0.1243 37.0362 

sibsize 1ξ  0.0172 0.0146 1.1781 0.0183 0.0152 1.2039 

meansibage 2ξ  0.0412 0.0019 21.6842 0.0365 0.0021 17.3810 

constant 00γ  -0.0965 0.0342 2.8216 -0.1042 0.0342 3.0468 

sibsize 1γ  -0.0117 0.0149 0.7852 -0.0179 0.0123 1.4553 

meansibage 2γ  0.0077 0.0015 5.1333 0.0081 0.0013 6.2308 

smoking 1β  -1.2751 0.3082 4.1372 0.5812 0.0654 8.8869 

alcohol 2β  2.2346 0.3157 7.0782 -0.9633 0.1768 5.4485 

age 3β  -0.0247 0.0046 5.3696 0.0191 0.0020 9.5500 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

The negative coefficient of age in the correlated Weibull regression model indicates that age 

increases the probability for oesophageal cancer. With the exception of 1ξ  and 1γ , all the 

coefficients of both regression models are statistically significant.  

 

The hypotheses to be tested are 0:H0 =γ  and 0:H1 ≠γ . The following critical values will 

be used in this subsection for the rejection of the null hypothesis: 96.1u 975.0 =  for the 1-

parameter Wald’s test and 8147.72
95.0,3 =χ  for the global tests. 

 

The Wald’s test rejects the null hypotheses '0' 00 =γ  and '0' 2 =γ  of both the correlated 

Weibull regression model and the correlated logistic regression model, since the test statistics 

are large. The conclusion is that there is significant aggregation of oesophageal cancer in 

families and in siblings. It follows that the meansibage affects the familial aggregation of 

oesophageal cancer. On the other hand, the null hypothesis '0' 1 =γ  of both disposition  
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models cannot be rejected, since the test statistics are small. Hence, the sibsize does not affect 

the familial aggregation of oesophageal cancer. 

  

For the correlated Weibull regression model, the maximised log likelihood from which γ  is 

omitted is 6679.5361Llog 0 −= , and the full log likelihood is 3685.5323Llog 1 −= . The 

likelihood ratio statistic is therefore WLR  = -2[-5361.6679 – (-5323.3685)] = 76.5988.  

For the correlated logistic regression model, the corresponding values are 

7628.5353Llog 0 −=  and 0410.5309Llog 1 −= . The likelihood ratio statistic is therefore  

LLR  = -2[-5353.7628 – (-5309.0410)] = 89.4436. Thus, for both disposition models, 

significant familial aggregation is observed (see Section 6.5). 

 

The maximum likelihood estimate of the vector of parameters that characterise dependence,   

),,( 2100
T γγγ=γ , is the same for both disposition models. The maximum likelihood estimate 

of γ  is 
















=γ
−

−

−

3

2

1

10x1447.1
10x5510.5
10x7424.3

ˆ  and the estimated variance-covariance matrix is 

 

















−
−−

−
=γ

0000007.00000074.00000003.0
0000074.00000891.00000107.0

0000003.00000107.0000178.0
)ˆr(âv . 

 

The corresponding Wald statistic therefore has a value of 

7093.1275ˆ)]ˆr(â[vˆ)0ˆ)(ˆˆ(I)0ˆ(W 1TT =γγγ=−γγγ−γ= −
γγ , which is significant (see Section 6.5; 

Bickel and Doksum, 1977). Thus, the null hypothesis of no familial aggregation of 

oesophageal cancer can be rejected at the level 05.0=α .  

 

The AIC of the correlated Weibull regression model is 7370.10664AICW =  and that of the 

correlated logistic regression model is 0820.10636AICL = . The correlated logistic regression 

model minimises the AIC, and is therefore considered to be the more appropriate model.  
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7.3  Analysis of the breast cancer data 
 

7.3.1 Descriptive analysis 
 

The breast cancer data consists of the variables household income (hinc), obesity, age at time 

of examination (ageat), tumour and the response (bca). The nature of the data set necessitated 

the omission of the missing values before the descriptive analysis. Out of a total of 1198 

observations, only 510 (42.57%) had no missing values. Table E.2.1 gives the frequencies of 

the variables hinc, obesity, tumour and bca for individuals in the study. There were altogether 

510 individuals, consisting of 1020 breasts. The simple descriptive statistics of the variable 

ageat is given in Table E.2.2. This variable gives the ages at time of examination. If affected 

by breast cancer, it is evaluated as 

ageat = year of diagnosis – year of birth, 

otherwise it is evaluated as  

ageat = date of interview – year of birth. 

