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Abstract 
 

The purpose of this dissertation was to investigate different stone samples (limestone, basalt 

and marble) from five important archaeological sites in north and northeast Jordan for the 

purpose of their conservation. This research focused on the use of non-destructive ultrasonic 

technique as validated by traditional physico-mechanical methods for the study of the 

weathering of the selected stones and their durability and the evaluation of the effectiveness 

of consolidation treatments. The selected stones were characterized and the changes in their 

properties after artificial weathering and consolidation were studied. 

 

It was found that the susceptibility of the studied stone samples to salt damage is determined 

by their petrophysical rather than mechanical properties. In terms of loss of stone material, the 

damage induced by the crystallization of salt in the stones seems to be dependent on their 

proportion of micropores and free porosity. Durability estimators for the evaluation of the 

weathering resistance of stone were consequently developed. 

The study provided additional evidence that ultrasonic technique is an effective method for 

estimating the degree of cracking and evaluating the effectiveness of stone consolidation 

treatments. Ultrasonic velocity seemed to correlate well with the degree of cracking in the 

stones. This implies that weathering classification schemes, such as those already existed for 

marble, based on correlation between ultrasonic velocity and increasing porosity can be 

developed for the studied stones. However, it is necessary to study these correlations for the 

particular stones in fresh and different weathering conditions. This dissertation recommends 

the in situ application of ultrasonic technique for the assessment of the weathering condition 

of Jordanian archaeological stones and for the evaluation and control of consolidation 

treatments. 
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Kurzfassung 

 

Ziel dieser Dissertation war es zunächst, verschiedene Steinproben (Kalkstein, Basalt und 

Marmor) von fünf bedeutenden archäologischen Orten des Nordens und Nordosten Jordaniens 

zu untersuchen und zu charakterisieren. Die Arbeit legt den Fokus auf die Anwendung von 

zerstörungsfreier Ultraschall-Technik, die mit den traditionellen physikalisch-mechanischen 

Methoden ergänzt und verglichen wurde, um die Verwitterung der ausgewählten Steine und 

ihre Dauerhaftigkeit zu studieren und die Wirksamkeit der Steinfestigungsbehandlungen zu 

evaluieren. Nach der Charakterisierung der ausgewählten Steinproben wurden die 

Veränderungen ihrer Eigenschaften nach künstlicher Verwitterung beziehungsweise 

Festigung studiert. 

 

Im Ergebnis stellte sich heraus, dass die Anfälligkeit der untersuchten Steinproben gegen 

Salzverwitterung eher von ihren petro-physikalischen als von ihren mechanischen 

Eigenschaften abhängig ist. Hinsichtlich des Verlustes von Steinmaterial scheint der 

entstehende Schaden durch Salzkristallisierung in den Steinen von ihrem Anteile an 

Mikroporen und ihrer freien Porosität abzuhängen. So werden basierend auf diesen 

Ergebnissen Dauerhaftigkeitsparameter für die Evaluierung der Verwitterungsresistanz der 

Steine entwickelt. Die Arbeit ergab einen zusätzlichen Beleg dafür, dass die Ultraschall-

Technik eine wirksame Methode zur Einschätzung des Grades von Rissen und der 

Evaluierung der Wirksamkeit von Steinfestigungsbehandlung ist. Die 

Ultraschallgeschwindigkeit scheint gut zu korrelieren mit der Rissdichte in den Steinen. 

Daraus ergibt sich, dass Skalen zur Klassifizierung von Verwitterung, wie sie bereits für 

Marmor vorhanden sind, basierend auf der Korrelation zwischen Ultraschallgeschwindigkeit 

und ansteigender Porosität, für die hier untersuchten Steine entwickelt werden können. Jedoch 

ist es notwendig, diese Korrelationen an bestimmten Steinen in frischem und in 

unterschiedlichen verwitterten Zuständen zu studieren. Diese Dissertation empfiehlt die Vor-

Ort-Anwendung von Ultraschall-Technik für die Bewertung des Verwitterungszustandes 

archäologischer Steine Jordaniens und für die Evaluierung und Kontrolle ihrer 

Festigungsbehandlungen. 
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1 Introduction 

 

1.1 General 

 
Natural stone has been an important building material for thousands of years. A significant 

part of the world’s cultural heritage is built of stone, and it is slowly but inexorably 

disappearing (Doehne and Price, 2010). Conservation measures need, therefore, to be taken in 

order to protect irreplaceable stone monuments and to maintain their cultural value and 

integrity as long as possible. 

 

In Jordan, a land with a diverse cultural heritage mainly built of natural stone, the field of 

conservation is almost a new subject. There has been a number of studies about the 

investigation and conservation of Jordanian archaeological stone (e.g. Fitzner and Heinrichs, 

1994; Heinrichs and Fitzner, 2000; Al-Naddaf, 2002; Paradise, 2002; Fitzner and Heinrichs 

2005; Heinrichs, 2008). Nonetheless, the research on stone conservation there is still very 

limited and almost restricted to the very famous archaeological sites, particularly the 

Nabataean city of Petra in the south of Jordan which was carved into sandstone. 

The archaeological sites in the north and northeast of Jordan are mainly built of local 

limestone and basalt. Imported marble was also used in some archaeological sites for 

decorative and architectural elements. In terms of scientific conservation, these stones are less 

studied compared to the sandstone of Petra. This work is, therefore, dedicated to investigate 

stone samples from north and northeast Jordan for the purpose of their conservation. 

 

The conservation of stone is a comprehensive process that entails the characterization of the 

stone material and its chemical-mineralogical as well as physico-mechanical properties, the 

description and quantification of its weathering, the understanding of the causes and 

mechanisms of deterioration, and the application and follow-up of suitable conservation 

treatments (Fitzner, 2002; Doehne and Price, 2010). The determination of stone provenance 

and the research in the preservation of historic quarries are also important for the conservation 

of archaeological stone (Doehne and Price, 2010). 

 

In order to get the required knowledge for the preservation and conservation of stone, various 

investigation methods are applied. The traditional techniques already in use for the 
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investigation of natural stone are generally destructive and mostly restricted in use to the 

laboratory. Owing to the significant importance of archaeological stone monuments and their 

integrity, new techniques that are primarily non-destructive in nature have been researched 

and introduced in the conservation field. Ultrasonic technique is one of the most promising 

non-destructive methods that are increasingly applied for the investigation of archaeological 

stone monuments and structures. Ultrasonic technique is characterized as well by ease of 

application, fast acquisition of data and capability for in situ applications (Mamillan, 1958; 

Simon et al., 1994). 

 

Because of these advantages, the present study aims at the use of ultrasonic technique, 

validated by traditional methods, for the study of different stone samples (limestone, basalt 

and marble) from Jordanian archaeological sites. The work consists of studying the structure 

of the stones and the parameters that govern their deterioration and conservation. This will 

help to understand the weathering behavior of the stones and their durability and will guide 

decisions concerning control of deterioration and the necessary conservation treatments. 

 

This work contributes to the research efforts dedicated to characterize Jordanian 

archaeological stones, including the determination of their microstructure and petrographic 

characteristics, which could correspondingly be used to determine the possible quarry sources. 

There have been only a few studies on this topic in Jordan; examples are Bashayrih (2003) 

and Abu-Jaber et al. (2007; 2009). A main aspect of this study is the contribution to the 

validation of non-destructive methods for the investigation of archaeological stone. 

Furthermore, the study aims at developing durability estimators for assessing the resistance of 

stone to weathering, which can be used to evaluate the level of deterioration and to select 

suitable materials for restoration works or for new architectural construction. This research 

tests also the effectiveness of two products of consolidation on the studied limestones. 

 

1.2 Aim of the study 

 

In order to contribute to the preservation and conservation of archaeological stone in Jordan, 

stone samples from five important and representative archaeological sites (Umm Qeis, Jarash, 

Ajlun, Umm El-Jimal, and Hallabat) in the north and northeast of Jordan are investigated. The 

main aim is to study the weathering of the stone samples and their durability and to evaluate 



1 Introduction  

 3 

the effectiveness of consolidation treatments focusing on the use of non-destructive ultrasonic 

methods. For the achievement of this aim, the following research topics are considered: 

 

- What are the microstructural characteristics of the selected stone samples? 

 

- How to describe and quantify their deterioration, and what are the most important 

parameters affecting their durability? 

 

- How to evaluate and select suitable consolidation product? 

 

In order to address these issues, the following methodology is followed: 

 

- Natural stone samples are selected from five important archaeological sites in north 

and northeast Jordan. The stones are categorized into two groups of samples (sound 

and naturally weathered stones) based on preliminary characterization by physical 

tests and ultrasonic velocity measurements. 

 

- The selected samples are petrographically studied in order to determine their 

microstructure as well as geological formation. This information can be further used to 

determine the possible quarry source of the stones, which is important for replacement 

of stone and research purposes. 

 

- The sound stones are artificially weathered (by salt crystallization test for limestone 

and basalt and by thermal weathering treatment for marble) and their various 

properties before and after weathering are studied in order to assess their weathering 

characteristics and durability. 

 

- The naturally weathered samples are treated by consolidation products and the 

changes in their properties are studied in order to evaluate the effectiveness of 

consolidation treatment. 

 

This thesis starts with a brief description of the weathering processes of stone. As the 

weathering of stone is almost related to the presence of water and is highly determined by 

pore spaces characteristics, the pore structure of stone and the water transport properties are 
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also described. The state of the art for weathering assessment and evaluation of consolidation 

treatments is then discussed. The work proceeds by presenting an overview of the use of non-

destructive ultrasonic technique for the investigation of stone. The practical part of the study 

starts hereafter by describing the characteristics of the studied stone samples and the methods 

of their investigation. Finally, the results of investigations of the studied stones are discussed 

and the conclusions of the study are presented. 

 

 

 

 

 



2 Weathering of stone  

 5 

2 Weathering of stone 
 

In the widest sense of the term, weathering is defined as the whole sequence of reactions of 

the lithosphere (rocks) with the atmosphere, the hydrosphere (water), and the biosphere 

(organisms). The changes produced by weathering in rocks are governed by thermodynamics 

laws (Amoroso and Fassina, 1983). The heterogeneous system composed of the rock and its 

surrounding environment undergoes irreversible changes in form of material-energy exchange 

until the entropy approaches its maximum value and the available energy is the least; that is, 

in theory, until equilibrium is reached (Knöfel, 1980; Neisel, 1995). 

 

From a geological point of view, weathering can be defined as the alteration of rocks under 

the direct influence of water and atmosphere at or near the earth’s surface (Dearman, 1974). 

When rocks are cut and used in buildings, the chance of deterioration generally increases 

because other factors get involved (Siegesmund et al., 2002). These factors might include the 

type of use and the location of the stone in the building, its micro-environment (micro-

climate), and the interaction with other building materials. In addition to natural weathering, 

stone and building materials are also subject to deterioration from anthropogenic factors such 

as air pollution (Charola, 2004). 

 

The term weathering is usually used to refer to the natural process of rocks decay (Charola, 

2004; Siegesmund et al., 2002). However, throughout this work, it is interchangeably used 

with the term deterioration to indicate all processes that unfavorably alter stone and the 

corresponding changes in its structure and properties. 

 

2.1 Weathering types 

 

According to the nature of weathering process, three different types of weathering can be 

distinguished; physical, chemical and biological weathering. However, the biological 

weathering resulting from the activity of organisms (from bacteria to plants to animals) can be 

either physical or chemical in character (Pidwirny, 2006). A short description of the physical 

and chemical weathering is presented in the following subchapters. 
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2.1.1 Physical weathering 

 
Physical weathering describes mainly the mechanical breakdown and structural disintegration 

of stone without changing its chemical and mineralogical composition. It is mostly related to 

the action of water and its connection with other agents such as soluble salts. Water penetrates 

into the stone and brings it to suffer wetting-drying and freezing-thawing cycles. Furthermore, 

water acts to transport soluble salts into the stone which then undergo several crystallization 

cycles, subjecting the stone to destructive pressures (Charola 2004). Physical weathering 

includes the following factors: 

 

2.1.1.1 Wetting 

 
Wetting is the adsorption of water on pore walls. The adsorbed water reduces the mechanical 

strength of the stone as it may expand when adsorbing water and contract in drying. Cyclic 

wetting and drying tend to induce mechanical stresses that rupture the stone (Gauri and 

Bandyopadhyay, 1999). The presence of clay minerals, salts, and some conservation products 

such as consolidants enhances the expansion-contraction process and induces therefore further 

mechanical stresses (Charola 2004). The adsorbed water acts as well to decrease the 

cohesiveness between the stone grains by disrupting the intermolecular forces causing a 

reduction in the strength of the stone (Gauri and Bandyopadhyay 1999). 

 

2.1.1.2 Salt weathering 

 
Salt weathering is one of the most damaging processes of historical monuments and 

architectural structures. The damage of porous building materials due to soluble salts has long 

been known and regularly studied. An increasing scientific interest in this subject in the recent 

years is clearly evident, particularly as a comprehensive understanding of the mechanism of 

salt weathering and the key parameters controlling it is still lacking (Rodriguez-Navarro and 

Doehne, 1999; Doehne, 2002; Charola, 2004). Salts in building stone may originate from 

different sources such as soil, atmospheric pollutants, salt spray, inappropriate treatments, 

inherent salt content or interactions with other building materials (Neisel, 1995; Charola, 

2000; Doehne and Price, 2010). When dissolved in water, salts can penetrate into the porous 

network of stone and may then crystallize there causing damage. Different mechanisms have 

been proposed to explain the extensive damage of salts in porous materials. These include, 
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among others, the hydrostatic crystallization pressure, the hydration pressure and the linear 

crystal growth pressure. 

 

Hydrostatic crystallization pressure: This pressure develops when the total volume of the 

precipitated salt crystals and the saturated solution is larger than that of the supersaturated 

solution before crystallization (Duttlinger and Knöfel, 1993). Correns and Steinborn (1939) 

calculated this pressure using the following equation: 
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p = hydrostatic crystallization pressure [atm]; 1p = atmospheric pressure [atm]; 1V = the volume of the 

saturated solution and crystals under 1p  [L]; V = volume of the supersaturated solution under p  [L]; 

tβ = compressibility coefficient of the solution at temperature t [atm-1]. 

 

However, the magnitude of this pressure is likely small and can be simply released as the pore 

system is partially filled with water in practice (Tsui et al., 2003; Espinosa et al., 2008) 

 

Hydration pressure: Salts can usually exist in a number of hydration states. The transition 

from a lower hydration state to a higher one is accompanied by volume expansion in the salt 

crystal. This can result in a significant pressure on the pore walls of the material. According to 

Charola (2000), the hydration pressure was postulated by Mortensen (1933), who proposed an 

equation for its calculation. 
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P = hydration pressure [atm]; n = No. of moles of water gained upon hydration; R = ideal gas 
constant [Lּatm/(molּK)]; T = temperature [K]; hV = molar volume of the hydrate [L/mol]; aV = 

molar volume of the anhydrous salt [L/mol]; wp  = water vapor pressure at temperature T [atm]; wp′ = 

water vapor pressure of the hydrated salt [atm]. 

 

The hydration mechanism has been most of the time examined to try to explain the highly 

deteriorating effect of sodium sulfate on stone (Charola, 2000). However, experimental 

studies with environmental scanning electron microscope (ESEM) show that the hydration 

transition of the sodium sulfate anhydrous phase (thenardite) to the decahydrate phase 

(mirabilite) is a dissolution-precipitation process and not a continuous expansion of thenardite 

with moisture absorption (Doehne, 1994; Rodriguez-Navarro and Doehne, 1999). This rules 
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out the hydration pressure as a credible cause of the observed deterioration by sodium sulfate 

(Tsui et al., 2003). 

 

Linear crystal growth pressure (usually referred to as crystallization pressure): This is the 

pressure resulted from the growing crystal in the direction of confining pore wall and is 

widely expressed by the equation of Correns (1949) and Correns and Steinborn (1939): 

)ln(
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υ
=    (2.3) 

P = linear growth pressure of crystal (crystallization pressure) [atm]; R = ideal gas constant 
[Lּatm/(molּK)]; T = temperature [K]; υ  = molar volume of the solid salt [L/mol]; C / sC = 

supersaturation ratio. 

 

According to Steiger (2005a), different expressions for this equation have been proposed (e.g. 

Neugebauer (1973); Xie and Beaudoin (1992); Benavente et al. (1999)). However, all these 

equations are relating the crystallization pressure to the degree of supersaturation. According 

to Charola (2000), Willman and Wilson (1965; 1968) developed another approach for 

calculating crystallization pressure from a thermodynamic model by analogy with the 

thermodynamic description of damage caused by frost (see equation 2.4), which was 

established by Everett (1961). This is based on the properties of curved interfaces between the 

crystal and the solution (Steiger, 2005a). 

 

Both approaches were used to theoretically calculate crystallization pressures and were often 

seen as representing two different mechanisms (Steiger, 2005a). Winkler and Singer (1972) 

and Winkler (1975) calculated the potential salt crystallization pressures in pores based on 

Corren’s equation. However, Corren’s equation was subject to criticism because of the 

unrealistic high supersaturation ratios assumed. It is applicable only for low supersaturation 

ratios (Duttlinger and Knöfel, 1993). According to Sawdy et al. (2008), this model was shown 

by Rijniers et al. (2005) to only account for high pressures in very small pores (< 10 nm). 

However, Houck and Scherer (2006) point out that this conclusion is valid when the crystal is 

in equilibrium with a solution that bathes its entire surface. High pressures can also develop in 

large pores if the solution is only present as a film between the crystal and pore wall. 

 

Many authors, such as Fitzner and Snethlage (1982), Zehnder and Arnold (1989), and Rossi-

Manaresi and Tucci (1991), preferred to use the second approach specially as it is apparently 

more realistic to calculate crystallization pressure on the basis of a measurable quantity such 
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as pore size distribution (Steiger, 2005a). Rodriguez-Navarro and Doehne (1999), among 

others, point out that this approach does not take into account the Washburn equation (eq. 3.2) 

which implies that upon evaporation, the saturated solution is suctioned from the larger pores 

towards the smaller ones where it concentrates. Thus, once a critical saturation is reached, 

crystallization will take place in the smaller pores, not in the large ones (Rodriguez-Navarro 

and Doehne, 1999). However, some authors point out recently that these two approaches are 

actually equivalent in that the driving force for crystallization and stress development in 

Everett’s model is also supersaturation (Scherer, 1999; Flatt, 2002; Steiger, 2005a; b). 

 

Other mechanisms can also contribute to salt damage in porous building materials. These 

include differential thermal expansion (certain salts have higher coefficients of linear 

expansion than do the minerals of the rocks in whose pores they occur), osmotic pressure, 

enhanced wet/dry cycling (caused by deliquescent salts), as well as chemical mechanisms 

(Goudie, 1998; Doehne, 2002). Although there is still controversy as to the actual mechanism 

of salt damage in porous building materials, many authors seem to have a common consensus 

on crystallization pressure as the most plausible deterioration mechanism. 

 

Literature reviews on salt weathering can be found in Duttlinger and Knöfel (1993), Goudie 

and Viles (1997), Charola (2000), and Doehne, (2002). For problems of salts in masonry see 

Simon and Drdácký (2006). 

 

2.1.1.3 Frost damage 

 

Frost action plays an important role in stone damage in cold climates. Three main theories for 

frost damage are described in literature; the volumetric expansion, the hydraulic pressure, and 

the crystallization theory (or Ice lens theory) (Hirschwald, 1912; Ross et al., 1991; Miglio et 

al., 2000; Setzer, 2002). 

 

The volume expansion theory is related to the characteristic property of water, which expands 

by cooling below +4 °C and by freezing to ice. The density of ice is lower than that of water, 

which results in a volume expansion of around 9% when pure water transforms to ice under 

atmospheric pressure (Hirschwald, 1912). The volume expansion resulting from the freezing 

of water in the pores of a stone will generate pressure on the pore wall. When the generated 
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shattering force exceeds the tensile strength of the stone, failure occurs. The stone may also 

rupture due to the fatigue caused by cyclic freezing and thawing (Lienhart, 1993). 

 

The hydraulic pressure theory relies also on the volume expansion associated with the 

freezing of water, but ice is not the damaging phase in this case. Owing to the resulting 

volume expansion, a growing ice crystal will push away the unfrozen water from the pore. If 

this water is expelled into fine pores at a high rate, there will be a considerable resistance to 

flow leading to the development of hydraulic pressure (Powers, 1945; Ross et al., 1991). 

Chatterji and Christensen (1979) described a second mechanism whereby hydrostatic pressure 

can develop in a water-saturated stone when the water in the pores can not escape (Ross et al., 

1991). 

 

The crystallization theory was proposed as a mechanism for frost damage by Taber (1929; 

1930), who suggested that frost damage may be due to a crystallization process in which an 

ice crystal continues to grow in a pore and builds up pressure on its wall (Ross et al., 1991). 

The freezing point of water in small pores is depressed because of the higher specific 

interfacial energies (Snethlage, 1984). By decreasing temperature, ice tends, therefore, to 

form and grow in large pores, whereas the water in very fine capillaries remains unfrozen 

even at very low subfreezing temperatures (due to high vapor pressure) (Gauri and 

Bandyopadhyay, 1999). Everett (1961) pointed out that frost damage could occur when the 

ice crystal formed in large pores continues to grow by withdrawing water from the adjacent 

micropores. The suction force causing this water migration is determined by the pressure 

difference at the curved meniscus of the ice-water interface, and it is regarded to be equivalent 

with the shattering force (Matsuoka, 1990). When the ice crystal fills the large pore, it will 

either grow into the surrounding smaller pores or exert pressure on the pore wall causing 

damage (Miglio et al., 2000). The generated pressure can be expressed by the following 

equation (Snethlage, 1984): 


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p∆ = the difference between ice pressure and pore water pressure [N/m²] (convenient unit: N/mm²); 

iwσ = the free energy of the ice-water interface [N/m]; r = the radius of the capillary pore [m] 

(convenient unit: µm); R = the radius of the large pore [m] (convenient unit: µm). 

 

According to Ross et al. (1991), it is unlikely that any single mechanism of frost action will 

completely explain the damage observed in stone. In practice, all these mechanisms can 
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contribute to the induced damage, but one mechanism might be dominant depending on the 

prevailing freezing conditions. Frost damage is controlled both by environmental factors such 

as the intensity (critical temperature for crack propagation), rate and duration of freezing and 

by the mechanical and physical properties of stone such as tensile strength, critical saturation 

and degree of pore filling with water, porosity and pore size distribution (Lienhart, 1993). 

 

2.1.1.4 Thermal weathering 

 

The thermal weathering of stone is related to the thermal characteristics of its mineral 

constituents. The minerals forming a stone expand and contract as a result of temperature 

changes. The resulting relative change in length is proportional to the magnitude of 

temperature change by the linear thermal expansion coefficient as given in the following 

equation (Kleber et al., 1998): 
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0l = initial length [mm]; l = final length [mm]; α = linear thermal expansion coefficient [10-

6/K]; T∆ = temperature change (final temperature – initial temperature) [K]. 
 

Different minerals have different thermal expansion coefficients and correspondingly 

different expansions and contractions by temperature changes. Furthermore, the thermal 

expansion coefficient of a crystal is often directionally dependent; it differs along the different 

crystallographic axes. This is particularly significant for calcite crystals, which have a 

distinctive thermal anisotropy. When heated, a calcite crystal (Figure 2.1) expands in the 

direction parallel to the c-axis and contracts in the normal directions (Lewin, 1990; Kleber et 

al., 1998). 

 

 

Figure 2.1: Linear thermal expansion coefficients of calcite crystal along the different crystallographic 
axes in an average temperature range from around 0–100 °C (from Ruedrich et al., 2002). 
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Because of the anisotropy and differences in thermal expansion coefficients of the constituent 

mineral grains, temperature variations will produce thermal stresses in the stone that may 

eventually lead to structural disintegration. This is especially significant in stones with large 

crystals such as marble and granite (Charola, 2004). Many authors have studied thermal 

weathering of stone, especially marble (Kessler, 1919; Sage, 1988; Siegesmund et al., 2000; 

Simon, 2001; Zeisig et al., 2002; Ruedrich et al., 2002; Malaga-Starzec et al., 2002; 

Rodríguez-Gordillo and Sáez-Pérez, 2005). The studies emphasize that thermal stresses 

resulting from changes in temperature can be sufficiently large to produce microfractures and 

microcracks in and between the mineral grains of the stone (Robertson, 1982). Kessler (1919) 

found that thermally treated marbles show a remarkable non-reversible change in length 

especially during the first heating cycle (Sage, 1988; Siegesmund et al. 2000; Simon, 2001). 

Even small, but continuous temperature variations may cause damage (Winkler 1997; Zeisig 

et al., 2002; Ruedrich et al., 2002). Kocher (2004) showed that the thermal stress resulting 

from temperature increase can be equal to or even greater than the resulting stress from the 

swelling of clay minerals in sandstone. He points out that the influence of the changes in 

diurnal (∆Tmax= 40 °C) and seasonal (∆Tmax= 80 °C) temperatures in moderate climatic zones 

on the weathering of stone is comparable to, if not even more significant than, that of the 

variation of moisture. 

 

2.1.2 Chemical weathering 

 

Chemical weathering is the alteration of the chemical and mineralogical composition of stone 

by a number of different processes such as dissolution, oxidation, hydration and hydrolysis 

(Pidwirny, 2006). Water, with its different gaseous constituents such as CO2, and SO2, is the 

most important agent in these chemical reactions; it acts as a solvent and also as a chemical 

reactant (Neisel, 1995). 

 

2.1.2.1 Dissolution 

 

Dissolution is the process whereby some minerals or part of their chemical composition 

dissolve in water. The elements of alkali (K, Na) and alkaline earth (Ca, Mg) belong to the 

readily soluble mineral constituents, because of their low ion potentials (quotient of ion 
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charge over ion radius) (Villwock, 1966; Neisel, 1995). The simplest solution reactions are 

primarily related to salts (Winkler, 1975). Chloride and magnesium sulfate are among the 

most soluble substances in water. Gypsum dissolves less readily in water and carbonates 

solubility is even lower (Ollier, 1984; Neisel, 1995). 

 

With increasing ion potential, the pH-value of water plays an important role in the solubility 

of a substance (Ollier, 1984; Neisel, 1995). The solubility of rock forming minerals increases 

generally with the decrease in pH of the water, i.e. in acidic solutions (Steiger et al., 2011). 

Therefore, the dissolution of atmospheric gases (either naturally occurring or products of 

pollution) in rain water increases its corrosive effects. 

 

In natural environment, the carbonate minerals react with carbon dioxide dissolved in rain 

water and the resulting dissolved ions are drained away from the stone, causing surface 

erosion over time. In polluted environment, the deposition of gaseous pollutants and aerosols 

on the surface of carbonate stones is responsible for the accelerated rate of their deterioration. 

Carbonate stone reacts with the adsorbed sulfur and nitrogen oxides and undergoes mineral 

alteration, which results in the dissolution of the emerging products in areas exposed to rain or 

washout and the development of crusts, largely made of gypsum, in sheltered places (Gauri 

and Bandyopadhyay 1999). 

 

2.1.2.2 Hydrolysis 

Hydrolysis is the dissolution and alteration of minerals by the reaction of their ions with the 

ions of water (OH- and H+). It results in the decomposition of the rock surface by forming 

new compounds and by increasing the pH-value of the solution involved through the release 

of the hydroxyl ions. Hydrolysis is especially effective in the weathering of common silicate 

and aluminosilicate minerals because of their electrically charged crystal surfaces (Pidwirny, 

2006). The weathering of silicate minerals (such as feldspar) follows by leaching out the 

soluble elements (alkali and earth alkaline metal ions) from the silicate network and replacing 

them with the dissociated hydrogen ions. As the process proceeds, the alumina-silicate 

network will loosen and aluminum and silica are dissolved and drained away as well. This 

may result in the formation of clay minerals (hydrous alumina silicate), which settle in place 

or can be transported and deposited elsewhere (Neisel, 1995; Gauri and Bandyopadhyay 

1999). 
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2.1.2.3 Oxidation reactions 

 
Oxidation is the reaction of a compound with oxygen that results in the increase of the 

oxidation state of the compound by the removal of one or more electrons (Pidwirny, 2006). 

