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Prologue
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1. Foreword

Artificial immune systems1 (AIS) are a special class of biologically inspired algorithms,
which are based on the immune system of vertebrates (Dasgupta 1998; Dasgupta and
Niño 2008; de Castro and Timmis 2002a). The field constitutes a relatively new and
emerging area of research in Computational Intelligence that has achieved various promis-
ing results in different areas of application (Hart and Timmis 2008), e. g., learning, clas-
sification, anomaly detection, and (function) optimization. In this thesis, we concentrate
on optimization applications of AIS. An increasing and often stated problem of the field
is the lack of a theoretical basis for AIS (Timmis 2006, 2007; Timmis et al. 2008c) as
most work so far only concentrated on the direct application of immune principles. Tim-
mis et al. (2008c) give an overview on theoretical work existing prior to this thesis. It
can easily be recognized that with respect to optimization, the work done so far mainly
covers convergence analysis. Hence, the following citation provides the main motivation
for the work done within this thesis.

Thus a major theoretical challenge for the future is to give sharper bounds
for the performance of an IA (or of other clonal selection mechanisms) when
applied to some specific functions, and to see how this depends on the form
of the mutation operator and other features of the algorithm. Ideally, one
would like to have an idea of which type of IA would be most effective for a
particular class of problems. (Timmis et al. 2008c)

To the best of our knowledge this thesis constitutes the first rigorous run time analyses
of immune-inspired operators and thus adds substantially to the demanded theoretical
foundation of AIS. We consider two very common aspects of AIS. On one hand, we
provide a theoretical analysis for different hypermutation operators frequently employed
in AIS. On the other hand, we examine a popular diversity mechanism named aging.
We compare our findings with corresponding results from the analysis of other nature-
inspired randomized search heuristics, in particular evolutionary algorithms. Moreover,
we focus on the practical implications of our theoretical results in order to bridge the
gap between theory and practice. Therefore, we derive guidelines for parameter settings
and point out typical situations where certain concepts seem promising. These analyses
contribute to the understanding of how AIS actually work and in which applications they
excel other randomized search heuristics.

1also known as immunological computation (IC), immunocomputing, computational immunology, im-
mune algorithms (IA), or immune-based systems
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1. Foreword

1.1. Overview

The structure of this thesis is as follows. We start with a short introduction to AIS in
Chapter 2. We describe common immune principles that are used as inspiration for AIS,
embed AIS into the broader context of general randomized search heuristics and establish
the notation for the rest of the thesis. Afterwards, the two main analytical parts of the
thesis follow, dealing with mutation (Part II) and aging (Part III) in AIS, respectively.
Both parts contain an introductory chapter presenting related work, the contribution of
this thesis as well as the analytical framework used in the subsequent chapters. The
theoretical findings are accompanied by empirical studies. We describe the contents of
these remaining chapters in more detail.

In Part II we first consider concrete mutation operators used in existing AIS, namely
inversely fitness-proportional mutation (Chapter 4) and contiguous somatic hypermuta-
tions (Chapter 5). Since in contrast to, e. g., evolutionary algorithms, in AIS typically
high mutation probabilities are used, we take a broader view in the last chapter of this
part (Chapter 6) and analyze the general effects larger mutation probabilities can have.

In Part III we first examine the most important parameter of aging, namely the max-
imal lifespan (Chapter 8), and derive guidelines for setting this parameter. Using these
results, we compare a commonly used aging operator from AIS with a similar operator
known from evolutionary algorithms (Chapter 9) by pointing out strength and weaknesses
of both approaches. Moreover, a third aging operator is introduced that provably shares
the advantages of these two aging mechanisms. In the last chapter of this part (Chap-
ter 10) we establish a more structured view on aging as used in AIS by considering
different aging and replacement strategies and the role of age diversity for effective aging
operators.

Part IV deals with the relevance of our theoretical findings for practical applications.
We point out the importance of experiments for bridging the gap between theory and
practice, present related work and review relevant findings from the preceding chapters
of the thesis (Chapter 11). Afterwards, we discuss limitations of the common approach
used to determine the optimization time of a randomized search heuristics by considering
analyses from this thesis as well as from other publications (Chapter 12).

Finally, we summarize the findings presented in this thesis and discuss directions for
future work in Chapter 13. Moreover, an overview of notations and the mathematical
tools used can be found in the appendix.

1.2. Underlying Publications

This thesis is based on the following publications, listed in the order in which they appear
here. For all joint papers with k authors, this author’s contribution can be quantified as
at least 1/k.

1. Christine Zarges (2008): Rigorous runtime analysis of inversely fitness proportional
mutation rates. In Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni,
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1.2. Underlying Publications

and Nicola Beume, editors, Proceedings of the 10th International Conference on
Parallel Problem Solving from Nature (PPSN X), volume 5199 of Lecture Notes in
Computer Science, pages 112–122. Springer. Best Student Paper Award.

The results in Chapter 4.2, Chapter 4.3.1 and in parts Chapter 4.5 are based on
this publication.

2. Christine Zarges (2009): On the utility of the population size for inversely fitness
proportional mutation rates. In Ivan Garibay, Thomas Jansen, R. Paul Wiegand,
and Annie S. Wu, editors, Proceedings of the 10th ACM SIGEVO Conference on
Foundations of Genetic Algorithms (FOGA 2009), pages 39–46. ACM Press.

Chapter 4.3.2 is based on this publication.

3. Thomas Jansen and Christine Zarges (2011a): Analyzing different variants of im-
mune inspired somatic contiguous hypermutations. Theoretical Computer Science,
412(6):517–533.

Chapter 5 is based on this article. Parts of this publication are also published in
the following conference article.

• Thomas Jansen and Christine Zarges (2009a): A theoretical analysis of im-
mune inspired somatic contiguous hypermutations for function optimization.
In Paul S. Andrews, Jon Timmis, Nick D.L. Owens, Uwe Aickelin, Emma
Hart, Andrew Hone, and Andy M. Tyrrell, editors, Proceedings of the 8th In-
ternational Conference on Artificial Immune Systems (ICARIS 2009), volume
5666 of Lecture Notes in Computer Science, pages 80–94. Springer.

4. Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine
Zarges (2011): Mutation rate matters even when optimizing monotone functions.
Submitted.

Chapter 6 is based on this publication. Parts of this publication are also published
in the following conference article.

• Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Chris-
tine Zarges (2010a): Optimizing monotone functions can be difficult. In
Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and Günter Rudolph, ed-
itors, Proceedings of the 11th International Conference on Parallel Problem
Solving from Nature (PPSN XI), volume 6238 of Lecture Notes in Computer
Science, pages 42–51. Springer.

5. Christian Horoba, Thomas Jansen, and Christine Zarges (2009): Maximal age in
randomized search heuristics with aging. In Günther R. Raidl, editor, Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO
2009), pages 803–810. ACM Press. Nominated for a Best Paper Award in the track
“Genetic Algorithms”.

Chapter 8 is based on this publication.
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6. Thomas Jansen and Christine Zarges (2011b): On benefits and drawbacks of aging
strategies for randomized search heuristics. Theoretical Computer Science, 412(6):
543–559.

Chapter 9 is based on this article. Parts of this publication are also published in
the following conference article.

• Thomas Jansen and Christine Zarges (2009b): Comparing different aging
operators. In Paul S. Andrews, Jon Timmis, Nick D.L. Owens, Uwe Aickelin,
Emma Hart, Andrew Hone, and Andy M. Tyrrell, editors, Proceedings of the
8th International Conference on Artificial Immune Systems (ICARIS 2009),
volume 5666 of Lecture Notes in Computer Science, pages 95–108. Springer.

7. Thomas Jansen and Christine Zarges (2011c): On the role of age diversity for
effective aging operators. Evolutionary Intelligence, 4(2):99–125.

Chapter 10 is based on this article. Parts of this publication are also published in
the following two conference articles.

• Thomas Jansen and Christine Zarges (2010a): Aging beyond restarts. In
Juergen Branke, editor, Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation (GECCO 2010), pages 705–712. ACM Press.

• Thomas Jansen and Christine Zarges (2010b): On the benefits of aging and
the importance of details. In Emma Hart, Chris McEwan, Jon Timmis,
and Andy Hone, editors, Proceedings of the 9th International Conference on
Artificial Immune Systems (ICARIS 2010), volume 6209 of Lecture Notes in
Computer Science, pages 61–74. Springer.

8. Thomas Jansen and Christine Zarges (2011d): Analysis of evolutionary algorithms:
From computational complexity analysis to algorithm engineering. In Hans-Georg
Beyer and William B. Langdon, editors, Proceedings of the 11th ACM SIGEVO
Conference on Foundations of Genetic Algorithms (FOGA 2011), pages 1–14. ACM
Press.

Chapter 12 is based on this publication.
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2. Preliminaries

The field of AIS comprises two main branches: on one hand immune modeling or math-
ematical theoretical immunology, which is closely related to immunology and aims at
understanding the natural immune system by means of mathematics and computer sci-
ence, in particular by supporting experimental analyses of the immune system (Timmis
et al. 2008a,b); on the other hand engineering and optimization, which is concerned with
problem solving by immune-inspired methods. In the latter aspect of AIS researchers aim
at capturing certain properties of the natural immune system such as self-organization,
learning, classification and adaptation capabilities, diversity, robustness and scalability
in their problem solutions (de Castro and Timmis 2002a).

In this thesis, we concentrate on the computer science perspective and additionally
restrict ourselves to optimization applications of AIS. In this context, a common definition
of AIS can be stated as follows.

Artificial immune systems (AIS) are adaptive systems, inspired by theoretical
immunology and observed immune functions, principles and models, which
are applied to problem solving. (de Castro and Timmis 2002a)

From this definition, we can deduce simple minimal requirements for an AIS. Clearly,
just using immunology terminology does not qualify a system to be classified as an AIS.
First, an AIS has to incorporate a model of a basic immune component, e. g. an immune
cell. Second, it has to be modeled after immune principles derived from theoretical or
experimental immunology. Last, it has to be designed for the purpose of problem solving.
However, most AIS only use a few and often rather abstract immune-inspired concepts.

Even though anomaly detection, classification and learning are among the most natural
applications for AIS they are also often applied to the problem of (function) optimization.
According to de Castro and Timmis (2002a), the field of AIS was initiated by works of
Farmer et al. (1986) and Hoffmann (1986). Farmer et al. (1986) suggested that computa-
tional intelligence methods could benefit from incorporating immune-inspired principles
whereas Hoffmann (1986) executed a comparative study of the nervous and the immune
system which inspired other researchers to investigate novel network models. With re-
spect to problem solving, the first known applications were published in the early 1990s.
However, this work was still well rooted within the immunology community and was in
particular concerned with, at that time, recently introduced immune network models de-
scribing the maintenance of immune memory (Bersini 1992; Bersini and Varela 1991a,b)
and learning abilities of the immune system (Cooke and Hunt 1995) as well as appli-
cations of immune principles in computer security (Forrest and Perelson 1991; Forrest
et al. 1994, 1997; Kephart 1994). Later, algorithms for function optimization (de Castro
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2. Preliminaries

and Von Zuben 2002b) and data clustering were developed (de Castro and Von Zuben
2000, 2002a). Concurrently, in 2002 the International Conference on Artificial Immune
Systems1 (ICARIS) was established. Since the field of AIS has become rather large, an
exhaustive survey of applications and developments is clearly out of the scope of this
thesis. However, there are several good textbook and review papers available (Dasgupta
1998; Dasgupta and Niño 2008; de Castro and Timmis 2002a; Flower and Timmis 2007;
Hart and Timmis 2008). Moreover, a regularly updated bibliography can be found on-
line (Dasgupta 2007). An overview on different AIS approaches for optimization was
presented by Bernardino and Barbosa (2009).

As already mentioned in Chapter 1 there is a clear lack of theoretical work for AIS
since much work so far concentrated on the direct application of certain immune princi-
ples (Timmis et al. 2008c). With respect to (function) optimization the work done prior
to this thesis mainly covers convergence analysis (Clark et al. 2005; Clark 2008; Cutello
et al. 2007c; Villalobos-Arias et al. 2004). We discuss some of these previous results when
introducing the corresponding algorithms.

In the rest of this chapter, we aim at giving a broad overview of the field of AIS, its
applications and some basic algorithms. In particular, we point out the different sources
of inspiration from the natural immune system. We see that in contrast to other nature-
inspired search heuristics, AIS derive from various immunological theories, for example
the clonal selection principle, negative selection, immune networks or the danger theory.
Since we concentrate on the analysis of AIS from a computational point of view the
biological background used as a motivation is not too important to us. Therefore, only
a rather abstract and focused introduction to the natural immune system is given. The
interested reader is referred to standard textbooks on immunology for a more in-depth
view on the biology side of the field (Delves et al. 2006; Flower and Timmis 2007; Janeway
et al. 2005).

We concentrate on the aspect of applying AIS to optimization problems. In this
context, current state-of-the-art AIS are in some sense very similar to other nature-
inspired search heuristics, like e. g., evolutionary algorithms, ant colony optimization,
and simulated annealing. We point out similarities and differences of these approaches
and establish a common notation that is used throughout the rest of this thesis. Note,
that parts of the following explanation is based on the corresponding chapters in de Castro
and Timmis (2002a), Dasgupta and Niño (2008), and Flower and Timmis (2007).

2.1. Immunity-Based Computational Models and Algorithms

The main task of the immune system is to recognize and remove pathogens invading the
organism. In this context, the immune system needs to be capable to distinguish between
so-called self, i. e., the body’s own cells, and nonself cells. This is somehow equivalent to
solving a two-class classification problem. Note, that in immunology this is also known
as the self/nonself discrimination problem or the self/nonself theory.

1http://www.artificial-immune-systems.org
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2.1. Immunity-Based Computational Models and Algorithms

The immune system is organized in a multilevel fashion. First, there are physical and
chemical barriers like skin or saliva. Second, an immune response is separated into innate
and adaptive mechanisms. Hereby, the innate immune system (Janeway and Medzhitov
2002) is non-specific, i. e., it reacts to general pathogens by recognizing molecular patterns
that are found in microorganisms. It is responsible for the initiation and regulation of
immune responses. In contrast to that, the adaptive (acquired) immune system (Janeway
et al. 2005) is directed against specific pathogens. It enables the immune system to learn
to recognize new pathogens, i. e., via a first infection or vaccination, and to memorize
infections in order to speed up future immune reactions to similar pathogens (secondary
immune response). Clearly, the immune system has to ensure that, by mistake, no self
cells are classified as nonself, in order to prevent autoimmunity.

It is important that the immune system maintains a certain degree of diversity within
its immune cells so that it is able to react to a large number of different pathogens. To
this end, a large number of immune cells circulates through the organism. There are
many different types of immune cells where leukocytes (white blood cells) are the most
important ones. The class of leukocytes can be further divided into lymphocytes, which
mediate the adaptive immune response, and granulocytes as well as macrophages as part
of the innate immune system. From the computer science perspective, the adaptive
immune system has caught most interest though recently reasearchers are also trying to
develop systems based on the innate immune system (see Section 2.1.5). However, within
this thesis we stick to algorithms inspired by mechanisms of the adaptive immune system
(see Section 2.1.3).

There are essentially two types of lymphocytes: T cells and B cells. Basically, these
two types of lymphocytes play different roles in the immune system though they may
interact with each other. The primary lymphoid organs, namely the bone marrow and
the thymus gland, are responsible for the permanent production and maturation of new
immune cells. It is agreed that T cells are produced within the bone marrow and mature
in the thymus gland whereas B cells develop and mature within the bone marrow. The
secondary lymphoid organs, i. e., lymph vessels, lymph nodes and lymphoid follicles in
tonsils, spleen, skin, and others, provide the transportation mechanism for immune cells
and the environment for the interaction between lymphocytes and the molecular patterns
of invading pathogens (antigens). Here, adaptive immune responses and the associated
production of antibodies are initiated.

There are several immunological theories that try to explain the above mentioned prop-
erties of the immune system. After introducing the basic immune recognition mechanism
and the corresponding representation concept in AIS, we discuss some of those immune
principles as well as their applications and several algorithmic approaches. These al-
gorithms serve as building blocks for engineering AIS. Some of the presented processes
are controversial from an immunological point of view. However, since we are mainly
interested in the computational perspective this is not critical to us.

9
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0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 0 1 0 1

Antigen Ag

Antibody Ab

Figure 2.1.: Example of a binary Hamming shape space with n = 10 and Hamming
distance d(Ag,Ab) = 5

2.1.1. Shape Spaces and Affinity Measures

Following de Castro and Timmis (2002a) we use a general terminology by referring to any
type of cell receptor that is able to bind to a molecular pattern as antibody. Moreover, the
molecular pattern itself is denoted as an antigen. The shape space model (Perelson and
Oster 1979) was introduced to model and evaluate the interaction, i. e., binding, between
antigens and antibodies. It is a well-known fact that an antigen is only recognized by an
antibody if the two molecules bind complementary with each other over a considerable
part of their surfaces.

Different features such as chemical properties and charge distributions influence the
interaction between the molecules. These features are known as the generalized shape of
a molecule. If the properties of a molecule can be described by a set of n parameters,
the generalized shape space corresponds to a point x = (x[0], . . . , x[n − 1]) in an n-
dimensional space S, called shape space. Moreover, the attributes can have different,
problem-dependent types. According to these types, we distinguish between specific
forms of shape spaces, e. g., real-valued (x ∈ R

n), integer (x ∈ Z
n), Hamming (x ∈ Σn

with |Σ| = k for some constant k), or symbolic, where x is composed of different, possibly
symbolic types. Figure 2.1 illustrates two generalized shapes over a binary Hamming
shape space with n = 10, i. e., S = {0, 1}10.

The strength of the binding between an antigen and an antibody is called binding
affinity or simply affinity. In general it is evaluated via a distance measure d : S×S → R

+
0

where the distance values should be proportional to the affinity. Clearly, this distance
measure needs to be suitable for the chosen shape space. Typical choices are for example
Euclidean or Manhattan distance for real-valued shape spaces or Hamming distance for
Hamming shape spaces. A more detailed overview on different variants of the shape
space model is given by Ji and Dasgupta (2007), Dasgupta and Niño (2008; Chapter 3)
and de Castro and Timmis (2002a; pp. 62). The affinity for the example in Figure 2.1 is
d(Ag,Ab) = 5 using the Hamming distance.

We still need to discuss the recognition of an antigen by an antibody in this model.
For this purpose an activation threshold ε is defined and we say that the antibody Ab
recognizes the antigen Ag if d(Ag,Ab) ≥ ε. This corresponds to the observation that the
binding of two molecules has to cover a considerable part of their surfaces. Moreover,
we can control the number of antigens recognized by a single antibody by increasing or

10



2.1. Immunity-Based Computational Models and Algorithms

decreasing ε since this influences the size of the recognition region of an antibody within
the considered shape space.

While the presented shape space model reflects the recognition of antigens and thus,
is directly applicable for pattern recognition, classification and learning tasks, we need
to reconsider our model when applying AIS to function optimization. In this context,
antibodies often represent candidate solution of the function to be optimized and affinity
corresponds to the objective function value for the solution. This can be seen as evaluat-
ing the affinity of an antibody within the external environment that is represented by the
objective function rather than evaluating the interaction with other antibodies. Note,
that this view is equivalent to the concept of fitness in evolutionary algorithms. We see
that there exist AIS using both concepts of affinity when discussing immune networks in
Section 2.1.4.

2.1.2. Negative Selection

Negative selection describes the maturation process of T cells in the thymus gland. As
already mentioned immature T cells are produced within the bone marrow. Afterwards
they are subject to a censoring process in the thymus where T cells reacting with self
cells are removed in order to prevent autoimmunity. The remaining T cells leave the
thymus and are added to the repertoire of immune cells in the immune system. We see
that by means of negative selection recognition of patterns that are not part of a known
set is performed. Note, that this is contrary to positive selection where the set of known
pattern is recognized. Moreover, only one of the two classes of the classification problem
needs to be known which is generally different for classical classification algorithms. This
way, the immune system is enabled to react to so far unknown threats.

Forrest et al. (1994) used this theory as inspiration for a simple negative selection
algorithm applied to the problem of change detection. In a first step, the set of elements to
be monitored, i. e., the self set, is encoded using an appropriate shape space representation
and affinity measure. Afterwards, a set of detectors is generated according to the negative
selection process described above. Using this detector set, we can now monitor the
considered system by constantly matching detectors against elements from the self set or
in general from a set to be protected. If during this monitoring process a match occurs,
a change in the system is detected. The algorithm by Forrest et al. (1994) is depicted in
Figure 2.2.

There have been several further approaches for negative selection algorithms in the field
of computer security (Ji and Dasgupta 2007). With respect to efficiency and accuracy of
those algorithms the process of generating (a sufficient number of) detectors as well as an
appropriate choice of the representation and affinity measure is crucial (Ji and Dasgupta
2007; Timmis et al. 2008c). Recently, new efficient approaches for the generation of
detectors were presented (Elberfeld and Textor 2011; Liskiewicz and Textor 2010). As
negative selection algorithms are mainly used for pattern recognition, classification and
learning tasks, we do not further consider these algorithms within this thesis. However,
since negative selection algorithms are among the first and most popular approaches in
AIS, they constitute a major building block of the field.
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Figure 2.2.: Negative selection (adapted from Forrest et al. (1994))

2.1.3. Clonal Selection Principle

The clonal selection principle (Burnet 1959) describes the basic features of an adaptive
immune response. Since the immune system aims at preserving a certain degree of
diversity, only a small number of immune cells is able to recognize the antigen of an
invading pathogen. Only immune cells, which recognize an antigen, proliferate (clonal
expansion) and differentiate into clone- or antibody-producing cells. Some of those cells
are retained in the immune memory to enable a fast secondary immune response. Clonal
selection effects both, T cells and B cells but with the main difference that B cells are
subject to mutation (affinity maturation) during reproduction whereas T cells are not.
Due to these mutations at high rate (hypermutation) and a strong selective pressure, the
affinity of the B cell clones with the antigen is increased. Due to its adaptive nature,
usually clonal selection of B cells is used as inspiration for clonal selection algorithms. It
is claimed that genetic algorithms without crossover are very similar to clonal selection
algorithms (Forrest et al. 1993).

An important feature of clonal selection is the way cloning and mutation take place.
There is strong evidence that the cloning and mutation probability of a B cell is related to
its affinity with the antigen. In the community this is called fitness-proportional cloning
rate and inversely fitness-proportional mutation probability, respectively, even though
this is not true in a strict mathematical sense. It means that ‘the higher the affinity the
higher the clone rate, and vice versa’. The same holds for inversely fitness-proportional
mutation meaning ‘the higher the affinity the smaller the mutation probability, and vice
versa’.

De Castro and Von Zuben (2002b) proposed the very popular clonal selection algorithm
CLONALG following these basic ideas. CLONALG was initially applied to pattern
recognition but was soon adapted to the problem of multi-modal function optimization.
It is claimed that inversely fitness-proportional mutation is in particular suitable for
multi-modal problems since each B cell is subject to an individual mutation probability,
i. e., B cells with higher fitness, e. g., near peaks of the fitness landscape, are only mutated
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Figure 2.3.: Basic steps of CLONALG (de Castro and Von Zuben 2002b).

at low rate while B cells with small fitness are subject to high mutation probabilities.
Note, that this is somehow similar to the concept of self-adaptation in evolutionary
computation. To the best of our knowledge CLONALG was the first clonal selection
algorithm for the purpose of function optimization.

The basic steps of CLONALG are depicted in Figure 2.3. After a random initializa-
tion, in each iteration some B cells are selected for cloning and mutation. Afterwards,
the best B cells are selected for the next iteration. Moreover, the constant production
of new random B cells within the bone marrow is simulated by replacing some B cells
with low affinity by new random ones (metadynamics). Remember that in optimiza-
tion applications of AIS the objective function or fitness value takes the role of affinity
(compare Section 2.1.1). Thus, we speak of (inversely) fitness-proportional clone and
mutation probabilities. However, for optimization it is suggested to select each B cell
with equal probability for cloning instead of using a fitness-proportional cloning rate.
We analyze the concrete mutation probability used in CLONALG within Chapter 4 of
this thesis when discussing different variants of inversely fitness-proportional mutation
probabilities.

At present, there is a variety of different AIS to tackle optimization problems that
are built on the clonal selection principle. An overview of different approaches can be
found in Brownlee (2007). Probably, the most established ones besides CLONALG are
opt-IA (Cutello et al. 2004a), the B-Cell algorithm (Kelsey and Timmis 2003), and
MISA (Coello Coello and Cortés 2005). These algorithms share a common approach in a
broad sense but they differ in the concrete instantiation of the clonal selection principle.

The name opt-IA comprises several clonal selection algorithms following similar ideas.
The approach was first presented by Cutello and Nicosia (2002a) under the name Im-
munological Algorithm. It is constantly further developed and applied to different op-
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timization problems. It was renamed several times and is currently known as opt-IA.
Other names are, e. g., Simple Immune Algorithm (SIA), Cloning Information Gain Ag-
ing (CLIGA), and Optimization Immune Algorithm (opt-IMMALG). For an extensive
overview see Brownlee (2007).

The main idea of these algorithms is to calculate a mutation potential M that deter-
mines the maximal number of positions in the point representation to be mutated. Differ-
ent types of such mutation potentials were developed, e. g., inversely fitness-proportional,
fitness-proportional, or constant ones (Cutello et al. 2004a). Moreover, a hypermacro-
mutation operator was proposed, where only a random contiguous region of the point is
effected by this mutation operator. Another feature of the algorithm is the integration
of an additional selection mechanism called aging that removes points, which exceed a
pre-defined maximal lifespan, i. e., the maximal number of iterations a specific immune
cell is allowed within the repertoire. Deterministic and stochastic variants of aging are
known.

Cutello et al. (2005b) compare CLONALG and opt-IA empirically on different opti-
mization problems. Cutello et al. (2007c) present a convergence analysis for a general
immune algorithm that incorporates ideas of opt-IA. We analyze deterministic aging as
used in opt-IA in Part III of this thesis.

The B-Cell algorithm (Kelsey and Timmis 2003) uses an alternative model called
somatic contiguous hypermutation for the mutation probability in the affinity maturation
process (Lamlum et al. 1999). Here, a contiguous region of the point representation is
randomly selected and each position is mutated with a certain probability. This mutation
probability is independent of the fitness. A Markov chain model and corresponding
convergence results for the B-Cell algorithm are available (Clark et al. 2005; Clark 2008).
We analyze somatic contiguous hypermutations in Chapter 5 of this thesis.

Finally, MISA (Coello Coello and Cortés 2005) constitutes an example for a multi-
objective clonal selection algorithm. Since we only deal with single-objective optimization
here, this approach is out of the scope of this thesis. A convergence analysis for MISA
was presented by Villalobos-Arias et al. (2004).

2.1.4. Immune Network Theory

Due to the immune network model by Jerne (1974) the immune system can be described
as a regulated network of cells, also called idiotypic network. The immune cells in the
network interact by recognizing each other even if no antigen is present in their envi-
ronment (known as network stimulation and suppression). Thus, immune cells are not
isolated but rather communicate with each other. This is a fundamental difference to
the clonal selection principle where it is assumed that the immune system is only stimu-
lated in the presence of an antigen and at rest otherwise. It leads to the conclusion that
self-tolerance, learning, and memory are rather global properties of the whole immune
system than properties of single immune cells and that the recognition of an antigen
is part of the dynamic behavior of the whole system. The dynamics of the system are
disturbed in the presence of an antigen. Changes of the network due to this disturbance
lead the network towards a mapping of the antigenic environment. However, among im-
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Figure 2.4.: Basic steps of opt-aiNet (de Castro and Timmis 2002b).

munologists, the immune network theory is discussed rather controversially (de Castro
and Timmis 2002a; Langman and Cohn 1986; Stepney et al. 2005).

Two types of network models are distinguished: continuous network models based
on differential equations and discrete network models based on difference equations and
adaptation mechanisms. While the idea for the discrete model is derived from the con-
tinuous one, both models have been applied to learning and optimization, respectively.
However, originally the continuous model was mainly used to simulate the immune sys-
tem whereas discrete models were devoted to problem solving. Thus, we concentrate on
discrete models here. A comparison of different immune network models was published
by Galeano et al. (2005).

Probably, the most popular discrete immune network algorithm in the context of prob-
lem solving is aiNet (Artificial Immune NETwork) by de Castro and Von Zuben (2002a).
Like CLONALG it was originally presented as a network learning algorithm, but there
also exists an adaption for multi-modal function optimization, named opt-aiNet (de Cas-
tro and Timmis 2002b), which is in some sense quite similar to the above described clonal
selection algorithms. It is also based on clonal selection ideas, but adds interaction mech-
anisms from the immune network theory.

The basic steps of opt-aiNet are depicted in Figure 2.4. After a random initialization,
a kind of ‘clonal selection component’ is executed until the network has reached a stable
state, which is determined via the average fitness of the cells in the network. During each
iteration of the clonal selection step a constant number of clones is created for each cell
and mutated inversely proportional to the fitness of this cell. The mutated clone with
the highest fitness is introduced into the network.

Once the network has reached a stable state, network suppression is performed. Here,
cells interact with each other by calculating their pairwise affinities. Remember, that
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affinity between cells corresponds to their distance. Thus, low affinity cells are removed
from the network in order to preserve a certain level of diversity. Note, that this is done
in an elitist way since in each affected pair of cells, the cell with the lower fitness is
removed. Afterwards, new random cells are inserted into the network (metadynamics).
This way, the number of B cells in the network is dynamically adapted. The concrete
mutation probability in opt-aiNet is different from that in CLONALG. We also analyze
this variant within this thesis (Chapter 4) when discussing inversely fitness-proportional
mutation probabilities.

It is easy to see that opt-aiNet only incorporates network suppression. Another im-
portant feature of many immune network algorithm is the concept of stimulation. The
stimulation level quantifies the interaction of the components in the immune network.
Here, basically, two aspects are taken into account: on one hand, the number of antigens
recognized by a given antibody or even the whole system, and on the other hand, the
degree of interaction with the other antibodies in the network. It is used to determine
the selection of cells for expansion and survival within the network. Moreover, it can
(analogously to the affinity of a cell to an antigen in the clonal selection) influence the
clone and mutation probability of a selected cell. Altogether, the structure of most net-
work models can be described by the following equation due to Perelson (1989) where
network stimulation and suppression describe the network dynamics while new elements
and death of elements are part of the general immune metadynamics (de Castro and
Timmis 2002a):

Rate of population variation = Network stimulation − Network suppression

+ Influx of new elements − Death of unstimulated elements

2.1.5. Other Approaches

The immune principles described in the foregoing sections are the most classical and
popular ones for engineering AIS. In recent years, researchers have incorporated other
mechanisms and theories from immunology into their algorithms and developed com-
pletly new approaches. Probably, the most important one among these is the danger the-
ory2 (Aickelin and Cayzer 2002; Matzinger 1994) that exhibits an alternative approach
to the self/nonself discrimination of negative selection in the field of computer security.
However, as the immune network theory, the danger theory is controversial (Aickelin
et al. 2003; Langman and Cohn 2000; Vance 2000).

The danger theory claims that an immune response is triggered by the presence of
safe and danger signals rather than the recognition of nonself cells since not all foreign
antigens are considered dangerous. Examples for danger signals are signals from damaged
cells such as tissue damage. In this process, dendritic cells play an important role. They
are part of the innate immune system and act as a mediator between the innate and the
adaptive immune system by detecting safe and danger signals. This way, they decide

2http://www.dangertheory.com
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on whether the environment is to be considered safe or dangerous and thus, control the
initiation of an immune response.

The Dendritic Cell Algorithm (DCA) is the largest research project within the dan-
ger theory branch of AIS. The original version of the DCA was proposed as part of the
Danger Project (Aickelin et al. 2003). The first presentation of a prototype originates
from Greensmith et al. (2005). Later, a real-time implementation was presented (Green-
smith et al. 2006). The DCA is still further developed and analyzed.

Strongly related to the danger theory are ideas taken from the innate immune system.
Twycross and Aickelin (2005) present a first concept for a framework using mechanisms
known from innate immunity. The first real system named ‘libtissue’ build on these ideas
originates from Twycross and Aickelin (2006). There are also approaches to combine
ideas from both concepts, innate as well as adaptive immunity, to enhance the developed
systems (Tedesco et al. 2006).

Finally, there is an increasing number of hybrid algorithms, combining ideas from im-
munology with other nature-inspired algorithms, e. g., neural networks or evolutionary
algorithms. For an overview on these approaches and other modern immune models
see de Castro and Timmis (2002a; Chapter 5–6) and Dasgupta and Niño (2008; Chap-
ter 6).

2.2. Artificial Immune Systems as Randomized Search

Heuristics

General randomized search heuristics (RSHs) are a class of algorithms used in practical
settings where there is no time or expertise to develop problem-specific algorithms. They
provide a powerful and flexible way of tackling different problems and are hoped to be
efficient on a broad class of problems.

There are many different search heuristics like randomized local search (Michiels et al.
2007) or tabu search (Glover and Laguna 1997). Each heuristic implements some general
idea of how search should be conducted. These ideas are often borrowed from other
fields. They are for example inspired by

• natural processes, like simulated annealing (Aarts et al. 2005) that implements the
process of annealing in metallurgy in an abstract way,

• biological processes, like evolutionary algorithms (EAs), mimicking the process of
natural evolution (de Jong 2006), or

• biological systems, like artificial neural networks (ANN), inspired by natural neural
networks such as the human nervous system (Rojas 1996), ant colony optimization
(ACO), based on the behavior of foraging ants (Dorigo and Stützle 2004), and of
course AIS, modeled after the immune systems of vertebrates (Dasgupta and Niño
2008; de Castro and Timmis 2002a).

Although these randomized search heuristics derive from quite different paradigms they
can share some general ideas and exhibit certain similarities. However, despite these
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similarities they do differ in the concrete implementations of the concepts and thus, an
implementation deriving from one specific paradigm may appear senseless in another one.

General randomized search heuristics are typically very easy to implement and apply.
But it turns out to be extremely challenging to prove in a rigorous way results about their
performance and limitations since they exhibit a complex random behavior (Rabinovich
et al. 1992; Witt 2009). While the general idea is to apply a randomized search heuristic
‘right out of the box’ in practice it is almost always necessary to adjust the randomized
search heuristic to the concrete problem at hand by adding more complex mechanisms
and modifying the search strategies to achieve acceptable performance. Moreover, in
practice, it makes sense to combine ideas from different randomized search heuristics in
order to improve the performance of the algorithm. Clearly, this increased complexity
complicates the task of a theoretical analysis even more.

Since it is highly desirable to obtain a clear understanding of the working principles
and properties of the different operators employed it makes sense to study their effects
in isolation. Such analyses serve as building blocks of a theory of randomized search
heuristics. We follow this approach for the analyses executed in this thesis. Furthermore,
we perform the analyses on instructive example functions in order to highlight specific
properties of the operators under consideration. Such example functions allow for the
comparison of different heuristics and serve as building blocks for a useful theory since
they can be considered as stepping stones for further analyses. Moreover, they can be
used as counter examples for disproving common assumptions. In our analyses we use
on one hand well-known example functions for which a large number of existing results
for comparison are available. On the other hand we use carefully constructed example
functions that exhibit paradigmatic properties in order to make our points. This is a
common approach in the theoretical analysis of randomized search heuristics.

The theoretical analysis of general randomized search heuristics is a modern and im-
portant area of research. While for other randomized search heuristics, in particular for
evolutionary algorithms, there is a growing body of useful analytical tools and relevant
results (Auger and Doerr 2011; Droste et al. 2006; Neumann and Witt 2010; Oliveto et al.
2007; Oliveto and Witt 2010; Wegener 2003), the analyses of AIS is, as mentioned above,
still in its infancy. In this thesis, we provide rigorous analyses for different immune-
inspired operators by adapting analytical tools from evolutionary algorithms. We com-
pare our findings with results for other randomized search heuristics when available.
Moreover, we derive guidelines for parameter settings and point out typical situations
where certain concepts seem promising. These analyses contribute to the understanding
of how AIS actually work and in which applications they excel over other randomized
search heuristics.

2.3. A General Framework and Notations

While being applicable in very different situations one of the most important tasks of
randomized search heuristics is (function) optimization. In this thesis, we restrict our-
selves to this application. We consider the case where for the search space {0, 1}n of bit
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strings of fixed length n an objective function f : {0, 1}n → R is given and a globally
optimal search point, i. e., an arbitrary point from

OPT =
{

x ∈ {0, 1}n | f(x) = max
{

f(x′) | x′ ∈ {0, 1}n
}}

,

is sought. We adopt the notion of fitness for the value f(x) from evolutionary algo-
rithms. Since randomized search heuristics are most often implemented on standard
binary computers the restriction to {0, 1}n is not fundamental. Clearly, concentrating on
maximization is no restriction since maximizing f is equivalent to minimizing −f . Note,
however, that sometimes we additionally require f to be positive. We point out those
further restrictions where necessary.

The algorithms under consideration follow the common scheme known from evolu-
tionary algorithms as shown in Figure 2.5 and are in this respect very similar to these
kind of randomized search heuristics. They use a collection of search points C of size
µ and work in rounds where in each round λ new search point y1, . . . , yλ ∈ {0, 1}n are
generated as random variation of existing search points. Afterwards µ search points are
selected for the next round. In this phase, additional mechanisms to preserve a certain
degree of diversity within the collection of search points can be applied (see e. g. Friedrich
et al. (2009b) for the analysis of common mechanisms from the field of evolutionary al-
gorithms). Note, that within this thesis we stick to the case λ = 1. For the selection
for reproduction we simply use uniform selection. The selection for replacement follows
basically the idea of plus-selection where the search points for the next iteration are
chosen from the set of the µ old and the λ new search points. We denote the elements
of C by xi, i. e., C = {x1, x2, . . . , xµ}, and the i-th bit of a search point x by x[i], i. e.,
x = (x[0], . . . , x[n− 1]). We abbreviate the number of 1-bits in a bit string x by |x|1 and
the number of 0-bits by |x|0. We sometimes denote the result of a mutation of a search
point x by mut(x) and the result from a variation and a subsequent selection by x+, e. g.,
for y = mut(x) we have x+ = y if f(y) ≥ f(x) and x+ = x otherwise. The Hamming
distance between two search points x and y is denoted by H (x, y).

As usual in the analysis of general randomized search heuristics, there is no stopping
criterion in the algorithm and we investigate the first point of time when a global optimum
of f is reached. This equals the number of iterations until a global optimum is found
and we denote this as the optimization time of the algorithm. Note, that this model
does not count the cost of initialization. However, since in this thesis the optimization
time is always larger than µ, this is not relevant with respect to asymptotic results. In
some algorithms, the number of iterations also corresponds to the number of addtionally
function evaluations, which is a common measure for the run time of randomized search
heuristics since function evaluations are assumed to be the most costly operations of the
randomized search heuristic while other operations tend to be algorithmically simple and
can be carried out relatively quickly. It is important to notice that the algorithm itself
does not know that it has found an optimum. We discuss limitations of this approach in
Chapter 12 of this thesis.

We denote by TA,f the optimization time of Algorithm A on some function f . More-
over, let TA,f,C denote its optimization time when the algorithm is started with some

19



2. Preliminaries

Initialization

Evaluation

Selection for reproduction

Variation

Evaluation of offsprings

Selection for replacement

Stop? Stop
no

yes

Figure 2.5.: General schema of evolutionary algorithms.

specific initial collection of search points C = {x1, x2, . . . , xµ} instead of using random
initialization. Since the optimization time TA,f is a random variable we investigate its
mean E(TA,f ) as well as sometimes information on its distribution like Prob (TA,f < t)
or Prob (TA,f > t) for relevant points of time t. We say that an event A occurs with high
probability (w. h. p.) if Prob (A) = 1−o(1) and with overwhelming probability (w. o. p.) if
Prob (A) = 1− 2−Ω(n). For the optimization times, we make use of common asymptotic
notation (Definition B.2) where all asymptotics are with respect to the bit string length
n. We call a bound on the optimization time exponential if it is 2Ω(nc) and polynomial if
it is O(nc) (for some constant c > 0). Note, that we denote the logarithm of some x to
base 2 by log(x) and the logarithm to base e by ln(x). Important notations that are used
throughout the thesis are summarized in Appendix A. Useful mathematical tools can be
found in Appendix B. When referring to these tools during calculations, we sometimes
use simply the number of the respective tool as abbreviation.

In the next two parts of this thesis we investigate two aspects of AIS for function
optimization that fall into the described general schema. In Part II we consider different
immune-inspired variation operators whereas in Part III a diversity mechanism called
aging is examined. We introduce the concrete algorithms at the beginning of each part
of the thesis.
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3. Introduction

Variation is a crucial part of a randomized search heuristic since it enables the algorithm
to explore the search space. An inappropriate choice of variation operators can lead to
getting stuck in local optima or elsewhere. In the context of this part of the thesis we
consider mutation as only variation operator.

Mutation in AIS is quite different from mutation in other randomized search heuristics,
e. g., evolutionary algorithms. While in evolutionary algorithms generally moderate mu-
tation probabilities are used, AIS incorporate mutations at high rate, also called somatic
hypermutations (Bernardino and Barbosa 2009). Here, the term somatic means that
mutations only effect the immune cells themselves but not the genetic material of the
organism. Thus, mutations in the immune system and abilities learned by the adaptive
immune system are not passed forward to offsprings. This is in contrast to mutations in
the context of evolution.

Different types of immune-inspired hypermutation operators have been proposed in the
literature, e. g., static, fitness-proportional hypermutation, inversely fitness-proportional
hypermutation, and hypermacromutation (Cutello et al. 2004a) as well as somatic con-
tiguous hypermutation (Kelsey and Timmis 2003). All these have there roots in different
processes observed in the immune system. Probably the most prominent type of hy-
permutations is the use of inversely fitness-proportional mutation probabilities since this
concept derives directly from the widely accepted clonal selection principle. Various
implementations of this class of hypermutations exist. In the following, we briefly dis-
cuss common variants of hypermutation operators as well as related work from the field
of evolutionary algorithms. Afterwards an overview over results in this thesis and the
considered analytical framework are presented.

3.1. Related Work

One of the first clonal selection algorithms for optimization was CLONALG (de Castro
and Von Zuben 2002b). It incorporates an inversely fitness-proportional mutation oper-
ator that uses the inverse of an exponential function to establish a relationship between
the mutation probability and the normalized function value of the search point to be mu-
tated. The immune network algorithm opt-aiNet (de Castro and Timmis 2002b) is quite
similar to CLONALG. It uses inversely fitness-proportional mutation in a similar way
but with a slightly different parametrization. Note, that mutation operators depending
on the fitness of search points, i. e., the current state of the optimization process, are
somehow similar to evolution strategies (Schwefel 1995) as they employ self-adapting
mechanisms (de Castro and Von Zuben 2002b). Clearly, the obvious difference is that in
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fitness-based mutation the correlation between mutation probability and fitness of the
search point is fixed, while it changes during the optimization process of evolution strate-
gies by means of indirect selection. However, fitness-depending mutation is not a common
concept in the field of evolutionary algorithms (Bernardino and Barbosa 2009). A note-
worthy exception is the recently introduced variant of rank-based mutation (Cervantes
and Stephens 2008) that was theoretically analyzed by Oliveto et al. (2009).

Both operators, CLONALG and opt-aiNet, exist in a continuous and discrete version.
However, we only consider the discrete variants here. Thus, in the context of this the-
sis, i. e., pseudo-Boolean objective functions, the mutation probability determines the
probability for each bit in a given bit string to be mutated. This is different when con-
sidering another well-known clonal selection algorithm, opt-IA (Cutello et al. 2004a).
Here, a function called mutation potential determines the maximal number of mutation
steps, i. e., flipping bits, during the execution of the mutation operator. Such muta-
tion potentials exist in different flavors, e. g., static, fitness-proportional, and inversely
fitness-proportional. Moreover, they can be restricted to certain regions of the bit string
(hypermacromutation). In order to prevent getting stuck, additionally the stop at the
first constructive mutation mechanism is employed. Here, after each single mutation step
it is checked if the search point has improved and stopped if this is the case. A conver-
gence analysis of an algorithmic framework incorporating opt-IA is available (Cutello
et al. 2007c).

Another well-known variant of hypermutations used in AIS are somatic contiguous
hypermutations which are inspired by the mutation mechanism found in B cell receptors.
Here, mutation only effects a contiguous, randomly determined region of the search point,
where each bit is flipped with a pre-defined fixed probability. The mutation operator was
introduced as part of the B-Cell algorithm (Kelsey and Timmis 2003). A convergence
analysis is presented by Clark et al. (2005) and Clark (2008) using a Markov chain model.

An extensive overview on applications and variants of these algorithms was presented
by Brownlee (2007). We consider the mutation operators from CLONALG, opt-aiNet
and the B-Cell algorithm in Chapter 4 and Chapter 5, respectively. The analysis of
mutation potentials from opt-IA remains an interesting open problem.

In the field of evolutionary algorithms other theoretical investigations of mutation
operators are available. For example, Jansen and Wegener (2000) showed that using an
appropriate mutation probability is essential for the performance of the algorithms. In
particular, they showed that the most recommended standard choice for the mutation
probability (1/n) is far from optimal for some problems. Jansen and Sudholt (2010) and
Doerr et al. (2007) investigated the use of asymmetric mutation operators. The interplay
between mutation and selection is considered by Lehre and Yao (2011).

3.2. Contribution of this Thesis

In this part of the thesis we consider different aspects of mutation in artificial immune
systems. We start with an analysis of the most common variant, namely inversely fitness-
proportional mutation in Chapter 4. We investigate the role of parametrization and
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derive guidelines for setting embedded parameters appropriately. We compare different
implementations of such mutation operators, both straightforward ideas and immune-
inspired variants used in practical immune-inspired algorithms, i. e., CLONALG and
opt-aiNet, on a well-known instructive example function. Thereby, the main focus is on
the mutation incorporated into CLONALG. Besides the parametrization, we investigate
the utility of larger collections of search points and thus, the role of the used method for
normalizing function values. We present results of experiments to evaluate the practical
relevance of our theoretical findings and investigate questions not proven in the analytical
part.

In Chapter 5, we analyze contiguous hypermutations from the B-Cell algorithm in
the same manner. We investigate benefits and drawbacks of this kind of mutation on
several instructive example functions from the literature, among that the function used
in the preceding chapter. We discuss serious limitations of this kind of mutation and
point out in which situations it performs better than standard mutations in evolutionary
computation. Again, we close the chapter by presenting experimental supplements.

In the last chapter of this part (Chapter 6), we consider a more general aspect of
hypermutations. Keeping in mind results from the preceding analyses, we investigate
negative effects of large mutation probabilities. We show that on the class of monotone
functions, increasing the standard mutation probability from evolutionary algorithms by
a constant factor can make a decisive difference, i. e., the optimization time increases
from polynomial to exponential. Since in artificial immune systems even larger mutation
probabilities are typical, this result is relevant for hypermutations and shows serious
drawbacks of this kind of mutation operator.

3.3. A Simple Algorithmic Framework

In this part of the thesis, we focus on the analysis of the influence of different immune-
inspired mutation operators and related variants of these operators on the performance
of randomized search heuristics. This is most easily done if the considered operators can
be studied as much in isolation as possible. We achieve this by omitting other possible
features of an artificial immune system and implementing the different kinds of mutation
in a minimal algorithmic framework.

The following randomized search heuristic uses a collection of search points of size µ.
It works in rounds where in each round one new search point is generated as random
variation of an existing search point and µ search points are selected for the next round.
A more formal description of the algorithmic framework is given in Algorithm 3.1.

We use Algorithm 3.1 for maximization of an objective function f : {0, 1}n → R or
f : {0, 1}n → R

+, respectively, and implement the four modules in very simple ways.
The initialization (line 11, Algorithm 3.2) is carried out uniformly at random. Variation
creates one new search point y by means of mutation of a search point selected uniformly
at random from the current collection of search points (line 2b, Algorithm 3.3). Here, the

1all line numbers from Algorithm 3.1
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3. Introduction

Algorithm 3.1 A Simple Algorithmic Framework.

1. Initialization

Let t := 0 and initialize collection of search points C0 of size µ.
2. Repeat

a) Let t := t+ 1.
b) Variation

Generate new search point y.
c) Selection for Replacement

Decide if y is to be inserted in Ct. Remove search point if needed.
Until some termination condition is met.

mutation operators under consideration are plugged in. In the selection for replacement
(line 2c, Algorithm 3.4) the new search point y is inserted if its function value is not
worse than the worst function value of any of the current search points. In this case,
one of the current worst search points is removed uniformly at random. We remark that
depending on the context, we omit the index t of the current collection of search points
if it is not needed.

Algorithm 3.2 Initialization.

1. Choose x1, . . . , xµ ∈ {0, 1}n uniformly at random.
2. Set C0 := {x1, . . . , xµ}.

Algorithm 3.3 Variation.

1. Select x ∈ Ct−1 uniformly at random.
2. Set y := mutate(x).

Following the notation defined in Chapter 2, we denote the optimization time of Al-
gorithm 3.1 using some mutation operator op by Top,f = min{t | Ct ∩ OPT 6= ∅} where
OPT = {x ∈ {0, 1}n | f(x) = max{f(x′) | x′ ∈ {0, 1}n}}. Recall that E (Top,f ) is its
expected value and Top,f,C the optimization time if the algorithm is started in some spe-
cific initial collection of search points C = {x1, . . . , xµ}. The different variants of op are
defined within the next chapters of the thesis.

We aim at comparing results for immune-inspired mutation operators with typical mu-
tation operators from other randomized search heuristics. In evolutionary computation
standard bit mutations (SBM) are most common (de Jong 2006). We define this type of
mutation formally in Definition 3.5 and two well-known algorithms that are the result of
using standard bit mutation within our algorithmic framework in Definition 3.1.

Definition 3.1 ((µ+1) EA, (1+1) EA). Plugging standard bit mutations (Algorithm 3.5)
into the described framework yields the well-known (µ+1) EA (Witt 2006). Furthermore,
setting µ = 1, yields the (1+1) EA (Droste et al. 2002). Typically, p(n) = 1/n holds.
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3.3. A Simple Algorithmic Framework

Algorithm 3.4 Selection for Replacement.

1. Choose z ∈ Ct−1 with minimal fitness uniformly at random,
i. e., z ∈ {x ∈ Ct−1 | f(x) = min{f(x′) | x′ ∈ Ct−1}

2. If f(y) ≥ f(z) then

3. Set Ct := (Ct−1 ∪ {y}) \ {z}.
4. Else

5. Set Ct := Ct−1.

Algorithm 3.5 Standard bit mutation (SBM).

FUNCTION mutate(x):
1. Let y := x.
1. Independently for each i ∈ {0, 1, . . . , n− 1}
2. With probability p(n) set y[i] := 1− y[i].

We remark that the proposed algorithmic framework is rather general. In particu-
lar, it includes among others randomized local search (Michiels et al. 2007) and tabu
search (Glover and Laguna 1997). Thus, available results for these algorithms, see
e. g., (Auger and Doerr 2011; Neumann and Witt 2010) may be used for comparisons, con-
tributing to the understanding of similarities and differences of the different approaches.
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4. Inversely Fitness-Proportional

Mutation Rates

We first investigate the probably most common concept of hypermutation operators
in the field of AIS, namely inversely fitness-proportional mutation probabilities. This
concept has its root in the affinity maturation process, inherent in the clonal selection
principle. Such mutation operators are claimed to be especially appropriate for multi-
modal function optimization since each candidate solution has an independent, adaptive
mutation probability (de Castro and Von Zuben 2002b). Search points in ‘better’ regions
of the search space are only subject to small mutation probabilities while for search points
located far away from optimal regions larger mutation probabilities are used.

We investigate several variants of inversely fitness-proportional mutation probabilities
using the framework described in the previous section. For most of our results we con-
sider Algorithm 3.1 using the mutation operators under consideration on the well-known
example function OneMax, which counts the number of 1-bits in a bit string and can
formally be defined as follows.

Definition 4.1. For n ∈ N and x ∈ {0, 1}n, the function OneMax : {0, 1}n → R is
defined by

OneMax(x) =

n−1
∑

i=0

x[i].

It is known that the (1+1) EA solves OneMax in expected time Θ(n log n) (Droste
et al. 2002). As a preliminary step, we start with two very simple and straightfor-
ward implementations of inversely fitness-proportional mutation operators. Afterwards,
we consider two immune-inspired variants introduced within the optimization algorithm
CLONALG (de Castro and Von Zuben 2002b) and opt-aiNet (de Castro and Timmis
2002b). For the immune-inspired operators, our main focus lies on the influence of pa-
rameters embedded in the operators. Finally, all our theoretical findings are accompanied
by empirical results.

The results in this chapter are mainly based on the work done in Zarges (2008, 2009).
However, Sections 4.1 and 4.4 were not published before. The empirical analysis in
Section 4.5 was significantly extended in comparison to Zarges (2008). Moreover, the
proofs in Sections 4.2 and 4.3.1 were partly restructured.
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4. Inversely Fitness-Proportional Mutation Rates

4.1. A Straightforward Implementation

We start our investigations with a straightforward implementation of the mathematical
term of inverse proportionality. This mutation probability was proven to be the opti-
mal adaptive mutation probability for the example function LeadingOnes (see Defini-
tion 5.8) that counts the number of leading 1-bits in a bit string (Böttcher et al. 2010).
We define the resulting mutation operator in Algorithm 4.1.

Algorithm 4.1 Adaptive mutation probability psimple (Böttcher et al. 2010).

FUNCTION mutate(x):
1. Let v := f(x) and y := x.
2. Independently for each i ∈ {0, 1, . . . , n − 1}
3. With probability psimple(v) := 1/(v + 1) set y[i] := 1− y[i].

It is easy to see that plugging this mutation operator into our algorithmic framework
(Algorithm 3.1) yields polynomial optimization time on OneMax. Moreover, one can
recognize that the mutation probability is not too different from a standard bit mutation
where each bit is flipped with some probability c/n (c > 0 constant). We formalize this
in the following theorem.

Theorem 4.2. Let µ = 1. The expected optimization time of Algorithm 3.1 using the
mutation operator from Algorithm 4.1 on OneMax is

E
(

Tpsimple,OneMax

)

= Θ(n log n).

Proof. We first observe, that for all x ∈ {0, 1}n with OneMax(x) ≥ cn = Ω(n) (c > 0
constant), we have a mutation probability of psimple,OneMax ≤ 1/(cn + 1)
= O(1/n). Moreover, psimple,OneMax ≥ 1/(n+1). Thus, for these bit strings psimple,OneMax

= Θ(1/n).
It is known that the optimization time of Algorithm 3.1 with µ = 1 using mutation

probability Θ(1/n) is Θ(n log n) (Droste et al. 2002), but the proof of this result assumes
a fixed mutation probability throughout the whole optimization process, independently
of the current function value. However, the bound can be carried over easily by adapting
the fitness-level arguments incorporated. Given a search point with OneMax(x) = i,
the probability to increase the function value by at least one can be bounded below by

(

n− i

1

)

· 1

i+ 1
·
(

1− 1

i+ 1

)n−1 (B.8)

≥ n− i

i+ 1
·
(

1

e

)
n−1
i

Since the waiting times are geometrically distributed (Lemma B.14), this yields for
i ≥ cn = Ω(n)

n−1
∑

i=cn

i+ 1

n− i
· en−1

i ≤ e
1
c · n ·

n−1
∑

i=cn

1

n− i
= e

1
c · n ·

(1−c)n
∑

i=1

1

i

(B.6)
= O(n log n)
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4.1. A Straightforward Implementation

for the expected optimization time. Note, that due to Chernoff bounds (see Lemma B.21),
we have OneMax(x0) ≥ dn (d < 1/2 constant) with probability 1 − 2−Ω(n) for the
initial search point x0. But we still need to investigate the mutation probability if
OneMax(x) = o(n)

Let z = n−OneMax(x) denote the current number of 0-bits. The probability that the
number of 0-bits decreases by some amount i can be bounded below by the probability
that exactly i 0-bits and none of the 1-bits flips. Using the definition of the binomial
distribution (see Lemma B.13) in eq. (4.1) and Lemma B.8 in eq. (4.2), we get

z
∑

i=1

(

z

i

)

·
(

1

n− z + 1

)i

·
(

1− 1

n− z + 1

)n−i

=

(

1− 1

n− z + 1

)n−z

·
z
∑

i=1

(

z

i

)

·
(

1

n− z + 1

)i

·
(

1− 1

n− z + 1

)z−i

=

(

1− 1

n− z + 1

)n−z

·
(

z
∑

i=0

(

z

i

)

·
(

1

n− z + 1

)i

·
(

1− 1

n− z + 1

)z−i

−
(

z

0

)

·
(

1

n− z + 1

)0

·
(

1− 1

n− z + 1

)z−0
)

=

(

1− 1

n− z + 1

)n−z

·
(

1−
(

1− 1

n− z + 1

)z)

(4.1)

=

(

1− 1

n− z + 1

)n−z

−
(

1− 1

n− z + 1

)n

≥
(

1

e

)

−
(

1

e

) n
n−z+1

(4.2)

= Θ(1) for OneMax(x) = n− z = o(n).

Altogether, this yields

E
(

Tpsimple,OneMax

)

= O(n log n) + o(n) = O(n log n).

For the lower bound and OneMax(x) = Ω(n), we can again use the argumentation
by Droste et al. (2002). Assume w. l. o. g. that n is even. With probability at least
1/2−2−Ω(n), we have n/2 ≤ |x0|0 ≤ 2n/3 0-bits in the initial search point x0. The prob-
ability that a bit does not flip in t iterations becomes minimal for the maximal mutation
probability. Therefore, let c/n for some constant c > 1 be the maximal mutation proba-
bility during the considered process. Then the probability that at least one of n/2 bits

never flips in t steps is at least 1−
(

1− (1− c/n)t
)n/2

. We consider t = c−1(n − c) ln n
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4. Inversely Fitness-Proportional Mutation Rates

iterations and get

E
(

Tpsimple,OneMax

)

=

∞
∑

t=1

t · Prob
(

Tpsimple,OneMax = t
)

=

∞
∑

t=1

Prob
(

Tpsimple,OneMax ≥ t
)

≥
(

1

2
− 2−Ω(n)

)

·
∞
∑

t=1

(

1−
(

1−
(

1− c

n

)t
)

n
2

)

≥
(

1

2
− 2−Ω(n)

)

·
(n

c
− 1
)

lnn

(

1−
(

1−
(

1− c

n

)(n
c
−1) lnn

)

n
2

)

≥
(

1

2
− 2−Ω(n)

)

·
(n

c
− 1
)

lnn

(

1−
(

1− e− lnn
)

n
2

)

≥
(

1

2
− 2−Ω(n)

)

·
(n

c
− 1
)

lnn
(

1− e−
1
2

)

= Ω(n log n).

4.2. Hamming Distance Based Mutation Rates

As done by Zarges (2008), we consider another simple, fitness-proportional mutation
probability that is not immune-based. Here, the mutation probability depends on the
minimal Hamming distance of the current search point x ∈ {0, 1}n and an optimal search
point of the considered function. Clearly, for OneMax the Hamming distance to the
global optimum is equivalent to the difference of the respective function values. We define
the resulting mutation operator in Algorithm 4.2.

Algorithm 4.2 Hamming distance based mutation probability pHamming (Zarges 2008).

FUNCTION mutate(x):
1. Let v := min{H (x, z) | z ∈ OPT} with

OPT = {x ∈ {0, 1}n | f(x) = max {f(x′) | x′ ∈ {0, 1}n}}.
2. Let y := x.
3. Independently for each i ∈ {0, 1, . . . , n − 1}
4. With probability pHamming(v) := v/n set y[i] := 1− y[i].

Since the expected number of flipping bits for this operator is v, such a mutation proba-
bility is optimal if the objective is to maximize the probability to find the global optimum
of OneMax in a single mutation step. However, we show that this is not helpful with
respect to the optimization time. Note, that for a convincing lower bound on the opti-
mization time it is insufficient to prove a large lower bound on the expected optimization
time. Large expected values may be misleading owing their magnitude to unlikely events
leading to exceedingly long runs. It is therefore much more informative to have a lower
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4.2. Hamming Distance Based Mutation Rates

bound on the probability that a run takes long. This is exactly the kind of statement
we make in the following theorem. We first prove that with overwhelming probability,
the optimum of OneMax is not found within an exponential number of iterations. We
remark, that for search point x with OneMax(x) ≤ n/2 we have pHamming ≥ 1/2.

Theorem 4.3 (Zarges (2008)). Let µ = 1. The optimization time of Algorithm 3.1 using
the mutation operator from Algorithm 4.2 on OneMax is

TpHamming,OneMax ≥ ec·n

(c > 0 constant, sufficiently small) with probability at least 1− e−Ω(n).

Proof. Let z denote the number of 0-bits in the current search points, M0 the number of
flipping 0-bits and M1 the number of flipping 1-bits, respectively. Then, it is easy to see
that

E (M0) =
z2

n
and E (M1) = z − z2

n

holds. Moreover, due to linearity of expectation (Lemma B.12) the expected progress in
an iteration equals

E (M0 −M1) =
2z2

n
− z.

By Chernoff bounds (Lemma B.21), we have Prob (n/3 ≤ OneMax(x0) ≤ 5n/6)
= 1 − e−Ω(n) for the initial search point x0. In the following, we show that as long
as OneMax(x) ≤ 5n/6 holds, we have Prob (OneMax(y) > 5n/6) = e−Ω(n). Let δ be
some constant with 0 < δ < 1/6. We distinguish two cases. The main ideas of the proofs
are visualized in Figure 4.1 where the red line corresponds to the first case and the green
one to the second case. Note, that E (M0) = Ω(n) and E (M1) = Ω(n) hold in both cases.

1. (1/2 + δ) · n ≤ OneMax(x) ≤ 5n/6:

In the first case, we show a large negative drift that hinders the algorithm to increase
the function value, in particular beyond 5n/6. Again due to Chernoff bounds, we
have

Prob (M0 > (1 + δ) · E (M0)) ≤ e−
δ2E(M0)

3 = e−Ω(n) and

Prob (M1 < (1− δ) · E (M1)) ≤ e−
δ2E(M1)

2 = e−Ω(n).
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For z = n− OneMax(x) ≤ (1/2− δ) · n, we can conclude that

M0 −M1 ≤ (1 + δ) · E (M0)− (1− δ) · E (M1)

= (1 + δ) · z
2

n
− (1− δ) ·

(

z − z2

n

)

=
z2

n
+ δ · z

2

n
− z +

z2

n
+ δz − δ · z

2

n

= z ·
(

2z

n
+ δ − 1

)

≤ z ·
(

2 ·
(

1
2 − δ

)

· n
n

+ δ − 1

)

= − δ · z < 0

holds with probability 1− e−Ω(n). Altogether, this yields

Prob (OneMax(y) > OneMax(x)) = Prob (M0 > M1)

≤Prob (M0 > (1 + δ) ·E(M0)) · Prob (M1 < (1− δ) · E(M1)) = e−Ω(n)

for the first case.

2. n/3 ≤ OneMax(x) < (1/2 + δ) · n:

In the second case, we show that with overwhelming probability we either stay in
the second case or ‘jump’ to the region of the first case. Note that the expected
progress E (M0 −M1) is maximal for OneMax(x) = n/3 in the considered region
of the search space. Let z′ be the number of 0-bits after mutating a search point
with (1/2 − δ) · n < z < 2n/3 0-bits. Due to the above calculations, we get the
following lower bound on z′.

z′ ≥ z − z ·
(

2z

n
+ δ − 1

)

= z ·
(

2− 2z

n
− δ

)

>

((

1

2
− δ

)

· n
)

·
(

2− 4

3
− δ

)

= n ·
(

1

2
− δ

)

·
(

2

3
− δ

)

> n ·
(

1

2
− 1

6

)

·
(

2

3
− 1

6

)

=
n

6

Since z′ > n/6 implies OneMax(y) < 5n/6, we conclude that with probability
1− 2−Ω(n) we do not improve the function value beyond 5n/6.

We have shown that Prob (OneMax(y) > 5n/6) = e−Ω(n) holds if n/3 ≤ OneMax(x0)
≤ 5n/6. Together this shows that with probability 1− e−Ω(n) even in ec·n iterations the
global optimum of OneMax is not found (c > 0 constant, sufficiently small).
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0n

OneMax(x)

5n/6 (1/2 + δ)n n/2 n/3

Figure 4.1.: Visualization of the drift in the proof of Theorem 4.3.

We have seen that the Hamming distance based mutation probability yields an ex-
ponential lower bound on the optimization time if the collection of search points in
Algorithm 3.1 is initialized uniformly at random. Assume, the initial search point is
located in some specific region of the search space. The next theorem proves that in this
case, we can achieve a polynomial optimization time with high probability.

Theorem 4.4 (Zarges (2008)). Let µ = 1 and x0 be the initial search point. Assume
OneMax(x0) ≤ c lnn or OneMax(x0) ≥ n − c ln n for some constant c > 0. The
optimization time of Algorithm 3.1 using the mutation operator from Algorithm 4.2 and
on OneMax is

TpHamming,OneMax,x0 = O
(

nc+1 log n
)

with probability 1− n−ω(1).

Proof. Let M = M0+M1 denote the total number of flipping bits in an iteration, where
M0 is the number of flipping 0-bits and M1 the number of flipping 1-bits. Moreover,
let M = n −M . We start with the case OneMax(x0) = O(log n) and show that after
one iteration we are, with probability 1− n−ω(1), in the second case, i. e., OneMax(x0)
= n−O(log n). Afterwards, we show that in this situation, we find the global optimum
of OneMax in expected polynomial time.