The average age at time of examination is 52.23, and the range of age at time of examination 

is 19 to 87. Figure F.2.1 presents a histogram of the variable ageat. The variable hinc has six 

levels having values 1, 2, 3, 4, 5 and 6. From the bar chart in Figure F.2.2, it can be seen that 

the fifth level of the variable hinc has the highest frequency. Families in the lowest income 

group have the lowest frequency. This corresponds to the first level of hinc. Table E.2.3 gives 

the distribution of breasts affected within subjects: 275 subjects have neither breasts affected, 

110 have the right breasts affected, 121 have the left breasts affected and 4 have both breasts 

affected. The table also gives the variation of breast cancer side with respect to obesity. For 

instance, subjects whose right breasts are affected with breast cancer (coded 1) and also have 

obesity (coded 1) are 35 in number. Subjects whose left breasts are affected with breast cancer 

but do not have obesity are 85 in number. The variation of breast cancer side with respect to 

annual household income and age at time of examination can be seen in Tables E.2.4 and 

E.2.5, respectively. The pie chart in Figure F.2.3 shows the distribution of the breast cancer 

side. 
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7.3.2 Model for the second level nesting  
 

The variables in the model are hinc ( )Z01 , ageat ( )Zij1 , obesity ( )Zij2 and tumour )X( 1ijh . 

That is, we have one group-specific covariate, two subject-specific covariates and one unit-

specific covariate. There are no subgroup-specific covariates. The linear models in Equations 

(5.2.18) – (5.2.23) can therefore be specified as follows:  

 

M Z Z0 0 00 01 01( ) = +ξ ξ , D Z Z0 0 00 01 01( ) = +γ γ , 0)Z(M ii = , 0)Z(D ii = , 

2ij121ij11ijij ZZ)Z(M ξ+ξ= , and 2ij121ij11ijij ZZ)Z(D γ+γ= . 

 

For the function that describes the effects of the unit-specific covariate, we have 

W X Xijh ijh ijh( ) exp( )= −1 1β  for the correlated Weibull regression model and 

W X Xijh ijh ijh( ) = β 1  for the correlated logistic regression model. 

 

The set of parameters to be determined in the model is  

    ),,,,,,,,(),,( 1211010012110100 βγγγγξξξξ=βγξ=λ . 

 

Parameter estimates and standard deviations of the estimates, along with Wald statistics are 

given in Table 7.3.2.1 for the correlated Weibull and the correlated logistic regression models. 

The function of the individual-specific covariates, )X(W ijhijh , is equal to zero, since no breast 

has a primary tumour other than breast cancer. Hence, the estimates for both regression 

models are the same. The parameter β  is fixed for computational reasons. The covariates of 

positive (negative) coefficients increase (decrease) the probability for breast cancer. 

 

For the 1-parameter Wald’s tests, the null hypothesis that γ j = 0  is rejected for 00γ , 01γ  and 

11γ . This is an indication of the existence of familial aggregation of breast cancer. On the 

other hand, the null hypothesis of γ j = 0  for 12γ  cannot be rejected at the level 05.0=α . 

Hence, obesity does not affect the familial aggregation of breast cancer. 
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Table 7.3.2.1: Parameter estimates, standard deviations of the estimates and Wald statistics 

  for the correlated Weibull and the correlated logistic regression models 

Variable Parameter Correlated Weibull and logistic regression models 

  Parameter estimate Standard deviation Wald statistic 

constant 00ξ  -3.9134 0.2759 14.1841 

hinc 01ξ  0.2791 0.0189 14.7672 

ageat 11ξ  0.0250 0.0034 7.3529 

obesity 12ξ  0.1275 0.1118 1.1404 

constant 00γ  -0.6350 0.1530 4.1503 

hinc 01γ  -0.0477 0.0105 4.5429 

ageat 11γ  -0.0290 0.0131 2.2137 

obesity 12γ  0.7268 0.9904 0.7338 

tumour β  --- --- --- 

 Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

For the global tests, the hypotheses to be tested are H 0 0:γ =  and H1 0:γ ≠ , where 

),,,( 12110100
T γγγγ=γ . 