The oxidation of divalent metal cations to a higher valence (oxidation) state occurs mainly by 

the chemical reaction with the oxygen dissolved in water, which induces red-brown color 

changes in stone (Neisel, 1995). Oxidation is an important process in the alteration of iron and 

magnesium rich minerals. The oxidation of Iron II to Iron III results in color changes and 

weakens the structure of the mineral. Oxidation reactions can be especially harmful for stones 

(limestone or marble) containing sulfide minerals such as pyrite, which oxidized and hydrated 

to form iron sulfate and sulfuric acid. Thus, not only red iron rust spots will be produced, but 

also the released sulfuric acid will accelerate the chemical weathering of the other mineral 

constituents of the stone (Villwock, 1966; Neisel, 1995). 

 

2.2 Weathering forms 

 

The action of the complex weathering processes on building stones results in different 

changes in their properties and nature. Weathering changes the original structure, mineralogy, 

and chemistry of the stone material leading eventually to total disintegration. Theses changes 

manifest themselves in the form of a broad spectrum of deterioration patterns. The 

categorization and classification of weathering forms is important for the characterization, 

quantification and rating of stone weathering (Fitzner et al., 1995). Geometrical and 

phenomenological descriptions and classification schemes for macroscopic weathering forms 

on building stone have been established and developed (Fitzner and Kowantzki, 1990; 1991; 

Fitzner et al., 1992; Fitzner et al., 1995; Fitzner and Heinriches, 2002). One of the problems 

relating to the description and classification of weathering is finding a common language 

(Doehne and Price, 2010). To overcome terminological confusions and to simplify the 

recognition and comparison of different degradation forms, an illustrated glossary on stone 

deterioration patterns has been recently prepared by ICOMOS Stone Committee (ICOMOS-

ISCS, 2008). Figure (2.2) shows weathering patterns of flaking and powdering that are most 

commonly found on stone due to salt crystallization (Charola, 2000). Figure (2.3) shows the 

detachment of laminated stone, possibly due to frost damage. 
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Figure 2.2: Granular disintegration and flaking of stone induced by salt crystallization (from 
ICOMOS-ISCS, 2008). 
 

 
Figure 2.3: Delamination of a sandstone gravestone possibly resulting from frost action (from 
ICOMOS-ISCS, 2008). 
 

 

It is clearly evident that water is the driving force behind almost all weathering processes. The 

transport and storage of water within the porous material is controlled by its pore structure. 

Therefore, the study of the porous system of the material and water transport and storage 

properties constitutes the basis for understanding weathering processes and their influence on 

the material (Snethlage, 1984). The next chapter presents a description of pore structure and 

the mechanisms of water transport and storage in porous building materials. 
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3  Pore structure and water transport 
 

3.1 Pore structure 

 
Stones, or rocks in general, are characterized by a complex pore structure. This structure 

influences the different properties of the stone and controls its weathering processes (Fitzner 

and Basten, 1994). The description of pore space characteristics is, therefore, an indispensable 

step. 

 

3.1.1 Porosity 

 

Porosity is a fundamental property of rocks. It refers to the ratio of the volume of voids to the 

total volume of the rock, expressed as a percentage. In general, porosity can be classified 

based on different geometric, morphologic and diagenetic aspects or criteria. On the basis of 

petrogenesis, the porosity of a rock can be divided into primary porosity which refers to the 

porosity at the time of deposition or formation and secondary porosity that develops long after 

the rock’s formation (Tucker and Wright 1990; Fitzner and Basten, 1994). These two porosity 

types can be further classified based on their shape and position in the fabric of the rock. 

Pores and cracks that exist between the grains or crystals of the rock are referred to as 

interparticle (or intergranular) porosity, whereas intraparticle porosity describes the pore 

space within the grains or crystals (Fitzner and Basten, 1994). Choquette and Pray (1970) 

divided the porosity in sedimentary carbonate rocks into different types as shown in Figure 

(3.1). 

 

Based on the permeability or typology, the pore space can be classified into open pores and 

closed pores. Closed porosity refers to all those pores that are totally isolated from the 

external surface of the material, allowing no access of water either in liquid or vapor phase. 

Open porosity, on the other hand, comprises the connected pores which are accessible to 

fluids and external atmosphere. These pores can be further classified based on their 

interconnectedness as shown in Figure (3.2). For weathering processes, only open pores are of 

significant importance (Meng, 1993). 
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Figure 3.1: Porosity types (from Tuğrul, 2004, after Choquette and Pray, 1970). 

 

 
Figure 3.2: Pore types (Fitzner and Basten, 1994). 

 

3.1.2 Pore size and pore size distribution 

 
The pore structure of a material is also characterized by the size of pores. This parameter is 

particularly significant because it controls the water absorption and transport properties in the 

material (Vos, 1976; Yu and Oguchi, 2009a). Pores in stones vary in size from a few 

nanometers to several millimeters. Voids of larger size are referred to as cavities rather than 
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pores, whereas pores in the Angstrom (Å) range are not considered permeable (Fitzner and 

Basten, 1994; Borrelli, 1999). 

 
The classification of pores according to their size is important to help understand the 

influences of pores of various sizes on the properties of porous materials. However, people in 

different fields use different classification schemes for pore sizes (Table 3.1). 

 

Table 3.1: Classification of pore size diameter in different fields. 

Building physics classification (Klopfer, 1985) 

(water transport mechanism) 

Micropores 

< 0.1 µm 

Capillary pores 

0.1 µm – 1 mm 

Macropores 

> 1 mm 

IUPAC-classification (Gregg and Sing, 1982) 

(adsorption mechanism) 

Micropores 

< 2 nm 

Mesopores 

2 nm – 50 nm 

Macropores 

> 50 nm 

Concrete science 

(Romberg, 1978; Stark and Wicht, 2001) 

Gel pores 

< 10 nm 

Capillary pores 

10 nm – 100 µm 

Air pores 

1 µm -1 mm 

 

In building physics and conservation field, three main groups of pore sizes are distinguished: 

micropores, capillary pores and macropores. The division limits between these pore types is 

not that sharp, particularly for micropores. Different studies usually report different dividing 

pore radii for micropores; the upper limit often ranges between 0.05 µm and 5 µm (Yu and 

Oguchi, 2009a). In this study, the following classification of pore radius size is used: 

- Micropores: r < 0.1 µm 

- Capillary pores: 0.1 µm < r < 1 mm 

(Small capillaries: 0.1 µm< r < 5 µm; large capillaries: 5 µm < r < 1 mm) 

- Macropores: r > 1 mm; where r is the pore radius. 

 
Because of the complexity of pore structure and the wide range of pore sizes, different 

methods and measurement procedures are usually used and combined to characterize the pore 

space and to determine the size of pores. Direct characterization of pore space can be 

achieved by light and electron microscopes. Indirect measurements of pore parameters are 

carried out by a number of methods that are mainly based on the intrusion and extrusion of 

liquid phases in pores or the adsorption of gases on their surfaces (Fitzner and Basten, 1994). 

Figure (3.3) shows the different methods usually used to characterize and measure the pores 

of stone and their measuring ranges. 
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Figure 3.3: Characterization methods of pore size and their measuring ranges (after Setzer, 1975). 

 

3.2 Water transport in porous materials 

 

3.2.1 Water transport mechanisms 

 
Water can enter a porous material either in liquid or vapor phase (Charola, 2000). The 

transport characteristics of water within the porous material depend on the pore size. Figure 

(3.4) shows the various mechanisms of water transport in pores of different sizes. An 

explanation of these mechanisms is presented in the following sections. 

 

 

Figure 3.4: Moisture transport mechanisms (from Snethlage, 1984 and Neisel, 1995; after Klopfer, 
1979; 1980). 
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3.2.1.1 Diffusion of water vapor 

 

The diffusion of water vapor into and within a porous material is based on the thermal 

intrinsic movement of the water molecules (Brownian molecular motion) (Klopfer and 

Homman, 2008). In contact with moist air, a hygroscopic porous building material (such as 

building stone) adsorbs moisture by adsorption of water molecules on the surfaces of their 

pores until the equilibrium moisture is reached. The equilibrium hygroscopic moisture content 

of the porous material at constant temperature depends on the relative humidity of the 

surrounding air. If the porous material contains hygroscopic salts, its equilibrium moisture 

increases depending on the type and amount of salt (Künzel, 2007). In the same way, a moist 

material will release water (desorb) with decreasing relative humidity until the water vapor 

pressure in its pores is in equilibrium with that in the ambient air. At a constant temperature, 

the moisture content of a porous material is a function of the relative humidity. The change in 

the moisture content of the porous material with increasing and decreasing relative humidity 

is thus given by the adsorption and desorption isotherms (Amoroso and Fassina, 1983; 

Snethlage, 1984; Künzel, 1995). 

 

The diffusion of moisture takes place in the direction of partial pressure gradient of water 

vapor. The adsorbed water film on the pore walls of a hygroscopic material is composed of 

one or more molecular layers (thickness of one molecular layer of water is approximately 0.3 

nm) (Neisel, 1995). 

 

The diffused water molecules in the pores of a stone undergo a set of collisions between each 

other and with the walls of pores. The traveled way of these molecules will, therefore, be in 

form of a zigzag line. The mean free path between two successive collisions for a water 

molecule in air at normal conditions of 20 °C temperature and a total pressure of 1 bar is 

around 40 nm. The pore diameter needs, therefore, to be at least 100 nm in order to allow for 

more collisions between the water molecules than with the pore walls, and correspondingly to 

allow for water vapor diffusion (Klopfer and Homman, 2008). The upper pore limit for water 

vapor diffusion lies, however, in the centimeter range where masses movement owing to 

convection diffusion takes place (Neisel, 1995). In fine pores smaller than 10 nm, that is 

smaller than the mean free path of water molecules, the traveled way of water molecules is 
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determined more by their collisions with pore walls than with each other, giving rise to water 

vapor effusion (Knudsen molecular transport) (Figure 3.5) (Klopfer and Homman, 2008). 

 

 
Figure 3.5: The mean free path of water molecule and water vapor diffusion and effusion (Klopfer and 
Homman, 2008). 

 

When the temperature of a stone surface is lower than the dew point temperature of the 

ambient air, condensation occurs on the surface. Condensation could also interstitially occur 

inside the pores of the material even when the temperature of the surface is above the dew-

point temperature (Torraca, 1982; Amoroso and Fassina, 1983). Capillary condensation is a 

result of the decreased vapor pressure above the liquid meniscus in small pores which has 

strong curvature (Meng, 1993). For average relative humidity, the capillary condensation is 

possible in pores smaller than 0.1 µm (micropores). The pores moistened by capillary 

condensation are filled with water although the outer conditions allow no condensation in 

macroscopic pores. This condensed water is not easily released from the pores of the material 

(Snethlage, 1984). 

 

3.2.1.2 Transport of liquid water 

 

Building stones absorb and transport liquid water into their capillary pore structure by the 

action of capillarity. This is particularly important in pores of small radius (capillary pores). 

The capillary action is a result of the attraction of water and pore wall (adhesion-wetting) and 

the surface tension of water (cohesion) (Charola, 2000). 

The molecules of a water film are attracted to each other by intermolecular forces. The water 

molecules at the surface do not have other like molecules on all sides of them as the internal 
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molecules. Consequently, they cohere more strongly to those directly associated with them on 

the surface. This enhancement of the intermolecular attractive forces at the surface is 

responsible for the surface tension of water, which is 0.0728 N/m at 20 °C. 

 

Because of the attractive intermolecular forces, liquids tend to achieve the smallest possible 

surface area. Therefore, liquids tend to form spherical drops when freely suspended as the 

spherical configuration represents the smallest surface-to-volume ratio. On contact with 

solids, a liquid drop forms an angle with the surface of the solid. The contact angle is 

determined by the resultant force of the cohesive liquid-liquid molecular forces and the 

adhesive solid-liquid forces and depends on the characteristics of the solid and liquid involved 

(Gauri and Bandyopadhyay 1999). For a contact angle between 0° and 90° (0° < θ < 90°), we 

speak of a wetting liquid that rises in capillary pores of the material, resulting in capillary 

ascension. A non-wetting liquid, on the other hand, forms a contact angle between 90° and 

180° with the pore wall, and is correspondingly pulled down in the pore resulting in capillary 

depression (Figure 3.6). 

 

 

Figure 3.6: Impact of surface tension of water (capillary ascension and capillary depression) (from 
Snethlage, 1984). 

 

Building stones are composed of carbonates, silicates, aluminates or oxides. These 

compounds contain oxygen atoms which are electronegative or hydroxyl groups which are 

polar because of the higher electronegativity of the oxygen atom. Pore surfaces with polar 

atoms (oxygen) or groups (hydroxyl) show strong attraction for polar molecules, such as 

water. Therefore, such surfaces attract water molecules and are called hydrophilic (Torraca, 

1982; Amoroso and Fassina, 1983). Correspondingly, liquid water can be absorbed and 
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transported (either horizontally or vertically) within the capillary pores of building stones by 

capillary action (capillarity). The driving force here is the negative capillary pressure given 

by the simple form of Young and Laplace equation (Karkare and Fort, 1993). 

κ

σ

r
ppp awc

2
=−=    (3.1) 

cp = negative capillary pressure [Pa= N/m²]; wp = pressure inside water [Pa]; ap = ambient air 

pressure [N/m²]; σ = surface tension of water [N/m]; κr = mean curvature radius [m]. 

 

For cylindrical capillary pores, the mean curvature radius depends on the radius of the 

capillary pore ( θκ cosrr = ) and the capillary pressure is, thus, given by Washburn equation 

(Meng, 1993). 

θ
σ
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2
r

pc =    (3.2) 

cp = negative capillary pressure [Pa]; σ = surface tension of water [N/m]; r = capillary pore radius 

[m] (convenient unit: µm); θ = contact angle (water-pore wall) [°]. 

 

Capillary water transport is generally effective in the pore radius size range from 0.1 µm to 1 

mm. However, at a negative pressure of 1 bar (105 N/m²), the continuity of the water column 

is interrupted because the apparent tensile strength of water is exceeded. The negative 

capillary pressure reaches 1 bar at the pore radius of 1.5 µm. This pore radius determines, 

therefore, the lower limit for capillary water transport. In smaller pores, the capillary liquid 

transport is probably replaced by surface diffusion (Klopfer, 1979; 1980; Snethlage, 1984). 

Surface diffusion describes the molecular motion within the adsorbed water film (thickness 

up to 20 molecular layers) on the mineral surfaces of the pores (Neisel, 1995). 

 

The water front inside the pore of a stone exhibits a typical concave meniscus, because the 

centre of the water surface is drawn inwards by the attraction of water molecules while close 

to the pore surface the attraction towards the pore walls prevails (Torraca, 1982; Amoroso and 

Fassina, 1983). The capillary action is determined by the combined effect of four forces, 

namely capillary force, force of gravity, viscosity, and external pressure force (Snethlage, 

1984). The capillary force is usually large enough to offset the force of gravity and make 

water rises inside pores of sufficiently small size, resulting in capillary rise. If water suction is 

not counterbalanced by other mechanism such as evaporation, the capillary rise against 

gravity might theoretically reach a height of many meters (Torraca, 1982). 
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In pores larger than 1 mm, the effect of gravity on the liquid columns inside the pores is 

greater than the capillary force. Therefore, liquid water infiltrates and moves freely within the 

pore space following the laws of hydrostatic pressure; water will run down large openings and 

cracks. The seepage flow due to gravitation depends on the permeability of the material and it 

falls within the validity limits of Darcy’s law1 for laminar water flow (Neisel, 1995; Klopfer 

and Homann, 2008). 

 

Other mechanisms of water transport in the liquid phase include hydraulic flow, 

electrokinesis, and osmosis (Künzel, 1995). More details about the mechanisms of water 

transport and storage in porous building materials can be found in Klopfer and Homann 

(2008). 

 

3.2.2 Water content and moisture storage 

 

The distribution and transport of water within the pores of a stone is actually determined by 

various mechanisms that act in parallel. These mechanisms depend on the water content of the 

pores and on their size. The widely varied pore radii of stone give rise to the simultaneous 

action of different transport and storage mechanisms. Pores smaller than 10 nm constitute the 

molecular water transport region where effusion takes place. In pores larger than 1 µm 

(continuous transport region), the water transport takes place by capillary forces and water 

flow, or rather by diffusion when the pores are not filled with water. In the transition region 

with pore size between 10 nm and 1 µm, various mechanisms of moisture transport are 

operative (Leimer, 2004). 

 

The water content of the stone is determined by the temperature and relative humidity of the 

ambient air. Figure (3.7) shows the different phases of the water content of a porous material 

by increasing moistening as described by Rose (1965). In a very dry stone, all the diffused 

water vapor into the stone will be first adsorbed on the pore walls (phase A). This adsorbed 

water remains immovable because of high adhesive forces and one can not yet speak of an 

actual transport (Klopfer and Homann, 2008). When the pore walls are overlaid with one or 

more molecular layers of water (phase B), water vapor begins to diffuse into the adjacent 

                                                 
1 an empirical relationship between the instantaneous liquid flow through a porous medium; the cross-sectional 
area perpendicular to the flow, the viscosity of the liquid and the pressure drop over a given distance. 
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pores. With increasing water vapor content, the capillary pores will be filled with liquid water 

because of the incipient capillary condensation (phase C). In this phase, the water transport 

takes place by vapor diffusion in large pores and by capillary forces in small capillaries. As 

the total moisture rises, the adsorbed water film becomes sufficiently thick to allow for 

surface diffusion, and the water transport increases appreciably because a continuous water 

transport in the liquid phase is now possible (phase D). In phase (E), the pores contain enough 

water to allow for an effective non-saturated flow and capillary conduction. The pores in the 

last phase (phase F) are saturated with water and transport takes place by capillarity and by 

saturated flow according to Darcy’s law (Klopfer and Homann, 2008). 

 

 

Figure 3.7: Water content of a porous material by increasing moistening as described by Rose (1965) 
(from Klopfer and Homann, 2008). 

 

It is clear from this diagram that moisture transport in a relatively dry stone takes place by 

water vapor diffusion, which is then increasingly replaced by capillary condensation. At high 

moisture content, more efficient transport mechanisms such as capillary conduction and water 

flow come into play (Leimer, 2004). 

 

The moisture content of a building material can be expressed as a fraction or ratio of the 

volume of water to the total volume of the material (ψ) or as fraction or ratio of the mass of 

water to the total mass of the material (u). The possible water content of a hygroscopic 

capillary-active building material from dry to water saturated conditions is shown in Figure 

(3.8) (Klopfer and Homann, 2008). Three regions of moisture content can be distinguished: 

the sorption moisture region (hygroscopic region), the capillary water region (super-

hygroscopic region), and the supersaturated region. The hygroscopic region characterizes the 
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sorption moisture region from the dry state up to equilibrium hygroscopic moisture of 95% 

pore relative humidity (ψ95 or u95); this characterizes the situation in which all micropores are 

filled with water. In this region the water transport takes place by water vapor diffusion, and 

the moisture storage is determined by the adsorption process. The capillary water region 

follows the hygroscopic region and characterizes the water filling of larger pores up to free 

water saturation (capillary saturation) (ψf or uf). The water transport here is determined by 

non-saturated water flow and capillarity. In the supersaturated region, the relative humidity in 

the pores is 100% (regardless of the water content) and no more equilibrium states do exist. 

This region can not be reached by normal suction or only after a very long time by dissolution 

of the encapsulated pore air in water. It occurs in practice through diffusion in the temperature 

gradient, and in laboratory through suction under pressure. The maximum water content (ψmax 

or umax) corresponds to the complete filling of all accessible pores (Künzel, 1995; Klopfer and 

Homann, 2008). 

 

 

Figure 3.8: Water content of a porous hygroscopic building material (from Klopfer and Hofmann, 
2008). 

 

3.2.3 Evaporation 

 
Most of the damage in buildings occurs during the drying process. Evaporation from the 

surface of a porous body is governed by the environmental conditions (temperature, relative 

humidity, air velocity) and the pore structure of the material. ‘‘When a water-saturated stone 

dries, evaporation takes place initially from the surface at a rate that depends on the 
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environmental conditions. In the absence of ventilation and at high relative humidity, the 

evaporation rate is very low and the surface remains wetted. If ventilation occurs, the 

evaporation rate increases and the surface will remain wetted, allowing evaporation to 

continue at a constant rate, as long as the movement of water to the surface is quickly enough 

to compensate for the loss by evaporation’’ (Amoroso and Fassina, 1983). 

 

Inside the pores, the lack of air circulation causes rapid saturation (RH ~ 100%) so that an 

efficient evaporation occurs only on the external surface (Torraca, 1982). However, this 

equilibrium can not remain for long time because of the widely varied pores size distribution 

of stone. Water molecules in larger pores will pass into the vapor phase more rapidly than 

those in smaller ones. When the amount of water brought to the surface becomes too small to 

keep the surface wetted, the evaporation rate falls off. Therefore, in materials in which water 

can move easily, most of the drying takes place at the surface. In dense materials, however, 

the initially constant evaporation rate persists for only a small proportion of the drying period; 

the surface may dry long before all the pores have emptied, and at some point below the 

surface, the material may still be saturated. The water front retreats into the stone and the 

drying velocity decreases rapidly. The moisture content corresponding to this discontinuity is 

called the critical moisture content (Amoroso and Fassina, 1983). Below this critical water 

content, the transport of the liquid water to the surface is no longer possible and the less 

efficient water vapor diffusion is operative. The drying rate drops at this stage, when 

considerable amount of water may still be present. The complete drying of the material is 

quite difficult (Torraca, 1982; Amoroso and Fassina, 1983). 

 

Figure (3.9) summarizes the sequence of water occupation and distribution within the pore 

space of a stone (hydrophilic material) as passing through four levels of increasing water 

content (Torraca, 1982). The first level (level 1) represents the completely dry material with 

all pores empty. The second level (level 2) corresponds to the adsorption of water on the 

surfaces of capillary pores until they are filled. The surfaces of large pores at this stage are 

still dry. At the third level (level 3), the surface of large pore adsorbs water from capillaries. 

Finally, both capillary and large pores are filled with water (level 4). This sequence is 

reversed when the material dries. However, level 3 occurs mainly upon wetting, while level 2 

upon drying. Any water content above that corresponding to level 3 should allow for water 

transport in the liquid phase. This level might thus be equivalent to the critical moisture 

content (Torraca, 1982). 
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Figure 3.9: Water occupation and distribution within the pore space of a stone (modified from Gauri 
and Bandyopadhyay, 1999 after Torraca, 1982). 

 

 

 
 
 
 



4 Evaluation of weathering and conservation treatments  

 29 

4 Evaluation of weathering and consolidation treatments 
 

Having explained the different weathering types of stone and the pore structure and water 

transport properties which control weathering, the state of the art for the study and evaluation 

of stone deterioration and consolidation treatments is presented in this chapter. 

In the first section, an overview of the assessment of stone durability and weathering is given 

and the most important properties that affect stone durability are discussed. Accelerated 

weathering tests as an approach for studying stone deterioration and assessing its durability 

are considered and the nature of the induced stress on the pore walls is further explained. 

In the second section of this chapter, the consolidation of stone and the evaluation of the 

effectiveness of consolidation treatments are presented. Alkoxysilane (ethyl silicates) 

consolidants and their particular application on carbonate stones are briefly discussed. 

 

4.1 Stone durability and weathering assessment 

 

The assessment of the intensity of stone deterioration is an essential aim for preservation and 

conservation purposes (Siegesmund et al., 2002). For the quantification of deterioration, a 

fundamental understanding of stone weathering mechanisms and their influence on stone 

structure is necessary. Weathering processes affect the physical and mechanical properties of 

stone and induce various changes in its structure (Nicholson, 2001; Benavente et al., 2004). 

Changes in stone due to weathering might include modification of porosity and pore structure, 

development of cracks and loss of stone cohesion (Tuğrul, 2004). 

The study of these changes and the correlation of stone properties in different weathering 

conditions with easily measurable quantities help to develop classification schemes whereby 

the deterioration level of stone can be assessed. For example, Köhler (1991) used the 

correlation between ultrasonic pulse velocity and porosity of marble with increasing 

weathering to develop a classification scheme for evaluating the deterioration of marble. 

 

However, stone deterioration processes are controlled by multiple factors; intrinsic factors 

inherent to the stone and its natural heterogeneity and extrinsic factors related to the 

surrounding environment (Siegesmund et al., 2002). The interactions between the various 

properties of stone and the weathering processes affecting them do create a complex system. 
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In such a complex system there is no single controlling parameter, but rather a multiplicity of 

factors is actually involved (Nicholson, 2001). 

A simple and good approach for assessing the weathering and durability of stone is, therefore, 

to consider a certain type of weathering processes and try to determine the most important 

parameters controlling this weathering (Bourgès, 2006). Such an approach has been widely 

used for testing building stone in the field of civil engineering and architecture (Nicholson, 

2001; Benavente et al., 2004; Angeli et al., 2007; Yu and Oguchi, 2009a; 2009b). However, 

the focus in these studies is mostly on the test of stone durability for the selection of suitable 

building materials rather than on the assessment of stone weathering state for conservation 

purposes. 

 

The approach of studying the changes in stone properties upon artificial weathering is used 

here to provide the necessary information for assessing the deterioration of the selected stones 

and their durability. The different parameters that influence the durability of stone and its 

weathering are discussed below. 

 

4.1.1 Stone properties and durability 

 

The durability of building stones can be defined as a measure of their ability to endure and 

maintain their essential and distinctive characteristics of strength, resistance to decay and 

appearance in relation to specific manner, purpose and environment of use (Benavente et al., 

2004). It follows from this definition that durability is determined based not only on the 

properties of stone and its natural characteristics (i.e. its intrinsic quality), but also on the 

environmental conditions to which it is subjected. 

 

Durability tests are primarily used to help determining the suitability of stones for various 

applications in new construction works (Ross et al., 1991). However, these tests are also 

useful in conservation field for understanding the particular weathering behaviors of stone, 

assessing its weathering degree, and selecting the appropriate materials for restoration works. 

 

The durability of a stone can be assessed by direct experiments such as salt crystallization and 

freeze-thaw tests that are intended to subject the stone to similar conditions to those 

encountered in the field, but in a more aggressive form (Building Research Establishment, 

1989; Ross et al., 1991). However, such tests are generally time consuming and costly. Many 
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studies have been, therefore, dedicated to develop durability estimators based on correlations 

between stone damage, induced by artificial weathering, and the properties of stone upon 

which durability is dependent (Ross et al. 1991). 

 

In general, pore structure and rock fabric characteristics are the main properties that control 

weathering (Ross et al., 1991; Ordonez et al., 1997; Nichloson, 2001; Pérez-Bernel and Bello, 

2002; Tuğrul, 2004). Porosity is one of the most fundamental properties of stone. It impacts 

all its physical and mechanical properties. The stone mechanical strength and modulus of 

elasticity, for example, decrease with increasing porosity (Wittmann, 1992; Winkler, 1997). 

Weathering agents can penetrate into the stone through its porous system. Therefore, porosity 

affects the weathering process of the stone and can be considered as the simplest estimator for 

stone durability (Benavente et al., 2004). Although it provides useful information about the 

flow of weathering agents, porosity alone can not be sufficient to assess durability because it 

gives no indication of the way in which the pores are distributed within the stone (Building 

Research Establishment, 1989). 