With OneMax(x0) = O(log n), we have pHamming(v) = (n − O(log n))/n and thus,
E
(

M
)

= O(log n). By Chernoff bounds (see Lemma B.21), the probability that α(n)
= ω(log n) bits do not flip can be bounded above as follows.

Prob
(

M ≥ α(n)
)

= Prob

(

M ≥
(

1 +

(

α(n)

c
− 1

))

· c
)

<









e
α(n)
c

−1

(

α(n)
c

)
α(n)
c









c

≤
(

ce

α(n)

)α(n)

= 2−ω(logn) = n−ω(1)

Thus, we have M = O(log n) with probability at least 1 − n−ω(1). We pessimistically
assume that all 1-bits flip, i. e., M1 = O(log n). However, since with probability at least
1 − n−ω(1) only O(log n) 0-bits do not flip, we have OneMax(y) = n − O(log n) with
probability 1− n−ω(1).
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For the case OneMax(x0) = n − O(log n), say n − c lnn for some c = O(1), we first
estimate the success probability in one iteration, i. e., the probability to flip more 0-bits
than 1-bits. For the sake of readability, we define k = n− OneMax(x) for some search
point x. Using Lemma B.16 for eq. (4.3) and Lemma B.8 as well as the expectation of
the binomial distribution (see Lemma B.13) in eq. (4.4), we get

Prob (M0 > M1)

=
k
∑

i=1

i−1
∑

j=0

(

k

i

)

·
(

n− k
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·
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k
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=
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·
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≥
(

1

e
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2
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. (4.4)

Remember, that k = n − OneMax(x) and thus, with OneMax(x0) = n − c lnn
= n − O(log n), we have k ∈ {1, . . . , c ln n}. This yields an expected optimization time
of at most

E
(

TpHamming,OneMax,x0

)

≤
c lnn
∑

k=1

ekn

k2
≤ c lnn · ec lnn · n = O

(

nc+1 log n
)

Altogether, for OneMax(x0) = n − O(log n) or OneMax(x0) = O(log n) we find the
global optimum in a polynomial number of iterations with probability 1− n−ω(1).

From the proof of Theorem 4.4, we can immediately conclude that for one of the
considered cases, namely if the initial search point is located ‘near’ to the optimum, we
also have an expected polynomial optimization time.

Corollary 4.5. Let µ = 1 and x0 be the initial search point. Assume OneMax(x0)
≥ n − c lnn for some constant c > 0. The expected optimization time of Algorithm 3.1
using the mutation operator from Algorithm 4.2 on OneMax is

E
(

TpHamming,OneMax,x0

)

= O
(

nc+1 log n
)

.

36



4.3. The Mutation Operator from CLONALG

Proof. As seen in the proof of Theorem 4.4 the failure probability 1−n−ω(1) derives from
the case OneMax(x0) ≤ c lnn. Once we have OneMax(x0) ≥ n − c ln n, the function
value never decreases due to the elitist selection scheme. This yields the claim on the
expected optimization time for the case where we initialize ‘near’ to the optimum.

4.3. The Mutation Operator from CLONALG

As a first example for an immune-based mutation operator, we consider the one proposed
for the well-known clonal selection algorithm CLONALG (de Castro and Von Zuben
2002b). Originally, this mutation operator was introduced in the context of continuous
optimization, but since we concentrate on discrete optimization we only consider its
discrete variant here.

The operator uses the inverse of an exponential function to establish a relationship
between the mutation probability and the normalized function value of the search point
to be mutated. A parameter ρ controls the smoothness of this inverse exponential func-
tion (often called decay parameter). The mutation operator can formally be defined as
described in Algorithm 4.3.

Algorithm 4.3 CLONALG mutation probability pCLONALG (de Castro and Von Zuben
2002b).

FUNCTION mutate(x):
1. Let v := normalize(f(x)) ∈ [0, 1] and y := x.
2. Independently for each i ∈ {0, 1, . . . , n− 1}
3. With probability pCLONALG(v) := e−ρ·v set y[i] := 1− y[i].

When using the above mutation operator one has to decide about an appropriate
parameter setting for ρ and a normalization method. In the following, we consider
these two aspects. Like in the sections before, we first investigate the performance of
the operator in the very simple framework where the collection of search points only
contains one search point. Since we mainly show negative results for this case, we extend
the framework by considering a larger collection of search points and as a consequence
another normalization method which yields better optimization times.

4.3.1. The Role of the Decay Parameter ρ

We first investigate the influence of the decay parameter ρ within a very simple algorith-
mic framework where we set µ = 1 just like in the previous two sections. As a consequence
we need to discuss the normalization method used. Usually, in case of a maximization
problem, the function value is normalized by dividing the fitness of the considered search
point by the fitness of the best current search point. Since our collection of search points
only consists of a single search point, we use the optimal value of the considered objective
function instead. Clearly, in case of OneMax this is n. We define the normalization
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4. Inversely Fitness-Proportional Mutation Rates

method formally in Algorithm 4.4 and obtain

pCLONALG(OneMax(x)) = e−ρ·OneMax(x)
n (4.5)

for the rest of this section.

Algorithm 4.4 Normalizing by means of the optimal function value fOPT.

FUNCTION normalize(v):
1. Return v/fOPT.

We remark, that in real applications the optimal value of the considered function is
generally not known and thus, it is difficult to apply this concept in practice. However,
in real applications one could alternatively use an upper bound for the optimal value.
Note, that using an upper bound for the optimal value leads to larger mutation proba-
bilities, whereas the use of the fitness of the best current search point in a collection of
search points yields smaller mutation probabilities. We come back to this point later in
Section 4.3.2 when discussing the use of a larger collection of search points.

In the following, we consider different settings of the decay parameter ρ and show that
an appropriate choice is essential for the performance of the mutation operator. We first
analyze the two extreme cases ρ = O(1) and ρ = Ω(n) and prove that with a probability
close to 1 for both parameter settings the considered algorithm will not find the optimum
of OneMax within an exponential number of iterations. Afterwards, we investigate how
a carefully chosen intermediate value, i. e., ρ = lnn, influences the optimization time.

Setting ρ = O(1)

Setting ρ to some constant value d > 0, the mutation probability from eq. (4.5) becomes

pCLONALG(OneMax(x)) = e−d·OneMax(x)
n = Θ(1).

In the following we show that this mutation probability is much too large to be effective
since it causes a large negative drift in relevant regions of the search space.

Theorem 4.6 (Zarges (2008)). Let µ = 1 and ρ = O(1). The optimization time of
Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the normalization
method from Algorithm 4.4 is

TpCLONALG,OneMax ≥ ec·n

(c > 0 constant, sufficiently small) with probability at least 1− e−Ω(n).

Proof. The proof follows the line of thought of Theorem 4.3. Again, let z denote the
number of 0-bits in the current search point, M0 the number of flipping 0-bits and M1

the number of flipping 1-bits, respectively. Then, we have

E (M0) = z · e−
d·(n−z)

n

E (M1) = (n − z) · e−
d·(n−z)

n

E (M0 −M1) = (2z − n) · e−
d·(n−z)

n .
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By Chernoff bounds (see Lemma B.21), we have Prob (n/3 ≤ OneMax(x0) ≤ 11n/12)
= 1− e−Ω(n) for the initial search point x0. Then, analogously to Theorem 4.3, we show
Prob (OneMax(y) > 11n/12) = e−Ω(n) as long as OneMax(x) ≤ 11n/12 . Let δ be
some constant with 0 < δ < 1/12 and distinguish the following two cases. Note, that
again E (M0) = Ω(n) and E (M1) = Ω(n) hold in both cases. Despite the similarity of the
calculations here and in the proof of Theorem 4.3, we repeat the complete calculations,
since the concrete constants differ significantly from those in the previous proof.

1. (1/2 + δ) · n ≤ OneMax(x) ≤ 11n/12:

For this case, we show a large negative drift that hinders the algorithm to in-
crease the function value beyond 11n/12. Again due to Chernoff bounds, we have
Prob (M0 > (1 + δ) · E (M0)) = e−Ω(n) and Prob (M1 < (1− δ) · E (M1)) = e−Ω(n).
For z = n− OneMax(x) ≤ (1/2 − δ) · n, we conclude that

M0 −M1 ≤ (1 + δ) · E (M0)− (1− δ) · E (M1)

= (1 + δ) · z · e−
d·(n−z)

n − (1− δ) · (n− z) · e−
d·(n−z)

n

= e−
d·(n−z)

n · ((1 + δ) · z − (1− δ) · (n− z))

≤ e−
d·(n−z)

n ·
(

(1 + δ) ·
(

1

2
− δ

)

· n− (1− δ) ·
(

1

2
+ δ

)

· n
)

= e−
d·(n−z)

n · n ·
(

1

2
− δ +

δ

2
− δ2 −

(

1

2
+ δ − δ

2
− δ2

))

≤ − δ · n < 0

holds with probability 1− e−Ω(n). This yields

Prob (OneMax(y) > OneMax(x)) = Prob (M0 > M1)

≤ Prob (M0 > (1 + δ) ·E(M0)) · Prob (M1 < (1− δ) ·E(M1)) = e−Ω(n)

for the first case.

2. n/3 ≤ OneMax(x) < (1/2 + δ) · n:

In the second case, we show that with overwhelming probability we either stay in
the second case or ‘jump’ to the region of the first case. Note, that the expected
progress E (M0 −M1) is again maximal for OneMax(x) = n/3. Let z′ be the
number of 0-bits after mutating a search point with (1/2− δ) ·n < z < 2n/3 0-bits.
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4. Inversely Fitness-Proportional Mutation Rates

Due to the above calculations, we get the following lower bound on z′.

z′ ≥z − e−
d·(n−z)

n · ((1 + δ) · z − (1− δ) · (n− z))

>

(

1

2
− δ

)

· n− e−
d
3 ·
(

(1 + δ) · 2n
3

− (1− δ) · n
3

)

= n ·
((

1

2
− δ

)

− e−
d
3 ·
(

1

3
+ δ

))

> n ·
((

1

2
− 1

12

)

− e−
d
3 ·
(

1

3
+

1

12

))

=

(

5

12
− e−

d
3 · 5

12

)

· n >
n

12

Since z′ > n/12 implies OneMax(y) < 11n/12, we conclude that with probability
1− 2−Ω(n) the function value does not increase beyond 11n/12.

We have shown that Prob (OneMax(y) > 11n/12) = e−Ω(n) holds if n/3 ≤ OneMax(x0)
≤ 11n/12. Together this shows that with probability 1 − e−Ω(n) even in ec·n iterations
the global optimum of OneMax is not found (c > 0 constant, sufficiently small).

We remark, that for ρ = O(1) we cannot show a polynomial upper bound on the
optimization time for specific regions of the search space (compare Theorem 4.4), as,
e. g., for OneMax(x0) = n − O(log n) or even OneMax(x0) = n − O(1) the expected
progress equals O(log n) − Ω(n) and O(1) − Ω(n), respectively. We conclude that the
parameter ρ should depend on the dimension n of the search space.

Setting ρ = Ω(n)

For the other extreme case, we see that the mutation probability becomes much too small
to be effective. To be more precise, we have

pCLONALG(OneMax(x)) = e−Ω(n)·OneMax(x)
n = e−Ω(OneMax(x)),

yielding an expected exponential waiting time for a mutation actually changing a bit
once the function value has increased to OneMax(x) = Ω(n). This yields an expected
exponential optimization in the considered framework.

Theorem 4.7 (Zarges (2008)). Let µ = 1 and ρ = Ω(n). The expected optimization time
of Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the normalization
method from Algorithm 4.4 on OneMax is

E
(

Tpclonalg ,OneMax

)

= eΩ(n).

Proof. By Chernoff bounds (see Lemma B.21), we have Prob
(

n
3 ≤ OneMax(x0) ≤ 2n

3

)

= 1− e−Ω(n) for the initial search point x0. In this case, the mutation probability equals
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e−Ω(n) and the expected number of flipping bits in an iteration is n/ecn for some constant
c > 0. This yields

E
(

Tpclonalg,OneMax

)

≥
(

1− e−Ω(n)
)

· e
cn

n
= eΩ(n).

It is easy to see from the proof that the optimization time is also eΩ(n) with over-
whelming probability. Moreover, we remark, that already for OneMax(x0) = ω(log n)
we have a mutation probability e−ω(logn) = n−ω(1). In this case, the expected number of
flipping bits in an iteration is n/nω(1), which is also converging to 0 for n → ∞.

Setting ρ = lnn

We have seen, that on one hand for ρ = Ω(n) the mutation probability becomes exponen-
tially small and thus, yields an exponential expected waiting time for a mutation actually
changing a bit. On the other hand for ρ = O(1), the mutation probability becomes quite
large, i. e., 1/e ≤ pCLONALG(OneMax(x)) ≤ 1, yielding an exponentially small proba-
bility for a successful mutation step once OneMax(x) ≥ cn for some constant c > 1/2.
Again, the algorithm with this parameter setting will not find the global optimum of
OneMax within an exponential number of iterations with overwhelming probability.

For these reasons, we now choose a value for ρ, which is in between the two extreme
cases, namely ρ = lnn. For ρ = lnn, we have

pCLONALG(OneMax(x)) = e− lnn·OneMax(x)
n = n−OneMax(x)

n ,

which is 1/n ≤ pCLONALG(OneMax(x)) < 1/2 if OneMax(x) > n/ log n. Hence, in this
case we get, in contrast to ρ = O(1) and ρ = Ω(n), reasonable values for the mutation
probability.

In the following we show that also for ρ = lnn we get indeed a similar result as
for ρ = O(1). However, we will later see in Section 4.5 that ρ = lnn shows a much
better performance in practice than the other parameter choices investigated. This is
among other reasons due to the fact that the probability not to find the optimum within
an exponential number of iterations converges much more slowly to 1 than it does for
ρ = O(1).

Theorem 4.8 (Zarges (2008)). Let µ = 1 and ρ = lnn. The optimization time of
Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the normalization
method from Algorithm 4.4 is

TpCLONALG,OneMax ≥ ed·n
c

with probability at least 1 − e−Ω(nc) (for constants 0 < c < 1/2 and d > 0 sufficiently
small).

Proof. Again, we follow the line of thought of Theorem 4.3. We denote the number of
0-bits in the current search points by z. Moreover, let M0 be the number of flipping
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0-bits and M1 the number of flipping 1-bits, respectively. By Chernoff bounds (see
Lemma B.21), we have Prob (n/3 ≤ OneMax(x0) ≤ 3n/4) = 1 − e−Ω(n) for the initial
search point x0. Assume OneMax(x) = d · n for some constant 0 < d < 1. For ρ = lnn
this yields

E (M0) = (1− d) · n1−d

E (M1) = d · n1−d.

We show analogously to Theorem 4.3, that Prob (OneMax(y) > 3n/4) = e−Ω(n) as
long as OneMax(x) ≤ 3n/4 . Let δ be some constant with 0 < δ < 1/6. We distinguish
the following two cases and again repeat the complete calculations due to the different
constants involved.

1. (1/2 + δ) · n ≤ OneMax(x) ≤ 3n/4:

Similarly to Theorem 4.6 we show a large negative drift in the considered region of
the search space. Due to Chernoff bounds, we then have

Prob (M0 > (1 + δ) · E (M0)) ≤ e−
δ2·(1−d)·n1−d

3 = e
−Ω

(

n
1
2−δ

)

and

Prob (M1 < (1− δ) · E (M1)) ≤ e−
δ2·d·n1−d

2 = e
−Ω

(

n
1
2−δ

)

.

For z = n− OneMax(x) ≤ (1/2− δ) · n, we conclude that

M0 −M1 ≤ (1 + δ) · E (M0)− (1− δ) · E (M1)

= (1 + δ) · (1− d) · n1−d − (1− δ) · d · n1−d

= n1−d · (1 + δ − 2d)

≤ n1−(1/2+δ) · (1 + δ − 2 · (1/2 + δ))

= − δ · n1/2−δ < 0

holds with probability 1− e−Ω(nc). This yields

Prob (OneMax(y) > OneMax(x)) = Prob (M0 > M1)

≤ Prob (M0 > (1 + δ) · E(M0)) · Prob (M1 < (1− δ) ·E(M1)) = e−Ω(nc)

for the first case.

2. n/3 ≤ OneMax(x) < (1/2 + δ) · n:

In the second case, we show that with overwhelming probability we either stay in
the second case or ‘jump’ to the region of the first case. Note, that the expected
progress E (M0 −M1) is again maximal for OneMax(x) = n/3. Let z′ be the
number of 0-bits after mutating a search point with (1/2− δ) ·n < z < 2n/3 0-bits
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and note that 1/3 < d < (1/2 + δ) holds. Due to the above calculations, we get
the following lower bound on z′.

z′ ≥ z − n1−d · (1 + δ − 2d)

>

(

1

2
− δ

)

· n− n1−d · (1 + δ − 2d)

>
n

3
− n

2
3

2
>

n

4
for sufficiently large n

Since z′ > n/4 implies OneMax(y) < 3n/4, we conclude that with probability

1− 2
−Ω

(

n
1
2−δ

)

the function value does not increase beyond 3n/4.

We have shown that, if n/3 ≤ OneMax(x0) ≤ 3n/4, Prob (OneMax(y) > 3n/4)

= e
−Ω

(

n
1
2−δ

)

holds . Together this shows that with probability 1 − e
−Ω

(

n
1
2−δ

)

even
in ed·n

c
iterations the global optimum of OneMax is not found (0 < c < 1/2, d > 0

sufficiently small, constant).

Similarly to our analysis in Section 4.2 we can show, that for some regions of the search
space we achieve an expected polynomial optimization time.

Theorem 4.9 (Zarges (2008)). Let µ = 1, ρ = lnn and x0 be the initial search point. As-
sume OneMax(x0) = n−O(n/ log n). The expected optimization time of Algorithm 3.1
using the mutation operator from Algorithm 4.3 and the normalization method from Al-
gorithm 4.4 on OneMax is

E (TpCLONALG,OneMax,x0) = O(n log n).

Proof. Let k = n − OneMax(x0). For k = O(n/ log n) we get an upper bound for the
mutation probability by

pCLONALG(OneMax(x)) = n−n−k
n =

n
k
n

n
=

e
ln(n)·k

n

n
= O

(

1

n

)

.

Moreover, we have the trivial lower bound n−(n−k)/n ≥ 1/n. The probability for a
successful one bit mutation can then be bounded below by

(

k

1

)

· 1

n
n−k
n

·
(

1− 1

n
n−k
n

)n−1

= Θ

(

k

n

)

·
(

1−Θ

(

1

n

))n−1

= Θ

(

k

n

)

and the expected waiting time is bounded above by

O(n/ logn)
∑

k=1

Θ
(n

k

)

= O(n log n)

We have seen that in the very simple framework we are generally only able to show
negative results. We claim that this is due to the very restricted normalization method
that leads to either too large or too small mutation probabilities. Thus, in the following,
we investigate the role a larger collection of search points and introduce a more advanced
normalization method.
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4.3.2. Normalizing Fitness Values: On the Utility of the Size of the
Collection of Search Points

In the foregoing section, we have seen that the mutation operator from CLONALG
embedded in a very simple algorithmic framework with only one search point in the
collection of search points is not even able to solve the very simple example function
OneMax due to a large negative drift. Since typically optimization problems are much
harder than OneMax, which can easily be solved by a hill-climbing algorithm, the
resulting algorithm does not seem appropriate for the task of optimization. However, we
show that this failure is due to the rather artificial restriction of the size of the collection
of search points to one and the resulting normalization method embedded in the mutation
operator. Thus, in this section, we move forward to larger collections of search points
and investigate the performance of the algorithm emerging from this extension.

In the field of evolutionary algorithms, the influence of the size of the collection of
search points has been studied by many. In theoretical run time analysis, Jansen and
Wegener (2001) and Witt (2008) considered fitness-proportional selection whereas Witt
(2006) and Storch (2004) used uniform selection. They showed that larger collection of
search points can be advantageous in both selection schemes even if mutation is the only
search operator used by the algorithm. We show similar results here.

We first reconsider the normalization method used by the mutation operator. As
already discussed previously, in practical applications typically nothing is known about
the optimal solution of a problem. Thus, by introducing a larger collection of search
points, we can avoid to use this (usually unavailable) information for the purpose of
normalization and evaluate the relative fitness of each search point by normalizing by
means of the currently best known function value, i. e., the fitness of the best search
point in the collection of search points. We define the resulting normalization operator
formally for some arbitrary objective function f : {0, 1}n → R in Algorithm 4.5.

Algorithm 4.5 Normalizing by means of the best current known function value fbest

for f : {0, 1}n → R
+.

FUNCTION normalize(v):
1. Let fbest = max

y∈C
f(y).

2. Return v/fbest.

Note, that this normalization method leads to lower mutation probabilities compared
to using the optimal value since maxy∈C f(y) is (in case of a maximization problem)
always at most as large as the optimal function value. As one reason for the failure of
the algorithm analyzed in the previous section are too large mutation probabilities, the
normalization method defined in Algorithm 4.5 seems to be a worthwhile concept.

Note, that for x ∈ C with f(x) = maxy∈C f(y), the corresponding mutation probability
equals the standard mutation probability 1/n and thus, the behavior of the currently best
search point in the collection of search points equals that of the (1+1) EA (Droste et al.
2002). The probability to choose a best search point for reproduction is at least 1/µ.
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With this observation simple upper bounds on the optimization time can be derived using
results for the (1+1) EA. Moreover, some results for the (µ+1) EA (Witt 2006) can be
carried over.

Since the normalization method defined above requires function values that are strictly
positive, we consider a strictly positive variant of the example function OneMax, called
OneMax+, instead. The function can formally be defined as follows. Note, that this
modification has no significant effect on the performance of the algorithm and thus, we
essentially carry out an analysis on OneMax.

Definition 4.10. For n ∈ N and x ∈ {0, 1}n, the function OneMax+ : {0, 1}n → R is
defined by

OneMax+(x) = 1 + OneMax(x) = 1 +
n−1
∑

i=0

x[i].

In the previous section, we found out that the choice of the decay parameter ρ is
essential for the performance of the algorithm and identified ρ = lnn as an appropriate
choice that leads at least to reasonable mutation probabilities, i. e., 1/n ≤ pCLONALG

< 1/2 if OneMax(x) > n/ log n. Note, that an optimal choice for ρ is problem-dependent
and that it is not known whether lnn is the best value for the considered objective
function. Nevertheless, due to our former results for OneMax we set ρ = lnn throughout
this section. This leads to the following mutation probability for a strictly positive
pseudo-Boolean objective function f : {0, 1}n → R

+:

pCLONALG(f(x)) = e
− lnn· f(x)

max
y∈P

f(y)

= n
− f(x)

max
y∈P

f(y)

. (4.6)

In the following, we consider upper and lower bounds of Algorithm 3.1 with µ ≥ 2
and the mutation operator described above. Along the way we derive some general
characteristics of the considered mutation operator as well as properties of the collection
of search points, which hold not only for OneMax but for a larger class of pseudo-Boolean
functions.

An Upper Bound for OneMax

We first derive an upper bound for the optimization time of Algorithm 3.1 using the mu-
tation operator from Algorithm 4.3 with ρ = lnn and the normalization method defined
in Algorithm 4.5 on OneMax+. This bound easily carries over from the analysis of the
(µ+1) EA executed by Witt (2006) and thus, we are able to show an asymptotically
tight polynomial bound on the expected optimization time for the considered algorithm.
This shows that larger collections of search points can be essential for inversely fitness-
proportional mutation probabilities since (as seen in the previous section) the respective
algorithm with µ = 1 is inefficient when optimizing OneMax+.

We remark, that the essential part is the normalization method incorporated in the
algorithm which only makes sense when the collection of search points consists of at least
two search points. However, if µ = 1 is chosen in this setting, the resulting algorithm
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equals the (1+1) EA with mutation probability 1/n (and not the respective algorithm
from the previous section) since always the currently best search point in the collection of
search points, namely the only one, is selected and thus, the mutation probability in this
case is 1/n throughout the whole optimization process. We see that for this reason with
µ = 1 the resulting algorithm is not an immune algorithm in our sense as the mutation
probability does not depend on the function value any more. As the focus of our analysis
lies on immune algorithms and especially on the dynamics of the considered mutation
operator, we exclude the case µ = 1 from our considerations for the rest of this section.

Theorem 4.11 (Zarges (2009)). Let ρ = lnn, µ = poly (n) and µ ≥ 2. The expected
optimization time of Algorithm 3.1 using the mutation operator from Algorithm 4.3 and
the normalization method from Algorithm 4.5 on OneMax+ is

E
(

TpCLONALG,OneMax+

)

≤ 5eµn+ en ln(en) = O(µn+ n log n).

Proof. Note, that in the proof by Witt (2006; Theorem 2) only the currently best search
point in the collection of search points is considered, which implies that the relevant
mutation probability for our algorithm equals 1/n. Thus, the proofs follows exactly the
argumentation carried out by Witt (2006) for the (µ+1) EA. We remark, that the bound
in Witt (2006) had an extra additive term of µ which reflects the costs of initialization.
However, we only count iterations here (in contrast to function evaluations) and thus,
these costs are 0 in our cost model.

Let L be the number of 1-bits in the currently best known search point x, i. e., L = |x|1.
To increase L and thus, increase the currently best known function value, it suffices to
select one of the best search points from the current collection of search points and flip
exactly one of the existing 0-bits. If there exist i best search points, this probability is

i

µ
· n− L

n
·
(

1− 1

n

)n−1

≥ i · (n− L)

eµn
.

Assume pessimistically that L does not increase until the collection of search points
contains at least min{n/(n−L), µ} best search points. The number of best search points
can increase if Algorithm 3.1 produces replicas of best search points. The probability for
this event is

i

µ
·
(

1− 1

n

)n

≥ i

2eµ
.

Thus, the expected waiting time for having at least min{n/(n−L), µ} best search points
is at most

⌈n/(n−L)⌉−1
∑

i=1

2eµ

i
≤ 2eµ ln

(

en

n− L

)

if L does not increase before. Summing up these expecting waiting times for all values
of L yields a total expected waiting time of at most

2eµ
n−1
∑

L=0

ln

(

en

n− L

)

= 2eµ ln

(

ennn

n!

)

≤ 2eµ ln(e2n) = 4eµn.
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Moreover, if there are at least min{n/(n − L), µ} best search points, the expected time
for increasing L is at most eµn/min{n, µ · (n−L)} and thus, the expected waiting time
for all L-increases is at most

n−1
∑

L=0

(

eµn

µ(n− L)
+

eµn

n

)

≤ en ln(en) + eµn.

Altogether, the total expected optimization time is at most en ln(en) + 5eµn.

Note, that for µ = Θ(1) the upper bound on the optimization time of the considered
algorithms is asymptotically the same as for the (1+1) EA (Droste et al. 2002). Thus,
already for µ = 2 the performance of the considered mutation operator on simple example
functions is drastically improved compared to the parameterization chosen in the previous
section.

Deriving a Matching Lower Bound

We now derive an asymptotically equivalent lower bound. Again, we follow the argu-
mentation carried out by Witt (2006) for the (µ+1) EA. However, for the lower bound,
we require additional knowledge of the properties of the considered mutation operator.
Since the mutation probability directly depends on the structure of the collection of
search points, we first investigate general properties of this structure. To be more pre-
cise, we derive an upper bound on the size of the span of the function values within the
collection of search points. By means of this result, we show that the expected number
of flipping bits in an iteration is bounded by constants. Afterwards, we can adapt the
arguments by Witt (2006).

The results of this section are taken from Zarges (2009) and hold for a class of pseudo-
Boolean functions where the function values only depend on the number of 1-bits in
the search points. Moreover, the functions in this class have somehow smooth fitness
landscapes, i. e., neighboring points in the search space have similar function values.
These functions were already investigated by Jansen and Wegener (2007). Note, that we
again only consider strictly positive functions due to the normalization method embedded
in the mutation operator. Clearly, OneMax+ belongs to this class. We define both
properties formally.

Definition 4.12. A pseudo-Boolean function f : {0, 1}n → R
+ is called smooth integer

if f(x) ∈ Z
+ for all x ∈ {0, 1}n and if |f(x) − f(y)| ≤ c (c > 0 constant) for all

x, y ∈ {0, 1}n with H(x, y) ≤ 1.

Definition 4.13. The class Un contains all pseudo-Boolean functions f : {0, 1}n → R
+

of unitation, where f(x) depends only on the number of 1-bits in x. The functions in
Un are also known as symmetrical functions since the function value does not change by
permuting the input bits.

The mutation probability for a search point x depends on the relation of the function
value of x and the currently best known function value. We observe, that the initial
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collection of search points of the algorithm is, with high probability, situated within
central regions of the search space, i. e., search points with n/2 ± O(

√
n log n) 1-bits.

Thus, we additionally characterize functions by a lower bound on the function values
in these central regions in order to estimate the relation between the best and worst
function value within the collection of search points.

Definition 4.14. A pseudo-Boolean function f : {0, 1}n → R
+ is denoted as κ(n)-

qualified if for all x ∈ {0, 1}n with n/2 − O
(√

n · log n
)

≤ OneMax(x) ≤ n/2
+O
(√

n · log n
)

we have f(x) = Ω(κ(n)).

Note, that OneMax+ is n-qualified. We start with a general result on the considered
mutation operator and show that the expected number of flipping bits in an iteration
is bounded by constants if the difference between the function values of the best and
worst search point in the current collection of search points is at most O(n/β(n)) and
the best search point has function value at least Ω(n log n/β(n)) for an arbitrary β(n).
Afterwards, we show that the prerequisites of the following lemma hold for the considered
algorithm with high probability.

Lemma 4.15 (Zarges (2009)). Consider the mutation probability defined in eq. (4.6).
Let f : {0, 1}n → R

+ and C a collection of search points with

vmax =max
x∈C

f(x) = Ω

(

n · log n
β(n)

)

and

vmin =min
x∈C

f(x) = vmax −O

(

n

β(n)

)

for an arbitrary β(n). Then, for any search point from C the expected number of flipping
bits is Θ(1).

The probability to flip ω(γ(n)) bits is bounded above by e−ω(γ(n)). If γ(n) = Ω(log n),
this even holds for a sequence of T = poly (n) independent mutations.

Proof. Let x ∈ C with f(x) = vmin. If x is selected for reproduction, we get

pCLONALG(f(x)) = n
− f(x)

max
y∈C

f(y)

= n− vmin
vmax = n−

vmax−O

(

n
β(n)

)

vmax = n
−



1−
O

(

n
β(n)

)

vmax





.

Let M be the number of flipping bits. As vmax = Ω(n log n/β(n)), the expected number
of flipping bits can be bounded above by

E (M) =
n

n1−
O

(

n
β(n)

)

vmax

= n
O

(

n
β(n)

)

vmax = n

O

(

n
β(n)

)

Ω

(

n·log n
β(n)

)

= n
O
(

1
logn

)

= 2O(1) = O(1).

Moreover, E (M) ≥ 1 holds as pCLONALG(f(x)) ≥ 1/n. Let E (M) = c. We bound the
probability to flip at least ω(γ(n)) bits from above using Chernoff bounds as in the proof
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of Theorem 4.4 by 2−ω(γ(n)). Assume γ(n) = Ω(log n). Then, the probability that this
does not hold for one mutation in a sequence of T = poly (n) mutations is bounded above
T/eω(γ(n)) = e−ω(γ(n)).

Since pCLONALG is monotonically decreasing, the above argumentation holds for all
y ∈ C with f(y) ≥ f(x) = vmin.

In order to facilitate notation, we characterize iterations of the considered algorithm
according to the progress made, i. e., the improvement of the currently best known func-
tion value. Recall, that we denote the collection of search points in iteration t by Ct.

Definition 4.16. Iteration t of Algorithm 3.1 is called improving if maxx∈Ct f(x)
> maxx∈Ct−1 f(x) holds and non-improving otherwise.

In a first step we show that the upper bound on the difference in function values given
in Lemma 4.15 holds with high probability within phases of the considered algorithm
that contain at most µ improving iterations.

Lemma 4.17 (Zarges (2009)). Let Ct be the collection of search points of Algorithm 3.1
using the mutation operator from Algorithm 4.3 and the normalization method from Al-
gorithm 4.5 at time t. Let µ = O(n/β(n)) and µ ≥ 2 with β(n) = O

(

n/ log2 n
)

. Fur-
thermore, let f : {0, 1}n → R

+ be smooth integer and (n log n/β(n))-qualified. Consider
a phase of this algorithm of length T = poly (n) that contains at most µ improving itera-
tions.

If |f(x)− f(y)| = O(n/β(n)) for all x, y ∈ Ct, then, with probability 1− e−ω(logn), for
all x′, y′ ∈ Ct+i, 0 < i ≤ T , |f(x′)− f(y′)| = O(n/β(n)) holds.

Proof. Note, that only improving iterations can increase the difference in function values
of the best and worst search point in a collection of search points. In the following,
we therefore only consider improving iterations and ignore the effects of non-improving
iterations since they can only decrease the considered difference.

Let t′ be the point in time where the first improving iteration takes place. As
|f(x) − f(y)| = O(n/β(n)) for all x, y ∈ Ct and all iterations between t and t′ are
non-improving, we have |f(x) − f(y)| = O(n/β(n)) for all x, y ∈ Ct′−1. Since f is
(n log n/β(n))-qualified and due to the elitist selection of the algorithm, additionally
f(x) = Ω(n log n/β(n)) holds with probability 1 − 2−Ω(n). Thus, in this situation, we
can apply Lemma 4.15.

Assume O(log n) bits are flipped in iteration t′. Due to Lemma 4.15 the probability
for this event is bounded below by 1 − e−ω(logn). As the considered objective function
is smooth integer, the number of flipping bits is asymptotically an upper bound on the
progress obtained and hence, the improvement is O(log n) with probability 1− e−ω(logn).
We obtain, with probability 1− e−ω(logn),

|f(x)− f(y)| = O

(

n

β(n)

)

+O(log n) = O

(

n

β(n)

)

for all x, y ∈ Ct′ , where the last equality holds due to the prerequisite β(n) = O
(

n/ log2 n
)

.
We now prove our claim by the following case distinction.
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4. Inversely Fitness-Proportional Mutation Rates

For the first case assume µ = O(n/(β(n) log n)) and let T be the point in time where the
µ-th improving iteration takes place. The argumentation from above can be carried over
iteratively to the subsequent improving iterations of the considered phase. Altogether,
with probability 1 − e−ω(logn), the difference increases at most by µ · O(log n) within µ
improving iterations. We then have, with probability 1− e−ω(logn),

|f(x)− f(y)| = O

(

n

β(n)

)

+ µ ·O(log n)

=O

(

n

β(n)

)

+O

(

n

β(n) · log n

)

· O(log n) = O

(

n

β(n)

)

for all x, y ∈ CT , where the second equality holds due to the assumption on µ in this
case.

For the second case, let µ = Ω(n/(β(n) log n)). As stated above, we can apply
Lemma 4.15 and thus, the expected number of flipping bits in one iteration is Θ(1).
Since each bit is flipped independently with the same mutation probability p and we
have n bits we conclude that p = Θ(1/n) holds. We consider µ iterations. The expected
number of flipping bits is Θ(µ · n · (1/n)) = Θ(µ). Due to Chernoff bounds, the probabil-
ity to flip ω(µ) bits is then bounded above by e−ω(µ). Hence, using β(n) = O

(

n/ log2 n
)

,
with probability

1− e−ω(µ) = 1− e
−ω

(

n
β(n)·logn

)

= 1− e−ω(logn),

the difference increases at most by O(µ) within µ improving iterations. With µ
= O(n/β(n)) the lemma follows.

We see that the argumentation of the proof of Lemma 4.17 cannot be carried forward
to a larger number of improving iterations: For λ improving iterations the resulting upper
bound on the difference in function values is O(n/β(n))+λ·O(log n) or O(n/β(n))+O(λ)
respectively, and we need this to be O(n/β(n)). Thus, to obtain a general result for
the considered algorithm with a polynomial number of iterations, we need to analyze
the development of the collection of search points more carefully. Due to notational
convenience we introduce the following notion of subsequent search points within a sorted
collection of search points.

Definition 4.18. Let Ct = {x1, x2, . . . , xµ} be the collection of search points of the
Algorithm 3.1 at time t sorted according to the function values, i. e., f(xi) ≤ f(xj) for
i < j. Then, xi and xi+1 are denoted as subsequent search points. Moreover, we call Ct

sorted.

The idea for the proof of the following main theorem on the properties of the collection
of search points is as follows. We first show that our claim on the difference in function
values holds after initialization. Due to Lemma 4.17 this property is not destroyed within
µ improving iterations. We therefore consider phases of Algorithm 3.1 with exactly µ
improving iterations and show that after each of these phases, the collection of search
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4.3. The Mutation Operator from CLONALG

points is repeatedly situated within a narrow band, i. e., we can derive an upper bound
on the difference of the function values of two subsequent search points. Thus, we are
able to apply inductive arguments. Note, that the last such phase might contain less
than µ improving iterations. As this is not crucial for the proof, we assume to only have
phases with exactly µ improving iterations in the following.

Theorem 4.19 (Zarges (2009)). Let Ct be a collection of search points of Algorithm 3.1
using the mutation operator from Algorithm 4.3 and the normalization method from
Algorithm 4.5 at time t, 0 ≤ t ≤ T , T = poly (n), µ = O(n/β(n)), µ ≥ 2, with

β(n) = O
(

√

n/ log n
)

and x, y ∈ Ct.

Then, for a (n log n/β(n))-qualified smooth integer function of unitation f : {0, 1}n →
R
+ we have |f(x)− f(y)| = O(n/β(n)) with probability 1− e−ω(logn).

Proof. After initialization, we have n/2−O(n/β(n)) ≤ |x|1 ≤ n/2+O(n/β(n)) for a sin-

gle search point x with probability 1−e−ω(n/β(n)2) due to Chernoff bounds (Lemma B.21).
The probability that this does not hold for one of the µ search points is bounded above
by µ · e−ω(n/β(n)2) using a simple union bound (Lemma B.10). For µ = poly (n),
this probability can be bounded above by e−ω(logn) since due to the prerequisite β(n)

= O
(

√

n/ log n
)

, 1− e−ω(n/β(n)2) = 1− e−ω(logn) holds.

As f is a function of unitation the number of different function values for these initial
search points is bounded above by 2 · O(n/β(n)) = O(n/β(n)). Let x = 1a0n−a and
y = 1b0n−b be two search points with maximal difference in the number of 1-bits. As
there exists a path of direct Hamming neighbors between x and y of length O(n/β(n)) and
f is smooth integer, the difference in function values between x and y is bounded above
by O(n/β(n)). Since f is a function of unitation, this holds for all search points after
initialization with probability 1− e−ω(logn) and thus, the claim holds after initialization.

Assume t′ to be the point in time where the µ-th improving iteration takes place.

As β(n) = O
(

√

n/ log n
)

= O
(

n/ log2 n
)

we can apply Lemma 4.17. Thus, we have

|f(x)− f(y)| = O(n/β(n)) for all x, y ∈ Ct, 0 ≤ t ≤ t′, with probability 1− e−ω(logn).

We further investigate such an iteration t, i. e., 0 ≤ t ≤ t′. Let vmin = minx∈Ct−1 f(x)
be the minimal and vmax = maxx∈Ct−1 f(x) be the maximal function value before iter-
ation t. If t is improving, definitely a new search point enters the collection of search
points, which potentially increases the difference of the function values of the best and
worst search point as vmax increases. If t is non-improving, also a new search point y
might enter the collection of search points, but due to the elitist selection of the algorithm
and as t is non-improving, in this case vmin ≤ f(y) ≤ vmax holds. Thus, the difference
in function values never increases but decreases iff vmin increases. Altogether, the dif-
ference in function values is maximal if we only consider improving iterations and thus,
the collection of search points Ct′ contains, in the worst case, exactly the µ search points
that were created during the µ improving iterations of the considered phase. Hence,
maxx∈C0 f(x) < minx∈Ct′

f(x).
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Analogously to Lemma 4.17 we prove the theorem by the following case distinction.
For the first case assume µ = O(n/(β(n) log n)). Due to Lemma 4.15 the progress

obtained in a single improving iteration in a sequence of T = poly (n) iterations is
O(log n) with probability 1 − e−ω(logn). This implies that the difference of the function
values of two subsequent search points of the collection of search points is bounded
above by O(log n), i. e., |f(xi+1) − f(xi)| ≤ c · log(n), c > 0 constant, with probability
1 − e−ω(logn). Note, that c is the same for all pairs of subsequent search points. With
µ = O(n/(β(n) log n)), say µ = d · n/(β(n) log n) for some constant d > 0, the difference
of the function values of x1 and xµ can be bounded above by

µ−1
∑

i=1

|f(xi+1)− f(xi)| ≤
µ−1
∑

i=1

c · log n = µ · c · log n

=d · n

β(n) · log n · c · log n = c · d · n

β(n)
= O

(

n

β(n)

)

For µ = Ω(n/(β(n) log n)), we get |f(x1) − f(xµ)| = δ · µ = δ′ · n
β(n) = O(n/β(n)) with

probability at least 1−e−ω(logn) by the same argumentation as in the proof of Lemma 4.17
(δ, δ′ > 0 constant).

For the rest of the algorithm, we now consider phases that contain exactly µ improving
iterations. Due to Lemma 4.17 the stated property survives within each of these phases.

Let ti1 be the beginning and ti2 the end of phase i. If |f(x) − f(y)| = O(n/β(n)) for
all x, y ∈ Cti1

, we have |f(x) − f(y)| = O(n/β(n)) for all x, y ∈ Ct, ti1 ≤ t ≤ ti2, with

probability 1−e−ω(logn) due to Lemma 4.17. Moreover, the collection of search points at
time ti2 again contains, in the worst case, exactly the µ search points that were created
during the µ improving iterations of the phase. Therefore, after each of the considered
phases the difference in function values between x1 and xµ can be bounded above in
exactly the same way, i. e., by cdn/β(n) or δ′n/β(n) respectively for constants c, d, δ′ > 0
from the calculations performed above. This concludes the proof.

Using the results from Theorem 4.19 and Lemma 4.15 we can now easily derive an
upper bound on the expected number of flipping bits in an iteration of the considered
algorithm as long as the total number of iterations is polynomial in n. More precisely, we
show that the expected number of flipping bits in an iteration is constant. Afterwards,
we use this result to prove the lower bound on the optimization time.

Corollary 4.20 (Zarges (2009)). Let f : {0, 1}n → R
+ be a (n log n/β(n))-qualified

smooth integer function of unitation, β(n) = O
(

√

n/ log n
)

, and Ct a collection of search

points evolved by Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the
normalization method from Algorithm 4.5 at time t with µ = O(n/β(n)) and µ ≥ 2.

Then, for an arbitrary search point from Ct the expected number of flipping bits in an
iteration is Θ(1) as long as t = poly (n).

Proof. Due to Theorem 4.19 we have |f(x) − f(y)| = O(n/β(n)) for arbitrary x, y ∈ Ct

with probability at least 1 − e−ω(logn). As f is (n log n/β(n))-qualified and due to the
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elitist selection of the considered algorithm, additionally f(x) = Ω(n log n/β(n)) for all
x ∈ Ct holds with probability 1 − 2−Ω(n). Thus, in this situation, the expected number
of flipping bits is c ≥ 1 for some c = Θ(1) according to Lemma 4.15.

For |f(x)− f(y)| = ω(n/β(n)), we can bound the number of flipping bits by n. Thus,
this case adds n/eω(logn) = o(1) to the total expected value and the corollary follows.

We remark, that the results presented above also hold for the (µ+1) EA (Witt 2006).
Moreover, both Lemma 4.17 and Theorem 4.19 only consider improving iterations. Thus,
we only consider iterations that increase the difference in function values of the best and
worst search point and ignore iterations that might lead to reductions of the difference
in function values. In spite of our worst case argumentation the results obtained are
surprisingly good, but may leave room for improvements.

However, we are now ready to prove the announced lower bound on the optimization
time. The following proof uses the technique of analyzing randomized family trees intro-
duced by Witt (2006). For each search point x0 in the initial collection of search points
a family tree contains this search point x0 as its root and all its descendants as nodes.
Some node x in a family tree gets a child node x′ if x′ is generated via mutation of x.
Removal of search points from the collection of search points is not modeled in family
trees. Nodes in a family tree that correspond to members of the current collection of
search points are called alive. Other nodes are called dead. Clearly, only alive nodes can
get new descendants. The depth of a node in a family tree corresponds to the number of
mutations between the node and its oldest ancestor at the root. Since mutations tend to
be small, probabilistic relations between the depth of nodes and their Hamming distance
to the root can be established. If the depth of a node in a family tree is not too small
it can be expected that it evolved far. Thus, lower bounds on the depth of a family
tree can be translated into upper bounds on the optimization time. Analogously, upper
bounds on the depth of a family tree translate into lower bounds on the optimization
time. This makes family trees an immensely useful proof method for collection of search
points-based search heuristics. We continue with a more formal definition.

A family tree Tt(x0) contains the direct and indirect descendants of a search point x0
created by time t ≥ 0 via mutation. Thereby, nodes of the tree identify the search points
generated and an edge (x, y) denotes that y was created by mutating x. At any time step
there is a family tree Tt(x0) for each x0 from the initial collection of search points. The
depth of a family tree is defined as the maximal depth of its nodes. The depth of a node
is defined as the number of nodes encountered on the unique path from the root to this
node not including the node itself. We remark, that we use this technique again with a
slight modification in Section 9.2 when considering different aging operators. There, an
example for a family tree can be found (Figure 9.3, page 172).

Analogously to Witt (2006), we start with a general lower bound for (n log n/β(n))-
qualified smooth integer functions of unitation whose set of global optima have size 2o(n)

or where all global optima have a linear Hamming distance to search points with n/2
1-bits. Finally, we derive a lower bound on the optimization on our concrete objective
function OneMax+ (see Definition 4.10).

53



4. Inversely Fitness-Proportional Mutation Rates

Theorem 4.21 (Zarges (2009)). Let µ = O(n/β(n)) with β(n) = O
(

√

n/ log n
)

, µ ≥ 2,

and f : {0, 1}n → R
+ (n log n/β(n))-qualified smooth integer of unitation. Moreover,

let OPT = {x ∈ {0, 1}n | f(x) = max {f(x′) | x′ ∈ {0, 1}n}} denote the set of all global
optima with omin = min{|x|1 | x ∈ OPT} and omax = max{|x|1 | x ∈ OPT}. If at least
one of the three conditions

|OPT| = 2o(n), omin =
n

2
+ Ω(n), omax =

n

2
− Ω(n)

holds, the expected optimization time of Algorithm 3.1 using the mutation operator from
Algorithm 4.3 and the normalization method from Algorithm 4.5 is at least Ω(µn), and
the success probability in cµn steps is 2−Ω(n) if the constant c > 0 is chosen sufficiently
small. If |OPT| = 1, the expected optimization time on f is even Ω(µn+ n log n).

Proof. Since all requirements of Corollary 4.20 are fulfilled, we can conclude that the
expected number of flipping bits in an iteration of the considered algorithm is constant.
Thus, the proof of Theorem 4 by Witt (2006) can be carried over by simply adjusting
the calculations performed.

We start with the lower bound Ω(n log n) in the case |OPT| = 1. This bound needs
only to be shown for µ ≤ c′ log n for an arbitrary constant c′ > 0. Let c′ = 1/2. Due
to Corollary 4.20 the expected number of flipping bits in an iteration is d ≥ 1 for some
d = Θ(1) and thus, the mutation probability for a single bit equals d/n. The probability
that bit i ∈ {1, . . . , n} is different from the unique optimal assignment in all initial search
points is at least n−1/2. Due to Chernoff bounds (Lemma B.21), at least

√
n/2 bits are

wrong in all initial search points with probability 1 − 2−Ω(
√
n). Assuming that there

are
√
n/2 such bits, the probability that at least one of these bits never flips within

t = ⌊(n/d− 1) · (lnn)/2 ⌋ steps is bounded below by

1−
(

1−
(

1− d

n

)t
)

√
n/2

≥ 1−
(

1− 1√
n

)

√
n/2

≥ 1− e−1/2

which implies that t steps are required with probability at least 1 − e−1/2 − 2−Ω(
√
n)

= Ω(1). Hence, the lower bound Ω(n log n) on the expected optimization time follows.
We now prove the lower bound Ω(µn) under the three conditions by considering phases

of length s := ⌊cµn⌋ (c > 0 constant) and show that the considered algorithm requires
at least s steps with probability 1− 2−Ω(n) if c is small enough. As already noted before,
we use the technique of analyzing randomized family trees (Witt 2006).

Let x0 be an arbitrary initial search point and let Tt(x0) denote its random family tree
at time t. Witt (2006) showed that the probability for Ts(x0) reaching depth greater
than ⌊3cn⌋ is 2−Ω(n). We now show that also with probability 2−Ω(n), there is a node
in Ts(x0) at depth at most 3cn, which is labeled with a search point whose Hamming
distance to x0 is bounded above by 8cdn (d ≥ 1, constant). Afterwards, we show that
the Hamming distance of the root search point to all optimal search points is larger with
overwhelming probability.
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Consider a sequence of ⌊3cn⌋ points where each point is the result of a mutation
of its predecessor by means of the mutation operator from Algorithm 4.3 using the
normalization method from Algorithm 4.5. Due to Corollary 4.20 the expected number
of flipping bits for each point in this sequence is d ≥ 1 for some d = Θ(1). Thus, the
expected difference of any two points in the sequence is at most 3cdn. Due to Chernoff
bounds (with respect to the upper bound 4cdn), the probability to have a Hamming
distance of at least 8cdn is bounded above by e−4cdn/3.

We call a path bad if it starts at the root of Ts(x0), has length ℓ ≤ 3cn and contains a
label with Hamming distance at least 8cdn with respect to x0. The probability to create
a specific path of length ℓ with labels x0, x1, . . . , xℓ is

ℓ−1
∏

i=0

Prob (mut(xi) = xi+1)

µ
=

(

1

µ

)ℓ

·
ℓ−1
∏

i=0

Prob (mut(xi) = xi+1) ≤
(

1

µ

)ℓ

where Prob (mut(x) = y) denotes the probability of creating y ∈ {0, 1}n from x ∈ {0, 1}n
by means of mutation. Thus, the probability to create a specific bad path is bounded
above by (1/µ)ℓ · e−4cdn/3. Since the number of paths of length at most ℓ is bounded
above by

(s
ℓ

)

, the probability that Ts(x0) contains a bad path can be estimated by

3cn
∑

ℓ=1

(

s

ℓ

)

·
(

1

µ

)ℓ

· e−4cdn/3 ≤ 3cn · max
ℓ={1,...,3cn}

{

(ceµn

ℓ

)ℓ
·
(

1

µ

)ℓ

· e−4cdn/3

}

=3cn · e−4cdn/3 · max
ℓ={1,...,3cn}

(cen

ℓ

)ℓ
≤ 3cn · e−4cdn/3 · ecn

d≥1
≤ 3cn · e−cn c>0

= 2−Ω(n)

We finally show that, under the three conditions, the Hamming distance of x0 to all
optimal search points is, with overwhelming probability, larger 8cdn if c is small enough.
For any y ∈ OPT, the expected Hamming distance of x0 to y is n/2. Due to Chernoff
bounds, the Hamming distance is at least n/3 with probability 1 − 2−Ω(n). If |OPT|
= 2o(n), the Hamming distance of x0 to all y ∈ OPT is also at least n/3 with probability
1 − 2−Ω(n). For omin = n/2 + Ω(n), Chernoff bounds with respect to the expectation
E (|x0|) = n/2 yield a Hamming distance of at least Ω(n) with probability 1 − 2−Ω(n).
The case omax = n/2 − Ω(n) is symmetrical. Thus, in all three cases, choosing c small
enough results in 8cdn being smaller than the lower bound Ω(n).

Altogether, for a fixed initial search point x0, Ts(x0) does with probability 1− 2−Ω(n)

not contain nodes labeled with optimal search points. As µ = poly (n), this also holds
for all initial search points together.

Clearly, OneMax+ meets the requirements given in Theorem 4.21 since it is a smooth
integer function of unitation, n-qualified and has a single optimum. In addition, the
optimum has even linear Hamming distance to search points with n/2 1-bits. Thus, with
β(n) = log n the following corollary follows.

Corollary 4.22 (Zarges (2009)). Let µ = O(n/ log n) and µ ≥ 2. The expected opti-
mization time of Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the
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normalization method from Algorithm 4.5 on OneMax+ is

E
(

TpCLONALG,OneMax+

)

= Θ(µn+ n log n).

Altogether, we have proven an asymptotically tight bound on the optimization time
of Algorithm 3.1 using the mutation operator from Algorithm 4.3 and the normalization
method from Algorithm 4.5 on OneMax+ if µ = O(n/ log n). Moreover, this bound is
asymptotically the same as the corresponding bound for the (µ+1) EA.

4.4. The Mutation Operator from opt-aiNet

The mutation operator introduced in opt-aiNet (de Castro and Timmis 2002b) is in some
sense quite similar to that in CLONALG. Actually it is based on the immune network
theory, but it also incorporates ideas from the clonal selection principle. It also uses an
inverse exponential function to establish a relationship between the mutation probability
and the normalized function value of the search point to be mutated. Again a parameter
ρ controls the appearance of the mutation probability. However, the parameter ρ is not
incorporated in the exponent of the exponential function but rather used to scale the
result of this function. This leads to a completely different impact of the parameter
and the optimization process in general. We define the mutation operator formally in
Algorithm 4.6.

Algorithm 4.6 Opt-aiNet mutation probability paiNet (de Castro and Timmis 2002b).

FUNCTION mutate(x):
1. Let v := normalize(f(x)) ∈ [0, 1] and y := x.
2. Independently for each i ∈ {0, 1, . . . , n − 1}
3. With probability paiNet(v) := (1/ρ) · e−v set y[i] := 1− y[i].

We restrict our attention to µ = 1 using the normalization method described in Algo-
rithm 4.4. This leads to the following refined mutation probability.

paiNet(OneMax(x)) = (1/ρ) · e−
OneMax(x)

n (4.7)

In the following, we consider similar settings for ρ as in the previous section.

Setting ρ = 1

We observe, that for ρ = 1 we have paiNet = pCLONALG and thus, we can immediately
carry over the result from the previous section (see Theorem 4.6).

Corollary 4.23. Let µ = 1 and ρ = 1. The optimization time of Algorithm 3.1 using the
mutation operator from Algorithm 4.3 and the normalization method from Algorithm 4.4
is

TpaiNet,OneMax ≥ ec·n

(c > 0 constant, sufficiently small) with probability at least 1− e−Ω(n).
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Setting ρ = Θ(n)

For ρ = Θ(n) the mutation probability from eq. (4.7) becomes

paiNet(OneMax(x)) =
1

Θ(n)
· e−

OneMax(x)
n = Θ

(

1

n

)

and thus, we can adapt the analysis executed by Droste et al. (2002) in very much the
same way as done in Theorem 4.2.

Theorem 4.24. Let µ = 1 and ρ = Θ(n). The expected optimization time of Algo-
rithm 3.1 using the mutation operator from Algorithm 4.6 and the normalization method
from Algorithm 4.4 on OneMax is

E (TpaiNet,OneMax) = Θ(n log n).

Proof. The proof is similar to that of Theorem 4.2. For the upper bound, we estimate
the probability to increase the function value by at least one and apply fitness-layer
arguments. For the lower bound, we adopt the analysis by Droste et al. (2002) for some
mutation probability c/n (c > 0 constant). Since the concrete calculations differ only in
the constants from those in Theorem 4.2, we omit the details here.

4.5. Experimental Supplements

In the preceding theoretical analysis we have seen results for different parameterizations
of inversely fitness-proportional mutation probability, in particular with respect to poly-
nomial and exponential optimization times. While the straightforward implementation
(Algorithm 4.1) considered first as well as a proper parametrization of the opt-aiNet
mutation operator (Algorithm 4.6) yield a polynomial optimization time (Theorem 4.2
and 4.24), we have an exponential lower bound (Theorem 4.3) for the Hamming distance
based operator (Algorithm 4.2). Moreover, we have learned, that in case of the CLON-
ALG operator (Algorithm 4.3) the normalization method makes a decisive difference
(Section 4.3).

However, not all negative results, i. e., exponential lower bounds on the optimization
time, are equal. For example, the CLONALG mutation operator with ρ = lnn in the
(1+1) setting yields a smaller negative drift than the respective operator with ρ = O(1)
or the Hamming distance based mutation probability. Thus, the probability that the
global optimum of OneMax is not found converges much more slowly to 1 than for the
other variants. Moreover, the initial regions of the search space, where we were able to
prove an expected polynomial optimization time, is largest for CLONALG and ρ = lnn.
Figure 4.2 visualizes this effect for different values of n, where O(log(n)) corresponds
to the Hamming distance based mutation probability and O(n/ log n) belongs to the
CLONALG mutation with ρ = lnn. By Chernoff bounds, the initial bit string x0 contains
n/2 ± O(

√
n) 1-bits with high probability. Numerical values for functions O(f(n)) are

obtained by simply calculating f(n).
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Figure 4.2.: The relative size of significant regions in the search space.

We recognize that for small values of n, we have n/2−√
n < n/ log n < log n, whereas

for large n we have the reverse order log n < n/ log n < n/2 − √
n. As our results are

asymptotical, the behavior presented in the foregoing theorems rather corresponds to
large n and thus, for n small enough the considered algorithm might deliver suitable
performance. We further investigate this in the following. We start with an empirical
comparison of different input sizes. Afterwards, we study the optimal choice of the param-
eter ρ for the CLONALG and opt-aiNet mutation operators. For the sake of comparison
we visualize the mutation probabilities considered in this chapter in Figure 4.3.

4.5.1. Optimization Times of Different Mutation Operators

We first consider the optimization times of the different mutation operators considered
in the preceding sections within the algorithmic framework and µ = 1. For each of
these operators, we perform 100 independent runs of Algorithm 3.1. For CLONALG we
consider ρ ∈ {1, ln n, n/e, n}, while for opt-aiNet ρ ∈ {1, n/e, n} is used. Note, that for
ρ = 1 the two operators are equal and thus, we only need to investigate this setting
for one of the operators. The choice ρ = n/e stems from the fact that for this value
the mutation probability of opt-aiNet converges to 1/n. Recall, that this is exactly the
same motivation as for considering ρ = lnn for CLONALG. We remark that the mutation
operators of CLONALG and opt-aiNet have been compared experimentally on OneMax
for a bit string of length n = 100 (Cutello et al. 2005b).

We plot all results using box-and-whisker plots as defined in Definition B.1. Note,
that we use logarithmic scales for the y-axis in all considered cases. Moreover, we use
logarithmic scale for the x-axis when considering large values for n. For the purpose of
comparison, we additionally consider the corresponding results for standard bit muta-
tions.
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Figure 4.3.: Visualization of the mutation probabilities considered in this chapter.

The values of n used depend on the considered operator since the expected costs can,
depending on the operator, become large already for not too large values of n. We
present results for standard bit mutations in Figure 4.4 and for the two simple inversely
fitness-proportional operators in Figure 4.5. As expected, standard bit mutations and
the straightforward implementation from Algorithm 4.1 perform well and we consider
quite large values for n, i. e., n ∈ {10, 20, . . . , 100, 200, . . . , 1000, . . . , 106}. Both variants
are able to optimize OneMax on 106 bits in less than 108 iterations. In contrast to
that the Hamming distance based mutation operator performs badly, yielding results for
n ∈ {10, 20, . . . , 320}, only, where already for n = 300 we have more than 109 iterations.

The plots for CLONALG can be found in Figure 4.6. For CLONALG and ρ = 1 already
n = 50 leads to approximately 1010 iterations. We therefore consider n ∈ {10, 20, . . . , 50}
in this case. For ρ = n the performance is even worse as around 1013 iterations are needed
for n = 30, yielding n ∈ {10, 20, 30}. For ρ = n/e we have 108 for n = 50 and again do
experiments for n ∈ {10, 20, . . . , 50}. However, ρ = lnn performs (despite the exponential
optimization time with high probability) surprisingly well. We perform experiments for
n ∈ {10, 20, . . . , 100, 200, . . . , 1000, . . . , 106} and observe, that for n ≤ 105 there is hardly
any significant difference between the results of standard bit mutations and CLONALG
visible from the experiments. Only for large input sizes the difference in optimization
time becomes obvious.

Finally, the results for opt-aiNet are presented in Figure 4.7. We see that, as expected,
ρ = n/e and ρ = n both yield good performance and we again perform experience for
n ∈ {10, 20, . . . , 100, 200, . . . , 1000, . . . , 106}.
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Figure 4.4.: Optimization time of Algorithm 3.1 using standard bit mutations (Algo-
rithm 3.5), data from 100 runs.

For the purpose of comparison, we additionally plot the observed medians of all con-
sidered operators in one joint diagram (Figure 4.8). We see that, apart from CLONALG
with ρ = lnn our expectations from the theoretical results are met. Moreover, the
variants where we have proven an expected polynomial optimization time, all perform
very similar. We investigate this further by only plotting the observed medians of the
algorithms with good performance for n ∈ {105, 2 · 105, . . . , 106}. (Figure 4.9).

We observe that the number of iterations of the two opt-aiNet variants differ by a
constant factor. Moreover, for very large values of n it becomes obvious that the opti-
mization time of CLONALG with ρ = lnn is more than a constant factor larger than
for the other operators. For the other variants considered, there is hardly any difference
visible in the plots. We conclude that standard bit mutations, the straightforward imple-
mentation and the mutation operator from opt-aiNet with ρ = n/e perform pretty much
identically when optimizing OneMax. Note, that this can be explained by the fact that
in all these cases the mutation probability is Θ(1/n), at least in relevant parts of the
search space. Moreover, from a practical point of view, CLONALG with ρ = lnn yields
comparable performance if n is not too large. The operators not depicted in Figure 4.9
are unsuitable for the problem considered.

Finally, we perform experiments for the mutation operator from CLONALG for larger
collection of search points. We consider µ = 2 and µ =

√
n and consider n ∈ {10, 20, . . . ,

100, 200, . . . , 1000, . . . , 5 · 105} and n ∈ {10, 20, . . . , 100, 200, . . . , 1000, . . . , 105}, respec-
tively. For the purpose of comparison we present again the corresponding results for
standard bit mutations. The results are depicted in Figure 4.10. We see that again,
there is hardly any difference visible when comparing the performance of both operators.
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Figure 4.5.: Optimization time of Algorithm 3.1 using the straightforward implementa-
tion (Algorithm 4.1) and the Hamming distance based mutation probability
(Algorithm 4.2), data from 100 runs.

4.5.2. On the Optimal Choice for ρ

Considering our theoretical and experimental results OneMax, we speculate that for
this function the ‘optimal’ setting for ρ in the mutation operators from CLONALG and
opt-aiNet are approximately lnn and n/e, respectively. Since we do not have formal
proofs for this conjecture, we perform experiments. To this end, we let Algorithm 3.1
with the two mutation operators run with different values of ρ and n. We fix the max-
imal number of iterations executed to the corresponding observed upper quartile from
the experiments in the previous section (for ρ = lnn in the case of CLONALG and
ρ = n/e in the case of opt-aiNet). To be more precise, we perform experiments for
n ∈ {10, 20, . . . , 100, 200, . . . , 1000, 2000, . . . , 100000} in both cases. For CLONALG we
start with ρ = lnn and then successively increase (and accordingly decrease) ρ by 0.1
until the number of successes has reached 0 (for at least 5 consecutive values of ρ). Simi-
larly, for opt-aiNet, we start with ρ = n/e and then successively multiply ρ with a factor
of 1.05 (or 0.95, respectively) until the same stopping criterion is fulfilled. We plot the
number of successful trials in 100 independent runs in Figure 4.11. Moreover, we plot
the functions lnn − 1, lnn, and lnn + 1 for CLONALG and n/(2e), n/e, and 2n/e for
comparison.

We see that our speculation is supported by the result of our experiments, in particular
for opt-aiNet. For CLONALG a value slightly larger than lnn seems to be better.
However, decreasing ρ below lnn seems to be a particularly bad idea. Moreover, we
recognize that the mutation operator from opt-aiNet is much more robust with respect
to the choice of ρ. While a small change might have a huge negative effect when using
the CLONALG mutation probability, there is a quite large range of values around n/e
that yields similar results. However, this observation is not too surprising when looking
at the mutation operators. For CLONALG the parameter ρ is situated in the exponent

61



4. Inversely Fitness-Proportional Mutation Rates

0 10

10

20 30 40 50

102
103
104
105
106
107
108
109
1010
1011
1012

n

it
er

a
ti
o
n
s

(l
o
g
sc

a
le

)

(a) ρ = 1

10

10

102

102

103

103

104

104

105

105

106

106
107
108

n (logscale)

it
er

a
ti
o
n
s

(l
o
g
sc

a
le

)

(b) ρ = lnn

0 10

10

20 30 40 50

102
103
104
105
106
107
108
109

n

it
er

a
ti
o
n
s

(l
o
g
sc

a
le

)

(c) ρ = n/e

0 10

10

20 30

102
103
104
105
106
107
108
109
1010
1011
1012
1013
1014

n

it
er

a
ti
o
n
s

(l
o
g
sc

a
le

)

(d) ρ = n

Figure 4.6.: Optimization time of Algorithm 3.1 using the mutation operator from CLON-
ALG (Algorithm 4.3) with different values for ρ and the normalization
method from Algorithm 4.4, data from 100 runs.

of the inverse exponential function. In contrast to that, in opt-aiNet we divide the result
of this inverse exponential function by ρ. Thus, it is somehow obvious that the choice of
ρ is much more crucial when considering CLONALG.
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Figure 4.7.: Optimization time of Algorithm 3.1 using the mutation operator from opt-
aiNet (Algorithm 4.6) with different values for ρ and the normalization
method from Algorithm 4.4, data from 100 runs.
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Figure 4.8.: Median optimization times of Algorithm 3.1 using different mutation opera-
tors, data from 100 runs.
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(a) SBM, µ = 2
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(c) pCLONALG, µ = 2
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Figure 4.10.: Optimization time of Algorithm 3.1 using standard bit mutation (Algo-
rithm 3.5) or the mutation operator from CLONALG (Algorithm 4.3) with
ρ = lnn and the normalization method from Algorithm 4.5, data from 100
runs.
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In this chapter, we investigate the performance of somatic contiguous hypermutations,
the main characteristic of the B-Cell algorithm (Kelsey and Timmis 2003), in the same
spirit as done in the previous chapter for inversely fitness-proportional mutation probabil-
ities. We embed the mutation operator into our algorithmic framework (Algorithm 3.1)
and present results on well-known and instructive example functions in order to get an
understanding of assets and drawbacks of this kind of mutation operator. We show that
while there are serious limitations to the performance of this type of operator even for
simple optimization tasks, for some types of optimization problems it performs much
better than standard bit mutations most often used in evolutionary algorithms.