 

Let log L0  = the maximised log-likelihood from which γ  is omitted, 

log L1 = the full log-likelihood and 

4877.92
4 =χ  (i.e., the critical value for the rejection of the null hypothesis). 

 

Then, the likelihood ratio statistic for the correlated Weibull and the correlated logistic 

regression models is LR = -2[ 10 LlogLlog − ]  = -2[-536.1829 – (-466.6963)] = 138.9732. 

Thus, significant familial aggregation is observed for both regression models. 
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The maximum likelihood estimate of γ  is 



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

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ˆ  and the estimated variance-

covariance matrix is 
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10x77.110x95.310x86.610x72.4
10x50.210x86.610x13.310x11.1

10x86.610x72.410x11.110x31.4

)ˆr(âv . 

 

The Wald statistic for H 0 0:γ =  has a value of 

2734.32ˆ)]ˆr(â[vˆ)0ˆ)(ˆ,ˆ(I)0ˆ(W 1TT =γγγ=−γγγ−γ= −
γγ . Since the Wald statistic is large, the 

null hypothesis will be rejected (see Section 6.5; Bickel and Doksum, 1977). The conclusion 

is that there is aggregation of breast cancer in families. 

 

Table 7.3.2.2 presents estimates of the parameters obtained by fitting Cox’s model, with 

standard deviations and Wald statistics for testing effects. 

 

Table 7.3.2.2: Parameter estimates, standard deviations of the estimates 

           and Wald statistics resulting from Cox’s model 

Variable Parameter Parameter

estimate 

Standard 

deviation 

Wald 

statistic 

hinc 1β  -0.0159 0.0196 0.8112 

ageat 2β  -0.0050 0.0020 2.5000 

obesity 3β  0.0441 0.0652 0.6764 

tumour 4β  --- --- --- 

Critical value for the rejection of the null hypothesis: 96.1u 975.0 = . 

 

The hypothesis to be tested is 0:H j0 =β  versus 0:H j1 ≠β . From Table 7.3.2.2, the 

covariate ageat is the only significant factor. The covariates hinc and obesity produce non- 
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significant effects, since the values of their Wald statistics are less than the critical value, 

96.1u 975.0 = . 

 

For the global null hypothesis 0:H 3210 =β=β=β , we obtain 6.9773 for the likelihood ratio 

statistic and 6.9874 for the Wald statistic, both values indicating non-significance when 

compared to a chi-square distribution with three degrees of freedom (i.e., 8147.72
95.0,3 =χ ). 
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8  Discussion 
 
The correlated Weibull and logistic regression models for correlated binary data have been 

presented. The objective of the analyses has been to assess familial aggregation of diseases. In 

Section 7.2, the model fit of the correlated Weibull regression model was compared to that of 

the correlated logistic regression model using the Akaike Information Criterion (AIC). The 

model that minimised the AIC was considered to give a better fit to the oesophageal cancer 

data. The correlated logistic regression model fitted the data better than the correlated Weibull 

regression model for both the non-nested and nested cases. On the whole, the correlated 

logistic regression model was computationally more feasible than the correlated Weibull 

regression model. The data processing was done using the SAS programming language, and 

computations were made in the C programming language.  

 

The problems associated with estimation as the level of nesting gets deeper have also been 

investigated and the performance of the nested disposition model compared with Cox’s model 

(Cox, 1972). The main disadvantage of the disposition model is that, with the exception of the 

unit-specific covariates, each covariate in the model produces two parameters. This results in 

the following problems: 

 

(1) The effect of a covariate can have different interpretations. For instance, in Table 7.3.2.1 

the covariate hinc increases the cluster logit mean risk, 01010000 Z)Z(M ξ+ξ= , whereas the 

same covariate decreases the excess cluster logit disposition due to dependence among 

members of the group, 01010000 Z)Z(D γ+γ= . Thus, the same variable hinc gives two 

opposing effects with regard to the probability for breast cancer, 

)]}Z(D)Z(M)Z(D)Z(M[exp{1
1

ijijijij0000
ijh +++−+
=δ . 