 

As shown in Chapter three, pore size distribution is one of the most important parameters 

controlling the absorption and transport of liquid within stone. Gauri and Bandyopadhyay 

(1999) emphasize the importance of determining pore properties for the quantification of 

weathering. Weathering processes, particularly salt and frost damage, are largely dependent 

on pore size (Everett, 1961; Fitzner and Snethlage, 1982; Punuru et al., 1990; Pérez-Bernel 

and Bello, 2002). Stones with the same total porosity can differ markedly in their weathering 

resistance if their pore size distribution, especially the proportion of micropores and small 

capillaries, is different (Cardell et al., 2003; Bourgès et al., 2008a; Yu and Oguchi, 2009a). 

 

The weathering of stone is found to be enhanced by decrease in pore size (Hudec, 1978; 

Robertson, 1982). According to Angeli et al. (2008), Russell (1927) was the first to introduce 

the idea that susceptibility to salt deterioration is higher for stones with higher proportions of 

micropores. Honeyborne and Harris (1958) gave an empirical criterion of durability based on 

the proportion of pores larger than 5 µm in diameter. This pore diameter has been found to be 

a useful dividing value between fine and coarse pores for pore distributions determined by the 

water suction method (suction plate technique) (Building Research Establishment, 1989). The 

precise measurement of porosity with mercury intrusion porosimetry (MIP) in an indefinite 

range of pore sizes has enabled the development of reasonably accurate classifications of 
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pores (Punuru et al., 1990). Recent studies have also confirmed the role of micropores in salt 

crystallization damage (Scherer, 1999; Flatt, 2002; Steiger, 2005a,b; Yu and Oguchi, 2009a). 

However, different studies reported often different sizes and ranges of micropores in respect 

to damage by salt crystallization (Yu and Oguchi, 2009a). 

Rossi-Manaresi and Tucci (1991) and Theoulakis and Moropoulou (1997) showed that salt 

damage can be significant only for stones with a particular pore size distribution, namely 

when a substantial amount of small pores coexists with a considerable proportion of larger 

ones. They emphasized, therefore, the importance of examining the pore size distribution of 

stone before drawing any conclusion about salt damage. 

 

Pore geometry and connectivity have also important implications on the weathering process 

of stone. Scherer (2004) points out that damage due to salt crystallization is greater in points 

where micropores are connected to macropores. Channel cylindrical pores limit the number of 

such points and correspondingly stones with cylindrical pore are expected to be more durable 

than those containing a network of spherical micro-and macropores (Angeli et al., 2008). Buj 

and Gisbert (2010) point out recently that stones with high percentage of micropores are less 

susceptible to salt damage if their pore network is characterized by high tortuosity 

(twistedness or crookedness) and low connectivity. 

 

Saturation coefficient (Hirschwald coefficient), calculated as the ratio of free porosity to 

accessible porosity, constitutes also an important property of stone. It depends on the 

configuration of pores (Leary, 1981). This coefficient was first developed to assess durability 

of stone to frost damage. In practice, saturation coefficients higher than 0.8 indicate 

susceptibility to frost whereas those below 0.6 indicate resistance, but one cannot say with 

absolute certainty in either case (Ross et al., 1991). Benavente et al. (2004) point out that this 

coefficient affects durability because stones which absorb a large amount of water are more 

susceptible to deterioration. However, many stones have saturation coefficients in a gray 

middle area around 0.7, and in this region the saturation coefficient on its own cannot be a 

reliable indicator of durability (Sperling and Cooke, 1985; Building Research Establishment, 

1989). The correlation between saturation coefficient and porosity yields a better measure for 

stone durability. This correlation is still insufficient and further knowledge on pore structure 

is needed (Leary, 1981). 
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Capillary water absorption coefficient (w-value) represents the rate of water uptake through a 

certain area of stone. This property is closely related to the pore structure and can therefore be 

correlated to the durability of the stone (Benavente et al., 2004). 

 

In addition to these petrophysical properties, the mechanical characteristics of stone have 

considerable influences on its weathering and durability. The strength of a material represents 

generally its ability to withstand mechanical stresses. Mechanical stresses on building stone 

are mainly of two types: compressive and tensile stresses. A description of the different 

mechanical tests and their measurement configurations can be found in Kocher (2004). The 

stone mechanical strength decreases with increasing weathering. Tensile strength is 

particularly useful for studying the microfracturing of building stone due to thermal and 

mechanical stresses (Robertson, 1982). 

The relationship between the applied stress and the resulted deformation (strain) describes the 

mechanical behavior of materials. The static modulus of elasticity, calculated from the linear 

elastic part of the stress-strain curve, expresses the materials resistance to deformation. 

Microcracks change the elasticity of stone. Therefore, the modulus of elasticity can be used to 

detect increased porosity, fracturing, and susceptibility to deterioration (Robertson, 1982). 

Gauri and Bandyopadhyay (1999) point out that static modulus of elasticity is commonly used 

for the selection of materials in new construction and restoration works. These authors used 

the change in this modulus in increasing cycles of salt crystallization as a measure of stone 

deterioration. 

 

It follows from the above discussion that there is no single parameter of stone that can fully 

determine its weathering susceptibility. Therefore, various properties of stone are usually 

combined to obtain an improved indication of durability. Porosity is usually correlated with 

other stone properties such as pore size distribution, saturation coefficient and capillarity 

(Leary, 1981; Building Research Establishment, 1989; Ross et al., 1991; Nicholson, 2001; 

Mohammad, 2003; Yu and Oguchi, 2009a). The combined use of microporosity and 

saturation has been usefully used to asses the durability of stone (Building Research 

Establishment, 1989; Niesel, 1981). Moreover, the correlation between the mechanical 

properties and the petrophysical and hydric properties of stone enhances further the estimation 

of stone durability and weathering (Benavente et al, 2004). Theoulakis and Moropoulou 

(1997) point out that the susceptibility of stone to salt damage is a function of mechanical and 

structural properties. These properties are associated with durability and with one another 
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(Niesel, 1981). For example, the textural and fabric characteristics, particularly pore and 

fracture geometry, are the main features controlling the strength of stone (Tuğrul, 2004). The 

comparison of theoretical crystallization pressures calculated from mercury porosimetry data 

with mechanical strength allows the assessment of stone susceptibility to salt damage (Rossi-

Manaresi and Tucci, 1991; Theoulakis and Moropoulou, 1997). Some examples of durability 

estimators, based on correlations between stone properties, are given in Yu and Oguchi 

(2009a). 

 

4.1.2 Accelerated weathering test 

 

Different weathering tests can be carried out on stone to assess its durability and weathering 

susceptibility. These include salt crystallization tests, acid immersion tests, and freeze-thaw 

experiments, among others. Thermal weathering can also be used, particularly for marble. 

According to Ross et al. (1991), salt crystallization tests were proposed by Brard (de Thury et 

al. 1828) to assess frost resistance and are largely used today as a measure of the durability of 

porous building materials, mainly because of their extensive damaging potential. 

 

Accelerated durability tests with salt crystallization are usually carried out either by repeated 

cycles of soaking in salt solution followed by drying or by partial immersion in salt solution 

to allow continuous capillary rise. Sodium sulfate is one of the most destructive salts and it is, 

therefore, widely used in accelerated weathering tests of building materials (Flatt, 2002; Tsui 

et al. 2003; Steiger and Asmussen, 2008). 

 

In this study, salt crystallization test with cyclic impregnation in sodium sulfate solution is 

selected for studying the deterioration of limestone and basalt samples. For the study of 

marble deterioration, thermal weathering was applied. Thermal degradation of marble is 

already discussed in Section 2.1.1.4. More detailed description of the crystallization damage 

by sodium sulfate salt and the nature of the applied stress on pore walls are presented below. 

 

4.1.2.1 Crystallization damage by sodium sulfate 

 
Sodium sulfate has two stable phases; anhydrate called thenardite (Na2SO4) and a decahydrate 

called mirabilite (Na2SO4·10H2O). Figure (4.1) shows the phase diagram of sodium sulfate. 

At room temperature (20 °C), the equilibrium relative humidity of a saturated solution of 
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mirabilite is around 93%. As humidity decreases, mirabilite becomes less stable with respect 

to thenardite and a phase transition occurs at relative humidity of around 75% (Flatt, 2002). 

Mirabilite becomes unstable at temperatures above 32 °C. As temperature drops to lower 

values, the range of humidity at which it is stable increases (Flatt, 2002; Katzoff, 2006). If a 

solution of sodium sulfate dries at temperatures below 32 °C, mirabilite will likely precipitate 

and eventually transform to thenardite at low humidity (Scherer, 2004). 

 

 

Figure 4.1: Phase diagram of sodium sulfate. The continuous lines indicate the boundaries of the stable 
phases. The dashed line corresponds to a solution in metastable equilibrium with respect to thenardite 
and supersaturated with respect to mirabilite (from Flatt, 2002; experimental data from Kracek, 1928). 

 

In weathering experiments of stone with sodium sulfate salt by cyclic total impregnation and 

drying (cyclic wetting and drying), the main damage is found to occur during the 

impregnation rather than the drying cycle (Scherer, 2004). This damage was previously 

attributed to the hydration pressure associated with increase in volume as thenardite 

transforms to mirabilite (Flatt, 2002; Scherer, 2004; Steiger and Asmussen, 2008). However, 

the hydration transition of thenardite to mirabilite by progressive absorption of water is 

unlikely because of the lattice mismatch between the two phases (Chatterji and Jensen, 1989; 

Flatt, 2002). This has been confirmed experimentally by Rodriguez-Navarro and Doehne 

(1999); they showed this transition to be a dissolution-precipitation process. The 

crystallization of mirabilite from a highly supersaturated solution seems to account for the 

extensive damage by sodium sulfate during impregnation cycles (Chatterji and Jensen, 1989; 



4 Evaluation of weathering and conservation treatments  

 36 

Flatt, 2002; Tsui et al., 2003; Steiger and Asmussen, 2008). Chatterji and Jensen (1989) 

recognized that the solubility of thenardite becomes increasingly larger than that of mirabilite 

for temperatures below 32 °C (Tsui, 2003). The dissolution of thenardite at ambient 

temperature produces, therefore, a highly supersaturated solution with respect to mirabilite 

(Flatt, 2002; Tsui, 2003). In repeated cycles of wetting and drying, the thenardite precipitated 

in the sample during the drying cycle will dissolve as the stone is impregnated in the solution 

for the following cycle. The dissolution of thenardite will continue until it reaches its 

equilibrium concentration which is, at ambient condition, highly supersaturated with respect 

to mirabilite. The precipitation and growth of mirabilite from such a highly supersaturated 

solution will develop stresses that are substantially larger than the tensile strength of most 

stones and building materials and they can develop over a region of the porous network large 

enough to propagate strength limiting flaws (Flatt, 2002; Tsui, 2003; Scherer, 2004; Steiger 

and Asmussen, 2008). The contribution of crystallization during evaporation to the damage 

induced in wetting–drying experiments can not be unambiguously determined (Steiger and 

Asmussen, 2008). Steiger and Asmussen (2008) mentioned that the dissolution-crystallization 

mechanism during immersion induces high supersaturation in pores of any size. Therefore, 

large crystals in large pores that do not have small entries (as it is required for pressure 

development due to evaporation under equilibrium conditions) could also generate pressure 

(Steiger and Asmussen, 2008; Yu and Oguchi, 2009a). 

 

In experiments with continuous partial immersion in salt solution that allows for constant 

capillary rise, the evaporation and diffusion kinetics are the most important parameters 

controlling damage. Rapid evaporation due to low RH conditions produces high 

supersaturation degrees that might induce damage by mirabilite precipitation. However, direct 

precipitation of thenardite is also observed at low RH (Rodriguez-Navarro and Doehne, 

1999). Owing to its greater crystallization pressure, thenardite may produce larger damage 

than mirabilite (Sperling and Cooke, 1985; Rodriguez-Navarro and Doehne, 1999). 

Rodriguez-Navarro et al. (2000) found that both mirabilite and thenardite may precipitate 

under conditions of fast evaporation driven by low ambient relative humidity, and even with 

lower relative humidities only thenardite could be precipitated. The authors concluded 

therefore, that thenardite crystallization is probably responsible for the enhanced damage 

observed in evaporation experiments with constant capillary rise under low relative humidities 

(Tsui et al., 2003). Steiger and Asmussen (2008) point out, however, that although thenardite 

can generate greater crystallization pressure than mirabilite under such conditions, the 
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evaporation experiment carried out at different temperatures still indicate that mirabilite is the 

more damaging phase. This is probably attributed to the greater molar volume of mirabilite, 

which results in a larger degree of pore space filling and a larger contact area between the 

growing crystal and the pore wall, i.e. a more efficient propagation of stress. In summary, 

damage in evaporation experiments at moderate to high RH is caused by mirabilite (or 

eventually the metastable phase sodium sulfate heptahydrate at very low temperatures). At 

low RH, the anhydrous phases of sodium sulfate crystallize out as well and might thus 

generate a greater crystallization pressure (Steiger and Asmussen, 2008). 

 

4.1.2.2 Crystallization pressure and stress on pore walls 

 

As pointed out earlier in Chapter two, the crystallization pressure seems to be the most 

important mechanism of salt weathering in porous building materials. Many authors have 

discussed, in reference to relevant previous works such as Taber (1916) and Correns and 

Steinborn (1939), the necessary conditions for this pressure to develop (e.g. Amoroso and 

Fassina (1983), Scherer (1999; 2000), Flatt (2002), and Steiger (2005a)). Two important 

requirements are highlighted: 

 

1. In order that a crystal continues to grow upon its loaded surface, a thin film (1-2 nm) 

of supersaturated solution must exist between the crystal and the confining pore wall. 

This film acts as a diffusion path furnishing the crystal with the material necessary for 

growth and transfer the resulting mechanical stress to the pore wall. The 

characteristics of this film have been already described by Taber (1916) and Weyl 

(1959). The differential surface energy (interfacial energy) plays an important role in 

the formation of this film. Scherer (1999; 2000; 2004) explains that the growing 

crystal will resist touching the pore wall and will exert pressure against it if the energy 

of the crystal-wall interface is greater than the sum of crystal-liquid and wall-liquid 

interface energy. Because of this disjointing pressure (the repulsive force between the 

salt and dry pore wall), the dry contact between crystal and pore wall will be 

prevented until the maximum crystallization pressure is reached. Below this pressure 

the crystal will retain a liquid film between itself and the pore wall and try to push it 

away with a force that depends on the driving force for growth. Without this 

disjointing pressure, the crystal will grow into contact with the pore wall and no 

crystallization pressure will be generated. 
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2. The loaded surfaces of the crystal must be in contact with a supersaturated solution in 

order to allow a continuous growth. If the growing crystal is composed of a substance 

whose solubility increases with pressure, then any increase in load has to be 

compensated by an increased concentration of the solution (Amoroso and Fassina, 

1983; Steiger, 2005a). 

 

The driving force for salt crystallization is thus supersaturation which can be produced by 

evaporation, drop in temperature, or addition of solution. High supersaturation could also be 

created by transition from one hydration state to another such as thenardite-mirabilite 

transition. 

 

The crystallization of salt in pores results in mechanical stress that is transmitted to the pore 

walls by the thin supersaturated film. Salt crystals can grow in pore classes with radius larger 

than 1 nm (Espinosa et al., 2008). In stone with a wide range of pore sizes, salt crystals in the 

solution are subjected to unequal pressure and the system is under unstable equilibrium. The 

solution may become supersaturated with respect to crystals in large pores, while at the same 

time it tends to dissolve crystals growing in small pores as they are under greater pressure 

(Amoroso and Fassina, 1983). 

 

According to Everett’s model (or Willmann and Wilson, 1965; 1968), salt crystallization 

preferentially takes place in large pores (r > 0.1 or 10 µm) because large crystals have a lower 

chemical potential and their formation is thus thermodynamically favorable (Rossi-Manaresi 

and Tucci, 1991). Therefore, salt solution will be withdrawn from the surrounding smaller 

pores and large crystals will grow at the expense of the smaller ones (Rossi-Manaresi and 

Tucci, 1991; Theoulakis and Moropoulou, 1997). Even when the crystals completely fill the 

large pores they will refuse to grow into the surrounding micropores because this involves a 

higher chemical potential. The large crystals instead keep growing against the confining pore 

wall and build up pressure (Everett, 1961; Theoulakis and Moropoulou, 1997; Scherer, 2004; 

Steiger, 2005; Yu and Oguchi, 2009). This suggests that stones with large capillaries 

connected by a network of micropores are highly susceptible to damage by salt crystallization 

(Rodriguez-Navarro and Doehne, 1999). 
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However, Steiger (2005b) points out that Everett’s model is actually a particular case of 

crystallization under equilibrium condition, namely when a crystal grows in a large pore with 

small entries. Scherer (1999) describes in detail the origin of stress in equilibrium condition; 

that is when the crystal is entirely surrounded by the solution so that it remains in mechanical 

equilibrium. The author reviewed the thermodynamics of crystallization pressure and came to 

support the theory of Correns. However, he points out that the tensile stress on pore wall is 

estimated to be half that large. The maximum crystallization pressure is related to 

supersaturation ratio, but other factors such as interfacial energies (of wall-liquid and crystal-

liquid boundaries), pore radius and pressure in solution are setting the lower limit of the 

generated stress. He gave the following equation for the maximum (when the contact angle θ 

= 180°) compressive radial stress on a crystal in a cylindrical pore: 
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rσ = the total radial stress [N/m²] (convenient unit MPa = N/mm²); slγ = the solid-liquid interfacial 

energy [N/m]; clγ = the crystal-liquid interfacial energy [N/m]; pr = the radius of the pore [m] 

(convenient unit µm); δ = the thickness of the solution film between the crystal and the pore wall [m] 
(convenient unit µm); lp = the pressure in the liquid [N/m²] (convenient unit MPa); θ = the contact 

angle between the crystal and the pore wall [°]. 

 

The compressive radial stress is counteracted by a tensile stress of approximately equal 

magnitude. This tensile stress is what causes damage to stone (Scherer, 1999; Flatt, 2002). 

 

Under equilibrium condition, the generated stress is inversely proportional to pore radius; that 

is stress is higher in small pores. Scherer (2004) points out that sufficiently high stresses to 

damage stone (stresses in the MPa range) are only expected in nanometric pores (10–50 nm or 

smaller). While such small pores are present in concrete, they are relatively rare in natural 

stone (Houck and Scherer, 2006; Steiger 2005b). Furthermore, crystals grow simultaneously 

in pores of different sizes (Scherer, 1999). When supersaturation is consumed, crystals in 

small pores will tend to dissolve in favor of those in the large pores. This means that the high 

crystallization pressure developed in small pores will only be a transient pressure. However, 

the expected limitations in ions transport into large pores, especially when they are widely 

spread in the stone, may allow for a longer duration and a greater magnitude of transient 

stresses. The general expectation that small pores generate the largest crystallization pressure 

is, therefore, still valid (Flatt, 2002). 

 



4 Evaluation of weathering and conservation treatments  

 40 

However, Scherer (2000; 2004; 2006) points out that high crystallization pressures can also 

develop in large pores, if the solution becomes discontinuous due to evaporation and subsists 

only as a trapped film between the crystal and pore wall. Further evaporation will thus 

produce high supersaturation and the growing crystal will exert an increasing pressure on the 

pore wall. In such a non-equilibrium situation the generated pressure is only limited by RH 

(kinetic factors) and the disjointing pressure, which can amount to tens of megapascals. 

 

Crystallization of salt within the pores of a stone can thus result in the development of high 

stresses on pore walls. These stresses can exceed the tensile strength of stone which is usually 

around 3-9 MPa. (Flatt, 2002; Katzoff, 2006). However, Scherer (1999) shows that stress 

from crystallization in single pores is not likely to induce cracking and failure in stone 

structure because the affected volume is too small. For fracture to occur, crystallization must 

spread over a region of the material comparable in size to the strength controlling flaws (i.e. 

tens to hundreds of micron). This will require a sufficiently large driving force (high 

supersaturation) to allow for crack propagation through the porous network (Scherer, 1999). 

 

4.2 Evaluation of consolidation treatments 

 

4.2.1 Stone consolidation and evaluation of treatments 

 

Weathering processes act to reduce and weaken the cohesion between the individual grains or 

grain aggregates of stone due to the effects of expansions and contractions which result for 

example from moisture changes, frost, salt crystallization, and temperature variations. This 

results in a reduction or loss of mechanical strength near the stone surface or at a certain depth 

inside the stone, leading thereby to granular disintegration or detachment of surface layers of 

stone. The mechanical strength of the weathered zone exhibits normally a gradual increase in 

depth profile from the outer surface towards its interior until it reaches that of the 

unweathered stone. The depth of weathering is dependent on the properties of the stone and 

its exposure conditions (Snethlage and Wendler, 1995). These changes are often accompanied 

by changes in porosity, moisture transport behavior and thermal characteristics (Sasse and 

Snethlage, 1997). 
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Consolidation treatments are needed to restore and strengthen the cohesion between the grains 

of the weathered stone. The aim is to restore the strength as well as other properties of the 

weathered zone to the level of the sound stone and to re-establish a homogeneous strength 

profile from the exterior treated surface to the sound interior stone. An over-strengthening of 

surface layer should be avoided (Snethlage and Wendler, 1995). 

 

Stone consolidants should satisfy many performance requirements. These include penetrating 

at least through the weathered zone (typically a few centimeters) and into the sound stone, 

providing sufficient strengthening without blocking the pores (which could prevent escape of 

water vapor, and thereby raise the risk of frost damage), improving the properties of stone and 

its resistance to damage, and producing no or only minor changes in the color and appearance 

of the stone (ASTM E2167–01, 2001; Scherer and Wheeler, 2009). More details about the 

different performance requirements for stone consolidants and their evaluation methods can 

be found in Clifton (1980), Snethlage and Wendler (1995), Sasse and Snethlage (1997), and 

Laurenzi Tabasso and Simon (2006). 

 

Beside mechanical strength, many parameters must be considered for the evaluation of the 

effectiveness of stone consolidation treatments. The modulus of elasticity, for example, is an 

essential parameter to evaluate the success of consolidation treatments and possible 

subsequent damage; there is a high risk of stone detachment and scaling when the modulus of 

elasticity of the treated surface layer is considerably higher than that of the sound stone 

(Snethlage and Wendler, 1995). 

Table (4.1) lists some important parameters to evaluate the effectiveness of stone 

consolidation and the requirements they should fulfill for successful treatments. 
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Table 4.1: Requirements for assessing the effectiveness of consolidation treatments based on the 
changes in important stone properties after treatment as compared to untreated unweathered stone 
(Snethlage and Wendler, 1995, Sasse and Snethlage, 1997; Laurenzi Tabasso and Simon, 2006; 
Snethlage, 2008), (u: untreated; t: treated). 

Property Symbol [Unit] Requirement 

Color  _ 
No or minimum change (∆E* ≤ 5), no darkening 

or gloss. 

Water uptake 

coefficient 
w [kg/(m².h0.5)] wt ≤ wu  

Product 

penetration depth 

s [cm] 

(measured through capillary 

rise after 5 minutes) 

Deeper than the zone of maximum average 

moisture. 

Depending on the w-value of untreated stone: 

w = 0.1-0.5 � s = 1.0 cm 

w = 0.5-3.0 � s = 3.0 cm 

w > 3.0       � s = 6.0 cm 

Water vapor 

permeability  
µ [dimensionless] Increase ≤ 20% (i.e. µ t ≤ 1.2 µu)  

Biaxial flexural 

strength 
βBFS [N/mm²] 

βBFS,t = βBFS,u homogeneous strength profile, 

otherwise: 

(βBFS,t - βBFS,u)/βBFS,u < 0.5 (i.e. βBFS,t = 1.5 βBFS,u) 

and ∆βBFS,t/∆x < 0.2 N/mm²·mm (x = depth) 

Modulus of 

elasticity 
E [kN/mm²] 

Et ≤ 1.5 Eu and 

Et/ βBFS,t ≤ Eu/βBFS,u homogeneous profile as 

possible and ∆E/∆x ≤ 1 kN/mm²·mm 

Ultrasonic pulse 

velocity 
Vp [km/s] Vp,t = Vp,u homogeneous profile 

Drilling resistance DR [N] Homogeneous profile 

Thermal 

dilatation 
αT [10-6.k-1] 

No increase against untreated stone  

(or increase ≤ 20%; i.e. α t ≤ 1.2 α u) 

Drying   No increase in drying duration 

 

4.2.2 Consolidation materials for building stone 

 
The scientific investigation into the conservation of building stones began in the nineteenth 

century and depended on the progress in chemical research (Snethlage and Wendler, 2000). 

Before this date, the well-known natural substances (such as linseed oil and bees wax) were 

being applied to protect natural stone. In the first half of the nineteenth century, synthetic 
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silicates, namely watergalss and fluorosilicates, were developed. These two products, in 

different varieties, dominated the whole market of stone conservation until the 2nd world war 

and even after. Only beginning from 1960s, after the reconstruction works in the cities 

destroyed by war and the growing awareness of the conservation of historic building fabric, 

new materials have been developed. These new materials originate predominantly from 

silicone-organic combinations and in part from synthetic resins (Herm et al., 1998). 

Nowadays, alkoxysilane compounds (tri- and tetraalkoxysilanes) are very famous as stone 

consolidants. 

 

Alkoxysilanes 

Alkoxysilanes, particularly ethyl silicates, were first suggested by Hoffman in 1861 for stone 

consolidation and they have been widely used as stone consolidants since the late 1960s 

(Grissom and Weiss, 1981; Snethlage and Wendler, 2000; Delgado Rodrigues, 2001; 

Wheeler, 2005). 

Ethyl silicate consolidants are based on the hydrolysis reaction of monomeric or oligomeric 

tetraethoxysilane (TEOS) by water present in the pore space of stone and the subsequent 

condensation reaction of hydrolyzed silanol (Si-OH) groups by intermolecular release of 

water to form stable siloxane (Si-O-Si) bonds (see equations below). The resulted gel interacts 

with the mineral components of the stone, providing thereby a stable contact (Snethlage and 

Wendler, 2000). 

 

( ) ( ) ROHOHSiOHORSi 44 424 +→+  (Hydrolysis)  (4.2) 

( ) OHSiOOHSi 224 2+→    (Condensation) (4.3) 

Where: R = ethyl radical (C2H5) 

 

The popular and well established use of ethyl silicates as stone consolidants is attributed to 

their basic properties (such as low viscosity and ability to form siloxane (Si-O-Si) bonds) and 

relatively good effectiveness, particularly with siliceous stones (Delgado Rodrigues, 2001; 

Wheeler, 2005). However, the consolidation effects of these consolidants are less satisfactory 

when applied to carbonate stones because of their inability to bond chemically with calcite 

crystals, which contain by itself few hydroxyl groups for alkoxysilanes to condense with 

(Goins et al., 1996; Wheeler, 2005; Scherer and Wheeler, 2009). Furthermore, Simon (2001) 

showed that there is an inhibiting effect of calcite surfaces on the hydrolysis reaction of 

alkoxysilanes. 
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Weiss et al. (2000a) approached the problem of insufficient bonding to carbonate surfaces by 

chemically altering the mineral’s surface of the stone to create a hydroxyl-rich surface by 

reacting calcium ion (or calcite) with tartaric acid (ammonium hydrogen tartrate) to form 

calcium tartrate that potentially would condense with alkoxysilanes. Another approach to 

create linkages across the interface between calcite and alkoxysilane-derived gels is to employ 

alkoxysilane coupling agents, in which compatible alkyl groups (R) bond to calcite and the 

hydrolyzed alkoxy groups on the coupling agents form silanols to condense with the 

alkoxysilane consolidant (Wheeler et al., 2000; Wheeler, 2005). An overview of alkoxysilanes 

as stone consolidants can be found in Wheeler (2005). 

 

In this study, two commercial alkoxysilane-based consolidation products (Funcosil KSE 300 

and KSE 300HV) from Remmers were used for the consolidation of the studied limestone 

samples. The selection of alkoxysilane consolidants is based on their relatively satisfactory 

results and their frequent use (Maravelaki-Kalaitzaki et al., 2006). The two selected products 

have the same gel deposition rate (ca. 300 g/l) and almost the same characteristics, except that 

KSE 300HV contains an extra coupling agent for specific applications to limestone. 