Somatic contiguous hypermutations as introduced by Kelsey and Timmis (2003) and
later formally described by Clark et al. (2005) follow the idea to decide randomly about a
contiguous region of the search point and flip all bits within this region with probability r.
They do not change any bit that is outside of this region. To be more precise, the region
is selected by randomly deciding on a starting position p (called hotspot) and a length
l of the interval to be mutated. Note, that the bit string is not assumed to be cyclic
and therefore the contiguous region does not wrap around (Clark 2008). The concrete
implementation can be found in Algorithm 5.1.

Algorithm 5.1 Somatic Contiguous Hypermutations CHM1 (Clark et al. 2005).

FUNCTION mutate(x):
1. Select p ∈ {0, 1, . . . , n − 1} uniformly at random.
2. Select l ∈ {0, 1, . . . , n} uniformly at random.
3. For i := 0 to min{l − 1, n − 1− p} do
4. With probability r set x[p+ i] := 1− x[p+ i].

We use the original mutation operator as an inspiration and consider not only the
concrete operator due to Clark et al. (2005) but also two variants that can be considered
concrete examples for somatic contiguous hypermutation operators. We show that the
three instantiations behave quite differently in general.

The first variant (Jansen and Zarges 2009a) is motivated by the strong positional bias
and the strongly different mutation probabilities for mutations of single bits depending
on their location. Without additional knowledge about the roles of different bits any such
bias is undesirable (Droste and Wiesmann 2003). Instead of choosing a hotspot and an
interval length, two positions p1 and p2 are chosen randomly and all bits between these
two positions are flipped with probability r. However, the resulting operator still suffers
from a (different) positional bias. The important difference is that for 1-bit mutations
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the probability is independent of the position. Since 1-bit mutations can be crucial this
kind ob being bias-free is important. We define the operator in Algorithm 5.2.

Algorithm 5.2 Somatic Contiguous Hypermutations CHM2 (Jansen and Zarges 2009a).

FUNCTION mutate(x):
1. Select p1 ∈ {0, 1, . . . , n− 1} uniformly at random.
2. Select p2 ∈ {0, 1, . . . , n− 1} uniformly at random.
3. For i := min{p1, p2} to max{p1, p2} do
4. With probability r set x[i] := 1− x[i].

The positional bias of CHM2 motivates the second variant that is essentially the original
operator, but wrapping around. This last variant has no positional bias at all. We come
back to this point later when discussing properties of the different operators. Note, that
it is conceivable that Kelsey and Timmis (2003) had this last version in mind when
introducing the B-Cell algorithm. However, there definition is not explicit. We define
the resulting mutation operators formally in Algorithm 5.3.

Algorithm 5.3 Somatic Contiguous Hypermutations CHM3 Wrapping Around (Jansen
and Zarges 2011a).

FUNCTION mutate(x):
1. Select p ∈ {0, 1, . . . , n− 1} uniformly at random.
2. Select l ∈ {0, 1, . . . , n} uniformly at random.
3. For i := 0 to l − 1 do
4. With probability r set x[(p + i) mod n] := 1− x[(p + i) mod n].

In the following, we first derive some properties of the considered mutation operators
and present general bounds on the optimization time of Algorithm 3.1 using these oper-
ators. Afterwards, we investigate the performance on several concrete example functions
from the literature. We close with empirical results that complement the analytical part
by further investigating stated conjectures that could not be proven. The results in this
chapter are based on the work done in Jansen and Zarges (2009a, 2011a).

5.1. Properties of Different Variants of Contiguous

Hypermutations

The three variants of somatic contiguous hypermutations differ considerably in the prob-
ability of mutations. Thus, we first analyze these important properties of the mutation
operators. We consider two different events and compare them across the three somatic
contiguous hypermutation operators. On one hand, we consider for i ∈ {0, 1, . . . , n − 1}
the probability of the i-th bit to be mutated in a single mutation. On the other hand, we
consider for i ∈ {0, 1, . . . , n− 1} the probability of the i-th bit to be the only bit that is
mutated in a single mutation. Note that such single bit mutations are often important for

68



5.1. Properties of Different Variants of Contiguous Hypermutations

locating an optimum of an objective function exactly. Finally, we compare the expected
number of bits to be mutated in a single mutation.

Lemma 5.1 (Jansen and Zarges (2011a)). Let n ∈ N, i ∈ {0, 1, . . . , n−1} and 0 < r ≤ 1.

Prob (x[i] mutated by CHM1) = r · (2n − i)(i + 1)

2n(n + 1)
(5.1)

Prob (x[i] mutated by CHM2) = r · 1
n
+

2i(n − 1− i)

n2
(5.2)

Prob (x[i] mutated by CHM3) = r · 1
2

(5.3)

Proof. In all three equations, we see the factor r stemming from the probability r that
a bit within the contiguous region that is selected randomly is actually mutated. For
CHM1 and CHM3 we have a factor of 1/n for choosing a specific value of p and a factor
1/(n + 1) for choosing a specific value of l. For CHM2 we have a factor of 1/n2 for
choosing specific values of p1 and p2.

For CHM1 the i-th bit is mutated if p ≤ i and p − 1 + l ≥ i both hold. For j ∈
{0, 1, . . . , i} we have Prob (p = j) = 1/n and Prob (j − 1 + l ≥ i) = Prob (l ≥ i+ 1− j)
= (n+ j − i)/(n + 1). Using Lemma B.19 this yields

Prob (x[i] is mutated by CHM1) = r ·
i
∑

j=0

1

n
· n+ j − i

n+ 1

= r · 1

n(n+ 1)



(i+ 1)(n − i) +

i
∑

j=0

j



 = r · 1

n(n+ 1)

(

(i+ 1)(n − i) +
i(i+ 1)

2

)

= r · (2n− i)(i + 1)

2n(n+ 1)

and proves eq. (5.1).
For CHM2 the i-th bit is mutated if p1 ≤ i and p2 > i, p2 < i and p1 ≥ i or p1 = p2 = i.

Thus, we have

Prob (x[i] is mutated by CHM2) = r ·
(

i+ 1

n
· n− i− 1

n
+

i

n
· n− i

n
+

1

n2

)

= r · in− i2 − i+ n− i− 1 + in− i2 + 1

n2
= r ·

(

1

n
+

2i(n − 1− i)

n2

)

proving eq. (5.2).
For CHM3 we observe that due to the wrapping around the probabilities are equal for

all i. We thus consider the situation only for i = n− 1 where things are less complicated
since the starting position p of the contiguous region is never to the right of i. For each
position p = n − 1 − j (j ∈ {0, 1, . . . , n − 1}) there are exactly n − j values for l such
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Figure 5.1.: Probability for mutating bit x[i] (i ∈ {0, 1, . . . , n − 1}) in a single muta-
tion using somatic contiguous hypermutation CHM1, CHM2, and CHM3,
respectively, each with r = 1 and n = 100 (Jansen and Zarges 2011a).

that x[i] = x[n− 1] is mutated. Thus we have (using Lemma B.19)

Prob (x[i] is mutated by CHM3) = r ·
n−1
∑

j=0

1

n
· n− j

n+ 1
= r · 1

n(n+ 1)

n
∑

j=1

j = r · 1
2

proving eq. (5.3).

We give a graphical representation of the probability for mutating bit x[i] and the
special case r = 1 in Figure 5.1. We see that only CHM3 has no positional bias. Both,
CHM1 and CHM2 have a strong positional bias with respect to the probability to mutate
some bit. For CHM1 this probability is strictly increasing with i, for CHM2 it is equal
for i and (n− 1)− i and thus symmetric. Moreover, CHM1 is also biased with respect to
1-bit mutations having a much larger probability for such a mutation at position n − 1
than for any other position. We investigate this in the next lemma by considering the
probability for a specific 1-bit mutation.

Lemma 5.2 (Jansen and Zarges (2011a)). Let n ∈ N, i ∈ {0, 1, . . . , n−1} and 0 < r ≤ 1.
For 0 < r < 1

Prob (only x[i] mutated by CHM1) =
i(1− r)n−i−1

n(n+ 1)
(5.4)

+
(1− r)n+1 − 2(1− r)n−i − (1− r)i+1 + 1 + (1− r)n

rn(n+ 1)
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Prob (only x[i] mutated by CHM2) =
r

n2
+ 2

i
∑

p1=0

n−1
∑

p2=max{i,p1+1}

r(1− r)p2−p1

n2
(5.5)

Prob (only x[i] mutated by CHM3) =
1− (1− r)n

rn(n+ 1)
− (1− r)n

n+ 1
(5.6)

holds. In the case r = 1, the following holds.

Prob (only x[i] mutated by CHM1) =

{

1
n(n+1) if i < n− 1
1

n+1 otherwise
(5.7)

Prob (only x[i] mutated by CHM2) =
1

n2
(5.8)

Prob (only x[i] mutated by CHM3) =
1

n(n+ 1)
(5.9)

Proof. For the proof of eq. (5.4) we consider the definition of CHM1 and see that

Prob (only x[i] mutated by CHM1) =




i
∑

p=0

n−p
∑

l=i−p+1

r(1− r)l−1

n(n+ 1)



+





i
∑

p=0

p · r(1− r)n−p−1

n(n+ 1)





holds. The first sum accounts for all cases where a position p with p ≤ i is selected and
the length of the interval is i− p+1 ≤ l ≤ n− p so that the last position of the mutated
region is at most n − 1 and thus within the bit string x. In this case x[i] needs to flip
and the other l − 1 bits remain unchanged with probability (1 − r)l−1. For l > n − p
the mutated region extends beyond the bit string so that only n − p − 1 bits remain
unchanged. It is a tedious but not difficult exercise to see that this equals eq. (5.5) for
0 < r < 1. Note, that the main tool used in the calculations below is the closed form of
the geometric series (see Lemma B.7).





i
∑

p=0

n−p
∑

l=i−p+1

r(1− r)l−1

n(n+ 1)



+





i
∑

p=0

p · r(1− r)n−p−1

n(n+ 1)





=
r

n(n+ 1)









i
∑

p=0

n−p
∑

l=i−p+1

(1− r)l−1



+





i
∑

p=0

p · (1− r)n−p−1









=
r

n(n+ 1)









i
∑

p=0

n−p−1
∑

l=i−p

(1− r)l



+





i
∑

p=1

p · (1− r)n−p−1









=
r

n(n+ 1)









i
∑

p=0

(1− r)i−p − (1− r)n−p

r



+





i
∑

p=1

p · (1− r)n−p−1









71



5. Contiguous Hypermutations

=
1

n(n+ 1)







(1− r)i
i
∑

p=0

(

1

1− r

)p


−



(1− r)n
i
∑

p=0

(

1

1− r

)p








+
r

n(n+ 1)





i
∑

p=1

p · (1− r)n−p−1





=
1

n(n+ 1)












(1− r)i

1−
(

1
1−r

)i+1

1− 1
1−r






−






(1− r)n

1−
(

1
1−r

)i+1

1− 1
1−r













+
r

n(n+ 1)





i
∑

p=1

p · (1− r)n−p−1





=
1

n(n+ 1)












(1− r)i

1− r −
(

1
1−r

)i

−r






−






(1− r)n

1− r −
(

1
1−r

)i

−r













+
r

n(n+ 1)





i
∑

p=1

p · (1− r)n−p−1





=
1

rn(n+ 1)

((

(1− r)n

(

1− r −
(

1

1− r

)i
))

−
(

(1− r)i

(

1− r −
(

1

1− r

)i
)))

+
r

n(n+ 1)





i
∑

p=1

p · (1− r)n−p−1





=
1

rn(n+ 1)

(

(1− r)n+1 − (1− r)n−i −
(

(1− r)i+1 − 1
))

+
r

n(n+ 1)





i
∑

p=1

p · (1− r)n−p−1





=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)
+

r

n(n+ 1)





i
∑

p=1

i
∑

j=p

(1− r)n−j−1





=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)
+

r(1− r)n−1

n(n+ 1)





i
∑

p=1

i
∑

j=p

(

1

1− r

)j




=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)
+

r(1− r)n−1

n(n+ 1)







i
∑

p=1

(

1
1−r

)p
−
(

1
1−r

)i+1

1− 1
1−r






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=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)
+

r(1− r)n−1

n(n+ 1)







i
∑

p=1

(

1
1−r

)i
−
(

1
1−r

)p−1

r







=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)

+
(1− r)n−1

n(n+ 1)



i

(

1

1− r

)i

−
i−1
∑

p=0

(

1

1− r

)p




=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)

+
(1− r)n−1

n(n+ 1)






i

(

1

1− r

)i

−
1−

(

1
1−r

)i

1− 1
1−r







=
(1− r)n+1 − (1− r)n−i − (1− r)i+1 + 1

rn(n+ 1)

+
(1− r)n−1

n(n+ 1)






i

(

1

1− r

)i

−
1− r −

(

1
1−r

)i−1

r







=
(1− r)n+1 − 2(1− r)n−i − (1− r)i+1 + 1 + (1− r)n

rn(n+ 1)
+

i(1− r)n−i−1

n(n+ 1)

For r = 1 we need to have p = i and l = 1 if i < n− 1, and p = i and l 6= 0 if i = n− 1.
Thus, eq. (5.7) results as a special case.

The proof of eq. (5.5) follows quite directly from the definition of CHM2. In

r

n2
+ 2

i
∑

p1=0

n−1
∑

p2=max{i,p1+1}

r(1− r)p2−p1

n2

the term r/n2 takes care of the special case p1 = p2. If we have p1 6= p2 the cases p1 < p2
and p1 > p2 have equal contribution and lead to the factor 2. We consider the case
p1 < p2 and sum over all possible cases directly obtaining the claimed sum. For r = 1
only p1 = p2 needs to be considered implying eq. (5.8).

For the proof of eq. (5.6) we consider the definition of CHM3 and see that

Prob (only x[i] mutated by CHM3) =
n−1
∑

d=0

n
∑

l=d+1

r(1− r)l−1

n(n+ 1)

holds in the following way. For some fixed position i we sum over all positions
p = (i − d) mod n with d ∈ {0, 1, . . . , n − 1}. Given this position we have to have
l ≥ d + 1, otherwise the bit x[i] is not in the mutated region. Given a length l of
this region we have that only x[i] flips and the other l − 1 bits remain unchanged with
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probability r(1 − r)l−1. Again making use of the geometric series (Lemma B.7), we see
that

n−1
∑

d=0

n
∑

l=d+1

r(1− r)l−1

n(n+ 1)
=

r

n(n+ 1)

n−1
∑

d=0

n−1
∑

l=d

(1− r)l

=
1

n(n+ 1)

n−1
∑

d=0

(

(1− r)d − (1− r)n
)

=
1− (1− r)n

rn(n+ 1)
− (1− r)n

n+ 1

holds and we have eq. (5.6). For r = 1 only the case d = 0, l = 1 (or in other words p = i
and l = 1) needs to be taken into account leading to eq. (5.9).

Finally, the expected number of bits in an iteration can easily be derived using the re-
sults from Lemma 5.1. We see that with respect to the expected number of mutating bits
all three somatic contiguous hypermutation operators are similar, mutating on average
Θ(rn) bits, r · n/2 for CHM3 and almost exactly r · n/3 for both, CHM1 and CHM2.

Lemma 5.3 (Jansen and Zarges (2011a)). Let n ∈ N, i ∈ {0, 1, . . . , n−1} and 0 < r ≤ 1.

E (#bits mutated by CHM1) = r ·
(

n

3
+

1

6

)

(5.10)

E (#bits mutated by CHM2) = r ·
(

n

3
+

2

3n

)

(5.11)

E (#bits mutated by CHM3) = r · n
2

(5.12)

Proof. Again, the factor r in all equations stems from the probability r that a bit within
the contiguous region that is selected randomly is actually mutated. The claimed ex-
pected values can simply be derived by using the results from Lemma 5.1 and the defi-
nition of the expected value (Definition B.4).

We obtain eq. (5.10) using eq. (5.1) and Lemma B.19 by

n−1
∑

i=0

Prob (x[i] is mutated by CHM1)

= r ·
n−1
∑

i=0

(2n − i)(i+ 1)

2n(n+ 1)
= r · 1

2n(n+ 1)
·
n−1
∑

i=0

(2ni+ 2n− i2 − i)

= r · 1

2n(n+ 1)
·
(

2n · n(n− 1)

2
+ 2n2 − n(n− 1)(2n − 1)

6
− n(n− 1)

2

)

= r · 1

2(n + 1)
·
(

n2 − n+ 2n− 2n2 − 3n + 1

6
− n− 1

2

)

= r · 2n
2 + 3n+ 1

6(n + 1)
= r · (n+ 1)(4n + 2)

6(n + 1)
= r ·

(

n

3
+

1

6

)

.
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Similarly, we obtain eq. (5.11) using eq. (5.2) and Lemma B.19 by

n−1
∑

i=0

Prob (x[i] is mutated by CHM2)

= r ·
n−1
∑

i=0

(

1

n
+

2i(n − 1− i)

n2

)

= r ·
(

1 +
2

n2

n−1
∑

i=0

(in − i− i2)

)

= r ·
(

1 +
2

n2
·
(

n2(n − 1)

2
− n(n− 1)

2
− n(n− 1)(2n − 1)

6

))

= r ·
(

1 +
1

n
·
(

n2 − n− (n− 1)− 2n2 − 3n + 1

3

))

= r ·
(

1 +
n2 − 3n+ 2

3n

)

= r ·
(

n2 + 2

3n

)

= r ·
(

n

3
+

2

3n

)

.

Finally, eq. (5.12) follows as an immediate consequence of eq. (5.3).

We intend to compare the results of contiguous hypermutations with the respective re-
sults of standard bit mutations with mutation probability 1/n (SBM, see Algorithm 3.5).
For this mutation operator it is easy to show the above properties. We formalize this
in the following lemma. Note, that all equations follow directly from the definition of
standard bit mutations.

Lemma 5.4 (Jansen and Zarges (2011a)). Let n ∈ N and i ∈ {0, 1, . . . , n− 1}.

Prob (only x[i] is mutated by SBM) =
1

n
·
(

1− 1

n

)n−1

= Θ

(

1

n

)

Prob (x[i] is mutated by SBM) =
1

n
E (#bits mutated by SBM) = 1

Clearly, for all three variants the parameter r plays an important role. Clark et al.
(2005) point out that avoiding the extreme cases r = 0 and r = 1 makes sense to
avoid getting stuck. Yet, we decide to exclusively consider the extreme case r = 1,
here. Note that for CHM2 this rules out mutations not flipping any bits. Moreover, it
rules out global convergence for all three variants. Consider for example the function
f : {0, 1}n → R (n > 5) with

f(x) =











n−1
∑

i=0
x[i] if x[0] = x[4],

−1 otherwise.

The all one bit string 1n is the unique global maximum. However, if x[0] + x[4] = 0 and
x[1] + x[2] + x[3] = 3 both hold no somatic contiguous hypermutation with r = 1 can
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create this global optimum by means of a single mutation. It can only be reached via
some other x′ with smaller function value. If such moves are not accepted the algorithm
is unable to optimize this simple function. We are aware of this consequence due to r = 1.
In the following, we restrict our attention to functions where these limited capabilities
of somatic contiguous hypermutations with r = 1 are not an issue.

Moreover, for many objective functions f : {0, 1}n → R it is at some point of time
essential that the search operator is able to change exactly some specific bits, say b many.
We call such a mutation a specific b-bit mutation. In order to understand differences
between somatic contiguous hypermutations and standard bit mutations it helps to see
the difference in the probabilities for such specific b-bit mutations. Since we restricted
our attention to the special case r = 1 we are only interested in specific b-bit mutations
where the b bits form a contiguous region in the bit string x.

Standard bit mutations perform any such b-bit mutation with probability

1

nb
·
(

1− 1

n

)n−b

= Θ

(

1

nb

)

since b specific bits need to flip, each with probability 1/n, and the other n− b bits must
not flip, each with probability 1−1/n. Since the bits are flipped independently the result
follows. Note that this holds independently of the positions of the bits, also if they are
not contiguous.

For somatic contiguous hypermutations things are entirely different. If the b bits that
need to flip are not contiguous such a b-bit mutation cannot be performed in a single
mutation and thus has probability 0 to occur. This is due to our extreme choice r = 1. If,
on the other hand, the b bits are contiguous then the first and the last of these bits have
to be chosen as the beginning and end of the contiguous region. For all three operators
this is the case with probability Θ

(

1/n2
)

for any b ≥ 1 if the rightmost bit to be flipped
is not the rightmost bit in x. In this special case the probability may be larger for CHM1

(see Lemma 5.1 and 5.2) .
In the following we exclude functions where b-bit mutations are necessary that cannot

occur with somatic contiguous hypermutations. The fact that these mutations are im-
possible results from our extreme choice of r = 1, any choice 0 < r < 1 yields a positive
probability for such mutations. It would be inappropriate and misleading to choose an
extreme framework and then demonstrate drawbacks that are uniquely caused by this
extreme choice. What we see for mutations that can be carried out is that their prob-
ability decreases exponentially with b for standard bit mutations while it is completely
independent of b for somatic contiguous hypermutations. This leads to the speculation
that for functions where 1-bit mutations are sufficient somatic contiguous hypermuta-
tions may be outperformed by standard bit mutations since such mutations occur with
much smaller probability. On the other hand one may believe that for functions where
b-bit mutations with b > 2 are necessary somatic contiguous hypermutations may excel
and that the advantage may be tremendously large for b ≫ 2. We investigate these
speculations in the following.
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5.2. General Bounds on the Optimization Time

Before considering concrete example functions, we derive a general lower bound on the
expected optimization time for any objective function f : {0, 1}n → R with a unique
global optimum by means of the considerations in the previous section. We state this
simple result here since it helps us to better understand the upper bounds that we derive
in the following. Note that it is easy to generalize this bound to objective functions with
more global optima. We do not present such a more general version since it does not add
additional insight and complicates the proof.

Theorem 5.5 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. Moreover, let
f : {0, 1}n → R be given with a unique global optimum x∗ ∈ {0, 1}n, i. e.,

{

x ∈ {0, 1}n | f(x) = max
{

f(x′) | x′ ∈ {0, 1}n
}}

= {x∗} .
For any x ∈ {0, 1}n with x 6= x∗ the expected optimization time of Algorithm 3.1 start-
ing in x and using somatic contiguous hypermutations from Algorithm 5.1, 5.2, or 5.3,
respectively, is

E (TCHM1,f,x) = Ω(n) (5.13)

E (TCHM2,f,x) = Ω
(

n2
)

(5.14)

E (TCHM3,f,x) = Ω
(

n2
)

(5.15)

Proof. According to our assumption we have x 6= x∗ and thus there is at least one
mutation necessary. We consider the very last mutation in a run leading to x∗. For CHM2

the values for min{p1, p2} and max{p1, p2} are uniquely defined. Thus, this mutation
has probability at most 2/n2 and E (TCHM2,f,x) ≥ n2/2 = Ω

(

n2
)

follows. For CHM3 the
values of p and l are uniquely defined. Thus, this mutation has probability 1/(n(n+ 1))
and E (TCHM3,f,x) ≥ n2 + n = Ω

(

n2
)

follows. For CHM1 the value of p is also uniquely
defined. For l, however, up to n values may be possible. Thus, this final mutation may
have probability up to (1/n) · (n/(n+1)) and E (TCHM1,f,x) ≥ n+1 = Ω(n) follows.

We observe that the lower bound for CHM1 is by a factor of Θ(n) smaller than the
bounds for the other two variants. This is due to the fact that CHM1 truncates the
contiguous region at the end of the bit string and thus allows for multiple values of
l causing the same mutation if the contiguous region is at the end of the bit string.
Since the proof of Theorem 5.5 is so simple only considering the very last mutation it is
surprising to see that the lower bounds from Theorem 5.5 are all asymptotically tight in
the following sense. There are a concrete function f : {0, 1}n → R and x0 ∈ {0, 1}n such
that the lower bounds from Theorem 5.5 match the corresponding upper bounds. We
show this in the following theorem.

Theorem 5.6 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. Consider f : {0, 1}n →
R with

f(x) =











2 if x = 1n,

1 if x = 1n−10,

0 otherwise
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and x0 = 1n−10. The expected optimization time of Algorithm 3.1 initialized in x0 and
using somatic contiguous hypermutations from Algorithm 5.1, 5.2, or 5.3, respectively,
on f is

E (TCHM1,f,x0) = n+ 1

E (TCHM2,f,x0) = n2

E (TCHM3,f,x0) = n2 + n.

Proof. The unique global optimum of f is x∗ = 1n, the all one bit string. The initial bit
string x0 = 1n−10 is the unique second best point in the search space, all other bit strings
have worse function value. Thus, Algorithm 3.1 using somatic contiguous hypermutation
stays in x0 until a mutation to the unique global optimum 1n is found. For CHM1 such a
mutation occurs for p = n− 1 and l > 0. We see that it has probability (1/n) ·n/(n+1)
and E (TCHM1,f,x0) = n + 1 follows. For CHM2 we need p1 = p2 = n − 1 and see that
E (TCHM2,f,x0) = n2 holds. For CHM3 we need to have p = n − 1 and l = 1, thus this
mutation has probability (1/n) · 1/(n + 1) and E (TCHM3,f,x0) = n2 + n follows.

5.3. Results for OneMax

In the preceding chapter, we investigated the performance of different mutation operators
on the example function OneMax. Thus it makes sense to start with an analysis of
OneMax for somatic contiguous hypermutations. Recall, that the (1+1) EA using
mutation probability 1/n requires optimization time Θ(n log n) on OneMax (Droste
et al. 2002). With somatic contiguous hypermutations it takes considerably longer to
optimize this simple function.

The proof of the following theorem makes use of a simple drift theorem due to He
and Yao (2004). In our context we have a distance measure V : {0, 1}n → R

+
0 such that

V (x) = 0 holds if and only if x satisfies our optimization criterion. Given an upper
bound on the expected decrease in distance c (the drift), the expected optimization time
to reach the optimization goal is bounded below by V (x0)/c where V (x0) denotes the
initial distance.

Theorem 5.7 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. The expected optimiza-
tion time of Algorithm 3.1 using somatic contiguous hypermutations from Algorithm 5.1,
5.2, or 5.3, respectively, on OneMax is

E (TCHM1,OneMax) = O
(

n2 log n
)

E (TCHM2,OneMax) = Θ
(

n2 log n
)

E (TCHM3,OneMax) = Θ
(

n2 log n
)

.

Proof. The upper bound is easy to prove for all three kinds of somatic contiguous hy-
permutations using trivial fitness layers (Droste et al. 2002). For any x ∈ {0, 1}n with
OneMax(x) = n − z there are exactly z 0-bits. If exactly one of these bits is flipped
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5.3. Results for OneMax

the function value is increased by exactly 1. Such a mutation occurs with probability
Ω
(

1/n2
)

for each of the z 0-bits and each mutation operator. Thus, the waiting time to
increase the function value from n−z to at least n−z+1 is bounded above by O

(

n2/z
)

.
Since function values cannot decrease due to the strict selection employed the expected
optimization is bounded above by

n
∑

i=1

O

(

n2

z

)

= O

(

n2
n
∑

i=1

1

z

)

= O
(

n2 log n
)

.

For the lower bound we only consider CHM2 and CHM3. We make use of drift argu-
ments (He and Yao 2004) as described above. Before considering a drift measure V we
consider an auxiliary measure V ′ in a first step. For x ∈ {0, 1}n let V ′(x) denote the
number of 0-bits in x. We bound the decrease in distance in a single mutation as given
by V ′ from above. Let x ∈ {0, 1}n denote the current bit string, let x+ ∈ {0, 1}n denote
the bit string after one mutation and selection step. For CHM2 and CHM3, any specific
b-bit mutation has probability Θ

(

1/n2
)

. To make an advance by i we need to mutate
i+a 0-bits from 0 to 1 and a 1-bits from 1 to 0 (for any a ∈ N0). If such a mutation is to
have a positive probability the bits need to be arranged in an appropriate way. Initially,
the probability for this decreases exponentially with i and a since the bits are initialized
uniformly at random. Thus, the probability for l subsequent 0-bits equals 1/2l. Since we
consider OneMax, the probability of being a 0-bit decreases with time. Thus,

Prob
(

V ′(x)− V ′(x+) = i | x
)

= O

(

V ′(x)
n2 · ki

)

holds for a constant k ≥ 2 and i > 0. We conclude that we have

E
(

V ′(x)− V ′(x+) | x
)

=

n
∑

i=1

i · Prob
(

V ′(x)− V ′(x+) = i | x
)

= O

(

n
∑

i=1

i · V
′(x)

n2 · ki

)

= O

(

V ′(x)
n2

)

as upper bound on the drift measured by V ′. Now we consider the situation from the
point of view of the new search point. Note that we have V ′(x) > 0 by assumption
since otherwise optimization was already complete. However, we may have V ′(x+) = 0
(and actually do have this if the optimum is found in this step). Thus, we consider
V ′(x+) + 1 instead of V ′(x+) in order to avoid difficulties with the case V ′(x+) = 0.
Since on expectation the Hamming distance between x and x+ is bounded above by a
positive constant less than 1 and since V ′ maps to N0, we have that also

E
(

V ′(x)− V ′(x+) | x
)

= O

(

V ′(x)
n2

)

= O

(

V ′(x)
E (V ′(x+) + 1 | x) ·

E (V ′(x+) + 1 | x)
n2

)

= O

(

E (V ′(x+) + 1 | x)
n2

)

holds.
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5. Contiguous Hypermutations

For the application of the drift theorem (He and Yao 2004) we define another drift

measure V : {0, 1}n → R
+
0 by V (x) = HV ′(x) where Hv =

v
∑

i=1
1/i denotes the v-th

harmonic number (with v ∈ N0 and H0 = 0, Lemma B.6).
We need to bound E (V (x)− V (x+) | x) = E

(

HV ′(x) −HV ′(x+) | x
)

from above. Note
that due to the strict plus-selection V ′(x) ≥ V ′(x+). Consider Ha−Hb for a ≥ b. Clearly,

Ha −Hb =
a
∑

i=b+1

1/i holds and

a− b

a
=

a
∑

i=b+1

1

a
≤ Ha −Hb ≤

a
∑

i=b+1

1

b+ 1
=

a− b

b+ 1

follows. Using this and E (V ′(x)− V ′(x+) | x) = O
(

E (V ′(x+) + 1 | x) /n2
)

from above
we get

E
(

V (x)− V (x+) | x
)

= E
(

HV ′(x) −HV ′(x+) | x
)

≤ E

(

V ′(x)− V ′(x+)
V ′(x+) + 1

| x
)

= O

(

E

(

E (V ′(x+) + 1 | x)
n2

· 1

V ′(x+) + 1
| x
))

= O

(

E (V ′(x+) + 1 | x)
n2

· E
(

1

V ′(x+) + 1
| x
))

= O





E (V ′(x+) + 1 | x)
n2

·
V ′(x)
∑

i=0

Prob (V ′(x+) = i | x)
i+ 1





= O





E (V ′(x+) + 1 | x)
n2

·
V ′(x)
∑

i=0

Prob (V ′(x)− V ′(x+) = V ′(x)− i | x)
i+ 1





= O

(

E (V ′(x+) + 1 | x)
n2 · (V ′(x) + 1)

)

+O





V ′(x)−1
∑

i=0

E (V ′(x+) + 1 | x)
n2

· Prob (V ′(x)− V ′(x+) = V ′(x)− i | x)
i+ 1





= O

(

1

n2

)

+O





V ′(x)−1
∑

i=0

E (V ′(x+) + 1 | x)
n2

· V ′(x)

n2 · kV ′(x)−i · (i+ 1)





= O

(

1

n2

)

+O





1

n2
·
V ′(x)−1
∑

i=0

1

kV
′(x)−i · (i+ 1)





= O

(

1

n2

)

+O





1

n2
·
V ′(x)
∑

i=1

1

ki



 = O

(

1

n2

)
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as upper bound on the drift. Since we have 0 ≤ V ′(x) ≤ n we have V (x) ≤ Hn ≤ ln(n)+1
as upper bound on the initial distance. Applying the drift theorem (He and Yao 2004)
yields Ω

(

n2 log n
)

as lower bound on the expected optimization time.

For CHM1 we do not have probability Θ
(

1/n2
)

for each b-bit mutation. Mutations
at the end of the bit string can have much larger probabilities since for such mutations
different values of length l lead to the same mutation. Note that this only applies to
mutations that mutate the bits x[p], x[p+1], . . . , x[n− 1]. It is not easy to see how such
mutations can lead to a drastic decrease in expected optimization time. We thus speculate
that the upper bound O

(

n2 log n
)

may be asymptotically tight for CHM1, too. This
speculation is supported by the results of experiments described later in Section 5.8.1.

For CHM2 and CHM3 with r = 1 we know that we lose a factor of Θ(n) in comparison
to standard bit mutations (Theorem 5.7). The proof of the lower bound, however, relies
on the fact that the initial bit string is chosen uniformly at random. One may wonder
what happens if the initial bit string happened to be the all-zero bit string 0n. With
only 0-bits in the initial bit string there is a much bigger chance for larger increases in
the number of 1-bits. However, this advantage is reduced over time as the 1-bits will be
distributed randomly. It is unclear if this advantage that is big in the beginning where it
is easy to make progress and decreased in the end where making progress becomes much
harder anyway is sufficient to yield an asymptotically smaller expected optimization time.
To get an impression we provide results of experiments in Section 5.8.1.

5.4. Results for LeadingOnes

The result on OneMax may lead to the belief that somatic contiguous hypermuta-
tions increase the expected optimization time by a factor of Θ(n) for objective functions
where mutations of single bits are responsible for optimization. We demonstrate that
things are not so simple by considering another well-known example function, namely
LeadingOnes that yields as function value the number of consecutive 1-bits counted
from left to right. It can formally be defined as follows.

Definition 5.8 (Rudolph (1997)). For n ∈ N and x ∈ {0, 1}n, the function
LeadingOnes : {0, 1}n → R is defined by

LeadingOnes(x) =
n
∑

i=1

i
∏

j=1

x[j].

As for OneMax, the unique global optimum is the all one bit string 1n. The ex-
pected optimization time when using standard bit mutations equals E (TSBM,LeadingOnes)
= Θ

(

n2
)

(Droste et al. 2002) and this can be achieved with 1-bit mutations, only. While
the expected optimization time can be larger when using somatic contiguous hypermu-
tations it is much smaller than Θ

(

n3
)

.
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5. Contiguous Hypermutations

Theorem 5.9 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. The expected optimiza-
tion time of Algorithm 3.1 using somatic contiguous hypermutations from Algorithm 5.1,
5.2, or 5.3, respectively, on LeadingOnes is

E (TCHM1,LeadingOnes) = O
(

n2
)

E (TCHM2,LeadingOnes) = Θ
(

n2 log n
)

E (TCHM3,LeadingOnes) = Θ
(

n2 log n
)

.

Proof. Again, we prove the upper bound using trivial fitness layers (Droste et al. 2002).
For any x ∈ {0, 1}n\{1n} it suffices to mutate the leftmost 0-bit and an arbitrary number
of bits to its right. Let the position of the leftmost 0-bit be n − i − 1, thus there are i
bits to its right.

For CHM1 it suffices to have p = n − i − 1 and l > 0, thus the probability for an
improving mutation is bounded below by (1/n) · (1 − 1/(n + 1)) = Ω(1/n). This yields
O(n · n) = O

(

n2
)

as upper bound on the expected optimization time.
For CHM2 we need min{p1, p2} = n−i−1 and have i+1 positions for max{p1, p2}. This

happens with probability Ω
(

(i+ 1)/n2
)

and thus yields O
(

n2/(i+ 1)
)

as upper bound
for the expected waiting time for such a mutation. Thus, the expected optimization is
bounded above by

n−1
∑

i=0

O

(

n2

i+ 1

)

= O

(

n2
n
∑

i=1

1

i

)

= O
(

n2 log n
)

.

For CHM3 we need p = n− i−1 and 0 < l ≤ i. Thus we have i/(n2+n) as probability

for an improving mutation and we obtain
n
∑

i=1
O
(

n2/i
)

= O
(

n2 log n
)

as upper bound on

the expected optimization time.
For the lower bound for CHM2 and CHM3 we can observe that the bits to the right of

the leftmost 0-bit are distributed uniformly at random. Thus, the probability to increase
the function value by j is bounded above by O

(

(i+ 1)/
(

n22j−1
))

. Again making use of
drift arguments (He and Yao 2004) we see that we obtain a lower bound of Ω

(

n2 log n
)

on the expected optimization time.

As for OneMax, for CHM1 we do not have a matching lower bound. This is also due to
the much higher probabilities for mutations that mutate the bits x[p], x[p+1], . . . , x[n−1].
We again speculate that the upper bound O

(

n2
)

may be asymptotically tight for CHM1,
too. This, again, is supported by experiments (see Section 5.8.2).

For LeadingOnes, the use of somatic contiguous hypermutations implies a decrease
in performance by a factor of O(log n) in comparison to standard bit mutations. As
for OneMax, one may wonder what happens if the initial bit string happened to be
the all-zero bit string 0n. While this constitutes an advantage in the beginning we
observe that any mutation not affecting the first i+ 1 bits in a current bit string x with
LeadingOnes(x) = i will be accepted. This leads to a random distribution of the bits
that are right of the leftmost 0-bit and decreases the initial advantage. As for OneMax,
we investigate both questions by doing experiments in Section 5.8.2.

82



5.5. Results for n · LeadingOnes − OneMax

5.5. Results for n · LeadingOnes − OneMax

In the preceding sections on OneMax and LeadingOnes, we speculated that it might
help to initialize deterministically in 0n. However, we did not prove upper and lower
bounds for this case and referred to experiments in Section 5.8. For LeadingOnes
one observation was that the bits that are right to the leftmost 0-bit become randomly
distributed. In particular, the result of the very first mutation is accepted in any case
and thus, we leave 0n immediately. In the following, we consider a modification of
LeadingOnes where this is not the case. The function LeadingOnes′ can formally be
defined as follows.

Definition 5.10. For n ∈ N and x ∈ {0, 1}n, the function LeadingOnes′ : {0, 1}n → R

is defined by

LeadingOnes′(x) = n · LeadingOnes(x)− OneMax(x).

Since the selection mechanism that we employ is insensitive to the absolute function
values and reacts to the ordering of function values only, we do not change anything
by going from LeadingOnes to n · LeadingOnes. Going from n · LeadingOnes to
LeadingOnes′ = n · LeadingOnes − OneMax has the following effects. First, since
the number of leading 1-bits comes with the factor n it is the number of leading 1-bits
that dominates the function value. A bit string with a larger number of leading 1-bits
has the larger function value. For bit strings with equal numbers of leading 1-bits, it is
the number of 1-bits that decides. Fewer 1-bits imply larger function values. Thus, for
CHM1 and CHM2 with r = 1, starting with 1i0n−i, the current bit string will always
be of the form x = 1j0n−j (j ≥ i) with LeadingOnes(x) = j and LeadingOnes′(x)
= n · j − j = (n − 1) · j. This suffices to demonstrate a noticeable advantage for most
somatic contiguous hypermutations when started in 0n.

Theorem 5.11 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. The expected
optimization time of Algorithm 3.1 using somatic contiguous hypermutations from Algo-
rithm 5.1, 5.2, or 5.3, respectively, on LeadingOnes′ is

E
(

TCHM1,LeadingOnes′,0n
)

= O(n)

n2/2 ≤E
(

TCHM2,LeadingOnes′,0n
)

≤ n2

E
(

TCHM3,LeadingOnes′,0n
)

= O
(

n2 log n
)

.

Proof. For CHM1 and CHM2 we have at any time x = 1i0n−i for some i ∈ {0, 1, . . . , n}
where x is the current bit string. A mutation can only change this if none of the i leading
1-bits is mutated, the 0-bit at position x[i] is mutated and any number of the n − i− 1
consecutive 0-bits are mutated. For CHM3 this is not true since a mutation of 0n may
lead to 1i0j1n−i−j.

For CHM1 we observe that we have p = i with probability 1/n and l ≥ n/3 with
probability at least ⌊(2/3)n⌋/(n + 1) > 1/2. Thus, with probability at least 1/(2n) the
number of trailing 0-bits is reduced either by at least n/3 or to 0. Clearly, the expected
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5. Contiguous Hypermutations

waiting time for such a mutation is bounded above by 2n and after at most three such
mutations the number of 0-bits is reduced to 0. This implies E

(

TCHM1,LeadingOnes′
)

= O(n).
For CHM2 we observe that for x 6= 1n−10 we can either have p1 = i and p2 = n − 1

or p1 = n − 1 and p2 = i for a mutation that reaches the optimum. Such a mutation
has thus probability 2/n2 in this situation. Since no other mutations can lead to the
global optimum this implies that the expected optimization time is bounded below by
n2/2. For x = 1n−10 the only mutation leading to the unique global optimum 1n has
p1 = p2 = n − 1. This mutation has probability 1/n2 and E (TCHM2,LeadingOnes) ≤ n2

follows.
For CHM3 we observe that for the current string there is exactly one value of p such

that a mutation increases the number of leading 1-bits. Moreover, the mutation increases
the function value if and only if 0 < l ≤ n − i holds if i denotes the number of leading
1-bits. Thus, if the number of leading 1-bits equals i it is increased by at least 1 with
probability (1/n) · (n − i)/(n + 1). Thus, the expected optimization time is bounded
above by

n−1
∑

i=0

n · (n + 1)

n− i
= (n2 + n)

n
∑

i=1

1

i
= O

(

n2 log n
)

.

Like before we present empirical results in Section 5.8.3.

5.6. Results for n · TrailingOnes − OneMax

The most noticeable result on LeadingOnes′ is the tremendous advantage for CHM1.
We already pointed out that CHM1 has a very strong positional bias, a much stronger bias
than CHM2 and CHM3, the latter being completely unbiased with respect to positions
of bits. Clearly, such bias is undesirable as long as one has no reason to assume that this
bias matches properties of the objective function (Droste and Wiesmann 2003). Yet here
it leads to a significant advantage. It is easy to see why that is the case. The variant
CHM1 has a strong tendency to mutate bits further to the right. In LeadingOnes′

we have that the bits to the left tend to be correct early in the run and it pays off
to concentrate on flipping the bits on the right hand side. We demonstrate that the
advantage for CHM1 is due to this property of LeadingOnes′ by considering another
example function that is almost identical with LeadingOnes′ but with a reversed bit
string. We consider the function TrailingOnes’ defined formally in the following.

Definition 5.12. For n ∈ N and x ∈ {0, 1}n, the function TrailingOnes′ : {0, 1}n → R

is defined by

TrailingOnes′(x) = n ·





n
∑

i=1

n−1
∏

j=n−i

x[j]



 − OneMax(x).
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5.7. Results for CLOBb,k

While the function value of LeadingOnes′ is dominated by the number of lead-
ing 1-bits in TrailingOnes′ it is dominated by the number of trailing 1-bits. For
x = (x[0], x[1], . . . , x[n − 1]) ∈ {0, 1}n let xR = (x[n − 1], x[n − 2], . . . , x[0]). Clearly,
LeadingOnes′(x) = TrailingOnes′(xR) holds for all x ∈ {0, 1}n. Since CHM2 and
CHM3 are completely symmetric for x[i] and x[n−i−1] we get as immediate consequence

E
(

TCHM2,TrailingOnes′
)

= E
(

TCHM2,LeadingOnes′
)

and

E
(

TCHM3,TrailingOnes′
)

= E
(

TCHM3,LeadingOnes′
)

.

For CHM1 this is not the case. While Theorem 5.11 yields E
(

TCHM1,LeadingOnes′,0n
)

= O(n), CHM1 is clearly slower on TrailingOnes′ as the following theorem shows.

Theorem 5.13. Let µ = 1 and r = 1. The expected optimization time of Algorithm 3.1
using somatic contiguous hypermutations from Algorithm 5.1 on TrailingOnes’ is

E
(

TCHM1,TrailingOnes′,0n
)

≥ n2 − 1.

Proof. The first mutation changing the current bit string affects the rightmost bit x[n−1],
i. e., in this mutation p+ l − 1 ≥ n− 1 holds for the random position p and the random
length l of the interval to be mutated. With probability (n− 1)/n we have p > 0 in this
mutation. After this mutation the current bit string is 0i1n−i for some i ∈ {1, 2, . . . , n−1}.
Due to the definition of TrailingOnes′ we have x = 0i

′
1n−i′ with 0 ≤ i′ ≤ i for all

subsequent current bit strings x. This implies that there is always exactly one mutation
that leads to the global optimum 1n. For each of these uniquely defined mutations the
probability equals (1/n) · 1/(n + 1). Thus we have

E
(

TCHM1,TrailingOnes′,0n
)

≥ n− 1

n
· (n · (n+ 1)) = n2 − 1.

We present the results of experiments for TrailingOnes′ as we did for the other
functions in Section 5.8.4.

5.7. Results for CLOBb,k

When discussing probabilities of specific b-bit mutations we observed that somatic con-
tiguous hypermutations can be advantageous if feasible b-bit mutations for b > 2 are
needed and that this advantage grows exponentially with b. In the following, we consider
a function designed for this purpose in a different context and for a different algorithm.

We consider a function similar to LeadingOnes but replacing the role of single leading
1-bits by blocks of leading 1-bits of equal length b. Thus, for b = 1 we have LeadingOnes
where single bit mutations are sufficient, for b > 1 we have a function where the function
value can be increased by a mutation of b bits. Such an example function could be called
LeadingOnesBlocksb or LOBb, for short. Since we want to simplify the analysis we
would like to make sure that exactly b-bit mutations are needed. This can be achieved by
moving to n·LOBb−OneMax just as we moved from LeadingOnes to LeadingOnes′.
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5. Contiguous Hypermutations

As we mentioned above, such a function was introduced in a different context. Since
we want to avoid ‘inventing’ new example functions (where no results for comparisons
are known) we stick to the definition of this known example function even though it
is a little bit more involved than what is actually needed here. The function is called
CLOBb,k (short for ConcatenatedLeadingOnesBlocksb,k) and is defined as k in-
dependent copies of n · LOBb where the complete function value is given by adding up
the function values of the k copies. The function was originally introduced by Jansen
and Wiegand (2004a) for the analysis of a simple cooperative coevolutionary algorithm,
called the CC (1+1) EA. We proceed with a formal definition of this fitness function
and a discussion of its main properties.

Definition 5.14. For b, k, n ∈ N with n/k ∈ N and n/(bk) ∈ N and x ∈ {0, 1}n, the
function CLOBb,k : {0, 1}n → R is defined by

CLOBb,k(x) = n ·





k
∑

h=1

n
bk
∑

i=1

i·b−1
∏

j=0

x

[

(h− 1) · n
k
+ j

]



− OneMax(x).

Obviously, it is defined as sum of k independent copies of the same function, operating
on consecutive disjoint pieces of the bit string x, each of length n/k. To simplify notation
a bit in the following we define l := n/k. Note that we have l ∈ N. The function has the
all one string 1n as its unique global optimum.

Think of x = (x[0], x[1], . . . , x[n− 1]) ∈ {0, 1}n as divided into k pieces x(1), x(2), . . . ,
x(k) with x(i) = (x [(i− 1) · l] , x [(i− 1) · l + 1] , . . . , x [i · l − 1]) ∈ {0, 1}l for each i ∈ {1,
2, . . . , k}. Each piece x(i) can be thought of as being divided into l/b consecutive disjoint
blocks of length b each. In each piece the number of these blocks completely set to 1
is counted from left to right stopping with the first block different from 1b. For each
of these leading 1-blocks the function value is increased by n. We add this up for all
k pieces and subtract the number of 1-bits.

Increasing the number of pieces k while keeping the length of the blocks b fixed de-
creases the length of each piece and decreases the number of blocks in each piece. In-
creasing b while keeping k fixed decreases the number of blocks in each piece without
changing the length of the pieces.

It is known (Jansen and Wiegand 2004a) that the expected optimization time of the
(1+1) EA on CLOBb,k equals

E
(

T(1+1) EA,CLOBb,k

)

= Θ

(

nb

(

l

b
+ ln k

))

.

The cooperative coevolutionary algorithm analyzed by Jansen and Wiegand (2004a), the
CC (1+1) EA, achieves an expected optimization time of

E
(

TCC (1+1) EA,CLOBb,k

)

= Θ

(

k · lb
(

l

b
+ ln k

))

beating the (1+1) EA by a factor of Θ
(

kb−1
)

. Note that this algorithm is provided with
the information about the number k of pieces and their length l. This is different for
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the algorithm using somatic contiguous hypermutations. However, we are able to prove
a bound that is even independent of k, b, and l.

Theorem 5.15 (Jansen and Zarges (2011a)). Let µ = 1 and r = 1. Moreover, let for
n ∈ N the parameters b, k ∈ N be given with n/(bk) ∈ N. The expected optimization time
of Algorithm 3.1 using somatic contiguous hypermutations from Algorithm 5.1, 5.2, or
5.3, respectively, on CLOBb,k is

E
(

TCHM1,CLOBb,k

)

= O
(

n2 log n
)

E
(

TCHM2,CLOBb,k

)

= O
(

n2 log n
)

E
(

TCHM3,CLOBb,k

)

= O
(

n2 log n
)

.

Proof. We remember the k pieces x(1), x(2), . . . , x(k) of length l := n/k each that together
form x ∈ {0, 1}n. We know that on average after O

(

n2 log n
)

steps the optimum of
OneMax is reached. We conclude that on average for each of the k pieces after that
many steps a bit string of the form 1i·b0l−i·b (with possibly different values i for the
different pieces) is reached. Then we are in a situation very similar to LeadingOnes′

= n·LeadingOnes−OneMax. For each of the j pieces that are different from 1l there is
always a mutation creating 1l. Each of these mutations occurs with probability Ω

(

1/n2
)

for all three variants of somatic contiguous hypermutations. We thus obtain
k
∑

j=1
n2/j

= O
(

n2 log k
)

as upper bound. Since k ≤ n holds, this proves the upper bound.

We observe that when we initialize deterministically in 0n we are in this special sit-
uation having 1i·b0l−i·b in each of the k pieces right at the start. Thus, the first phase
where we wait for this to happen is empty. This reduces the upper bound that we are
able to prove from O

(

n2 log n
)

to O
(

n2 log k
)

. Again, we present empirical results for
this function in Section 5.8.5.

5.8. Experimental Supplements

As announced in the previous sections, we present results of experiments in order to
complement our theoretical analysis. For each function considered before, we perform
100 independent runs of the respective algorithm using random initialization as well as
deterministic initialization in 0n for for n ∈ {40, 80, 120, . . . , 600}. We again plot the
results using box-and-whisker plots (Definition B.1) In addition we plot c · b(n) if we
have a bound E (Top,f ) = O(b(n)) for illustrative purposes (for some mutation operator
op and some objective function f). The constant c is determined using a least squares fit.
For the sake of completeness we plot analogous data for the algorithm using standard
bit mutations if reasonable. In order to gain more insight we also plot the quotients
E (Top,f) /E (Top,f,0n) (of the observed medians, of course) for all mutation operators op
and functions f considered.
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5.8.1. OneMax

The results for OneMax and the different mutation operators can be found in Figure 5.2.
Note that the different scaling for standard bit mutations is due to the much smaller
expected optimization time.

We observe that all variants of somatic contiguous hypermutations benefit from ini-
tialization in 0n whereas for standard bit mutations there is hardly any difference. If
this difference is so large as to constitute an asymptotic difference in the expected op-
timization time is impossible to tell from this graph, of course. Since in Figure 5.2 this
quotient is bounded by two and does not appear to grow with n we speculate that start-
ing with the all-zero bit string 0n does not reduce the order of the expected optimization
time. Since we observe no noticeable advantage for CHM1 we speculate that also for
E (TCHM1,OneMax) a lower bound of order Ω

(

n2 log n
)

can be proven.

5.8.2. LeadingOnes

Results for LeadingOnes are depicted in Figure 5.3. Note again, the different scaling
in the box-and-whisker plots for standard bit mutations and CHM1.

We observe for LeadingOnes that both, somatic contiguous hypermutations as well as
standard bit mutations, are not sensitive at all with respect to the initialization method.
In particular, in contradiction to our intuition, somatic contiguous hypermutations do
not benefit from deterministic initialization in 0n in a visible way. The difference is
even smaller than for OneMax as the quotients clearly indicate. Obviously, the bits
right to the leftmost 0-bit become randomly distributed so fast in comparison with the
expected optimization time that no noticeable advantage is gained. This is different to
the situation for OneMax. One difference between those two example functions is that
the relevant bits for increasing the function value are gathered right to the leftmost 0-bit
for LeadingOnes while they are randomly distributed among all bits for OneMax.
This makes them more difficult to change for somatic contiguous hypermutations so
that the initial advantage due to deterministic initialization in 0n is longer preserved for
OneMax leading to visible effects.

We observe that the average optimization time with CHM1 is smaller than with
SBM. It is known that the expected optimization time using SBM is bounded below
by 0.859n2 (Böttcher et al. 2010). Remember, that for CHM1 the probability of increas-
ing the number of leading 1-bits equals 1/(n + 1). Due to the random initialization we
expect to be needing n/2 such improvements. This yields an expected optimization time
of 0.5n2 + 0.5n < 0.859n2.

5.8.3. n · LeadingOnes − OneMax

When considering LeadingOnes it is in some sense disappointing that initializing de-
terministically in 0n helps so little. This becomes different for LeadingOnes if the bits
right of the leftmost 0-bit do not become randomly distributed, i. e., for LeadingOnes′.
We also investigate this function experimentally and present the results in Figure 5.4.
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Considering the quotients we see a very clear benefit for CHM1 due to initializing in the
all-zero bit string 0n. For CHM3 no such effect is visible. For CHM2, things are less clear.
We additionally display the quotients E

(

TCHMi,LeadingOnes′
)

/E
(

TCHMi,LeadingOnes′,0n
)

for i ∈ {2, 3}. There may be a growing benefit for CHM2 due to deterministic initial-
ization in the all-zero bit string 0n. We observe that the quotient grows from approxi-
mately 2.5 for n = 40 to approximately 4 for n = 600. If there really is an advantage of
order ω(1) can only be decided by a theoretical analysis and is subject of future research.

Remember that, we have n2/2 ≤ E
(

TCHM2,LeadingOnes′,0n
)

≤ n2 (Theorem 5.11).
Even more, we showed that the expected optimization time is n2/2 if the bit string
x = 1n−10 is not reached, and n2 otherwise. Thus, the expected optimization time is
much closer to n2/2 than to n2. We see that the observed median in the experiments
is 0.44n2. One might think that this contradicts our theoretical result. However, we
also see a large number of large outliers in the experiments. Thus, we conclude that this
observation might be inaccurate and that a larger number of runs will bring the observed
median closer to n2/2.

5.8.4. n · TrailingOnes − OneMax

We present the results of experiments for TrailingOnes′ in Figure 5.5. Here the com-
parison with the results for LeadingOnes′ (Figure 5.4) is most revealing. We see that
while CHM2, CHM3, and standard bit mutations perform equally on LeadingOnes′

and TrailingOnes′ the advantage that CHM1 has on LeadingOnes′ is not present on
TrailingOnes′. This underlines the statement that a bias in a mutation operator is
only desirable if it is well aligned with the objective function’s properties.

5.8.5. CLOBb,k

Finally, we present results for CLOBb,k in Figure 5.6 and 5.7 for b = 4 and in Fig-
ure 5.8 and 5.9 for b = 8. We choose (quite arbitrarily) k ∈ {5, 10} and b ∈ {4, 8},
so that we consider in total four version of CLOBb,k, namely CLOB4,5, CLOB8,5,
CLOB4,10, and CLOB8,10. Note that for CLOB8,10 we need n/80 ∈ N to hold so that
we only present results for n ∈ {80, 160, . . . , 560}. Since the expected optimization times
when using standard bit mutations are extremely large (Ω

(

n4
)

for b = 4 and Ω
(

n8
)

for
b = 8) we do not present actual results for the (1+1) EA here. We remark that when
performing such runs using standard bit mutations and considering for example CLOB4,5

the minimum observed optimization time in 100 runs for n = 40 when using standard bit
mutations (3,896,445) is significantly larger than the maximum observed optimization
time in 100 runs for n = 600 when using any of the three variants of somatic contiguous
hypermutations (3,280,958). The maximum observed optimization time in 100 runs on
CLOB4,5 using any of the three variants of somatic contiguous hypermutations for the
same value n = 40 even equals only 8,328. The comparison is pointless, performing the
runs for the (1+1) EA for these values of b and k not even feasible.

We observe that the median run times increase with b. This seems to contradict our
upper bounds that are independent of b. Remember that we only have upper bounds and
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5. Contiguous Hypermutations

in our proofs crudely estimated the time spent in the n−OneMax-phase by O
(

n2 log n
)

.
However, in this phase, for smaller values of b the probability to already set rapidly leading
one blocks is larger. This explains the faster optimization.
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(a) random initialization
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Figure 5.2.: Empirical data from 100 runs for OneMax.
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(a) random initialization
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Figure 5.3.: Empirical data from 100 runs for LeadingOnes.
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Figure 5.4.: Empirical data from 100 runs for LeadingOnes′.
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(b) deterministic initialization
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Figure 5.5.: Empirical data from 100 runs for TrailingOnes′.
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(c) observed quotients
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Figure 5.6.: Empirical data from 100 runs for CLOB4,5.
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Figure 5.7.: Empirical data from 100 runs for CLOB4,10.
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5.8. Experimental Supplements
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Figure 5.8.: Empirical data from 100 runs for CLOB8,5.
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5. Contiguous Hypermutations
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Figure 5.9.: Empirical data from 100 runs for CLOB8,10.
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6. On the Effect of Large Mutation

Probabilities When Optimizing

Monotone Functions

In the previous two chapters, we have investigated several aspects of common immune-
inspired mutation operators, namely inversely fitness-proportional and somatic contigu-
ous hypermutations. While we showed on which kind of problems contiguous hypermu-
tations excel over standard bit mutations used in evolutionary algorithms, we have seen
that parametrization is crucial for inversely fitness-proportional mutation probabilities
and that larger collections of search points can help when using certain concrete instanti-
ations of this kind of operator. However, when looking closer at the results for inversely
fitness-proportional mutations one recognizes that these kind of mutations yield poly-
nomial optimization times on OneMax only when the used parametrization results in
some mutation probability Θ(1/n), at least in relevant parts of the search space.

In Section 4.3.2 of this thesis, we have discussed an algorithm, where each search point
in the collection of search points is equipped with an individual mutation probability. We
have shown that, under certain circumstances, these mutation probabilities are all Θ(1/n)
but with noticeable differences between them. Note, that the mutation probability is not
fixed during a run of the algorithm. To be more precise, the constant factor hidden
in Θ(1/n) lies in an interval [c1, c2] for constants c2 > c1 > 0. Moreover, in large
parts of the search space, we have c1 > 1. It is an interesting question what effects
such a range of mutation probabilities can have. Moreover, it was an open problem if
there exists a function where increasing the mutation probability from 1/n to c/n for
a constant c > 1 increases the optimization time by more than a constant factor. In
this chapter, we address both questions by considering the (1+1) EA with mutation
probability p(n) = c/n for some fixed constant c.

While for OneMax it was known before that a mutation probability p(n) = c/n
for all fixed constants c yields polynomial optimization time (Droste et al. 2002), this
observation raises (amongst others) the question what effect larger mutation probability
can have in general, in particular when only increasing the mutation probability by a
constant factor. In order to address this question we consider Algorithm 3.1 with µ = 1
using standard bit mutations from Algorithm 3.5 with some fixed mutation probability
p(n) = c/n (c > 0 constant). Note, that this is a general version of the (1+1) EA (see
Definition 3.1). To simplify notation, we use this term in the following.

We analyze the effect when using values much larger than 1 for the constant c in the
mutation probability on the class of strictly monotone pseudo-Boolean functions defined
formally later. These functions have the property that whenever only 0-bits are changed
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6. On the Effect of Large Mutation Probabilities When Optimizing Monotone Functions

to 1, the function value strictly increases. This implies that all these functions are easy
to optimize for randomized local search, only flipping single bits. One may expect that
they are also easy to optimize for the (1+1) EA with mutation probability Θ(1/n).
However, the choice of the constant c in the mutation probability can make a decisive
difference. This is the first time that we observe that a constant factor change of the
mutation probability changes the optimization time by more than constant factors. Since
in artificial immune systems typically even larger mutation probabilities are used, this
result is relevant for hypermutations and shows serious drawbacks of this kind of mutation
operator.

We start our considerations by presenting known results for different classes of pseudo-
Boolean functions. Afterwards, we first investigate the optimization time for small mu-
tation probabilities. Finally, the main part of this chapter deals with the result on larger
mutation probabilities. The result of this chapter is based on the work done in Doerr
et al. (2010a, 2011).

6.1. Known Results for Different Classes of Functions

Before we come to our main result, we present previous related work with respect to
classes of pseudo-Boolean functions. We consider three different, important and well-
known classes: linear functions, monotone functions, and unimodal functions. We discuss
relations between these classes and summarize known results on the optimization time
of the (1+1) EA on these classes.

A pseudo-Boolean function f is called linear if it can be written as a weighted sum of
the bits in a search point. We define such functions formally in Definition 6.1.

Definition 6.1. The class of linear pseudo-Boolean functions f : {0, 1}n → R is defined
by

Lin :=

{

f : {0, 1}n → R | f(x) = wn +

n−1
∑

i=0

wix[i], w0, . . . , wn−1, wn ∈ R

}

.

Note, that when considering the (1+1) EA on linear functions, we can w. l. o. g. as-
sume, that all weights are non-negative, since the (1+1) EA is symmetric with respect
to 0-bits and 1-bits and thus, we can easily replace x[i] by 1 − x[i] (Droste et al. 2002).
We consider a subset of Lin, where all weights except wn are strictly positive. Note, that
having weights of 0 can only simplify optimization and thus, does not influence upper
bounds. This yields the function class Lin′ defined in the following.

Definition 6.2. The restricted class of linear pseudo-Boolean functions f : {0, 1}n → R

is defined by

Lin′ :=

{

f : {0, 1}n → R | f(x) = wn +

n−1
∑

i=0

wix[i], w0, . . . , wn−1 ∈ R
+, wn ∈ R

}

.
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6.1. Known Results for Different Classes of Functions

The most simple linear function, where all weights are set to 1, is OneMax (Defi-
nition 4.1), which we considered in the previous chapters. Another intensively studied
linear function is BinVal, denoting the decimal value that is represented by the respec-
tive bit string. Since we need BinVal later in our definition in Section 6.3, we give a
formal definition in the following.

Definition 6.3. For n ∈ N and x ∈ {0, 1}n, the function BinVal : {0, 1}n → R is
defined by

BinVal(x) =

n−1
∑

i=0

2n−i−1x[i].

As 2n−i−1 >
∑n

j=i+2 2
n−j , the bit value of some bit i dominates the effect of all bits

i + 1, . . . , n − 1 on the function value. It is known that the optimization time of the
(1+1) EA with p(n) = c/n on restricted linear functions (Lin′) is Θ(n log n) for all
constants c > 0 (Doerr and Goldberg 2010).

For strictly monotone pseudo-Boolean functions (usually called simply monotone in
the following) it holds that flipping only 0-bits to 1-bits strictly increases the function
value of the search point. We define this function class in Definition 6.4

Definition 6.4. The class of (strictly) monotone pseudo-Boolean functions f : {0, 1}n →
R is defined by

Mon := {f : {0, 1}n → R | ∀x, y ∈ {0, 1}n : (x > y) ⇒ (f(x) > f(y))} ,

where x > y ⇔ ∀i ∈ {0, . . . , n− 1} : x[i] ≥ y[i], ∃j ∈ {0, . . . , n− 1} : x[j] > y[j].

Observe that the condition in Definition 6.4 is equivalent to f(x) < f(y) for all x and y
such that x and y only differ in exactly one bit and this bit has value 1 in y. Clearly,
the all-ones bit string 1n is the unique global optimum for a monotone function. It is
easy to see that monotone functions are just the ones where a simple coupon collector
argument (Lemma B.17) shows that random local search, i. e., the mutation operator
flipping exactly one bit, finds the optimum in time Θ(n log n). This is due the fact
that flipping a single bit from 0 to 1 implies that the fitness strictly increases and thus
this 1-bit will never be lost again. However, for the (1+1) EA things are much more
involved. We consider the optimization time of the (1+1) EA with mutation probability
p(n) = c/n for different constant values of c > 0 within this chapter.