 

(2) The number of covariates that can be included in the model is seriously limited. In Section 

7.2, we could estimate up to nine parameters from five covariates, using the maximum 

likelihood method. An attempt to estimate more than nine parameters from five covariates 

(the fifth covariate finally excluded from the analysis) in Section 7.3 resulted in over-

identified parameters (i.e., parameters estimated in two or more linearly independent ways). 
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The disposition model however has the advantage that aggregations in families, due to 

common shared risks, and response probabilities can jointly be modelled. 
 

The problem of missing values is a point worth mentioning. If the size of the data set is large 

with few missing values, failure to omit the missing values has very little effect on the 

estimates of the parameters and their standard deviations. On the other hand, if the data set is 

small with many missing values as in the case of the breast cancer data, failure to omit the 

missing values leads to erroneous estimates of the parameters. There are, of course, methods 

that can be used to impute values for the missing data. In this dissertation, the missing values 

were omitted in accordance with the conventional approach in epidemiology (see Thomas and 

Gauderman, 1995). 
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APPENDIX 
 

Appendix A: Symbols 
 

Symbol Meaning 

D(Z)  the excess cluster logit disposition due to dependence among members 

E(U)  the expectation of U 

0H   null hypothesis 

1H   alternative hypothesis 

hH    the Hessian matrix for the h-th unit  

iH    the Hessian matrix for the ith subgroup  

jH    the Hessian matrix for the jth individual  

kH   the Hessian matrix for the kth cluster  

hI   the Fisher information matrix for the h-th unit  

iI   the Fisher information matrix for the ith subgroup  

jI   the Fisher information matrix for the jth individual  

kI   the Fisher information matrix for the kth cluster 

0L   the maximised likelihood of the reduced model 

1L   the maximised likelihood of the full model  

iL   the likelihood function for the ith subgroup 

kL   the likelihood function for the kth cluster 

LR  Likelihood ratio 

m  the number of subgroups in a cluster 

M(Z)  the cluster logit mean risk 

in   the number of individuals in subgroup i 

)Y(P j   the response probability of the jth individual 

UT  the transpose of U 

U*  the value of U evaluated at y = (y1,...,yn) = 0 

hU   the score function for the h-th unit 
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iU   the score function for the ith subgroup  

jU   the score function for the jth individual  

kU   the score function for the kth cluster  

Var(U)  the variance of U 

W(X)  the function of the individual-specifc covariates 

p1 X,...,X  p individual-specific covariates 

)Y,...,Y(Y n1
T =  a vector of n binary outcomes 

p1 Z,...,Z  q group-specific covariate vector 

0α   the relative disposition with respect to a cluster 

iα   the relative disposition with respect to subgroup i 

αij  the relative disposition with respect to the tertiary group 

β   the parameters from W(X) 

ξ   the parameters from M(Z) 

γ   the parameters from D(Z) 

iδ   the subgroup disposition (i.e., secondary group disposition) 

ijδ   the tertiary group disposition 

ijhδ   unit disposition 

0δ   the group or cluster disposition 

λ = (ξ,γ,β) the set of parameters to be determined in the model 

θ(λ)   the sum of M(Z), D(Z) and W(X) 

iµ   the subgroup baseline disposition under no aggregation 

ijµ   the tertiary group baseline disposition under no aggregation 

0µ   the group baseline disposition under no aggregation 
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Appendix B: Definitions 
 

B1: Mood, Graybill and Boes (1974, p. 296): 

A sequence of estimators T Tn1
* *,..., ,...  of τ θ( )  is defined to be best asymptotically normal 

(BAN) if and only if the following conditions are satisfied:  

 

(i)  The distribution of n Tn[ ( )]* − τ θ  approaches the normal distribution with mean 0 and 

 variance σ θ*2 ( )  as n approaches infinity. 