Therefore, the effects of this added coupling agent on the effectiveness of the consolidant with 

limestone samples can be tested. 

 

 

The changes in the properties of the tested stones before and after weathering and 

consolidation are going to be studied by physico-mechanical tests. A particular emphasis in 

this study is, however, given to the use of non-destructive ultrasonic velocity measurements. 

The next chapter is, therefore, assigned to explain the basic principles of this technique and its 

applications in the field of stone conservation. 
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5 Non-destructive ultrasonic technique 
 
Ultrasonic technique has gained increasing importance in the field of stone conservation as an 

effective and non-destructive investigation method. The non-destructive nature of the 

technique allows the determination of the properties of stone materials without causing 

damage. This technique constitutes an effective alternative for destructive testing methods. In 

the field of civil engineering and architecture, for example, non-destructive ultrasonic 

measurements can substitute for the traditional mechanical tests, which are destructive and 

costly. This non-destructive characteristic, together with the possibility of in situ applications, 

is especially important for the study of significant archeological stone monuments and 

structures, where sampling that might detract their integrity is not allowed. 

In this study, ultrasonic technique is used with other physico-mechanical methods to study the 

properties of stone before and after weathering and consolidation. The principles and possible 

applications of the technique for the investigation of building stone are discussed in this 

chapter. During this study, a review on this topic has been published by Ahmad et al. (2009). 

 

5.1 Basic principles 

 

Ultrasound refers to sound waves with frequencies above the upper limit of the range audible 

to human ear, which is about 20 kHz. Generally, a sound wave is a periodic mechanical 

disturbance that propagates through a gas, liquid or solid medium. In fluids (gases and 

liquids), sound waves are only of the longitudinal compression type, in which the particles of 

the medium are displaced in the direction of wave propagation. In solids, however, transverse 

shear waves with particle displacement perpendicular to the propagation direction of the wave 

do also occur. Pure longitudinal and transverse sound waves propagate in infinite solid 

mediums. Depending on the way of excitation and the form and dimensions of the solid 

material in relation to wavelength, other types of sound waves such as surface waves 

(Rayleigh wave), extensional (or quasi-longitudinal) waves, and bending (or flexural) waves 

can also occur (Sorge and Hauptmann, 1985). Figure (5.1) shows the various forms of sound 

waves in solid mediums and their velocities. The velocity of sound waves in a medium 

depends on its compressibility and density; i.e. it depends on the elastic and inertial properties 

of the medium (Jewett and Serway, 2008). 
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Figure 5.1: Types of elastic waves in solids and their velocities (DGZfP, 1999). 

 

Sound waves, like all other waves, are characterized by their wavelength (λ) and frequency 

(f). The wavelength is the minimum distance between any two consecutive points with the 

same phase; that is between two points with the same position and direction of motion on the 

wave pattern such as two adjacent peaks. The wave frequency is the number of wavelengths 

that pass a reference point in one second (the number of oscillations per unit time). The 

wavelength of a wave is inversely proportional to its frequency as given in the following 

equation: 

λ⋅= fV    (5.1) 

V = the velocity of the wave [m/s]; f = the frequency of the wave [Hz]; λ = the wavelength of the 
wave [m]. 
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More details about the physics of ultrasound and sound waves in general can be found in 

Jewett and Serway (2008), Shutilov (translated by Alferrieff) (1988), Hull and John (1988), 

and Norton and Karczub (2003). 

 

5.2 Measuring techniques 

 
The real breakthrough in the generation and reception of ultrasound was achieved thanks to 

the work of the Curie brothers who discovered the piezoelectric effect1 in quartz in 1880, and 

the mathematical deduction of the converse piezoelectric effect by Lippmann one year later 

(Woo, 2002). 

Ultrasonic waves were first used to explore submarine objects, inspired by sonar systems, but 

there were also some attempts and proposals to apply ultrasound for flaw detection in metals 

(Deutsch, 2000). However, the industrial use of ultrasound as a non-destructive method for 

material testing started apparently in the 1940s. 

Mamillan (1958) was the first to use ultrasound for the investigation and testing of building 

stone. Since then, ultrasonic methods have been widely used for the study and investigation of 

stone objects and structures in the fields of cultural heritage and civil engineering (stone 

masonry and concrete). 

 

Ultrasonic testing consists effectively of propagating ultrasound waves through a material to 

measure either or both the travel time and any change of intensity of the wave for a given 

distance (Blitz and Simpson, 1996). Various ultrasonic techniques can be applied for the 

investigation of stone. In transmission method, the ultrasonic transmitter and receiver are 

placed opposite to each other on either side of the stone and the time needed for the wave to 

travel along the distance between them (travel time) is measured (Figure 5.2). This allows 

calculating the velocity of ultrasonic waves propagating through the stone, particularly the 

longitudinal waves. The velocity of ultrasonic waves depends on the physical and mechanical 

properties of the stone (such as density, porosity, and structure), its degree of water saturation 

and its level of deterioration (cracks, defects) (Ahmad et al., 2009). 

 

                                                 
1 Piezoelectric effect: the generation of electric charges on the surface of certain crystals in response to applied 
mechanical stress. 
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Figure 5.2: Transmission ultrasonic technique. 

 

In addition to travel time, the intensity of the received ultrasonic wave, calculated from the 

first oscillation amplitude of the received signal, can be used to detect inhomogenities and 

defects in stone structure. The intensity of ultrasonic waves decreases continuously along their 

whole travel path in the stone due to the absorption of energy and the scattering of the waves 

at microscopic interfaces and internal inhomogenities. The measurement of intensity is very 

sensitive, and it requires a reproducible coupling of the transducer to the stone in order to 

allow the comparison between measurements. Such a coupling is, however, difficult to 

ensure, which restricts the practical use of this measuring procedure (Reinhardt et al., 2007; 

Glaubitt, 2008). 

 

It is also possible to analyze and determine the individual frequencies of the ultrasonic 

impulse. The intensity of the individual frequencies can weaken variably according to the 

condition of the material. Changes in the frequency spectrum can therefore be used to 

characterize the condition of stone and to indicate changes due to weathering (Simon et al., 

1994) or conservation (Meinhardt-Degen, 2005) and to check the setting and strength 

development in concrete (Jonas, 1996). 

 

The transmission technique can be modified by changing the transmitter-receiver arrangement 

and the testing procedure in order to adapt it to different applications and specific problems 

and purposes (Bouineau, 1978; Zezza, 1990). The ultrasonic transducers can be moved in a 

stepwise manner on stone surface to allow for ultrasonic tomographic measurements. In this 

technique, the travel times of transmitted waves between positions of known coordinates on a 

section of the stone are measured and used to calculate the ultrasonic velocity in each element 

of the investigated section, providing tomograms that show the velocity variations inside the 

stone. Ultrasonic tomography can be used to study and estimate the weathering degree of 

stone structures (Montoto et al., 1994; Simon, 2001) and to evaluate the effectiveness of 

consolidation treatments (Ettl and Sobott, 1999). 
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Surface methods depend on the pulse-echo technique, in which a transducer, coupled to the 

surface with a suitable elastic material, transmits ultrasound wave in stone and the reflected 

wave is received by another transducer placed on the same surface of the stone. Surface 

methods are more suitable for in situ applications where building structures are usually 

accessible from only one side. The travel time and the change in intensity or frequency 

spectrum of the reflected signal can also be measured here to provide information about the 

location and dimension of defects and changes in the structure of the material. These methods 

can be used to investigate weathering layers in building stones (Făcăoaru, 1990; Făcăoaru, 

and Lugnani, 1993; Simon and Lind, 1999; Christaras, 2003) and to estimate the depth of 

open cracks (Făcăoaru, and Lugnani, 1993; Christaras, 2003). 

 

5.3 Ultrasonic applications in stone conservation field 

 

The applications of ultrasonic technique for the investigation and conservation of building 

stone can be categorized in three groups; stone characterization and establishment of 

correlations with other stone parameters, assessment of the degree of deterioration, and 

evaluation of the effectiveness of conservation treatments (Chiesura et al., 1995; Ahmad et al., 

2009). 

 

5.3.1 Characterization of stone and establishment of correlations with 
stone parameters 

 
Ultrasonic velocity measurements in transmission technique are usually used to characterize 

stone and determine its elastic and mechanical properties such as the dynamic modulus of 

elasticity and Poisson ratio. The elastic constants can be determined by measuring the velocity 

of two different ultrasonic waves of the stone, together with its density (Rentsch and 

Krompholz, 1961). The following equations show the calculation of dynamic modulus of 

elasticity and Poisson ratio using the velocities of longitudinal and transversal waves. 
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−

−
+=

1

21
12ρ   (5.2) 

or: ( )
dynsdyn µVE += 12 2ρ    (5.3) 
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where: 
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2
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VV

VV
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−

−
=    (5.4) 

dynE = dynamic modulus of elasticity [Pa] (convenient unit GPa (or kN/mm²)); pV = velocity of 

longitudinal ultrasonic wave [m/s]; sV = velocity of transverse ultrasonic wave [m/s]; dynµ = dynamic 

Poisson ratio [-]; ρ = density [kg/m³]. 

 

On bar-shaped specimens with suitable dimension, the dynamic modulus of elasticity can be 

simply calculated only from the velocity of pure extensional waves. However, the generation 

and measurement of pure extensional waves is practically irrelevant. Erfurt and Krompholz 

(1996) described thoroughly the procedure for determining the elastic constants by measuring 

the travel time of longitudinal waves and the resonance oscillation frequency of extensional 

waves on bar-shaped laboratory samples. These must have suitable lateral dimension to allow 

the propagation of both longitudinal and extensional waves. The elastic constants can be used 

to detect changes in stone (Glaubitt, 2008). 

 

The relationship between ultrasonic velocity and various stone properties, such as porosity, 

density and capillary water absorption for different stone types, particularly marble and 

limestone, has been widely studied. Ultrasonic velocity measurements have been also used to 

establish useful correlations with other stone parameters that can give information on 

properties that would otherwise have to be determined by destructive methods such as 

mechanical strength (Chiesura et al., 1995; Ahmad et al., 2009). Good linear correlations were 

also found between the dynamic modulus of elasticity, calculated from ultrasonic velocity 

measurements, and the static modulus measured by destructive mechanical tests (Christaras, 

1996; Bourgès et al., 2008b). This correlation is affected by variations in pore space 

morphology in stone and it was found that the static modulus of elasticity is more affected by 

stone microcracks and deformations than the dynamic modulus (Bourgès et al., 2008b). 

 

5.3.2 Assessment of the degree of stone weathering 

 
The velocity of ultrasonic waves depends on the inertial and elastic properties of stone. The 

latter are greatly influenced by the effect of deterioration processes such as increase in 

porosity, development of cracks and general decrease in mechanical strength (Cardu et al., 

1991). Therefore, correlating the changes in these properties with the measured ultrasonic 
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velocity helps to provide classification schemes for evaluating the degree of stone 

deterioration. 

Köhler (1991) showed that the ultrasonic longitudinal velocity decreases markedly upon 

progressive structural damage of marble from around 5-6 km/s for fresh stone to values 

around 1 km/s for extremely weathered marble. He suggested an empirical classification 

system for marble that categorizes stone damage according to ultrasonic pulse velocity values 

(Table 5.1). Similar classification systems have been developed for limestone (Fitzner and 

Heinrichs, 1992; Simon and Lind, 1999). Köhler’s classification system is based on a 

correlation between ultrasonic pulse velocity and porosity for marbles. However, many 

authors point out that an accurate interpretation of the relationship between ultrasonic pulse 

velocity and stone degradation demands comprehensive knowledge of the petrophysical 

properties of the stone and its fabric1 (Durrast et al. 1999; Siegesmund et al., 1999; Weiss et 

al. 2000b). Based on various correlations between ultrasonic pulse velocity and important 

physico-mechanical properties as well as on personal observations and practical experience, 

Simon (2001) provided a slightly modified scheme of Köhler’s classification system. Some 

examples for the use of ultrasonic technique for assessing the weathering conditions of stone 

sculptures can be found in Simon (2001) and Pamplona et al. (2010). 

 

Table 5.1: Classification of marble damage after Köhler (1991). 

Ultrasonic pulse velocity (Vp) [km/s] Description Damage class 

>4.5 Fresh I 
3–4.5 Increasing porosity II 
2–3 Progressive granular disintegration III 
1–2 Danger of breakdown IV 
<1 Complete structural damage V 

 

Ultrasonic methods, particularly surface measurements, are also used in situ to determine the 

depth of open cracks and weathering layers (Bouineau, 1978; Simon and Lind, 1999; 

Christaras, 2003). Another application of ultrasonic velocity measurements on stone 

conservation is the evaluation and long-term monitoring of the condition of exterior stone 

objects and structures (Köhler, 1999; Recheis et al., 2000; Simon, 2001). This may provide 

useful information about the natural ageing process of the stone and its ability to withstand 

natural exposure conditions. 

 

                                                 
1 The term ‘fabric’ as used here includes stone texture (crystallographic preferred orientation) and microstructure 
(geometry and morphology of grains and pores). 



5 Non-destructive ultrasonic technique  

 52 

5.3.3 Evaluation of the effectiveness and durability of conservation 
treatments 

 

Consolidation treatments are expected to influence stone properties favorably through 

imparting cohesion to the weathered parts and increasing their adhesion to the sound core. 

This should be directly reflected in form of an increase in the compactness of stone and its 

mechanical strength. Therefore, ultrasonic velocity measurements before and after 

conservation are used to control and assess the effectiveness of consolidation treatments and 

their long-term durability. 

Since the late seventies, ultrasonic testing has been applied to study the effects of 

consolidation treatments on stone (Rossi-Manaresi and Ghezzo, 1978). Several examples of 

this type of application are found in the literature (Vergès-Belmin et al., 1991; Simon, 1996; 

Ettl and Sobott, 1999, Snethlage et al., 1999; Haake et al., 2004; Myrin and Malaga, 2006). 

 

The velocity of ultrasonic waves in treated stone has been found to increase variably 

depending, among other things, on the nature and condition of stone and the type and 

application method of the consolidation product. Values up to around 150% increase in 

ultrasonic velocity after consolidation treatments of different stone types, particularly marble, 

have been reported (Chiesura et al, 1995). A maximum increase in ultrasonic velocity of 

highly weathered marble could be achieved by full impregnation with acrylic resin under 

pressure (Ibach method; Snethlage and Wihr (1979)). With this method, the ultrasonic 

velocity in the stone after treatment might considerably increase to values close to those of 

fresh marble (Snethlage et al., 1999; Lorenz and Ibach, 1999; Pamplona et al., 2011). 

 

Ultrasonic velocity measurements can also be used to estimate the penetration depth of 

consolidants on drill core samples (Simon, 1996; Antonova et al., 1997). This can be 

correlated with stone properties measured in depth profile such as bi-axial flexural strength 

and drilling resistance measurements (Meinhardt-Degen, 2005). 

 

A general review on the application of ultrasonic techniques for the investigation on natural 

building stone can be found in Ahmad et al. (2009) and Chiesura et al. (1995). 
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5.4 Important aspects and considerations 

 

- Ultrasonic velocity is influenced by the degree of water saturation of pores. Water saturated 

stones exhibit generally higher ultrasonic longitudinal velocity because the velocity of 

ultrasound waves in water (1.48 km/s) is four and half times higher than in air (0.33 km/s). 

Esbert et al. (1991) reported an increase of ultrasonic velocity up to 35% in water-saturated 

limestone, dolomite and sandstone. The influence of water saturation degree on ultrasonic 

velocity is more significant for stones with porosity in form of fissures such as marble and 

granite. It seems that water can fill in a crack and bridge its sides more effectively, compared 

to pore walls, bringing about thereby a considerable increase in ultrasonic velocity for such 

stones (Delgado Rodrigues, 1982). 

 

Ultrasonic velocity measurement in dry and water-saturated conditions may provide useful 

information about the pore space characteristics of stone. Such measurements have been used 

together with the theoretical velocity of unfissured rock, calculated using its mineral 

composition, to define quality indices for stone and evaluate crack density (Delgado 

Rodrigues, 1982; Bourgès, 2006). 

 

- Research has proved the validity of ultrasonic testing for investigation of stone and other 

materials in general. However, some issues related to the accuracy and reproducibility of 

ultrasonic measurements need to be highlighted. Marini et al. (2004) point out that small 

changes in ultrasonic pulse velocity might reflect a large change in the condition of stone and 

it would be, therefore, better to measure pulse velocity within an accuracy of at least ± 2%. 

According to experience, the accuracy of in situ velocity measurement is, however, assumed 

to be ± 10% (Simon, 2001). Parameters and issues that might influence the accuracy of 

ultrasonic measurements include suitable ultrasonic frequency, contact pressure, degree of 

water saturation and suitable coupling. To ensure accurate and reproducible results, the 

ultrasonic system needs to be calibrated and the measuring conditions should be established 

and kept constant during the test. Although it is often emphasized to select the suitable 

ultrasonic frequency, a thorough and comprehensive study about the influence of frequency 

on the accuracy of ultrasonic measurement is still lacking. For measuring the velocity of 

longitudinal ultrasonic waves, Rentsch and Krompholz (1961) provided a practical definition 

of the infinite medium, required to allow the propagation of pure undisturbed longitudinal 

waves, which implies that the measuring length or lateral dimension of the investigated 
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sample must be at least 1.5 of the wavelength. Using this criterion, the suitable frequency for 

investigating a sample of certain dimensions can be determined in reference to the relation 

between ultrasonic frequency and wavelength. In an unpublished document of the company 

Geotron-Elektronik, the influence of the ratio of measuring distance to ultrasonic wavelength 

(l/λ) on the accuracy of ultrasonic measurement for standard samples of Plexiglas was 

studied. Ratios below 2.5 (l/λ<2.5) are considered unfavorable as they imply a measuring 

error of more than 3%. For ratios below 1 (l/λ<1.5), a measuring error of more than 12% is to 

be expected (Krompholz, 2010). Suitable ultrasonic frequencies for an ultrasonic velocity of 

about 3 km/s in relation to the dimension of a specimen are shown in Table 5.2. 

 

Table 5.2: Suitable ultrasonic frequency and specimen dimension for an ultrasonic propagation 
velocity of ~3 km.s-1 (from McDUR-Acoutherm European Project, 2002). 

 

 

 

 

 

Transmitter frequency [kHz] Wavelength [mm] Specimen dimension [mm] 

33 ~90 150–1500 
45 ~70 150–1000 
54 ~60 150–1000 

150 ~20 40–200 
250 ~12 30–150 
350 ~10 20–70 
500 ~6 15–50 

1000 ~3 10–50 
2000 ~1.5 5–50 
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6 Materials and methods 
 

6.1 Materials of the study 

 
The stone materials used in this study were selected from different archaeological sites in 

Jordan. Before describing the studied stone materials and their petrographic and mineralogical 

characteristics, the classification process of stone is briefly discussed. 

 

6.1.1 Classification of stone 

 

Limestone 

Limestone is a sedimentary rock composed mainly of calcium carbonate, often in the form of 

minerals calcite and aragonite, and may contain varying amounts of magnesium carbonate in 

form of dolomite. It is developed from carbonate sediments as the parent carbonate rock. 

The most commonly used classification systems of carbonate sediments and limestone are 

those of Folk (1959; 1962) and Dunham (1962). Both schemes classify carbonate rocks 

according to their textural properties. 

Folk classification is based on the textural components of limestones; that is the grains (or 

allochems) and interstitial materials, the calcite cement (spar) and the microcrystalline matrix 

(micrite). The system first divides carbonate rocks into allochemical rocks that contain 

transported coarse (> 10 µm) carbonate grains and rocks lacking allochems and composed 

entirely of microcrystalline calcite. Allochems in carbonate rocks can be of four different 

types; fossils (or bio fragments), oolits (or ooids), pellets, and intraclasts. These allochems can 

be embedded in a matrix of dull microcrystalline calcite mud (micrite) or cemented by clear to 

translucent coarse crystalline calcite crystals (sparite). Accordingly, allochemical rocks can be 

further classified as shown in Figure (6.1). 

Folk classification system has been going through levels of modification and refinement to 

provide further subdivisions of limestone and carbonate sediments. A modified scheme for 

further subdivision of carbonate sediments based on the ratio of allochems is shown in Figure 

(6.2). 
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Figure 6.1: Folk’s classification system of carbonate rocks (modified after Folk, 1959). 

 

 

Figure 6.2: Textural classification of carbonate rocks (modified after Folk, 1962). 

 

Alternatively, Dunham classification system deals with the depositional texture of carbonate 

rocks. Carbonate rocks are first divided as to whether their depositional texture is still 

recognizable or not. Carbonate rocks with recognizable depositional texture are further 

subdivided into rocks whose original components were not bound together during deposition 

and rocks with original components bound together as part of the deposition process 
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(boundstone). Based on the relative proportion of mud and the concept of mud/grain support, 

rocks originally not bound during deposition are further classified as shown in Figure (6.3). 

 

 

Figure 6.3: Dunham’s classification system of carbonate rocks (modified after Dunham, 1962). 

 

Marble 

Marble is a metamorphic rock consisting mainly of recrystallized calcite and/or dolomite. 

Different marbles can be distinguished and categorized based on their particular 

microstructure. For this purpose, many geometric and morphological characteristics of 

carbonate crystals such as relative grain size and grain boundary shape can be examined. 

Marble is mainly composed of anhedral (xenoblastic) grains, mostly carbonates, and may 

contain euhedral (idioblastic) grains mostly of non-carbonate accessories. Marbles composed 

of equidimensional carbonate grains are said to have a homeoblastic texture (microstructure), 

as opposed to heteroblastic texture for marbles with inhomogeneous grain size. If the equi-

granular large carbonate grains have regular straight to curve boundaries, the marble is 

characterized by a granoblastic polygonal mosaic texture. On the other hand, highly 

interlocking and dentate grains result in a sutured grain boundary texture. Heteroblastic 

marble can have a mortar texture/fabric when the large crystals are surrounded by a fine-

grained matrix (Capedri et al., 2004). 
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Basalt 

Basalt is one of the most common igneous rocks. It is a dark colored, mafic1 extrusive2 

volcanic rock composed particularly of the minerals plagioclase, pyroxene and olivine. On a 

chemical basis, basalts can be classified into three broad groups based on the degree of silica 

saturation. Using the CIPW-Norms3, the normative mineralogy of the rock can be calculated 

and plotted in the basalt tetraheydron (Figure 6.4), which is constructed using the normative 

components olivine, clinopyroxene, quartz and nepheline. The basalt tetrahedron is divided 

into three different volumes separated by two critical planes indicating the degree of silica 

saturation. Correspondingly, three types of basalt can be distinguished; quartz tholeiite 

(quartz-hypersthene normative Q+Hy), olivine tholeiite (olivine-hypersthene normative 

Ol+Hy), and alkali olivine basalt (Nepheline normative Ne) (Nelson, 2011). 

 

Figure 6.4: The basalt tetraheydron (after Yoder and Tilley, 1962) 

 

Other chemical parameters such as the contents of silica and total alkalis can also be utilized 

for the classification of basalt and volcanic rocks in general. The total alkali (Na2O+K2O) 

versus silica (SiO2) diagram (TAS diagram) can be used to classify volcanic rocks especially 

when their actual mineral composition can not be certainly determined. Rocks plotting in a 

specific field on the diagram can be further classified based on additional criteria such as their 

texture, normative mineralogy and chemical characteristics. 

                                                 
1Rich in magnesium and iron and contain comparatively low content of silica and lighter elements (derived from 
New Latin magnesium + Latin ferrum iron + English –ic) in contrast to light-coloured felsic rocks composed 
mostly of silica and alkali feldspars. 
2 Formed on the Earth’s surface by the cooling and solidification of extruded magma. 
3 A norm developed by Cross, Iddings, Pirsson, and Washington to determine the hypothetical mineral 
assemblage (normative mineralogy) from whole-rock chemical analysis. 
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6.1.2 Studied stone samples 

 

The studied stone samples were selected from five important archaeological sites in north and 

north-east Jordan (Figure 6.5). Limestone and basalt are the stones mainly outcrop in this part 

of Jordan, and the archeological sites there were almost built of them. From a conservation 

point of view, these stone types have been so far little studied, compared to the sandstone in 

the south of Jordan which has gained more interest, particularly because of the very famous 

Nabataean city of Petra which was carved into this rock (Fitzner and Heinrichs, 1994; 

Heinrichs and Fitzner, 2000; Al-Naddaf, 2002; Paradise, 2002; Simon et al., 2004; Fitzner and 

Heinrichs 2005; Heinrichs, 2008). Therefore, this study is dedicated to investigate some 

varieties of these stones from different aspects for conservation purposes. 

 

 

Figure 6.5: Geological map of Jordan showing the locations of the studied stone samples (modified 

from Water Data Banks Project, 1998). 
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According to the objectives of the study, two groups of samples were chosen. The first group 

is composed of sound materials of limestone, basalt and marble for the study of weathering 

behavior upon artificial ageing. The second group includes naturally weathered limestone 

samples for the investigation of their weathering state and the effects of conservation 

treatment with two products of consolidation. The categorization of the samples into sound 

and weathered stones was done based on visual examination and on the results of ultrasonic 

pulse velocity and physical properties measured in laboratory. 

 

The composition of stone and its microstructure constitute an important intrinsic factor that 

governs its durability and resistance to weathering. Petrographic analysis yields important 

information about the mineralogical composition of the stone, the available alteration phases, 

the size, shape and contact of grains and other textural features and diagenetic properties. 

Therefore, it is an indispensable step to determine the composition and petrographic 

properties of stone. The petrographic analysis of the studied stone samples was performed 

using optical and polarizing microscope on thin sections, and was accomplished by X-ray 

diffraction and X-ray fluorescence measurements. The mineralogical and chemical 

compositions of the studied stone samples are summarized in Tables (6.1) and (6.2). 

 

Table 6.1: Mineralogical composition of the stone samples. 

 Sample
1
 Stone type Site Mineral composition 

LA Limestone Ajlun 
Castle 

Calcite 

LJ1 
Dolomitic 
Limestone Jarash Arch. Site 

Calcite, Ankerite, Dolomite, 
Quartz 

LUQ1 Limestone 
Umm Qeis Arch. 

Site Calcite, Quartz 

BUE Basalt 
Umm El-Jimal 

Arch. Site 
Plagioclase (Labradorite), 
Clinopyroxene, Olivine 

BUQ Basalt 
Umm Qeis Arch. 

Site 
Plagioclase (Labradorite), 
Clinopyroxene, Olivine 

Sound samples 

MUQ Marble 
Umm Qeis Arch. 