If for two arbitrary search points x, y neither x < y nor y < x holds, we say that x
and y are incomparable. This happens if and only if there are two different bit positions
i and j such that x[i] = 0 but y[i] = 1 and x[j] = 1 but y[j] = 0. Note that monotonicity
does not impose any restrictions on the fitness values of x and y. In other words, if f
is monotone then any of the following cases can occur: f(x) > f(y), f(x) = f(y), or
f(x) < f(y). When defining a monotone function, we can choose any of the above cases
for f , as long as no monotonicity constraint involving other search points is violated.
This in particular indicates that the class of monotone functions contains much more
complex functions than linear functions.
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Figure 6.1.: Classes of pseudo-Boolean functions.

Finally, unimodal functions comprise all pseudo-Boolean functions where each non-
optimal point has at least one better Hamming neighbor (see Definition 6.5). Droste
et al. (2006) showed that the black-box complexity of unimodal functions with b(n) + n
different function values is Ω

(

b(n)/ log2(b(n))
)

in the case b(n) = 2o(n). Earlier, for the
(1+1) EA a weaker lower bound was established using a concrete objective function,
namely long k-paths due to Horn et al. (1994) and Rudolph (1996). It was shown
that the (1+1) EA does with high probability not find the global optimum within 2

√
n

iterations (Droste et al. 1998). Our definition in the next section follows a similar idea.
Moreover, we make use of a long k-path function when considering aging in Chapter 8.

Definition 6.5. The class of unimodal pseudo-Boolean functions f : {0, 1}n → R is
defined by

Uni :=

{

f : {0, 1}n → R | ∀x ∈ {0, 1}n : (∀y ∈ {0, 1}n : H (x, y) = 1 ⇒ f(x) ≥ f(y))

⇒ (f(x) = max{f(z) | z ∈ {0, 1}n})
}

.

Note that every linear function with strictly positive weights is a strictly monotone
function as flipping only 0-bits to 1 strictly increases the fitness. Also recall that every
monotone function is unimodal since for each non-optimal search point, i. e., for each
x 6= 1n we can flip exactly one 0-bit and get a Hamming neighbor y with f(y) > f(x).
However, much stronger than for unimodal functions, we not only require that each
non-optimal x has a Hamming neighbor with better f -value, but we even ask that this
holds for all Hamming neighbors that have an additional 1-bit. Contrary to the long
k-path function there is always a short path of at most n search points with increasing
f -value connecting a search point with the optimum. We visualize the relation of the
considered function classes and well-known representatives in Figure 6.1. Note, that fΠ
is the monotone function, we are defining later in Section 6.3.
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6.2. Optimizing Monotone Functions Using Small Mutation Rates

Summarizing what we know so far, we see that for linear functions the (1+1) EA
with mutation probability p(n) = c/n achieves a polynomial optimization time for all
constant values c > 0, while on unimodal functions, we have exponential optimization
time with high probability for all c. For monotone functions, i. e., the class ‘inbetween’
linear and unimodal functions, the dependency on c was not known. In the remainder
of this chapter, we will see that in this case the choice of c is crucial for the efficiency
of the considered algorithm and that the (1+1) EA is not able to optimize monotone
functions in polynomial optimization time in general if c is too large.

6.2. Optimizing Monotone Functions Using Small Mutation

Rates

For the (1+1) EA, the difficulty of monotone functions strongly depends on the muta-
tion probability p(n). We are interested in mutation probabilities p(n) = c/n for some
constant c > 0. Recall, that we denote by mut(x) the bit string that results from a muta-
tion of x and by x+ the search point that results from a mutation of x and a subsequent
selection. If c is a constant with c < 1, on average, less than one bit flips in a single
mutation. If this is a 1-bit we have f(x) > f(mut(x)) and x = x+ holds. Otherwise,
f(x+) > f(x) holds and we accept this move. This way the number of 0-bits is quickly
reduced to 0 and the unique global optimum is found. Using drift analysis this reasoning
can easily be made precise.

Theorem 6.6 (Doerr et al. (2011)). Let c ∈]0, 1[ be a constant. For every monotone
function the expected optimization time of the (1+1) EA with mutation probability p(n)
= c/n is

E
(

T(1+1) EA,Mon

)

= Θ(n log n).

Proof. For the lower bound, we use exactly the same arguments as in Theorem 4.2 (Droste
et al. 2002). For the upper bound we employ multiplicative drift analysis (Theorem B.23).

We consider the distance measure d : {0, 1}n → {0, 1, . . . , n} with d(x) := |x|0. Let x
denote the current bit string of the (1+1) EA. In order to derive an upper bound on
E (d(x+) | x) we distinguish the two cases d(x) = d(x+) and d(x) 6= d(x+). By the law
of total probability (Lemma B.11)

E
(

d(x+) | x
)

= Prob
(

d(x) = d(x+)
)

· d(x)
+ Prob

(

d(x) 6= d(x+)
)

· E
(

d(x+) | x, d(x) 6= d(x+)
)

holds. In the case d(x) 6= d(x+) the bit string x+ replaces x. This can only be the
case if at least one bit flipped from 0 to 1. Each of the remaining n − 1 bits flips with
probability c/n and may increase the distance by 1. This yields

E
(

d(x+) | x, d(x) 6= d(x+)
)

≤ d(x)− 1 + (n− 1) · c
n
≤ d(x)− (1− c)
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as upper bound and we obtain

E
(

d(x+) | x
)

≤ Prob
(

d(x) = d(x+)
)

· d(x) + Prob
(

d(x) 6= d(x+)
)

· (d(x) − (1− c))

= d(x)− Prob
(

d(x) 6= d(x+)
)

· (1− c).

A sufficient condition for d(x) 6= d(x+) is that exactly one of the d(x) bits with value 0
in x flips and all other bits remain unchanged. This event has probability

(

d(x)

1

)

· c
n
·
(

1− c

n

)n−1
≤ d(x) · ce

−c

n

and leads to

E
(

d(x+) | x
)

≤ d(x)− d(x) · ce
−c

n
· (1− c) = d(x) ·

(

1− ce−c(1− c)

n

)

as upper bound. Applying the drift theorem (Theorem B.23) with δ = (ce−c(1 − c))/n,
cmin = 1, and cmax = n, we obtain

n

ce−c(1− c)
· ln(1 + n)) = O(n log n)

as upper bound on the expected optimization time.

The proof of the lower bound is not restricted to c ∈]0, 1[. For any constant c > 0 the
number of steps considered, i. e., c−1(n− c) lnn, is Ω(n log n). This implies the following
corollary.

Corollary 6.7 (Doerr et al. (2011)). Let c > 0 be a constant. For every monotone
function the expected optimization time of the (1+1) EA with mutation probability p(n)
= c/n is

E
(

T(1+1) EA,Mon

)

= Ω(n log n).

The proof of the upper bound in Theorem 6.6 breaks down for c = 1. In this case the
drift in the number of 1-bits can be bounded pessimistically by a model due to Jansen
(2007) where we consider a random process that mutates x to y with mutation probability
p(n) = 1/n and replaces x by y if either x ≤ y holds or we have neither x ≤ y nor y ≤ x
but |y|1 < |x|1 holds.

The model is pessimistic in the following sense. Every mutation that flips only 0-
bits to 1-bits is guaranteed to lead to an improvement in the function value for every
monotone function and is accepted in this model, too. For the analysis of the model as
well as the (1+1) EA on a monotone function a drift analysis could be employed using
the number of 0-bits as drift function. With respect to this drift function the model
is more pessimistic than any monotone function since each mutation that potentially
decreases the number of 1-bits in a monotone function is accepted. This cannot happen
for a monotone function. To see this consider for example n = 4 and the following
sequence of bit strings: s0 = 0111, s1 = 1100, s2 = 0001, s3 = 0011. In the pessimistic
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6.3. On the Effects of Large Mutation Rates

model we could have s0, s1, s2, s3, s0 as sequence of current bit strings. This cannot be
the case for the (1+1) EA with any monotone function since f(s2) < f(s3) < f(s0) holds
by definition of monotonicity. Having s0, s1 as sequence of current bit strings implies
f(s1) ≥ f(s0) and since f(s0) > f(s2) we cannot have s2 as next current bit string.
Thus, the pessimistic model allows for cycles that are not possible for the (1+1) EA with
any monotone function.

Using the number of 0-bits as drift function, the worst case model can yield an upper
bound for the expected optimization time of the (1+1) EA with mutation probability
p(n) = 1/n on monotone functions. This way, we obtain the upper bound of O(n3/2) for
p(n) = 1/n.

Theorem 6.8 (Jansen (2007)). For every monotone function the expected optimization
time of the (1+1) EA with mutation probability p(n) = 1/n is

E
(

T(1+1) EA,Mon

)

= O
(

n3/2
)

.

6.3. On the Effects of Large Mutation Rates

The main result of this chapter is that using mutation probability p(n) = c/n, where c is a
sufficiently large constant, optimization of monotone functions can become very difficult
for the (1+1) EA. This is the first result where increasing the mutation probability by
a constant factor increases the optimization time from polynomial to exponential with
overwhelming probability. We start with a formal statement of this result.

Theorem 6.9 (Doerr et al. (2011)). For every constant c ≥ 16 the following holds. For
all n ∈ N, there exist a monotone function f : {0, 1}n → N and a constant κ > 0 such
that, with probability 1 − 2−Ω(n), the (1+1) EA with mutation probability p(n) = c/n
does not optimize f within 2κn iterations.

The remainder of this chapter is devoted to the formal proof of Theorem 6.9. In
Section 6.3.1 we first present a family of fitness functions of which many have the desired
property. In Section 6.3.2, we describe why these functions are difficult to optimize.

We make use of the following notation. For x = (x[0], . . . , x[n−1]) let Z(x) describe the
positions of all 0-bits in x, i. e., Z(x) := {0 ≤ i ≤ n− 1 | x[i] = 0} and |Z(x)| = |x|0. For
k ∈ N let [k] := {1, 2, . . . , k} and [k]0 = {0} ∪ [k]. For a set I = {i1, i2, . . . , iℓ} ⊆ [n− 1]0
we write x|I := xi1xi2 · · · xiℓ for the sub-string of x with the bits selected by I. To
simplify notation we assume that any time we consider some r ∈ R

+
0 but in fact need

some r′ ∈ N0 we assume that r is silently replaced by ⌊r⌋ or ⌈r⌉ as appropriate.

6.3.1. Definition and Properties of a Difficult to Optimize Monotone
Function

The main idea is the definition of a kind of long path function, similar to the work by
Horn et al. (1994). This definition uses the probabilistic method (Alon and Spencer

105



6. On the Effect of Large Mutation Probabilities When Optimizing Monotone Functions

2000). To the best of our knowledge, this is the first time that problem instances are
defined this way in the theory of randomized search heuristics. In their work, Horn et al.
(1994) defined a path of Hamming neighbors of exponential length. The probability of
taking a shortcut by mutation, that is, jumping forward a long distance on the path, is
very small as many bits have to flip simultaneously. All points that are not on the path
have an unfavorable fitness, such that the considered algorithm is forced to follow the
path to the end.

Here, we also have an exponentially long path such that shortcuts can only be taken
if a large number of bits flip simultaneously, a very unlikely event. The definition is
complicated by the fact that the function needs to be monotone. Hence we cannot forbid
leaving the path by giving the boundary of the path an unfavorable fitness. We solve
this problem, roughly speaking, by implementing the path on a level of bit strings having
similar numbers of 1-bits. Monotonicity only forbids leaving the level to strings having
fewer 1-bits without differences in the 0-bits. The path is ‘broad’ in that sense that the
algorithm can gather some additional 1-bits without leaving the path. The crucial part
of our definition is setting up the function in such a way that, in spite of monotonicity,
not too many 1-bits are collected.

Our path will be located in a region where the number of 1-bits is already fairly large.
If the mutation probability c/n is large, it is likely that more 1-bits are flipped to 0 than
0-bits are flipped to 1. So, when mutating a point on the path it is likely that we have a
net loss in terms of the number of 1-bits. This effect becomes more pronounced the more
1-bits the mutated search point has. The behavior of the (1+1) EA of course depends
on whether such a net loss will be accepted. Monotonicity requires that whenever only
1-bits are flipped to 0 then the fitness must decrease. If at least one 0-bit is flipped
together with at least one 1-bit, the two search points are incomparable. Hence, even for
a monotone fitness function such a transition might be accepted. Our long path function
is defined in such a way that operations leading to a net loss of 1-bits when moving to an
incomparable offspring are often accepted, while the current search point is on the path.
This prevents the algorithm from gathering too many 1-bits and hence from leaving the
path.

These considerations particularly apply to a subset of bits that we call a window. The
precise subset determines the position on the long path; the set of bits in the window
changes as the algorithm moves along on the path. More formally, for a subset of indices
B ⊆ [n− 1]0 and for x ∈ {0, 1}n the bits x[i] with i ∈ B are referred to as window. The
bits x[i] with i /∈ B are outside the window. Inside the window the function value is given
by BinVal. The weights for BinVal are ordered differently for each window in order to
avoid correlation between windows. The window is placed such that there is only a small
number of 0-bits outside the window. Reducing the number of 0-bits outside causes the
window to be moved. This is a likely event that happens frequently. However, we manage
to define an exponentially long sequence of windows with the additional property that
in order to come from one window to another window at large distance (in the sense of
this sequence), a large number of bits needs to be flipped simultaneously. Since this is
highly unlikely, it is very likely that the sequence of windows is followed, i. e., we do not
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jump from one window to another one at large distance. Thus, following the path takes,
with overwhelming probability, an exponential number of steps. Droste et al. (1998)
embed the long path into a unimodal function in a way that the (1+1) EA reaches the
beginning of the path with probability close to 1. We adopt this technique and extend
it to our monotone function.

The following Lemma 6.10 defines the sequence of windows of our function by defining
the index sets Bi. Concrete values for the upcoming constants β and γ will be given
later on in Theorem 6.15. The property that windows with large distance have large
Hamming distance is formally stated as |i − j| ≥ ℓ ⇒ |Bi ∩ Bj | ≤ γℓ for ℓ = Θ(n) and
some constant γ > 0.

Lemma 6.10 (Doerr et al. (2011)). Let β, γ ∈ R be constants with β > 0, γ < 1 and
ρ := β/(1 − β) < γ < 2ρ. Let n ∈ N, ℓ := βn and L := ⌊exp

(

(γ − ρ)2(1− β)n/6
)

⌋.
Finally, let L′ := L − ℓ + 1. Then there exist b1, b2, . . . , bL ∈ [n − 1]0 such that the
following holds. Let Bi := {bi, bi+1, . . . , bi+ℓ−1} for all i ∈ [L′]. Then

(i) |Bi| = ℓ for all i ∈ [L′],

(ii) |Bi ∩Bj| ≤ γℓ for all i, j ∈ [L′] such that |i− j| ≥ ℓ.

Proof. The proof invokes the probabilistic method (Alon and Spencer 2000), that is,
we describe a way to randomly choose the bi that ensures that properties (i) and (ii)
hold with positive probability. This necessarily implies the existence of such a sequence
b1, . . . , bL.

Let the b1, b2, . . . , bL be chosen uniformly at random subject to condition (i). More
precisely, let b1 ∈ [n − 1]0 be chosen uniformly at random. If b1, . . . , bi−1 are already
chosen, then choose bi from [n− 1]0 \ {bmax{1,i−ℓ}, . . . , bi−1} uniformly at random.

Let i, j ∈ [L′] with i < j and |i − j| ≥ ℓ. By definition, the sets Bi and Bj do not
share an index in [L]. Fix any outcome of Bi. For all k ∈ {0, . . . , ℓ − 1} let Xk be the
indicator random variable for the event bj+k ∈ Bi. Then |Bi ∩Bj | =

∑ℓ−1
k=0Xk. We have

that, conditional on any outcomes of all other bj+k−t, t ∈ [j + k − 1], the probability
Prob (Xk = 1) that bj+k ∈ Bi is at most |Bi|/(n − ℓ) = β/(1 − β) = ρ.

From this we first conclude that E(|Bi ∩ Bj|) ≤ ρℓ. In addition, we may apply the
Chernoff bound for moderately independent random variables from Lemma B.22 with the
X∗

i being independent indicator variables taking the value one with probability β/(1−β),
and conclude via a simple Chernoff bound (Lemma B.21) that

Prob (|Bi ∩Bj| > γℓ) ≤ Prob

(

ℓ−1
∑

k=0

X∗
k >

(

1 +
γ − ρ

ρ

)

· ρℓ
)

≤ exp






−

(

γ−ρ
ρ

)2
ρℓ

3






.
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Since there are less than (L′)2 choices of (i, j), a simple union bound (Lemma B.10)
yields

Prob
(

∃i, j ∈ [L′] : (|i − j| ≥ ℓ) ∧ (|Bi ∩Bj| > γℓ)
)

< (L′)2 · exp






−

(

γ−ρ
ρ

)2
ρℓ

3






< 1.

One technical tool in the definition of the set of difficult monotone functions are (ran-
dom) permutations of vectors that allow us to effectively reduce dependencies between
bits. We define the notation for this tool in the following definition.

Definition 6.11 (Doerr et al. (2011)). Let β, γ, ℓ, L, L′, the bi and Bi be as in
Lemma 6.10. Let α ∈ R with 0 < α < β. For x ∈ {0, 1}n let Bx := {i ∈ [L′] |
|Z(x) \ Bi| ≤ αn}. Let i∗x := maxBx, if Bx is non-empty. For i ∈ [L′] let π(i)

be a permutation of Bi. Denote by Π = (π(1), . . . , π(L′)) the sequence of these per-
mutations. We use the short-hand π(i)(x) to denote the vector obtained from permut-
ing the components of (x[bi], . . . , x[bi+ℓ−1]) according to π(i). Consequently, π(i)(x) =
(

x[π(i)(bi)], . . . , x[π
(i)(bi+ℓ−1)]

)

.

The following definition introduces a set of monotone functions most of which will
turn out to be difficult to optimize. The definition assumes the sequence of windows Bi

to be given. For x ∈ {0, 1}n we say that some i ∈ [L′] is a potential position in the
sequence of windows if the number of 0-bits outside the window Bi is limited by αn,
α > 0 some constant. The set of all potential positions is Bx. We select the largest
potential position i as actual position (and call it i∗x) and have the function value for x
depend mostly on this position. If no potential position i exists, we have not yet found
the path of windows and lead the (1+1) EA towards it. If i = L′, i. e., the end of the
path is reached, the (1+1) EA is lead towards the unique global optimum via OneMax.

Definition 6.12 (Doerr et al. (2011)). Let β, γ, ℓ, L, L′, the bi and Bi be as in
Lemma 6.10. Let α, Bx, i

∗
x be defined as in Definition 6.11. Let π(i) be any permutation

of Bi. We use the notation, in particular Π, as introduced in Definition 6.11. Moreover,
we use the definition of OneMax (Definition 4.1) and BinVal (Definition 6.3).

We define fΠ : {0, 1}n → N0 via

fΠ(x) :=















∣

∣x|[n−1]0\B1

∣

∣

1
· 2n + BinVal

(

π(|x|[n−1]0\B1 |1)(x)
)

, if Bx = ∅,
i∗x · 22n + BinVal

(

π(n+i∗x)(x)
)

, if Bx 6= ∅ and n+ i∗x < L′,

L · 23n + |x|1 , otherwise.

We state one observation concerning the function fΠ that is important in the following.
It states that as long as the end of the path of windows is not found, the number of 0-bits
outside is not only bounded by αn but equals αn. This property will be used later on to
show that the window is moved frequently.
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Lemma 6.13 (Doerr et al. (2011)). Let fΠ : {0, 1}n → N0 be as in Definition 6.12. Let
x ∈ {0, 1}n with Bx 6= ∅ and i∗x = maxBx. If n+ i∗x < L′, then

∣

∣Z(x) \Bi∗x

∣

∣ = αn.

Proof. By assumption we have n + i∗x < L′. We consider Bn+i∗x+1 and see that the set
coincides with Bn+i∗x in all but two elements: we have Bn+i∗x \ Bn+i∗x+1 = {bn+i∗x} and
Bn+i∗x+1 \ Bn+i∗x = {bn+i∗x+ℓ}. Consequently, |Z(x) \ Bn+i∗x | and |Z(x) \ Bn+i∗x+1| differ
by at most one. Thus, |Z(x) \ Bn+i∗x | < αn implies |Z(x) \ Bn+i∗x+1| ≤ αn and we can
replace i∗x by i∗x + 1. This contradicts i∗x = maxBx. We have |Z(x) \ Bn+i∗x | ≤ αn by
definition and thus |Z(x) \Bn+i∗x| = αn follows.

Our first main claim is that fΠ is in fact monotone. This is not difficult, but might,
due to the complicated definition of fΠ, not be obvious.

Lemma 6.14 (Doerr et al. (2011)). For all Π as above, fΠ is monotone.

Proof. Let f := fΠ. Let x ∈ {0, 1}n and j ∈ [n − 1]0 such that x[j] = 0. Let y ∈ {0, 1}n
be such that y[k] = x[k] for all k ∈ [n−1]0\{j} and y[j] = 1−x[j]. That is, y is obtained
from x by flipping the j-th bit (which is 0 in x) to one. To prove the lemma, it suffices
to show f(x) < f(y).

Let first Bx = ∅. If By 6= ∅ we have f(x) < n · 2n + 2n and f(y) ≥ 22n so f(x) < f(y)
follows. If By = ∅ we have either

∣

∣x|[n−1]0\B1

∣

∣

1
<
∣

∣y|[n−1]0\B1

∣

∣

1
(in case j /∈ B1) or

BinVal(π(i)(x)) < BinVal(π(i)(y)) (in case j ∈ B1). In both cases, f(x) < f(y) holds.
Now assume Bx 6= ∅ and n + i∗x < L′. By definition Bx ⊆ By, hence i∗y ≥ i∗x. If

i∗y = i∗x, we conclude with Lemma 6.13 that j ∈ Bi∗x , and f(y) > f(x) follows from

BinVal(π(n+i∗y)(y)) = BinVal(π(n+i∗x)(y)) > BinVal(π(n+i∗x)(x)). If i∗y > i∗x, then
f(y) > f(x). In all other cases, f(x) = L23n + |x|1 and f(y) = L23n + |y|1, hence
f(y) > f(x).

6.3.2. A Lower Bound on the Optimization Time

By means of the function defined in Definition 6.12, we are now ready to prove a lower
bound on the optimization time for the class of pseudo-Boolean monotone functions.
We start with the concrete statement we want to prove. This result shows that if f is
chosen randomly (according to the definition described above), then the (1+1) EA with
overwhelming probability needs an exponential time to find the optimum. Clearly, this
implies that there exists a particular function f , that is, a choice of Π, such that the EA
faces these difficulties. This is Theorem 6.9. In fact, there is even an exponential number
of functions for which this holds. The parameters α, β, and γ in Theorem 6.15 were
chosen to obtain a small constant in the threshold 16/n for the mutation probability.

Theorem 6.15 (Doerr et al. (2011)). Consider the (1+1) EA with mutation probability
c/n for a constant c ≥ 16 on the function f := fΠ from Definition 6.12 where Π is chosen
uniformly at random and the parameters are chosen according to β := 1/5, γ := 30/113,
and α := 3/(400c). There is a constant κ > 0 such that with probability 1− 2−Ω(n) the
(1+1) EA needs at least 2κn iterations to optimize f .
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The proof of Theorem 6.15 is long and technical. We prove the claim in 3 steps.
We first show that it is very unlikely to take large shortcuts once the path is reached,
implying that the algorithm is forced to follow the path. Afterwards, we make use of
drift arguments in order to show that there is always a linear fraction of 0-bits within
the current window until the end of the path is reached or an exponential number of
iterations have passed. The proof of this part is separated into two parts, one dealing
with the case of a moving window and one, where the window stays put. Finally we
show that we hit the beginning of the path starting from a random initialization with
overwhelming probability. Putting these results together then proves Theorem 6.15.

We remark, that the proof of Theorem 6.15 and the statements below will all be carried
out in a parameterized fashion as above. Thus, we actually prove that Theorem 6.15 holds
whenever the following conditions are met.

0 < ηlb < ηub < 1/2

0 < α < β < γ < 1

ηlb −
α

β
> γ

β

1− β
< γ <

2β

1− β

cβ >
2− 2ηub
1− 2ηub

α <
1− 2ηub

3c
(6.1)

It is easy to check that all conditions are fulfilled by the settings from Theorem 6.15,
i. e., whenever c ≥ 16, β := 1/5, γ := 30/113, α := 3/(400c), ηlb := 30/112, and
ηub := 30/111.

Unlikeliness of Shortcuts

We consider the (1+1) EA with mutation probability c/n and say that the (1+1) EA is
on level i∗x if x is the current search point. We also speak of phase i∗x as the random time
until the (1+1) EA increases its current level. Note that many phases can be empty.
Bi∗x is called the current window of bits in situations where we are looking at a trajectory
of these sets and want to emphasize that the bits we are considering might change over
time.

The main observation for our analysis is that the current window typically contains
at least ηlbβn 0-bits for some positive constant ηlb. This property is maintained even
during an exponential number of iterations, with overwhelming probability. Under this
condition, the probability of increasing the current level i∗x by a large value is very small.
Intuitively speaking, the reason for this is that the sets Bi only have a small intersection
and many bits have to change in order to move from Bi∗x to some set Bj with j ≫ i∗x.

To be more precise, in general, every two sets Bi, Bj with |i − j| ≥ ℓ only intersect in
at most γβn bits. So ηlbβn 0-bits in Bi imply at least ηlbβn− γβn 0-bits outside of Bj .
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For j to become the new window, however, at most αn 0-bits outside of Bj are allowed.
By choice of α, β, and γ, moving from Bi to Bj requires a linear number of 0-bits in Bi

to flip to 1 if j > βn. The described mutation has probability n−Ω(n). Hence, even when
considering an exponential period of time, with overwhelming probability the (1+1) EA
in each iteration only makes progress at most βn on the path. This is made precise in
the following lemma.

Lemma 6.16 (Doerr et al. (2011)). Let 0 < α < β < γ and 0 < ηlb be constants such
that ηlb − α/β > γ and β/(1 − β) < γ < 2β/(1 − β). Let fΠ, with respect to α, β, and
γ, be constructed as in Definition 6.12, for arbitrary Π. Let c > 0 be a constant and
let x be the current search point of the (1+1) EA with mutation probability p(n) = c/n
optimizing fΠ. Assume that Bx 6= ∅ and Bi∗x contains at least ηlbβn 0-bits. Then the
probability that the (1+1) EA increases the level i∗x by more than βn in one iteration is
at most n−Ω(n).

Proof. Since ηlbβn > αn + γβn it holds that Bi∗x contains more than αn + γβn 0-bits.
Recall that |Bi∗x ∩ Bj| ≤ γβn for all j ≥ i∗x + βn. Thus, there are more than αn
0-bits outside of Bj. This implies, by the definition of Bx that a necessary condition for
increasing i∗x to any value j ≥ i∗x + βn is thus that one mutation decreases the number
of 0-bits in Bi∗x to a value below or equal to αn + γβn. This is a decrease of at least
ηlbβn−αn− γβn =: κn bits for some constant 0 < κ < 1. The probability of flipping at
least κn bits simultaneously is at most

(

n
κn

)

· (c/n)κn ≤ cκn · 1/(κn)! = n−Ω(n).

One conclusion from this lemma is that, with overwhelming probability, the (1+1) EA
follows the path given by the sets Bi without jumping from one window to another one at
large distance. More precisely, each phase increases the current level by at most βn with
overwhelming probability. This will establish the claimed bound on the optimization
time.

Proving an Invariance Property on the Number of 0-bits in the Current Window

Both after a typical initialization, when Bx = ∅, and afterwards, when Bx 6= ∅ and
n + i∗x < L′, we have the following situation. There is a window of bits (Bi∗x if i∗x is
defined and B1 otherwise) such that the fitness of the search points depends mainly on
the BinVal function inside the window. Moreover, the fitness is always increased in case
the mutation decreases the number of 0-bits outside the window. If Bx = ∅ this is due
to the term

∣

∣x|[n]\B1

∣

∣

1
· 2n in the fitness function and otherwise it is because the current

i∗x-value has increased. The gain in fitness is so large that it dominates any change of
the bits inside the window.

We claim that with this construction it is very likely that the current window always
contains at least ηlbβn 0-bits, where ηlb is some positive constant. This is proven by
showing that in case the number of 0-bits in the window is in the interval [ηlbβn, ηubβn],
0 < ηlb < ηub < 1/2 constant, then there is a tendency (‘drift’) to increase the number
of 0-bits again. Applying a drift theorem by Oliveto and Witt (2010) yields that even
in an exponential number of iterations the probability that the number of 0-bits in the
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window decreases below ηlbβn is exponentially small. We first elaborate on why the drift
on the number of 0-bits holds. It will be bounded from below by positive constants in
two cases: either the current level i∗x remains fixed in one iteration or it is increased. We
start with the latter case and give a lower bound for the number of 0-bits in the current
window. At the end of this section, we apply the drift theorem by Oliveto and Witt
(2010) to prove the claim.

Before formulating the main statements of this section, we need to introduce some
notations. For any x let xB := x|Bi∗x

denote the substring of x induced by Bi∗x , i. e., the

substring in the current window. Recall that |xB |0 denotes the number of 0-bits in the
current window. That is, |xB|0 = |{j ∈ {bi∗x , . . . , bi∗x+ℓ−1} | x[j] = 0}|. For the sake
of readability we write

∣

∣x+B
∣

∣

0
instead of |(x+)B |0 for the number of 0-bits of x+ in its

window.
A prerequisite for this theorem is that the number of 0-bits in the current window

increases in expectation, when the number of 0-bits is in a certain interval. We choose
the interval [ηlbβn, (ηlb + ηub)/2 · βn], where 0 < ηlb < ηub < 1/2, but establish lower
bounds for the drift with respect to a larger interval [ηlbβn, ηubβn]. The larger interval
will be used later on when proving that the after initialization the (1+1) EA finds the
start of the path (Lemma 6.21).

Invariance for Sliding Windows

We first consider the case where the current level is increased, i. e., a transition from i∗x
to i∗x+ with i∗x < i∗x+ < L′ happens. Note that here, we deal with the case i∗x 6= i∗x+ and
thus, Bi∗x 6= Bi∗

x+
and x+B 6= xB holds. We show that in this situation we have a drift

in the number of 0-bits within the current window that is bounded below by a positive
constant. Due to the transition it is not sufficient to only consider changes within the
current window. Furthermore, transitions are often triggered by changes outside the
current window. Thus, we assume a form of a ‘global’ view and take into account both
the changes within the current window as well as changes outside the current window.

If a mutation decreases the number of 0-bits outside the window, the bits inside the
window are subject to random, unbiased mutations. Hence, if the number of 0-bits is at
most ηubβn, the expected number of bits flipping from 1 to 0 is larger than the expected
number of bits flipping from 0 to 1. Note that a mutation flipping 0-bits to 1 outside
the window and flipping 1-bits to 0 inside the window creates an incomparable offspring.
If the mutation probability is large enough, the net gain of 0-bits inside the window
makes up for the 0-bits lost outside the window. So we have a net gain in 0-bits in
expectation, with regard to the whole bit string. Note that the window is moved during
such a mutation. As by Lemma 6.13 the number of 0-bits outside the window is fixed
to αn, we have a net gain in 0-bits for the window, regardless of its new position. We
formalize this within the next lemma.

Lemma 6.17 (Doerr et al. (2011)). Let 0 < α < β < 1, 0 < ηub < 1/2, and c be
constants such that α < (1−2ηub)/3c and cβ > (2−2ηub)/(1−2ηub). Let n be sufficiently
large and let f , with respect to α and β, be constructed as in Theorem 6.15. Let x be the

112



6.3. On the Effects of Large Mutation Rates

current search point of the (1+1) EA with mutation probability p(n) = c/n maximizing
f . We denote by Ā the event that a transition from level i∗x to i∗x+ with i∗x < i∗x+ < L′

occurs in an iteration of the (1+1) EA maximizing f . Assume |xB|0 ≤ ηubβn.
Then, there is a constant δ > 0 such that the drift in the number of 0-bits is at least δ,

i. e., E
(∣

∣x+B
∣

∣

0
− |xB|0 | Ā

)

≥ δ.

Proof. Let Bi∗x = [n − 1]0\Bi∗x , the indices not contained in the current window, and
xB := x|Bi∗x

the corresponding induced substring of x. Analogously, we define x+
B

:= x|Bi∗
x+

. Due to Lemma 6.13 we have
∣

∣xB
∣

∣

0
=
∣

∣

∣
x+
B

∣

∣

∣

0
= αn. The main part of the

proof is to derive a lower bound on E
(∣

∣x+B
∣

∣

0
| Ā
)

. Afterwards we show that this bound
together with the given prerequisites on α, β, c and |xB|0 yields a positive drift in the
number of 0-bits.

It is easy to see that, conditional on Ā, the expected number of 0-bits in the new
window Bi∗

x+
after a transition from i∗x to i∗x+ can be derived as the difference of the

expected number of 0-bits in the current window Bi∗x after mutation and the expected
amount of 0-bits lost outside the current window due to mutation:

E
(∣

∣x+B
∣

∣

0
| Ā
)

= E
(

|mut(xB)|0 | Ā
)

− E
(∣

∣xB
∣

∣

0
−
∣

∣mut(xB)
∣

∣

0
| Ā
)

(6.2)

We derive bounds for both parts of eq. (6.2) separately. We start with an upper
bound on the expected number of 0-bits in the current window after mutation, i. e.,
E
(

|mut(xB)|0 | Ā
)

by the following case distinction.
In the first case, the transition happens independently of the change in the window.

This case happens with probability Ω(1) as a 1-bit mutation of one of the αn 0-bits
outside the current window suffices. In this situation, the expected number of 0-bits in
the window is independent of Ā and thus, can be easily calculated as follows.

E (|mut(xB)|0) =
(

1− c

n

)

|xB |0 +
c

n
|xB |1 = |xB |0 −

c

n
|xB|0 +

c

n
|xB|1

= |xB |0 +
c

n
(βn− 2 |xB |0) = |xB|0 + cβ − 2c |xB|0

n

For the second case, i. e., if the mutation within the current window has influence on the
transition performed, we have to be more careful as the expected number of 0-bits within
the window is no longer independent of Ā. However, before the mutation the leftmost
bit in the current window is 0. Otherwise, the next window position would also be a
potential, higher window position. This contradicts the definition of i∗x. If this leftmost
0-bit is flipped a transition is performed. Furthermore, it is necessary to flip this leftmost
0-bit if the mutation within the window is supposed to have influence on the transition
performed. The probability of flipping this bit is c/n and thus the probability for this
case is at most c/n.

We bound the contribution of this case in a pessimistic way. Similar to Lemma 6.16 we
see that the number of bits flipping in one single iteration is at most O(log n) with prob-
ability 1− n−ω(1). Furthermore, the contribution is at most βn otherwise. Altogether,
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this yields a contribution to the expected value of at most

c

n
·
((

1− n−ω(1)
)

· log n+ n−ω(1) · βn
)

= O

(

log n

n

)

and we get the following lower bound on the expected number of 0-bits within the current
window after mutation.

E
(

|mut(xB)|0 | Ā
)

≥ |xB|0 + cβ − 2c |xB|0
n

−O

(

log n

n

)

(6.3)

The second part of eq. (6.2), i. e., the expected loss of 0-bits outside the current window
due to mutation, is more difficult. For the sake of readability, let k :=

∣

∣xB
∣

∣

0
−
∣

∣mut(xB)
∣

∣

0
denote the loss of 0-bits outside the current window due to mutation. Then, we are
searching for E

(

k | Ā
)

. We distinguish two cases. If k > 0 we definitely observe a
transition and accept the new search point. If k ≤ 0 a transition does not necessarily
occur. For k < 0 the new search point is only accepted if this is the case. For k = 0 the
search might also be accepted depending on the changes within the current window. We
see that E (k) ≤ E

(

k | Ā
)

≤ E (k | k > 0) holds.
Let Z0 be the number of 0-bits flipping to one and Z1 the number of 1-bits flipping to

zero. This yields E (k | k > 0) = E (Z0 − Z1 | Z0 > Z1). Moreover, we observe that

αn
∑

j=i+1

jProb (Z0 = j)

= (i+ 1)Prob (Z0 = i+ 1) + (i+ 1)Prob (Z0 = i+ 2) + · · ·+ (i+ 1)Prob (Z0 = αn)

+ Prob (Z0 = i+ 2) + · · ·+ Prob (Z0 = αn)

+ Prob (Z0 = i+ 3) + · · ·+ Prob (Z0 = αn)

. . .

+ Prob (Z0 = αn)

= (i+ 1)Prob (Z0 > i) + Prob (Z0 > i+ 1) + Prob (Z0 > i+ 2) + · · ·
+ Prob (Z0 > αn − 1)

= (i+ 1)Prob (Z0 > i) +
αn
∑

j=i+1

Prob (Z0 > j) (6.4)

holds. Then, with
∣

∣xB
∣

∣

0
= αn and

∣

∣xB
∣

∣

1
= (1 − α − β)n we can rewrite the expected

value sought as follows.

E (Z0 − Z1 | Z0 > Z1) =

(1−α−β)n
∑

i=0

Prob (Z1 = i) · E (Z0 − Z1 | Z0 > Z1 and Z1 = i)

=

(1−α−β)n
∑

i=0

Prob (Z1 = i) · (E (Z0 | Z0 > i)− E (Z1 | Z0 > Z1 and Z1 = i))
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=

(1−α−β)n
∑

i=0

Prob (Z1 = i) · (E (Z0 | Z0 > i)− i)

=

(1−α−β)n
∑

i=0

Prob (Z1 = i) ·





αn
∑

j=0

j · Prob (Z0 = j | Z0 > i)− i





=

(1−α−β)n
∑

i=0

Prob (Z1 = i) ·





αn
∑

j=0

j · Prob (Z0 = j and Z0 > i)

Prob (Z0 > i)
− i





=

(1−α−β)n
∑

i=0

Prob (Z1 = i) ·











αn
∑

j=i+1
j · Prob (Z0 = j)

Prob (Z0 > i)
− i











(6.4)
=

(1−α−β)n
∑

i=0

Prob (Z1 = i) ·











(i+ 1) · Prob (Z0 > i) +
αn
∑

j=i+1
Prob (Z0 > j)

Prob (Z0 > i)
− i











=

(1−α−β)n
∑

i=0

Prob (Z1 = i) ·











1 +

αn
∑

j=i+1
Prob (Z0 > j)

Prob (Z0 > i)











. (6.5)

It is easy to see the following estimations for the probabilities used above.

Prob (Z0 > j) ≤
(

αn

j + 1

)

·
( c

n

)j+1

Prob (Z0 > i) ≥
(

αn

i+ 1

)

·
( c

n

)i+1
·
(

1− c

n

)αn−i−1

Prob (Z1 = i) =

(

(1− α− β)n

i

)

·
( c

n

)i
·
(

1− c

n

)(1−α−β)n−i

Plugging these inequalities into eq. (6.5) yields the following expression for the expected
loss of 0-bits outside the current window due to mutation.

E
(

k | Ā
)

≤
(1−α−β)n
∑

i=0

(

(1− α− β)n

i

)

·
( c

n

)i
·
(

1− c

n

)(1−α−β)n−i

·











1 +

αn
∑

j=i+1

( αn
j+1

) (

c
n

)j+1

(αn
i+1

) (

c
n

)i+1 (
1− c

n

)αn−i−1










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(B.13)
= 1 +

(1−α−β)n
∑

i=0

(

(1− α− β)n

i

)

·
( c

n

)i
·
(

1− c

n

)(1−α−β)n−i

·

αn
∑

j=i+1

( αn
j+1

) (

c
n

)j+1

(αn
i+1

) (

c
n

)i+1 (
1− c

n

)αn−i−1
(6.6)

We start with the second part of this term and derive the following lower bound.

αn
∑

j=i+1

(

αn
j+1

) (

c
n

)j+1

(

αn
i+1

) (

c
n

)i+1 (
1− c

n

)αn−i−1
=

αn
∑

j=i+1

(αn)!
(j+1)!(αn−j−1)!

(

c
n

)j+1 (i+1)!(αn−i−1)!
(αn)!

(

n
c

)i+1

(

1− c
n

)αn−i−1

=
1

(

1− c
n

)αn−i−1

αn
∑

j=i+1

( c

n

)j−i (i+ 1)!

(j + 1)!

(αn − i− 1)!

(αn− j − 1)!

=
1

(

1− c
n

)αn−i−1

αn
∑

j=i+1

( c

n

)j−i
· αn− i− 1

i+ 2
· αn− i− 2

i+ 3
· · · · · αn− j

j + 1

≤ 1
(

1− c
n

)αn−i−1

αn
∑

j=i+1

( c

n

)j−i
(

αn

i+ 1

)j−i

=
1

(

1− c
n

)αn−i−1

αn
∑

j=i+1

(

cα

i+ 1

)j−i

=
1

(

1− c
n

)αn−i−1

αn−i
∑

j=1

(

cα

i+ 1

)j

≤ 1
(

1− c
n

)αn−i−1
·

cα
i+1

1− cα
i+1

≤ 1
(

1− c
n

)αn−i−1
· cα

1− cα

Remember that we assume α < (1− 2ηub)/(3c) and thus cα < 1/3 holds. Therefore, we
can further simplify the above inequality by using the following simple estimation.

(

1− c

n

)αn−i−1
≥
(

1− c

n

)αn
=
(

1− c

n

)(n
c
−1)cα (

1− c

n

)cα

≥ e−cα
(

1− c

n

)cα
=

(

1− c
n

e

)cα

Plugging all this into eq. (6.6) yields a lower bound on the expected value sought.

E
(

k | Ā
)

≤ 1 +

(1−α−β)n
∑

i=0

(

(1− α− β)n

i

)

·
( c

n

)i
·
(

1− c

n

)(1−α−β)n−i
·
(

e

1− c
n

)cα

· cα

1− cα

= 1 +

(

e

1− c
n

)cα

· cα

1− cα
(6.7)
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We are now able to put the results from eq. (6.3) and eq. (6.7) together to get a lower
bound on eq. (6.2).

E
(∣

∣x+B
∣

∣

0
| Ā
)

= E
(

|mut(xB)|0 | Ā
)

− E
(∣

∣xB
∣

∣

0
−
∣

∣mut(xB)
∣

∣

0
| Ā
)

≥ |xB |0 + cβ − 2c |xB |0
n

−O

(

log n

n

)

−
(

1 +

(

e

1− c
n

)cα cα

1− cα

)

With |xB |0 ≤ ηubβn, this yields the following lower bound on the drift in the number of
0-bits.

E
(∣

∣x+B
∣

∣

0
− |xB |0 | Ā

)

≥ cβ − 2c |xB |0
n

−O

(

log n

n

)

−
(

1 +

(

e

1− c
n

)cα cα

1− cα

)

≥ cβ(1 − 2ηub)−O

(

log n

n

)

− 1−
(

1− c

n

)−cα ecαcα

1− cα
.

Now,
(

1− c

n

)−cα
=

(

1 +
c

n− c

)cα

= 1 +O(1/n).

As the factor (ecαcα)/(1 − cα) is constant, we have O(1/n) · (cα)/(1 − cα) = O(1/n)
and thus, this term can be absorbed by the O((log n)/n)-term. This results in the lower
bound

cβ(1− 2ηub)−O

(

log n

n

)

− 1− ecαcα

1− cα

≥ cβ(1− 2ηub)−O

(

log n

n

)

− 1− 3e1/3

2
· cα , (6.8)

where we have again used cα < 1/3. Combining the preconditions cβ > (2− 2ηub)/(1−
2ηub) and α < (1− 2ηub)/(3c) implies that

cβ >
1 + (1− 2ηub)

1− 2ηub
>

1 + 3cα

1− 2ηub
.

Plugging this into eq. (6.8) yields

1 + 3cα −O

(

log n

n

)

− 1− 3e1/3

2
· cα = cα

(

3− 3e1/3

2

)

−O

(

log n

n

)

and this is bounded from below by a positive constant δ for sufficiently large values of n,
which concludes the proof.

Invariance for Non-Sliding Windows

In case the number of 0-bits outside the window remains put, acceptance depends on
a BinVal instance on the bits inside the window. For BinVal accepting the result of
a mutation is completely determined by the flipping bit with the largest weight. In an

117



6. On the Effect of Large Mutation Probabilities When Optimizing Monotone Functions

accepted step, this bit must have flipped from 0 to 1. All bits with smaller weights have
no impact on acceptance and therefore are subject to random, unbiased mutations. If,
among all bits with smaller weights, there is a sufficiently small rate of 0-bits, more bits
will flip from 1 to 0 than from 0 to 1. In this case, we again obtain a net increase in the
number of 0-bits in the window, in expectation. Here we again require a large mutation
probability since every increase of BinVal implies that one 0-bit has been lost and a
surplus of flipping 1-bits has to make up for this loss. This surplus must be generated
by flipping 1-bits inside the window that have a small weight. Recall that the window
only represents a β-fraction of all bits in the bit string. So, the mutation probability has
to be large enough such that the expected number of flipping bits among the mentioned
bits is still large enough to make up for the lost bit.

For a fixed BinVal instance the bits tend to develop correlations between bit values
and weights over time; bits with large weights are more likely to become 1 than bits with
small weights. This development is disadvantageous since the above argument relies on
many 1-bits with small weights. In order to break up these correlations the definition of
the considered function class is based on a sequence of random permutations. Whenever
a window is moved a new permutation from the sequences is used. This way we consider
BinVal on random permutations of bit strings and eliminate the correlation between
the position in the bit string and the value of the bit

New random instances are applied quickly. If Bx = ∅ and, by Lemma 6.13, also if
n+i∗x < L′ we have exactly αn 0-bits outside the current window and every mutation that
flips exactly one of these bits leads to a new BinVal instance. Since this happens with
probability Ω(1), this frequently breaks up correlations and prevents the algorithm from
gathering 1-bits at bits inside the window with large BinVal-weights. Pessimistically
dealing with bits that have been touched by mutation while optimizing the same BinVal
instance, a positive expected increase in the number of 0-bits can be shown.

In the following we show that, whenever the number of 0-bits in the current window is
in the interval [ηlbβn, ηubβn], we observe a drift towards more 0-bits. This is formalized
in the following lemma. Note that, here, we always deal with the case that i∗x = i∗x+ .

Lemma 6.18 (Doerr et al. (2011)). Let 0 < α < β < 1, 0 < ηlb < ηub < 1/2, and c
be constants such that cβ > (2 − 2ηub)/(1 − 2ηub). Let n be sufficiently large and let f ,
with respect to α and β, be constructed as in Definition 6.12. Let x be the current search
point of the (1+1) EA with mutation probability p(n) = c/n maximizing f . Assume
|xB|0 ∈ [ηlbβn, ηubβn]. We denote by A the event that the (1+1) EA maximizing f and
starting in x does not leave the current level, i. e., i∗x = i∗x+ . Then, the following two
statements hold.

1. For every constant ε > 0 the number of different bits that are flipped during phase
i∗x is at most 2εβcn, with probability 1− e−Ω(n).

2. For small enough ε > 0, assuming that the event from 1) holds, there exists a
constant δ > 0 such that the drift in the number of 0-bits E

(∣

∣x+B
∣

∣

0
− |xB |0 | A

)

is
at least δ.
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The proof of this lemma will heavily depend on the drift in the number of 0-bits
induced by the random BinVal within the current window. In the proof of Lemma 6.18,
we will have to deal with variable lengths of the considered bit string. Therefore, the
following auxiliary lemma is formulated for a bandwidth of possible bit string lengths.
One precondition is that bit weights of BinVal are assigned uniformly at random. This
is the case right after a new BinVal instance has been set.

Lemma 6.19 (Doerr et al. (2011)). Let 0 ≤ ε < β < 1, 0 < ηlb < ηub < 1/2, and c be
constants such that

c(β − ε)− 2ηubcβ > 2− 2ηub ·
β

β − ε
(6.9)

and

c(β − ε) ≥ 1 . (6.10)

Consider the (1+1) EA with mutation probability p(n) = c/n maximizing a BinVal
function on u ≥ βn−εn bits where the weight of the bits are chosen uniformly at random,
without replacement, from {20, 21, . . . , 2βn−1}. Let x̃ denote the current search point. If
|x̃|0 ∈ [ηlbu, ηubβn] then there exists a constant δ̃ > 0 such that the drift in the number
of 0-bits is at least δ̃, i. e., E (|x̃+|0 − |x̃|0) ≥ δ̃.

We remark that the expectation is drawn both with respect to the random assignment
of the function weights as well as with respect to the position of the 0-bits of x̃.

Proof of Lemma 6.19. Recall that whenever x̃+ = x̃ holds, we have |x̃+|0 − |x̃|0 = 0.
Thus, we are only interested in the case x̃+ 6= x̃. Note that in this case, the definition
of BinVal implies that the bit with the largest weight is one that flips from 0 to 1 as
otherwise the (1+1) EA would not accept mut(x̃) as a new search point. For all other
bits that are being flipped in this iteration, the direction of the flipping bit (i. e., whether
the bit itself is a 0-bit flipping to 1 or a 1-bit flipping to 0) is random and does only
depend on the shares of 0- and 1-bits. We formalize this in the following.

For the sake of readability, we make use of the following notations. For every k ∈
{0, . . . , u} we denote by pk the probability that the (1+1) EA flips exactly k bits in the
mutation step. Clearly,

pk =

(

u

k

)

·
( c

n

)k
·
(

1− c

n

)u−k

for k ≥ 1 and p0 = (1− c/n)u.
Let us, for the moment, assume that exactly k ≥ 1 bits are flipped and let us consider

the substring of the flipping bits only. If we remove from the substring the bit with the
largest weight (which flips from 0 to 1), we get that the expected number of 0-bits in this
reduced substring equals (k − 1) · (|x̃|0 − 1)/(u − 1). Analogously, the expected number
of 1-bits in the bit string equals (k− 1)− (k− 1) · (|x̃|0− 1)/(u− 1). Recall that we have
chosen the bits to exactly those which are flipped in the mutation step. We thus obtain
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for this specific setting that the expected difference of |x̃+|0 − |x̃|0 equals

E
(∣

∣x̃+
∣

∣

0
− |x̃|0

)

=

(

(k − 1)− (k − 1) · |x̃|0 − 1

u− 1

)

− (k − 1) · |x̃|0 − 1

u− 1
− 1

= k

(

1− 2 · |x̃|0 − 1

u− 1

)

−
(

2− 2 · |x̃|0 − 1

u− 1

)

.

Now, for any such k, E (|x̃+|0 − |x̃|0 | k bits flip) equals the probability that the flip-
ping bit with the largest weight flips from 0 to 1 (which occurs with probability |x̃|0 /u)
times the drift, conditional on k bit flips. The latter equals

k ·
(

1− 2 · |x̃|0 − 1

u− 1

)

−
(

2− 2 · |x̃|0 − 1

u− 1

)

as outlined above. Combining these observations, we gain

E
(∣

∣x̃+
∣

∣

0
− |x̃|0

)

=
u
∑

k=1

pk ·
|x̃|0
u

·
(

k

(

1− 2 · |x̃|0 − 1

u− 1

)

−
(

2− 2 · |x̃|0 − 1

u− 1

))

.

Clearly,
∑u

k=0 pk = 1 as we are dealing with a probability distribution. Thus,
∑u

k=1 pk
= 1−(1−c/n)u. On the other hand,

∑u
k=1 pkk = (c/n)·u as this sum equals the expected

number of bit flips. By the choice of the parameters we have
∑u

k=1 pkk ≥ c(β − ε). This
yields

E
(∣

∣x̃+
∣

∣

0
− |x̃|0

)

≥ |x̃|0
u

·
((

1− 2 · |x̃|0 − 1

u− 1

)

· c · (β − ε)−
(

2− 2 · |x̃|0 − 1

u− 1

)

·
(

1−
(

1− c

n

)u)
)

≥ ηlb ·
((

1− 2 · |x̃|0 − 1

u− 1

)

· c · (β − ε)−
(

2− 2 · |x̃|0 − 1

u− 1

))

.

Since due to eq. (6.10) we have c(β − ε) ≥ 1 we can use the estimation

|x̃|0 − 1

u− 1
≤ |x̃|0

u
≤ ηub ·

βn

u
≤ ηub ·

β

β − ε
,

such that
(

1− 2 · |x̃|0 − 1

u− 1

)

· c · (β − ε)−
(

2− 2 · |x̃|0 − 1

u− 1

)

≥
(

1− 2 · ηub ·
β

β − ε

)

· c · (β − ε)−
(

2− 2 · ηub ·
β

β − ε

)

= c (β − ε)− 2ηubcβ − 2 + 2ηub ·
β

β − ε
. (6.11)

Since we are only dealing with constants, the precondition eq. (6.9) implies eq. (6.11) and
hence E (|x̃+|0 − |x̃|0) are both bounded from below by some positive constant δ̃.

120



6.3. On the Effects of Large Mutation Rates

We can now easily deduct Lemma 6.18.

Proof of Lemma 6.18. Let us assume that event A (as defined in the statement) holds.
Thus, the acceptance of the mutated bit string mut(x) is fully determined by the random
BinVal within the current window and we can restrict our attention to the current
window.

We start with proving the first claim. Let ε > 0 be some constant. We first prove
an auxiliary claim stating that with probability e−Ω(n) the time Ti∗x until the (1+1) EA
exits level i∗x is at most εn, i. e., we can assume that phase ix∗ does not take longer than
εn steps. We afterwards show how to derive the original claim.

By definition, the (1+1) EA exits level i∗x if exactly one of the αn 0-bits outside the
current window is flipped. Thus, the probability Prob

(

i∗x 6= i∗x+

)

of exiting the current
level in one step is at least

αn · c
n
·
(

1− c

n

)n−1
≥ cαe−c

(

1− c

n

)c−1
.

It follows that the probability of not exiting level i∗x in εn steps is at most
(

1− cαe−c
(

1− c

n

)c−1
)εn

≤ e−cαe−c(1− c
n)

c−1
εn = e−Ω(n).

Now, the expected number of bits that have been flipped in εn steps is at most εn ·
βn · (c/n) = εβcn. We apply a standard Chernoff bound (Lemma B.21), and obtain that
the probability that more than 2εβcn bits are flipped in εn steps is at most e−(1/3)·εβcn

= e−Ω(n).
We continue with the second claim. Therefore, assume that no more than 2εβcn

bits are being flipped during phase i∗x. We note already here that we can conclude the
following. The probability of flipping a bit in the current iteration that has already
been flipped in a former iteration of phase i∗x is at most 2εβcn · (c/n) = 2ǫβc2 . That
is, Prob (G | A) ≤ 2εβc2, where we denote by G the event that in the current iteration,
the (1+1) EA flips a bit that has already been flipped in a former iteration of phase i∗x.
Clearly, by the law of total probability (Lemma B.11)

E
(∣

∣x+B
∣

∣

0
− |xB |0 | A

)

= Prob (G | A) · E
(∣

∣x+B
∣

∣

0
− |xB|0 | A ∧G

)

+ (1− Prob (G | A)) · E
(∣

∣x+B
∣

∣

0
− |xB|0 | A ∧ Ḡ

)

,

where Ḡ denotes the complementary event of G. Now, whenever G occurs, we adopt a
worst case view by assuming that all bits flip in the wrong direction, i. e., from 0 to 1.
For this purpose let us, for the moment, assume that G holds. In this case, at least one
bit flips and we assume pessimistically that each of the flipping bits reduces the number
of 0-bits by 1. Note that, given that one bit flips, the expected number of total bit
flips in the current window equals 1 + (c/n) · (βn − 1) < 1 + cβ. Thus, we can bound
E
(∣

∣x+B
∣

∣

0
− |xB |0 | A ∧G

)

from below by −1− cβ. Then, under our assumption, we get

Prob (G | A)E
(∣

∣x+B
∣

∣

0
− |xB|0 | A ∧G

)

≥ 2εβc2(−1− cβ) .
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We now need to derive bounds for the second summand. For this purpose, we apply
Lemma 6.19. As we are conditioning on Ḡ, we apply the auxiliary lemma with u denot-
ing the number of bits that have not been flipped in any former iteration of phase i∗x.
Furthermore, we are only interested in the substring x̃ of x|B consisting of these u yet un-
flipped bits. As we have seen in the first part of this proof, with probability 1− e−Ω(n),
u ≥ βn − 2εβcn holds. Also recall that cβ > (2 − 2ηub)/(1 − 2ηub) or, equivalently,
cβ − 2ηubcβ > 2 − 2ηub. As β, c, and ηub are constants and the inequality is strict, we
can find some small enough ε > 0 such that the stronger statement

c(β − ε)− 2ηubcβ > 2− 2ηub ·
β

β − ε

holds, fulfilling the precondition eq. (6.9) in Lemma 6.19. In addition, cβ > (2 − 2ηub)
· (1− 2ηub) ≥ 2, hence c(β − ε) ≥ 1 for small enough ε, fulfilling precondition eq. (6.10)
in Lemma 6.19. Invoking Lemma 6.19 yields E

(∣

∣x+B
∣

∣

0
− |xB |0 | A ∧ Ḡ

)

≥ δ̃ for some

positive constant δ̃.
Altogether we obtain

E
(∣

∣x+B
∣

∣

0
− |xB|0 | A

)

≥ 2εβc2(−1− cβ) + (1− 2εβc2)δ̃ .

Finally, we observe that we can choose ε small enough such that this term can be bounded
from below by some positive constant δ, as claimed.

Applying the Drift Theorem

Using the results of the previous sections, we are able to prove the claimed invariance
property by means of the drift theorem due to Oliveto and Witt (2010) (see Theo-
rem B.24).

Lemma 6.20 (Doerr et al. (2011)). Let 0 < α < β < 1, 0 < ηlb < ηub < 1/2, γ, and
c be constants such that β/(1 − β) < γ < 2β/(1 − β), cβ > (2 − 2ηub)/(1 − 2ηub), and
α < (1−2ηub)/(3c). Let fΠ, with respect to α and β, be constructed as in Definition 6.12,
for Π chosen uniformly at random.

Assume that for the current search point x of the (1+1) EA with mutation probability
p(n) = c/n it holds Bx 6= ∅ and the current window contains at least (ηlb + ηub)/2 · βn
0-bits. There is a constant κ > 0 such that with probability 1 − 2−Ω(n) in the following
2κn iterations the (1+1) EA always has at least ηlbβn 0-bits in the current window or
the end of the path is reached.

Proof. First observe that the event described in the first statement of Lemma 6.18 occurs
with probability 1− 2−Ω(n). By the union bound, the probability that the event occurs
within 2κn phases is still 1− 2−Ω(n) if κ > 0 is a sufficiently small constant.

We apply the drift theorem (Theorem B.24) to a potential that reflects the number of
0-bits in the current window. Consider the interval [ηlbβn, (ηlb+ηub)/2 ·βn] and observe
that by assumption the algorithm starts with a potential of at least (ηlb + ηub)/2 · βn.
Using Lemma 6.18 with the condition from the first paragraph and Lemma 6.17, if the
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current potential is within the interval and the end of the path is not reached then the
expected increase in the potential is bounded from below by a positive constant.

For j ∈ N0 the probability that the potential decreases by j is bounded from above
by the probability that the (1+1) EA flips at least j bits. This probability is at most
(

n
j

)

(c/n)j ≤ cj/(j!) ≤ (ec/j)j ≤ 2−j · 22ec, where the last estimation is trivial for j ≤ 2ec

and obvious otherwise. Applying Theorem B.24 with δ := 1 and r := 22ec yields that with
overwhelming probability in 2κn iterations, if again κ is sufficiently small, the potential
does not decrease below ηlbβn or the end of the path is reached.

Hitting the Path

All that is left to complete the proof of the main result is the fact that the path is reached
from a random initialization, with overwhelming probability.

With overwhelming probability we start with Bx = ∅ and at least ηubβn 0-bits in the
window B1. We maintain at least ηlbβn 0-bits in B1, while the algorithm is encouraged
to turn the 0-bits outside of B1 to 1 quickly. Once the number of 0-bits outside of B1

has decreased to or below αn, the path has been reached. Following the argumentation
on small overlaps in Section 6.3.2 and recognizing that B1 only has a small overlap to
sets Bj that are far further on the path, i. e., j > βn, we see that the 0-bits in B1 ensure
that the initial i∗x-value, i. e., the initial position on the path, is at most βn. Hence the
(1+1) EA finds the start of the long path with overwhelming probability.

Lemma 6.21 (Doerr et al. (2011)). Let 0 < α < β < γ < 1, 0 < ηlb < ηub < 1/2,
and c ≥ 16 be constants such that ηlb − α/β > γ and β/(1 − β) < γ < 2β/(1 − β),
cβ > (2− 2ηub)/(1− 2ηub), and α < (1− 2ηub)/(3c). Let fΠ, with respect to α, β, and γ,
be constructed as in Definition 6.12, for Π chosen uniformly at random. With probability
1 − 2−Ω(n) the (1+1) EA with mutation probability p(n) = c/n optimizing fΠ at some
point of time reaches some search point x with i∗x ≤ βn and |x|Bi∗x

|0 ≥ (ηlb + ηub)/2 · βn.

Proof. The proof follows from reusing many previous arguments as the situation of the
(1+1) EA moving towards the path is very similar to climbing up the path. The outline
of the proof is as follows. We first show that a minimum number of 0-bits in B1—the same
minimum number as in the setting of climbing the path—prevents the (1+1) EA from
taking shortcuts. We then show that the path is reached within the first n2 iterations.
Finally, we argue that, during these n2 iterations, we keep a minimum number of 0-bits
inside the window, with overwhelming probability.

Let x be the current search point of the (1+1) EA. By the same reasoning as in Lemma
6.16 we observe that if |x|B1

|0 ≥ ηlbβn then for every j > βn, since ηlbβn > αn + γβn
and |B1 ∩Bj| ≤ γβn, we have j /∈ Bx. Hence, we only need to prove that the number of
0-bits in B1 does not decrease below ηlbβn until the set Bx of potential window positions
becomes non-empty for the first time.

The set Bx is non-empty if the number of 0-bits outside of B1 has decreased towards
a value of at most αn. Every mutation decreasing the number of 0-bits outside of B1 is
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accepted. Such a mutation has a probability of at least

αn · c
n

(

1− c

n

)n−1
= Ω(1).

Hence, there is a constant κ > 0 such that for any initialization the expected number of
iterations until the number of 0-bits has decreased to a value of at most αn is at most
κn. By Markov’s inequality (Lemma B.20), the probability that this has not happened
after 2κn iterations is at most 1/2. The probability that this still has not happened after
⌊n2/(2κn)⌋ = Ω(n) periods, each of 2κn iterations, is 2−Ω(n). Hence, with probability
1 − 2−Ω(n) the path is found within n2 iterations. In the following we assume that this
happens.

Recall that we have |Bi| = ℓ = βn and ηub < 1/2, constant. The initial search
point contains an expected number of 1/2 · βn 0-bits in B1. The probability that the
initial search point contains at least ηubβn 0-bits in B1 is 1− 2−Ω(n) by Chernoff bounds
(Lemma B.21). Assume that this happens and consider a situation where we have at
least αn 0-bits outside of B1 and the number of 0-bits in B1 has decreased below ηubβn.
Arguing as in the proof of Lemma 6.18, if the number of 0-bits in B1 is within ηlbβn
and ηubβn then there is a positive drift towards increasing the number of 0-bits again.
The only difference to the previous arguments is as follows. Instead of considering a
new random BinVal instance when the current i∗x-value is increased, we obtain a new
BinVal instance whenever the number of 1-bits outside the window is increased. The
probability for the latter event can even be larger than the probability for the former.
This allows us to apply Lemma 6.19 in the same fashion as in the proof of Lemma 6.18.
This results in a positive drift. Since we start with at least ηubβn 0-bits in B1, we can
apply the drift theorem as in Theorem 6.20 w. r. t. the interval [(ηlb+2ηub)/3·βn, ηubβn].
This proves that in n2 iterations the number of 0-bits in B1 does not drop to or below
(ηlb + 2ηub)/3 · βn, with probability 1− 2−Ω(n).

We only have to deal with one further caveat. If x∗ is the first point on the path then
the above arguments on the 0-bits inside B1 do not apply for the iteration in which x∗ is
created. This is because every point on the path is better than every point y with By = ∅,
and so selection works differently in this special iteration. We resort to a more direct
argument to prove that not many 0-bits are lost. Consider the mutation that creates x∗.
Since x∗ is the first search point where Bx∗ 6= ∅, its parent must have had more than
αn 0-bits outside of B1. It also had at least (ηlb + 2ηub)/3 · βn 0-bits inside B1. The
probability that during mutation more than (ηub−ηlb)/6 ·βn bits were flipped is n−Ω(n).
Hence with overwhelming probability the number of 0-bits in x∗ is still at least

|x∗|0 ≥ αn+
ηlb + 2ηub

3
· βn− ηub − ηlb

6
· βn

≥ αn+
ηlb + ηub

2
· βn.

Along with Lemma 6.13, this yields that |x∗|Bi∗x

|0 = |x|0 − αn ≥ (ηlb + ηub)/2 · βn as

claimed. As the sum of all error probabilities is 2−Ω(n), the claim follows.
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Putting Everything Together

We are now prepared to prove Theorem 6.15.

Proof of Theorem 6.15. Choose ηlb := 30/112 and ηub := 30/111. It is easily verified
that for the chosen values 0 < α < β < γ < 1, cβ > (2−2ηub)/(1−2ηub), ηlb−α/β > γ,
β/(1−β) < γ < 2β/(1−β), and α < (1−2ηub)/(3c) holds, satisfying all preconditions on
these variables for Lemmas 6.16, 6.20, and 6.21. By Lemma 6.21 the (1+1) EA reaches
some search point x with i∗x ≤ βn and |x|Bi∗x

|0 ≥ (ηlb + ηub)/2 · βn with overwhelming

probability. Lemma 6.20 then states that with probability 1−2−Ω(n) the number of 0-bits
in the current window is always at least ηlbβn until the end of the path is reached or 2κn

iterations have passed for a sufficiently small constant κ > 0 (which would correspond
to the claimed time bound).