(ii)  For every 0>ε , 

 0]|)(T[|Plim *
nn

=ε>θτ−θ∞→
 for each θ  in Θ   

(i.e., Tn
*  is consistent for each θ  in Θ ). 

(iii) Let { }nT  be any other sequence of simple consistent estimators for which the 

distribution of )](T[n n θτ−  approaches the normal distribution with mean 0 and 

variance )(2 θσ . 

(iv) )(2 θσ  is not less than )(2* θσ  for all θ  in any open interval 

(i.e., Tn
*  is efficient for all θ  in any open interval). 

 

 
B2: Mood, Graybill and Boes (1974, p. 315-316): 

Let n1 X,...,X  be a random sample from );(f θ⋅ , where θ  belongs to Θ . Assume that Θ  is a 

subset of the real line.  Let )X,...,X(tT n1=  be an unbiased estimator of )(θτ . Then, the 

regularity conditions are as follows: 

 

(i) );x(flog θ
δθ
δ  exists for all x and all θ  

(i.e., the existence of certain partial derivatives). 

(ii) n1

n

1i
in1

n

1i
i dx...dx);x(f...dx...dx);x(f... ∏∫ ∫ ∫ ∫∏

==

θ
δθ
δ

=θ
δθ
δ  

 (i.e., exchange of differentiation and integration). 
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(iii) n1

n

1i
in11

n

1i
in1 dx...dx);x(f)x,...,x(t...dx...dx);x(f)x,...,x(t... ∏∫ ∫ ∫ ∫∏

==

θ
δθ
δ

=θ
δθ
δ  

(i.e., exchange of differentiation and integration or differentiation and summation, as 

in Section 6.4). 

(iv) ∞<















 θ
δθ
δ

ε< θ

2

);X(flog0  for all θ  in Θ  

 (i.e., the Fisher-Information of );x(f θ  with respect to θ  lies between 0 and infinity). 
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Appendix C: Newton-Raphson method 
 

The Newton-Raphson method is a basic numerical algorithm for finding approximations to 

the solutions of non-linear systems of equations. Suppose that )y|(λl  is the log-likelihood 

function, which we wish to maximise. Let U y( | )λ  denote the vector of first derivatives of 

)y|(λl  (i.e., the score function) and )(H λ  the matrix of second derivatives of )y|(λl  (i.e., 

the Hessian matrix). Then, an estimate λ̂  of λ  can be obtained as a solution of the likelihood 

equation U y L y( | ) log ( | )λ
δ
δλ

λ≡ = 0 by means of the algorithm 

 

)y|(U)](H[ )t()t(1)t()1t( λλ−+λ=λ −+  

 

for t = 0, 1, 2, ..., where λt  is the estimate at the t-th iteration (McLachlan and Krishnan, 

1997). 

 

The algorithm needs both an initial guess λ( )0  (e.g., an estimate based on the completely 

observed observations) and a stopping criterion (e.g., the requirement of a small residual such 

as | ( | )|U y toleranceλ ≤ ) (Kotz and Johnson, 1982). 

 

By successive repetition of the above algorithm, using the result of one stage as the input for 

the next, convergence is achieved. Convergence may be slowed or prevented if the initial 

guess of λ( )0  is inappropriate or two roots are close together or H t( )λ → 0  (Daintith and 

Nelson, 1989). 

 

A variant of this procedure is the Method of Scoring, where the observed information, 

)(H λ− , is replaced by the expected information, )](H[E)(I λ−=λ : 

 

)y|(U)(I )t()t(1)t()1t( λλ+λ=λ −+  

 

(see, for example, Godambe, 1991). 
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Appendix D:  Mathematical addendum 
 

The purpose of this appendix is to provide detailed proofs of the partial derivatives of the 

relative dispositions )(0 λα , )(i λα  and )(ij λα with respect to the unknown parameters. 

Equivalent forms of the Fisher information matrices in Equations (6.1.4) and (6.2.4) are also 

given. 

 

 

D1: Define the relative disposition )(0 λα  by 
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The above expression is a vector, whose components are obtained by the execution of the 

partial derivatives with respect to the parameters in the model. 