Site Calcite 

LH Limestone Hallabat Palace Calcite 

LJ2 Limestone Jarash Arch. Site Calcite 
LJ3 Limestone Jarash Arch. Site Calcite 

Naturally 

weathered 

samples 
LUQ2 Limestone 

Umm Qeis Arch. 
Site Calcite, Quartz 

 

                                                 
1 The first letter in the sample name refers to the type of the sample (L= Limestone, B= Basalt, M= Marble), the 
rest stands for the name of the site, from which the sample was taken. When two samples or more are taken from 
the same site, they are numbered. 
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Table 6.2: Chemical composition of the stone samples. 
 Sample LA LJ1 LUQ1 BUE BUQ MUQ LH LJ2 LJ3 LUQ2 

SiO2 0.00 3.49 7.94 48.35 45.45 2.00 4.02 2.60 3.46 5.92 
TiO2 0.06 0.01 0.05 2.30 1.61 0.04 0.03 0.04 0.01 0.03 
Al2O3 0.74 0.64 0.88 16.95 13.23 0.53 0.60 0.57 0.65 0.75 
Fe2O3 0.16 1.22 0.36 11.84 12.87 0.10 0.17 0.12 0.16 0.29 
MnO 0.00 0.01 0.00 0.16 0.17 0.00 0.00 0.00 0.00 0.00 
MgO 0.57 3.42 0.89 5.11 7.16 0.43 0.32 0.05 0.48 0.45 
CaO 46.30 42.81 47.34 10.25 14.99 47.02 47.22 46.20 46.72 46.20 
Na2O 0.00 0.11 0.00 3.86 2.34 0.82 0.00 0.07 0.40 0.00 
K2O 0.00 0.00 0.02 1.10 0.62 0.00 0.00 0.00 0.00 0.00 
P2O5 0.00 0.00 0.00 0.26 0.57 0.00 0.00 0.00 0.00 0.00 
LOI

1
 43.35 43.89 42.67 0.36 1.01 43.84 43.27 43.64 44.03 43.12 

% 

SUM 91.18 95.60 100.15 100.54 100.02 94.78 95.63 93.29 95.91 96.76 
Sr 9 220 330 410 431 149 67 54 220 317 
Ba - - 31 96 440 32 171 341 90 261 
Rb - 17 31 22 1 5 - 0 25 - 
Y 15 - - 14 6 2 - 6 18 7 
Zr 2 17 23 151 124 11 13 10 27 31 
Cr 50 41 38 75 323 - - - - 153 
Cl - 17 - 151 156 - - - - - 
S 181 479 - 565 301 1707 1479 928 1522 1394 

Cu 3 13 5 29 41 - 19 3 7 3 
Zn 3002 221 548 70 138 - 280 405 394 31 

ppm 

V - - - 293 211 - - - - - 
 

A detailed petrographic description of the studied stone samples (the sound and naturally 

weathered samples) is presented in the following sections. 

 

6.1.2.1 Sound stone samples 

 

For the first part of the work concerning the study of the effects of artificial weathering on the 

properties of stone, six samples of different stone types, namely limestone, basalt and marble, 

were selected. The petrographic properties of these stone samples are briefly described below. 

 

The limestone samples 

Sample LA (Figure 6.6): This sample was taken from Ajlun Castle and seems to be of the 

Upper Cretaceous limestone of the massive Wadi As-Sir Formation based on a comparison 

with relevant literature studies (e.g. Bender, 1974; Powell, 1989). In hand specimen, it is a 

yellowish grey massive limestone with very small cracks. In thin section, the sample is an 

unfossiliferous equi-granular recrystallized sparry limestone, composed of interlocking 
                                                 
1 Loss On Ignition 
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anhedral to euhedral calcite crystals. The stone is characterized by intercrystalline 

(interparticle) porosity. Idiomorphic1 (euhedral) crystal growth of sparry calcite, averaging 

around 0.15 mm across, is detected as well in fissures and pores. 

 

 

Figure 6.6: Photomicrograph of the blue-dyed thin section of sample LA (Plane-polarized light (PPL)); 
the blue areas indicate the pores in stone. 

 

Sample LJ1 (Figure 6.7): Massive dolomitic Upper Cretaceous limestone, most likely of 

Na’ur Formation, from Jarash Archaeological Site. In hand specimen, it is a reddish yellow 

massive fine limestone with slight lamination. 

 

 

Figure 6.7: Photomicrograph of the thin section of sample LJ1 (PPL). 

 
                                                 
1 Indicating or pertaining to a mineral constituent having its own characteristic outward crystalline form 
unaltered by other constituents of the rock. 
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In thin section, the stone is a dolomitic intraclastic biosparite (shell-fragment rudstone or 

rudist mudstone) with large-size bioclasts, mostly oyster (bivalves) shell fragment, imbedded 

in a fine-grained sparry ground mass. The matrix consists of dark brown dolomitized material 

with euhedral (rhombic) dolomite and ankerite (iron-rich dolomite) crystals, averaging 0.05-

0.07 mm in size. The fossils and bioclasts vary in size and may reach 5 mm for elongated 

fragments. The pore space consists of intracrystalline (intraparticle) and minor intercrystalline 

(interparticle) porosity. 

 

Sample LUQ1 (Figure 6.8): A massive limestone from Umm Qeis Archaeological Site, most 

probably of Umm Rijam Chert Limestone Formation (Eocene (Tertiary) in age). The stone is 

a whitish grey fossilferous limestone with some small cavities or pores, which are sometimes 

filled with calcite. In thin section, it can be described as intrapelbiomicrite with abundant 

allochems (intraclasts, algae and bivalve fossil shells, pellets, and some pisolitic1 grains). 

These allochemical components are embedded in a micritic matrix, which contain also 

patches of recrystallized sparry calcite. The stone is characterized by moldic porosity and 

intergranular microporosity. 

 

 

Figure 6.8: Photomicrograph of the thin section of sample LUQ1 (PPL). 

 

The textural and petrographic properties of the sound limestones are summarized in Table 

(6.3). 

 

                                                 
1 Pisolith: A small rounded accretionary mass, usually of calcium carbonate, larger and less regular than an 
oolite. Also called pisolite. 
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Table 6.3: The petrographic description of the sound limestone samples. 

Sample Site 
Geological 

formation 
Microstructure Porosity Color 

LA Ajlun 
Wadi As-Sir 
Limestone 
Formation 

Massive unfossiliferous 
recrystallized sparry 

limestone 

Differential 
intercrystalline 

porosity 

Yellowish 
grey 

LJ1 Jarash 
Na’ur 

Limestone 
Formation 

Dolomitic intraclastic 
biosparite 

Minor intercrystalline 
and intracrystalline 

porosity 

Reddish 
yellow 

LUQ1 
Umm 
Qeis 

Umm Rijam 
Chert 

Limestone 
Sparse intrapelbiomicrite 

minor moldic porosity 
and intergranular 
micro-porosity 

Whitish 
grey 

 

The marble sample 

The marble sample (Sample MUQ (Figures 6.9 and 6.10)) is a pure calcite grayish white 

marble. The study of the microstructure of the sample under polarizing microscope and the 

comparison with data from relevant literature indicate the Island of Proconnesus (modern 

Marmara, Turkey) as the most probable quarry source of the stone (Bashayrih, 2003; Capedri 

and Venturelli, 2004). The grain size varies between 0.2 mm and 2.5 mm, producing a 

medium-coarse grained metamorphic rock. The stone is characterized by a heteroblastic 

granular texture with irregular, embayed to sutured, grain boundaries. The recrystallization of 

calcite crystals during metamorphic thermal events resulted in large calcite crystals showing 

very nice rhombic cleavage and lamellar twinning. The randomly oriented crystals with 

irregular anhedral shape and interlocking mutual relations make the rock compact and 

massive with very low intercrystalline porosity. 

 

 
Figure 6.9: Photomicrograph of the thin section of sample MUQ (PPL). 
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Figure 6.10: Photomicrograph of the thin section of sample MUQ in Cross-polarized light (CPL). 

 

The textural properties of the stone are summarized in Table (6.4). 

 

Table 6.4: The textural properties of the studied marble sample. 
Sample Site Stone type Microstructure Porosity Color 

MUQ 
Umm 
Qeis 

Proconnesian 
marble 

Interlocking heteroblastic, 
sutured, medium-coarse grained 

Intergrain 
porosity 

Grayish 
white 

 

The basalt samples 

Two basalt samples, BUQ (Figures 6.11 and 6.12) and BUE (Figures 6.13 and 6.14), were 

taken from two archaeological sites in Jordan, namely Umm Qeis (Plateau basalt of Early 

Pliocene age) and Umm El-Jimal (Late Tertiary (Neogene) basalt). 

 

 

Figure 6.11: Photomicrograph of the thin section of sample BUQ (PPL). Ol= Olivine; Pl= Plagioclase; 
and Py= Pyroxene. 
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Figure 6.12: Photomicrograph of the thin section of sample BUQ above in cross-polarized light (CPL). 

 

Figure 6.13: Photomicrograph of the thin section of sample BUE (PPL). Ol= Olivine; Pl= Plagioclase; 
Py= Pyroxene; and Ca= Calcite. 

 
Figure 6.14: Photomicrograph of the thin section of sample BUE above in cross-polarized light 
(CPL). 
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The CIPW Norms (Table 6.5) of the basalt samples were calculated from the total chemical 

composition of the rock to determine the normative mineralogy. Nepheline and olivine are 

found to be among the normative minerals indicating a silica-undersaturated rock. Using the 

total alkali versus silica (TAS) diagram (Figure 6.15), the studied basalt samples are revealed 

to be of the alkali olivine basalt (AOB) type. 

 

Table 6.5: CIPW-Norms of the basalt samples (calculated using KWare Magma Software (Wohletz, 
1999)). 

Normative minerals BUE BUQ 

Albite (Ab) 23.39 8.08 
Anorthite (An) 25.62 23.76 
Orthoclase (Or) 6.48 3.66 
Nepheline (Ne) 4.98 6.34 
Diopside (Di) 19.52 38.84 
Olivine (Ol) 13.35 12.12 
Ilmenite (Il) 4.37 3.06 
Magnetite (Mt) 1.73 1.89 
Apatite (Ap) 0.57 1.24 
Zircon 0.03 0.03 
Chromite 0.01 0.07 
Total 100.01 98.99 

 

 

Figure 6.15: Nomenclature of the common volcanic rocks (from El-Akhal, 2004; after Cox et al., 
1979). 
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The petrographic analysis showed that the studied basalt samples are nearly similar with a 

holocrystalline (completely crystalline) doleritic1 medium-grained texture. They are generally 

porphyritic2 with phenocrysts mainly of olivine and plagioclase in a finer matrix of pyroxene, 

plagioclase laths, some olivine and opaque minerals (Iron-Titan oxides). Carbonate and 

apatite occur sometimes in the matrix as well. The plagioclase laths are sometimes partially 

included within pyroxene giving rise to a sub-ophitic3 texture. Olivine phenocrysts are mostly 

weathered at their rims with iddingsite4 as an alteration product. This may eventually lead to 

complete dissolution of olivine grains and formation of interstitial secondary porosity. 

However, the other minerals, particularly plagioclase and pyroxene, are almost fresh and 

unweathered. The petrographic description of the studied basalt samples is summarized in 

Table (6.6). 

 

Table 6.6: The petrographic description of the basalt samples. 
Sample Site Stone type Texture Phenocrysts Groundmass Porosity 

BUQ 
Umm 
Qeis 

Early 
Pliocene 
(Plateau 
basalt) 

Doleritic 
medium-

grained with 
sub-ophitic 

texture 

Olivine, 
plagioclase 
and some 
carbonate 

Plagioclase, 
pyroxene, some 

olivine, carbonate, 
opaque minerals 

and apatite 

Secondary 
Some pores 

contain 
carbonates 

BUE 

Umm 
El-

Jimal 

Late 
Tertiary 

(Neogene) 
basalt 

Ol-doleritic 
medium-
grained 

Olivine and 
plagioclase 

Pyroxene, some 
olivine, carbonate 

and opaque 
minerals 

Secondary 
Some pores 

contain 
carbonates 

 

6.1.2.2 Naturally weathered samples 

 

For the second part of the work concerning the study of the effects of consolidation treatments 

on the properties of stone, four different varieties of naturally weathered limestone samples 

were chosen. These stone samples are described below. 

 
Sample LH (Figure 6.16): A pure calcitic Upper Cretaceous limestone, most probably of 

Wadi As-Sir Formation. The sample was taken from Hallabat Palace. In hand specimen, the 

sample is a light cream fine stone with small macropores and chalky patches. In thin section, 

                                                 
1The typical texture of dolerite (or diabase in UK); which is a dark, mafic, and relatively coarse-grained igneous 
rock equivalent to volcanic (extrusive) basalt or plutonic (intrusive) gabbro. 
2 Composed of large-grained crystals (phenocrysts) dispersed in a fine-grained feldspathic matrix. 
3 Ophitic: a texture in which lath-shaped plagioclase crystals are enclosed wholly or in part in later-formed 
augite, as commonly occurs in Dolerite (diabase). 
4 A pseudomorph secondary mineral after olivine. 
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it can be classified as sparse fossiliferous (bioclasts and shell fragments composed chiefly of 

bivalve, algae and few gastropod) biomicrite (packstone) with sparry calcite growing in the 

fossil moulds. The porosity is characterized by diffused intergranular microporosity and 

moldic macroporosity. 

 

 
Figure 6.16: Photomicrograph showing the microstructure of sample LH (PPL). 

 

Sample LJ2 (Figure 6.17): A pure calcitic limestone from Jarash Archaeological Site, which 

is mainly built of Upper Cretaceous limestone, most probably of Na’ur Limestone Formation. 

In hand specimen, the sample is a white chalky massive limestone showing stylolitic structure 

with irregular sub-horizontal thin brown cross-planes or veins. In thin section, the sample is 

classified as shell-fragment biosparite (shelly packstone). 

 

 
Figure 6.17: Photomicrograph showing the microstructure of sample LJ2 (PPL). 
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The groundmass is composed of sub-euhedral sparry calcite crystals with size ranging from 

about 0.03 mm to 0.3 mm. Idiomorphic crystal growth with recrystallized sparry calcite can 

be seen in shell cavities and along stylolitic planes. Small micritic veins penetrate the matrix 

in some parts. The sample is characterized by intercrystalline and moldic porosity. 

 

Sample LJ3 (Figure 6.18): The stone is pure calcitic Upper Cretaceous limestone, possibly of 

Na’ur Limestone Formation, from Jarash Archaeological Site. In hand specimen, the stone is 

criss-crossed by numerous short irregular veins and patches of compact pale brown sparry 

calcite. It is a fossiliferous intraclastic limestone with vugs and cavities filled with coarse-

grained calcite. It is characterized by inter-grain and fracture porosity. 

 

 

Figure 6.18: Scanning electron microscope image showing the microstructure of sample LJ3. 

 

Sample LUQ2 (Figure 6.19): The sample was taken from Umm Qeis Archaeological Site, 

where Umm Rijam Chert Limestone Formation of the Tertiary age outcrops. It is a pure 

limestone with small amount of quartz. In hand specimen, the sample is a light beige chalky 

limestone with closely spaced bedding planes delineated by dark-brown thin veins. The stone 

can be classified as shell fragment biomicrite (wackstone). The sample is highly porous 

weathered limestone with diffused intergranular and fracture porosity. 
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Figure 6.19: Scanning electron microscope image showing the microstructure of sample LUQ2. 

 

The petrographic characteristics of the naturally-weathered limestone samples are shown in 

Table (6.7). 

 

Table 6.7: The petrographic description of the naturally-weathered samples. 

Sample Site 
Geological 

formation 
Microstructure Porosity Color 

LH Hallabat 
Wadi As-Sir 
Limestone 
Formation 

Sparse fossiliferous 
biomicrite 

Diffused intergranular 
micro-porosity and moldic 

macroporosity 

Light 
cream 

LJ2 Jarash 
Na’ur Limestone 

Formation 
Shell fragment 

biosparite 
Intercrystalline and moldic 

porosity 
White 

LJ3 Jarash 
Na’ur Limestone 

Formation 

Fossiliferous 
intraclastic 
limestone 

Intergranular and fracture 
porosity 

Dark 
beige 

LUQ2 
Umm 
Qeis 

Umm Rijam Chert 
Limestone 
Formation 

Fossiliferous 
biomicrite 

Diffused intergranular and 
fracture porosity 

Light 
beige 
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6.2 Investigations 

 

6.2.1 Physico-mechanical testing methods 

 

6.2.1.1 Porosity and density by water absorption 

 

Porosity accessible to water (Nt) 

The porosity accessible to water corresponds to the ratio of the volume of pores accessible to 

water to the bulk volume of the sample, expressed in percent. It was measured by water 

absorption according to RILEM I.1. After drying at 60 °C to constant mass (M1), the samples 

(5 cm cubes) were put into an evacuation vessel under vacuum (20 mm Hg pressure) for 24 

hours to eliminate the air contained in the pores. Water was then slowly introduced into the 

vessel until the samples were completely immersed, and the vacuum was maintained for 24 

hours afterwards. The samples were left under water for another 24 hours at atmospheric 

pressure. Finally, the samples were weighted separately under water (M2) and directly after 

removing from water (M3), and the accessible porosity was calculated as follows: 

100
23

13 ⋅
−

−
=

MM

MM
N t    (6.1) 

tN = porosity accessible to water [%]; 1M = mass of the dried sample [g]; 2M = mass of the saturated 

sample under water [g]; 3M = mass of the saturated sample in air [g]. 

 

Bulk density (ρbulk) and real density (ρreal) 

The bulk density (apparent density) is the ratio of the mass to the bulk volume of the stone 

sample. The real (grain/skeletal) density is the ratio of the mass to the impermeable volume of 

the sample (without pore space). These two densities can be determined from the above 

measured masses, in accordance with the norm RILEM I.2, as follows: 
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M
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1
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M
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bulkρ = bulk density [g/cm³]; realρ = real density [g/cm³]. 
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Free porosity (N48) 

The free porosity represents the percent of open pores which can be filled with water under 

atmospheric pressure. It corresponds to the natural capacity of stone to absorb water. The free 

porosity was determined according to RILEM II.1. The dried samples were placed in a flat 

container and distilled water was added slowly to allow for capillary water absorption, before 

they were completely immersed in water. After 48 hours immersion in water, the samples 

were taken out, wiped lightly and weighted (M48). The free porosity was calculated as 

follows: 
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  (6.4) 

48N = free porosity after 48 hour immersion in water [%]; 48M = mass of the sample after 48 hour 

immersion in water [g]; 1'M = the mass of the dried sample [g]; 2M = mass of the saturated sample 

under water [g] as determined above for accessible porosity; 3M = mass of the saturated sample in air 

[g] as determined above for accessible porosity. 

 

Saturation coefficient (S) 

The saturation coefficient (Hirschwald coefficient) denotes the percentage of pore volume 

which can be filled with water after complete immersion for a definite time at atmospheric 

pressure. It is calculated as the ratio of free porosity (N48) to accessible porosity (Nt): 

tN

N
S 48=    (6.5) 

 

6.2.1.2 Mercury intrusion porosimetry (MIP) 

 
Mercury porosimetry consists of injecting mercury into the porous structure of a solid 

material under controlled pressure. It is mainly based on the non-wetting behavior of mercury 

against solid surfaces. Mercury can, thus, be intruded into pores of different entry sizes by the 

application of increasing pressure (Gauri and Bandyopadhyay, 1999). The intruded pore size 

is inversely proportional to the applied pressure as given by Washburn equation: 

p
r

θσ cos2 ⋅⋅
−=    (6.6) 

r = pore radius [m] (convenient unit µm); σ = surface tension of mercury (~480*10-³ N/m) [N/m]; 
θ = contact angle of mercury with the pore wall (~140°) [°]; p = the applied pressure [N/m²] 
(convenient unit MPa (106 N/m²)). 

 



6 Materials and methods  

 74 

As the applied pressure increases, more and more smaller pores can be filled with mercury 

and consequently the total amount of intruded mercury increases. The volume of intruded 

mercury by gradual increase of pressure allows for the determination of the fractions of pores 

with different sizes, i.e. the pore size distribution of the stone. The calculation is based on the 

ideal model of cylindrical pores; the method does not estimate the real pore space geometry. 

What is actually measured by this method is the size of pore entry. If large pores are 

connected with smaller ones, they can be intruded with mercury only when the pressure 

necessary to allow intrusion into the smaller pores is reached. Consequently, the fraction of 

small pores in the stone is overestimated at the expense of large pores. This limiting effect is 

called the ink-bottle effect (see Figure 3.2). 

In addition to pore size distribution, total connected porosity, specific pore surface area, and 

bulk and skeletal (grain) densities can also be determined from porosimetric data. The MIP 

method is used to characterize stone and to study its structure and behavior in response to 

weathering processes and consolidation treatments. 

 

For the mercury intrusion porosimetry (MIP) in this study, a volume of around 20 ml of oven-

dried small stone granules (2-4 mm in size) was used. The granules were prepared by 

snapping with pliers in order not to disturb the microstructure of the sample. 

The mercury porosimetry measurements were carried out using the porosimeter combination 

PASCAL 140/240 (from Porotec) with a pressure in the range from 10 Pa to 200 MPa, 

whereby pore radii in the range of about 58 µm–3.7 nm can be measured. 

 

6.2.1.3 Capillary water uptake coefficient (w-value) 

 
The capillary water absorption coefficient (w-value) of a stone is the amount of water 

absorbed through a surface area of the stone per square root of time. It provides a measure for 

assessing the extent of stone damage and the success of conservation treatments. 

The water uptake coefficient was measured on dry drill core specimens following the standard 

test DIN EN 1925. The specimens were placed in a water tank, so that the water level is 

around 2 mm above the bottom of the specimen and that was kept constant. The specimens 

were weighted in definite time intervals, which were selected depending on the type of the 

stone and its water absorption capacity. Highly absorbing stones (weathered stones) were 

weighted after 1, 3, 5, 10, 15, 30, 60, 480 and 1440 minutes. Stone with low water absorption 

capacities (sound stones) were weighted after 30, 60, 180, 480, 1440, 2880, and 4320 minutes. 
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The water absorption coefficient was then calculated as the slope of the linear part of the 

curve depicting the amount of water absorbed per area against the square root of time. 

tA

m
w

∆
⋅

∆
=

1
   (6.7) 

w = water absorption coefficient [kg/(m².h1/2)]; m∆ = mass of absorbed water in time interval ∆t [kg]; 
A = the area of the stone surface in contact with water [m²]; t∆ = time interval [h]. 

 

6.2.1.4 Drying curve 

 
The evaporation curve of a material is obtained by plotting the density of vapor flow rate (g) 

evaporating from one surface of water-saturated sample of the material as a function of the 

remaining moisture content. The test was carried out under constant ambient conditions (20 

°C and 45% RH) according to RILEM II.5. After immersion in water for 48 hours, the drill 

core samples (5 cm in diameter and around 8 cm long) were sealed to allow evaporation from 

only one surface. The mass of the sample was determined as function of time during the 

drying process and the results are graphically presented. The density of vapor flow rate can be 

calculated from the following equation: 

Adt

dM
tg =)(    (6.8) 

g = density of vapor flow rate [g/(m².h)]; M = mass of the sample [g]; A = area of the surface from 
which evaporation takes place [m²]; t = time [h]. 

 

Two phases are distinguished in the one-dimensional evaporation process. The first phase 

persists as long as the moisture content of the material is greater than its critical moisture 

content. Water is transported to the surface by capillary conduction and the evaporation rate is 

fairly constant. During this phase, the moisture content of an initially wetted sample decreases 

linearly with time. In the evaporation curve (Figure 6.20), this is represented by the plateau 

(PL) (where g is calculated). The breaking point (P1) marks the second evaporation phase 

when the waterfront retreats into the material and the drying velocity decreases rapidly as 

evaporation takes place inside the material by vapor diffusion. The second breaking point (P2) 

represents the residual moisture stored in the smallest pores. It can sometimes be observed at 

low residual moisture below 10% and when two distinct pore radii maxima are characterized 

in the stone structure (Bourgès, 2006). 
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Figure 6.20: Drying curve of a porous material (from Bourgès, 2006). 

 

This test is useful to obtain information about the changes occurred in the pore structure of the 

material due to weathering or consolidation processes and to assess the success of some 

conservation treatments such as water repellents. 

 

6.2.1.5 Water vapor diffusion resistance coefficient (µ-value) 

 

The water vapor diffusion resistance coefficient of a material (µ-value) is the ratio of water 

vapor permeability of air to that of the material. It is a dimensionless number that indicates 

how many times greater the resistance against water vapor diffusion of the material is than 

that of an equally thick layer of air (µ=1) at the same temperature. The test was carried out in 

accordance with the norm DIN EN ISO 12572 using the wet-cup (45-100% RH) procedure. A 

dry 5 mm thick disc with a diameter of 5 cm was fixed on the top of a special beaker filled to 

one third with distilled water. The space between the disc and the beaker was sealed to allow 

water vapor transport only through the stone material. The beaker was weighted and placed in 

climatic chamber at 45% RH and 20 °C, and the decrease in its mass was measured every 24 

hours. The water vapor diffusion resistance coefficient was then calculated as follows: 

dG

Ap
µ aa

⋅

⋅∆⋅
==

δ

δ

δ
   (6.9) 

µ = water vapor diffusion resistance coefficient [-]; aδ = water vapor diffusion coefficient of air 

(~1.9*10-10 kg/(m.s.Pa) [kg/(m.s.Pa)];δ = water vapor permeability of the material [kg/(m.s.Pa)]; 
p∆ = vapor pressure difference (gradient) on both sides of the specimen [Pa]; G = average amount of 

water vapor diffused through the material per unit time (water vapor diffusion flow) [kg/s]; A = area 
of the specimen [m²]; d = thickness of the specimen [m]. 
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The µ-value of the material can be used to assess the influence of consolidation treatments on 

drying behavior. 

 

6.2.1.6 Adsorption isotherm curve 

 
The adsorption isotherm curve represents the relationship between the equilibrium 

hygroscopic moisture content of the material and the relative humidity of the ambient air at 

constant temperature. The adsorption isotherm curves for the weathered stones were 

determined according to DIN EN ISO 12571. After drying to constant mass at 60 °C, stone 

specimens (at least 2 g in mass) were placed in desiccators with saturated salt solutions of 

K2CO3, NH4NO3, NaCl, KCl, and K2SO4 at 20 °C, which correspond to specific relative 

humidities of 45%, 63%, 76%, 86% and 98% respectively. The specimens were repeatedly 

weighted until an equilibrium state is reached with the respective relative humidity. The 

equilibrium moisture contents for each sample at the different relative humidities were then 

calculated and graphically represented to obtain the adsorption isotherm curve. 

 

The adsorption isotherm curve was determined to establish the necessary preconditions for 

consolidation treatments. 

 

6.2.1.7 Water micro-drop absorption 

 
The absorption rate of water micro-drop was used to determine the penetration depth of the 

consolidants into the treated stone samples. The rate of water absorption decreases in the 

treated stone due to the hydrophobing (water repellency) effect of the consolidant and, to a 

minor extent, because of the pore filling brought about by consolidation treatment (RILEM 

II.8a; Moreau et al., 2007). The water drop absorption test was performed based on RILEM 

II.8a. The treated core specimens were sectioned into 5 mm thick discs in depth profile, and 

the necessary time for the total absorption of a water droplet of 10 µl put at the centre of each 

disc was recorded. The results obtained from treated and untreated stone allow for a rough 

estimation of the penetration depth of consolidation treatments. 
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6.2.1.8 Color measurement 

 

Colorimetric measurement was used to determine the color differences due to consolidation 

treatments. The color changes were expressed in the CIE-Lab system recommended by the 

Commission Internationale d'Eclairage (CIE) in 1976. The L*a*b* color coordinates of the 

stones were measured before and after consolidation treatments exactly at the same positions. 

The recorded values are the average of five consecutive measurements. The total color 

differences are calculated using the following equation: 

( ) ( ) ( )222 *** baLE ∆+∆+∆=∆    (6.10) 

E∆ = the change in color; *L∆ = change in the brightness or lightness; *a∆ = change in the 
chromatic component a* (red - green); *b∆ = change in the chromatic component b* (yellow - blue). 

 

Color measurements were performed using a portable colorimeter (Spectro-color from Dr. 

Lange) with a measuring geometry of diffus/8° (diffused polychromatic light and 8° viewing 

angle) and an illumination aperture of 10 mm in diameter. 

 

6.2.1.9 Thermal expansion coefficient (αT) 

 
Measurements of the linear thermal expansion coefficient (αT) of the stones were carried out 

using the displacement transducers (linear variable differential transformer (LVDT)) shown in 

Figure (6.21). 

 

 

Figure 6.21: The used experimental set-up for measuring the thermal dilatation of stone. 
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The specimens were heated in oven at 60 °C for 48 hours and then placed outside in 

dilatometer to measure their deformation during cooling down to room temperature (~20 °C). 

The deformation of the specimen was recorded continuously by the data logger coupled to the 

dilatometer. The linear thermal expansion coefficient was calculated from the relative 

variation of length of specimens in the given temperature interval using the following 

equation (see Section 2.1.1.4). 