Given the condition on the 0-bits, by Lemma 6.16 the (1+1) EA increases its current
i∗x-value by at most βn in one iteration, with probability 1−n−Ω(n). The probability that
this always happens until an i∗x-value of L′ is reached is at least 1−L′ ·n−Ω(n) = 1−n−Ω(n)

since L′ = 2Θ(n). This implies that (1+1) EA spends at least L′/(βn)− 1 ≥ 2κn

iterations on the path, with probability 1 − 2−Ω(n), if κ is chosen small enough. Since
the sum of all error probabilities is 2−Ω(n), the claim follows.

In this chapter, we have seen that there exists a class of monotone functions where
increasing the mutation probability from 1/n to c/n for a constant c ≥ 16 increases the
optimization time from polynomial to exponential. Since the definition of this function
class is rather complicated, the question on the practical relevance of this result arises
immediately. In the preceding chapters we performed experiments in order to answer
this question. However, since we have only shown a negative result here, experiments
are in general not too useful. Moreover recall, that L := ⌊exp

(

(γ − ρ)2(1− β)n/6
)

⌋
(Lemma 6.10). Plugging in the concrete values stated below eq. (6.1), yields that L < n
as long as n < 500,000. Thus, the definition makes only sense for very large values of n,
making the design of appropriate experiments even harder if not impossible.

In addition, we did not describe a concrete construction procedure for the function
class. Thus, it seems to be necessary to perform the random experiment described in
order to obtain such a function. This involves the generation of an exponential number
of windows, for which the condition on the amount of overlapping positions has to be
checked. Afterwards, the optimization process can be started. Besides the enormous
preprocessing time this procedure yields exponential space requirements. We conclude
that experimental supplements do not make much sense in the context of this chapter. We
remark that it is an interesting open problem to find out, if there are practical relevant or
at least easier to evaluate (monotone) functions where increasing the mutation probability
from 1/n to c/n for some not too large constant c increases the optimization time from
a small polynomial to exponential with overwhelming probability.
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7. Introduction

There are many different ways of tweaking the performance of randomized search heuris-
tics one being the addition of more advanced and sometimes rather complicated mech-
anisms. One such mechanism is aging where each point in the search space is equipped
with an individual age and ages in each round of the search heuristics. A maximal life-
span τmax is introduced and each search point with an age exceeding τmax is removed from
the current collection of search points making room for new and perhaps more promising
search points. The mechanism of aging is thought of as increasing the diversity of the
collection of search points and is hoped to be helpful for multi-modal problems where
simpler search heuristics may get stuck in local optima.

Aging has been used in different kinds of randomized search heuristics and for various
decisions made during the optimization process. Typical applications are

• in the selection for replacement, see e. g., Schwefel and Rudolph (1995), Kubota and
Fukuda (1997), António (2006), Hornby (2006, 2009, 2010), Cutello et al. (2004a),
Cutello and Nicosia (2002b), and many more,

• in the selection for reproduction, see e. g., Ghosh et al. (1997) or Mak and Lau
(2008),

• for controlling the mutation strength, see e. g., (Kim et al. 1996), or

• for controlling the size of the collection of search points, see e. g., Michalewicz
(1996), Bäck et al. (2000), or Cutello et al. (2006a).

Hence, it is not surprising that there exists a large variety of different aging operators.
We present a brief overview of these approaches within the next section. Since, in the
context of this thesis, we concentrate on the use of aging in the selection for replacement
only, we restrict our considerations to these approaches. Afterwards an overview over
results presented in this part of the thesis is given. We close the introductory part by
presenting the aging-based algorithmic framework that is used in our analyses.

7.1. Related Work

In the area of randomized search heuristics aging is in particular used in evolutionary
computation and in artificial immune systems. All approaches considered here have in
common that an additional parameter τmax is introduced into the algorithm. Moreover,
each search point is assigned an age which is increased by 1 in each iteration, or alter-
natively, when a search point was selected for reproduction. However, different types of

129



7. Introduction

aging differ in the implementation of the initialization of the age for new search points
and the decision process whether a search point should be removed due to its age.

In evolutionary computation aging is mostly used by assigning age 0 to each new
offspring and replacing search points exceeding the pre-defined maximal lifespan τmax

deterministically, independently of their current function value (Schwefel and Rudolph
1995). We call this type of aging evolutionary aging. In artificial immune systems a
different kind of aging, called static pure aging, is more common (Cutello et al. 2004a).
Here, in contrast to the former version new search points inherit by default the age of their
parent and are only assigned age 0 if their function value is strictly larger than that of
their parents. This aging scheme intends to give an equal opportunity to each improving
new search point to effectively explore the landscape. In the static pure aging variant
search points exceeding the maximal lifespan τmax are again removed deterministically.

We remark that there exist approaches, where the initial age is set to a random value
in [0, cτmax] for some constant 0 < c < 1, e. g., Cutello et al. (2010). Additionally, there
exists a stochastic aging variant (Cutello and Nicosia 2002b), where each search point is
removed with probability 1−2−1/τmax . In this context τmax is referred to as the expected
mean life time (sic!), observed in biological processes (Seiden and Celada 1992). The
actual expected life time is, however, approaching τmax/ ln 2. We remark, that elitist
versions of both aging variants exist (Cutello et al. 2007c). In order to keep the size
of the collection of search points constant at a certain size µ, often new random search
points with age 0 are introduced, if necessary.

First attempts to incorporate aging into a randomized search heuristic took place in
the field of evolutionary computation. One of the first approaches was presented by
Schwefel and Rudolph (1995) within the so-called (µ, κ, λ, ρ) evolution strategy (ES) for
continuous optimization where κ ≥ 1 corresponds to our notion of a maximal lifespan
τmax. This strategy combines the advantages of the well-known (µ, λ)-ES and the (µ+λ)-
ES by allowing more flexibility to choose between these two extreme cases. However, the
two basic strategies can be easily obtained by setting κ = 1 (comma strategy) and
κ = ∞ (plus strategy), respectively. Note, that for finite κ, we additionally need λ ≥ µ
in order to guarantee a constant size µ of the collection of search points during the whole
optimization process.

Another noteworthy occurrence of aging in the field of evolutionary computation is
the recently introduced age-layered population structure (ALPS) (Hornby 2006, 2009,
2010). This approach exhibits similarities to aging as used in artificial immune systems.
It restricts competition between search points of different age within the collection of
search points and thus, allows younger search points to improve without being replaced
by older search points. In contrast to the evolutionary aging scheme described above,
age in ALPS is not related to the number of iterations a search point has been part of
the collection of search points but rather describes how long the ‘genetic material’ has
been evolving. Thus, search points inherit the age of their oldest parent and both, the
age of the parents and the offspring are increased by 1 at the end of an iteration. ALPS
is considered to be rather successful in preserving a certain degree of diversity within the
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collection of search points. A multi-objective algorithm inspired by ALPS was presented
by Schmidt and Lipson (2011).

In the field of artificial immune system most work about aging was executed within
the well-known clonal selection algorithm opt-IA (Cutello et al. 2004a) and its relatives.
To the best of our knowledge, the first occurrence of stochastic aging in the literature
is in Cutello and Nicosia (2002b) while static pure aging was first mentioned by Cutello
et al. (2004a,b). Up to now there are a number of different applications, but in most
publications it remains unclear if aging is a crucial part in these algorithms. For example
aging was used in the context of protein structure prediction (Cutello et al. 2007b), the
chromatic number problem (Cutello et al. 2007a), graph coloring (Cutello et al. 2003),
multiple sequence aligning (Cutello et al. 2006b), string and protein folding (Cutello et al.
2005a), and economic load dispatch (Gonçalves et al. 2007). An experimental analysis for
static pure aging on dynamic optimization problems was carried out by Castrogiovanni
et al. (2007). A convergence analysis for an algorithm incorporating aging was presented
by Cutello et al. (2007c). Note, that this is not an exhaustive list of references. A
complete overview is out of scope of this thesis.

7.2. Contribution of this Thesis

Up to now, the analysis of the aging mechanisms described above have been mostly
empirical. Since aging is often part of rather specialized and advanced algorithms, it is
not immediately clear what aging does and where the benefits of aging are. However,
it is claimed that aging helps in preserving a certain degree of diversity (Cutello et al.
2007b). Thus, it is an interesting question to investigate what aging can achieve during
an optimization process. We will do so in this part of the thesis and contribute to the
theoretical foundations of such operators.

We apply aging during the selection for replacement process of a randomized search
heuristic and concentrate on the deterministic, non-elitist variants described above, i. e.,
evolutionary aging and static pure aging. As we are in particular interested in the effects
of aging, we consider these operators in isolation within an algorithm framework similar
to the one described in the previous part of this thesis. We describe an extension of
this framework in the next section. Note, that we present results of experiments in each
chapter of this part in order to investigate the practical relevance of our rigorous results.

As in the part about mutation operators, we start with an analysis of the most impor-
tant parameter of aging, namely the maximal lifespan τmax (Chapter 8). In applications
this parameter is often set to some ‘magic’ value derived from preliminary experiments.
In many cases this value seems to be independent of the size of the search space which
is somehow a similar observation to the parameter ρ from inversely fitness-proportional
mutation probabilities discussed in Chapter 4. Therefore, we analyze different settings
of the maximal lifespan τmax and derive guidelines for setting this parameter in practical
applications.

Based on these results we compare different aging operators in Chapter 9. On one
hand we consider evolutionary aging known from the field of evolutionary computation.
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On the other hand, we investigate static pure aging from the field of artificial immune
systems. We show on which kind of problems these two operators have their strengths and
weaknesses. Finally, we introduce a third operator that provably shares the advantages
of the two former aging mechanisms.

In the last chapter of this part (Chapter 10), we establish a broader view on aging,
in particular with respect to the interplay of aging with the selection for replacement.
We investigate the role of age diversity and how such diversity can be achieved using
different selection for replacement strategies. Based on the observation, that in the
two previous chapters static pure aging mainly executed some kind of restart strategy,
our main attention in this chapter is the question what aging can achieve beyond such
restarts.

7.3. An Extended Algorithmic Framework

We aim at analyzing the effects of different aging operators on the performance of ran-
domized search heuristics. Similar to the analyses of different mutation operators in
Part II, we study this by implementing the different kinds of aging in a minimal algo-
rithmic framework. In order to keep things as simple as possible and allow for easier
comparisons, we extend the framework from Section 3.3 with the necessary aging mod-
ules. We point out important similarities and differences of these two frameworks.

The randomized search heuristic uses again a collection of search points of size µ. It
works in rounds where in each round all search points grow older, one new search point is
generated as random variation of existing search points, its age is decided, search points
that are too old are removed and new randomly generated search points are introduced
to keep the number of search points constant at µ. A more formal description of the
algorithmic framework is given in Algorithm 7.1.

Algorithm 7.1 An Extended Algorithmic Framework.

1. Initialization

Let t := 0 and initialize collection of search points C0 of size µ.
2. Repeat

a) Let t := t+ 1.
b) Aging: Growing older

Increase age of all search points in Ct−1.
c) Variation

Generate new search point y.
d) Aging: Age of new search points

Decide about the age of the new search point y.
e) Aging: Removal due to age

Remove search points with age exceeding τmax.
f) Selection for Replacement

Decide if y is to be inserted in Ct. Remove or add search points as needed.
Until some termination condition is met.
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As in Part II, we use Algorithm 7.1 for maximization of a function f : {0, 1}n → R

and implement the (in this case) seven modules in very simple ways. The initialization
(line 11, Algorithm 7.2) is again carried out uniformly at random. Due to the use of
aging, all search points are additionally assigned age 0.

Algorithm 7.2 Initialization.

1. Choose x1, . . . , xµ ∈ {0, 1}n uniformly at random.
2. For all i ∈ {1, . . . , µ}
3. Set xi.age := 0.
4. Set C0 := {x1, . . . , xµ}.

The search points grow older by 1 in each iteration of the main loop (line 2b, Algo-
rithm 7.3). Variation creates one new search point y by means mutation of a search
point selected uniformly at random from the current collection of search points (line 2c,
Algorithm 3.3). In a first step we simply use standard bit mutation as introduced in
Algorithm 3.5, i. e., each bit of the search point is flipped with probability p(n). We
choose p(n) = 1/n here.

Algorithm 7.3 Aging: Growing Older

1. For all x ∈ Ct−1

2. Set x.age := x.age + 1.

We analyze the two different aging operators described above, namely static pure
aging and evolutionary aging. We give precise formal definitions of both operators as
they become part our algorithmic framework (line 2d, Algorithm 7.4 and 7.5).

Algorithm 7.4 Static Pure Aging (spa).

1. If f(y) > f(x) then

2. Set y.age := 0.
3. Else

4. Set y.age := x.age.

Following the common practice of aging operators all search points exceeding the max-
imal lifespan τmax are removed, i. e., not transfered to the next collection of search points
Ct (line 2e, Algorithm 7.6).

In the selection for replacement (line 2f, Algorithm 7.7) we decide if the new search
point is inserted into the current collection of search points or not. If at least one current
search point is removed due to its age the new search point is inserted. Otherwise it is
only inserted if its function value is not worse than the worst function value of any of the
current search points. In this case it replaces one current search point that is selected
uniformly at random among all search points with worst function value. In order to
keep the size of the collection of search points constant at µ, we additionally fill up the

1all line numbers from Algorithm 7.1
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Algorithm 7.5 Evolutionary Aging (eva).

1. Set y.age := 0.

Algorithm 7.6 Aging: Removal Due to Age.

1. Set Ct := {x | x ∈ Ct−1 and x.age ≤ τmax}

collection of search points by generating new search points uniformly at random and
assigning them age 0.

Algorithm 7.7 Selection for Replacement.

1. If |Ct| < µ then

2. If y.age ≤ τmax then

3. Set Ct := Ct ∪ {y}.
4. While |Ct| < µ do

5. Select x ∈ {0, 1}n uniformly at random.
6. Set x.age := 0. Set Ct := Ct ∪ {x}.
7. Else

8. Choose z ∈ Ct with minimal fitness uniformly at random.
9. If f(y) ≥ f(z) then

10. Set Ct := (Ct ∪ {y}) \ {z}.

We denote Algorithm 7.1 using static pure aging from Algorithm 7.4 by Aspa and Al-
gorithm 7.1 using evolutionary aging from Algorithm 7.4 by Aeva. Hence, again following
the previous notation, we denote the optimization time of these algorithms on some
function f by TAspa,f and TAeva,f , respectively. Note, that setting the maximal lifespan
τmax = ∞ yields the well-known (µ+1) EA (see Definition 3.1).

We remark that our measure for the optimization time, the number of iterations, is
smaller than the number of function evaluations, not only since we need µ evaluations for
the initial collection of search points but also since we may need more than 1 evaluation
per iteration since newly generated search points introduced due to aging (line 5-6 of
Algorithm 7.7) also require function evaluations. Since each search point can be removed
at most each τmax-th iteration the number of function evaluations is bounded above by
µ+ (1 + (µ/τmax)) · T , where T denotes the number of iterations executed.
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8. Setting the Maximal Lifespan

In a first step, we consider the most important parameter of an aging operator, namely
the maximal lifespan τmax. We demonstrate that the choice of this parameter is both,
crucial for the performance and difficult to set appropriately since aging is very sensitive
with respect to τmax. We investigate this degree of sensitivity by identifying families
of functions for which there exists a phase transition from polynomial to exponential
optimization times as τmax increases or decreases or if τmax lies outside a given interval
that can be arbitrarily shifted and made arbitrarily small. Along the way, we present a
general technique that can be used to strengthen the properties of an example function
or to combine the properties of different example functions.

In the following, we mainly consider static pure aging since this is the operator most
often used in artificial immune systems. We start with the derivation of a lower bound
for the maximal lifespan in Section 8.1. Afterwards, we investigate in which situations a
too large maximal lifespan can be harmful (Section 8.2). Using the method mentioned
above, we then construct a function where an appropriate age lies within a very narrow
range (Section 8.3). We close the chapter by presenting experiments complementing our
theoretical analyses in Section 8.4. This chapter is mainly based on the results from
Horoba et al. (2009). However, the results in Section 8.1.1, 8.1.4, and 8.4 were not
published before.

8.1. Lower Bounds for the Maximal Lifespan in Static Pure

Aging

Fitness functions can be of very different difficulty for randomized search heuristics.
This is not only true with respect to optimization but also with respect to local progress
measures. If static pure aging is employed, an important local measure is the time needed
to create an offspring with strictly larger function value than its parent. Only in this
case the offspring’s age is set to 0, otherwise it inherits its parent’s age. It is intuitively
clear that if the maximal lifespan τmax is smaller than the time needed for such a local
improvement the randomized search heuristic with aging is in trouble. It does not have
sufficient time to create a better offspring. Parents are replaced by new random search
points in this time. One may be tempted to believe that, if this happens anywhere
during the course of each run with probability close to 1, a randomized search heuristic
employing aging with a too small maximal lifespan τmax is lost. But things are less simple
as we will see in the following.

We start our investigations by considering the simple example functions OneMax
(Definition 4.1) and LeadingOnes (Definition 5.8). In Section 8.1.1 we derive lower
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8. Setting the Maximal Lifespan

bounds on the maximal lifespan for these two functions that will be used later when
considering more complicated scenarios. Afterwards, we point out a situation in which
the disadvantage of a too small maximal lifespan τmax can be compensated by means of
a kind of ‘restart’ (Section 8.1.2). In Section 8.1.3 we present an parameterized function
and a suitable lower bound on the maximal lifespan in this case. We close with some
remarks on evolutionary aging in Section 8.1.4.

8.1.1. Some Simple Examples

As before, we start our considerations with some simple example functions in order
to get an intuition about the processes involved in our algorithm. We start with an
analysis of LeadingOnes and show how the parameter τmax influences the expected
optimization time. In particular, we compare the resulting optimization time with that
of the (µ+1) EA (Witt 2006). Recall, that the (µ+1) EA equals Algorithm 7.1 with
τmax = ∞. We remark that some of the ideas in the following proofs are from the proofs
in Horoba et al. (2009). Thus, we can reuse the results when considering the parametrized
example function from Horoba et al. (2009) in Section 8.1.3.

Theorem 8.1. Let µ = nO(1), c > 6e, and τmax ≥ c log n · (n+ µ log n). The expected
optimization times of Aspa and the (µ+1) EA on LeadingOnes are

E
(

T(µ+1) EA, LeadingOnes

)

≤ µ+ 3en ·max{µ ln(en), n} = O
(

n2 + µn log n
)

E
(

TAspa,LeadingOnes

)

≤ n
c
6e

−1

n
c
6e

−1 − 1
· E
(

T(µ+1) EA, LeadingOnes

)

= O
(

n2 + µn log n
)

.

Proof. The result for the (µ+1) EA was already proven by Witt (2006; Theorem 1).
Thus, we are only left with the second statement. We revisit the proof by Witt (2006)
and adapt it to the aging-based variant Aspa.

The first crucial observation is that we need not worry about the complete optimization
time of the algorithm on LeadingOnes. Each search point that is an improvement in
comparison to its parent starts with age 0. Thus, it suffices if τmax is sufficiently large in
comparison to the time needed to increase the current best function value once. In order
to do so, it suffices to select a currently best search point and to flip only the leftmost
0. The probability for the latter event is (1/n) · (1 − 1/n)n−1. Thus, the probability to
increase the currently best function value is at least

i

µ
· 1
n
·
(

1− 1

n

)n−1

≥ i

eµn
,

where i is the number of best search points. The expected waiting time for this event
is eµn/i. Moreover, the probability to make a copy of a current best increasing their
number by 1 is (i/µ) · (1 − 1/n)n ≥ i/(2eµ). We see that the expected time needed to
increase their number from at least 1 to at least b is bounded by

b−1
∑

i=1

2eµ

i
≤ 2eµ(ln b+ 1) = 2eµ ln(eb) = O(µ log b) = O(µ log µ)
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8.1. Lower Bounds for the Maximal Lifespan in Static Pure Aging

where the two last equalities hold since b ≤ µ and µ is polynomially bounded. Analo-
gously to Witt (2006), we pessimistically assume that the best function value does not
increase until at least min{n/ ln(en), µ} best search points are in the collection of search
points. Note, that ln(en) ≤ log(n) for n ≥ 4. This yields

2eµ ln

(

en

ln(en)

)

+
eµn

min
{

n
ln(en) , µ

} ≤ 2eµ ln(en) + max{eµ ln(en), en}

≤ 3e ·max{µ ln(en), n}
= 3e ·max{µ(ln n+ 1), n}
≤ 3e(µ log n+ n) (8.1)

= O(n+ µ log n)

as upper bound on the expected waiting time for increasing the current best function
value. Therefore, one may be tempted to believe that τmax = O(n+ µ log n) suffices.
This, however, is not correct. We need a sequence of Θ(n) of such improvements without
ever failing. If we fail to make one such improvement in τmax iterations the current best
search point may be removed due to its age and we have to start again. Thus, we need the
maximal lifespan τmax to be sufficiently large to make even a single failure in a sequence
of Θ(n) needed improvements sufficiently unlikely.

Remember, that the expected time needed for an improvement is bounded above by
3e(n + µ log n) (eq. (8.1)). The probability not to have such an event in 6e(n + µ log n)
steps is bounded above by 1/2 (Markov inequality, Lemma B.20). We may consider
c log n · (n + µ log n) steps as c log n rounds of (n + µ log n) steps each, or analogously
c log n/(6e) rounds of 6e(n+µ log n) steps. For each round we have success probability at
least 1/2. Thus, the probability not to see any success in c log n/(6e) rounds is bounded
above by (1/2)c logn/(6e) = 1/nc/(6e). We see that with τmax = c · log n (n+ µ log n) the
probability to increase the best function value is bounded below by 1 − n−c/(6e). Using
the simple union bound (Lemma B.10) we see that with probability at least

1− n · n− c
6e = 1− n1− c

6e = 1− o(1) (8.2)

we obtain the required sequence of at most n such improvements without ever failing.
In case of a failure, we are not in a worse situation than in the very beginning and

we can pessimistically assume that a failure is equivalent to a complete restart of the
algorithm. Due to the above calculation, we expect at most O(1) restarts. This yields
the claimed upper bound on the optimization time for Aspa.

In the above theorem, it suffices to have a sequence of improvements without high prob-
ability. However, in the following we often need that this holds with higher probability.
Setting c = ω(1), we immediately get the following desired corollary.

Corollary 8.2. Let µ = nO(1) and τmax = ω(log n (n+ µ log n)). The probability that
Aspa succeeds in optimizing LeadingOnes without a ‘restart’ is 1− n−ω(1).
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8. Setting the Maximal Lifespan

Proof. We only need to consider eq. (8.1) and observe that 1−n1− c
6e = 1−n−ω(1) holds

for c = ω(1).

We have seen which size of τmax is sufficient to yield the same asymptotical optimization
time on LeadingOnes. However, decreasing the maximal lifespan below this bound
may still lead to polynomial optimization times. Thus, we investigate for which values
of τmax the considered algorithm Aspa only yields exponential optimization time with
high probability. We demonstrate that Aspa needs to have a sufficiently large maximal
lifespan in order to be successful on LeadingOnes given that the size of the collection
of search points µ is reasonably bounded. The upper bound in Theorem 8.1 is dominated
by the term involving the size of the collection of search points as soon as µ = ω(n/ log n)
holds. Thus, we restrict ourselves to smaller collection of search points sizes. As before
we present lower bounds on the probability of having exponential optimization time since
such results are much more informative than proving a large lower bound on the expected
optimization time.

Theorem 8.3. Let µ = O(n/ log n) and τmax = o(n log n). The optimization time of
Aspa on LeadingOnes is

TAspa,LeadingOnes = 2Ω(nε)

( 0 < ε < 1 some arbitrary constant) with probability 1− 2−Ω(n1−o(1)).

Proof. Initially, we have LeadingOnes(x) ≤ n/2 for all x ∈ C0 with probability
1 − 2−Ω(n) (applying Chernoff bounds for a single search point and the union bound
for the collection of search points). Then only mutations increasing the number of lead-
ing 1-bits are accepted. For each search point in the collection of search points, the bits
right of the leftmost 0-bit are uniformly distributed. From this, it follows that Ω(n)
improvements of the current best are needed (Droste et al. 2002).

Consider 2Ω(nε) steps. Since for an improvement the leftmost 0-bit has to flip, the
probability of increasing the current best function value is bounded above by 1/n. The
probability for such a mutation in r independent trials is bounded above by 1−(1− 1/n)r.
Remember that for the maximal lifespan τmax = o(n log n) holds. Moreover, remember
that the expected number of steps until the complete collection of search points consists
of copies of the current best (provided that the current best does not improve in this
time) is O(µ log n). With µ = O(n/ log n) we have that the number of steps before the
collection of search points gets extinct due to its age before reaching the optimum is
τmax = o(n log n). Thus, the number of trials to create an improved new search point is
r = α(n)(n − 1) ln n for some α with lim

n→∞
α(n) = 0. Hence, each of the Θ(n) needed

improvements is achieved with probability at most

1−
(

1− 1

n

)α(n)(n−1) lnn

≤ 1− 1

nα(n)
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before the collection of search points is set back due to its old age. The probability that
this happens at all Θ(n) improvements is bounded above by

(

1− 1

nα(n)

)Θ(n)
(B.8)
= e−Θ(n1−α(n)) = 2−Θ(n1−o(1)).

The theorem follows by application of the union bound to the number of steps 2Ω(nε).

We have investigated bounds on the maximal lifespan τmax that lead to polynomial or
exponential optimization time on LeadingOnes. In the remainder of this section, we
derive similar results for OneMax.

Theorem 8.4. Let µ = nO(1), c > 4e, δ > 0 constant and arbitarily small, and τmax

≥ c · (µ log µ + n). The expected optimization times of Aspa and the (µ+1) EA on
OneMax are

E
(

T(µ+1) EA, OneMax

)

≤ µ+ 5eµn+ en ln(en) = O(µn+ n log n)

E
(

TAspa,OneMax

)

≤ e
c
e − 1

e
c
e − 2− δ

· E
(

T(µ+1) EA, OneMax

)

= O(µn+ n log n)

Proof. The result for the (µ+1) EA was already proven by Witt (2006; Theorem 2).
Thus, we are once again only left with the statement for Aspa. The proof follows the line
of thought of Theorem 8.1 and uses ideas from Witt’s proof.

Recall that we already discussed these proof ideas in Theorem 4.11 when consider-
ing inversely fitness-proportional mutation probabilities. There, it was shown that the
probability to increase the current best function value is at least (iz)/(eµn), where i is
the number of best search points with z 0-bits each. The expected waiting time for this
event is at most eµn/(iz). Note, that this is also similar to the corresponding expression
for LeadingOnes, but with the difference that the expected time for an improvement
depends on the function value.

In contrast to Witt (2006), we pessimistically assume that the best function value does
not increase until the whole collection of search points consists of best search points.
Once, the collection of search points only contains best search points, the probability to
increase the best function value is at least z/en. Thus, the probability not to see an
improvement in cn trials can be bounded by

(

1− z

en

)cn
≤
(

1

e

) cz
e

.

As already seen in Theorem 8.1, the expected time to increase the number of best
search points from 1 to µ can be bounded above by 2eµ ln(eµ). Note, that this process is
equivalent to the coupon collector problem (Lemma B.17). Thus, the probability to need
more than β2eµ ln(eµ) ( β > 1, constant) trials in order to copy the whole collection of
search points can be bounded by µ−(β−1) due to the coupon collector theorem. We apply
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8. Setting the Maximal Lifespan

the theorem for a large collection of search points of size µ ≥ n1−ε for some sufficiently
small constant 0 < ε < 1:

Prob (T > β2eµ ln(eµ)) <

(

1

µ

)β−1

≤
(

1

n1−ε

)β−1

=
1

n(1−ε)(β−1)

For smaller sizes of the collection of search points, i. e., µ < n1−ε, we need to be more
careful. Note that in this case

µ log µ < n1−ε log
(

n1−ε
)

= (1− ε)n1−ε log n

holds and thus, τmax = c · (µ log µ + n) is dominated by the term cn. We consider c′n
steps as c′nε/(4e(1 − ε) log n) rounds of 4e(1 − ε)n1−ε log n steps. For each round we
have success probability at least 1/2 (Markov inequality). Thus, the probability not to
see any success in c′nε/(4e(1 − ε) log n) rounds is bounded above by

(

1

2

) c′

4e(1−ε)
· nε

logn

=

(

1

n

) c′

4e(1−ε)
· nε

log2 n

.

Note, that this is o
(

1/n(1−ε)(β−1)
)

if (1− ε)(β − 1) > 0.
As for LeadingOnes, we need at most n improvements of the best function value,

i. e., for z ∈ {n− 1, n− 2, . . . , 1}. We use the simple union bound (Lemma B.10) to add
up the failure probabilities for the different values of z. Note, that for each value of z
there are two sources for a failure: on one hand the successful mutation (probability at
most e−cz/e) and on the other hand the copying of the collection of search points (at
most 1/n(1−ε)(β−1)).

We add up the derived upper bounds of the failure probabilities for all steps. Note
that, we need (1− ε)(β − 1) > 1, leading to the stronger condition β > 2 in comparison
to the coupon collector theorem. Moreover, if β = 2 + γ for some constant γ > 0, we
have ε < γ/(1 + γ) as a condition on ε. For a sufficiently small constant δ > 0 we derive
the following upper bound on the total failure probability.

n−1
∑

j=1

(

1

n(1−ε)(β−1)
+

(

1

e
c
e

)j
)

= n · 1

n(1−ε)(β−1)
+

n−1
∑

j=1

(

1

e
c
e

)j

= n1−(1−ε)(β−1) +

1

e
c
e
−
(

1

e
c
e

)n

1− 1

e
c
e

≤ n1−(1−ε)(β−1) +

1

e
c
e

1− 1

e
c
e

= n1−(1−ε)(β−1) +
1

e
c
e − 1

≤ 1 + δ

e
c
e − 1

We still need to discuss the lower bound on the constant c. Recall that τmax

= c · (µ log µ + n) holds. In order to have 1/(ec/e − 1) < 1, we need c > e ln 2, i. e.,
more than (e ln 2) · n steps are needed in order to yield the desired probability for the
n subsequent improvements. For µ ≥ n1−ε, we consider 2eβµ log µ > 4eµ log µ steps for
the coupon collector arguments. Thus, altogether we require c > 4e in that case.
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For µ < n1−ε, we consider c′n steps for the copying process. Since (e ln 2) · n steps are
needed for the improvements , we still have c′ = c − e ln 2 left. With c > 4e this yields
c′ > 3e. This suffices for the above argumentation. Altogether, this yields c > 4e.

Just like for LeadingOnes, we are, in case of a failure, not in a worse situation than
in the very beginning and we pessimistically assume that a failure is equivalent to a
complete restart of the algorithm. However, since for sufficiently large n the success
probability is at least

1− 1 + δ

e
c
e − 1

=
(e

c
e − 1)− (1 + δ)

e
c
e − 1

=
e

c
e − 2− δ

e
c
e − 1

(8.3)

and we expect at most (ec/e− 1)/(ec/e − 2− δ)− 1 such restarts. This yields the claimed
upper bound on the optimization time for Aspa.

Similarly to Corollary 8.2, we show a corresponding result that holds with high prob-
ability and can be re-used later.

Corollary 8.5. Let µ = nO(1) and τmax = ω(µ log µ+ n). The probability that Aspa

succeeds in optimizing OneMax without a ‘restart’ is 1− n−ω(1).

Proof. We only need to consider eq. (8.3) and observe that 1−(1+δ)/(ec/e−1) = 1−n−ω(1)

holds for c = ω(1).

As for LeadingOnes we demonstrate that Aspa needs to have a sufficiently large
maximal lifespan in order to be successful on OneMax.

Theorem 8.6. Let µ = 1 and τmax = O
(

nδ
)

for some constant δ with 0 < δ < 1. The
optimization time of Aspa on OneMax is

TAspa,OneMax = 2Ω(nα)

with probability 1− 2Ω(nα), α := min{δ/6, (1 − δ)/6}.

Proof. Let τmax ≤ dnδ for some constant d > 0. Due to Chernoff bounds (Lemma B.21),
the number of 0-bits is at least n/3 for all initial search points with probability 1−2−Ω(n).

Let z be the number of 0-bits in the current best search point. Consider the first
point in time t where z ≤ n1−δ holds. Let β := min{δ/3, (1 − δ)/3}. Similar to the
application of the Chernoff bound in the proof of Theorem 4.15 we know that in one
mutation at most nβ bits flip with probability 1 − n−Ω(nβ). Thus, at time t we have

z > n1−δ − nβ > n1−δ/2 with probability 1− n−Ω(nβ) for sufficiently large n.
The current best function value can only increase if at least one of the 0-bits is flipped.

This event has probability z/n. Thus, with our bounds on z the probability to increase
the current best function value within τmax steps is bounded above by

1−
(

1− z

n

)τmax (B.8)

≤ 1−
(

1

2e

)zτmax/n

≤ 1−
(

1

2e

)n1−δdnδ/n

= 1−
(

1

2e

)d

.
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Let d′ := (1/(2e))d . Note that d′ > 0 is a constant.
We consider t iterations. The expected number of times the current best function

value is increased in these t = nO(1) iterations is bounded above by tz/n. Due to
Chernoff bounds (Lemma B.21) the probability to have at least 2tz/n such improvements
is 2−Ω(tz/n). In 2tz/n improvements the number of 0-bits is in total decreased by at most

2t(z/n)nβ with probability 1− tn−Ω(nβ) = 1− n−Ω(nβ). We set t := nβτmax. With this
choice after t iterations the number of 0-bits in the current best is bounded below by

n1−δ

2
− 2nβτmax ·

n1−δ

n
· nβ ≥ n1−δ

2
− 2cnβ+δ+(1−δ)−1+β ≥ n1−δ

3

for sufficiently large n with probability 1−n−Ω(nβ). Thus, the optimum has not yet been
reached in these steps.

Since t = nβτmax we have nβ phases of τmax iterations in these steps. In each of them
we do not have an improvement of the current best with probability at least d′. Thus,
the probability to have at least one phase without an improvement of the current best
is 1 − (1 − d′)n

β
= 1 − 2−Ω(nβ). In this phase the current best search point is removed

since it exceeds the maximal lifespan τmax. We need to see a run without this event in
order to reach the optimum. Application of the union bound yields that this does not

happen within 2n
β/2

iterations with probability 1 − 2−Ω(nβ/2). Since we have β/2 = α
this concludes the proof.

8.1.2. Saving Time by Effort

In the preceding section we have derived bounds on the maximal lifespan τmax that
lead either to the same asymptotical optimization time as the (µ+1) EA or exponential
optimization time. In all cases, it was essential to have small enough failure probabilities
for events that are essential for the optimization process, like e. g., a successful mutation.
Such an event is expensive if its probability is small since then the expected waiting time
is large. One might come to the conclusion that it suffices to only consider the most
expensive events and choose τmax large enough for those. However, this is not completely
true since the crucial point in the proofs was the fact that n such events need to be
possible without ever failing in between. If there is only a small number of expensive
events, some kind of ‘restart’ might help optimizing the function efficiently.

For the sake of simplicity, we restrict ourselves to a single search point to make our
point. Consider a function that is otherwise easy to optimize but where the search point is
faced with a ‘gap’ where k specific bits need to be mutated simultaneously for some integer
constant k ≫ 1. The probability for such a mutation equals (1/n)k ·(1−1/n)n−k < 1/nk.
The waiting time is geometrically distributed (Lemma B.14) and thus larger than nk. If
we have the maximal lifespan τmax rather small, say τmax = n, it is very unlikely that
a parent will survive sufficiently long to create an offspring that ‘jumps’ over this ‘gap’.
But this may not be a problem if the average time t needed to get into this situation is
small. With probability Θ

(

1/nk
)

a search point arriving at this ‘gap’ will successfully
create an offspring that manages to make this ‘jump’, so the expected number of times

142



8.1. Lower Bounds for the Maximal Lifespan in Static Pure Aging

0n

1n

1i0n−i

1n−k0k

k

Figure 8.1.: The example function S-Jumpk.

we need to have a parent at this ‘gap’ is Θ
(

nk
)

. Since we wait τmax iterations at the
‘gap’ before the search point is removed due to its age, we have τmax trials each time
when we arrive at the gap. Thus, on average, after O

(

(t+ τmax) · nk/τmax

)

= O
(

t · nk
)

steps the algorithm can make it over the ‘gap’ even though the maximal lifespan is much
too small for one such search point to wait for an improvement at the ‘gap’. An example
for such a function is depicted in Figure 8.1 and defined formally in Definition 8.7.

Definition 8.7. For n ∈ N and k ∈ N with k ≥ 2 the function S-Jumpk : {0, 1}n → N

is defined by

S-Jumpk(x) :=











2n if x = 1n,

n+ i if x = 1i0n−i, i ∈ {0, 1, . . . , n− k},
n− OneMax(x) otherwise

Theorem 8.8. Let µ = 1 and τmax = ω(n log n). The expected optimization times of
Aspa and the (1+1) EA on S-Jumpk are

E
(

T(µ+1) EA, S-Jumpk

)

= O
(

nk
)

E
(

TAspa,S-Jumpk

)

= O

(

nk+2

τmax
+ nk

)

Proof. The result for the (1+1) EA follows directly from the expected waiting time for
the ‘jump’.

Since τmax = ω(n log n), on average Aspa arrives at the gap after O
(

n2
)

iterations. The
probability to find the optimum is then

1 −
(

1−
(

1

n

)k (

1− 1

n

)n−k
)τmax

≥ 1 −
(

1− 1

enk

)τmax

≥ 1 − e−τmax/(enk).
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For τmax ≤ enk this is bounded below by τmax/
(

2enk
)

(Lemma B.9). Thus, in expecta-

tion 2enk/τmax restarts are sufficient. For τmax > enk we have 1 − e−τmax/(enk) = Ω(1)
and see that in expectation O(1) restarts are sufficient. This implies an upper bound of
O
((

n2 + τmax

)

·
(

nk/τmax

)

+ nk
)

.

8.1.3. A Parameterized Example Function

We have seen that a class of example functions demonstrating that setting the maximal
lifespan too small can be fatal needs to be slightly more involved than the one described
in the previous section. We combine the well-known example function Ridge (Quick
et al. 1998) (see Definition 8.9) with the kind of ‘gap’ we discussed before. The main
difference is that we introduce a large number of such ‘gaps’ that all need to be ‘jumped
over’ sequentially without a single failure in order to optimize this function (compare
Figure 8.2). This can be proven to be exceedingly unlikely if the maximal lifespan τmax

is too small. For a sufficiently large maximal lifespan τmax, however, ‘jumping over’ those
‘gaps’ is rather simple. Note, that this is similar to the effects we have seen on OneMax
and LeadingOnes. We define the concrete function considered in Definition 8.10.

Definition 8.9. For n ∈ N the function Ridge : {0, 1}n → N is defined by

Ridge(x) :=











n+ i if x = 1i0n−i,

i ∈ {0, 1, . . . , n},
n− OneMax(x) otherwise.

Definition 8.10. For n ∈ N and k ∈ {1, 2, . . . , n} the function fk : {0, 1}n → N is
defined by

fk(x) :=























0 if x = 1i0n−i,

i ∈ {0, 1, . . . , n},
and i/k /∈ N0

Ridge(x) otherwise.

Note that f1 = Ridge. First we convince ourselves that fk is not too difficult to
optimize. We consider the (µ+1) EA as well as a Aspa where the maximal lifespan τmax

is sufficiently large.

Theorem 8.11 (Horoba et al. (2009)). Let µ = nO(1), τmax = ω
(

log n
(

nk + µ log n
))

,
and k = O(1). The expected optimization times of Aspa and the (µ+1) EA on fk are

E
(

T(µ+1) EA,fk

)

= O
(

nk+1 + µn log n
)

E
(

TAspa,fk

)

= O
(

nk+1 + µn log n
)

.
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Figure 8.2.: The example function fk.

Proof. We partition the search space {0, 1}n into three disjoint sets that match the
structure of fk.

P1 :=
{

1i0n−i | i ∈ {0, 1, . . . , n} ∧ i/k /∈ N0

}

P2 := {0, 1}n \
{

1i0n−i | i ∈ {0, 1, . . . , n}
}

P3 :=
{

1i0n−i | i ∈ {0, 1, . . . , n} ∧ i/k ∈ N0

}

Clearly, P1, P2, and P3 form an fk-based partition (Droste et al. 2002) with P1 <fk

P2 <fk P3. Let TP1 denote the number of steps where we have Ct ⊆ P1. Let TP2

denote the number of steps where we have Ct ⊆ P1 ∪ P2 and Ct ∩ P2 6= ∅. Finally, let
TP3 denote the number of steps where we have Ct ∩ P3 6= ∅ and max {fk(x) | x ∈ Ct}
< max {fk(x) | x ∈ {0, 1}n}. Clearly, TA,fk = TP1+TP2+TP3 for A ∈ {Aspa, (µ+1) EA}
holds.

Since the most important part of fk is in P3 we begin with estimating E (TP3). The
other parts serve only the purpose of guiding the search heuristic to P3. We follow the
line of thought of Theorem 8.1.

In P3, we need mutations of k specific bits in order to create an offspring with larger
function value. This situation occurs Θ(n) times. Each time the probability for such a
mutation increasing the current best function value is at least (i/µ) ·(1/n)k ·(1−1/n)n−k

≥ (i/µ) · 1/(enk), where i is the number of best search points. Moreover, the expected
time to increase the number of best search points from at least 1 to at least b is bounded
by O(µ log b). Together this yields O

(

nk + µ log n
)

as upper bound on the expected
waiting time for one member of the collection of search points ‘jumping over’ one such
‘gap’. Since there are Θ(n) such ‘gaps’, we have E (TP3) = O

(

nk+1 + µn log n
)

for the
(µ+1) EA.

If the maximal lifespan τmax is τmax = ω
(

nk+1 + µn log n
)

this bound carries over to
Aspa directly. However, since we only assume τmax = ω

(

log n
(

nk + µ log n
))

we need
to be more careful. We can easily adopt the argumentation from Theorem 8.1 since
again we need not worry about the complete time in TP3 . Similarly to the proof of
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8. Setting the Maximal Lifespan

Theorem 8.1, we see that with τmax = ω
(

log n
(

nk + µ log n
))

the probability to be
successful at one such ‘gap’ is bounded below by 1−n−ω(1) and by a simple union bound
we have Prob

(

TP3 ≤ n · log(n) · 2c(nk + µ log n)
)

= 1− n · n−ω(1) = 1− n−ω(1). Thus, if
we only take into account the time spent in P3 this yields E (TP3) = O

(

nk+1 + µn log n
)

for Aspa.
Now we bound the expected time we need to get to P3. First, we see that with

probability 1 − 2−Ω(n) the initial collection of search points is disjoint to P1. Moreover,
for each x ∈ P1 the probability that a mutation leads to some y /∈ P1 is Ω(1). Therefore,
P1 has negligible contribution to the expected optimization time, E (TP1) = O(1).

In P2 the function values are given by n − OneMax. Due to symmetry reasons we
may consider OneMax instead. Since it suffices to reach any x ∈ P3 to leave P2, any
upper bound on the expected optimization on OneMax is an upper bound on TP2 . Using
Theorem 8.4 we get E (TB) = O(µn+ n log n). Due to Corollary 8.5 this also holds with
probability 1− n−ω(1).

By adding up the expected optimization times, we get O
(

nk+1 + µn log n
)

as upper
bound for both algorithms.

After seeing that fk is of reasonable difficulty we continue with our original goal. We
demonstrate that Aspa needs to have a sufficiently large maximal lifespan in order to
be successful on fk given that the size of the collection of search points µ is (as in the
previous section) reasonably bounded.

Theorem 8.12 (Horoba et al. (2009)). Let µ = O
(

nk/ log n
)

, τmax = o
(

nk log n
)

, and
k = O(1). The optimization time of Aspa on fk is

TAspa,fk = 2Ω(nε)

( 0 < ε < 1 constant) with probability at least 1− 2−Ω(n1−o(1)).

Proof. We follow the lines of thought of the proofs of Theorem 8.3 and Theorem 8.11.
In particular we use the notation introduced in Theorem 8.11 and consider TAspa,fk

= TP1 + TP2 + TP3 . Since here we want to prove a lower bound on TAspa,fk , we can
estimate TP1 ≥ 0 and TP2 ≥ 0 and concentrate on TP3 , only.

Initially we have OneMax(x) ≤ (2/3)n for all x ∈ C0 with probability 1 − 2−Ω(n)

(applying Chernoff bounds for a single search point and the union bound for the collec-
tion of search points). Then only mutations further decreasing the number of 1-bits or
mutations leading to P3 are accepted. The probability for a mutation that flips k bits
simultaneously is bounded above by

(n
k

)

(1/n)k < 1/(k!). We conclude that with proba-
bility 1 − 2−Ω(n) we have OneMax(x) < (3/4)n for the first t with Ct ∩ P3 6= ∅. Thus,
roughly speaking at least c · n ‘jumps’ over ‘gaps’ of size k are needed, where c > 0 is
some constant. Strictly speaking this is not true. We could also have ‘jumps’ over ‘gaps’
of size 2k, 3k, . . .With increasing size of the ‘gap’ the number of such ‘jumps’ decreases.
Since the probability for ‘jumping over gaps’ of size s is bounded above by 1/ns and
since we do not make any assumption on the size of the constant c > 0, we can as well
consider c · n ‘jumps’ over ‘gaps’ of size k.
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For the rest of the proof, we adapt the argumentation from Theorem 8.3. Here, the
probability for a specific k-bit mutation in r independent trials is bounded above by
1 −

(

1− 1/nk
)r

. Considering r = α(n)(nk − 1) ln n for some α with lim
n→∞

α(n) = 0,

we get 1 − 1/nα(n) for the probability to ‘jump over’ one of the Θ(n) ‘gaps’ before
the collection of search points gets instinct. Moreover, we get a probability of at most
2−Θ(n1−α(n)) that this happens at all Θ(n) ‘gaps’. The application of a union bound to
the number of steps yields the theorem.

8.1.4. Remarks on Evolutionary Aging

In contrast to static pure aging, in evolutionary aging an offspring is assigned age 0
independently of its function value. Thus, a copy of a current best search point ensures
that the collection of search points does not get extinct. Therefore, we do not need to
consider the time until an improvement of the current best function value but rather the
time until a copy is made. This is much faster and allows for a smaller maximal lifespan.
We investigate this briefly on LeadingOnes and compare it with the bounds derived
for static pure aging (Theorem 8.1, Corollary 8.2, and Theorem 8.3).

Theorem 8.13. Let µ = nO(1) and τmax = ω(µ log µ). The expected optimization time
of Aeva on LeadingOnes is

E (TAeva,LeadingOnes) = O
(

n2 + µn log n
)

Proof. As before, we only need to consider the set of currently best search points and
show that they are not all removed due to old age. We revisit the proof of Theorem 8.1
and consider a point in time, when the current best function value is increased. Clearly,
the improved search point gets age 0. The expected time until the whole collection of
search points consists of copies of this current best is O(µ log µ). Due to the coupon
collector theorem (Lemma B.17), we see that the probability that this has not happened
after ω(µ log µ) steps, is at most n−ω(1). Clearly, all search points at this point of time
have different age since each copy starts with age 0. Thus, in each following iteration at
most one search point can be removed due to old age. Due to this removal worse search
points might again enter the collection of search points, but, however, they will quickly
be removed by subsequent copies. It follows, that we have always Ω(µ) best search points
left. In this situation, we get an improved search point with probability Ω(1/n).

A simple union bound for the at most n needed improvements yields that with probabil-
ity 1−n/nω(1) = 1−n−ω(1), Aeva manages to find the global optimum of LeadingOnes
in time O

(

n2 + µn log n
)

. Since in expectation, we need less than one repetition, the
claimed expected optimization time follows.

We see that evolutionary aging is efficient for much smaller maximal lifespans than
static pure aging is. We have shown that static pure aging is inefficient on LeadingOnes
if τmax = o(n log n) while τmax = ω(µ log µ) suffices for evolutionary aging. This implies
that for smaller sizes of the collection of search points, evolutionary aging still works for
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8. Setting the Maximal Lifespan

parameter setting where static pure aging fails with high probability. In particular, for
µ = Θ(n/ log n) for evolutionary aging τmax = ω(n) is sufficient whereas for static pure
aging τmax = o(n log n) is insufficient. For µ = O(1), we only need τmax = ω(1) in the
case of evolutionary aging. We investigate this setting in the experimental section at the
end of this chapter.

8.2. Where a Large Maximal Lifespan Can Be Harmful

In the preceding section we pointed out situations in which a large maximal lifespan
is needed. However, aging comes only into play when the maximal lifespan is reached
and thus, the maximal lifespan needs to be reasonable if aging is to be effective. If
parametrized appropriately, aging allows for (partial and complete) restarts.

In this section, we consider a situation, where a small maximal lifespan can prevent the
algorithm under consideration from getting trapped in parts of the search space that keep
it away from the global optimum. To this end, we construct an example function for which
the maximal lifespan must not be too large in order to achieve efficient optimization.

Our fitness function primarily contains a path similar to Ridge (Definition 8.9) but
leading to a local optimum. The global optimum is situated in a certain distance to the
path. Thus, it is more likely to stay on the path than ‘jumping’ to the global optimum.
The path itself consists of two sub-paths that are separated by two ‘gaps’. The idea is
that reaching the second sub-path traps a search point on a path with exponential length
that leads away from the global optimum.

To reach this goal, we use a so-called long k-path (Horn et al. 1994; Rudolph 1996),
i. e., a very long path of Hamming neighbors with increasing fitness folded into the
Boolean hypercube. Note, that a similar approach was followed when defining a difficult
to optimize monotone function in Chapter 6. We adopt the notion of long k-paths as
presented by Sudholt (2008) and use ◦ to denote the concatenation of two bit vectors.

Definition 8.14 (Sudholt (2008)). Let k, n ∈ N \ {1} with n/k ∈ N. The long k-path
Pn
k of dimension n is a sequence of points from {0, 1}n defined recursively. Let P 0

k := (),
the empty bit sequence, and Pn−k

k = (p1, . . . , pℓ). Then,

• S0 = (0k ◦ p1, 0k ◦ p2, . . . , 0k ◦ pℓ)

• S1 = (1k ◦ pℓ, 1k ◦ pℓ−1, . . . , 1
k ◦ p1)

• B = (0k−11 ◦ pℓ, 0k−212 ◦ pℓ, . . . , 01k−1 ◦ pℓ)

and Pn
k is the concatenation of S0, B, and S1, i. e., Pn

k = (S0, B, S1).

Note, that the search points in S0 and S1 differ in the k leading bits and the search
points in B represent a bridge between them. Thus, all points are pairwise different. An
important property of these paths is that for all i < k and each point pj on the path with
at least i successors on the path, the Hamming distance H(pj , pj+i) equals i. Moreover,
for i ≥ k, H(pj , pj+i) ≥ k holds. Thus, in order to take a large shortcut, a k-bit mutation
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is necessary. For k = Ω(
√
n) the probability for such an event is exponentially small.

The length of a long k-path of dimension n is |Pn
k | = k · 2n/k − k + 1 (Sudholt 2008),

which is still exponential for k = O(
√
n). Recall, that we already discussed results on

long k-paths in Section 6.1.
As the long k-path has increasing fitness, a search point of Aspa that reaches the path

will not be eliminated before the end of the path is found provided that it achieves
sufficient progress. Thus, if all search points of the collection of search points reach the
path, Aspa will with overwhelming probability have an exponential optimization time.

The fitness function gk1,k2,k3 defined below is essentially a combination of Ridge with
a long k-path for k =

√

n/4. Strictly speaking we need k =
√

n/4 ∈ N and n/k ∈ N.

We spare ourselves the additional hassle of using
⌊

√

n/4
⌋

or restricting n to n = 4i2

for i ∈ N as this does not lead to significant changes. A visualization of gk1,k2,k3 can be
found in Figure 8.3.

Definition 8.15 (Horoba et al. (2009)). Define x(ℓ) = (x[0], . . . , x[3n/4 − 1]) and x(r)

= (x[3n/4], . . . , x[n − 1]). For n, k1, k2, k3 ∈ N \ {1} with k1, k2, k3 = O(1) and
1 < k1 < k2 we define gk1,k2,k3 : {0, 1}n → R by

gk1,k2,k3(x) :=































2n if x = 12n/30n/3−k31k3

n3 + i if x = p′i
n2 + n if x = 13n/4−k20n/4+k2

n2 + i if x = ri

n− OneMax(x) otherwise

with

p′i = x(ℓ) ◦ x(r), x(ℓ) = 13n/4, x(r) = pi ∈ P
n/4√
n/4

ri = 1i0n−i, 0 ≤ i ≤ 3n/4− k1 − k2.

Note, that the p′i represent the points on the long k-path for k =
√

n/4, whereas the
ri are points on the ridge. There are two ‘gaps’ of size k1 and k2, respectively, in the
path leading to the long k-path. The first search point ‘jumping over’ the first ‘gap’
is likely to take over the whole collection of search points (provided that µ is not too
large) with copies of itself. Then the whole collection of search points has identical age
and gets extinct completely due to its age in a single iteration given that the maximal
lifespan τmax is sufficiently small. This is equivalent to a restart. We do not claim that
such a ‘double gap’ is necessary for aging to be effective. It does, however, simplify the
proof considerably. We remark that the combination of restarts with two paths that are
entered with different probabilities has already been presented by Jansen (2002).

Since we use gk1,k2,k3 always with the same parameters k1, k2, and k3, we write g
instead of gk1,k2,k3 in the following. Analogous to Section 8.1.3 we partition the search
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|x|1 = 3n
4

|x|1 = 2n
3

12n/30n/3−k31k3

P
n/4√
n/4

0n

1n

12n/30n/3

1i0n−i

13n/40n/4

13n/4−k20n/4+k2

13n/4−k1−k20n/4+k1+k2

k1
k2

k3

Figure 8.3.: The example function g.

space {0, 1}n into the following five disjoint sets.

P2 := {ri | 0 ≤ i < 3n/4− k1 − k2}
P3 := {r3n/4−k1−k2 , 1

3n/4−k20n/4+k2}
P4 := {p′i | pi ∈ P

n/4√
n/4

}

P5 := {12n/30n/3−k31k3}
P1 := {0, 1}n \ (P2 ∪ P3 ∪ P3 ∪ P4)

The sets P1, P2, P3, P4, P5 again form a g-based partition P1 <g P2 <g P3 <g P4 <g P5.
A typical run of Aspa starts in P1 and moves towards 0n until we reach some point in

P2. Then we follow the path defined by the points in P2 until either the global optimum
P5 is found or the end of the path is reached. In the latter case, the search points may
‘jump over’ the two ‘gaps’ (passing P3) and reach P4, if the maximal lifespan τmax is
large enough. Otherwise the collection of search points will become extinct and restart
in P1 until finally the ‘jump’ to the global optimum P1 succeeds.

We first show that a standard (µ+1) EA as well as Aspa where the maximal lifespan
is too large have difficulties in optimizing g as they can easily get trapped on the long
k-path.

Theorem 8.16 (Horoba et al. (2009)). Let k1, k2, k3 ∈ N\{1} with k1 < k2, k1 < k3 and
k1, k2, k3 = O(1), µ = O

(

nk1−1
)

, and τmax = Ω
(

log n
(

nk2 + µ log n
))

= Ω
(

nk2 log n
)

.
The optimization time of Aspa on g is

T(µ+1) EA, g = 2Ω(
√
n)

TAspa, g = 2Ω(
√
n)

with probability 1− o(1) each.
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Proof. We use the partition of the search space {0, 1}n defined above. Let again T denote
the optimization time of the algorithm under consideration. Moreover, we use the notion
of TP1 , TP2 , and TP3 introduced in the proof of Theorem 8.11. Let additionally TP4

denote the number of steps where we have Ct ⊆ P1 ∪ P2 ∪ P3 ∪ P4, Ct ∩ P4 6= ∅ and
max {g(x) | x ∈ Ct} < max {g(x) | x ∈ P4}.

It is easy to see that as soon as the first search point has reached the path, the whole
collection of search points will follow. Once all search points are on the long k-path the
optimization time is exponential for both algorithms with high probability.

On the long k-path a specific 1-bit mutation suffices to create an offspring with a larger
fitness. As noted above, long k-paths are constructed in such a way that a mutation of
at least k bits is necessary in order to take a large shortcut. Populations do not increase
the probability of such mutations. Thus, the lower bound on the optimization time
of the (1+1) EA (Droste et al. 2002) carries over to the (µ+1) EA. For k =

√

n/4,

we therefore get E (TP4) = Ω
(

(n/4)3/22
√

n/4
)

. Moreover, the probability to have a

polynomial optimization time is exponentially small.
It remains to show that the complete collection of search points reaches the long k-path

with probability 1−o(1). With probability 1−e−Ω(n) we have OneMax(x) < (2/3)n−√
n

for all x ∈ C0 (Chernoff bounds) making a direct mutation into the global optimum
exponentially unlikely. After that the number of 1-bits can only decrease until some
ridge point is found.

For each point in P2 there is a successor with Hamming distance 1 and larger function
value. The Hamming distance to the global optimum is always bounded below by k3 > 1.
It equals k3 for 12n/30n/3 and is strictly larger than that for all other points on the ridge.
The probability to ‘jump’ to the global optimum is O

(

1/nk3
)

. Thus, for 12n/30n/3 the
probability to reach the successor prior to ‘jumping’ to the global optimum is 1−O(1/n)
and it is 1 − O

(

1/n2
)

for all other points in P2. Note that there are less than n points
in P2. For the first search point we see that we reach the point with maximal function
value in P2 without finding the global optimum with probability 1 − O(1/n). The i-th
search point gets past the global optimum also if it is replaced due to copying a better
search point. Since we assume µ = O

(

nk1−1
)

, this happens with conditional probability

Ω





1
n + i

µ

1
nk3

+
(

1
n + i

µ

)



 = Ω





1
n + i

nk1−1

1
nk3

+
(

1
n + i

nk1−1

)





= Ω

(

nk3−1 + i · nk3−k1+1

nk3−1 + i · nk3−k1+1 + 1

)

= 1−O

(

1

nk3−1 + i · nk3−k1+1 + 1

)

.

Since k1 < k3, this is 1 − O
(

1/(in2)
)

and we obtain 1 − O

(

1/n +
µ−1
∑

i=1
1/(in2)

)

= 1−O(1/n) as bound on the probability to pass by without stumbling over the global
optimum by accident.

Once this is the case, the long k-path is entered after one mutation of exactly k1 specific
bits followed by a second mutation of exactly k2 specific bits. Each such mutation has
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probability Ω
(

1/nk2
)

. Since now the unique global optimum has Hamming distance Θ(n)
we see that the long k-path is entered with probability exponentially close to 1 given that
no search point is removed due to its age. In order to see this we need to consider the
time needed to enter the long k-path. We can concentrate on the two ‘gaps’ of sizes k1
and k2 since before we only need to deal with 1-bit mutations and did this already in the
proof of Theorem 8.11.

Remember that it takes in expectation O(µ log n) steps until the complete collection
of search points consists of copies of the current best, provided that the current best
does not improve in this time. We have µ = O

(

nk1−1
)

and see that the expected
number of steps until the complete collection of search points performs one of the two
large ‘jumps’ is bounded by O

(

nk1−1 log n
)

+ O
(

nk2
)

= O
(

nk2
)

. Since we have τmax

= Ω
(

nk2 log n
)

we see that the complete collection of search points reaches the long
k-path with probability 1− o(1).

We have seen that Aspa has difficulties in optimizing g if the maximal lifespan τmax

is too large. We see that in this situation aging is not effective. In principle it does
not come into play at all since no search point reaches the maximal lifespan with high
probability. In particular it shows the same behavior as a standard (µ+1) EA for a very
long time. This is due to the long k-path where it can be trapped while making little
progress. In the following we therefore point out the advantages of Aspa when τmax is
sufficiently small and show that this can prevent the algorithm from being trapped on
the long k-path. Note, that the maximal lifespan τmax must not be too small, either
(see Section 8.1.1). This is an example where aging is beneficial and performs a kind of
restart.

Theorem 8.17 (Horoba et al. (2009)). Let k1, k2, k3 ∈ N \ {1} with 2 < k1 < k2
and k1, k2, k3 = O(1), µ = O

(

nk1−1
)

, and τmax = ω
(

log n
(

n2 + µn log n
))

and τmax

= O
(

nk2−k3
)

.

The optimization time of Aspa on g is

TAspa,g = O
(

nk1+k3+1 + µnk1+k3 log n+ nk2−1
)

with probability 1− o(1).

Proof. We follow the line of thought from the proof of Theorem 8.16 and use the notation
defined there. Note, that the only fundamental difference is the behavior of the algorithm
in P3. Therefore, we concentrate on this and the derivation of TP3 in the following. From
the proof of Theorem 8.11 we get E (TP1) = O(µn+ n log n).

Remember that the expected time to make µ copies of the current best is O(µ log n)
and that the expected time needed to reach the best point in P2 is O

(

n2 + µn log n
)

(Witt 2006). Since τmax = ω
(

log n
(

n2 + µn log n
))

is sufficiently large we conclude that
after E (TP2) = O

(

n2 + µn log n
)

we have a collection of search points that contains only
search points with function values that are at least as large as that of the best point
in P2.
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Pessimistically we assume that all members of the collection of search points are equal
to the best point in P2. In this situation the first ‘gap’ of size k1 is ‘jumped over’ with
probability Θ

(

1/nk1
)

in the next iteration. If this does not happen (since, for example,
τmax is too small) the search points in the collection of search points may eventually be
removed due to their age. In any case, we are not worse than if the collection of search
points was started again. Note that we do not assume to have a complete restart in a
single iteration.

Recall that O
(

n2 + µn log n
)

is an upper bound on the number of iterations needed
to get into this situation. Then we have a probability of Θ

(

1/nk1
)

to increase the
function value. We conclude that on average this happens after O

(

nk1+2 + µnk1+1 log n
)

iterations. Note that this search point has age 0 in this situation since it improved over
its parent. Thus, after another O(µ log n) = O

(

nk1−1 log n
)

iterations on average the
collection of search points consists of copies of this one search point all with the very
same age. We conclude that we get in this situation with probability 1 − O(log(n)/n)
since the only reason to have different ages is to have another search point make this
‘jump’ which only occurs with probability O

(

1/nk1
)

.
The probability to make the second ‘jump’ is bounded above by O

(

1/nk2
)

. Remember
that we have k1 < k2 and τmax = O

(

nk2−k3
)

. Thus, with probability 1−O
(

1/nk3
)

before
this happens the complete collection of search points is removed in a single iteration
due to its age. This, clearly, is completely equivalent to a restart. We see that with
probability 1 − O(log n/n) − O

(

1/nk3
)

we have something that equals a restart every
O
(

nk1+2 + µnk1+1 log n+ τmax

)

= O
(

nk1+2 + µnk1+1 log n+ nk2−k3
)

iterations since we
need to wait for the search points to reach age τmax.

While Aspa moves through P2 for each point in P2 we have that it becomes current
best point in the collection of search points at some point with probability 1− O(1/n).
This holds since mutations ‘jumping over’ any such point have probability O

(

1/n2
)

while
they reach it with probability ω(1/n). Since the expected time to move the complete
collection of search points beyond a point that once was current best is trivially bounded
below by Ω(µ), we have that the probability that a current best member of a collection of
search points is selected as parent at least once is bounded below by Ω(1). We consider
12n/30n/3 ∈ P2 and see that it has Hamming distance k3 to the global optimum. Clearly,
each point in P2 becomes member of the current collection of search points while moving
through P2 with probability Ω(1). Thus, while moving through P2 the probability to
find the global optimum is bounded below by Ω

(

1/nk3−1
)

. The −1 in the exponent is
due to the fact that any mutation increasing the function value has probability O(1/n).
Thus, on average after O

(

nk3−1
)

times Aspa moves through P2 the optimum is found.
We combine what we have and see that with probability 1−o(1) Aspa find the optimum

of g within

O
(

nk3−1 ·
(

nk1+2 + µnk1+1 log n+ nk2−k3
))

= O
(

nk1+k3+1 + µnk1+k3 log n+ nk2−1
)

iterations. This holds with probability 1− o(1) since the probability to have a successful
‘jump’ over the second ‘gap’ in nk3−1 rounds is o(1) due to our assumptions: Having
τmax = ω

(

log n
(

n2 + µn log n
))

and τmax = O
(

nk2−k3
)

implies that k3 < k2 − 2.
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8. Setting the Maximal Lifespan

8.3. Combining Example Functions

Within this section, we develop a general technique that can be used to strengthen
the properties of an example function or to combine the properties of different example
functions. We apply this technique to derive an example function that combines the
properties of the two functions discussed in the previous sections. This results in a
function where the maximal lifespan has to be chosen within an arbitrarily small interval.

Consider k pseudo-Boolean functions fi : {0, 1}ni → R
+ with i ∈ {1, . . . , k}. Choose

fub
i with fub

i ≥ max{fi(x(i)) | x(i) ∈ {0, 1}ni}. Finding such an upper bound is un-
problematic if we consider example functions. We intend to combine all fi into a single
pseudo-Boolean function. The basic idea is to create a function that drives an algorithm
into optimizing all fi sequentially.

We consider two alternatives to finish the optimization of a fi: Finding a search point
x(i) with x(i) ∈ OPTi or x(i) ∈ TRAPi where OPTi and TRAPi are two disjoint subsets
of the search space {0, 1}ni . In the first case we call the optimization of fi a success and
in the second case we call the optimization of fi a failure.