 

 

D2: Let the relative disposition )(i λα  be defined by 
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D3: Let the relative disposition )(ij λα  be defined by 
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D4: An equivalent form of the Fisher information matrix in Equation (6.1.4): 
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where the entries of )(Ik λ  are the following sub-matrices: 
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D5: An equivalent form of the Fisher information matrix in Equation (6.2.4): 
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where the entries of )(Ik λ  are the following sub-matrices: 
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Appendix E  Tables 
 

Appendix E.1 Tables of the oesophageal cancer data 
 

Table E.1.1: Descriptive statistics of the variables age, meansibage and sibsize 

Variable N Mean Standard 

Deviation 

Minimum Maximum 

age 14,310.00 48.26 18.18 1.00 136.00 

meansibage 14,310.00 42.04 17.41 1.00 90.00 

sibsize 14,310.00 3.37 1.76 1.00 11.00 

  

 

Table E.1.2: Descriptive statistics of the variables age and meansibage for affected 

individuals 

Variable N Mean Standard 

Deviation 

Minimum Maximum 

age 2,050.00 57.61 9.47 20.00 84.00 

meansibage 2,050.00 52.13 11.22 5.00 79.17 

 

 

Table E.1.3: Descriptive statistics of the variables smoking status, alcohol and status 

Variable Yes No Unknown Total 

smoking 3,024 11,286 - 14,310 

alcohol 767 13543 - 14,310 

status 2,050 12,260 - 14,310 
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Appendix E.2 Tables of the breast cancer data 
 

Table E.2.1:  Frequencies of the variables hinc, obesity, tumour and bca  

Variable 0 1 2 3 4 5 6 Unknown Total 

hinc - 48 81 84 80 116 101 - 510 

obesity 319 191 - - - - - - 510 

tumour 510 0 - - - - - - 510 

bca 275 235 - - - - - - 510 

 

 

Table E.2.2:  Descriptive statistics of the variable ageat  

Variable N Mean Standard 

deviation 

Minimum Maximum 

ageat 510 52.23 16.07 19 87 

 

 

Table E.2.3:  Variation of breast cancer side with respect to obesity 

Breast side affected obesity  

 0 1 Total 

Neither  (0) 157 118 275 

Right  (1) 75 35 110 

Left  (2) 85 36 121 

Both  (3) 2 2 4 

Total 319 191 510 
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Table E.2.4:  Variation of breast cancer side with respect to household income 

Breast side 

affected 

Household income  

 1 2 3 4 5 6 Total 

Neither  (0) 28 42 47 50 60 48 275 

Right  (1) 8 18 15 12 31 26 110 

Left  (2) 12 19 22 17 25 26 121 

Both  (3) 0 2 0 1 0 1 4 

Total 48 81 84 80 116 101 510 

 

 

Table E.2.5:  Variation of breast cancer side with respect to age at time of examination 

Breast side 

affected 

Age at time of examination  

 1-10 11-20 21-30 31-40 41-50 51-60 60+ Total

Neither  (0) 0 3 38 68 52 45 69 275 

Right  (1) 0 0 3 16 21 25 45 110 

Left  (2) 0 0 3 9 29 23 57 121 

Both  (3) 0 0 0 2 0 0 2 4 

Total 0 3 44 95 102 93 173 510 
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Appendix F  Figures 
 

Appendix F.1 Figures of the oesophageal cancer data 

 
Figure F.1.1: Histogram of age  

 
 

Figure F.1.2: Histogram of meansibage 
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Figure F.1.3: Bar chart of sibsize 

 
 

 

Figure F.1.4: Normal Q-Q plot of age for affected individuals 
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Figure F.1.5: Normal Q-Q plot of meansibage for affected individuals 
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Appendix F.2 Figures of the breast cancer data 
 

Figure F.2.1. Histogram of ageat 

 
 

 

Figure F.2.2: Bar chart of hinc 

 
 

 



APPENDIX 
__________________________________________________________________________________________ 

104 

 

Figure F.2.3:  Pie chart of breast cancer side distinguished according to neither breasts, right   

      breast, left breast and both breasts  
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