( )TlLT ∆⋅∆= οα    (6.11) 

Tα = linear thermal expansion coefficient [10-6/K]; L∆ = variation in length due to the temperature 

change [mm]; οl = length of the sample [mm]; T∆ = temperature range [K]. 

 

6.2.1.10 Biaxial flexural strength and static modulus of elasticity  

 

The biaxial flexural strength (βBFS) is measured by placing a stone core slice between two 

circular rings of different diameters and applying a concentric increasing load. The sample 

undergoes first an elastic deformation, where a static modulus of elasticity (Estat) can be 

measured, before it eventually ruptures. The biaxial flexural strength and the static modulus of 

elasticity can be calculated using the following equations (Wittmann and Prim, 1983): 

( ) ( ) ( )








⋅

−⋅−
+⋅+⋅⋅

⋅⋅

⋅
=

2

2

2

22

2
max 1

ln12
4

3

r

a

a

ba

b

a

d

F
BFS

µ
µ

π
β    (6.12) 

 

( ) ( ) ( )
( ) 









+⋅

+⋅−
+⋅⋅−⋅

⋅

⋅
=

µ

µ
µ

12

3
ln1

5.1 22
22

3
0

max ba

a

b
b

df

F
EStat    (6.13) 

BFSβ = biaxial flexural strength [N/mm²]; .StatE = static modulus of elasticity [N/mm²]; maxF = 

maximum force [N]; d = thickness of the stone sample; µ = Poisson ratio (here µ=0.25); a = radius 

of the lower ring [mm] (a= 19.5 mm); b = radius of the upper ring [mm] (b= 6.5 mm); r = radius of 
the stone sample [mm]; 0f = deflection/bending of the slice at 1/3 Fmax [mm]. 

 

The samples used for this test were 5 mm thick drill core slices with a diameter of 5 cm 

(thickness to diameter ratio = 1:10). Measurements were performed using a universal Zwick 

Z010 apparatus with a preload of 5 N at a rate of 0.5 mm/min. The static modulus of elasticity 

was derived from the initial and linear part of the stress-strain curve; the slopes of stress strain 

curves were determined between 10-30% of the peak strength using linear fit. The static 

modulus calculated here does not necessarily agree with the one determined by compressive 
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strength test (Young’s modulus). This test can be used to assess the depth of weathering and 

of penetration of consolidation products. 

 

6.2.1.11 Drilling resistance 

 
Drilling resistance is a micro-destructive technique that can be used, both in situ and in the 

laboratory, to evaluate the weathering extent of stone in depth profile and to assess the 

effectiveness and penetration depth of consolidation treatments. Two general groups of 

drilling machines are available in the market. The first group is based on the operating 

principle developed by Hirschwald (1908), where the time necessary to achieve a defined 

penetration depth at constant pressure and rotation speed is measured. The second group of 

drilling machines is represented by the Drilling Resistance Measurement System (DRMS), 

which was developed within the European EC Hardrock project (SMT4-CT96-2056) and is 

produced by SINT Technology (Italy). This machine is based on measuring the force that is 

necessary to drill a hole in the stone at constant rotational speed and penetration rate. An 

overview on drilling resistance can be found in Pamplona et al. (2007). 

 

The DRMS machine produced by SINT Technology was used in this study with a diamond 

drill bit (Diaber) of 5 mm in diameter under the operative conditions of 600 rpm rotation 

speed and 10 mm/min penetration rate. Homogeneous artificial reference samples (ARS) were 

used for calibration. Holes of 1 cm in depth were drilled in dry specimens and the average 

value of at least three measurements was considered. The resulting profiles of drilling 

resistance provide information about the quality of the stone and the consolidation effect of 

the applied products. 

 

6.2.1.12 Fracture density (FD) 

 

The fracture density is a measure of the total surface area of fractures per unit volume of stone 

(Nicholson, 2001). It affects the mechanical strength of the stone and its other properties, 

particularly the elastic properties. The fracture density can be estimated using the following 

stereological equation (Karcz and Dickman, 1979). 

LD PF 2=    (6.14) 

DF = fracture density (fracture surface area per unit volume) [mm²/mm³]; LP = number of point 
intersections of fractures per unit length of grid line [mm-1]. 
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This equation is statistical in nature; it describes only the average outcome of all possible 

encounters between the tested surfaces and superimposed grids. In this study, a 5x5 cm grid of 

1 cm spacing lines was superimposed on the surfaces of each cubic specimen. The number of 

point intersections of all fractures visible to the naked eye was counted and used with the total 

grid length to calculate fracture density. This method is only used to determine the 

macrocracks; the more important microcracks are not visible to the naked eye and can not, 

therefore, be determined with this method. The fracture density was measured before and after 

weathering test. 

 

6.2.2 Petrographic and chemical analyses 

 

6.2.2.1 X-ray diffraction (XRD) 

 

The qualitative analysis of the mineralogical composition of the studied stone samples was 

done using a Philips PW 1729 X-ray diffractometer with Cu-Kα radiation (1.5418 Å), 30 kV 

and 30 mA. The measurements were carried out on powdered samples over measuring angles 

of 3° - 73° with a gradual increase of 0.02°/s and a measuring time of one second. The 

detection limits for mineral crystalline phases is around 3-5%. 

 

6.2.2.2 X-ray fluorescence (XRF) 

 

The studied stone samples were chemically analyzed using an Oxford ED2000 energy 

dispersive X-ray fluorescence spectrometer with Oxford XpertEase software. The instrument 

is equipped with 50-Watt silver tube and the detector has a resolution smaller than 150 eV 

(Mn). The samples (50 mg) were prepared by fine grinding and pressing as tablets (12 mm in 

diameter) after mixing with a binding agent (2% Plexigum solution in ethyl-acetate). 

Quantitative chemical analysis was performed by calibration with known standards. 

 

6.2.2.3 Microscopic analysis 

 

For the characterization of the microstructure of the studied stones and their mineral 

composition, petrographic analysis with Zeiss polarizing light microscope was carried out on 
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polished thin sections of the stones (~30 µm thick). This method provides useful information 

about the characteristics of the mineral grains forming the stone and its pore structure. It helps 

as well to identify the changes in the stone structure and its composition due to weathering 

processes. 

 

6.2.3 Non-destructive ultrasonic methods 

 

6.2.3.1 Velocity of longitudinal ultrasonic waves (pulse velocity Vp) 

 

The longitudinal ultrasonic velocity was determined in direct transmission method as shown 

in Figure (5.2). The travel time of the wave between the transducers, arranged directly 

opposite to each other on both sides of the stone sample, was determined from the first–break 

arrival time of the received signal. The pulse velocity can thus be calculated as follows: 

0tt

l
Vp

−
=    (6.15) 

pV = ultrasonic pulse velocity [m/s]; l = measuring distance [m]; t = measured time [µs]; 0t = time 

correction value [µs]. 

 

The transducers were coupled to the surface with an elastic material (plastic-fermit) for better 

contact. The calibration of the system was done by bringing both transducers in contact with 

each other and measuring the specific time delay and by measuring a homogeneous reference 

material of Plexiglas with known ultrasonic velocity. 

 

Measurements were carried out with portable ultrasonic device UKS 12 from Geotron-

Elektronik. The system is composed of an ultrasonic generator USG 20 and 50 MHz Philips 

scopemeter. A point-shaped ultrasonic transmitter (UPG-T) vibrating at 46 kHz together with 

ultrasonic receiver (UPE-T) were used on cubic, prismatic and drill core samples to study the 

effects of weathering and consolidation products. A similar system with USG 30 ultrasonic 

generator and 100 MHz Fluke scopemeter (FLUKE 99B) was also used to measure ultrasonic 

velocity at other ultrasonic frequencies. A transducer combination of 250 kHz transmitter and 

the corresponding UPE-T receiver was used on the prismatic samples for comparison of 

results. For estimating the penetration depth of consolidants, a point-shaped 350 kHz UPG-T 

transmitter and UPE-T receiver were also used. Measurements with the second system were 



6 Materials and methods  

 83 

performed at constant contact pressure of 3 bar (0.3 MPa) and evaluation was done with 

LightHouse software 2000-SM. 

The accuracy of velocity measurement in transmission mode is assumed to be ± 10% (or: ± 50 

m/s). 

 

The ultrasonic pulse velocity was measured along three perpendicular directions for the cubic 

samples and both parallel and perpendicular to bedding planes for the drill core samples. 

These measurements were also used to calculate the anisotropy indices of the stones 

according to the following equation: 

%100
max

minmax ⋅
−

=
P

PP

V

VV
A   (6.16) 

A = anisotropy [%]; maxPV = maximum ultrasonic pulse velocity [m/s]; minPV = minimum ultrasonic 

pulse velocity [m/s]. 

 

6.2.3.2 Calculation of dynamic modulus of elasticity (Edyn) 

 

The dynamic modulus of elasticity (Edyn) was determined by the extensional wave 

measurement procedure (Erfurt and Krompholz, 1996), which involves measurements of the 

travel time of longitudinal wave and the resonance frequency of the base extensional wave. 

Extensional waves occur in bar-shaped prisms with lateral dimension sufficiently smaller than 

the wavelength. The used prismatic samples should have suitable dimension to allow for the 

propagation of both extensional and longitudinal waves. 

 

Measurements were carried out using the portable ultrasonic system UKS 12 with USG 30 

ultrasonic generator and 100 MHz Fluke 99B scopemeter. The transducer combination UPG-

D/UPE-D vibrating at 20 kHz was used on the prismatic samples at contact pressure of 3 bar. 

Following the producer specifications, no coupling agent and amplifier were used and the 

width to length ratio of the specimen was 1:2.5 (ratio ranges between 1:2 and 1:4). The 

evaluation was performed with LightHouse software 2004-DW. 

 

The measurements were performed before and after weathering and consolidation to indicate 

the changes in the elastic properties of the stones. Three specimens were tested for each stone 

and the average value of at least 3-5 measurements was calculated. The accuracy of 

measurement is assumed to be ± 10%. 



6 Materials and methods  

 84 

 

6.2.4 Artificial weathering 

 

Artificial weathering was carried out by salt crystallization test for the sound limestone and 

basalt samples and by thermal degradation for the marble sample. These artificial weathering 

tests are described below. 

 

6.2.4.1 Salt crystallization test 

 

The salt crystallization test was carried out by total immersion in a solution of sodium sulfate 

decahydrate (Na2SO4·10H2O) according to the standard test DIN EN 12370. The samples 

were first dried at 105 °C until constant mass is reached, and then they were allowed to cool 

down to room temperature and weighted. Every cycle of salt crystallization consisted of 

soaking the samples in a 14% solution of sodium sulfate decahydrate for two hours, and 

drying in an oven at 105 °C for 20 hours and then cooling down at room temperature for 

about two hours before weighting and re-soaking in fresh sodium sulfate solution for the next 

cycle. 25 salt weathering cycles were performed on the sound limestone and basalt samples. 

The ultrasonic pulse velocity in the samples was measured every five cycles. Porosity 

measurements were also performed on thoroughly rinsed specimens that were taken out after 

10, 20 and 25 cycles. At the end of the test, the samples were submerged in distilled water that 

was changed daily before eventually rinsed thoroughly in water to remove all the salt from 

their pores. The temperature of the immersion water was above 32 °C to prevent damage 

during cleaning by crystallization of mirabilite (see Figure 4.1). The samples were finally 

dried in oven and the loss of stone material after the test is calculated from the change in the 

mass of specimen as a percentage of initial mass. 

%100
0

0
⋅

−
=∆

d

dfd

M

MM
m    (6.17) 

m∆ = relative mass difference [%]; 0dM = dried mass before the test [g]; dfM = dried mass after the 

test [g]. 

 

The samples used in this test were 5 cm cubes, drill cores and 2x2x5 cm prisms. 
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6.2.4.2 Thermal weathering 

 
The thermal degradation of the studied marble was performed by heating the specimens to 

500 °C for one hour and cooling them down in the oven for two hours. The specimens were 

then immersed in water over night and conditioned at 60% RH and 20 °C for three weeks to 

allow the hydroxylation and carbonation of superficially calcinated pore walls (Haake et al., 

2004). The altered marble obtained in this way is commonly comparable to so called marmo 

cotto (cocked marble) (Moreau et al., 2007). 

 

6.2.5 Consolidation treatments 

 
The naturally weathered limestone samples showed generally an increasing strength profile 

towards the interior and they were treated with two silicic acid ester consolidants namely, 

Remmers KSE 300 and Remmers KSE 300HV. Based on the results of isotherm adsorption 

test, the samples were first preconditioned at suitable relative humidity. For the cubic and 

prismatic samples, the consolidants were applied by capillary uptake until saturation and then 

by total immersion for one hour. The drill core samples, on the other hand, were only treated 

by capillary suction for one hour in order to allow the determination of the penetration depth 

of the consolidants. 

 

After consolidation treatment, the samples were conditioned at around 75% RH and 20 °C (in 

desiccator with a saturated salt solution of sodium chloride) for at least three weeks in order to 

achieve deposition of silica gel due to hydrolytic polycondensation of tetraethoxysilane. 

Afterwards the samples were examined again to evaluate their properties after treatment. 
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7 Results and discussion 

 

7.1 Properties of stones before and after weathering 

 

7.1.1 Salt crystallization test 

 

The properties of the studied limestone and basalt samples before and after salt weathering 

test are described below. 

 

7.1.1.1 Visual examination 

 

The stone samples were visually inspected during and at the end of the weathering test. Signs 

of damage started to appear on the stones beginning from the 5th weathering cycle. Besides 

salt efflorescence which appeared on all stone samples and which could be removed by 

washing, some samples suffered other forms of weathering. For example, some macrocracks 

started to appear on the limestone samples LJ1 and LA after the 5th and 8th cycle respectively. 

Sample LUQ1 started to disintegrate gradually, indicating an ongoing loss of cohesion 

between grains. 

 

At the end of salt crystallization test, the limestone samples exhibited two different 

weathering behaviors (Figure 7.1). The two samples LA and LJ1 were subject to fracturing 

without significant loss of stone material. On the contrary, the sample LUQ1 showed mainly 

granular disintegration and preferential weathering in form of pitting, and suffered relatively 

greater loss of stone material. Petrographically, this stone is described as intrapelbiomicrite 

with abundant allochems mainly fossil shell fragments (bivalves and algae). These 

components impart heterogeneity to the stone and constitute local weakness points and might 

be responsible for the observed differential weathering (Angeli et al, 2007). The basalt 

samples exhibited no considerable macroscopic signs of damage. 
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Figure 7.1: Limestone samples before and after weathering. 
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7.1.1.2 Porosity and density 

 

The results of porosity and density measurements by water absorption before and after 

different numbers of salt weathering cycles are summarized in Table (7.1). These 

measurements were done after desalination of the samples by immersion in distilled water, 

which was changed daily, for one month and eventually by thorough rinsing with water. The 

limestone samples exhibited a slight continuous increase in total accessible porosity with 

increasing number of weathering cycles. The accessible porosity after 25 weathering cycles 

increased by 10%, 3% and 2% for samples LA, LJ1 and LUQ1 respectively. This indicates a 

continuous breaking up of grain contacts due to weathering, leading thereby to the 

development and enlargement of cracks and pores (Fitzner, 1988). On the other hand, the 

basalt samples showed a decrease in porosity, particularly at the beginning of the test. This 

might be attributed to pore-clogging by trapped salt crystals (Nicholson, 2001; Yu and 

Oguchi, 2009a). 

Table 7.1: Porosity and density before and after various numbers of weathering cycles. 

Sample 

No. of 

weathering 

cycles 

Accessible 

porosity 

(Nt) [%] 

Free 

porosity 

(N48) [%] 

Real density 

(ρreal) [g/cm³] 

Bulk density 

(ρbulk) 

[g/cm³] 

Saturation 

coefficient 

(S) 

0 6.95 3.60 2.71 2.52 0.52 

10 7.00 3.44 2.72 2.50 0.50 

20 7.04 3.51 2.71 2.49 0.49 
LA 

25 7.62 3.77 2.71 2.48 0.50 

0 6.44 4.42 2.74 2.56 0.68 

10 6.49 4.15 2.75 2.57 0.64 

20 6.51 4.43 2.72 2.57 0.68 
LJ1 

25 6.63 4.46 2.73 2.50 0.67 

0 9.02 7.37 2.70 2.46 0.81 

10 9.03 7.38 2.71 2.47 0.82 

20 9.06 7.25 2.70 2.42 0.82 
LUQ1 

25 9.15 7.65 2.71 2.46 0.83 

0 11.54 3.21 3,02 2.67 0.28 

10 11.24 2.81 3.01 2.71 0.24 

20 11.51 2.40 3.00 2.71 0.23 
BUE 

25 11.59 3.12 3.01 2.67 0.23 

0 9.78 2.97 2.96 2.67 0.30 

10 9.34 2.39 2.97 2.69 0.26 

20 9.75 2.82 2.97 2.68 0.28 
BUQ 

25 9.79 2.87 2.96 2.68 0.29 
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7.1.1.3 Mercury intrusion porosimetry (MIP) 

 

The study of pore space characteristics and pore size distribution of stone is a very important 

requirement for the exact definition of weathering processes and the quantification of 

weathering degree (Fitzner, 1988). Mercury intrusion porosimetry (MIP) measurements were 

carried out on the stone samples before and after salt weathering test. Before measuring, the 

weathered specimens were thoroughly cleaned with distilled water to remove the salt 

contained in pores. The results are shown in Figure (7.2). 

 

 

Figure 7.2: Pore size distribution of the stones before and after salt weathering test  
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MIP spectra before salt weathering 

The pore size distribution of the sound limestone sample LA ranges from around 0.05 µm to 

50 µm with an average pore radius of 4.89 µm. The main peaks lie in the pore size range from 

1-10 µm. The stone is characterized by a relatively high proportion of capillary pores. 

The other two limestone samples (LJ1 and LUQ1) have different MIP spectra with most of 

the pore entries around an average pore radius of 0.23 µm for LJ1 and 0.03 µm for LUQ1. 

The porosity of the sample LJ1 comprises small capillary pores and some micropores. The 

sample LUQ1, in contrast, is mainly characterized by microporosity with a small proportion 

of small capillaries. 

 

The two basalt samples BUE and BUQ have nearly the same pore size distribution with 

average pore radii of 41.07 µm and 33.60 µm respectively. Several peaks in the pore range 

from about 1-50 µm occur and the samples are primarily characterized by large capillary 

pores. 

 

MIP spectra after salt weathering 

After weathering, the limestone samples exhibited higher connected porosity. This concurs 

with the results obtained by water absorption and may be partly attributed to the development 

and extension of cracks and the enlargement of small pores (Nicholson, 2001). 

By comparing the MIP spectra of the sample LA before and after weathering, it can be seen 

that some microcracks1 in the pore size range 0.007-1.5 µm were developed; new peaks 

appeared and the volume of pores in this range increased. The volume of pores in the size 

range 2.5-8 µm was decreased. The openings of many pores in this range seem to be enlarged 

as indicated by the peak shift towards larger macropores (Angeli et al., 2008). Due to this pore 

entry enlargement and crack development, the volume of pores with size range 8-53 µm was 

increased, and new pores and/or cracks appeared in the larger pore range 53-100 µm. In 

general, the weathered sample LA has a wider distribution of pores with an increased ratio of 

larger pores and an average pore radius of 41.09 µm. 

 

For the sample LJ1, new microcracks were developed and the volume of pores in the size 

range 0.004-0.05 µm was slightly increased. The main change in the distribution of pores for 

this stone after weathering is the considerable peak increase in the main family of pores (~ 

0.1-1 µm). A few macrocracks were also developed, particularly in the pore size range 53-100 

                                                 
1 Microcracks (r < 3 µm) and macrocracks (r ≥ 3 µm) 
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µm. The MIP spectra of the weathered sample LJ1 shows generally an increase in porosity of 

the main peaks with a slight shift towards larger pores and an average pore radius of 0.3 µm. 

 

The MIP spectra of the sample LUQ1 show the development of new microcracks and the 

significant increase of the main pore size volume in the range from around 0.01-0.1 µm. Some 

macrocracks or pores appeared in the range of pores greater than 50 µm, which might be a 

result of the enlargement of smaller pores. In general, the main family of pores in the sample 

LUQ1 was considerably increased after weathering and the average pore radius increased 

slightly to 0.04 µm. 

 

The basalt samples seem to have lower connected porosity after weathering. This is probably 

a result of the deposition of crystallized salt in pores due to the binding effect which 

sometimes occurs (Nicholson, 2001). Even after thorough cleaning with water, salt may still 

be trapped in the porous system of stone affecting thereby its pore size distribution. 

The MIP spectra of sample BUE shows clearly the shift of pores in the size range 0.03–0.2 

µm towards smaller micropores due to salt deposition on pore entries (Angeli et al., 2008). 

The volume of pores of the sound stone in the pore range of around 2-50 µm is noticeably 

greater than the corresponding one of the weathered stone. This might be mainly attributed to 

the partial filling of pore cavities with salt (Angeli et al., 2008). These observations confirm 

the pore infilling with salt as the reason behind the reduced connected porosity of the 

weathered stone. In general, the total pore volume of the sample decreased after weathering 

and peak shifts toward smaller pores occurred due to partial filling of pore with salt. Salt 

deposition took place mainly in the entries of micropores and inside the cavities of 

macropores. Few macrocracks were also developed particularly in the pore range greater than 

50 µm. 

The sample BUQ exhibited nearly similar changes in its pore size distribution after 

weathering. The volume of larger pores was decreased after weathering owing to salt 

deposition in pore cavities and few micro- and macrocracks were developed. 

 

Table (7.2) summarizes the MIP porosity values and the pore size distribution of the samples 

before and after salt weathering test. 
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Table 7.2: Mercury intrusion porosimetry data of the stones before (B) and after (A) salt weathering. 

LA LJ1 LUQ1 BUE BUQ 
Sample 

B A B A B A B A B A 

r < 0.01 µm 0.00 0.42 1.40 3.79 1.18 7.21 0.00 4.19 0.00 3.56 
0.01 - 0.1 µm 2.43 9.16 23.96 17.75 63.60 73.92 3.03 4.02 5.07 6.76 
0.1 – 1 µm 14.39 18.09 61.43 63.90 13.37 8.51 5.68 8.47 13.21 12.14 
1 – 10 µm 61.46 29.29 3.50 8.52 11.35 4.97 30.27 25.82 30.95 23.94 

Pore classes 

[%] 

10 – 100 µm 21.72 43.03 9.71 6.04 10.50 5.39 61.01 57.50 50.77 53.60 
Avg. pore radius [µm] 4.89 41.09 0.23 0.30 0.03 0.04 41.07 61.87 33.60 41.08 
Total porosity (Pc) [%] 7.45 12.23 5.87 9.63 6.24 11.48 6.87 3.93 4.47 3.77 
Specific surface area [m²/g] 0.06 0.39 0.50 1.07 1.02 3.14 0.05 0.22 0.05 0.24 
Microporosity (Pm0.1) [%] 0.18 1.17 1.49 2.07 4.05 9.31 0.21 0.32 0.23 0.39 
PsCap. (0.1< r < 5 µm) [%] 4.10 4.50 3.64 6.76 1.33 1.36 1.59 0.92 1.56 1.00 
Pm5 (r < 5 µm) [%] 4.28 5.67 5.13 8.83 5.38 10.68 1.80 1.25 1.78 1.39 
PL.Cap (r > 5 µm) [%] 3.17 6.56 0.74 0.79 0.87 0.80 5.07 2.68 2.69 2.38 

 

In summary, salt crystallized in pores of varied sizes and modified them in different ways. 

Pore enlargement and crack developments can be seen in all weathered samples, albeit to 

varying extents. In the basalt samples, salt remained trapped in pores even after extensive 

rinsing with water. The remaining salt was either deposited in pore entries resulting in peak 

shifts towards smaller pores or inside pore cavities reducing thereby the total pore volume, 

particularly the volume of capillary pores. 

 

However, it should be mentioned that some changes and differences in MIP spectra before 

and after weathering might actually be a result of heterogeneities in stone specimens and not 

really associated with weathering process. 

 

7.1.1.4 Capillary water uptake coefficient 

 

The capillary water uptake coefficients of the stone samples before and after weathering are 

shown in Table (7.3), and the capillary curves are represented in Figure (7.3). All the samples 

showed generally low capillary absorption capacity. This can be attributed to their relatively 

low porosity and percentage of capillary pores, which determine and control capillary water 

uptake. 

 

Table 7.3: Capillary water absorption before and after 25 cycles of salt weathering. 
 Sample LA LJ1 LUQ1  BUE  BUQ 

Before 0.79 ± 0.17 0.29 ± 0.09 0.25 ± 0.06 0.36 ± 0.03 0.28 ± 0.03 W-value 

[Kg/(m
2
.h

1/2
)] After 0.92 ± 0.12 0.36 ± 0.01 0.36 ± 0.00 0.31 ± 0.02 0.26 ± 0.00 
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After weathering, the limestone samples exhibited a small increase in capillary water 

absorption coefficient. On the other hand, a slight decrease in capillary water uptake of the 

basalt samples can be seen. The differences in capillary water absorption before and after 

weathering are related to the corresponding changes in the proportion of capillary pores, 

particularly small capillaries (Bourgès, 2006). These results agree well with those of water 

uptake porosity and MIP. 
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Figure 7.3: Capillary water absorption curves before and after salt weathering. 

 

7.1.1.5 Drying curve 

 

At constant climatic conditions (RH, temperature, and air velocity), the drying process of 

stone depends on its pore structure characteristics. The study of the changes in drying 

behavior of stone upon weathering helps therefore to characterize the variations and 

modifications in pore space. As explained in Sections (3.2.3) and (6.2.1.4), two main phases 

of drying process are distinguished; the capillary and diffusion phases. During the capillary 

phase, evaporation occurs at the surface of stone at high and constant rate. When the water 

content of the stone drops below the critical moisture content, the capillary forces are no 

longer sufficient to keep the surface wet and the water front retreats into the stone. At this 
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stage, evaporation takes place inside the material by water vapor diffusion. This results in a 

significant drop of the evaporation rate, which decreases continuously with decreasing water 

content. 

 

The drying curves of the stone samples before and after weathering are shown in Figure (7.4). 

The general shape of the drying curves of all the stones is nearly the same with high fairly 

constant drying rate at the beginning, followed by a second stage in which the drying rate is 

continuously decreasing before it is relatively constant again when the loss of water is tiny. 

The initial water content of all the stones before and after weathering is almost the same due 

to the insignificant changes in free porosity. 

 

After weathering, the limestone samples exhibited a larger drying rate and lower critical 

moisture content (longer plateau). Bourgès (2006) related the increase in drying rate more to 

macrocracks, which increase the surface roughness, than to real variations in pore structure. 

The studied limestone samples underwent macro-cracking that might have accelerated the rate 

of water flow, but it was generally found in this study that the drying rate is directly correlated 

to the proportion of capillary pores. The decrease in critical moisture content indicates an 

easier movement of water to the stone surface (i.e. an improved connectivity of pores). These 

changes result in a faster and more effective drying process of the weathered stones, 

particularly during the capillary phase. 

 

On the contrary, the basalt samples showed a reduction in drying rate whereas the critical 

moisture content is almost the same before and after weathering. These stones exhibited a 

decrease of their proportions of capillary pores after weathering, which seems be responsible 

for the reduction in drying rate. The presence of trapped salt in the pores of these stones might 

have also contributed to this reduction; salt changes the hygroscopic characteristics of stone 

such as the equilibrium moisture content (Künzel, 2007), and might thus affect the drying 

process. 

 

All the stones exhibited also a more effective drying in the diffusion phase although their 

proportions of micropores were increased after weathering. This attests an increased 

permeability to water vapor (lower µ-value). 
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Figure 7.4: The drying curves of the stones before and after weathering. 
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Table (7.4) shows the changes in drying rate and critical moisture content of the stones after 

weathering. 

 

Table 7.4: Drying rate and critical moisture content before and after weathering. 