Consider h : {0, 1}n → R
+ where n =

∑k
i=1 ni. We partition a bit vector x

= (x[0], . . . , x[n − 1]) of length n into k bit vectors

x(i) =



x





i−1
∑

j=1

nj



 , . . . , x





i
∑

j=1

nj − 1









of length ni to ease the understanding of the function definition

h(x) =































a
∑

i=1
fub
i + fa+1(x

(a+1)) if a < k

a
∑

i=1
fub
i + 1 if a = k and b ≤ ⌊k/2⌋

a
∑

i=1
fub
i + 2 if a = k and b > ⌊k/2⌋

where
a = max

{

1 ≤ i ≤ k | ∀1 ≤ j ≤ i : x(j) ∈ OPTj ∪ TRAPj

}

is the maximal length of a sequence f1, . . . , fa of finished fi and

b =
∣

∣

∣

{

1 ≤ i ≤ k | x(i) ∈ OPTi

}∣

∣

∣

is the number of successfully finished fi. A search point x = (x(1), . . . , x(k)) constitutes a
global optimum of h iff fi(x

(i)) ∈ OPTi ∪TRAPi for all i and fi(x
(i)) ∈ OPTi for more

than ⌊k/2⌋ different i.
An application of this technique leads to the creation of an example function that com-

bines the properties of the example function fk from Definition 8.10 and the example func-
tion g from Definition 8.15. Consider fk : {0, 1}n/2 → R

+ as f1 and g : {0, 1}n/2 → R
+ as

f2. Choose fub
1 = n/2+⌊n/(2k)⌋ and fub

2 = 2n/2. Let OPT1 = {1⌊n/(2k)⌋k0n/2−⌊n/(2k)⌋k}
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8.3. Combining Example Functions

and TRAP1 = ∅ as well as OPT2 = {12n/60n/6−k31k3} and TRAP2 = ∅. We combine
f1 and f2 using the approach explained above. We refer to the resulting function as
hk,k1,k2,k3 and again simply write h.

The following theorem shows that Aspa does not optimize h efficiently if τmax is chosen
too small or too big. If τmax is chosen within a certain interval, Aspa efficiently optimizesh.

Theorem 8.18 (Horoba et al. (2009)). Let k, k1, k2, k3 ∈ N \ {1} with k, k1, k2,
k3 = O(1), k < k1 < k2, k1 < k3, and k3 < k2 − 2 as well as µ = O

(

nk/ log n
)

. Then,
the following holds.

1. If τmax = o
(

nk log n
)

:

TAspa, h = 2Ω(nε)

with probability 1− 2−Ω(n1−o(1)) for all constants 0 < ε < 1.

2. If τmax = ω
(

nk log n+ µn log2 n
)

and τmax = O
(

nk2−k3
)

:

TAspa, h = O
(

nk1+k3 (n+ µ log n) + nk2−1
)

with probability 1− o(1).

3. If τmax = Ω
(

nk2 log n
)

:

TAspa, h = 2Ω(
√
n)

with probability 1− o(1).

Proof. We proof the three statements from the theorem separately.

1. Due to Theorem 8.12, Aspa does not finish fk within 2Ω(nε) iterations with proba-

bility 1− 2−Ω(n1−o(1)) for all constants 0 < ε < 1. Hence, the optimization time of
Aspa on h is 2Ω(nε) with probability 1− 2−Ω(n1−o(1)).

2. Due to Theorem 8.11, Aspa finishes fk within an expected number of O
(

nk+1
)

it-
erations. Hence, the optimization of fk is finished after O

(

nk+2
)

iterations with
probability 1 − 2−Ω(n). After the first search point x has finished fk, the second
half of x is uniformly distributed. From now on x optimizes g. Due to the proof of
Theorem 8.17, with probability 1− o(1) Aspa successfully finishes g after O

(

nk3−1
)

attempts, which result in restarting the algorithm or finding the optimum. Note,
that all attempts require O

(

nk1+2 + µnk1+1 log n+ nk2−k3
)

iterations with proba-
bility 1− o(1). Hence, the optimization time of Aspa on h is

O
(

nk3−1 ·
(

nk+2 + nk1+2 + µnk1+1 log n+ nk2−k3
))

= O
(

nk1+k3+1 + µnk1+k3 log n+ nk2−1
)

with probability 1− o(1).
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8. Setting the Maximal Lifespan

3. After the first search point x has finished fk, the second half of x is uniformly
distributed. From now on x optimizes g. Due to Theorem 8.16, Aspa does not

finish g within 2Ω(
√
n) iterations with probability 1−o(1). Hence, the optimization

time of Aspa on h is 2Ω(
√
n) with probability 1− o(1).

Consider k = 2, k1 = 3, k2 = 7, and k3 = 4. Due to Theorem 8.18 we have to
choose a τmax with τmax = ω

(

nk log n+ µn log2 n
)

and τmax = O
(

nk2−k3
)

to guarantee
polynomial optimization time with probability 1 − o(1). Plugging in the above values
yields τmax = ω

(

n2 log n+ µn log2 n
)

and τmax = O
(

n3
)

. Let µ = Θ
(

n2−ε/ log2 n
)

.
Then, the requirements reduce to ω

(

n3−ε
)

and O
(

n3
)

for an arbitrarily small constant
0 < ε < 1. We conclude that an appropriate choice of τmax can be very difficult. Note,
that for any constant k > 1 we can obtain the same result by setting k1 = k + 1,
k2 = k1 + 4, k3 = k1 + 1, and having µ = Θ

(

nk−ε/ log2 n
)

. Thus, the small band of
appropriate values for τmax can be shifted.

8.4. Experimental Supplements

In the preceding sections we have analyzed the influence of the parameter τmax for the
static pure aging operator and briefly pointed out differences to evolutionary aging. We
have shown for which setting of the parameter Aspa yields expected polynomial optimiza-
tion time and for which it yields exponential optimization time with high probability.
However, our bounds on τmax are not tight. Therefore, we supplement our theoretical
results by experiments shedding light on the robustness of the considered algorithm with
respect to the maximal lifespan τmax.

We perform experiments for Aspa on LeadingOnes and OneMax as well as Aeva

on LeadingOnes. Note, that we refrain from doing experiments for fk and g. This
has several reasons. An experimental analysis for fk would be very similar to the one
we execute for LeadingOnes and OneMax. We prefer these two easy functions since
they were analyzed in previous chapters. Moreover, the optimization time of fk increases
exponentially with k such that only small values for k are reasonable for experiments.
However, for these values the function is still quite similar to LeadingOnes. Thus, we
believe that an experimental analysis of fk would not add additionally insights.

Things are even worse for g since in order to meet the requirements of the theorems we
need large values for the parameters of g. Theorem 8.16 requires at least k1 = 2, k2 = 3,
and k3 = 3, Theorem 8.17 at least k1 = 3, k2 = 6, and k3 = 3, and Theorem 8.18 at least
k = 2, k1 = 3, k2 = 7, and k3 = 4. This yields an upper bound of at least O

(

n6
)

.
Moreover, in order to execute sensible experiments, we need very large values of n.

Recall that the length of a long k-path of dimension n is |Pn
k | = k · 2n/k − k+1 (Sudholt

2008) and that we consider P
n/4√
n/4

. Clearly, we need the length of the path to be larger

than the expected optimization time of O
(

n6
)

as seen above. This results in n > 16,000,
making a sensible experimental analysis very hard. We remark that these two functions
were carefully constructed in order to prove certain properties of the operators and thus,
are in particular of theoretical interest.
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8.4. Experimental Supplements

The experiments done in the following can be separated into two sets. First, we consider
parameter settings which yield polynomial upper bounds on the expected optimization
time (Corollary 8.2 and 8.5). In order to analyze the effects of the size of the collection
of search points all sets of experiments are performed for µ ∈ {1, ⌊√n⌋ , n} where µ = 1
leads to the special case of the (1+1) EA. The choice µ ≈ √

n has often turned out
to be a good choice (Harik et al. 1999). Moreover we are interested in the effects of
bigger collections of search points sizes, i. e., sizes that are not sublinear. Since the size
of the collection of search points has an enormous effect on the optimization time, we
chose µ = n for this purpose. As maximal lifespan τmax we use the values which are
bounded below by the our results. For a bound ω(b(n)) we set τmax = ⌊6 log(n) · b(n)⌋,
where the 6 helps for small values of n. For each of these experiments we perform 100
independent runs of the considered algorithm and plot the results using box-and-whisker
plots (Definition B.1) for n ∈ {10, 20, . . . , 200}. For the sake of comparison we present
results for the (µ+1) EA, i. e., the corresponding algorithm without aging.

Second, we analyze the influence of the maximal lifespan τmax for n ∈ {10, 20, . . . , 200}
and the same settings of µ as in the first set of experiments. Since in the first set of ex-
periments τmax was chosen according to the theorems, we now perform experiments with
stepwise decreasing values for τmax. For each value of n and µ we perform experiments
with 20 equidistantly chosen values for τmax, i. e., τmax = (i/20) · τmax (i ∈ {1, . . . , 20})
where τmax is the corresponding τmax value from the first set of experiments. We fix
the maximal number of iterations executed to the corresponding upper quartile from
the (µ+1) EA. The results are given as a 3D plot for each µ showing the number of
successful runs within 100 independent runs for all pairs of n and τmax. In these plots
the number of successful runs is mapped to different colors that are projected onto the
horizontal plane to improve visibility. Note that the results of these experiments need
to be analyzed very carefully as with the setting used it is not possible to make conclu-
sions about the ‘true’ order of magnitude needed for τmax. From a formal point of view
(i/20) · τmax can be seen as Θ(τmax) for each value of i ∈ {1, . . . , 20}.

8.4.1. Results for Static Pure Aging

The results for LeadingOnes and OneMax for the first set of experiments can be
found in Figure 8.4 and Figure 8.5, respectively. In both figures, results for Aspa and the
(µ+1) EA are displayed next to each other for comparison. Obviously, the use of aging
does not effect the optimization time of the algorithm since both algorithms perform
equally for the considered input sizes, also with respect to the leading constants. Note,
that for Aspa, we used τmax =

⌊

6 log2 n(n+ µ log n)
⌋

for LeadingOnes (Corollary 8.2)
and τmax = ⌊6 log n(µ log µ+ n)⌋ for OneMax (Corollary 8.5).

The results for the second set of experiments are depicted in one joint diagram for
LeadingOnes and OneMax (Figure 8.6). Note that we expect 75 successful runs within
100 runs as we fix the maximal number of iterations executed to the corresponding upper
quartile from the first set of experiments. We see that for both functions the algorithm
is quite robust with respect to the maximal lifespan. In particular on LeadingOnes it
performs quite well for a large range of values for τmax (independently of the size of the
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8. Setting the Maximal Lifespan

collection of search points). Only for very small values of τmax, we have a small success
probability. For OneMax, the robustness increases with increasing size of the collection
of search points.

For the sake of visibility we plot the success rate for the smallest τmax tried, namely
τmax = n for LeadingOnes (Theorem 8.3) and τmax = n0.9 for OneMax (Theorem 8.6,
setting δ somewhat arbitrarly). For these values of τmax, we proved an exponential lower
bound on the optimization time with high probability and we see that indeed the success
rate drops drastically already for small values of n.

8.4.2. Results for Evolutionary Aging

The results for evolutionary aging can be found in Figure 8.8 and Figure 8.9, respectively.
We first do experiments for Aeva on LeadingOnes with τmax = ⌊6 log(n)µ log µ⌋. Since
in the case µ = 1, this becomes zero, we choose τmax = ⌊6 log n⌋ instead. We see again,
that the optimization times observed during the experiments corresponds to the results
of the (µ+1) EA. Thus, in fact, for the (1+1) EA a maximal lifespan in order O(log n)
suffices.

For the second set of experiments we perform experiments for different maximal lifes-
pans where the smallest τmax considered is τmax = 3. We see that evolutionary aging is,
at least for small collections of search points, not as robust with respect to the maximal
lifespan as static pure aging. With increasing n, the range in which we observe good
success rates, becomes quite small. We further investigate this aspect within the next
chapter, where we compare the benefits and drawbacks of both aging mechanisms.
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Figure 8.4.: Optimization times of Aspa and the (µ+1) EA on LeadingOnes with dif-
ferent sizes of the collection of search points, data from 100 runs.
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Figure 8.6.: Success rates in 100 independent runs of Aspa on OneMax and
LeadingOnes with different sizes µ of the collection of search points and
decreasing values of τmax.
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LeadingOnes with different sizes µ of the collection of search points and
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collection of search points, data from 100 runs.
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Figure 8.9.: Success rates in 100 independent runs of Aeva on LeadingOnes with τmax =
3 (left) and τmax = (i/20) · ⌊6 log(n)µ log µ⌋ (right), and different sizes of
the collection of search points.
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In the previous chapter we have investigated the role of the most important parameter
for aging operators, namely the maximal lifespan τmax. Keeping these results in mind, we
are now ready to compare different aging operators introduced in Chapter 7: on one hand
static pure aging (Algorithm 7.4) from the field of artificial immune systems, on the other
hand evolutionary aging (Algorithm 7.5) from the field of evolutionary computation.

An objective function f contributes decisively to a search landscape that can exhibit
different features that make the task of optimization difficult. Different methods and
tricks have been introduced to various search heuristics to overcome these and other
difficulties, among them the concept of aging. Although many kinds of difficult features
are known (Jansen 2001), we only concentrate on two common features, plateaus of
constant function values and local optima. A rigorous analysis for these two typical
difficult situations sheds light on similarities and differences of the considered aging
operators. One important goal is, e. g., to hinder the current collection of search points
from becoming too similar to each other. Preserving some degree of diversity is thought
to be helpful in many situations including avoiding getting stuck in local optima and
exploring plateaus efficiently.

We start with the analysis of local optima in Section 9.1 and consider plateaus af-
terwards in Section 9.2. Based on our findings, a third aging operator is introduced
in Section 9.3 that provably shares the advantages of both aging mechanisms. Finally,
experimental supplements are provided to point out practical implications of the the-
oretical results and discuss further issues concerning the considered aging strategies in
Section 9.4. This chapter is based on the work done in Jansen and Zarges (2009b, 2011b).

9.1. Performance in Local Optima

Local optima are points in the search space where no neighbor has a strictly larger func-
tion value. They are a meaningful concept if the concrete notion of a neighborhood
is connected to the search behavior of the randomized search heuristics. In the search
space {0, 1}n the Hamming neighborhood often has this property. Many randomized
search heuristics consider search points with a small Hamming distance to a current
search point with much higher probability than search points with larger Hamming dis-
tances. This is almost necessarily the case since the number of points with Hamming
distance d increases exponentially in d (for not too large values of d). However, note that
this is different for hypermutations discussed in Part II of this thesis.

It is a common experience that search heuristics get trapped in local optima. Realistic
problems tend to be multi-modal and thus contain local optima. Therefore, considering
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example problems with well-defined local optima is of practical importance. The exam-
ple function with a local optimum that we define follows the pattern of such example
functions introduced by Jansen (2002). One example is a function called HSPk that
contains a broad and easy to find path to a local optimum and a narrow and hard to
find path to the unique global optimum. The parameter k influences the likelihood of
encountering the local optimum. Since this example function works only as desired for
algorithms with very small µ we define a variant with very similar properties that also
works for larger values of µ (Definition 9.1). Note, that this function is quite similar to
the function fk (Definition 8.10) and uses again the idea of two paths that are entered
with different probabilities (see Section 8.2).

Definition 9.1. For n ∈ N and k ∈ N with k = O(1) the function LocalOptk :
{0, 1}n → R is defined by

LocalOptk(x) =











n · (i · k + 1) if x ∈
{

1i·k0n−i·k | i ∈ {1, 2, . . . , ⌊n/k⌋}
}

,

n · (i+ 1) if x ∈
{

0n−i1i | i ∈ {1, 2, . . . , ⌊n/2⌋}
}

,

n− OneMax(x) otherwise.

The example function LocalOptk is visualized in Figure 9.1. In the vast majority of
the search space the fitness value of LocalOptk equals n−OneMax(x) guiding a search
heuristic towards the all-zero bit string 0n. There, two different paths begin. One path is
entered by changing i of the right-most bits to 1 (with i ∈ {1, 2, . . . , ⌊n/2⌋}). Increasing
the number of 1-bits from right to left leads to the local optimum with function value
n · (⌊n/2⌋+1). The other path is entered by changing exactly i ·k of the left-most bits to
1 (with i ∈ {1, 2, . . . , ⌊n/k⌋}). The function value can be increased on this path in this
manner until the global optimum 1⌊n/k⌋·k0n−⌊n/k⌋·k with function value n ·(⌊n/k⌋ · k + 1)
is found. The larger k is, the longer it takes to reach this global optimum and the more
difficult it becomes to find the beginning of this path. Thus, we can expect randomized
search heuristics to find the local optimum regularly for k > 1. For k = 1, the local
and global path are entered with almost equal probability. Since the Hamming distance
between the local optimum and the other path is Θ(n), any reasonable search heuristic
should need an exponential number of steps to find the global optimum once the local
optimum is found. For Algorithm 7.1 with τmax = ∞ ((µ+1) EA) this is the case. We
remark, that for LocalOptk, results for the (1+1) EA are known (Jansen 2002).

We consider the example function LocalOptk with sufficiently small parameter k
and the performance of the two aging operators. To allow discussions on how aging can
improve the performance of our algorithm, we first examine the performance of Algo-
rithm 7.1 without aging by assuming that τmax = ∞ holds and consider changes due to
finite values for τmax afterwards. Recall, that this equals the (µ+1) EA (Definition 3.1).

Theorem 9.2 (Jansen and Zarges (2011b)). Let k ∈ N with k = O(1), τmax = ∞, and
µ ∈ N arbitrarily. Then, for any number of steps t ∈ N, the optimization time of the
(µ+1) EA on LocalOptk is

T(µ+1) EA,LocalOptk
≥ t
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Figure 9.1.: Visualization of the fitness function LocalOptk.

with probability

1−O

(

µ log µ

nk−1
+

t

n
n
2
−k

)

.

For µ = o
(

nk−1/ log n
)

the expected optimization time is

E
(

T(µ+1) EA,LocalOptk

)

= Ω
(

n
n
2
−k
)

.

Proof. Note that for µ log µ = Ω
(

nk−1
)

and t = Ω
(

n(n/2)−k
)

the statement becomes
trivial. Thus, we assume µ log µ = o

(

nk−1
)

in the following.
Assume that the complete collection of search points is on the path to the local opti-

mum, i. e., of the form 0n−i1i for possibly different values of i with i ≥ 1 for all of them.
Then the global optimum can only be reached via a direct mutation to the other path.
Such a mutation has probability at most 1/ni+max{i,k} since the i right-most 1-bits need
to be changed into 0-bits and we need to reach a point on the other path that has at
least the same function value. We consider µn2 iterations. The probability not to make
such a step in these iterations is bounded below by µ/nk−1.

On the other hand, with probability 1 − e−Ω(n) in these steps the current best of
the collection of search points is increased in function value. Then after on average
O(µ log µ) iterations the function value of each member of the collection of search points
is increased to at least this function value since it suffices to make copies of the current
best (Witt 2006). The probability to create a search point on the other path in this time
is bounded above by O

(

(µ log µ)/nk+i
)

. Then we are in the same situation as before
with i ≥ 2. Summing up the probabilities to reach the other path for 1 ≤ i ≤ n/2 we
obtain O

(

(µ log µ)/nk−1
)

as bound. Thus, with probability 1 − O
(

(µ log µ)/nk−1
)

the
local optimum takes over the complete collection of search points. In this case a mutation
of at least (n/2)− k bits is necessary to reach the path. Such an event occurs in t steps
with probability at most O

(

t/n(n/2)−k
)

.
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We still need to prove that the complete collection of search points gets on the path to
the local optimum with sufficiently large probability. It is easy to see that each member
of the collection of search points either reaches one of the two paths or 0n within O

(

µn2
)

steps with probability 1−e−Ω(n/ logn) (Witt 2006). Consider the set of search points with
exactly i 1-bits. For each i ∈ {k, k + 1, . . . , n} there is at most one point on the path
leading to the global maximum. As long as no member of the collection of search points
is on any of the two paths each point in the search space with exactly i 1-bits has equal
probability to become a member of the collection of search points. Thus, for each i the
path to the global optimum is entered with probability at most O

(

1/ni
)

. Summing up
these probabilities for all i ≥ k we get the bound O

(

1/nk
)

on the probability to enter
the path to the global optimum before either 0n or the path to the local optimum is
found. Consider some member of the collection of search points x = 0n. Due to the
strict selection employed we need only care about search points on one of the two paths.
The probability to create some point on the path to the global optimum based on x given
that a point on one of the two paths is created is Θ

(

1/nk−1
)

. Thus, with probability
1−O

(

1/nk−1
)

we get in the situation with the collection of search points on the path.
For µ = o

(

nk−1/ log n
)

we get Ω
(

n(n/2)−k
)

as lower bound on the expected optimiza-
tion time using the law of total probability (Lemma B.11).

We have seen that for Algorithm 7.1 without aging the local optimum is encountered
with probability close to 1 implying a very large expected optimization time if the size of
the collection of search points is not too big. In the following we learn that evolutionary
aging is not capable of improving the performance of our algorithm as it neither increases
the probability of reaching the global optimum nor helps to escape the local optimum.

Theorem 9.3 (Jansen and Zarges (2011b)). Let k ∈ N with k = O(1), τmax ∈ N

arbitrarly, and µ ∈ N arbitrarily. Then, for any number of steps t ∈ N, the optimization
time of the Aeva on LocalOptk is

TAeva,LocalOptk
≥ t

with probability

1−O

(

µ log µ

nk−1
+

t

n
n
2
−k

+
µt

2n · τmax

)

.

For µ = o
(

nk−1/ log n
)

the expected optimization time is

E (TAeva,LocalOptk
) = Ω(2n).

Proof. As in the proof of Theorem 9.2 we assume µ log µ = o
(

nk−1
)

as otherwise the
statement becomes trivial and now consider changes due to a finite value of τmax.

If τmax = o(µn) holds, with probability 1 − e−Ω(n) not even one of the two paths is
reached (Witt 2006). Thus, we assume τmax = Ω(µn) in the following. Since evolutionary
aging is employed, a new current member of the collection of search points starts with
age 0. With probability at least Ω(1/µ), the current best member of the collection of
search points is copied. Thus, we manage to make a replica of the current best before it
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9.1. Performance in Local Optima

is removed due to its age with probability 1−e−Ω(n). Then nothing changes from the line
of reasoning above since any new search point that is created in line 8 of Algorithm 7.1
will be replaced by a copy of the current best member of the collection of search points
or a search point with even larger function value with sufficiently large probability before
reaching the path to the global optimum.

Again we get Ω
(

n(n/2)−k
)

as lower bound on the expected optimization time if τmax is
sufficiently large. If τmax is very small almost constantly new search points are created
uniformly at random. In t time steps, however, at most t · µ/τmax new search points are
created in this way. Each of these new search point is equal to the unique global optimum
with probability 2−n. Moreover, this process finds the unique optimum on expectation
in 2n steps. This implies the desired probability and the lower bound on the expected
optimization time.

When using static pure aging instead of evolutionary aging at first sight not much is
changed. If the maximal lifespan τmax is sufficiently large the collection of search points
will gather in the local optimum with probability close to 1 (for not too large µ). There
static pure aging makes a difference. Since no new search points with larger function
values can be created unless the global optimum is found we only create new search points
that inherit their age. Creating a copy of a current best search point is much faster than
finding the local optimum. So, no new search points enter the local optimum. Thus,
after some time, the complete collection of search points shares the very same age. This
implies that at some point of time the complete collection of search points is replaced
by new search points generated uniformly at random being equal to a restart. Since the
path to the global optimum is found with not too small probability we expect to find the
global optimum after not too many restarts.

Theorem 9.4 (Jansen and Zarges (2011b)). Let k ∈ N with k = O(1), µ ∈ N arbitrarly,
and τmax ∈ N with τmax = ω

(

log(n) · (nk + µ log n)
)

. The expected optimization time of
Aspa on LocalOptk is

E
(

TAspa,LocalOptk

)

= O
(

τmax · nk−1 + nk+1
)

.

Proof. Using insights from previous proofs and results on the (µ+1) EA due to Witt
(2006) the proof is relatively simple. Given that the local optimum is found the expected
number of steps to do so is bounded by O

(

n2 + µn log n
)

. In the same way we see that
given that the global optimum is found the expected number of steps to do so is bounded
by O

(

nk+1 + µn log n
)

. Since τmax = ω
(

log(n) · (nk + µ log n)
)

this bound carries over
to Aspa (Theorem 8.1 and 8.11).

From the proof of Theorem 9.2 we know that we enter the path to the global optimum
with probability Ω

(

1/nk−1
)

. Thus, on average after O
(

nk−1
)

‘restarts’ of the algorithm
this happens. We have such a ‘restart’ if all search points are removed due to their age
simultaneously. This happens in the local optimum after each search point was created
as a copy of the current best search point. The expected time for this to happen is
O(τmax + µ log µ) since the time to have the collection of search points taken over by
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the youngest current best is O(µ log µ) (Witt 2006) and after O(τmax) iterations all older
current bests are removed due to their age. Moreover, the expected time to reach the local
optimum is bounded by O

(

n2 + µn log n
)

. Together this yields O
(

τmax + n2 + µn log n
)

as upper bound on the expected waiting time for a ‘restart.’ Multiplying it with the
expected number of ‘restarts’ O

(

nk−1
)

we obtain O
(

τmax · nk−1 + nk+1 + µnk log n
)

. as
bound for this part. Since this dominates the upper bound for the expected time to reach
the global optimum once the path leading to it is found we have this bound as upper
bound on the expected optimization time. With τmax = ω

(

log(n) · (nk + µn)
)

the bound
simplifies to O

(

τmax · nk−1 + nk+1
)

since τmax · nk−1 = Ω
(

µnk log n
)

holds.

We have seen that static pure aging can increase the performance of a randomized
search heuristics dramatically by allowing it to perform restarts. Doing so static pure
aging enables the algorithm to escape from local optima yielding a polynomial expected
optimization time whereas the algorithm without aging and using evolutionary aging
respectively gets trapped in the local optima with probability close to 1 implying a very
large expected optimization time if the size of the collection of search points is not too
big. We present results of experiments in order to point out practical implications of our
theoretical results and discuss further issues concerning the considered aging strategies
in Section 9.4.1.

9.2. Performance on Plateaus

A plateau is a set of neighboring points in the search space with equal function value.
Again, we assume that Hamming distance is appropriate and consider two points to
be neighbors if their Hamming distance equals 1. Plateaus turn out to be obstacles
if they are not very small since they give no hint at all in what direction to search.
Therefore, a kind of random walk on the plateau has to be performed that can be quite
time consuming. In practical applications, in particular in combinatorial optimization
problems, it is often the case that the set of potential solutions is exponentially large
whereas the set of solution values is only polynomial in size. This makes it likely that
plateaus exist making their consideration in example problems practically relevant.

We consider an example function, containing a plateau of n points spanning a large
Hamming distance of n−1 between the first and the last point on the plateau, introduced
by Jansen and Wegener (2002). We call it Plateau and define it as follows.

Definition 9.5 (Jansen and Wegener (2002)). For n ∈ N, the function Plateau : {0, 1}n
→ R is defined for by

Plateau(x) =











n if x ∈
{

1i0n−i | i ∈ {0, 1, 2, . . . , n− 1}
}

,

n+ 1 if x = 1n,

n− OneMax(x) otherwise.

Like for LocalOptk, in the vast majority of the search space the fitness values guide
a search heuristic towards 0n. There, the plateau of points 1i0n−i begins. Since there are
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0n

1n

1i0n−i

Figure 9.2.: Visualization of the fitness function Plateau.

no hints in which direction better search points can be found and since all points not on
the plateau have worse function value, usually randomized search heuristics will perform
a random walk on the plateau until they happen to find the unique global optimum 1n.
An illustration of Plateau can be found in Figure 9.2. For Plateau results for the
(1+1) EA (Jansen and Wegener 2002), the (µ+1) EA (Witt 2006), and some similar
evolutionary algorithms without aging (Friedrich et al. 2009a) are known.

The proofs in this section again use the method of family trees introduced by Witt
(2006) and described earlier in Section 4.3.2 just before Theorem 4.21. Recall, that
a family tree Tt(x0) contains the direct and indirect descendants of a search point x0
created by time t ≥ 0 via mutation where nodes of the tree identify the search points
generated and an edge (x, y) denotes that y was created by mutating x. The depth of
a family tree is defined as the maximal depth of its nodes. Note that due to the use of
aging there can exist more than µ family trees as each new search point that is created
in line 8 of Algorithm 7.1 generates a new one. When showing upper bounds on the
optimization time using lower bounds on the depth of the family tree we need to take
care that not too many additional family trees are created.

A tree Tt(x0) can contain search points that have already been deleted from the collec-
tion of search points at time t. It can even happen that Tt(x0) only contains deleted search
points. It is obvious that at least one family tree in the collection must contain at least one
search point that has not been deleted yet. Considering a node y ∈ Tt(x0) and a path P
from x0 to y we say that y is alive if y ∈ Ct and dead otherwise. A path P is alive if it con-
tains at least one alive node. There is always at least one alive path in some family tree.
Analogously to Witt (2006) we call search points on the plateau, i. e. points of the shape
1i0n−i for 0 ≤ i ≤ n, plateau points. Moreover, we denote the first point in time where
all search points are plateau points T ′

Plateau = min
{

t | Ct ⊆ {1i0n−i | 0 ≤ i ≤ n}
}

. A
figure containing example family trees for Plateau with n = 6 and µ = 2 for a small
number of iterations is given in Figure 9.3. Note that the ordering of removals of search
points from the collection of search points is not completely defined by the offspring but
contains a random element.
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x0 = 101100

x2 = 111100 x3 = 101100 x4 = 101000

x5 = 111100 x6 = 111110

x7 = 111111

x′0 = 010101

x1 = 011101

Figure 9.3.: Two family trees for Plateau with n = 6 and µ = 2. The search point
xi is produced in the i-th iteration of the algorithm. The search points x0
and x′0 are the two search points from the initial collection of search points.
The search points are removed from the current collection of search points in
the following ordering: x1, x′0, x3, x0, x4, x2, x5. Already in iteration 2 the
family tree with root x′0 contains only dead nodes. The optimization time
equals T = 7. We have T ′

Plateau = 5.

As for LocalOptk we compare the performance of the (µ+1) EA, Aspa, and Aeva

in order to discuss the effects of the considered aging strategies. For Plateau the
(µ+1) EA was already analyzed by Witt (2006). For the sake of completeness we
simply restate the corresponding theorem here.

Theorem 9.6 (Theorem 3 from Witt (2006)). Let µ = nO(1). The expected optimization
time of the (µ+1) EA on Plateau is

E
(

T(µ+1) EA,Plateau

)

= O
(

µn3
)

.

The main idea of the proof of Theorem 9.6 is to rediscover a run of the (1+1) EA,
i. e., of a single search point, on Plateau on alive paths of a family tree (Witt 2006).
It is known that the expected optimization time of the (1+1) EA on Plateau is
O
(

n3
)

(Droste et al. 2002) which implies a lower bound on the expected depth of such a
family tree. One can conclude that the expected optimization time of the (µ+1) EA is
bounded above by the sum of E (T ′

Plateau) and the expected time until the family tree
reaches depth Θ

(

n3
)

.
We first consider evolutionary aging and prove asymptotically the same bound on

the optimization time as for the (µ+1) EA without making strong assumptions on the
maximal lifespan τmax. The proof follows the line of thought of Witt (2006) for the
(µ+1) EA. Therefore, we concentrate on modifications needed due to the use of aging.

Theorem 9.7 (Jansen and Zarges (2011b)). Let τmax = ω(log(n) · (n+ µ log n)) and
µ = nO(1). The expected optimization of Aeva on Plateau is

E (TAeva,Plateau) = O
(

µn3
)

.
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Proof. From the proof for the (µ+1) EA we know that E (T ′
Plateau) = O(µn+ n log n)

= O(µn log n) holds (Witt 2006). As we use aging it remains to show that it is unlikely
that any currently best search point is removed due to its age before creating an offspring
with strictly larger function value in order to obtain the same bound on E (T ′

Plateau).
Afterwards we prove that the expected time until the family tree reaches some depth k
can be bounded above by O(µk) once all search points in the collection of search points
are plateau points. This implies an upper bound on the optimization time of O

(

µn3
)

since due to the results for the (1+1) EA (Droste et al. 2002) the optimum is obtained
after an expected path length of O

(

n3
)

in a family tree.
Since for T ′

Plateau we essentially consider OneMax, the maximal lifespan τmax is
sufficiently large to carry over the upper bound on E (T ′

Plateau) (Theorem 8.4 and Corol-
lary 8.5). Once a plateau point has been created, the number of those points is increased
if we choose a plateau point and produce a replica. The expected time until the collection
of search points only consists of copies of this point is again O(µ log µ) = O(µ log n) (Witt
2006). Clearly, our lower bound on τmax is large enough for moving all points on the
plateau.

The upper bound on the expected time to reach depth k in a family tree remains to
be shown. Let St be the set of alive search points in Tt(x0) that always have an alive
descendant until time T ′

Plateau + 4eµk. Let Lt denote the maximum depth of x ∈ St in
Tt(x0). Lt increases if a search point x with depth (x) = Lt is selected, a plateau point
x′ is created and x is deleted before x′. The probability is 1/µ for the first event and
(1− 1/n)n ≥ 1/(2e) for the second event since it is sufficient to produce a replica of x.

For the third event again aging comes into play. The probability that x is deleted
before x′ is 1/2 due to selection as both search points have the same function value. It
is not possible that x′ is deleted before x due to its age as we use evolutionary aging.
It remains to show that x′ is generated with high probability before x is deleted due to
its age. We show that with probability 1 − n−ω(logn) after T ′

Plateau no search point is
deleted due to its age.

In each iteration after T ′
Plateau a new plateau point is generated with probability Ω(1)

since creating a replica of any parent is sufficient. Thus, with probability 1− e−ω(µ log2 n)

in ω
(

µ log2 n
)

iterations we have ω
(

µ log2 n
)

new plateau points by application of Cher-
noff bounds. Consider some member of the collection of search points. It is not removed
due to selection in a single iteration with probability 1 − 1/(µ + 1). Thus, with prob-

ability (1 − 1/(µ + 1))ω(µ log2 n) = n−ω(logn), it survives the production of ω
(

µ log2 n
)

new plateau points. Note that we have τmax = ω
(

µ log2 n
)

. Thus, with probabil-
ity 1− µ · n−ω(logn) = 1− n−ω(logn) no member of the collection of search points reaches
its maximal lifespan τmax. Thus, with this probability aging does not come into play at
all. This yields an expected number of 4eµk = O(µk) steps for reaching depth k.

As we have seen after T ′
Plateau with probability 1 − n−ω(logn) no new random search

points are needed to replace search points that are removed due to their age. Thus, with
probability 1− n−ω(logn) no new family trees are created.
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We have seen that using evolutionary aging with sufficiently large maximal lifespan
τmax does not change much compared to the corresponding algorithm without aging on
Plateau. This is not the case when static pure aging is used as descendants of plateau
points that are plateau points themselves inherit the age of the parent. This may lead
to the extinction of the whole collection of search points on the plateau if the maximal
lifespan τmax is not sufficiently large. We formalize this in the next theorem.

Theorem 9.8 (Jansen and Zarges (2011b)). Let µ = nO(1), α(n) = ω(1) and α(n) =
O(n/ lnn), and τmax = ω(log(n) · (n+ µ log n)) and τmax = O

(

n3/(α(n)3/2 lnn)
)

. The
optimization time of Aspa on Plateau is

TAspa,Plateau = n
Ω
(√

α(n)
)

with probability 1− n
−Ω

(√
α(n)

)

.

Proof. From the proof of Theorem 9.7 we know that E (T ′
Plateau) = O(µn log n) holds.

As the lower bound on τmax here matches that of Theorem 9.7, we can assume that all
search points in the collection of search points are plateau points. All collections of search
points until (and including) time T ′

Plateau only contain search points with at most 3n/5

1-bits with probability 1 − 2−Ω(
√
n), implying that all search points so far have linear

Hamming distance to the optimum. This is Lemma 3 in Witt (2006).
We now show that the collection of search points becomes extinct on the plateau with

probability 1 − n
−Ω

(√
α(n)

)

after at most τmax = O
(

n3/(α(n)3/2 lnn)
)

steps. Assume
that x ∈ Ct, t > T ′

Plateau, is selected. We denote a step as relevant if and only if it
generates a plateau point y 6= x. Recall that y inherits the age of x in this case. We
bound the number of relevant steps within overall τmax steps and the step size of such a
relevant step from above. Finally we show that this leads with high probability to the
extinction of the collection of search points before the optimum is reached and thus, to
a super-polynomial lower bound on the optimization time.

We first consider only a single search point in the collection of search points. The
probability for having a relevant step is at most 2/n as either the leftmost 0-bit or the
rightmost 1-bit has to flip. Thus, in a phase of O

(

n3/(α(n)3/2 lnn)
)

steps there are at

most O
(

n2/(α(n)3/2 lnn)
)

relevant steps with probability 1 − 2−Ω(n2/(α(n)3/2 lnn)) using
Chernoff bounds. Here, the upper bound on α(n) is needed.

A relevant step with step size b requires at least a b-bit mutation which happens with
probability at most 2/nb. The probability of not having a relevant step with step size
at least 3 +

√

α(n) in τmax = O
(

n3/(α(n)3/2 lnn)
)

steps is then bounded below by

1− τmax · O
(

n−(3+
√

α(n))
)

= 1− n
−Ω

(√
α(n)

)

.

We assume pessimistically that all relevant steps have step size 3 +
√

α(n) and that
the last such step reaches the optimum. The resulting random process corresponds to a
fair random walk on at most

m :=
(2n/5)− 3−

√

α(n)

3 +
√

α(n)
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states. We want to bound from above the probability to overcome the distance m, i. e.,
finding the optimum, in s ≤ n2/(4α(n)3/2 lnn), steps. As we have a fair random walk,
the probability for steps in either direction (say left and right) is 1/2 and the expected
number of steps for each direction in s steps equals s/2. We use Chernoff bounds to
bound the probability sought in the following way:

Prob (in s steps distance ≥ m) ≤ Prob
(

in s steps ≤ s

2
− m

2
times left

)

= Prob
(

in s steps ≤ s

2
·
(

1− m

s

)

times left
)

≤ e−
s
2
·m2

s2
· 1
2 = e−

m2

4s

Plugging s = n2/(4α(n)3/2 lnn) and m = cn/
√

α(n) for some appropriate constant
0 < c < 2/5 into this result yields

e−
m2

4s = e
− c2·n2·4·α(n)3/2·lnn

α(n)·n2 = n
−Ω

(√
α(n)

)

.

Using the simple union bound and that this probability is monotonically increasing in

s, the probability to find the optimum within ≤ s steps is bounded by s · n−Ω
(√

α(n)
)

= n
−Ω

(√
α(n)

)

. Analogously, the probability that any search point in the collection
of search points reaches the optimum in O

(

n3/(α(n)3/2 log n)
)

steps is bounded by µ ·
n
−Ω

(√
α(n)

)

= n
−Ω

(√
α(n)

)

.

We have seen that in the case of plateaus evolutionary aging neither improves nor
worsens the performance of the randomized search heuristic in comparison to not us-
ing aging at all if the maximal lifespan τmax is sufficiently large. In contrast to that,
static pure aging may hinder the search heuristic to perform a random walk on a
plateau implying a large optimization time. To be more precise we have shown that for
τmax = ω(log(n) · (n+ µ log n)) and τmax = o

(

n3/(α(n)3/2 lnn)
)

for some α(n) = ω(1)
and α(n) = O(n/ lnn) evolutionary aging yields the same upper bound on the optimiza-
tion time as the algorithm without aging whereas the algorithm with static pure aging
has superpolynomial optimization time. If τmax is chosen significantly larger than that
also static pure aging is efficient. This is not surprising, since the (µ+1) EA, i. e., Al-
gorithm 7.1 with τmax = ∞, has polynomial optimization time. However, by increasing
the maximal lifespan τmax aging becomes more and more ineffective as the frequency of
reaching the maximal lifespan decreases and, thus, aging achieves nothing in practice.

If the maximal lifespan τmax is chosen significantly smaller both aging mechanisms are
inefficient. Note that the plateau embedded in our example function only has size n.
On bigger plateaus static pure aging has even bigger difficulties. Again we provide
experimental supplements to point out practical implications of our theoretical results
and discuss further issues concerning the considered aging strategies in Section 9.4.2 .
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9.3. Combining the Assets of Aging

We have seen that static pure aging is able to efficiently optimize functions with local
optima where evolutionary aging fails. This is due to the capability of performing restarts
inherent to static pure aging. On the other hand we have seen that static pure aging
with a maximal lifespan τmax that is not very large fails on plateaus where evolutionary
aging has no problems. This failure is caused by incompetency of static pure aging in
recognizing that it is making some kind of progress even though the function values of the
search points encountered do not improve. While recognizing stagnation by measuring
function values helps to escape from local optima, this very mechanism hinders static pure
aging to be efficient on even rather small plateaus. When we consider both situations
in direct comparison it is not difficult to spot a crucial difference. While the function
values do not increase in both situations being stuck in a local optimum means that also
no new search points with equal function values are discovered. When a random walk on
the plateau is performed, there are constantly new points discovered even though they
all have equal function value. We introduce an aging operator called genotypic aging
that spots this difference (Definition 9.1). Obviously, we denote Algorithm 7.1 using
genotypic aging by Aga.

Algorithm 9.1 Genotypic Aging (ga).

1. If f(y) ≥ f(x) and y 6= x then

2. Set y.age := 0.
3. Else

4. Set y.age := x.age.

In comparison to static pure aging we changed the condition ‘f(y) > f(x)’ to
‘(f(y) ≥ f(x)) ∧ (y 6= x)’. Since f(y) > f(x) implies y 6= x, there is no change for
this case. If f(y) = f(x) holds we make a case distinction based on x and y. Those are
called genotypes in the context of evolutionary algorithms motivating our choice of geno-
typic aging as name for this operator. Finding a new search point with equal function
value is now sufficient progress to warrant setting its age to 0. This allows for random
walks on plateaus beyond what the maximal lifespan τmax allows.

We first consider LocalOptk and show that restarts are still possible when genotypic
aging is used. More precisely, genotypic aging behaves essentially the same as static pure
aging on LocalOptk.

Theorem 9.9 (Jansen and Zarges (2011b)). Let k ∈ N with k = O(1), µ ∈ N arbitrarily,
and τmax ∈ N with τmax = ω

(

log(n) · (nk + µ log n)
)

. The expected optimization time of
Aga on LocalOptk is

E
(

TAga,LocalOptk

)

= O
(

τmax · nk−1 + nk+1
)

.

Proof. We can mostly re-use ideas from the proof of Theorem 9.4 as the two aging mech-
anisms genotypic aging and static pure aging behave very similarly on LocalOptk.
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Nothing changes about the way the local optimum is found. This holds since the local
optimum can be reached by a number of fitness improvements and the maximal life-
span τmax is sufficiently large to allow for each of them with a probability close to 1.
Clearly, nothing changes about the probabilities to enter the two paths as these proba-
bilities are determined by the variation operator, not by aging. The only thing we need
to care about is if we still have ‘restarts’ when all search points are stuck in the local
optimum. Note that the local optimum is a unique point 0⌊n/2⌋1n−⌊n/2⌋ and that all
points with equal or larger function value have Hamming distance Ω(n) to this point.
Thus, with probability exponentially close to 1 no such search point will be encountered
if τmax = no(n) holds. For even larger τmax the path to the global optimum may be
discovered. Since this can only decrease the optimization time it does not hurt our upper
bound.

In a similar way we can show that genotypic aging behaves similar to evolutionary aging
on Plateau. In contrast to the proof of Theorem 9.7 we now have to keep in mind that
replicas of a plateau point inherit the age of its parent. Therefore, the maximal lifespan
τmax has to be a bit larger as now specific 1-bit mutations – instead of creating replicas
– are required to obtain search points with age 0.

Theorem 9.10 (Jansen and Zarges (2011b)). Let µ = nO(1) and τmax = ω(µn log n) .
The expected optimization of Aga on Plateau is

E
(

TAga,Plateau

)

= O
(

µn3
)

.

Proof. Again we can re-use the ideas from a previous proof (Theorem 9.7) as on Plateau
the aging mechanisms genotypic aging and evolutionary aging behave very similar. For
the upper bound on T ′

Plateau we have to consider the expected time for increasing
the currently best function value. As in the proof of Theorem 9.7 we see that τmax

= ω(µn log n) suffices to reach the plateau with the whole collection of search points
with probability at least 1− n−ω(1).

For the upper bound on the time to reach depth k in a family tree we have to be
more careful as now replicas inherit the age of its parent. However, as the age of the
replica and the parent are the same, the descendant can only be deleted before its parent
due to selection which has still probability 1/2. Therefore, we only need to care about
the probability to generate a descendant x′ of a plateau point x with maximal depth Lt

and consider relevant steps where x 6= x′. The probability for a relevant step is at least
1/n · (1 − 1/n)n−1 ≥ 1/(en) as it suffices to flip exactly one bit and thus, the expected
waiting time for this is bounded by O(n).

Similarly to evolutionary aging a search point created during a relevant step does not
have larger fitness and therefore has equal probability to be removed during the fitness-
based selection process. We see that it is not sufficient to consider a single relevant step
but rather consider the expected time until all search points have been involved into a
relevant step. The expected time for this event is bounded by O(µn log µ) due to coupon
collector arguments (Lemma B.17). Note that τmax = ω(µn log n) is large enough to wait
for this and thus, the desired probability of 1− n−ω(1) follows.
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So far we have seen that aging can both increase and decrease the performance of a
randomized search heuristic dramatically. On one hand aging allows to perform restarts
and thus escape local optima. On the other hand aging may hinder a randomized search
heuristic to perform a random walk on a plateau. The aging operator introduced here
combines the benefits of both previous operators. We also provide experimental supple-
ments for this operator in order to allow for comparisons in the next section.

9.4. Experimental Supplements

The results presented in the preceding sections give new insights into drawbacks and
benefits of aging strategies for randomized search heuristics. Moreover, they give a
coarse picture of what can happen during the optimization process when using different
aging strategies. Nevertheless, not all questions are answered. First of all, we have only
shown upper bounds on the expected optimization time in cases where aging is beneficial
and upper bounds on success probabilities where it is harmful. Second, asymptotic
results may not describe the situation for typical problem dimensions. Furthermore, the
influence of the maximal lifespan τmax and the size µ of the collection of search points
was not analyzed in detail. Therefore, in this section, we investigate further properties
of our algorithm in order to supplement our theoretical results.

This experimental analysis here is similar to that executed in the preceding chapter, in
particular with respect to the investigation of the influence of τmax. Therefore, we begin
with the same experimental setup as described previously.

First, we consider the situations which yield polynomial upper bounds on the optimiza-
tion time, i. e., static pure aging and genotypic aging on LocalOptk and evolutionary
aging and genotypic aging on Plateau respectively. We again use µ ∈ {1, ⌊√n⌋ , n}
and values for τmax which are bounded below by our results. We perform 100 indepen-
dent runs of the considered algorithm and plot the results using box-and-whisker plots
(Definition B.1) for n ∈ {10, 20, . . . , 200}.

Second, we analyze the influence of the maximal lifespan τmax for n ∈ {10, 20, . . . , 200}
and the same settings of µ as in the first set of experiments in very much the same way
as done before. However, we only consider n ∈ {10, 20, . . . , 150} for Plateau and µ = n
due to the excessive computation time. For each value of n and µ we perform experiments
with 20 equidistantly chosen values for τmax, i. e., τmax = (i/20) · τmax (i ∈ {1, . . . , 20})
where τmax is the corresponding τmax value from the first set of experiments. We fix the
maximal number of iterations executed to the corresponding upper quartile from the first
set of experiments and give results in form of success rates as 3D plots.

In addition to the experimental analysis in the previous chapter, we perform a third set
of experiments, which is concerned with the algorithms where aging is provably harmful,
i. e., evolutionary aging on LocalOptk and static pure aging on Plateau. Again we
perform experiments for µ ∈ {1, ⌊√n⌋ , n} and n ∈ {10, 20, . . . , 200}. We fix the maximal
number of iterations executed to the corresponding (maximal) upper quartile from the
first set of experiments. The results are given as a plot for each µ showing the number of
successful runs within 100 independent runs for all pairs of n. As maximal lifespan τmax
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we use the values from the first set of experiments. Note that for Plateau we have
different bounds for τmax in evolutionary aging and genotypic aging. Thus, there are
different bounds in the experiments for evolutionary aging and genotypic aging.

9.4.1. Results for Local Optima

As described in Section 9.1 the idea behind LocalOptk is that it contains an easy to find
path to a local optimum and a hard to find path to the unique global optimum. Although
LocalOptk is defined for k = 1, this choice of k does not reflect the underlying idea of
the function. Furthermore, the optimization times on LocalOptk considered here are
exponential in k. Therefore, we restrict our experiments to k = 2.

For the first set of experiments we consider static pure aging and genotypic aging.
Due to Theorem 9.4 and Theorem 9.9 an appropriate maximal lifespan here is τmax

= ω
(

log(n) · (nk + µn)
)

and the optimization time is O
(

τmaxn
k−1 + nk+1

)

. Thus, we set
τmax =

⌊

6 log2(n) · (nk + µn)
⌋

and get O
(

n3 log2 n
)

for k = 2 and µ ∈ {1, ⌊√n⌋ , n}.
The empirical results are shown in Figure 9.4. As before we plot c · b(n) if we have

a bound of O(b(n)) on the expected optimization time for illustrative purposes. The
constant c is determined using a least squares fit. It is evident that the three values of µ
chosen here do not only lead to the same asymptotic upper bound on the optimization
time but in fact exhibit a very similar behavior in our study as the number of iterations
needed seems to be mostly independent of µ if µ is not too big. Furthermore the choice
between static pure aging and genotypic aging does not yield any significant differences.
We conclude that the optimization time is dominated by the number of restarts and
the waiting time for a restart rather than the possible additional costs caused by the
collection of search points or the actual choice between these two aging mechanisms.

The results of the second set of experiments are shown in Figure 9.5. Note that we
expect 75 successful runs within 100 runs as we fix the maximal number of iterations
executed to the corresponding upper quartile from the first set of experiments. Again
both aging mechanism as well as the three settings for µ yield very similar results. We
see that the algorithms seem to be rather robust against changes of the maximal lifespan
τmax. For most of the considered values the success rate is not below our expected value
and only for the smallest three to five values it drops drastically. Note that the success
rate becomes even larger if τmax is set to slightly smaller values as the ones that stem from
our theoretical results. This suggests that we are conservative with respect to our choice
of τmax and in practice slightly smaller values are to be preferred. For larger sizes of the
collection of search points this effect becomes more obvious as the sudden decrease of the
success rate appears later. We conclude that a bigger collection of search points might
lead to more robustness against changes to the maximal lifespan τmax. Moreover, the
results indicate that the success rate seems to converge to 0 while τmax decreases. This
leads to the conclusion that setting τmax to constant values is not appropriate. Note that
for constant τmax almost constantly new search points are created uniformly at random,
making the search heuristics very similar to pure random search which finds a unique
global optimum in expected time 2n.
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Figure 9.4.: Empirical results for Aspa and Aga on LocalOptk with different sizes µ of
the collection of search points, data from 100 runs.
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Figure 9.5.: Success rates in 100 independent runs of Aspa and Aga on LocalOptk with
k = 2, different sizes µ of the collection of search points and decreasing values
of τmax.
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Figure 9.6.: Success rates in 100 independent runs of Aeva on LocalOptk with k = 2,
τmax =

⌊

6 log2(n) · (nk + µn)
⌋

, and different sizes µ of the collection of search
points.

For the third set of experiments we now consider evolutionary aging. Due to The-
orem 9.3 the optimization time is at least t with probability 1 − O

((

(µ log µ)/nk−1
)

+t/n(n/2)−k
)

for some t ∈ N. Moreover we have an expected optimization of Ω(2n) if
µ = o

(

nk−1/ log n
)

. We see that the condition on µ is not fulfilled for µ = n and that
the first statement becomes trivial in that case since it only yields a probability of Ω(1).
Thus, experiments are particularly interesting as they can give hints to the extensibility
of the theorem.

Remember that we again fix the maximal number of iterations executed to the cor-
responding upper quartile from the first set of experiments. Thus, we can assume
t to be polynomial and thus the theorem yields success probabilities of O(1/n) and
O(log(n)/

√
n) respectively. The empirical results are shown in Figure 9.6. We see that

in all three cases the success rate is decreasing with increasing n and is clearly smaller
than 50%. Moreover, it decreases more slowly for bigger sizes of the collection of search
points as indicated by Theorem 9.3. We assume that there is room for improvements
concerning an extension to bigger collection of search points.

9.4.2. Results for Plateaus

For Plateau we first consider evolutionary aging and genotypic aging. According to
Theorem 9.7 an appropriate maximal lifespan when using evolutionary aging is τmax

= ω(log(n) · (n+ µ log n)). Analogously to the experiments for LocalOptk we set
τmax =

⌊

6 log2(n) · (n+ µ log n)
⌋

. In the case of genotypic aging Theorem 9.10 indicates
τmax = ω(µn log n) and we choose τmax =

⌊

6µn log2 n
⌋

. In both cases the optimiza-
tion time is O

(

µn3
)

. Thus, we get optimization times of O
(

n3
)

for µ = 1, O
(

n3.5
)

for
µ = ⌊√n⌋ and O

(

n4
)

for µ = n.
The empirical results for this set of experiments are shown in Figure 9.7. Again we

plot additionally c · b(n) if we have a bound of O(b(n)) on the expected optimization
time for illustrative purposes where the constant c is determined using a least squares
fit. We see that the optimization times in our experiments correspond pretty well to
the proven asymptotic upper bounds. The variance within the 100 runs is not too big.
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Moreover there is no significant difference between the two considered aging mechanisms
evolutionary aging and genotypic aging.

As for LocalOptk we examine the influence of the maximal lifespan on the optimiza-
tion time. The results are shown in Figure 9.8. Here a fundamental difference between
the two aging operators becomes obvious. On one hand evolutionary aging seems not
to care much about the maximal lifespan since all success rate are around the expected
value of 75. On the other hand genotypic aging with µ = 1 and µ = ⌊√n⌋ shows the same
behavior as seen in the experiments on LocalOptk and we observe a drastic decrease
of the success rate when τmax becomes very small. For genotypic aging and µ = n this
is again not the case. We conclude that evolutionary aging is much more robust against
changes of the maximal lifespan whereas for genotypic aging this depends highly on the
size µ of the collection of search points. The nature of this dependence on µ (described
as a function depending on n) needs to be determined and is a subject of future research.

Finally we consider static pure aging on Plateau analogously to evolutionary aging
on LocalOptk. As the maximal lifespan τmax is different for evolutionary aging and
genotypic aging we consider both values in our experiments. Due to Theorem 9.8 we know

that the optimization time of Aspa is at least n
√

α(n) with probability 1−n−
√

α(n) for some
α(n) = ω(1) and α(n) = O(n/ lnn). As τmax = O

(

n3/(α(n)3/2 lnn)
)

we can assume
α(n) = Ω(n/ lnn) for τmax =

⌊

6 log2(n) · (n+ µ log n)
⌋

and τmax =
⌊

6µn log2 n
⌋

with
µ = 1. For τmax =

⌊

6µn log2 n
⌋

and µ = ⌊√n⌋ we can only assume α(n) = Ω
(

n/ log2 n
)

.
For τmax =

⌊

6µn log2 n
⌋

and µ = n only α(n) = Ω
(

n2/3/ log2 n
)

.
The results of the experiments are shown in Figure 9.9. It is obvious that the success

rate drops rapidly to 0 for both values of τmax since already for n = 30 it is constantly
0. In particular the success rate is clearly smaller than the success rate of evolutionary
aging on LocalOptk showing that static pure aging is really in trouble on Plateau.
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Figure 9.7.: Empirical results for Aeva and Aga on Plateau with different sizes µ of the
collection of search points, data from 100 runs.
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Figure 9.8.: Success rates in 100 independent runs of Aeva and Aga on Plateau with
different sizes µ of the collection of search points and decreasing values of
τmax.
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Figure 9.9.: Success rates in 100 independent runs of Aspa with τmax =
⌊

6 log2(n) · (n+ µ log n)
⌋

from Theorem 9.7 (top) and τmax =
⌊

6µn log2 n
⌋

from Theorem 9.10 (bottom) on Plateau with different sizes µ of the col-
lection of search points.
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10. Aging Beyond Restarts

In the previous chapter, we have seen that on one hand static pure aging can greatly
increase the performance of a randomized search heuristic by recognizing stagnation
and enabling it to perform restarts. Thus, it permits the algorithm to escape from
local optima. On the other hand static pure aging does not achieve any benefits on
plateaus but rather can be harmful in this situation since it mistakes missing progress in
function values for stagnation. Even the result on the function containing a long k-path
(Section 8.2) incorporates some kind of restart that is responsible for the success of the
search heuristic.

While being able to perform restarts can be essential for the performance of the search
heuristic it can also be achieved by simpler and computationally less expensive mecha-
nisms. As seen in the previous chapter static pure aging performs a restart if all search
points share the same age and all exceed the maximal lifespan τmax. Since a new search
point is assigned age 0 if it excels in the function value we can conclude that the last im-
provement occurred τmax rounds ago. In order to implement static pure aging each search
point needs to be assigned an age which has to be adjusted in each round. Moreover,
search points exceeding the maximal lifespan τmax need to be removed and replaced by
new search points which makes additionally evaluations of the objective function neces-
sary. We observe that it is computationally much cheaper to keep track of the number of
rounds since the last improvement in function value occurred and to perform a complete
restart if this number exceeds τmax.

It is highly interesting to see what aging can achieve with respect to efficiency of an
artificial immune system that cannot be achieved by restarts. One obvious difference is
that aging may replace only parts of the current collection of search points by the newly
generated search points. Such partial restarts may prove beneficial for certain problems.
We address this question by first extending our algorithm framework in Section 10.1. We
combine static pure aging with crossover, a variation operator known from evolutionary
algorithms. Additionally, we introduce a mild strategy to maintain a certain level of
diversity with respect to age. We consider different variants of static pure aging and
selection for replacement mechanisms and investigate the interplay between this modules.
In particular, we point out similarities and differences of the different algorithmic variants.
One might wonder why we use static pure aging instead of genotypic aging. Since the
problem considered in this chapter does not contain a plateau, both operators exhibit
essentially the same behavior. We therefore stick to the operator currently used in
practice.

The results in the remainder of this chapter are structured in results that hold for all
considered variants of static pure aging (Section 10.2), results that depend on the aging
strategy but are independent of the replacement strategy (Section 10.3), and results that

187



10. Aging Beyond Restarts

depend on the concrete instantiation of static pure aging (Sections 10.4–10.7). We close
the chapter by presenting an empirical evaluation of the algorithm for different sizes of
the collection of search points (Section 10.8). The content of this chapter is based on the
work done in Jansen and Zarges (2010a,b, 2011c).

10.1. A Structured View on Aging

We are interested in what aging can achieve beyond restarts and what influence age
diversity mechanisms can have on the efficiency of the optimization. We analyze this
by extending our algorithmic framework (Algorithm 7.1) with a more involved variation
operator and different aging and replacement strategies. This way a more structured
view on aging is established, allowing for an analysis of the interplay between aging
and the selection mechanism incorporated into the algorithm. In the following, we first
describe this extended framework. Afterwards, we introduce the objective function under
consideration.

10.1.1. Further Extending the Framework

We consider Algorithm 7.1 and only present the concrete extensions here, i. e., the vari-
ation (line 2c), the decision on the new search point’s age (line 2d), and the selection
for replacement (line 2f). The other modules are defined just like in Section 7. Like
before, we abbreviate Algorithm 7.1 using static pure aging by Aspa, independently of
the concrete aging and replacement variant.

Variation

Variation (Algorithm 10.1) creates one new search point y by means of k-point crossover
and standard bit mutations (Algorithm 3.5) known from evolutionary algorithms (de Jong
2006). The crossover operator is efficient when the collection of search points is suffi-
ciently diverse. Since aging aims at increasing the diversity it is a good idea and inter-
esting test case to combine crossover with aging. In k-point crossover two search points
x, y ∈ {0, 1}n are cut into k + 1 pieces by selecting uniformly at random k different cut
positions. A new search point is constructed from the pieces by taking all the odd num-
bered pieces of x (the first, third, . . . ) and all even numbered pieces of y (the second,
fourth, . . . ) and concatenating them in increasing interleaving order. Usually, k-point
crossover with very small values for k is employed, most often k = 1 or k = 2.

We apply these k-point crossover and standard bit mutations in the following way.
With probability pc (a parameter of the algorithm), we select two search points from C
uniformly at random and perform k-point crossover. The result is subject to mutation.
The final result is the new search point y. If no crossover is performed (with proba-
bility 1 − pc), we select one search point from C uniformly at random and mutate it,
the result being the new search point y. The variation operator is formally defined in
Algorithm 10.1.
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10.1. A Structured View on Aging

Algorithm 10.1 Variation.

1. With probability pc
2. Select x1, x2 ∈ Ct−1 uniformly at random.
3. Select c1, c2, . . . , ck ∈ {0, 1, 2, . . . , n} pairwise different and uniformly at random.
4. Sort c1, . . . , ck in ascending order and set ck+1 := n+ 1.
5. If c1 > 0 Then

Set h := 1 and i := 0.
Else

Set h := 2 and i := 1.
6. For all j ∈ {0, . . . , n− 1}
7. Set y[j] := xi+1[j].
8. If j ≥ ch Then

Set i := 1− i and h := h+ 1.
9. Else

10. Select x1 ∈ Ct−1 uniformly at random.
11. Set y := x1 and x2 := x1.
12. Independently for each i ∈ {0, 1, . . . , n− 1}
13. With probability 1/n set y[i] := 1− y[i].

Variants of Static Pure Aging

The basic idea of static pure aging is to assign age 0 if the new search point is an
improvement. Otherwise it inherits its age from the search points it is derived from.
As search points created by crossover have two search points as origin, things are less
obvious in that case. It is unclear how the comparison with respect to the function value
is to be made and what age is to be inherited if no improvement was made. One may
believe that these are unimportant details as they only matter in the case of crossover
and if the new search point is not good anyway. However, we will later see that this is not
the case. We consider the general formulation of static pure aging from Algorithm 10.2
and implement three concrete variants described below.

Algorithm 10.2 Outline of Static Pure Aging.

1. If f(y) > max{f(x1), f(x2)} Then

2. Set y.age := 0.
3. Else

4. Set y.age := age of either x1 or x2.

The idea of static pure aging is to punish a new search point that fails to be an
improvement by having it inherit its age. Improvements are rewarded by assigning age 0
and thus a longer lifespan. In the case of crossover the worst punishment possible is to
assign the new search point y the larger age of the two other involved search points, x1
and x2.
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10. Aging Beyond Restarts

While being simple it does not appear to be entirely fair. The reason the new search
point fails to be an improvement could be that a good search point was combined with
a bad search point. It therefore makes sense to compare the function values of x1 and
x2. If these function values are equal we set the new search point’s age to the older age.
If, however, the two search points have different function values we have a choice. We
can react in an optimistic way to this difference and assign the new search point the age
of the better search point. Alternatively, we could be pessimistic and assign the new
search point the age of the worse search point. We define all three variants formally in
Definition 10.1.

Definition 10.1 (Jansen and Zarges (2011c)). A new search point y that was either
created by crossover of x1 and x2 or by mutation of x1 (where we have x1 = x2 for
notational simplicity) is assigned its age as outlined in Algorithm 10.2. Line 4 of this
algorithm is detailed in three variants as follows.

In age-based static pure aging the age is set to the age of the older search point:
y.age := max{x1.age, x2.age}.

In optimistic value-based static pure aging the age is set to the age of the search point
with larger function value, in case of equal function values to the larger age: If f(x1)
6= f(x2) then y.age := argmax{f(x1), f(x2)}.age, else y.age := max{x1.age, x2.age}.

In pessimistic value-based static pure aging the age is set to the age of the search point
with smaller function value, in case of equal function values to the larger age: If f(x1)
6= f(x2) then y.age := argmin{f(x1), f(x2)}.age, else y.age := max{x1.age, x2.age}.

Variants of Selection for Replacement

The selection for replacement is the part of the algorithm where age diversity mechanisms
come into play. However, the function values are the more important selection criteria.
If at least one current search point is removed due to its age the new search point is
inserted. Otherwise it is only inserted if its function value is not worse than the worst
function value of any of the current search points. If its function value is strictly larger
than this value it replaces one current search point that is selected uniformly at random
among all search points with worst function value. If its function value is equal to the
worst function value, we have to be more careful. If age is considered to be helpful it
makes sense to avoid having all current search points of the same age. We consider the
general formulation for selection for replacement from Algorithm 10.3 and discuss four
different concrete strategies described below.

We consider different variants of selection for replacement in order to investigate the
role of age diversity for static pure aging. Probably the simplest way to maintain a certain
degree of age diversity is to replace a search point whose age appears most frequently
within the current collection of search points (including the new point itself). This
mechanism ensures that the number of different age values among the worst search points
does not decrease by exchanging two search points with worst function value. Note that
it only affects the worst points in the current selection and only comes into play if another
point with this worst function value is inserted. Another possible replacement strategy

190



10.1. A Structured View on Aging

Algorithm 10.3 Outline of Selection for Replacement.

1. If |Ct| < µ then

2. If y.age ≤ τmax then

3. Set Ct := Ct ∪ {y}.
4. While |Ct| < µ do

5. Select x ∈ {0, 1}n uniformly at random.
6. Set x.age := 0. Set Ct := Ct ∪ {x}.
7. Else

8. Choose z ∈ Ct with minimal fitness uniformly at random.
9. If f(y) = f(z) then

10. Determine a candidate set D considering an appropriate replacement strategy.
11. Select x ∈ D uniformly at random.
12. Set Ct := (Ct ∪ {y}) \ {x}.
13. If f(y) > f(z) then

14. Set Ct := (Ct ∪ {y}) \ {z}.

removes a search point that is selected uniformly at random among all search points with
minimal difference in age to the new search point. Again, it is ensured that the number
of different age values among the worst search points does not decrease by exchanging
two search points with worst function value.

We additionally consider two variants that do not employ age diversity mechanisms.
On one hand, we analyze an algorithm that ignores the current age structure and simply
replaces one current search point that is selected uniformly at random among all search
points with worst function value. Note that this variant corresponds to the standard
selection for replacement method in evolutionary algorithms. On the other hand, we
consider the extreme case where age diversity is intentionally destroyed by replacing
a search point whose age appears fewest within the current collection of search points
(including the new point itself). Similar to the different static pure aging strategies we
define a set of replacement strategies formally.

Definition 10.2 (Jansen and Zarges (2011c)). A new search point y that was created
during the variation phase of the algorithm replaces a search point from the current
collection of search points Ct as outlined in Algorithm 10.3. Line 10 of this algorithm is
detailed in four variants as follows. In all variants only search points with worst function
value are considered for replacement, namely D′ := {x ∈ Ct | f(x) = minx′∈Ct f(x

′)}.
In most frequent replacement the set of search points whose age occurs most frequently

within the current selection of search points (including y) is determined. Formally, let

fa = |{x ∈ (Ct ∪ y) | x.age = a}|

be the number of occurrences of age a and

fmax = max
a∈{0,1,...,τmax}

fa
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10. Aging Beyond Restarts

the number of occurrences of the age that occurs most frequently in the current selection
of search points. Note, that there may be multiple ages that occur most frequently in Ct.
In this case, all these ages are taken into account. Then, D = {x ∈ Ct | fx.age = fmax}.

In smallest age distance replacement a search point from D′ with minimal age distance
to the new search point is selected uniformly at random, i. e.,

D =

{

x ∈ D′ | |x.age − y.age| = min
x′∈D′

(

|x′.age − y.age|
)

}

.

In random replacement simply a search point from D′ is selected for replacement uni-
formly at random, i. e., D = D′.

In fewest replacement the set of search points whose age occurs fewest within the cur-
rent selection of search points (including y) is determined. Formally, let

fmin = min
a∈{0,1,...,τmax}

fa

be the number of occurrences of the age that occurs fewest in the current collection
of search points. Again, there may be multiple ages that occur fewest in Ct. Then,
D = {x ∈ Ct | fx.age = fmin}.

10.1.2. The Example Function Under Consideration

Since we want to see beneficial effects due to aging we again consider a function with
a local optimum that is much easier to find than any global optimum. It is important
that a global optimum cannot be found efficiently by means of an appropriate restart
mechanism. The considered function f : {0, 1}n → R, formally defined in Definition 10.3,
achieves all this and other goals. A visualization of f is given in Figure 10.1. Since

Definition 10.3 (Jansen and Zarges (2011c)). For n = 4k, k ∈ N, and x ∈ {0, 1}n the
function f : {0, 1}n → R is defined by

f(x) =











2n if x = 1n/40n/4q, q ∈ {0, 1}n/2, |q|1 ≥ n/12,

n+ i if x = 1i0n−i, i ≤ n/4,

n− OneMax(x) otherwise.

.

For the vast majority of the points x in the search space the function value is defined
as n−OneMax(x) leading the algorithm in direction of the all-zero bit string 0n. This is
the beginning of a path of Hamming neighbors of the form 1i0n−i (compare the function
Ridge from Definition 8.9). As seen before, with such construction the local optimum
1n/403n/4 is easy to find.

Points of the form 1n/40n/4q with q ∈ {0, 1}n/2 and |q|1 ≥ n/12 are special. The set of
all these points

OPT :=
{

1n/40n/4q | q ∈ {0, 1}n/2, |q|1 ≥ n/12
}

equals the set of all global optima of f . The crucial observation is that these points are
easy to locate by means of a k-point crossover of the local optimum 1n/403n/4 and some
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Figure 10.1.: The example function f . (Jansen and Zarges 2011c).

y ∈ {0, 1}n that is chosen uniformly at random but very difficult otherwise. We make
this precise in the following lemma.

Lemma 10.4 (Jansen and Zarges (2011c)). Let x = 1n/403n/4 and y ∈ {0, 1}n be selected
uniformly at random. Let OPT be the set of global optima of f . Then, for any k = O(1)

Prob (k-Point-Crossover(x, y) ∈ OPT) = Ω(1)

holds.

Proof. Optimal search points are of the form 1n/40n/4q where q ∈ {0, 1}n/2 and |q|1
≥ n/12. We consider one possible way of constructing z ∈ OPT by means of k-point
crossover of x and y and prove that this happens with a probability that is bounded
below by a positive constant. Note that we do not aim at deriving tight bounds on this
probability and sacrifice pointless accuracy in favor of simplicity of the proof.

Consider a crossover point c with c ∈ {0, 1, . . . , n} selected uniformly at random. For
any constants 0 ≤ δ < δ′ ≤ 1 we have that δn ≤ c < δ′n holds with probability at least
ε > 0 where ε is a positive constant depending on δ′ − δ.

Consider crossover points c1 < c2 < · · · < ck ∈ {0, 1, . . . , n} (with k ∈ N and
k = O(1)) selected uniformly at random. See Figure 10.2 for an illustration. We have
(1/2)n ≤ c1 < (7/12)n (c1 ∈ yC), (3/4)n ≤ c2 < (5/6)n (c2 ∈ yE), and (5/6)n ≤ ci ≤ n
(ci ∈ yF ) simultaneously for all i ∈ {3, 4, . . . , k} with probability at least εk where ε > 0
is some constant. Note that this holds for any constant k (and that for very small values
of k like k = 1 the conditions on c2 and ci with i > 2 are empty and thus trivially hold).

In this situation the crossover of x = 1n/40n/4 and y (where y ∈ {0, 1}n uniformly at
random) is carried out as can be seen in Figure 10.2. Having (1/2)n ≤ c1 < (7/12)n
implies that the leftmost n/2 bits of z equal 1n/40n/4 since these bits are copied from x.
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n
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local optimum x 1 1· · · 1 1

n
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0 0 0 0 0 0 0 0· · · 0 0 0 0 0 0 0

new random search point y

Figure 10.2.: Visualization of x and y from Lemma 10.4 (Jansen and Zarges 2011c).

The bits between c1 and c2 (c2 = n in the case of 1-point crossover) are copied from y.
Since we have (1/2)n ≤ c1 < (7/12)n and (3/4)n ≤ c2 < (5/6)n we know that these are
at least (3/4)n− (7/12)n = (1/6)n bits copied from y. Clearly, these bits are distributed
uniformly at random. The expected number of 1-bits in these (1/6)n bits equals (1/12)n
and we have at least (1/12)n 1-bits among these bits with probability at least 1/2. Thus,
we have Prob (z ∈ OPT) ≥ (1/2) · εk = Ω(1) as claimed.

It is easy to see that the global optima of f are difficult to find in a different way. For
all points x ∈ OPT we have n/3 ≤ |x|1 ≤ (3/4)n and thus there are always exponentially
many points with the same number of 1-bits. For each number i of 1-bits let OPTi denote
the set of bit strings from OPT with this number of 1-bits, i. e., OPTi = {x ∈ OPT |
|x|1 = i}. Let OPTi = {x ∈ {0, 1}n | |x|1 = i} \ OPTi denote the other strings with the
same number of 1-bits. Clearly, we have |OPTi| /

∣

∣OPTi

∣

∣ = 2−Ω(n) and we conclude that
it is highly unlikely to find OPT by pure random sampling. This implies that restarts do
not help. Also randomized search heuristics that are efficient on OneMax are unlikely to
encounter OPT since they quickly leave the part of the search space with these numbers
of 1-bits. Thus, they sample only a polynomial number of such bit strings and encounter
OPT only with probability nO(1) · 2−Ω(n) = 2−Ω(n).

Note that we do not claim that no search heuristic without aging can be efficient on
f . Clearly, search heuristics choosing some x ∈ OPT as initial search point optimize
f with a single function evaluation. While such search heuristics obviously cheat on
f by incorporating too much knowledge about it into their ‘search strategy’ there are
other mechanisms that ‘cheat’ in less obvious ways. Mechanisms that maintain a high
degree of diversity in the collection of search points are another way of coping with multi-
modal problems. Friedrich et al. (2009b) consider several such mechanisms, among those
one that preserves diversity on the level of fitness values. This mechanism works well on
many functions where the number of function values is small, i. e., polynomially bounded.
Clearly, for noisy functions or continuous functions in R

n such a mechanism cannot work.
Moreover, for Ackley’s well-known trap function (Ackley 1987) it achieves highly efficient
optimization, a clear indication that this mechanism is cheating in some way. When
discussing example functions it is completely pointless to discover or, even worse, invent
search heuristics that are efficient on the example function under consideration. The
point of considering example functions is to exhibit situations that highlight the usual
working patterns of commonly used randomized search heuristics. While randomized
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search heuristic are very often used in practice and aging is a commonly used mechanism
to improve their performance on difficult problems this fitness-based diversity mechanism
is not commonly used. We therefore claim that reasonable search heuristics without aging
and crossover fail to be efficient on this example function f .

The example function f as defined in Definition 10.3 is very specific. It is used as a
vehicle to demonstrate and formally prove a number of properties of the aging operators
we consider here. The same effects can be observed when optimizing other problems,
too. For example, it is not essential that f contains exactly one local optimum where a
crossover with random search points is needed to locate the global optimum. Functions
with several of such local optima would not be very much different. However, it is
essential that a partial restart is needed for the optimization. If a complete restarts
suffices aging is not needed and may be replaced by an appropriate restart strategy.

We have seen that appropriate k-point crossover operations can yield a global optimum
of f with good probability. In the following we will investigate the probability that the
algorithms under consideration perform such crossover operations. If it is sufficiently
large, the respective algorithm is efficient on f .

10.2. Common Properties of All Considered Aging Variants

As seen in Chapter 8, the most critical parameter of aging is the maximal lifespan τmax.
The results in that chapter indicate that a lower bound of τmax = ω(µn log µ) suffices for
all upper bounds on the expected optimization time here. Apart from this the algorithm
as well as our proofs work for most settings of the other parameters. We require µ ≥ 2
since we need crossover and the usual bound µ = nO(1), thus the size of the collection
of search points µ is almost completely unrestricted. The crossover probability pc can
be set almost arbitrarily. It is usually set to some rather large constant like pc = 0.8.
Sometimes, very small crossover probabilities are used in proofs (see for example Jansen
and Wegener (2002)) but in practice this is hardly ever done. We deal with any value
0 < ε ≤ pc ≤ 1−ε < 1 for some arbitrarily small constant ε > 0. Setting pc in this way the
concrete value of pc has no influence on the asymptotic expected optimization time. Note,
however, that having pc converge to either 0 or 1 may change things considerably. While
it is not difficult to adjust our upper bounds to such settings we refrain from considering
these rather unusual cases. As already pointed out in Lemma 10.4 the number k of
crossover points used in k-point crossover is not very important as long as it is bounded
above by a constant. Clearly, smaller values are better for f and we restrict our attention
to the commonly used 1-point crossover in Section 10.8 when performing experiments.

The different variants of Aspa behave very similarly until the local optimum is reached
for the first time. The main difference of the considered variants is the way a global
optimum can be constructed by recombination of a local optimum and a randomly chosen
search point like in Lemma 10.4. This can happen when we have at least two search
points in the local optimum and some but not all of those locally optimal search points
are removed due to their age. We call such an event a partial restart. It is unclear
how likely it is that such a partial restart occurs. Moreover, we need to derive the
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probability that given that a partial restart occurs an appropriate crossover operation
is executed afterwards. We leave these two questions open for the moment and first
prove parameterized lower and upper bounds for all strategies. In these bounds the
probabilities for these two events appear as unknowns. Afterwards, we investigate them
separately for the different replacement strategies. We start with the upper bound on
the optimization time of Aspa and the parameter settings discussed above.

Lemma 10.5 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Moreover, let p denote the probability that a partial restart occurs and q the probability for
an appropriate crossover operation creating the global optimum after such partial restart.

The expected optimization time of Aspa using an arbitrary strategy for static pure ag-
ing from Definition 10.1 and an arbitrary strategy for selection for replacement from
Definition 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= O
(

p−1q−1
(

τmax + n2 + µn log n
))

.

The probabilities p and q depend on n, µ, pc, k and τmax and the aging and replacement
strategies used. For the sake of readability we just write p and q since the parameters
are obvious from the context.

Proof of Lemma 10.5. There are three regions of the search space that correspond to
phases of a run of Aspa on f . In the vast majority of the search space the fitness value
is given as n − OneMax(x). As seen in previous proofs, this part can be optimized
as the (µ+1) EA on OneMax due to our lower bound on the maximal lifespan τmax.
The additional use of crossover cannot increase the asymptotic growth of the expected
optimization time here since with probability 1−pc ≥ ε = Ω(1) no crossover is performed.
Thus the expected optimization of O(µn+ n log n) (Witt 2006) carries over. Second,
there are the bit strings of the form 1i0n−i with i ≤ n/4. Again, due to our lower bound
on the maximal lifespan τmax this part can be optimized as the (µ+1) EA optimizes
LeadingOnes, i. e., in expected time O

(

n2 + µn log n
)

(Witt 2006).
Finally, we are interested in constructing a global optimum by recombination of a local

optimum and a randomly chosen search point like in Lemma 10.4. This happens with
probability q after a partial restart that in turn occurs with probability p. Both experi-
ments follow the geometric distribution (Lemma B.14). Thus, after expected q−1 partial
restarts a globally optimal search point is created. Moreover, Aspa requires expected p−1

trials to perform a partial restart.
Clearly, the time we need to wait until a search point is removed due to its age (or

earlier due to other reasons) is at most τmax which concludes the proof.

The following lower bound on the optimization time of Aspa holds for all possible values
of τmax and the same settings of µ and pc as before.

Lemma 10.6 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1), and τmax = 2O(n).
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Moreover, let p denote the probability that a partial restart occurs and q the probability for
an appropriate crossover operation creating the global optimum after such partial restart.

The expected optimization time of Aspa using an arbitrary strategy for static pure ag-
ing from Definition 10.1 and an arbitrary strategy for selection for replacement from
Definition 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= Ω
(

p−1q−1
(

τmax + n2 + µn log n
))

.

Proof. As in the proof of Lemma 10.5 there are three regions in the search space that
correspond to phases of a run of Aspa on f : the part where the fitness value is given by
n − OneMax(x), the LeadingOnes-like path to the local optimum and the region of
the global optimum.

First assume that the maximal lifespan τmax is sufficiently large, say ω(µn log µ). In
this case a lower bound can be proven similarly to the (µ+1) EA on LeadingOnes (Witt
2006). For this we need to show that the LeadingOnes-like path is first reached by
a search point with a number of 0-bits that is Ω(n). We pick (7/8)n here somewhat
arbitrarily.

As already discussed in Section 10.1.2 the probability that the algorithm initializes in
some x ∈ OPT is 2−Ω(n). Moreover, the probability to encounter OPT by optimizing the
n − OneMax(x) part in the first phase is 2−Ω(n). Analogously we can show that Aspa

first hits the path to the local optimum with a search point with at most n/8 1-bits with
probability 1− 2−Ω(n). Let Li denote the set of bit strings with i 1-bits. Then, the local
optimum belongs to Ln/4 and the probability that Aspa reaches the path at some point
with at least n/8 1-bits is

(n/8)/

n/8
∑

i=1

|Li| = 2−Ω(n).

Note that crossover does not increase the probability of finding the path with a larger
number of 1-bits as after initialization all search points have at least n/16 0-bits within
the first n/4 of the bit string with probability 2−Ω(n) and the number of 0-bits is increasing
during the n− OneMax(x) phase.

We now investigate the probability to make some progress on the path. Assume, there
are b best search points on the path. Then, the probability to create a new best search
point on the path by means of mutation is O(b/(µn)) as one of the b best search points
has to be selected and at least a mutation of a single bit is needed.

Considering a crossover operation of a search point x = 1i0n−i on the path and a search
point y that has not yet reached the path, we easily get the same upper bound. In order
to create another point on the path, x has to be selected as first parent which happens
with probability at most b/µ. Moreover, yi+1 = 1 is needed to increase the number of
leading 1-bits and thus, yield progress on the path. This event has probability at most
1/2. Finally, we require c1 = i for the first crossover point in order to copy the old i
leading 1-bits from x and the additional one from y. This happens with probability at
most 1/n.
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Clearly, it is not possible to create a new best search point with crossover of two
search points on the path. Points on the path have the form 1i0n−i and if the crossover
of 1i0n−i and 1j0n−j yields another path point then this path point is 1k0n−k with
min{i, j} ≤ k ≤ max{i, j}. In particular, this holds for the local optimum. Remember
that at the point of time where the first search point in the local optimum is created all
other members of the collection of search points are on the path with probability close
to 1. Thus, the first search point in the local optimum has to be created by means of
mutation and thus, gets age 0.

We still need to consider if crossover can asymptotically decrease the time we need to
increase the number of best search points on the path from 1 to b. The probability to
increase this number from b to b + 1 by means of mutation is Θ(b/µ) since we need to
select one of the b best search points and do not flip any bits during mutation which
happens with probability 1/4 ≤ (1− 1/n)n ≤ 1/e. For crossover it is necessary to select
a currently best search point as first parent and thus, the probability to create a copy by
means of crossover is also O(b/µ).

Altogether, we see that the lower bound for the LeadingOnes part carries over from
the (µ+1) EA (Witt 2006) and we get Ω

(

n2 + µn log n
)

for the second phase. Note, that
this dominates the upper bound for the first phase.

Once the complete collection of search points is on the path to the local optimum
or in the local optimum, i. e., of the form 1i0n−i for possibly different values of i with
1 ≤ i ≤ n/4 for all of them, the global optimum can only be reached via a direct mutation
to the OPT region. Such a mutation has probability at most

(

n

n/12

)

·
(

1

n

)n/12

≤ 1

(n/12)!

as at least n/12 bits in the second half of the bit string have to flip. Thus, the probability
to create a global optimum by means of mutation is n−Ω(n). Clearly, it is not possible to
create a global optimum with crossover of two search points on the path.

As the waiting time for a partial or complete restart is at least τmax, we need time
Ω
(

τmax + n2 + µn log n
)

to get into a situation where the first search point in the local
optimum is removed due to the maximal lifespan. As in Lemma 10.5 we need expected
q−1 partial restarts to create a globally optimal search point and expected p−1 trials to
perform a partial restarts which proves the claimed lower bound in the case where the
maximal lifespan τmax is sufficiently large.

If the maximal lifespan τmax is not sufficiently large the search process is slowed down
as it becomes harder to reach the local optimum. If τmax is very small almost constantly
new search points are created uniformly at random. In t time steps, at most tµ/τmax

new search points are created in this way. Each of these new search points is equal to
a specific globally optimal search point with probability 2−n as discussed above. Such a
process finds some of the less than 2n/2 global optima in an expected number of more
than 2n/2 steps.
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10.3. Properties of Static Pure Aging Independently of the

Replacement Strategies

Before considering the different replacement strategies, we further discuss the concept
of partial restarts, i. e., the event when we have at least two search points in the local
optimum and some but not all of those locally optimal search points are removed due
to their age. A necessary condition for such an event is that by the time when the
maximal lifespan τmax is reached by one of the search points in the local optimum, at
least two search points with different ages are in the local optimum. Moreover, there is
no possibility to create another locally optimal search point with different age once all
search points have reached the local optimum as descendants always inherit the age of
one of their parents. Thus, the two search points in the local optimum with different ages
have to be created while the collection of search points approaches the local optimum.
Additionally, after all search points have reached the local optimum, this property of the
age structure within the collection of search points has to be preserved by the replacement
strategy until the maximal lifespan τmax is reached by one of the search points in the
local optimum.

The first condition, i. e., creating two search points with two different ages in the
local optimum, is independent of the replacement strategy. We therefore analyze the
probability for this event and the three static pure aging variants before looking closer
at the different replacement strategies.

Lemma 10.7 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Moreover, let p1 be the probability for the event that two search points with different ages
enter the local optimum before the whole collection of search points has reached the local
optimum.

For Aspa using age-based or pessimistic value-based static pure aging from Defini-
tion 10.1 and an arbitrary strategy for selection for replacement from Definition 10.2
on f (Definition 10.3), we have

p1 = Ω(1).

Proof. Consider a point of time when max {f(x) | x ∈ C} is increased to (5/4)n, i. e.,
a first locally optimal search point x is produced. Clearly, this search point enters the
collection of search points and is assigned age 0. Note, that at this point of time all other
search points have age different from x. At later points of time descendants of x may
have the same age.

We claim that at this point of time all other members of the collection of search points
also have form 1i0n−i for different values of i with i < n/4 with probability close to 1.
In the proof of Lemma 10.6 we saw that with probability close to 1 the first search point
to enter the global optimum does so from the path and needed Ω

(

n2 + µn log n
)

steps to
get there. Since all points on the path have larger function value than the other search
points the probability to increase the number of search points on the path from some
value v to v+1 is Ω(v/µ): it suffices to select one such search point (probability v/µ) and
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10. Aging Beyond Restarts

do not change it (probability (1 − pc)(1 − 1/n)n = Ω(1)). Thus, the process of getting
the whole collection of search points on the path has expected length O(µ log µ) (similar
to the coupon collector process (Lemma B.17)), much smaller than the Ω

(

n2 + µn log n
)

steps needed in expectation to reach the local optimum. This implies the claim.
We consider the following τmax = ω(µn log µ) iterations. We prove that within these

τmax steps with probability p = Ω(1) another locally optimal search point with age
different from x.age enters the collection of search points. To this end, we consider
crossover.

Consider x = 1n/403n/4 and y = 1i0n−i with 0 ≤ i < n/4. We have

Prob (k-Point-Crossover(x, y) = x) = Ω(1)

in the same way as we obtained Lemma 10.4. Note that the offspring has the same fitness
as x. Thus, in the pessimistic value-based variant, the offspring’s age is set to the age of
y which is different to the age of x, proving p1 = Ω(1) in that case.

For the age-based variant we need to be slightly more careful since the offspring gets
initial age max{x.age, y.age} and hence, it is not clear whether x is older than y or
vice versa. When x entered the collection of search points it was the search point with
minimal age 0. Thus, all other search points have age different from x unless they are
created as descendants of x. We now consider the following Θ(µ) steps. Clearly, in these
steps this first search point x or one of its copies is selected for reproduction involving
crossover with probability Ω(1). The expected number of descendants of x made in these
Θ(µ) steps is bounded above by O(1) with probability 1− δ for any constant δ > 0. The
number of search points in the collection of search points that may have improved within
these steps is bounded by O(µ/n) since improvements can only occur via mutations but
not by crossover alone as seen in the proof of Lemma 10.6. Thus, we only have O(µ/n)
improved search points within these steps and this also holds with probability 1− δ for
any constant δ > 0. We conclude that there are Ω(µ) search points on the path with age
larger than x. Thus, one of these is selected together with x with probability Ω(1) in
this Θ(µ) steps we consider. These two parents produce another locally optimal offspring
that will have age different from x with probability Ω(1).

For the considered problem, the only difference between aging in the optimistic and
pessimistic value-based variant is the way partial restarts can be achieved, i. e., the way a
second age can enter the local optimum. The main difference is that crossover no longer
helps in creating another locally optimal search point with age different from the first
search point entering the local optimum. If we perform crossover of x = 1n/403n/4 and
y = 1i0n−i with i < n/4 the age of the new search point is given by the age of the better
search point, i. e., by x.age. This is no different from a copy of x. Thus, we need to rely
on mutations only.

Lemma 10.8 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Moreover, let p1 be the probability for the event that two search points with different ages
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enter the local optimum before the whole collection of search points has reached the local
optimum.

For Aspa using optimistic value-based static pure aging from Definition 10.1 and an ar-
bitrary strategy for selection for replacement from Definition 10.2 on f (Definition 10.3),
we have

p1 =

{

Θ
(

µ log µ
n

)

if µ ≤ δ · n
logn for constant δ > 0 sufficiently small

Θ(1) otherwise
.

Proof. Consider the first search point x that enters the local optimum.
We show that by the time half of the collection of search points is taken over by copies

of x the rest of the collection of search points are all of the form 1(n/4)−103(n/4)+1 with
probability close to 1. If there are b copies of x the probability to increase the number
of copies to b+ 1 is O(b/µ). Since initially we have b = 1 we obtain Ω(µ log µ) as lower
bound for creating µ/2 copies of x. On average in these steps already copies of the second
best have been produced. Since the selection for reproduction is uniform these copies
are selected with higher probability than the first single best. This yields that all worse
search points will be removed.

If there are b copies of a second best search point the probability to create a better
search point is O(b/(µn)) since one of them has to be selected and at least a mutation of
a single bit is needed. However, in the situation described above and as long as b = Θ(µ),
the probability to create another locally optimal search point via mutation is Ω(1/n).
The expected time for increasing the number of copies from b = µ/2 to b = cµ for some
constant c > 1/2 is also Θ(µ log µ). Again, this holds due to the similarity to the coupon
collector process (Lemma B.17). Hence, the probability to create another locally optimal
search point with age different from x is Ω(1/n) for Θ(µ log µ) steps. After this number
of steps this probability can decrease even to 0 since after that time the whole collection
of search points may be in the local optimum. In the following we use c/n (for some
sufficiently small positive constant c) as lower bound on this probability.

We start with the lower bound on the probability p1. Assume µ ≤ n/(cc′ log n), i. e.,
δ ≤ 1/(cc′), for positive constants c and c′. The probability that another locally optimal
search point with age different from x is created within these Θ(µ log µ) steps is

p1 ≥ 1−
(

1− c

n

)c′µ log µ (B.8)

≥ 1− e−cc′ µ logµ
n

(B.9)

≥ 1− 1

1 + cc′µ log(µ)/n

= 1− n

n+ cc′µ log µ
=

cc′µ log µ

n+ cc′µ log µ
≥ cc′µ log µ

2n
.

Otherwise we get

p1 ≥ 1−
(

1− c

n

)c′µ log µ (B.8)

≥ 1− e−cc′ µ logµ
n = 1− e−Ω(1) = Ω(1).

Since p1 is a probability (and thus p1 ≤ 1), p1 = Ω(1) implies p1 = Θ(1).
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We still need to consider the upper bound for µ ≤ δn/ log n. The probability to create
another locally optimal search points is at most 1/n as at least a mutation of a single
bit is needed. Again, assume µ < n/ log n. Then, µ log µ/(n − 1) ≤ 1 holds. We see
analogously to the calculations above that another locally optimal search point with
different age is created in Θ(µ log µ) steps with probability

p1 ≤ 1−
(

1− 1

n

)cµ log µ (B.8)

≤ 1− e−
cµ log µ
n−1

(B.9)

≤ 2cµ log(µ)/(n − 1)

1 + 2cµ log(µ)/(n − 1)
=

2cµ log µ

n− 1 + 2cµ log µ
≤ 2cµ log µ

n

for some positive constant c, concluding the proof of the lemma.

10.4. Smallest Age Distance Replacement Strategy

We are now ready to consider the different variants of selection for replacement from
Definition 10.2. We start with the smallest age distance replacement strategy and prove
upper and lower bounds on the expected optimization time using the results derived in
the previous sections.

Theorem 10.9 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).

The expected optimization time of Aspa using smallest age distance replacement from
Definition 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= O
(

µ ·
(

τmax + n2 + µn log n
))

for age-based and pessimistic value-based static pure aging and

E
(

TAspa,f

)

= O

((

µ+
n

log µ

)

·
(

τmax + n2 + µn log n
)

)

for optimistic value-based static pure aging (Definition 10.1).

Proof. From Lemma 10.5 we know that E
(

TAspa,f

)

= O
(

p−1q−1
(

τmax + n2 + µn log n
))

holds where p is the probability that a partial restart occurs and q the probability for an
appropriate crossover operation creating the global optimum after such partial restart.
For the age-based and pessimistic value-based variant we see that it suffices to prove that
p−1q−1 = O(µ) holds, whereas for the optimistic value-based variant we need to show
p−1q−1 = O(µ+ n/ log µ).

Note that once we have at least two search points that are both locally optimal but
have different age in the collection of search points this will always be the case until
a restart happens. This is due to the smallest distance replacement where in case of
equal fitness a search point with minimal age difference in selected for replacement.
Hence, p = p1 follows. Due to Lemma 10.7 the probability to have two locally optimal
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search points with different age when all search points have reached the local optimum
is p1 = Ω(1) for the first two variants and thus p−1 = O(1). Due to Lemma 10.8 we have
p1 = Θ(µ log(µ)/n) for sufficiently small µ = O(n/ log n) and p1 = Θ(1) otherwise for
the latter variant, leading to p−1 = O(1 + n/µ log µ).

We still need to derive the probability q for the different variants. Consider the point
of time when the age of x, the first search point that has reached the local optimum,
exceeds τmax. In this iteration x and all its copies with identical age are removed and
replaced by purely random search points. The expected takeover time for x to take over
the complete collection of search points is O(µ log µ). If there are other points in the local
optimum (with age different from x) the time until all search points are locally optimal
can only be smaller. Since τmax = ω(µn log n) holds we have with probability close to 1
that all other search points are also locally optimal. Thus, after removing b copies of x
we have a collection of search points with µ− b local optima and b random search points.
Remember that 0 < b < µ holds since we have a partial restart. Thus, with probability

q = Ω

(

b

µ
· µ− b

µ

)

= Ω

(

1

µ

)

the global optimum is produced as next offspring. This establishes that on average
q−1 = O(µ) such partial restarts suffice. Putting these things together, we get the
claimed upper bound.

Theorem 10.10 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = 2O(n).

The expected optimization time of Aspa using smallest age distance replacement from
Definition 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= Ω
(

τmax + n2 + µn log n
)

for age-based and pessimistic value-based static pure aging and

E
(

TAspa,f

)

= Ω

((

1 +
n

µ log µ

)

·
(

τmax + n2 + µn log n
)

)

for optimistic value-based static pure aging (Definition 10.1).

Proof. From Lemma 10.6 we know that E
(

TAspa,f

)

= Ω
(

p−1q−1
(

τmax + n2 + µn log n
))

holds where p is the probability that a partial restart occurs and q the probability for an
appropriate crossover operation creating the global optimum after such partial restart.

Clearly, we need at least one successful partial restart to obtain the global optimum.
Thus, we have the trivial lower bound for the age-based and pessimistic value-based
variant following directly from Lemma 10.6. For the optimistic value-based variant we
additionally know p−1 = Ω(1 + n/µ log µ) due to Lemma 10.8, concluding the proof.

We see that in the case of smallest age distance replacement the gap between the lower
and the upper bound on the expected optimization time is Θ(µ). This stems from the
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fact that we bounded the probability q for creating a globally optimal search points by
means of crossover after a partial restart by q = Ω(1/µ) and q = O(1) respectively.

The smallest distance replacement has the property that the initial age structure of
the collection of search points in the local optimum is not changed after the last search
point enters the local optimum. This is due to the fact that after that point of time no
new age value can enter the collection of search points as in the case of an non-improving
iteration the age is always inherited of one of the parents. Hence, there is always at least
one search point in the collection of search points that has the same age as the new search
point. Since the age distance to these points is zero, simply two search points with the
same age are exchanged. This is different for the most frequent replacement as shown in
the next subsection.

10.5. Most Frequent Replacement Strategy

The most frequent replacement is probably the easiest and most direct way of preserving
some degree of diversity with respect to age. Like smallest distance replacement it is
effective enough to yield efficient optimization since again once we have at least two
search points that are both locally optimal but have different age in the collection of
search points this will always be the case until some restarts happens. Thus, the upper
and lower bounds for smallest age distance replacement simply carry over to the most
frequent replacement strategy as stated in the following two corollaries.

Corollary 10.11 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).

The expected optimization time of Aspa using most frequent replacement from Defini-
tion 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= O
(

µ ·
(

τmax + n2 + µn log n
))

for age-based and pessimistic value-based static pure aging and

E
(

TAspa,f

)

= O

((

µ+
n

log µ

)

·
(

τmax + n2 + µn log n
)

)

for optimistic value-based static pure aging (Definition 10.1).

Corollary 10.12 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = 2O(n).

The expected optimization time of Aspa using most frequent replacement from Defini-
tion 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= Ω
(

τmax + n2 + µn log n
)

for age-based and pessimistic value-based static pure aging and

E
(

TAspa,f

)

= Ω

((

1 +
n

µ log µ

)

·
(

τmax + n2 + µn log n
)

)

for optimistic value-based static pure aging (Definition 10.1).
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In contrast to smallest age distance replacement most frequent replacement changes
the initial distribution of the different age values. It aims at obtaining and preserving
a completely balanced distribution of ages within the collection of search points. Given
such a balanced distribution better bounds on the expected optimization time can be
proved. We consider Lemma 10.5 and remember that p denotes the probability for a
partial restart and q denotes the probability that this partial restart is successful, i. e.,
generates a globally optimal search point. Now we replace p and q by p′ and q′ where p′

denotes the probability to have a collection of search points completely within the local
optimum with r+1 different ages. In this situation we will have r partial restarts within
the next τmax steps or the global optimum is found. If q′ denotes the probability that at
least one of these partial restarts leads to the global optimum we obtain essentially the
same bound as in Lemma 10.5. We state this as a corollary.

Corollary 10.13 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Moreover, let p′ denote the probability that within the next τmax steps r partial restarts
occur and q′ the probability for an appropriate crossover operation creating the global
optimum after one of these partial restarts.

The expected optimization time of Aspa using an arbitrary strategy for static pure ag-
ing from Definition 10.1 and an arbitrary strategy for selection for replacement from
Definition 10.2 on f (Definition 10.3) is

E
(

TAspa,f

)

= O
(

(p′ · q′)−1
(

τmax + n2 + µn log n
))

.

Now we consider the different static pure aging strategies from Definition 10.1. The
main difference between optimistic value-based aging and the two other variants (pes-
simistic value-based aging and age-based aging) is that in optimistic value-based aging a
new age can only be introduced to the local optimum via mutation. Crossover operations
without mutation need to involve one search point that already is a local optimum and
one other search point. This other search point is worse with respect to function value in
comparison to the other search point. Thus, in the pessimistic value-based variant this
age is used and introduced as a (potentially) new age in the local optimum. Moreover,
this other search point may be older than the search point that first entered the local
optimum since this search point was assigned age 0 when it was created (as it was an
improvement) and is thus younger than the other search points. If it is older, in the
age-based variant again this age is used and introduced as (potentially) new age. In
the optimistic value-based variant, however, the age of the better search points, i. e., the
local optimum, is used and therefore the number of ages in the local optimum cannot
increase. This does not only limit the number of different ages in the local optimum (in
expectation it is O(µ log(µ)/n)) but also ensures that the first point that entered the
local optimum has maximal age in the local optimum. This yields a lower bound on
the number of steps before a partial restart occurs that we can exploit to prove a better
upper bound on the expected optimization time.
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The following lemma makes a strong assumption on the age distribution at the local
optimum. Given this assumption we can prove a high probability for finding a global
optimum. We discuss afterwards how this assumption can be met.

Lemma 10.14 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Consider Aspa using an arbitrary strategy for static pure aging from Definition 10.1 and
an arbitrary strategy for selection for replacement from Definition 10.2 on f (Defini-
tion 10.3).

Assume that the complete collection of search points is at the local optimum, i. e.,
{f(x) | x ∈ C} = {(5/4)n}. Let r + 1 denote the number of different ages in C. For
each of the r+1 different ages, let the number of x ∈ C with each age be Θ(µ/r) for the
subsequent τmax steps or until a global optimum is found.

The probability that within the subsequent τmax steps a global optimum is found is Ω(1).

Proof. Due to our assumptions there are either r partial restarts in the subsequent τmax

steps or the global optimum is found. For each of these restarts we have probability

Θ

(

µ/(r + 1)

µ
· µ− µ/(r + 1)

µ

)

= Θ

(

1

r + 1
·
(

1− 1

r + 1

))

= Θ

(

1

r

)

to select one locally optimal search point and one search point generated uniformly at
random by the partial restart for crossover. A crossover of these points creates a global
optimum with probability Ω(1) (Lemma 10.4) so that each of the r partial restarts has
success probability Ω(1/r). The probability to have at least one of these successful is

1−
(

1− Ω

(

1

r

))r

= Ω(1)

as claimed.

Note that Lemma 10.14 holds for all variants of Aspa. However, the assumption to
always have Θ(µ/r) search points for each of the r different ages is not realistic for all
variants. But, for optimistic value-based aging in combination with the most frequent
replacement strategy it is as the following lemma shows.

Lemma 10.15 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).
Consider Aspa using optimistic value-based static pure aging from Definition 10.1 and the
most frequent replacement strategy from Definition 10.2 on f (Definition 10.3).

Moreover, consider the point of time when the number of different function values
is reduced to 1 and all search points are in the local optimum, i. e., {f(x) | x ∈ C}
= {(5/4)n}.

The conditions of Lemma 10.14 are met with probability Ω(1).

206



10.5. Most Frequent Replacement Strategy

Proof. Consider the first search point x to enter the local optimum. It is assigned age 0
at this point of time and as argued above no search point with a larger age can enter the
local optimum. Consider another search point z that enters the local optimum. Clearly, z
was created either involving crossover or by mutation only. If it was created by mutation
of a search point that is not locally optimal z is an improvement and age.z = 0 < age.x
holds. If z is a clone of a local optimum it inherits its age. Thus, by means of mutation
no search point with larger age can be introduced into the local optimum. Now, consider
the case where z is created by means of crossover. If both search points are not locally
optimal again z is an improvement. If at least one search point is a local optimum than
z inherits its age since we are using optimistic value-based aging. Thus, also crossover
cannot introduce a search point with age larger than age.x and hence, x has maximal
age in the local optimum.

This yields, that the first (partial) restart after x entered the local optimum occurs
after τmax = ω(µn log µ) steps. The expected takeover time for the complete collection
of search points is Θ(µ log µ). Thus, on expectation after O(µ log µ) steps we have the
complete collection of search points in the local optimum and this can only change when
the first partial restart occurs, i. e., after τmax − O(µ log µ) = ω(µn log µ) steps. Thus,
there is sufficient time to obtain a balanced distribution of the ages within the local
optimum.

Lemma 10.15 proves q′ = Ω(1). All we need to obtain a better upper bound on the
expected optimization time is a bound on p′. We recall that we already have such a
bound.

Theorem 10.16 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).

The expected optimization time of Aspa using optimistic value-based static pure aging
from Definition 10.2 and most frequent replacement from Definition 10.2 on f (Defini-
tion 10.3) is

E
(

TAspa,f

)

= Θ

((

1 +
n

µ log µ

)

·
(

τmax + n2 + µn log n
)

)

.

Proof. We apply Corollary 10.13. According to Lemma 10.14 and Lemma 10.15 we have
q′ = Ω(1). Moreover, Lemma 10.8 yields p′ = Ω(µ log(µ)/n) for not too large µ and
p′ = Ω(1) otherwise. Together this yields the claimed upper bound. The lower bound is
already contained in Corollary 10.12.

Unfortunately, we are not able to prove a similar result for the other two variants of
static pure aging. Since older search points can enter the local optimum we have no lower
bound on the number of steps until a partial restart occurs. This implies that we cannot
prove that the age structure is balanced and thus are unable to prove that the conditions
of Lemma 10.14 are met. The improvement of the upper bounds to obtain tight bounds
for these static pure aging variants is an open problem.
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10.6. Fewest Replacement Strategy

In contrast to the former two replacement strategies, fewest replacement does not in-
corporate any age diversity mechanism. Even worse, diversity with respect to age is
intentionally destroyed. In the next theorem we show that such an algorithm is not able
to optimize our considered example function with overwhelming probability even in an
exponential number of steps.

Theorem 10.17. Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc with 0 < ε ≤ pc ≤ 1 − ε < 1
for a positive constant ε, k = O(1), and τmax = ω(µn log µ).

The optimization time of Aspa using fewest replacement from Definition 10.2 and op-
timistic value-based aging from Definition 10.1 on f (Definition 10.3) is

TAspa,f ≥ 2cn

(c > 0 a sufficiently small constant) with probability 1− 2−Ω(n).

Proof. Consider the first point in time when all search points are locally optimal. As
seen in the proof of Lemma 10.15 the age of all search points is O(µ log µ) at this point
in time. With probability 1 − 2−Ω(n) all ages are bounded by O(µn log µ). Thus, there
are still τmax − O(µn log µ) = ω(µn log µ) steps left before the first (partial) restart can
occur.

Let x be a search point with some age x.age that occurs most frequently in the current
collection of search points. If there exist more than one such age we select an arbitrary
one. Due to the replacement strategy the number of search points with that age will not
decrease during the ongoing search process. Moreover, any time such a point is selected
and copied the number of search points with the same age increases and the number of
search points with other ages decreases. Thus, after expected Θ(µ log µ), say dµ log µ
(d > 0 constant), steps the collection of search points only consists of search points with
only one single age, keeping the algorithm from performing a partial restart and yielding
inefficient optimization time. Due to Markov’s inequality the probability not to have
such an event within 2dµ log µ is at most 1/2. Moreover, the probability not to have
such an event in n rounds of 2dµ log µ steps can be bounded above by (1/2)n. Since
τmax = ω(µn log µ) this yields the theorem.

The proof of Theorem 10.17 does not work for age-based and pessimistic value-based
static pure aging. These two different aging variants allow that search points may enter
the local optimum that are older than the first search point that entered the local op-
timum. Since the age of these search points may be much older it cannot be ruled out
that these search point cause a partial restart rather quickly and thus lead to successful
optimization. However, it seems to be highly unlikely that very old search points survive
long enough for this event to happen. We therefore speculate that Theorem 10.17 can
be generalized for the other two aging variants, too. This, however, is currently an open
problem.
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10.7. Random Replacement Strategy

10.7. Random Replacement Strategy

Finally we consider the random replacement variant. Here again no diversity mechanism
with respect to age is used but in contrast to the fewest replacement diversity it is just
not cared about. Thus, we simply replace a random search point with worst fitness value.
This is equivalent to the standard replacement strategy in randomized search heuristics
where age is not used at all. We prove that this also leads to inefficient optimization time
if used in combination with the optimistic value-based aging strategy. We speculate that
the same holds for the other aging strategies and discuss difficulties in proving this after
the proof of the following result. This results demonstrates that age diversity mechanisms
are an important concept for effective aging operators.

Theorem 10.18 (Jansen and Zarges (2011c)). Let µ ∈ N with µ ≥ 2 and µ = nO(1), pc
with 0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1), and τmax = ω(µn log µ).

The optimization time of Aspa using random replacement from Definition 10.2 and
optimistic value-based aging from Definition 10.1 on f (Definition 10.3) is

TAspa,f ≥ 2cn

(c > 0 a sufficiently small constant) with probability 1− 2−Ω((n log log µ)/ logµ).

Proof. We aim at proving that with probability close to 1 no partial restart will occur.
This immediately implies the result since such a partial restart is needed for efficient
optimization of f .

We consider the situation when max{f(x) | x ∈ C} is increased to (5/4)n, i. e., a
first point x enters the local optimum. Since this point is an improvement it is assigned
age 0. We consider the subsequent steps and are interested in the first point of time
when min{f(x) | x ∈ C} = {(5/4)n} holds, i. e., the complete collection of search points
is in the local optimum. As seen in the proof of Theorem 10.15, at this point of time x
(and its descendants) have maximal age in C.

We claim that we have x.age = O
(

µ log2 µ
)

at this point of time with probability

1− 2−Ω(log2 µ). As noted before the process of taking over the collection of search points
is similar to the coupon collector process yielding an expected duration of O(µ log µ).
The bound µ−Ω(β) on the probability for taking Ω(βµ log µ) steps (Lemma B.17) carries

over, too. Setting β = log µ we obtain the bound 2−Ω(log2 µ) as claimed. Note that during
this process in all steps the order of growth of the probability of inserting another point
to the local optimum is bounded above by the probability of adding another copy of x

to the local optimum. Consequently, also with probability 1− 2−Ω(log2 µ) we have Ω(µ)
copies of x in C. This implies that in each selection such a search point is selected with
probability Ω(1).

We consider the subsequent steps and claim that after some number of steps (where
the number of steps will be discussed afterwards) x will have taken over the complete
collection of search points (and thus there is only one age present in C) with probability
1−2−Ω(µ). Note that if this happens before a partial restart happens no partial restart can
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10. Aging Beyond Restarts

happen anymore. Let nx denote the number of copies of x in the beginning. Remember
that we have nx = Ω(µ) with probability close to 1. In one round this number nx may
remain unchanged or it may either by increased or decreased by exactly 1. We want to
prove that it will be increased to µ with probability close to 1.

Since we consider the situation when the whole collection of search points is in the
local optimum we have that all search points have equal fitness and thus the age of the
new search points equals max{age.x, age.y}. Moreover, crossover of any two parents can
only yield another local optimum as result. The event ‘nx is increased’ can happen with
and without crossover. Without crossover it happens if one such search point is selected
(probability nx/µ), it is not changed by mutation (probability (1 − 1/n)n), and none of
the nx search points is selected for replacement (probability (µ − nx)/µ). This leads to
a contribution of (1 − pc)(nx/µ)(1 − 1/n)n(µ − nx)/µ to Prob (nx is increased) by this
case. With crossover it happens if at least one such search point is selected (probability
1−((µ−nx)/µ)

2 = (nx/µ)(2−nx/µ)), the result of crossover is not changed by mutation
(probability (1 − 1/n)n), and none of the nx search points is selected for replacement
(probability (µ− nx)/µ). Together we obtain

Prob (nx is increased)

= (1− pc)
nx

µ

(

1− 1

n

)n µ− nx

µ
+ pc

nx

µ

(

2− nx

µ

)(

1− 1

n

)n µ− nx

µ

=
nx(µ− nx)

µ2

(

1− 1

n

)n(

(1− pc) + pc ·
(

2− nx

µ

))

=
nx(µ − nx)

µ2

(

1− 1

n

)n(

1 + pc − pc
nx

µ

)

.

The event ‘nx is decreased’ can also happen with and without crossover. Without
crossover it happens if some other search point is selected (probability (µ − nx)/µ), it
is not changed by mutation (probability (1 − 1/n)n), and one of the nx search points
is selected for replacement (probability nx/µ). This leads to a contribution of (1 − pc)
·((µ − nx)/µ)(1 − 1/n)nnx/µ to Prob (nx is decreased) by this case. With crossover it
happens if no such search point is selected (probability ((µ − nx)/µ)

2), the result of
crossover is not changed by mutation (probability (1− 1/n)n), and one of the nx search
points is selected for replacement (probability nx/µ). Together we obtain

Prob (nx is decreased)

= (1− pc)
µ− nx

µ

(

1− 1

n

)n nx

µ
+ pc

(

µ− nx

µ

)2(

1− 1

n

)n nx

µ

=
nx(µ− nx)

µ2

(

1− 1

n

)n(

1− pc + pc
µ− nx

µ

)
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hold. For the sake of comparison we consider

Prob (nx is increased)
Prob (nx is decreased)

=
1 + pc − pcnx/µ

1− pc + pc(µ − nx)/µ

=
1 + pc − pcnx/µ

1− pc · nx/µ
= 1 +

pc
1− pc · nx/µ

> 1 + pc

and see a clear tendency towards increasing nx. For the analysis we consider a Markov
chain X0, X1, . . . on the state space {0, 1, . . . , µ} with Prob (Xt+1 = 0) = 1 for
Xt = 0, Prob (Xt+1 = µ) = 1 for Xt = µ, Prob (Xt+1 = Xt + 1) = (1 + pc)/(2 + pc), and
Prob (Xt+1 = Xt − 1) = 1/(2 + pc) in all other cases. Clearly, all transition probabilities
not explicitly stated are 0. This Markov chain corresponds to the algorithm conditioned
on the event that nx changes and is pessimistic with respect to having nx = µ at some
point of time. Moreover, the Markov chain corresponds exactly to the situation in the
gambler’s ruin theorem (Lemma B.18). Remember that we have nx = Ω(µ), say nx = cµ,
initially. Thus, the probability not to have nx = µ at some point of time is bounded
above by

(1 + pc)
cµ − 1

(1 + pc)µ − 1
=

(

1

1 + pc

)(1−c)µ

· (1 + pc)
µ − (1− pc)

(1−c)µ

(1 + pc)µ − 1

=

(

1

1 + pc

)(1−c)µ

·
(

1− (1 + pc)
(1−c)µ − 1

(1 + pc)µ − 1

)

= 2−Ω(µ).

The expected duration of the random process described by the Markov chain is O(µ).
However, this is different from the duration of the random process in the algorithm since
we considered the situation conditioned that nx is changed. Thus, we need to take into
account the probability to change nx in one step. This probability is given by

Prob (nx is increased) + Prob (nx is decreased) = Ω

(

nx(µ− nx)

µ2

)

and we see that it is particularly small when nx = O(1) or µ − nx = O(1) holds.
We improve the trivial bound O

(

µ2
)

on the duration to O
((

µ log2 µ
)

/ log log µ
)

in the
following way.

Consider the situation with nx = O(1) for Θ(µ log µ) steps. Since the probability to
increase nx by 1 is bounded below by Ω(1/µ) in this situation we have on expectation
nx = Ω(log µ) after these steps. Consider another round of Θ(µ log µ) steps. Now
the probability to increase nx is bounded below by Ω(log(µ)/µ) and we expect to have
nx = Ω

(

log2 µ
)

at the end. In general, after r such rounds we expect nx = Ω(logr µ).

Thus, after Θ(log(µ)/ log log µ) rounds we have nx = Ω
(

loglog(µ)/ log log µ µ
)

= Ω(µ) in

the end. For µ−nx the situation is symmetric (but reversed in time). Thus, we have an
expected length of O

((

µ log2 µ
)

/ log log µ
)

as claimed.
In summation we have that on expectation after O

((

µ log2 µ
)

/ log log µ
)

steps the
complete collection of search points is of the same age so that a partial restart is impos-
sible. To obtain the result with probability very close to 1 we consider Θ(µn log µ) steps
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10. Aging Beyond Restarts

in total. These steps can be considered as Θ((n log log µ)/ log µ) repetitions of length
Θ
((

µ log2 µ
)

/ log log µ
)

each. This yields the desired bound on the probability.

We speculate that a similar result holds for age-based and pessimistic value-based
aging. However, proving this is an open problem. The difficulty is essentially the same
as for Theorem 10.17.

10.8. Experimental Supplements

The results presented in the preceding sections give insights into what aging can achieve in
randomized search heuristics. Our theoretical analyses give a coarse picture of the effects
of aging, in particular with respect to partial restarts. Nevertheless, not all questions are
answered. First of all, most of the derived bounds are not tight. Second, our results are
asymptotic in nature yielding to the same drawbacks as discussed previously.

It is not obvious what good values for µ are. However, the theoretical results give hints.
The bounds for the pessimistic value-based variant and the age-based variant indicate
that a smaller size of the collection of search points leads to a smaller optimization time.
For the optimistic value-based variant, the bounds suggest µ = Θ(n/ log n) as a good
choice. However, as our theoretical bounds are not tight, these speculations may be
wrong.

We do all experiments with sizes µ ∈ {2,⌊√n⌋, ⌊n/ log n⌋, n} for the collection of search
points. Clearly, µ = 2 is interesting as it is the smallest possible size and possibly a good
choice for the pessimistic value-based and the age-based variant. For the same reason we
pick µ = ⌊n/ log n⌋ for the optimistic value-based variant. The choice µ ≈ √

n has often
turned out to be a good choice (Harik et al. 1999) and was also studied in the previous
sections. Moreover we are interested in the effects of sizes that are not sub-linear. Thus,
we also pick µ = n.

We require τmax = ω(µn log µ) and choose τmax = ⌊6µn log(µ) log n⌋ for our experi-
ments where again the factor 6 helps for small values of n. All bounds work for arbitrary
constant crossover probabilities pc. We use pc = 0.5, a medium sized value. All proofs
work for any constant number k of crossover points. We consider the commonly used
1-point crossover.

We perform two sets of experiments. First of all, we consider the optimization times for
the most frequent replacement and all static pure aging variants. Second, we compare the
optimization times of the other replacement strategies with most frequent replacement.
The results of the different experiments are given in the following subsections.

10.8.1. Optimization Times of the Most Frequent Replacement Strategy

We analyze the optimization times of most frequent replacement combined with the
three static pure aging strategies and different values for the size µ of the collection
of search points. Table 10.1 shows the resulting bounds on the expected optimization
times for this setting due to Corollary 10.12 for the lower bounds, Corollary 10.11 for the
upper bound of age-based and pessimistic value-based aging and Theorem 10.16 for the
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age-, pessimistic value-based optimistic value-based
µ = 2 Θ

(

n2
)

Θ
(

n3
)

µ = ⌊√n⌋ Ω
(

n2
)

, O
(

n5/2
)

Θ
(

n5/2/ log n
)

µ = ⌊n/ log n⌋ Ω
(

n2 log n
)

, O
(

n3
)

Θ
(

n2 log n
)

µ = n Ω
(

n2 log2 n
)

, O
(

n3 log2 n
)

Θ
(

n2 log2 n
)

Table 10.1.: Bounds on the expected optimization time for example sizes of the collection
of search points using the most frequent replacement strategy.

improved upper bound of optimistic value-based aging. Note, that we also inserted the
concrete value for τmax that is used within the experiments when deriving these bounds.
We see that for the considered parameter settings we have a gap of Θ(µ) for age-based
and pessimistic value-based aging while for the optimistic value-based we have a tight
result.

As done in previous experimental analyses, we perform 100 independent runs for each
setting and plot the results using box-and-whisker plots (Definition B.1) for
n ∈ {20, 40, . . . , 1000}. Due to the excessive computation time, we only consider n ∈
{20, 40, . . . , 340} for µ = n (all variants) and n ∈ {20, 40, . . . , 460} for µ = 2 (optimistic
value-based). The results are shown in Figure 10.3 for age-based aging, in Figure 10.4 for
optimistic value-based aging and in Figure 10.5 for pessimistic value-based aging where
the number of iterations are drawn in logarithmic scale. To facilitate comparison we plot
the medians for all sizes of the collection of search points in one joint diagram in each
case (Figures 10.3-10.5, bottom) in linear scale. We additionally plot c · b(n) if we have
a bound E

(

TAspa , f
)

= O(b(n)) where c is determined via a least squares fit.
It is obvious that for most frequent replacement the variance decreases with increasing

size of the collection of search points. This is due to the fact that the probability for
a partial restart increases with increasing µ. Consider the situation just after the first
search point reached the local optimum. In the extreme case µ = 2 there is only one
other search point left that needs to enter the local optimum with a different age in order
to allow for a partial restart. For larger µ more trials are possible. If the algorithm fails
to perform a partial restart, a complete restart is required. Certainly, complete restarts
are rather expensive and lead to larger variances in the optimization time. For µ = n
we see that generally no complete restarts occur during the optimization process and we
succeed in performing a suitable crossover operation when we reach the local optimum
for the first time.

Moreover, we see that the variance is larger for optimistic value-based aging than for
the other two variants. This is due to the fact, that here crossover is not able to create
a search point with a different age in the local optimum whereas this is possible for the
other two aging variants. Additionally, the variance for age-based aging is slightly larger
than for pessimistic value-based aging. This can again be explained with the effects
of the crossover operator: in pessimistic value-based aging always the age of the worse
search point is inherited (if it is not an improvement). In case of a crossover of a locally
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Figure 10.3.: Experimental results for most frequent replacement and age-based aging
with different values for the size µ of the collection of search points, data
from 100 runs.
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Figure 10.4.: Experimental results for most frequent replacement and optimistic value-
based aging with different values for the size µ of the collection of search
points, data from 100 runs.
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Figure 10.5.: Experimental results for most frequent replacement and pessimistic value-
based aging with different values for the size µ of the collection of search
points, data from 100 runs.

216



10.8. Experimental Supplements

optimal search point x and a worse search point y that creates another locally optimal
search point z, this means that another age is introduced if y.age was not already present
in the local optimum. Since the first locally optimal search point is always created by
means of mutation, this is always the case as long as there is only one age value in the
local optimum. Thus, in this situation a suitable crossover operation always introduces a
second age. This is not true for the age-based variant as additionally y.age > x.age must
hold. We conclude that pessimistic value-based aging is more robust than age-based
aging with respect to introducing a second age and hence allowing for a partial restart
whereas optimistic value-based aging is least robust in this respect.

We compare the effects of the size of the collection of search points (Figures 10.3-10.5,
bottom). First, note that not only the theoretical upper and lower bounds for age-based
and pessimistic value-based aging are identical but in fact there is hardly any difference
visible in the experimental results. This lack of empirical difference is also present in the
experimental results for µ = n in all three aging variants. For the optimistic value-based
variant, we see that the experimental results are in good accordance with the theoretical
results, namely µ = ⌊n/ log n⌋ being the fastest and µ = 2 being by far the worst.

For the age-based and pessimistic value-based variant, surprisingly, the algorithm
with size µ = 2 is clearly outperformed by its counterparts with sizes µ = ⌊√n⌋ and
µ = ⌊n/ log n⌋. This shows that (at least for not too large values of n) the asymptotic
theoretical results are misleading from a practical point of view. This is due to the large
constants hidden in the derived asymptotic bounds and thus, these bounds do not reflect
the actual optimization times on the small input sizes considered in the experimental
study. However, it is not clear how large n needs to be chosen in order to obtain results
that are in correspondence with the asymptotic theoretical results.

We speculate that our upper bounds are not tight. We support this hypothesis by
plotting the fitted lower bounds together with the empirical mean in Figures 10.3-10.5
(bottom) and find a good fit in all cases. That larger sizes of the collection of search
points outperform the choice µ = 2 at least partially contradicts the theoretical results.
Thus, we take a closer look by comparing the quotients of the observed means.

The theoretical bounds predict the quotient for µ = 2 over µ = ⌊n/ log n⌋ to converge
to 0. For µ = 2 over µ = ⌊√n⌋ it should be bounded above by a positive constant.
Note that the theoretical bounds are asymptotic and predict this behavior for n → ∞.
For µ = 2 over µ = ⌊n/ log n⌋ (Figure 10.6(b) and Figure 10.6(d)) we see that after an
increase for small values of n the quotient does indeed decrease. We fit the graph of the
linear function a · x+ b to the data and see that already for n ≤ 1000 the results match
the asymptotic bounds. Things are different for µ = 2 over µ = ⌊√n⌋ (Figure 10.6(a)
and Figure 10.6(c)). Instead of being obviously bounded the quotient increases. This
impression is confirmed when fitting a · x + b to the data. It is impossible to say from
these experiments if the values of n considered are still too small or if the high variance
is to blame.
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Figure 10.6.: Quotients of the observed medians, data from 100 runs.
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(d) µ = n

Figure 10.7.: Experimental results for the different replacement strategies and age-based
aging, data from 100 runs.

10.8.2. Comparison of the Different Replacement Strategies

In order to compare the four replacement strategies from Definition 10.2 we perform
experiments with all four of them and the parameter settings from above. We fix the
maximal number of iterations executed to the corresponding upper quartile from the
first set of experiments. The results are given as a plot for each µ and aging variant
showing the number of successful runs within 100 independent runs for considered values
of n: Figure 10.7 for age-based aging, Figure 10.8 for optimistic value-based aging and
Figure 10.9 for pessimistic value-based aging.

In all settings considered it becomes apparent that the success rate of random replace-
ment and fewest replacement starts decreasing for n ≈ 100 and then converges to 0 very
quickly. We can conclude that already for quite small values of n these two strategies are
ineffective since with high probability one single age takes over the collection of search
points in the local optimum, preventing the algorithm from performing a partial restart.
This can be observed for all three aging variants. Note, that we only derived bounds
for these two replacement strategies in the optimistic value-based variant. However, the
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Figure 10.8.: Experimental results for the different replacement strategies and optimistic
value-based aging, data from 100 runs.
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Figure 10.9.: Experimental results for the different replacement strategies and pessimistic
value-based aging, data from 100 runs.
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10. Aging Beyond Restarts

experimental results support our speculation that similar bounds hold for the other two
aging strategies.

In contrast to that observation both, most frequent replacement and smallest age
distance replacement, are effective. Note, that for most frequent replacement we expect
a success rate of 75% since we use the upper quartile of the number of iterations during
100 independent runs of this algorithmic variant. Our expectations are met in all settings
considered here. Surprisingly, the success rate of smallest age distance replacement is
larger for increasing size of the collection of search points µ for the limited range of
values inspected. This is in particular true for age-based and pessimistic value-based
aging where for µ = n a success rate of nearly 100% is realized. Note, that the effect is
already visible for µ = ⌊√n⌋ and µ = ⌊n/ log n⌋. For optimistic value-based aging the
superiority of smallest age distance replacement is not that obvious. It appears that the
success rate for µ = ⌊√n⌋ and µ = ⌊n/ log n⌋ is slightly higher but surprisingly it is not
for µ = n. Thus, it is not clear if these effects are only due to the random fluctuation.

The observations can be explained as follows. Since in optimistic value-based aging
crossover does not help in creating different ages in the local optimum, we expect less
different ages in the local optimum in comparison to the other two aging variants. Addi-
tionally, most frequent replacement tends to quickly equally distribute the quantities of
the different age values. Having more age values, decreases the proportion of a single age
value and decreases the probability to perform an appropriate crossover operation in a
single restart. In smallest age distance replacement, the initial proportions of the differ-
ent ages are not changed. It seems that for age-based and pessimistic value-based aging
partial restarts and the effects of several successive partial restarts are more effective if
the quantities of different age values are not equally distributed whereas for optimistic
value-based aging both mechanisms yield very similar performance.

222



Part IV.

Bridging the Gap Between Theory

and Practice

223





11. Introduction

In the preceding chapters of this thesis we have investigated different aspect of artificial
immune systems. In particular we considered typical operators used in such algorithms.
We derived rigorous, asymptotic results on the optimization time of these operators when
embedded into a simple algorithmic framework, analyzing their performance in isolation
as much as possible. Although, we have upper and lower bounds in many cases, these
bounds are usually not tight. Moreover, asymptotic results may not describe the situa-
tion for typical problem dimensions, in particular small problem sizes. This is the reason
why, whenever reasonable, we presented experimental supplements in order to investigate
further aspects and address the practical relevance of our theoretical results. For exam-
ple, in Chapter 4 we showed that in experiments the mutation operator from CLONALG
(Definition 4.3) yields good results if n is not too large although we proved an exponential
lower bound on the optimization time with high probability. In Chapter 10 we were able
to demonstrate advantages of larger collection of search points although our theoretical
bounds indicated that small collections of search points yield better performance. We
investigated the role of deterministic initialization for contiguous hypermutations (Chap-
ter 5), the robustness of an algorithm using aging with respect to the maximal lifespan
(Chapter 8 and 9), and the effect of different replacement strategies combined with aging
(Chapter 10). All these results gained more insights into the aspect considered in the
theoretical parts of this thesis and are hoped to contribute to bridging the gap between
theory and practice.

11.1. Related Work

Bridging the gap between theory and practice is an important and broad area of re-
search. This is in particular true for randomized search heuristics since these kind of
algorithms are motivated by practical applications. A strong field in the area of ran-
domized heuristics is concerned with experimental design (Bartz-Beielstein 2006). Here,
the focus lies on deriving guidelines for designing experiments, mainly with the goal of
finding better parametrization of the considered algorithms. This is clearly different from
our approach since we use experiments to point out the practical relevance of parameter
settings derived theoretically.

He et al. (2007) consider measures for the hardness of objective functions and show that
predictive measure with polynomial run time do not exist unless P=NP or BPP=NP, re-
spectively. Jansen and Wiegand (2004b) study a previously published empirical research
and point out the importance of using existing theoretical results to guide experimental
design. Additionally they state that in experimental studies it is highly important to
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11. Introduction

properly state the used parametrization of the algorithm in order to make the results
useful in practice. This refers in particular to statements about the expected behavior
for increasing problem sizes.

In classical algorithms, the field of algorithm engineering (Sanders 2009) has sparked
a lot of attention. It addresses the problem that often the theoretically best algorithms
are actually not practical. One reason for this problem are large constants hidden in
the asymptotic run times. While in theory often only the order of growth is of interest,
constants matter when actually executing an algorithm. Moreover, it is in most cases
not sufficient to distinguish between polynomial and exponential run times since the
concrete degree of the polynomial matter. Beyond that many algorithms are developed
assuming ideal circumstances that are not fulfilled in practice. Sometimes it is, due to
complicated incorporated mechanisms or incomplete descriptions, not even reasonable
to develop a suitable implementation. Algorithm engineering aims at bridging the gap
between theory and practice by developing practical relevant algorithms. Clearly, this
includes the implementation of the algorithms and performing experiments. This way,
further insights are gained and successive, practical improvements of the algorithms can
be obtained. We remark that our approach is different since our main purpose is not
yet the development of more practical algorithms to this degree. We are before this
important step and contribute to the discussion of theoretical approaches in the theory
of randomized search heuristics to make them more practical.