 Sample LA LJ1 LUQ1  BUE  BUQ 

Before 71 ± 3 52 ± 2 36 ± 0 73 ± 1 51 ± 2 
g [g/(m

2
.h)] 

After 95 ± 7 85 ± 4 58 ± 1 55 ± 3 31 ± 1 
Before 88 91 95 92 93 

µc (Ψc) After 35 86 89 93 94 
 

7.1.1.6 Thermal expansion 

 
The thermal expansion coefficients of the sound and artificially weathered samples (25 cycles 

of salt weathering) are shown in Figure (7.5). 
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Figure 7.5: Thermal expansion coefficient before and after salt weathering. 
 

The thermal expansion coefficient of the limestone samples was decreased after salt 

weathering test by 15%, 12%, and 12% for LA, LJ1, and LUQ1 respectively. The 

development and extension of cracks provide spaces where crystals can expand without 
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causing measurable dilatation, and hence the thermal expansion coefficient of the stone is 

reduced (Weiss et al., 2004). 

 

On the contrary, the thermal expansion coefficient of the basalt samples was increased after 

salt weathering by 11% and 23% for BUE and BU1 respectively. This can be attributed to the 

salt crystals trapped in pores, which act to increase the thermal dilatation of stone (Al-Naddaf, 

2009). 

 

7.1.1.7 Fracture density 

 

Table (7.5) shows the fracture density (FD) of the stones with increasing weathering, as well 

as its final percentage of variation. The sound limestone samples showed varying degrees of 

cracking with the highest fracture density being 0.018 mm²/mm³ for LA. 

The fracture density of the limestone samples increased continuously with increasing number 

of weathering cycles. The samples LJ1 and LA suffered substantial fracturing with percentage 

increase of 165% and 90% respectively. The sample LUQ1 exhibited a relatively lower 

percentage of increase in fracture density (35%). The basalt samples, however, showed no 

visible macrocracks within 25 cycles of salt weathering. 

 
Table 7.5: Fracture density of the stones with increasing weathering and percentage of total change. 

Fracture density FD [mm²/mm³] 
Sample 

Sound After 10 cycles After 20 cycles After 25 cycles ∆FD [%] 

LA 0.018 0.025 0.028 0.033 90 

LJ1 0.007 0.008 0.016 0.019 165 

LUQ1 0.008 0.009 0.011 0.011 35 

BUE 0.000 0.000 0.000 0.000 0 

BUQ 0.000 0.000 0.000 0.000 0 

 

7.1.1.8 Biaxial flexural strength (βBFS) and moduli of elasticity (Estat & Edyn) 

 

The biaxial flexural strength (βBFS) and static modulus of elasticity (Estat) of the stones were 

measured on thin drill core slices according to Wittmann and Prim (1983). The dynamic 

modulus of elasticity (Edyn) was measured using the velocity of ultrasonic waves on prismatic 

specimens. The results before and after weathering are summarized in Table (7.6). All the 
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samples showed a decrease of biaxial flexural strength after weathering. This is clearly 

evident for the limestone samples LA and LJ1, which underwent percent decrease of 40% and 

30% respectively. A corresponding decrease in the static modulus of elasticity of all 

weathered samples is also evident, particularly for the samples LA and LJ1. The elastic and 

mechanical properties of a stone are highly influenced by microcracks and fracture density 

(Walsh, 1982). Therefore, the reduction in biaxial flexural strength and elasticity modulus was 

higher for the stone samples which were subject to greater fracturing and microcracking (LA 

and LJ1) as indicated by fracture density and MIP measurements. The basalt sample BUE 

showed also a considerable decrease of elastic modulus after weathering. 

 
Table 7.6: Biaxial flexural strength and moduli of elasticity before and after salt weathering. 

Sample 
βBFS 

[N/mm²] 

EStat 

[kN/mm²] 

EDyn 

[kN/mm²] 

∆ βBFS 

[%] 

∆EStat 

[%] 

∆EDyn 

[%] 

Before 15.45±1.54 64.90±18.74 37.38±11.35 
LA 

After 9.24±3.82 33.51±8.91 34.04±9.49 
-40 -48 -9 

Before 18.53±3.64 96.38±14.83 68.72±3.18 
LJ1 

After 12.91±3.48 42.95±16.15 67.27±5.12 
-30 -55 -2 

Before 17.36±1.91 67.54±13.20 49.54±4.94 
LUQ1 

After 15.06±3.98 60.52±4.78 47.57±4.75 
-13 -10 -4 

Before 20.01±1.06 115.89±20.85 64.66±4.60 
BUE 

After 16.69±3.01 75.27±21.89 63.80±4.97 
-17 -35 -1 

Before 19.74±0.65 114.22±11.51 58.70±3.72 
BUQ 

After 17.10±3.23 109.54±17.67 58.70±3.24 
-13 -4 0 

 

The dynamic modulus of elasticity of the stones was also reduced after weathering. However, 

the reduction in the static modulus of elasticity was much greater. The static modulus of 

elasticity of a rock is generally expected to be lower than dynamic modulus because of the 

influence of microcracks, which affect the deformation of the rock under static load more than 

the propagation of ultrasonic wave (microcracks can be easily closed or expanded during 

static measurement) (King, 1983; Guéguen and Palciauskas, 1994; Bourgès, 2006). 

Contrary to this, the static modulus of elasticity for the studied stone samples is found to be 

greater than the dynamic one, except for the two weathered samples LA and LJ1. As 

mentioned earlier, these two samples exhibited higher degrees of microcracking and 

fracturing, and it seems that the increase in their density of microcracks after weathering, 

compared to their initial state of cracking before weathering, was significant so that a 

considerable reduction in Estat has occurred. 
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On one side, this result confirms the statement that microcracks affects the static modulus of 

elasticity more than the dynamic one. On the other side, it is unclear then why at all Estat is 

higher than Edyn for most of the tested stone; one should expect Estat to be almost equal to or 

smaller than Edyn. A possible reason for this deviation might be that the static modulus 

obtained from biaxial flexural strength is not necessarily comparable to young modulus which 

is obtained by compressive strength and usually correlated to dynamic modulus. 

 

7.1.1.9 Change of sample mass and total loss of stone material 

 
The changes in mass of the samples with increasing weathering cycles for cubic and prismatic 

specimens are shown in Figures (7.6) and (7.7). The evolution of the sample mass with 

increasing salt weathering cycles can be usually described and divided into three stages 

(Angeli et al. 2007). The first stage corresponds to the increase of sample mass due to salt 

accumulation in pores. The second stage represents the variation of mass depending on a 

competition between salt uptake and stone damage in form of loss of material. Finally, the 

mass of the sample decreases continuously as salt uptake becomes negligible compared to 

damage. The second stage might sometimes be missing as the sample mass decreases 

continuously and passes directly to the third stage. 
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Figure 7.6: Mass evolution during salt weathering test - Cubic specimens. 
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Figure 7.7: Mass evolution during salt weathering test – Prismatic specimens. 
 

For the cubic specimens, only LUQ1 showed the 3-stage evolution described above. The 

sample mass was increasing continuously until the 5th cycle, when the first sign of damage 

appeared and a varying trend of mass decrease started. Beginning from the 14th cycle, the 

sample showed a clear continuous decrease in mass as the loss of material prevailed over salt 

uptake. All other samples had undergone a gradual increase in weight before a series of mass 

variations took place. However, a net increase in mass was kept till the end of the test, which 

indicates a negligible loss of stone material compared to salt uptake. Generally, all the studied 

stone samples, including LUQ2, showed good resistance to weathering and would require 

further salt contamination to achieve considerable weathering in form of mass loss. 

 

For the prismatic specimens, the limestone samples showed a slightly different behavior of 

mass change. Samples LA and LJ1 exhibited again a two-stage evolution of mass. However, a 

more obvious trend towards mass reduction could be noticed. The mass evolution of the 

sample LUQ1 in prismatic and cubic specimens is similar. 

 

The basalt samples showed nearly the same behavior for cubic and prismatic specimens; the 

two samples (BUE and BUQ) exhibited a continuous increase of mass until the 9th cycle, 
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followed by a variation of mass due to competition between salt uptake and loss of stone 

material. 

 

The total loss of stone material (or dry weight loss DWL) is the parameter most frequently 

used to evaluate salt damage to building stone in durability tests (e.g. Benavente et al., 2001; 

Benavente et al., 2004; Yu and Oguchi, 2009a;b). The dry weight loss was calculated for 

cubic and prismatic specimens after extensive desalination with water and drying to constant 

mass by comparing the initial and final mass (see Section 6.2.4.1) (Table 7.7). 

 

Table 7.7: Total dry weight loss (DWL) after 25 cycles of salt weathering. 
DWL [%] 

Sample 
Cubes Prisms 

LA 0.241 ± 0.050 0.536 ± 0.056 

LJ1 0.160 ± 0.022 0.344 ± 0.044 

LUQ1 2.222 ± 0.608 2.065 ± 0.464 

BUE 0.170 ± 0.009 0.248 ± 0.076 

BUQ 0.098 ± 0.006 0.259 ± 0.040 

 

Except for the heterogeneous allochems-rich sample LUQ1, the prismatic specimens were 

subject to slightly greater loss of material compared to the cubic ones. This might be 

attributed to the smaller dimensions of these specimens and their geometry, which facilitate 

the evaporation and crystallization of salt and make them thereby more prone to damage 

during the drying phase (Angeli et al., 2007). 

However, the ranking of the stone samples with respect to weight loss is the same for cubic 

and prismatic specimens. Sample LUQ1 exhibited the greatest loss of stone material, followed 

by LA and LJ1 and finally the basalt samples. 

In general, the differences in DWL between cubic and prismatic specimens are not that 

significant. The size and geometry of specimens seem thus to be less important for salt 

damage in total immersion experiments as compared to continuous partial immersion test, 

where evaporation, which depends on specimens’ shape and size, is the driving force for 

supersaturation. 
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In terms of total dry weight loss, the studied stones showed generally quite good resistance to 

25 cycles of salt weathering. This might be attributed to their relatively low porosity, pore 

space characteristics, and good mechanical resistance. 

 

7.1.1.10 Non-destructive ultrasonic pulse velocity (Vp) 

 

The velocity of longitudinal ultrasonic waves was measured on cubic specimens of each 

sample along three orthogonal directions before and after weathering. The anisotropy (A) of 

each specimen was calculated from the maximum and minimum velocity measured in the 

different directions. Measurements were carried out both in dry and water saturation 

conditions. The results are shown in Table (7.8). 

 

Table 7.8: Ultrasonic pulse velocity in dry and water saturated cubes before and after salt weathering. 
Measurements were carried out using an ultrasonic frequency of 46 kHz. 

Sample 
Vp-dry 

[m/s] 
Anisotropy [%] 

Vp-saturated 

[m/s] 

∆Vp(sat – dry) [%] 

( )( ) 100... ⋅− dryPdryPsatP VVV  

before 4676 ± 200 3.93 5042 ± 194 7.84 
LA 

after 25c 3653 7.70 4806 31.55 

before 5185 ± 343 3.02 5258 ± 365 1.41 
LJ1 

after 25c 4699 4.42 5084 8.19 

before 4598 ± 124 3.32 4661 ± 110 1.38 
LUQ1 

after 25c 4257 ± 304 0.78 4470 ±197 5.01 

after 5098 ± 97 1.43 5196 ± 30 1.92 
BUE 

after 25c 4913 1.10 4968 1.11 

before 5125 ± 112 1.57 5218 ± 116 1.82 
BUQ 

after 25c 4969 2.11 5023 1.10 

 

The limestones, and to a lower extent the basalt samples, showed slight anisotropy (up to 5%). 

The anisotropy of the samples LA and LJ1 increased after weathering, which might indicate 

preferred fracturing and crack propagation along certain directions. The other samples showed 

generally a decrease in anisotropy after weathering. 

 

For all stone samples, the velocity of longitudinal ultrasonic waves in water saturated 

specimens is higher than that in dry specimens. This has to do with the fact that the velocity of 

longitudinal waves in water is around four and half times higher than in air. The difference in 
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velocity between dry and water saturated conditions can be used to estimate the quality of 

stone and to obtain information about its pore structure. Fresh un-fissured stones have almost 

the same pulse velocity in dry and water saturation conditions. The increase in ultrasonic 

velocity in water saturated condition is particularly significant for stones with porosity in form 

of cracks. In contrast to pores, cracks can be easily bridged by water, which thus facilitates the 

propagation of longitudinal ultrasonic waves (Delgado Rodrigues, 1982). The increase of 

velocity in water saturated specimens before weathering was below 2% for all the stone 

samples, except sample LA which showed an increase of 7.84%. This sample exhibited 

already the highest fracture density. 

 

After weathering, all the samples showed a reduction in ultrasonic velocity due to 

development and widening of cracks and fissures. The stones with the highest degree of 

cracking (LA and LJ1) suffered the highest reduction in ultrasonic velocity. These samples 

showed also a considerable increase of velocity in water-saturated specimens compared to dry 

ones. This confirms the mitigation of the influence of cracks on ultrasonic velocity in water 

saturated stones. 

 

The basalt samples exhibited a lower reduction in ultrasonic velocity after weathering. No 

visible fracturing could be noticed in these samples and the damage in stone structure was 

limited; only small proportions of cracks that might affect ultrasonic velocity were developed 

after weathering as shown by MIP results. The increase in ultrasonic velocity in water-

saturated condition for the basalt samples was lower after weathering, probably because of the 

reported reduction in porosity. 

 

The weathering test was interrupted on several occasions (after 5, 10, 15, and 20 cycles) to 

allow repeated measurements of ultrasonic velocity. Table (7.9) shows the changes in 

ultrasonic longitudinal velocity of the cubic specimens with increasing number of weathering 

cycles. The relative changes in ultrasonic velocity are also represented in Figure (7.8). 
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Table 7.9: Ultrasonic velocity Vp and its percentage of variation with increasing number of salt 
weathering cycles – Cubic specimens measured with an ultrasonic frequency of 46 kHz. 

Number of weathering cycles 
Sample 

0 5 10 15 20 25 

∆Vp (Vp0 - Vp25) 

[km/s] 

Vp [m/s] 4676 4269 4107 3749 3752 3653 
LA 

∆Vp [%] 0 -9 -12 -20 -20 -22 
1.022 

Vp [m/s] 5185 5081 5056 4907 4871 4699 
LJ1 

∆Vp [%] 0 -2 -2 -5 -6 -9 
0.485 

Vp [m/s] 4598 4558 4599 4493 4473 4257 
LUQ1 

∆Vp [%] 0 -1 0 -2 -3 -7 
0.341 

Vp [m/s] 5098 5080 5104 5087 4990 4913 
BUE 

∆Vp [%] 0 0 0 0 -2 -4 
0.185 

Vp [m/s] 5125 5113 5041 5078 5003 4969 
BUQ 

∆Vp [%] 0 0 -2 -1 -2 -3 
0.156 
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Figure 7.8: Percentage decrease in ultrasonic pulse velocity with increasing number of weathering 
cycles – Cubic specimens. 
 

Sample LA suffered the largest decrease in ultrasonic velocity with a total reduction of 1.022 

km/s, a percentage decrease of 22%. The velocity decreased markedly with increasing 

weathering particularly at the early stages; after the 15th weathering cycle, the reduction in 

velocity became less pronounced. Sample LJ1 underwent a steady decrease in ultrasonic 



7 Results and discussion  

 105 

velocity with a total percentage reduction of 9%. The reduction in velocity became more 

significant with increasing number of weathering cycles. This is also the case for sample 

LUQ1, where a more obvious reduction in velocity at the end of the test can be seen. As 

mentioned earlier, all these limestone samples were subject to varying degrees of cracking as 

indicated by fracture density measurement and MIP spectra. These stones suffered also a 

remarkable loss of biaxial flexural strength. In light of these observations, the reduction in 

ultrasonic velocity for these samples is understandable. 

The basalt samples exhibited slight (downward and upward) variations in ultrasonic velocity 

until the 15th cycle. After that, a more obvious downward trend in ultrasonic velocity can be 

seen. 

 

Ultrasonic velocity was also measured on 2x2x5 cm prismatic specimens in the longest 

direction before and after salt weathering test. The results are summarized in Table (7.10). For 

LA and the basalt samples, small variations in ultrasonic velocity between cubic and prismatic 

specimens were registered. These might be a result of stone anisotropy, because the velocity 

in cubic specimens is the average value along three spatial directions whereas it is only 

measured along one direction in the prismatic specimens. The heterogeneity of specimens 

might also contribute to this deviation. 

 

Table 7.10: Ultrasonic velocity Vp before and after salt weathering test (25 cycles) – Prismatic 
specimens measured with an ultrasonic frequency of 46 kHz. 

Ultrasonic velocity Vp [m/s] 
Sample 

before after 

∆Vp [%] 

LA 4358 ± 95 3858 ± 30 11 

LJ1 5174 ± 74 4825 ± 132 7 

LUQ1 4527 ± 114 4367 ± 97 4 

BUE 4912 ± 53 4755 ± 35 3 

BUQ 4903 ± 25 4782 ± 49 2 

 

The prismatic specimens showed slightly lower reduction of ultrasonic velocity than the cubic 

ones. However, the ranking of the samples is still the same with LA and LJ1 showing the 

highest reduction in ultrasonic velocity. Relatively speaking, the prismatic specimens suffered 

seemingly a lower degree of fracturing. However, the fact of measuring along only one 

direction might have implications on this result, particularly for samples LA and LJ1 which 

showed some anisotropy and appeared to suffer preferred fracturing along certain directions. 
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All previously mentioned measurements of ultrasonic velocity were performed using an 

ultrasonic frequency of 46 kHz. In order to determine the influence of the selected ultrasonic 

frequency on velocity results, ultrasonic velocity measurements with 250 kHz were also 

carried out on the same prismatic specimens before and after weathering. The results are 

shown in Table (7.11). Only small variations, generally within the accuracy limits of the used 

ultrasonic instrument, can be noticed. 

However, it would be unjustified to jump to the conclusion that the selected ultrasonic 

frequency has no influence on the measured velocity. As discussed in Section 5.4, the 

selection of the suitable ultrasonic frequency in relation to the dimensions of investigated 

specimens (the ratio of the measuring distance to the wavelength) seems to have important 

implications on the accuracy of measurements. Therefore, this conclusion should only be kept 

if supported by a larger amount of experimental data. 

 

Table 7.11: Ultrasonic Vp before and after salt weathering test (25 cycles) – Prismatic specimens 
measured with an ultrasonic frequency of 250 kHz. 

Ultrasonic velocity Vp [m/s] 
Sample 

before after 
∆Vp [%] 

LA 4451 ± 93 3825 ± 89 14 

LJ1 5187 ± 44 4777 ± 83 8 

LUQ1 4469 ± 77 4240 ± 113 5 

BUE 4948 ± 73 4820 ± 96 3 

BUQ 4935 ± 17 4771 ± 51 3 

 

7.1.1.11 Estimation of stone susceptibility to salt damage 

 

In this section, the susceptibility of the studied stone samples to salt damage is going to be 

estimated based on their properties in the sound condition. The aim is to develop durability 

estimators from the physico-mechanical properties of the sound stone that can be used to 

predict and assess stone resistance to damage without the need for performing the time-

consuming and costly accelerated weathering tests. This can be useful for durability tests that 

are intended to test the resistance of building stone to damage for a particular use under 

certain environmental conditions. It has also important applications in the field of 

conservation for replacing damaged stones and selecting suitable restoration materials. 
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For this purpose, the physico-mechanical properties of the stone samples before weathering 

are characterized and the induced damage after salt weathering test is to be evaluated using 

suitable parameters. Many studies have been dedicated to develop durability estimators from 

the different properties of stone and its pore structure characteristics (e.g. Benavente et al., 

2001; Benavente et al., 2004; Yu and Oguchi, 2009a;b). In most of these studies, total dry 

weight loss (DWL) of stone is the only parameter used to indicate damage. A few authors 

have been considering the use of other additional parameters to provide a more reliable 

assessment of damage. For example, Nicholson (2001) used the change in fracture density 

besides DWL to evaluate damage. Angeli et al. (2007) proposed two parameters to quantify 

the alteration and weathering of stone. 

 

In this study, the total dry weight loss (DWL) and the change in fracture density (∆FD) after 

weathering are used to indicate the damage induced in the tested stones in 25 cycles of salt 

weathering. These damage indicators are correlated with the petrophysical and mechanical 

properties of stone before weathering (Table 7.12) in order to understand the influence of the 

various properties on stone susceptibility to deterioration and to develop suitable durability 

estimators. Table (7.13) lists the Pearson correlation coefficients between total dry weight loss 

(DWL), percentage change of fracture density (%∆FD) and the physico-mechanical properties 

of stone. 

 

Table 7.12: The physico-mechanical properties of the studied stone samples before weathering. 

 DWL %∆FD N48 S ρbulk Wabs.48 W Pm0.1 PCap Pm5 
βBFS Estat Edyn VP-dry VP-sat ∆VP 

LA 0.241 90.48 3.60 0.52 2.52 1.43 0.79 0.18 7.27 4.28 15.45 64.90 37.38 4676 5042 7.84 

LJ1 0.160 164.71 4.42 0.68 2.56 1.73 0.29 1.49 4.38 5.13 18.53 96.38 68.72 5185 5258 1.41 

LUQ1 2.222 35.00 7.37 0.81 2.46 3.00 0.25 4.05 2.20 5.38 17.36 67.54 49.54 4598 4661 1.38 

BUE 0.170 0.00 3.21 0.28 2.67 1.21 0.36 0.21 6.66 1.80 20.01 115.89 64.66 5098 5196 1.92 

BUQ 0.098 0.00 2.97 0.30 2.67 1.11 0.28 0.23 4.24 1.78 19.74 114.22 58.70 5125 5218 1.82 
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Table (7.13): Pearson correlation coefficients between stone damage and physico-mechanical 
properties. 

 DWL %∆FD N48 S ρbulk Wabs.48 W Pm0.1 PCap Pm5 βBFS Estat Edyn VP-dry VP-sat ∆VP 

DWL 1.00                

%∆FD -0.16 1.00               

N48 0.96 0.12 1.00              

S 0.72 0.56 0.88 1.00             

ρbulk -0.75 -0.43 -0.84 -0.92 1.00            

Wabs.48 0.96 0.12 1.00 0.88 -0.85 1.00           

W -0.32 0.23 -0.34 -0.12 -0.19 -0.31 1.00          

Pm0.1 0.94 0.10 0.99 0.86 -0.76 0.99 -0.47 1.00         

PCap -0.72 0.03 -0.75 -0.61 0.40 -0.74 0.76 -0.83 1.00        

Pm5 0.56 0.71 0.75 0.97 -0.92 0.76 0.08 0.71 -0.41 1.00       

βBFS -0.30 -0.44 -0.35 -0.55 0.79 -0.37 -0.74 -0.22 -0.15 -0.68 1.00      

Estat -0.59 -0.37 -0.63 -0.74 0.94 -0.65 -0.50 -0.52 0.14 -0.80 0.95 1.00     

Edyn -0.31 0.07 -0.20 -0.21 0.56 -0.23 -0.73 -0.08 -0.19 -0.28 0.86 0.80 1.00    

VP-dry -0.72 0.07 -0.63 -0.54 0.81 -0.65 -0.43 -0.52 0.15 -0.53 0.80 0.90 0.87 1.00   

VP-sat -0.96 0.18 -0.88 -0.67 0.80 -0.89 0.04 -0.82 0.53 -0.55 0.51 0.74 0.57 0.89 1.00  

%∆VP -0.26 0.20 -0.29 -0.08 -0.24 -0.26 0.99 -0.42 0.68 0.11 -0.78 -0.55 -0.80 -0.49 -0.03 1.00 

 

In terms of total dry weight loss (DWL), stones with high values of water absorption (or free 

porosity), saturation coefficient, and microporosity, as well as low values of ultrasonic 

velocity and bulk density showed generally higher degrees of damage. In its turn, fracture 

density influences mainly the mechanical and elastic properties of stone; higher fracture 

density implies lower strength, moduli of elasticity (particularly static modulus) and 

ultrasonic velocity. The increase in fracture density contributes also to higher connected 

porosity and capillary water uptake (w-value), and it is responsible for the increased 

difference between ultrasonic velocity in dry and water saturation conditions. 
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Based on the above mentioned correlations with stone properties, durability estimators for 

damage as indicated by DWL and change in fracture density are proposed. The dry weight 

loss in the tested stones (DWL) correlates very well with the product of microporosity (in this 

study Pm0.1 (r< 0.1 µm)) and water absorption (Wabs48), that is with (Wabs* Pmicro); the Pearson 

correlation coefficient r = 0.98. 

This durability estimator can be well interpreted by considering the nature of stress from salt 

crystallization on pore walls and the influence of pore structure characteristics. As discussed 

earlier in Chapter four, sufficiently high stresses to damage stone are mainly expected in very 

small pores. Micropores facilitate, therefore, the generation of high crystallization pressure 

and have to be considered for estimating the durability of stone. On the other hand, the 

capacity of stone to absorb water (or its free porosity) determines the uptake of salt and 

contributes correspondingly to stone damage. 

This implies that stones which have both considerable amount of micropores and large free 

porosity are more susceptible to damage by salt crystallization. This agrees partly with the 

classical idea that stones with higher amounts of micropores are more susceptible to damage. 

However, this idea is valid as long as we are comparing stones with nearly the same porosity 

or when the proportion of pores is expressed as a fraction of total porosity. Cardell et al. 

(2003) and Buj and Gisbert (2010) found that stones with high porosity and low proportions 

of micropores are more susceptible to salt weathering than stones with low porosity and 

higher proportions of micropores. This estimator takes into account both the microporosity of 

stone (the proportion of micropores express as a percentage of total porosity) and its water 

absorption (or free porosity), and it seems to provide a reliable estimation of the resistance of 

stone to salt weathering and its durability. 

 

To examine its validity, the proposed durability estimator (Wabs.* Pmicro) was applied and 

tested on various data from relevant literature studies. Good correlations between this 

estimator and DWL could be found (Table 7.14). The different types of stone used in these 

studies and the variations occurring in the number of weathering cycles performed, in the pore 

radius characterizing microporosity, and in the measuring method of water absorption may be 

responsible for the differences in the terms of the obtained empirical correlation equations. 
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Table 7.14: Correlations found between DWL and the durability estimator (DE = Wabs * Pmicro). 

 Stone types Empirical correlation equation 
Correlation 

coeff. (R²) 

This study limestone and basalt DWL = 0.17DE + 0.04 0.96 

Yu and Oguchi 

(2009 a,b) 

tuff, sandstone, rhyolite, 

travertine, dolomite and 

granite 

DWL= 0.19DE + 9.99 0.89 

Mohammad (2003) Jordanian limestones DWL = 4.39DE - 2.32 0.94 

Benavente et al. 

(2004) 
limestone and sandstone DWL = 0.14DE - 0.68 0.79 

Nicholson (2001) limestone DWL = 0.08DE - 7.14 0.70 

Buj and Gisbert 

(2010) 
limestone and sandstone DWL = 2.50DE - 3.13 0.87 

 

The fracturing behavior of stone depends on its mechanical and elastic properties. The 

percentage increase of fracture density (%∆FD) of the tested stones in this study correlates 

very well (r = 0.99; R² = 0.98) with the estimator that represents the multiplication product of 

the porosity of small capillaries (PsCap), the ratio of micropores smaller than 5 µm to total 

porosity (Pm5), and the ratio of the dynamic modulus of elasticity to the static one (Edyn/Estat), 

that is [PsCap*(Pm5/Nt)*(Edyn/Estat)]. 