11.2. Contribution of this Thesis

In order to obtain algorithms that are better in practice, it is important to use an
appropriate cost model that reflects the ‘real’ run time of the algorithm. Consider for
example sorting algorithms (Cormen et al. 2001). When only counting the number of
comparisons executed, we get O(n log n) as an upper bound for insertion sort. However,
in the worst case Θ

(

n2
)

write operations have to be executed and thus, only taking
comparisons into account is not sufficient from a practical point of view.

In this thesis, we revisit the cost models used for the analysis of the optimization time
of a randomized search heuristic. Recall, that we simply used the number of iterations
the algorithm made until finding a global optimum. In many cases, this corresponds
to the number of function evaluations (except for the cost of initialization µ) which is
widely accepted as an appropriate measure for the optimization time of a randomized
search heuristic. However, when using aging this kind of model seems to be rather coarse
since the number of function evaluations per iteration is a random variable itself. Even
counting the number of function evaluations becomes doubtful when considering more
advanced algorithms, incorporating complicated and expensive mechanisms.

We consider the limitations of both cost models in the following. Since we are aware of
the fact that counting iterations might be misleading when considering aging operators,
we investigate the gap between these two models using an example discussed in Chap-
ter 10. We show that while we have to be careful when simplifying our cost model, it
does not make a huge difference within the analysis executed in this thesis. Afterwards,
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we demonstrate that even the refined model of counting function evaluations already
has limitations when considering precise analyses (in contrast to asymptotic analyses)
on simple example functions. We propose a more advanced cost model to address this
problem.
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12. On Limitations of Counting Function

Evaluations

In the preceding chapters of this thesis we have seen several examples for complexity anal-
yses of artificial immune systems. These analyses have in common that the (expected)
optimization time is measured by means of the number of iterations or function evalua-
tions needed until a global optimum is found for the first time. These choices are common
cost models for the optimization time of randomized search heuristics. Remember, that
the reason for counting function evaluations is that randomized search heuristics tend
to be algorithmically simple and each step can be carried out relatively quickly. Thus,
it is assumed that a function evaluation is the most costly operation and that all other
parts of the algorithm are negligible with respect to computation time. Clearly, when
only counting the number of iterations, one has to be more careful, since there might be
more than one function evaluation per iteration. We discuss this in Section 12.1 using
the analyses of aging operators in Part III of this thesis as an example.

The results are usually given in asymptotic form, e. g., E (T ) = O(f(n)), E (T )
= Ω(f(n)), or E (T ) = Θ(f(n)) for some function f : N → R

+
0 , where n denotes the

length of the bit strings encoding the search points (compare Definition B.2). Remem-
ber, that all our results are solely asymptotic in n (not in any other parameter), i. e., they
hold for sufficiently large finite values of n. Clearly, asymptotic analysis can distinguish
different degrees of efficiency and describe scaling behaviors of the considered algorithms.
However, such analyses are not capable of making concrete predictions since the results
are quite coarse in nature. Even for an asymptotically tight bound E (T ) = Θ(f(n)) we
only know that there exist some constants n0 ∈ N and c1, c2 ∈ R

+ with 0 < c1 ≤ c2 such
that c1f(n) ≤ E (T ) ≤ c2f(n) holds for all n ≥ n0. Although the concrete constants n0,
c1 and c2 can often be derived from the proofs, predictions about the optimization time
(in terms of functions evaluations) are vague (depending on the gap c2 − c1). A solution
for this problem may be the development of more precise results.

Remember that the motivation for the theory of randomized search heuristics is to
come up with better heuristics for practical applications. Clearly, practitioners are mainly
interested in wall clock time. For this purpose asymptotic results may be too imprecise
or even misleading since from this point of view other parts of the randomized search
heuristics, e. g., diversity preserving mechanisms or advanced variation operators, might
not be negligible as assumed by the considered cost model. Although, such rough results
can yield valuable insights (see for example Chapter 9 or Jansen and Sudholt (2010)), they
sometimes lead to incorrect conclusions from a practical point of view. Moreover, when
trying to overcome the limitations of asymptotic analysis by developing more precise
results, these results may even turn out to be misleading instead of helpful.
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12. On Limitations of Counting Function Evaluations

In the following, we further discuss two aspects of current complexity analyses in order
to point out limitations of the cost models used for measuring the optimization time of
a randomized search heuristic, namely the number of iterations (Section 12.1) and the
number of function evaluations (Section 12.2). Moreover, we present a novel approach
introduced in Jansen and Zarges (2011d) that —in the spirit of algorithm engineering
(Sanders 2009)— adds empirical analysis to the analytical one in order to bridge the
gap between theory and practice in the field of theory of randomized search heuristics
(Section 12.3). Sections 12.2 and 12.3 of this chapter are based on Jansen and Zarges
(2011d).

12.1. Case Study 1: Counting Iterations

Throughout this thesis we used the number of iterations as a measure for the optimization
time of an algorithm. When discussing different mutation operators in Part II this was
(except for the cost of initialization) not different from counting the number of function
evaluations since in each iteration λ = 1 new search point is created. Remember, that
in this thesis the optimization time is always larger than µ, and thus neglecting these
cost is not relevant with respect to asymptotic results. However, when considering aging
operators in Part III things change considerably since now there may be more than 1
function evaluation per iteration since newly generated search points introduced due
to aging also require function evaluations. As each search point can be removed at
most each τmax-th iteration the number of function evaluations is bounded above by
µ+ (1 + (µ/τmax)) · T where T is the number of iterations.

We revisit one particular experiment that was executed in Chapter 10 in order to
investigate these effects. Remember that in that chapter we analyzed what aging can
achieve beyond restarts and thus, the considerations relied heavily on the existence of
partial restarts. Clearly, partial restarts increase the number of function evaluations.
Note that in the other analyses of aging, we often set the maximal lifespan to values that
yield a high probability of not removing any search points due to age in most parts of
the optimization process. However, if aging is to be effective, we need to remove search
points due to age and thus, it makes sense to consider an example including restarts and
partial restarts.

We consider the most frequent replacement strategy (Definition 10.2) that was ana-
lyzed in Section 10.5. Moreover, we use the age-based static pure aging variant (Defi-
nition 10.1). We choose µ = ⌊√n⌋ as size for the collection of search points and re-do
the experiment executed on the objective function f (Definition 10.1.2). We perform 100
independent runs for n ∈ {10, 20, . . . , 200} and count for each run the number of itera-
tions as well as the number of function evaluations executed. The results are depicted in
Figure 12.1 using box-and-whisker plots (Definition B.1).

We observe that no difference is visible. Thus, we additionally consider the difference of
the observed medians for the number of iterations and the number of function evaluations.
The results are presented in Figure 12.2. First, consider the red curve, denoting the exact
difference between the two cost measures.
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Figure 12.1.: Experimental results for most frequent replacement and age-based aging
with µ = ⌊√n⌋, counting iterations (left) and function evaluations (right),
data from 100 runs.
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12. On Limitations of Counting Function Evaluations

We see that we have indeed extra function evaluations. Moreover, their number seems
to increase with increasing n, though the difference seems not to bee too large in com-
parison to the overall optimization time observed. However, we already knew that the
number of function evaluations is larger due to the cost of initialization. Thus, we addi-
tionally plot the difference of the two cost measures minus µ (green curve). We see that
we still have an increasing number of function evaluations compared to the number of
iterations.

We conclude that in our considerations counting the number of iterations does not make
a decisive difference and thus, the cost model is appropriate for our analyses. However,
it is extremely important to keep this discrepancy in mind, when interpreting the results,
in particular when comparing age-based algorithms with other algorithms that do not
include extra function evaluations per iteration. Moreover, things may change when
considering other objective functions or algorithms.

12.2. Case Study 2: Precise Analysis

For our second case study we consider a very recent exact and precise analysis executed
by Böttcher et al. (2010). In this analysis, the optimal mutation probability of a well-
known evolutionary algorithm, the (1+1) EA (Definition 3.1) on the example function
LeadingOnes (Definition 5.8) is analyzed. Note, that the authors consider a general
version of the (1+1) EA with a fixed mutation probability p(n) that may (and should)
depend on n but is fixed during a run.

It is known that the expected optimization time of the (1+1) EA on LeadingOnes
is E (T ) = Θ

(

n2
)

(Droste et al. 2002) for any mutation probability p(n) = Θ(1/n).
However, for the (1+1) EA on LeadingOnes much more is known, in particular
the complete probability distribution for the current bit string x. Let x ∈ {0, 1}n be
some search point with LeadingOnes(x) = vx. Clearly, we have x[0] = x[1] = · · ·
= x[vx−1] = 1 and x[vx] = 0 in this case. If vx ≤ n−2, a simple inductive proof (Droste
et al. 2002) shows that for any x′ ∈ {0, 1}n with x′[0] = x′[1] = · · · = x′[vx − 1] = 1 and
x′[vx] = 0

Prob
(

x = x′
)

= 2−(n−(vx+1))

holds. This can be exploited to derive a much more precise result which was presented
recently by Böttcher et al. (2010). For the sake of completeness, we restate their result
and the main proof ideas here.

Theorem 12.1 (Böttcher et al. (2010)). The expected optimization time of the (1+1) EA
with fixed mutation probability p(n) for LeadingOnes is

E (T ) =
(1− p(n))1−n − (1− p(n))

2p(n)2
=

1− (1 − p(n))n

2p(n)2(1− p(n))n−1
. (12.1)

Proof. Let x be the current search point and vx = LeadingOnes(x). Moreover, let
Tvx denote the time until an offspring y with LeadingOnes(y) > vx is generated for
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the first time. In order to increase this value in a mutation, it is necessary not to
flip the first vx bits and to flip x[vx]. The remaining bits are irrelevant. Thus, we have
Prob (LeadingOnes(y) > LeadingOnes(x)) = (1−p(n))vxp(n) for the mutated search
point y. This yields

E (Tvx) =
1

(1− p(n))vxp(n)
. (12.2)

Assume x0 to be the initial search point. Taking random initialization into account
and using the law of total probability (Lemma B.11), we can easily express the overall
expected optimization time E (T ) via the improvement times Tvx . Note, that the equation
in (∗) was proven in Böttcher et al. (2010) by induction with a slightly different notation.

E (T ) =

n−1
∑

vx=0

Prob (LeadingOnes(x0) = vx) · E (T | LeadingOnes(x0) = vx)

=

n−1
∑

vx=0

2−(vx+1)



E (Tvx) +

n−1
∑

j=vx+1

2j−vx · E (T | LeadingOnes(y) = j)





(∗)
=

n−1
∑

vx=0

2−(vx+1)



E (Tvx) +
1

2

n−1
∑

j=vx+1

E (Tj)



 =
n−1
∑

vx=0

E (Tvx)

2
(12.3)

Plugging in eq. (12.2) and making use of Lemma B.7 on the geometric series we conclude
the proof.

E (T ) =

n−1
∑

vx=0

1

2(1− p(n))vxp(n)
=

1

2p(n)

n−1
∑

vx=0

(

1

1− p(n)

)vx

=
1

2p(n)
·
1−

(

1
1−p(n)

)n

1− 1
1−p(n)

=
1

2p(n)
· (1− p(n))n − 1

(1− p(n))n
· 1− p(n)

1− p(n)− 1

=
1− (1− p(n))n

2p(n)2(1− p(n))n−1

Using this result Böttcher et al. (2010) derive an optimal fixed mutation probability for
the (1+1) EA on LeadingOnes. It is stated that the mutation probability minimizing
eq. (12.1) converges to 1.59362/n, yielding E (T ) = 0.772n2. It is important to notice
that the optimal mutation probability depends on n and only converges to 1.59362/n for
increasing n. To be more precise, for small values of n slightly smaller mutation prob-
abilities lead to better optimization times, e. g., 1.58105/n for n = 100 and 1.59235/n
for n = 1000. However, for not too small values of n all significantly other mutation
probabilities yield larger expected optimization times. Note, that when doing experi-
ments, we use the exact optimal values that can be derived using eq (12.1). These values
are visualized later in Figure 12.6 (together with much smaller values from the new cost
model introduced later in Section 12.3).
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Algorithm 12.1 Implementation of LeadingOnes (Jansen and Zarges 2011d)

long fitness(char *x)

{

long i;

for ( i=0; ( i<n ) && ( x[i]==1 ); i++ );

return i;

}

Remember that the cost model used in the presented analysis only counts the number
of function evaluations since it assumes those to be most costly. However, at the end
of the day time is wall clock time. In particular, practitioners are mostly interested
in the actual run time. Since the main motivation for considering randomized search
heuristics is in practical applications, we investigate the result on the optimal mutations
probability for LeadingOnes with respect to its relevance when measuring the actual
run time instead of the number of function evaluations. In order to do so, it makes sense
to first look at the concrete implementation used.

We consider a simple implementation that is neither naive nor sophisticated. In par-
ticular, we want an implementation that is organized in modules and can be considered
as reasonable from a programming or software engineering point of view. This is useful
since in applications randomized search heuristics often exhibit the need to be modified
to better fit the current task. One modification is the application of different kinds of
crossover and mutation operators or selection schemes. Such modifications are facilitated
when the randomized search heuristic is implemented using such a module structure.

The modules we use are function evaluation, mutation, and selection. The function
evaluation receives as input a search point and returns its fitness. The mutation receives
a search point to be mutated and sufficient memory to store the mutated offspring. In
addition to this offspring it returns the information if at least one bit was flipped. No
other information (like the specific bits flipped) is available to the main loop. We remark
that use of such additional information may enable one to implement a more efficient
function evaluation. In our model this is not possible. The selection receives the parent,
the offspring, and their fitness values. It returns the new collection of search points
together with its fitness.

The implementation is carried out in ANSI C using a char to store a single bit.
The random decisions of the (1+1) EA are implemented using drand48() as pseudo-
random number generator. This leads to the straight-forward implementation of the
fitness function LeadingOnes as shown in Algorithm 12.1, where the string length n is
a global variable.

For the mutation, a naive implementation may perform a random experiment for each
of the n bits to determine if this bit is flipped. This would make each mutation an
operation that requires Θ(n) random decisions and thus extremely costly. However,
a much more efficient implementation is known. Already Knuth (1969) (described for
standard bit mutations by Rudolph and Ziegenhirt (1997)) pointed out that for small
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Algorithm 12.2 Implementation of mutation (Jansen and Zarges 2011d)

int mutation(char *parent,char *offspring)

{

long next, start=0; /* start at offspring[0] */

int mutated=0; / remember if bit is flipped /

next=getNextPos(n-1); /* get mutation site */

if ( next != -1 )

{ /* position within current bit string */

mutated=1; /* remember some bit is mutated */

/* copy parent to offspring */

memcpy(offspring, parent, sizeof(char)*n);

while (next != -1) /* while within string */

{ /* mutate bit */

offspring[start+next]=1-parent[start+next];

start += (next+1); /* update next pos. */

next=getNextPos(n-start-1);

}

}

return mutated; /* flag if any bit was mutated */

}

probabilities p(n) it is much more efficient not to perform n random experiments (one
for each potential mutation site) but to randomly draw the position of the next muta-
tion site. This does not change the probability distribution but reduces the number of
random experiments necessary from n on expectation to p(n) ·n, thus only 1 for the mu-
tation probability p(n) = 1/n. We implement this idea in a straight-forward way using
two global variables, nextPos to store the next mutation site and l=log(1.0-p) where
p = p(n) is the mutation probability. This variable l is needed for the determination
of the next mutation site. We initialize nextPos=-1 to indicate that currently there is
no random position available and one has to be determined randomly. The mutation
itself is described in Algorithm 12.2. It makes use of two auxiliary functions described
in Algorithm 12.3 and Algorithm 12.4, respectively.

What remains is selection. The strict plus-selection employed requires a comparison of
the two function values and, in case the offspring is no worse than its parent, replacing
the parent by the offspring. In a naive implementation one may copy the offspring to the
parent requiring Θ(n) computation steps. It is, however, quite obvious that it suffices to
swap the pointers to parent and offspring so that selection can be done in time Θ(1).

All experiments reported in this chapter have been carried out on an iMac with a
2.8GHz quad-core Intel Core i7 processor with 8MB shared L3 cache and 8GB 1066MHz
DDR3 SDRAM. The ANSI C implementation has been compiled using gcc 4.2.1 with
optimization -O3. The run time is measured using clock() so that the actual time spent
in the (1+1) EA is measured.
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Algorithm 12.3 Implementation of getNextPos (for mutation) (Jansen and Zarges
2011d)

long getNextPos(long length)

{ /* deliver next mutation site */

if (nextPos>=0) /* next position available */

return savePos(nextPos, length);

/* randomly choose next position */

nextPos=(long)floor( log( drand48() )/l );

return savePos(nextPos, length);

}

Algorithm 12.4 Implementation of savePos (for mutation) (Jansen and Zarges 2011d)

long savePos(long pos, long length)

{ /* update position */

if (pos>length)

{ /* next position not within string */

nextPos = pos-length-1; /* subtract used part */

return -1; /* signal: end for this string */

}

else

{

nextPos=-1; /* position used */

return pos;

}

}

The experiments are all carried out for n ∈ {50, 100, 150, . . . , 1000} and are repeated
100 times independently, i. e., with independent random seeds for the pseudo-random
number generator. The results are always presented using box-and-whisker plots as
described in the appendix (Definition B.1).

Using the implementation and experimental setup described above, we compare the
number of function evaluations as well as the actual run time of the (1+1) EA with the
standard mutation probability p(n) = 1/n and the optimal mutation probability derived
by Böttcher et al. (2010). Note, that the expected optimization times with respect to
function evaluations are Θ

(

n2
)

in both cases and thus, only differ in the leading constant.

The results of our experiments can be found in Figure 12.3. We see that with respect
to the number of function evaluations, the results are in accordance to the theoretical
results (Figure 12.3(a)). We additionally plot the graph of the function cn2, where the
constant c is determined by a least squares fit for the means and get a reasonable fit
for 0.77n2 and 0.86n2, respectively. Note, that this matches the expected optimization
times due to Theorem 12.1 for the considered mutation probabilities.
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Figure 12.3.: Comparison of the (1+1) EA for LeadingOnes using the standard mu-
tation probability p(n) = 1/n and the optimal mutation probability due to
Böttcher et al. (2010), data from 100 runs.

However, things change, when considering the actual run time of the algorithm (see
Figure 12.3(b)). Contrary to expectations, the theoretical optimal mutation probability
does not seem to outperform the standard choice p(n) = 1/n in the considered setting,
it even seems to perform slightly worse. Note, that we have to be careful with our con-
clusions here due to several reasons. First, we are considering a specific implementation
of the algorithm and results may be different for other implementations. Second, the
observed run times in the experiments are all very small in nature. Third, the differences
are likely to be not statistically significant since they are too small (in particular the
box-and-whisker plots are overlapping). However, we can conclude that, when perform-
ing precise analyses in the way described above, theoretical findings may be misleading
with respect to the actual run time of the considered algorithm. We conjecture that
the number of function evaluations is a too coarse and inaccurate measure of the run
time and thus, only counting the number of function evaluations is not an appropriate
cost model for such analyses. Since implementation details can make a huge difference,
we propose a different cost model within the next section that takes these details into
account in order to improve the practical relevance of the theoretical results.

12.3. A Data-Driven Approach

In this section, we introduce a novel approach for measuring the optimization time of
a randomized search heuristics that incorporates empirical findings into the theoretical
analysis (Jansen and Zarges 2011d). It is important to note, that we do not argue against
state-of-the-art computational complexity analysis in general. We rather make the point
that an analysis that takes the concrete implementation of the algorithm into account
can yield insights that a pure theoretical optimization time analysis cannot.
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First remember that the standard cost model for the analysis of randomized search
heuristics counts only the number of function evaluations since it assumes those to be
most costly. Taking a closer look at the implementation described in the preceding
section, the first observation that was made in Jansen and Zarges (2011d), is that a
function evaluation here is not at all time consuming since it can be carried out in O(n)
steps and actually takes only Θ(LeadingOnes(x)) steps. Since with high probability in
each mutation the number of leading 1-bits is increased by O(1), we have that on average

Θ

((

n
∑

i=1

i

)

/n

)

= Θ(n)

computation steps are carried out in a function evaluation where the average is taken
over the complete run. Moreover, it is noted, that being able to carry out one function
evaluation in time O(n) is not unusual. Most example functions can be computed in
linear time (even more complex ones like the well-known long path function (Rudolph
1996, 1997), compare also Chapter 8.2) and the same holds for many combinatorial
optimization problems. It is true that function evaluations can be time consuming.
However, in many cases and in particular for LeadingOnes, they are not. Considering
the rest of the (1+1) EA mutation seems to be a potentially time consuming operator
since it involves pseudo-random number generation and the computation of a logarithm.

However, in a first step we work under the hypothesis that the assumption that the
function evaluations account for the majority of the actual run time is correct. In this
case, any sensible implementation will be careful with respect to function evaluations.
Consider the (1+1) EA with the standard choice p(n) = 1/n. We see that with prob-
ability (1 − p(n))n > .35 for n > 10 no bit is flipped at all and y = x holds. Thus, in
expectation, in more than 35% of the iterations no bit is flipped. Clearly, in these cases
no function evaluation is necessary. Note, that the implementation described in Sec-
tion 12.2 allows to omit a function evaluation when producing a copy, since the mutation
returns the additional information if at least one bit was flipped. We remark that this
kind of resampling is typical for randomized search heuristics in discrete search spaces
and completely different from randomized search heuristics in continuous domains. The
proposed approach takes this resampling into account.

12.3.1. Towards an Advanced Cost Model

We propose an advanced cost model reflecting the above observation by assigning cost q(n)
to an iteration where in the mutation no bit is flipped and cost r(n) to an iteration where
at least one bit is flipped. Using this cost model we revisit the proof of Theorem 12.1
and derive the following more general result. Note, that setting q(n) := r(n) := 1 yields
the cost model used in Theorem 12.1 by Böttcher et al. (2010).

Theorem 12.2 (Jansen and Zarges (2011d)). The expected optimization time of the
(1+1) EA with fixed mutation probability p(n) for LeadingOnes is

E (T ) = (1− (1− p(n))n) · (1− p(n))nq(n) + (1− (1− p(n))n) r(n)

2p(n)2(1− p(n))n−1
. (12.4)
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Proof. Let x be the current bit string of the (1+1) EA and vx = LeadingOnes(x) < n.
Let Gvx denote the number of iterations until an offspring y with LeadingOnes(y) > vx
is generated for the first time. Let Tvx denote the costs in these iterations. For i ∈ N, let
Tvx,i denote the costs in the i-th iteration. Note, that here, Tvx and Tvx,i correspond to
the costs (instead of the number of function evaluations) with respect to the cost model
and, thus, Tvx,i ∈ {q(n), r(n)}.

Applying the law of total probability (Lemma B.11) we have

E (Tvx) =

∞
∑

t=1

Prob (Gvx = t) · E (Tvx | Gvx = t) .

Moreover, by definition Tvx =
Gvx
∑

i=1
Tvx,i holds and thus,

E (Tvx) =

∞
∑

t=1

Prob (Gvx = t) ·
t
∑

i=1

E (Tvx,i | Gvx = t)

follows by linearity of expectation (Lemma B.12). For i = Gvx we have E (Tvx,i) = r(n)
since in this final mutation at least the left-most 0-bit flips. For i < Gvx all E (Tvx,i) are
equal for symmetry reasons and thus

E (Tvx) =

∞
∑

t=1

Prob (Gvx = t) · ((t− 1)E (Tvx,1 | Gvx = t) + r(n)) (12.5)

holds. We have Gvx = t if and only if on the one hand in the t-th iteration the left-most
vx bits do not flip and x[vx] flips and, on the other hand, this does no happen in the t−1
preceding iterations. Thus

Prob (Gvx = t) = (1− p(n)(1− p(n))vx)t−1 · p(n)(1− p(n))vx (12.6)

holds. For i < Gvx we consider one single mutation. Let S denote the event that in this
mutation the function value is increased. Let Z denote the event that in this mutation
no bit is flipped. Since we consider Tvx,i for i < Gvx we know that the function value
is not increased. For Prob

(

Z ∧ S
)

we observe Prob
(

S
)

= Prob
(

Z ∧ S
)

+ Prob (Z) and
Prob

(

Z ∧ S
)

= Prob
(

S
)

− Prob (Z) follows. Thus, using Definition B.3,

E (Tvx,i) = q(n) · Prob
(

Z | S
)

+ r(n) · Prob
(

Z | S
)

= q(n) · Prob
(

Z ∧ S
)

Prob
(

S
) + r(n) · Prob

(

Z ∧ S
)

Prob
(

S
)

= q(n) · Prob (Z)

Prob
(

S
) + r(n) · Prob

(

S
)

− Prob (Z)

Prob
(

S
)
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for all i < Gvx holds. We already know that Prob
(

S
)

= 1−Prob (S) = 1− (1− p(n))vx ·
p(n) holds. With Prob (Z) = (1− p(n))n we obtain

E (Tvx,i) = q(n) · (1− p(n))n

1− (1− p(n))vx · p(n) + r(n) ·
(

1− (1− p(n))n

1− (1− p(n))vx · p(n)

)

.

Inserting this value for E (Tvx,i) and Prob (Gvx = t) from eq. (12.6) into eq. (12.5) we
obtain

E (Tvx)

=

∞
∑

t=1

(1− p(n)(1− p(n))vx)t−1 p(n)(1− p(n))vx

·
(

(t− 1)

(

q(n)(1− p(n))n

1− p(n)(1− p(n))vx
+ r(n)

(

1− (1− p(n))n

1− p(n)(1− p(n))vx

))

+ r(n)

)

=

∞
∑

t=1

(1− p(n)(1− p(n))vx)t−1 p(n)(1− p(n))vx

·
(

(t− 1)

(

q(n)(1− p(n))n

1− p(n)(1− p(n))vx
+ r(n)

(

1− (1− p(n))n

1− p(n)(1− p(n))vx

)))

+

∞
∑

t=1

(1− p(n)(1− p(n))vx)t−1 p(n)(1− p(n))vxr(n)

= p(n)(1− p(n))vx
(

q(n)(1− p(n))n

1− p(n)(1− p(n))vx
+ r(n)

(

1− (1− p(n))n

1− p(n)(1− p(n))vx

))

·
∞
∑

t=1

(t− 1) (1− p(n)(1− p(n))vx)t−1

+ p(n)(1− p(n))vxr(n)

∞
∑

t=1

(1− p(n)(1− p(n))vx)t−1

It is easy to see that the two series in the above equations converge since we can apply
Lemma (B.7) on the geometric series. This yields

∞
∑

t=1

(t− 1) (1− p(n)(1 − p(n))vx)t−1 =
∞
∑

t=1

t (1− p(n)(1− p(n))vx)t

=

∞
∑

t=1

∞
∑

u=t

(1− p(n)(1− p(n))vx)u =

∞
∑

t=1

(1− p(n)(1− p(n))vx)t

1− (1− p(n)(1− p(n))vx)

=
1

p(n)(1− p(n))vx

∞
∑

t=1

(1− p(n)(1− p(n))vx)t

=
1

p(n)(1− p(n))vx
· 1− p(n)(1− p(n))vx

1− (1− p(n)(1− p(n))vx)
=

1− p(n)(1− p(n))vx

(p(n)(1− p(n))vx)2
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for the first term and

∞
∑

t=1

(1− p(n)(1− p(n))vx)t−1 =
∞
∑

t=0

(1− p(n)(1− p(n))vx)t

=
1

1− (1− p(n)(1− p(n))vx)
=

1

p(n)(1− p(n))vx

for the second one. Plugging these results into the above calculations we obtain

E (Tvx)

= p(n)(1− p(n))vx
(

q(n)(1− p(n))n

1− p(n)(1− p(n))vx
+ r(n)

(

1− (1− p(n))n

1− p(n)(1− p(n))vx

))

· 1− p(n)(1− p(n))vx

(p(n)(1− p(n))vx)2
+

p(n)(1− p(n))vxr(n)

p(n)(1− p(n))vx

=
1− p(n)(1− p(n))vx

p(n)(1− p(n))vx

(

q(n)(1− p(n))n

1− p(n)(1− p(n))vx
+ r(n)

(

1− (1− p(n))n

1− p(n)(1− p(n))vx

))

+ r(n)

=
1− p(n)(1− p(n))vx

p(n)(1− p(n))vx
· q(n)(1− p(n))n

1− p(n)(1− p(n))vx

+
r(n) (1− p(n)(1− p(n))vx)

p(n)(1− p(n))vx
·
(

1− (1− p(n))n

1− p(n)(1− p(n))vx

)

+ r(n)

=
q(n)(1− p(n))n

p(n)(1− p(n))vx
+

r(n) (1− p(n)(1− p(n))vx)

p(n)(1− p(n))vx
− r(n)(1− p(n))n

p(n)(1− p(n))vx
+ r(n)

=
(1− p(n))nq(n) + (1− (1− p(n))n) r(n)

p(n)(1− p(n))vx

Making use of eq. (12.3) from the proof of Theorem 12.1 we obtain

E (T ) =

n−1
∑

vx=0

(1− p(n))nq(n) + (1− (1− p(n))n) r(n)

2p(n)(1− p(n))vx

=
(1− p(n))nq(n) + (1− (1− p(n))n) r(n)

2p(n)
·
n−1
∑

vx=0

1

(1− p(n))vx

=
(1− p(n))nq(n) + (1− (1− p(n))n) r(n)

2p(n)
· 1− (1− p(n))n

p(n)(1− p(n))n−1

= (1− (1− p(n))n)
(1− p(n))nq(n) + (1− (1− p(n))n) r(n)

2p(n)2(1− p(n))n−1

for the expected total cost T .

We still need to discuss how to determine q(n) and r(n) appropriately. Therefore, we
consider two different instantiations of the cost model within the next two sections.
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12.3.2. Naive Analysis

In a first step, we examine a very simple version. We keep the cost model where we
assign cost 1 for a function evaluation but take into account that no function evaluation
is made if no bit is flipped. This corresponds to the case q(n) = 0 and r(n) = 1. Again,
let T denote the cost in this modified cost model. The following holds.

Theorem 12.3 (Jansen and Zarges (2011d)). Let p(n) with 0 < p(n) < 1 denote the
mutation probability of the (1+1) EA, c > 0 a constant.

p(n) = c/n ⇒ lim
n→∞

E (T ) /n2 =
(ec − 1)2

2c2ec
> .5 (12.7)

p(n) ≥ 1

n
⇒ lim

n→∞
E (T ) /n2 ≥ (e− 1)2

2e
> .54 (12.8)

p(n) = o

(

1

n

)

⇒ lim
n→∞

E (T ) /n2 =
1

2
= .5 (12.9)

Proof. Plugging q(n) = 0 and r(n) = 1 into eq. (12.2), we get

E (T ) =
(1− (1− p(n))n)2

2p(n)2(1− p(n))n−1
.

First we consider the case p(n) = c/n and make use of lim
n→∞

(1− c/n)n = e−c. Hence, we

have

lim
n→∞

E (T ) /n2 =
(1− e−c)

2

2c2e−c
=

(ec − 1)2

2c2ec

and (12.7) follows. We observe that E (Tvx) grows with growing p(n) ≥ 1/n and thus
(12.8) holds. For p(n) = o(1/n) we have p(n) = 1/(nα(n)) for some function α with
lim
n→∞

1/α(n) = 0. Making use of lim
n→∞

(1− p(n))n = lim
n→∞

1− (1/α(n)) = 1 in this case we

obtain (12.9).

We visualize the limit terms (as a function of c) from Theorem 12.3 together with the
constant term 0.772 that results from using the fixed mutation probability 1.59362/n
(Böttcher et al. 2010) in Figure 12.4. Theorem 12.3 tells us that the number of function
evaluations can be minimized by making the mutation probability arbitrarily small, e. g.,
using p(n) = 2−n implies a smaller number of function evaluations than p(n) = 1/n or
p(n) = 1.59362/n. This demonstrates that this simple cost model is inadequate since
certainly, the mutation probability should not be set this small. We learn that while
function evaluations may be costly the other operations of the (1+1) EA are definitely
not for free. In order to take them into account in an appropriate way the implementation
needs to be taken into account. We do so in the following section.

12.3.3. Data-Driven Cost Model Generation

In theory, it appears to be appropriate to assign cost n to a mutation that flips a bit
(due to the function evaluation involved) and cost 1 to a mutation where no bit is
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Figure 12.4.: Limit terms for lim
n→∞

E (T>0) /n
2 for different values of the mutation prob-

ability p(n) as given in Theorem 12.3 together with 0.772 from Böttcher
et al. (2010).

flipped. It is, however, unclear if this is a reasonable setting when considering the imple-
mented (1+1) EA since function evaluations involve only simple and fast basic operations
whereas mutations involve potentially costly pseudo-random number generation and the
computation of a logarithm. Therefore, we use results of preliminary experiments to
assign cost to iterations with and without actual mutation as presented in Jansen and
Zarges (2011d).

We aim at deriving an estimate of the time spent in iterations without any flipping bit
in comparison to iterations where at least one bit flips. We perform 100 independent runs
of the (1+1) EA with the standard mutation probability p(n) = 1/n on LeadingOnes.
It is important to remark, that the times we are interested in are not independent of
the mutation probability p(n). In particular, very small mutation probabilities increase
the probability to have several consecutive iterations where no bit is flipped. In all but
the first of the iterations of such a sequence the mutation is particularly fast because
no random experiment needs to be carried out at all. However, preliminary experiments
confirmed that the differences are not significant for mutation probabilities p(n) = c/n
with 1/4 < c < 4. Thus, we do these measurements for p(n) = 1/n, only. We discuss
larger and smaller mutation probabilities later.

We measure the cumulative time for all iterations where no bit flips and the cumulative
time for all iterations where at least one bit flips. For each n we report the quotient of
the corresponding average times in form of box-and-whisker plots in Figure 12.5. Since
we average over an enormous number of random experiments (100 independent runs
where already one run yields the average over a large random number of iterations),
the results are concentrated around the mean values in an extreme way. Fitting ax+ b
by a least squares fit for the means yields a reasonable fit for 0.0011n + 1.18 (compare
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Figure 12.5). We conclude that the relation between the average run time in iterations
with and without actual mutation is indeed linear but the factor is really small and hence
the ratio grows only slowly with n.

12.3.4. Application of the New Cost Model

Based on these empirical findings we assign cost q(n) := 1 to an iteration where in the
mutation no bit is flipped and cost r(n) := 0.0011n + 1.18 to an iteration where at least
one bit is flipped. Plugging these values into eq. (12.4) yields

E (T ) = (1− (1− p(n))n) · (1− p(n))nq(n) + (1− (1− p(n))n) (0.0011n + 1.18)

2p(n)2(1− p(n))n−1
.

Similar to Böttcher et al. (2010) we want to derive an optimal mutation probability p(n)
with respect to our new cost model, i. e., a mutation probability p(n) that minimizes the
expected cost derived in the new cost model. As already stated by Böttcher et al. (2010)
we cannot solve the equation for the expected optimization time from Theorem (12.2)
arithmetically for p(n). Consequently, we do so numerically for the values of n used in our
experiments. We visualize the resulting values n · p(n) together with the corresponding
values from Böttcher et al. (2010) and the asymptotic value 1.59362 in Figure 12.6 to
allow for comparison.

We see that the optimal mutation probabilities with respect to our empirical cost
model decrease with increasing n. Moreover, they are always strictly smaller than the
optimal values derived in the uniform cost model applied by Böttcher et al. (2010). We
see that for the range of values of n considered the optimal mutation probabilities are all
1/n ≤ p(n) ≤ 1.5/n and thus, the differences resulting from mutation probabilities c/n
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Figure 12.6.: Graph of n · p(n) for mutation probabilities p(n) minimizing the empirical
cost model and for mutation probabilities due to Böttcher et al. (2010).

with 1 < c ≤ 1.5 as compared to mutation probability 1/n are rather small. This supports
our assumption that performing measurements with p(n) = 1/n is indeed sufficient. We
come back to this point again when discussing actual run times. It is important to remark
that these findings are only valid for the range of values n considered here. For much
larger values of n one can expect even smaller mutation probabilities to be optimal.

12.3.5. Experimental Evaluation

To compare the impact of the different mutation probabilities, we perform experiments,
again for n ∈ {50, . . . , 1000} and 100 independent runs for each n and each considered
mutation probability.

In addition to the derived optimal mutation probabilities for the empirical cost model
(Figure 12.6) and the optimal mutation probability ≈ 1.59362/n for the uniform cost
model, we consider the most recommended standard choice 1/n and several smaller and
larger mutation probabilities. Recall that we consider the (1+1) EA on LeadingOnes.
The probability to increase the function value equals (1 − p(n))vxp(n) if vx denotes
the function value of the current bit string. We consider fixed mutation probabilities
of the form c(n)/n. In most cases c(n) = c is independent of n. For the optimal
mutation probabilities, however, c(n) actually depends on n. With mutation probability
p(n) = c(n)/n and using Lemma B.8 the expected waiting time for increasing the function
value equals

n

c(n)
·
(

1− c(n)

n

)−vx

≥ n · e
c(n)·(vx/n)

c(n)
. (12.10)

Remember that at some point of time during the run we will have vx/n = 1 − O(1/n).
We see that increasing c(n) beyond 1 increases the expected waiting time exponentially
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whereas decreasing c(n) below 1 increases it only linearly. Thus, we can expect much
more dramatic effects when increasing the mutation probability. Thus, we consider the
mutation probabilities c/n and 21−c/n for c ∈ {2, 3, 4, 5} and expect to see a similar
increase in run time for larger and smaller mutation probabilities. Remember that we
report actual run times and not the number of function evaluations. In all plots we have
on the x-axis the length of the bit string n and on the y-axis run time in milliseconds.

The results for the different mutation probabilities p(n) = c/n are given as box-and-
whisker plots in a number of separate diagrams, all in Figure 12.7. In addition to the
choices c ∈ {1/16, 1/8, 1/4, 1/2, 1, 2, 3, 4, 5}, the values due to Böttcher et al. (2010),
and the computed values from Figure 12.6 we present results for the mutation probabil-
ity p(n) = 1/n2 (equivalent to setting c = 1/n in the mutation probability p(n) = c/n).
This very small mutation probability is motivated in the following way. If we follow the
reasoning that an iteration that does not flip any bit can be carried out in time Θ(1) and
other iterations require time Θ(n) we could assign cost 1 to iterations without flipping
bits and cost n to other iterations. Since increasing the function value has always proba-
bility Θ(1/n) we can expect on average to perform Θ(n) iterations before an improvement
occurs. Since in the simple cost model that we consider now these Θ(n) iterations ac-
count for a total cost of Θ

(

n2
)

we can afford to have Θ
(

n2
)

iterations without mutating
any bit without increasing the total cost asymptotically. Thus, from an asymptotic and
theoretical point of view, Θ

(

1/n2
)

are the smallest mutation probabilities that are still
of optimal efficiency on LeadingOnes.

In Figure 12.7 we have one plot for each value of c we consider. In order to allow for
some comparison in all plots the same scale is used. We notice that with all mutation
probabilities the run times are very much concentrated around the mean value, the box-
and-whisker plots are almost collapsed to this value. Moreover, we see that all mutation
probabilities p(n) with 1/(16n) ≤ p(n) ≤ 2/n lead roughly to the same run time behavior.
This includes the two sets of mutation probabilities based on the simple cost model due to
Böttcher et al. (2010) and the empiric cost model developed here. It is noteworthy that
smaller mutation probabilities seem to have much less a detrimental effect than larger
ones (compare eq. (12.10)). Since comparisons are difficult to make this way we plot all
medians in one common diagram (Figure 12.8) omitting all data except for the medians
for the sake of readability. We caution the reader to infer too much from tiny differences
in the mean values. Too small differences are likely not to be statistically significant.

In Figure 12.8 we have the median run times in milliseconds for different values of c
in the mutation probability p(n) = c/n plotted over the length of the bit string n. We
observe that the values between c = 1/16 and c = 2 form a cluster of very similar run
times with c = 1/4 being fastest and c = 2 being slowest within this efficient cluster.
This includes the sets of c-values that are computed depending on n. We notice that
there is indeed no advantage for either of them. If at all, smaller mutation probabilities
are to be preferred and the standard choice, p(n) = 1/n does pretty well, too. It is
worth mentioning that most small mutation probabilities do remarkably well. With
larger mutation probabilities, things start to change. When increasing the mutation
probability beyond 2/n run time increases considerably as can be seen in the plots for
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Figure 12.7.: Run times of the (1+1) EA for LeadingOnes for different values of c in
the mutation probability p(n) = c/n, data from 100 runs. The plots show
run times in milliseconds over n.
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Figure 12.8.: Median run times of the (1+1) EA for LeadingOnes for different values
of c in the mutation probability p(n) = c/n, data from 100 runs.

p(n) = c/n for c ∈ {3, 4, 5}. On the other extreme, the theoretically smallest efficient
mutation probability p(n) = 1/n2 turns out to be not efficient at all. Moreover, we point
out that with respect to actual run time the result by Böttcher et al. (2010) points in
exactly the wrong direction. For LeadingOnes, increasing the mutation probability
above the standard choice p(n) = 1/n is a particularly bad idea. Decreasing it is a
by far safer choice. The good news is that the performance of the (1+1) EA is quite
robust with respect to changes in the mutation probability. The actual run time is
not greatly affected as long as some care is taken. Only the extremely small mutation
probability p(n) = 1/n2 (corresponding to c = 1/n) yields a really bad performance.
Given the efficient implementation of mutations it is not surprising that smaller mutation
probabilities hurt less than larger ones. Note, however, that all these findings apply to
LeadingOnes only, a function where mutations of single bits are sufficient (and even
optimal) for optimization. Thus, in the following section, we consider two more example
functions where we relax these requirements in two steps.
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12.3.6. Other Fitness Functions

All results derived here (as well as in Böttcher et al. (2010)) apply to the (1+1) EA
on LeadingOnes, only. Of course, LeadingOnes is a very special function that has a
structure that allows for this kind of very precise analysis. It is interesting to find out
if the findings for LeadingOnes apply to other functions, too, even if the analytical
proofs do not carry over. We restrict our attention in the following to two other well
known example functions. Note, that both functions share with LeadingOnes that a
single function evaluation is not a complex operation and, thus, the average times for
single function evaluations are similar.

The first function we consider here is OneMax (see Definition 4.1 on page 29). Note,
that the run time for an evaluation of OneMax is slightly larger than for LeadingOnes
since one needs to see all n bits in order to count the number of 1-bits. For computing
LeadingOnes(x), it suffices to look at the first LeadingOnes(x) + 1 bits, i. e., stop at
the left-most 0-bit.

The function OneMax shares with LeadingOnes the property that mutations of
single bits are sufficient to find the optimum efficiently. The expected number of function
evaluations is Θ(n log n) for any mutation probability p(n) = c/n where c ∈ R

+
0 is a

constant. We perform the same experiments for the same values of c as we did for
LeadingOnes and report them in the same way. The single plots for each mutation
probability are given in Figure 12.9 in form of box-and-whisker plots.

The first striking difference to LeadingOnes is the clearly increased variance and the
larger number of outliers. Both could be expected as it is well known that the run time
for LeadingOnes is very much concentrated around the expected value (Droste et al.
2002). For OneMax, this is not the case in this extreme way. The other plots look
roughly similar to the corresponding plots for LeadingOnes (but with smaller overall
run times, of course). In order to take a closer look we again consider a plot that contains
the median values, only (Figure 12.10).

Similar to the results for LeadingOnes, the mutation probabilities p(n) = c/n with
1/16 ≤ c ≤ 2 form a band of good performance. Within this, again, differentiation
makes hardly any sense. We see again the tendency that decreasing the mutation prob-
ability below 1/n hurts less than increasing it beyond 1/n. And, again, the standard
choice p(n) = 1/n leads to good performance. A noteworthy difference in compari-
son to LeadingOnes is the performance when the mutation probability p(n) = 1/n2

(corresponding to c = 1/n) is employed. It is comparable in performance to set-
ting c = 3 and thus much more efficient than it is for LeadingOnes. We conclude
that even very small mutation probabilities like p(n) = 1/n2 (where with probability
(1 − 1/n2)n ≈ e−1/n ≈ 1 − 1/n no bit flips at all (Lemma B.8 and B.9)) may lead to
efficient optimization since iterations without mutating bits are computationally cheap
and small mutation probabilities increase the probability of single bit mutations and de-
crease the probability of mutations where several bits flip simultaneously. For OneMax,
this is favorable. One may speculate that if the simultaneous mutation of some bits is
needed things change. In order to investigate that we consider a third example function,
Jumpk (Droste et al. 2002).
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Figure 12.9.: Run times of the (1+1) EA for OneMax for different values of c in the
mutation probability p(n) = c/n, data from 100 runs. The plots show run
times in milliseconds over n.
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Figure 12.10.: Median run times of the (1+1) EA for OneMax for different values of c
in the mutation probability p(n) = c/n, data from 100 runs.

Definition 12.4. For n ∈ N, x ∈ {0, 1}n, k ∈ {1, 2, . . . , n}, the function Jumpk : {0, 1}n
→ R is defined by

Jumpk(x) =

{

|x|0 if n− k < |x|1 < n,

k + |x|1 otherwise.

Typically, one considers Jumpk for small values of k. In these cases the function is very
similar to OneMax. Only if the number of 1-bits is between n − k and n the function
value is very small. Thus, bit strings with exactly n− k 1-bits are easy to locate. From
there a direct jump to the unique global optimum, the all-ones bit string, is needed.
For the (1+1) EA with mutation probability p(n) = 1/n this dominates the expected
number of function evaluation that is Θ

(

nk + n log n
)

for all k ∈ {1, 2, . . . , n} (Droste
et al. 2002).

We set k = 2 and consider Jump2 here, only. With this setting, for the (1+1) EA with
mutation probability p(n) = 1/n, the expected number of function evaluations needed
and sufficient for optimization of Jump2 equals Θ

(

n2
)

and is thus asymptotically equal

251



12. On Limitations of Counting Function Evaluations

to LeadingOnes. However, a run of the (1+1) EA on Jump2 will be similar to a run on
OneMax. Only if some x with OneMax(x) = n− 2 is reached things change. At that
point a mutation of the two remaining 0-bits is needed to find the global optimum. If
mutation probability p(n) is used, this mutation has probability p(n)2(1−p(n))n−2. The
reciprocal of this mutation probability is the expected waiting time for this mutation and
dominates the expected run time. This term becomes minimal for p(n) = 2/(n−2). Thus,
we should expect to see good performance when using mutation probability p(n) = 2/n,
in particular since this mutation probability does not slow down the (1+1) EA on
the OneMax-part of the function too much. For the very small mutation probability
p(n) = 1/n2 (corresponding to c = 1/n) the expected waiting time becomes ≈ n4 and we
can expect to see dramatically increased run times. As we did for the other two functions
we first present the run times in separate box-and-whisker plots (see Figure 12.11).

Things look considerably different for Jump2 in comparison to LeadingOnes and
OneMax. First of all, variance in the run times is even larger than for OneMax. This
could be expected since here the run time largely depends on the waiting time for one
single event. This implies a much larger variation in comparison to LeadingOnes and
OneMax, where the run time is the sum of the waiting times for many such mostly
independent events. Second, already in these small plots we can recognize a much in-
creased run time when the mutation probability is decreased. Already for p(n) = 1/(4n)
(corresponding to c = 1/4) the run times seem to be clearly larger. We consider this in
some more detail in Figure 12.12 where only the medians are plotted.

We notice that setting the mutation probability small for Jump2 is a very bad idea.
The mutation probabilities corresponding to c = 1/n and c = 1/16 are clearly the two
worst choices considered. For the mutation probabilities with c ∈ {1/2, 1/4, 1/8} it is very
interesting to note that they pair up with larger values: c = 1/2 with c = 3, c = 1/4 with
c = 4, and c = 1/8 with c = 5. We see that even for Jump2 where a mutation probability
of 2/n seems to be indicated setting the mutation probability larger is not a good idea.
Thus, increasing the mutation probabilities seems to be in general more dangerous with
respect to the run time of the (1+1) EA than decreasing them. Considering the other
mutation probabilities we see no clear advantage for any of them. In particular, the
choice p(n) = 2/n is not superior. Taking into account what we have learned this is
easy to explain. Setting the mutation probability slightly smaller than 2/n decreases
the probability of mutating more than two bits (expensive mutations that are likely to
be useless) while slightly increasing the probability for mutations mutating single bits
(also expensive, but useful in the OneMax-phase of the optimization) and for mutations
mutating no bits at all (cheap mutations).
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Figure 12.11.: Run times of the (1+1) EA for Jump2 for different values of c in the
mutation probability p(n) = c/n, data from 100 runs. The plots show run
times in milliseconds over n.
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Figure 12.12.: Median run times of the (1+1) EA for Jump2 for different values of c in
the mutation probability p(n) = c/n, data from 100 runs.
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13. Conclusions and Directions for

Future Work

In this thesis, we have contributed significantly to the theoretical foundations of artifi-
cial immune systems. We considered different important algorithmic aspects, that are
inherent in artificial immune systems and distinguished this kind of randomized search
heuristics from others, like e. g., evolutionary algorithms. Most of our theoretical results
were accompanied by experiments. On one hand we studied the practical relevance of
our findings. On the other hand we further investigated certain aspects where rigorous
results are missing.

We started with an analysis of typical variation operators. In contrast to other random-
ized search heuristics, artificial immune systems make use of hypermutation operators,
implying mutations at high rate. We considered two concrete implementations of this
concept, namely inversely fitness-proportional mutation and contiguous hypermutations,
that are used in practical algorithms. We pointed out the importance of an appropriate
parametrization and showed on which kind of problems these operators excel the stan-
dard operator from the field of evolutionary computation. We closed our examinations
of this topic by presenting a general result on high mutation probabilities and showed
that on the well-known class of monotone functions even constant changes in the muta-
tion probability can have a tremendous effect. This is the first time such a result was
presented.

Reviewing what we have learned in that part of this thesis, we observe that hypermu-
tation operators from artificial immune systems can have difficulties in exactly locating
global optima. This is in particularly true for inversely fitness-proportional mutation
probabilities since here, the probability for only flipping a small number of bits can be
very small. One might conjecture that these kind of operators are more appropriate
when searching for a robust solution, i. e., they prefer locally optimal solutions situated
in a ‘good’ area of the search space over an isolated single global optimum. It is an open
problem to investigate if this is the case.

With respect to contiguous hypermutations we only considered the extreme parametri-
zation. However, while we have seen that on one hand we loose in comparison to standard
bit mutations when 1-bit mutations are essential for the optimization process, we gain
advantages on problems, where it is necessary to flip several bits simultaneously. This
is often the case if one needs to escape from a local optimum. In order to combine
both benefits, it might be reasonable to combine contiguous hypermutations with other
mutation operators. We remark, that this is exactly what is done in the B-Cell algorithm
where contiguous hypermutations were introduced. It is an open problem to find out what
such mechanisms can achieve.
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The second aspect investigated in this thesis is the concept of aging. We considered
two different implementations of aging, one deriving from the field of artificial immune
systems and one from the field of evolutionary computation. We again analyzed appro-
priate parametrizations for these operators and compared their performance when faced
with common properties of a search space, namely local optima and plateaus. Based on
our findings we proposed a novel aging operator that provably combines the benefits of
the two previous ones. Since in the first results obtained about aging, the same effects
can be achieved when replacing aging by some restart strategy, we studied what aging
can achieve beyond restarts. One of the main findings here is that static pure aging can
be sub-divided into an aging strategy and a replacement strategy that preserves a certain
degree of diversity with respect to age.

While we have shown that partial restarts can be beneficial for the optimization pro-
cess, it is an open problem what aging contributes to the success of algorithms used
in practice. It is often stated that aging preserves a certain degree of diversity within
the collection of search points. However, we have seen in our analysis that this is not
completely true. Other mechanisms have to ensure that aging can be successful. Thus,
it is an interesting question for future research to further study the interplay between
aging and other mechanisms of the practical algorithms.

Moreover, aging is not only used in the context of selection for replacement. In partic-
ular, it is also used to control the mutation strength or the size of the collection of search
points. It is an interesting open problem to investigate the effects of aging in other parts
of an artificial immune system.

In the last part of this thesis, we considered typical cost models from the field of ran-
domized search heuristics, namely counting iterations and counting function evaluations.
Since an appropriate cost model needs to reflect the ‘real’ run time of an algorithm,
we pointed out limitations of both models and proposed a new advanced model that
incorporates implementation details and results of experiments to address the identified
problems. While this new cost model contributes to the discussion how practical relevant
theoretical analyses can be executed, it is only a starting point. In order to bridge the
gap between theory and practice more work in this direction needs to be done.

Except for the chapter on monotone functions, all our results are about ‘artificial’
example functions. These functions are often considered when ‘new’ search heuristics
are subject of rigorous analyses. They help to assess the assets and drawbacks of the
heuristics under consideration and get a clearer and better founded understanding of
their properties. These results are useful but only a first step. Results on classes of func-
tions, typical situations, and combinatorial optimization problems need to be obtained.
Moreover, more realistic algorithms should be considered.

Another important aspect of artificial immune systems is the interplay of different
mechanisms known from the immune system of vertebrates. Within this thesis we con-
centrated on specific operators and analyzed their inherent properties in isolation. This is
an important first step in order to understand the functionality of such operators. How-
ever, in future research this analysis needs to be extended to more advanced analytical
frameworks. A first step in this direction was done in Chapter 10 where we established a
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structured view on aging and analyzed its interplay with different replacement strategies
and a more advance variation operator.

Finally, we only considered a limited number of operators used in artificial immune sys-
tems, and in particular only clonal selection algorithms. As discussed in the introduction
this is only a small part of the whole area of artificial immune systems. Other algorithms
need to be investigated and embedded into the more general field of randomized search
heuristics. However, the practical relevance of theoretical findings is crucial. Keeping
this in mind, the theoretical analysis can significantly add to the field of artificial immune
systems by helping to understand how these algorithms actually work and thus, foster
the development of powerful new algorithms.
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A. Nomenclature

n ∈ N dimension of the search space

Ct collection of search points at time t

C0 initial collection of search points

µ ∈ N size of the collection of search points

xi ∈ {0, 1}n, i ∈ {1, . . . , µ} i-th search point of the collection of search points

x0 ∈ {0, 1}n initial search point

x[i] ∈ {0, 1}, i ∈ {0, . . . , n− 1} i-th bit of search point x ∈ {0, 1}n

|x|1 ∈ {0, . . . , n} number of 1-bits in the bit string x ∈ {0, 1}n

|x|0 ∈ {0, . . . , n} number of 0-bits in the bit string x ∈ {0, 1}n

mut(x) ∈ {0, 1}n result of the mutation of x ∈ {0, 1}n

x+ ∈ {0, 1}n result of a variation and a subsequent selection

τmax ∈ N maximal lifespan in age-based algorithms

log n logarithm of n to base 2

lnn logarithm of n to base e

H (x, y) ∈ {0, . . . , n} Hamming distance of two search points x, y ∈ {0, 1}n

TA,f ∈ N0 optimization time of Algorithm A on some function
f : {0, 1}n → R

TA,f,C ∈ N0 optimization time of Algorithm A on some function
f : {0, 1}n → R when started with some deterministic
initial collection of search points C

Prob (E) ∈ [0, 1] probability of event E

E (X) expectation of the random variable X

x ◦ y concatenation of x and y

Hn the n-th harmonic number

poly (n) polynomial in n, nO(1)
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B. Mathematical Tools

B.1. Definitions

Definition B.1 (Box-and-whisker plots (box plots)). Box-and-whisker plots are a form
of representing statistical data. They provide the median together with upper and lower
quartiles as well as the minimum and maximum value of the data. We use an extended
variant where additionally outliers are identified. We generate box-and-whisker plots using
the statistical tool R1.

An example for a box-and-whisker plot as used in this thesis is depicted in Figure B.1.
The median is drawn as a thick line. Upper and lower quartile form a rectangle ( box).
Two lines attached to this rectangle indicate the extreme values of the data (whiskers).
The length of these whiskers is at most 1.5 times the so-called interquartile range (IQR),
which is defined as the difference of the upper and lower quartile. More extreme points
are considered outliers and drawn as circles.

Median

1st quartile

3rd quartileIQR
≤ 1.5 · IQR

≤ 1.5 · IQR

Figure B.1.: Visualization of a box-and-whisker plot.

Definition B.2 (Landau notation (Cormen et al. 2001)). Let f, g : N → R.

• f(n) = O(g(n)) ⇔ ∃n0 ∈ N, c ∈ R
+ : f(n) ≤ c · g(n), i. e., f does not grow faster

than g

• f(n) = Ω(g(n)) ⇔ g(n) = O(f(n)), i. e., f grows at least as fast as g

• f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and g(n) = O(f(n)), i. e., f and g have the
same order of growth

1http://www.r-project.org/
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• f(n) = o(g(n)) ⇔ lim
n→∞

f(n)/g(n) = 0, i. e., f grows slower than g

• f(n) = ω(g(n)) ⇔ g(n) = o(f(n)), i. e., f grows faster than g

Definition B.3 (Conditional Probability (Mitzenmacher and Upfal (2005), Def. 1.4)).
The conditional probability that event E event occurs given that event F occurs is

Prob (E | F ) =
Prob (E ∩ F )

Prob (F )

Definition B.4 (Expectation (Mitzenmacher and Upfal (2005), Def. 2.3)). The expec-
tation of a discrete random variable X, denoted by E (X), is given by

E (X) =
∑

i

iProb (X = i)

where the summation is over all values in the range of X.

Definition B.5 (Conditional Expectation (Mitzenmacher and Upfal (2005), Def. 2.6)).

E (Y | Z = z) =
∑

y

yProb (Y = y | Z = z)

where the summation is over all y in the range of Y .

B.2. Probability Theory and Other Useful Equations

Lemma B.6 (Harmonic number (Mitzenmacher and Upfal (2005), Lemma 2.10)). The
harmonic number Hn =

∑n
i=1 1/i satisfies H(n) ≤ ln(n) + 1.

Lemma B.7 (Geometric series (Graham et al. (1994), Sect. 3.2)). For n ∈ N and q ∈ R

with q 6= 1, the following holds:

n
∑

i=0

qi =
1− qn+1

1− q
=

qn+1 − 1

q − 1

b
∑

i=a

qi =
b
∑

i=0

qi −
a−1
∑

i=0

qi =
1− qb+1

1− q
− 1− qa

1− q
=

qa − qb+1

1− q

If q < 1, additionally the following convergence properties hold:

∞
∑

i=0

qi =
1

1− q

∞
∑

i=1

qi =
q

1− q

Lemma B.8 (Basic estimations (Auger and Doerr (2011), Lemma 1.3)). For all n ∈ N,
the following inequality holds:

(

1− 1

n

)n

≤ 1

e
≤
(

1− 1

n

)n−1
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For n ≥ 2, we additionally have:

(

1− 1

n

)n

≥
(

1

e

)
n

n−1

=

(

1

e

)

·
(

1

e

)
1

n−1

≥ 1

2e

Lemma B.9 (Bounds on the exponential function (Motwani and Raghavan (1995),
Proposition B.3)). For x ∈ R, the following inequality holds:

ex ≥ 1 + x for x ∈ R

e−x ≥ 1− x for x ∈ R

ex ≤ 1

1− x
for x < 1

1− e−x ≤ 2x

1 + 2x
for x ≤ 1

1 + 2x ≥ ex for x ∈ [0, 1]

Lemma B.10 (Union bound (Mitzenmacher and Upfal (2005), Lemma 1.2)). For any
countable, finite sequence of events E1, E2, . . . ,

Prob





⋃

i≥1

Ei



 ≤
∑

i≥1

Prob (Ei)

Lemma B.11 (Law of Total Probability (Mitzenmacher and Upfal (2005), Th. 1.6)).
Let E1, . . . , En be mutually disjoint events in the sample space Ω and let

⋃n
i=1Ei = Ω.

Then

Prob (B) =
n
∑

i=1

Prob (B ∩Ei) =
n
∑

i=1

Prob (B | Ei) · Prob (Ei)

Lemma B.12 (Linearity of Expectation (Mitzenmacher and Upfal (2005), Th. 2.1)).
For any finite collection of discrete random variables X1, . . . ,Xn with finite expectation

E

(

n
∑

i=1

Xi

)

=

n
∑

i=1

E (Xi) .

Lemma B.13 (Binomial distribution (Mitzenmacher and Upfal (2005), Def. 2.5)). A
binomial random variable X with parameters n and p, denoted by B(n, p), is defined by
the following probability distribution on j = 0, 1, 2, . . . , n:

Prob (X = j) =

(

n

j

)

· pj(1− p)n−j

Moreover, E (X) = pn.
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Lemma B.14 (Geometrical distribution (Mitzenmacher and Upfal (2005), Lemma 2.8)).
A geometric random variable X with parameter p is given by the following probability
distribution on n = 1, 2, . . . :

Prob (X = n) = (1− p)n−1 p

Moreover, E (X) = 1/p.

Lemma B.15 (Stirling’s Formula (Mitzenmacher and Upfal (2005), Lemma 7.3)). For
m > 0, √

2πm ·
(m

e

)m
≤ m! ≤ 2

√
2πm

(m

e

)m

Lemma B.16 (Estimation of Binomial Coefficients (Motwani and Raghavan (1995),
Proposition B.2)). For n, k ∈ N0 the following holds.

(

n

k

)

≤ nk

k!
(

n

k

)

≤
(ne

k

)k

(

n

k

)

≥
(n

k

)k

Lemma B.17 (Coupon Collector (Motwani and Raghavan (1995), Ch. 3.6)). Let T
denote the number of coupons obtained until all n types of coupons are present for the
first time.

1. E (T ) = n lnn+O(n)

2. ∀β > 1 : Prob (T > βn lnn) ≤ n−(β−1)

3. ∀c ∈ R : Prob (T > n lnn+ cn) = 1− e−e−c

Lemma B.18 (Gambler’s Ruin Problem (Feller (1968), Ch. XIV)). Consider a gambler
who wins or loses a dollar with probabilities p and q, respectively. Let qz be the probability
of the gambler’s ultimate ruin and pz the probability of his winning when starting with
initial capital z. His adversary starts with initial capital a− z. If p 6= q we have

qz =
(q/p)a − (q/p)z

(q/p)a − 1

and

1− qz =
(q/p)z − 1

(q/p)a − 1
.

Lemma B.19. The following statements can be proved by simple inductions.

n
∑

i=1

i =
n(n+ 1)

2

n
∑

i=1

i2 =
n(n+ 1)(2n + 1)

6

268



B.3. Methods from the Theory of Randomized Search Heuristics

Lemma B.20 (Markov inequality (Mitzenmacher and Upfal (2005), Th. 3.1)). Let X
be a non-negative random variable. Then for all a > 0

Prob (X ≥ aE (X)) ≤ 1

a

Lemma B.21 (Chernoff bounds (Mitzenmacher and Upfal (2005), Ch. 4)). Let X1, . . . ,Xn

be independent Poisson trials such that Prob (Xi) = pi. Let X =
∑n

i=1 Xi and µ = E (X).
Then the following Chernoff bounds hold.

• for any δ > 0

Prob (X ≥ (1 + δ)µ) <

(

eδ

(1 + δ)1+δ

)µ

• for 0 < δ ≤ 1

Prob (X ≥ (1 + δ)µ) ≤ e−
µδ2

3

• for 0 < δ < 1

Prob (X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ

• for 0 < δ < 1

Prob (X ≤ (1− δ)µ) ≤ e−
µδ2

2

Lemma B.22 (Chernoff bound for moderately independent random variables (p. 13
in Auger and Doerr (2011))). Let X1, . . . ,Xn be arbitrary binary random variables. Let
X∗

1 , . . . ,X
∗
n be binary random variables that are mutually independent and such that for all

i, X∗
i is independent of X1, . . . ,Xi−1. Assume that for all i and all x1, . . . , xi−1 ∈ {0, 1},

Prob (Xi = 1 | X1 = x1, . . . ,Xi−1 = xi−1) ≤ Prob (X∗
i = 1) .

Then for all k ≥ 0, we have

Prob

(

n
∑

i=1

Xi > k

)

≤ Prob

(

n
∑

i=1

X∗
i > k

)

.

The latter term can be bounded by Chernoff bounds for independent random variables.

B.3. Methods from the Theory of Randomized Search

Heuristics

Theorem B.23 (Multiplicative Drift (Doerr et al. 2010b)). Let {Z(t)}t∈N0 be random
variables describing a Markov process over a finite state space S ⊆ R. Let T be the
random variable that denotes the earliest point in time t ∈ N0 such that Z(t) = 0.

If there exist δ, cmin, cmax > 0 such that
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1. E
(

Z(t) − Z(t+1) | Z(t)
)

≥ δZ(t) and

2. cmin ≤ Z(t) ≤ cmax,

for all t < T , then

E (T ) ≤ 2

δ
· ln
(

1 +
cmax

cmin

)

Theorem B.24 (Simplified Drift Theorem (Oliveto and Witt 2010)). Let Xt, t ≥ 0, be
the random variables describing a Markov process over a finite state space S ⊆ R

+
0 and

denote ∆t(i) := (Xt+1−Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an interval
[a, b] in the state space, two constants δ, ε > 0 and, possibly depending on I := b − a, a
function r(I) satisfying 1 ≤ r(I) = o(I/log(I)) such that for all t ≥ 0 the following two
conditions hold:

1. E (∆t(i)) ≥ ε for a < i < b,

2. Prob (∆t(i) ≤ −j) ≤ r(I)
(1+δ)j

for i > a and j ∈ N0.

Then there is a constant κ > 0 such that for the time T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b}
it holds Prob

(

T ∗ ≤ 2κI/r(I)
)

= 2−Ω(I/r(I)).
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