This could be interpreted as follows: PsCap (0.1 µm<r<5 µm) expresses the ratio of small 

capillary pores which control salt uptake. Small capillaries seem to be the most effective pores 

in salt absorption, and they work synergistically with micropores under equilibrium 

conditions to induce damage (Yu and Oguchi, 2009a). Pm5 (r<5 µm) indicates the proportion 

of micropores and small capillaries, where salt precipitation mainly occurs (Zehnder and 

Arnold, 1989; Yu and Oguchi, 2009a). These pores are subject to greater crystallization 

pressure, and they are particularly important for salt uptake by total immersion (Yu and 

Oguchi, 2009a). The fraction of these pores to total porosity (Pm5/Nt) may thus determine the 

extent of the stress field, i.e. the area of pore walls that is subject to stress. As pointed out by 

Scherer (1999), stress from salt crystallization must spread over a sufficiently large area of the 

porous network to allow for crack development and propagation; stress generated in single 

pores cannot induce fracturing. The ratio of the dynamic modulus of elasticity to the static one 

(Edyn/Estat) may reflect the degree of fracturing, because microcracks seem to influence Estat 

more than Edyn. The variation between the two moduli becomes larger with increasing 
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microcracking and may thus be used to indicate the amount of available microcracks in the 

stone. 

 

The combination of the proposed estimators for loss of stone material and change in fracture 

density may provide an overall indication of stone damage by salt crystallization. The 

following estimator [(Wabs*Pm0.1*Pm5)*%∆VP] is developed, which is almost the 

multiplication product of the two estimators mentioned above, with replacing Edyn/Estat by 

%∆VP. This simple estimator combines two aspects of stone damage (loss of stone material 

and fracturing) that seem to be important indicators for assessing stone durability. For the 

limestone samples, this indicator correlates very well (r = 1.00; R² = 0.99) with the product of 

dry weight loss and fracture density (DWL*FD). When the basalt samples, which showed no 

cracking, are also considered, the correlation coefficient is slightly decreased (r = 0.98; R² = 

0.95). 

The physical meanings of the first three terms in this estimator are explained earlier in this 

section. As an alternative to the ratio (Edyn/Estat), the percentage difference in ultrasonic pulse 

velocity between dry and water-saturated conditions can be used to estimate the density of 

open cracks of stone in a non-destructive and simple way. In dry specimens, ultrasonic 

velocity depends on the intrinsic characteristics (the mineral composition and the spatial 

arrangement of the constituent crystals) of the stone and its pore space. In water saturated 

conditions, the effects of pore structure on the propagation of ultrasonic waves is mitigated 

and the measured velocity is more related to the intrinsic velocity of the stone (Strohmeyer, 

2003). The difference between these two velocities provides, therefore, information about the 

pore space of stone and can be used to estimate fracture density (Schild et al., 2001; 

Strohmeyer, 2003). 

 

As fractures propagate progressively, stone might be prone to greater loss of material due to 

the loosening of stone structure (splitting of larger pieces may then occur). At this stage, 

DWL may implicitly reflect the degree of cracking and could be solely used to indicate 

damage. Fracture density can be mainly seen as a separate indicator at the early stages of 

weathering. In this connection, Nicholson and Nicholson (2000) point out that pre-existing 

cracks are particularly important in the deterioration of stronger stones, whereas their direct 

influence diminishes in weaker ones as the influence of other properties and factors is more 

relevant. 
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Principal component analysis (PCA) was also performed in order to determine the most 

important controlling variables for stone damage due to salt and to identify the relationship 

between them. Based on PCA results, two principal components were extracted which 

explained 90.99% of the total variance (Figure 7.9). The first of which (PC1) accounts for 

54.49% of the variance and is mainly associated with microporosity (specific surface area), 

water absorption, total dry weight loss, saturation coefficient, and water-saturated ultrasonic 

velocity. PC2 contributes to 36.50% of the total variance and is linked to mechanical strength 

(βBFS), moduli of elasticity (Estat and Edyn), connected porosity, water uptake coefficient (w-

value) and ultrasonic velocity (in dry specimens and the difference between dry and water-

saturated conditions). 

 

 

Figure 7.9: Diagram of the extracted principal components. 

 

The loss of stone material shows strong (> 0.70) direct (positive) relationship with 

microporosity and water absorption and strong negative correlations with water-saturated 

ultrasonic velocity, proportion of large pores and bulk density. DWL is poorly related to the 

mechanical properties of stone. The mechanical and elastic properties have strong direct 
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loadings on dry ultrasonic velocity and strong inverse (negative) relationship with connected 

porosity, w-value and VP difference in dry and water saturated conditions. 

 

The first component (PC1) describes the variables which influence and determine stone 

damage in form of loss of stone material. It indicates that stones with high microporsity and 

water uptake and low intrinsic ultrasonic velocity are more susceptible to salt weathering. The 

second parameter (PC2) includes the mechanical and elastic properties and the variables that 

affect them. It indicates that stones with high porosity and fracture density, and 

correspondingly lower dry ultrasonic velocity and larger Vp difference between dry and water 

saturated conditions, are characterized by lower mechanical strength and moduli of elasticity. 

 

Ultrasonic velocity in dry and water saturated condition correlates very well with both 

extracted components and could thus be effectively used to provide a rough estimation of 

stone durability and weathering resistance in a non-destructive way. It is particularly sensitive 

to the degree of fracturing of stone. 

 

In summary, the results confirm the role of pore properties of stone in salt weathering, 

particularly pore size distribution which determines the extent of crystallization pressure and 

the capacity of water absorption. The mechanical and elastic properties seem not to be directly 

correlated with stone damage in form of DWL. This implies that a mechanically weak stone 

can be resistant to salt weathering, if it possesses a suitable pore size distribution. These 

results agree well with those of other authors such as Yu and Oguchi (2009a). 

However, this is seemingly true only for strong stones and in the early stages of weathering. 

As explained earlier in this section, extensive fracturing will eventually lead to the splitting of 

larger pieces of stone material and consequently to a greater DWL. Furthermore, the 

mechanical and elastic properties are strongly correlated with the degree of fracturing, which 

can affect the mode of stone deterioration (Nicholson and Nicholson, 2000). Correspondingly, 

the mechanical and elastic properties have somehow significant impacts on stone durability. 

 

Because of the small number of studied stone samples and the performed weathering cycles 

(the damage induced at the end of the 25 cycles was very small), no fully-reliable 

classification scheme for durability estimation can be developed. However, the results of this 

study might constitute a base for further comprehensive studies. 
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7.1.2 Thermal weathering of marble 

 

The marble sample (MUQ) was subject to thermal weathering by heating to high temperature 

and its physico-mechanical properties were measured before and after weathering. The results 

are summarized in Table (7.15). 

 

Table 7.15: Properties of marble before and after thermal weathering. 
 Before weathering After weathering ∆ [%] 

Nt [%] 0.20 ± 0.03 1.71 ± 0.06 744 
N48 [%] 0.17 ± 0.03 1.38 ± 0.06 719 
ρreal [g/cm³] 2.72 ± 0.00 2.72 ± 0.00 0 
ρbulk [g/cm³] 2.71 ± 0.00 2.67 ± 0.00 -1 
S 0.84 ± 0.10 0.81 ± 0.01 -3 
w-value [Kg/(m

2
.h

1/2
)] 0.020 ± 0.006 0.652 ± 0.100 3197 

g [g/(m².h)] 7.74 ± 1.68 117.16 ± 3.93 1414 
αT [10

-6
.k

-1
] 5,10 ± 0,81 2.75 ± 0.94 -46 

βBFS [N/mm²] 17.97 ± 1.96 2.31 ± 0.26 -87 
Estat [kN/mm²] 82.30 ± 23.96 2.40 ± 0.45 -97 
Edyn [kN/mm²] 51.51 ± 2.38 24.18 ± 7.77 -53 
Vp-dry  (Cubes) [m/s] 4525 ± 277 1571 ± 58 -65 
Anisotropy (A) [%] 6.82 ± 3.49 8.74 ± 2.75 28 
Vp-sat  (Cubes) [m/s] 5153 ± 41 2206 ± 69 -57 
( )( ) 100... ⋅− dryPdryPsatP VVV  13.89 40.44 191 

Vp- 46 kHz (Prisms) 4126 ± 222 1649 ± 83 -60 
Vp- 250 kHz_(Prisms) 4233 ± 60 1698 ± 240 -60 

 

7.1.2.1 Porosity and pore size distribution 

 
The porosity of the marble sample increased markedly after weathering as can be seen in 

Table (7.15) and Figure (7.10) below. This increase of porosity is also confirmed by the MIP 

spectra of the stone (Figure 7.11). The thermally-induced cracks between calcite grains are 

responsible for this porosity increase. The average pore radius was slightly shifted downward 

(from 2.77 µm to 2.19 µm) indicating an increase in the proportion of microcracks. 

It has to be mentioned that the porosity values measured with mercury intrusion porosimetry 

(Table 7.16) differ considerably from those measured with water absorption. This could be 

attributed to errors during the preparation of the granules used for mercury intrusion 

porosimetry measurements. The measurements with water absorption seem to be more 

reliable because they reported the expected porosity and density values of marble. 
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Figure 7.10: Graphical representation of marble porosity before and after weathering. 
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Figure 7.11: The pore size distributions of the marble sample before and after weathering. 
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The pore sizes distribution of the sound marble ranges almost between 1-50 µm with two 

main peaks; the first peak lies in the pore range 1-10 µm (around 3 µm) and the second one at 

around 50 µm. Few separate smaller peaks appear also in the micropores range. 

After thermal weathering, new microcracks were developed between around 0.03 µm and 2 

µm. The volume of pores around the first main peak (2-6 µm) increased significantly as new 

cracks were developed in this range. The other peak (at ~50 µm) was reduced due to the 

expansion of cracks and the shift toward larger macrocracks. This produced a uni-modal pore 

size distribution (main peak at around 2.4 µm) of the weathered marble that ranges from 

around 0.03 µm to 83 µm. 

 

Table 7.16: Mercury intrusion porosimetry data of marble before and after thermal weathering. 
MUQ 

Sample 
Before After 

r < 0.01 µm 0.00 0.00 
0.01 -0.1 µm 0.00 6.06 
0.1 -1 µm 12.97 21.21 
1 -10 µm 57.32 59.36 

Pore size distribution [%] 

10 -100 µm 29.71 13.37 
Avg. pore radius [µm] 2.77 2.19 
Total porosity [%] 1.81 3.23 
Specific surface area(SSA) [m²/g] 0.01 0.05 
Microporosity, Pm0.1 [%] 0.00 0.20 
PsCap. (0.01< r < 5 µm) [%] 1.01 2.26 
PL.Cap (r > 5 µm) [%] 0.80 0.77 

 

Generally, the proportions of micropores and small capillaries were increased after thermal 

weathering as a result of cracks development at grain boundaries, which is originally 

attributed to the anisotropic thermal expansion of the calcite crystals forming the stone. 

 

7.1.2.2 Capillary water absorption 

 
Owing to the increase in the proportion of small capillary pores and connected porosity, the 

capillary water uptake coefficient of the weathered marble sample increased distinctly. Figure 

(7.12) depicts the capillary curves of the stone before and after thermal weathering. It can be 

clearly seen that capillary water absorption is much faster and larger in the weathered marble, 

which indicates an improved connectivity of pores. The capillary curve after thermal 

weathering shows the typical trend with a higher linear uptake of water in the first part 

followed by only slightly increasing water absorption represented by a plateau. During the 
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first part of the curve, the capillary pores are filled with water until saturation or complete 

penetration, and in the second part the contribution of micropores to overall water absorption 

is very low to keep the higher initial rate of water uptake and the curve runs horizontally. 
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Figure 7.12: The capillary water absorption curves of the marble sample before and after weathering. 
 

7.1.2.3 Drying curve 

 

Figure (7.13) shows the drying curves of the marble sample before and after thermal 

weathering. The drying curve of the sound marble sample shows three stages of drying; the 

stone had dried first with almost constant drying rate (avg. g = 7.74 g/(m².h)) before a short 

linear drop in the drying speed occurred at around 85% of the remaining moisture, followed 

by a tiny, relatively constant drying speed. 

 

The thermally-weathered marble exhibited almost the same 3-phase evolution of drying. 

However, the weathered stone showed a much faster drying with an average water flow rate 

(g) of 117.16 g/(m².h) that remained more or less constant until the moisture content dropped 

to 70%. Below this critical moisture content, the water evaporation rate decreased linearly. 

The decrease in drying speed started to slow down when the remaining moisture content 

dropped below 50%. 
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Figure 7.13: Drying curves of the marble sample before and after thermal weathering. 

 

The thermal weathering process changed the pore structure of the marble sample and its 

hydric properties. The initial water content of the weathered marble is around four times 

higher than that of the sound stone. This is attributed to the increase of open porosity as a 
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result of fracturing. The critical moisture content of the stone dropped also from around 85% 

to 70% after weathering due to the improved connectivity of pores. This reduction led to a 

faster drying process of the weathered stone in the capillary phase. 

Furthermore, the thermal weathering acted also to improve the permeability of the stone to 

water vapor diffusion, which results in a faster drying during the diffusion phase. Therefore, 

the drying of the weathered marble is more efficient than that of the sound stone. The 

evaporation rate of the sound marble was very low and approached the base line when around 

65% of the moisture was still remaining in the stone. The evaporation rate of weathered 

marble, on the contrary, approached the base line first when the remaining moisture content 

dropped below 20%. 

 

7.1.2.4 Thermal expansion 

 

The thermal expansion coefficient of the marble sample was decreased by 46% after thermal 

weathering. This result is actually expected because the induced cracks provide voids where 

calcite grains can expand without causing further measurable displacement (Weiss et al., 

2004). 

 

7.1.2.5 Mechanical properties 

 

The mechanical properties of the stone were greatly influence by weathering. The developed 

microcracks weakened grain cohesion and stone structure, causing a substantial decrease 

(87%) of biaxial flexural strength (βBFS). Both moduli of elasticity were also reduced after 

weathering, especially the static modulus which was reduced by 97%. This great reduction in 

the static modulus of elasticity after thermal weathering is attributed to the development of 

large amounts of cracks, which weaken the stone structure and allow deformations at much 

lower stresses. The reduction in the dynamic modulus was relatively lower than in the static 

one because the influence of cracks is more important with measurements under static loads. 

This results was also observed for the limestone samples that were subject to cracking (LA 

and LJ1), which supports again the statement that microcracks influence the static modulus of 

elasticity more than the dynamic one. 
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7.1.2.6 Ultrasonic velocity 

 

The velocity of longitudinal ultrasonic waves was measured in cubic specimens along three 

orthogonal directions using an ultrasonic transmitter vibrating at 46 kHz. The sample is 

characterized by anisotropy of around 7%, as calculated from the maximum and minimum 

ultrasonic velocity in the three directions. 

The marble sample showed an average ultrasonic velocity of 4525 m/s. According to Köhler 

classification system (Table 5.1), the stone can be classified as fresh marble. After 

weathering, the ultrasonic velocity of the dried specimens was dropped steeply by 65%, due 

to the influence of induced cracks. 

 

The water saturated specimens of the sound marble showed an increase of ultrasonic velocity 

by around 14% compared to dry specimens, which indicates already the presence of some 

cracks in the stone. Preexisting cracks are, however, common in fresh crystalline rocks 

(Siegesmund et al., 2000). This percentage was increased significantly after weathering to 

40%, which again confirms the influence of cracks on ultrasonic velocity. The anisotropy of 

the marble sample increased after weathering by 28%, which might reflect a certain degree of 

directional dependence of cracking. 

 

Ultrasonic velocity was also measured in 2x2x5 cm prismatic specimens (in one direction) 

using two ultrasonic frequencies, namely 46 kHz and 250 kHz. The measurements with both 

frequencies reported almost the same results for ultrasonic velocity; the difference in the 

measured velocities lies within the accuracy limit of the instrument. 

 

The measured values of ultrasonic velocity differ slightly between the prismatic and cubic 

specimens. This might be attributed to the anisotropy of the marble sample as the velocity in 

the cubes is the average value of the velocities along three spatial directions, whereas the 

velocity in the prisms is measured only along one direction. The measurements on prisms 

reported a percentage decrease in ultrasonic velocity of 60%, which is only slightly lower than 

that measured on the cubes. 
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7.2 Properties of stones before and after consolidation 

 

The naturally weathered limestone samples were consolidated with two silisic acid ester 

(SAE)-based consolidants from Remmers; KSE 300 (Funcosil 300) and KSE 300HV 

(Funcosil 300HV). The consolidant KSE 300HV contains an additional coupling agent and is, 

therefore, particularly suitable for carbonate stones. The major bulk properties of the treated 

stones were determined using 5 cm cubic specimens that were consolidated by capillary 

absorption until saturation and then by total impregnation for one hour. Drill core specimens 

were also used to determine certain properties of the stones in depth profile. These specimens 

were treated by capillary absorption for one hour. A third group of specimens comprises 

2x2x5 cm prisms that were treated in a similar way to the cubic specimens (i.e. by total 

immersion after capillary absorption until saturation) and used to determine the dynamic 

modulus of elasticity. Ultrasonic velocity with two different ultrasonic frequencies (46 kHz 

and 250 kHz) was also measured on these prisms. 

 

In the following sections, the various properties of stones before and after consolidation are 

discussed and the effectiveness of the treatments is evaluated. 

 

7.2.1 Uptake of consolidation products 

 
The uptake of consolidation product was calculated from the specimens’ mass difference 

before and directly after product application. The deposited dry matter was determined after 

around two months of product application from the dry mass difference between treated and 

untreated specimens (after drying at 60 °C). The results are given in Table (7.17). 

 

Table 7.17: Uptake of consolidation product and the amount of dry deposited material in the cubic and 
prismatic specimens treated by total immersion and the drill cores treated by capillary rise. 

  Product uptake [% w/w] Deposited dry matter [% w/w] 

  Cubes Prisms Drill cores Cubes Prisms Drill cores 

KSE 300 7.5 ± 0.7 - 2.1 ± 0.5 2.4 ± 0.3 - 0.6 ± 0.2 LH 

KSE 300HV 8.2 ± 1.1 11.9 ± 1.1 2.6 ± 0.2 2.8 ± 0.3 4.9 ± 0.4 0.7 ± 0.2 
KSE 300 9.3 ± 0.3 7.9 4.4 ± 0.2 2.9 ± 0.1 3.3 1.4 ± 0.0 LJ2 

KSE 300HV 9.2 ± 0.6 9.3 ± 0.8 5.4 ± 0.5 3.1 ± 0.2 3.8 ± 0.4 1.8 ± 0.2 
KSE 300 9.6 ± 1.2 8.8 ± 3.7 4.3 ± 2.0 2.9 ± 0.4 4.0 ± 1.6 1.2 ± 0.7 LJ3 

KSE 300HV 11.3 ± 2.7 12.4 ± 1.1 5.4 ± 1.7 4.0 ± 1.0 5.2 ± 0.5 1.7 ± 0.7 
KSE 300 14.0 ± 1.2 14.2 ± 2.1 5.8 ± 0.1 4.2 ± 0.4 6.6 ± 1.0 1.5 ± 0.3 LUQ2 

KSE 300HV 14.7 ± 0.5 16.0 ± 1.0 6.9 ± 1.1 5.2 ± 0.2 6.7 ± 0.5 2.0 ± 0.2 
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The most porous and most weathered sample LUQ2 has the highest uptake of product and the 

highest dry deposited material, whereas the least porous and weathered sample LH absorbed 

the lowest amount of consolidation products. The uptake of consolidant is also influenced by 

the application method; the cubic and prismatic specimens treated by total immersion showed 

a greater amount of product uptake and deposited polymerized material compared to the drill 

core specimens treated by capillary rise. 

 

The amount of polymerized material deposited in the pores influences the mechanical 

properties of the stone and its water absorption capacity (Łukaszewicz, 2004). The samples 

LUQ2 and LJ2 have the highest amount of dry deposited material and exhibit also the largest 

increase in mechanical properties. The consolidant KSE 300HV deposited a slightly higher 

amount of polymerized material and seem generally to perform better than KSE 300 as will be 

shown in the following sections. 

 

7.2.2 Porosity properties and density 

 
The porosity properties and density of the untreated (UT) and treated (KSE 300 and KSE 

300HV) limestone samples are presented in Table (7.18). 

 

Table 7.18: Porosity properties and density before and after consolidation. 

Sample 

Accessible 

porosity 

(Nt) [%] 

Free 

porosity 

(N48) [%] 

Real density 

(ρreal) 

[g/cm³] 

Bulk density 

(ρbulk) 

[g/cm³] 

Saturation 

coefficient 

(S) 

UT 24.03±1.29 17.26±1.83 2.71 2.06 0.72 
KSE 300 20.80±1.48 13.98±1.58 2.68 2.12 0.67 LH 

KSE 300HV 21.58±1.10 9.44±1.03 2.68 2.10 0.44 
UT 25.76±0.72 19.79±0.52 2.71 2.01 0.77 

KSE 300 22.59±0.91 14.61±0.87 2.68 2.07 0.65 LJ2 

KSE 300HV 22.61±0.46 9.20±0.38 2.68 2.07 0.41 
UT 27.23±3.43 21.94±2.97 2.68 1.95 0.80 

KSE 300 24.61±3.84 17.88±3.02 2.65 2.00 0.73 LJ3 

KSE 300HV 22.65±1.93 13.85±1.27 2.65 2.05 0.61 
UT 32.86±0.83 29.03±0.83 2.70 1.81 0.88 

KSE 300 27.51±0.59 21.53±0.55 2.65 1.92 0.78 LUQ2 

KSE 300HV 28.99±0.56 21.94±0.47 2.65 1.88 0.76 
 

Figure (7.14) shows the average accessible and free porosities before and after treatment with 

the consolidation products KSE 300 and KSE 300HV. Both types of porosity were decreased 
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after treatment for all the studied samples. This decrease in porosity resulted from the 

deposition of the consolidants in the pores of the stones. The material silisic acid ester imparts 

a temporary hydrophobicity (water repellency) to the stone, which might have also 

contributed to the decrease in absorbed water and correspondingly calculated porosity. 

 

 
Figure 7.14: Accessible and free porosities before and after consolidation treatments. 
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The percentage reduction in accessible porosity (10%-17%) is almost the same for both 

consolidants. The free porosity exhibited a larger percentage reduction after treatment that 

ranges between 24% and 54% for the stones treated with the consolidant containing coupling 

agent KSE 300HV and between 18% and 26% for those treated with KSE 300. This 

difference between the two porosities might be related to the induced hydrophobic effect that 

reduces further the absorption of water and respectively the measured free porosity, but has no 

or minimum influence on the accessible porosity measured under vacuum; the hydrophobicity 

is not active or strongly restricted under vacuum (Meinhardt-Degen, 2005). 

 

Contrary to porosity, the bulk density of the treated stone was increased as expected. The 

saturation coefficient of the treated stones was decreased particularly for those treated with 

KSE 300HV. This is actually related to the reported difference between the accessible and 

free porosity, which is higher for the stones treated with KSE 300HV. 

 

7.2.3 Pore size distribution 

 

Figure (7.15) shows the pore size distribution of the studied limestones before and after 

treatment with the consolidation products KSE 300 and KSE 300HV. 

 

 
Figure 7.15: The MIP spectra of the untreated and treated samples. 
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The untreated Hallabat stone (LH) is characterized by a uni-modal pore size distribution with 

the main peak around 2 µm. The porosity is almost comprised of capillary pores, particularly 

small capillaries. The stone treated with KSE 300 exhibited a shift in the pores smaller than 3 

µm towards smaller pores and the resulting pore size distribution is bi-modal with the main 

peaks around 1 µm and 3.5 µm. For the stone treated with KSE 300HV, the main peak of 

pores decreased slightly and a few smaller peaks appeared, producing a wider pore size 

distribution. 

 

The sample LJ2 has a wide uni-modal pore size distribution with the main peak around 3 µm. 

The sample treated with KSE 300 exhibited a considerable reduction of the volume of pores 

with size around 3 µm, and the main peak was shifted towards smaller pores; the stone has 

nearly a bi-modal pore size distribution with two peaks around 1 µm and 7 µm. The pore size 

distribution of the sample treated with KSE 300HV is nearly comparable to that of the 

untreated sample. However, the volume of pores was generally reduced and the main peak 

was shifted downwards to the pore radius 1 µm. 

 

The sample LJ3 has mainly a bi-modal distribution of pores around 2 µm and 0.1 µm. The 

sample treated with KSE 300 has a wide, nearly even, pore size distribution with the main 

groups of pores around 0.01 µm, 1 µm and 5 µm. The sample treated with KSE 300HV 

exhibited two families of pores that also appeared in the weathered stone, but with a smaller 

volume. However, this sample has a wider pore size distribution with two additional main 

families of pores; a relatively large peak appears around 3 µm and another smaller one around 

0.005 µm. 

 

The naturally weathered sample LUQ2 has a wide pores size distribution that ranges from 

0.01–50 µm, with the main family of pores around 1 µm. After consolidation with KSE 300, 

the volume of pores with pore radius 0.03-5 µm was noticeably decreased and a small peak 

around 0.01 µm was appeared. The stone consolidated with KSE 300HV exhibited almost the 

same changes in its pore size distribution. 

 

The mercury intrusion porosimetry results are also summarized in Table (7.19). For the two 

samples LJ2 and LUQ2, the treatments with both consolidants induced a reduction in porosity 

as expected. This decrease occurred in the proportion of capillary pores, particularly small 
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capillaries, where the consolidants seem to be mainly deposited. On the contrary, the 

proportion of micropores was slightly increased after treatment. 

 

The samples LH and LJ3 exhibited unexpectedly an increase of porosity after treatment. This 

is most likely attributed to measurement errors and stone heterogeneity, especially for the 

sample LJ3. After all, a clear reduction in porosity of these samples could be proved by water 

absorption measurements. 

 

Table 7.19: MIP results before and after consolidation treatments. 

  Pore classes [%] 

  <0.01 

µm 

0.01-

0.1µm 

0.1-

1µm 

1-

10µm 

10-

100µm 

Pc 

[%] 

SSA 

[m²/g] 

avg. r 

[µm] 

Pm0.1 

[%] 

Pm0.1-5 

[%] 

Pm>5 

[%] 

UT 0.63 1.25 18.81 73.37 5.93 20.16 0.42 2.24 0.38 17.88 1.90 
KSE 300 1.11 4.23 51.59 37.69 5.39 20.55 0.86 0.85 1.10 17.88 1.58 LH 

KSE 300HV 4.95 5.65 34.92 49.83 4.65 23.21 2.72 2.30 2.46 18.67 2.08 
UT 0.00 2.73 14.15 66.77 16.35 24.22 0.27 2.75 0.66 15.08 8.47 
KSE 300 3.07 4.77 30.14 47.25 14.77 19.43 1.31 1.26 1.52 12.34 5.57 LJ2 

KSE 300HV 4.36 6.86 28.04 49.13 11.61 20.88 2.10 1.27 2.34 13.87 4.67 
UT 0.74 26.08 43.26 26.45 3.48 16.51 1.52 1.57 4.43 11.31 0.77 
KSE 300 15.50 17.37 24.72 26.02 16.40 17.58 5.32 0.01 5.78 7.41 4.39 LJ3 

KSE 300HV 7.40 15.00 26.90 38.14 12.56 21.45 3.93 2.34 4.81 12.32 4.33 
UT 1.09 16.31 40.76 36.79 5.05 30.07 2.32 1.05 5.23 22.08 2.76 
KSE 300 11.88 19.30 34.93 28.24 5.65 19.58 5.17 0.97 6.11 11.28 2.20 LUQ2 

KSE 300HV 13.71 11.83 32.02 36.30 6.13 20.60 5.81 2.34 5.26 12.96 2.38 
 

7.2.4 Capillary water uptake coefficient (w-value) 

 

The naturally weathered limestone samples showed strong capacity to absorb water as 

indicated by their high capillary water absorption coefficients. After consolidation treatments, 

the absorption of water was significantly decreased for all the samples (Figures 7.16 and 

7.17). For the samples treated with KSE 300, the water uptake coefficient was decreased by 

81%, 65%, 70%, and 50% for LH, LJ2, LJ3, and LUQ2 respectively. A slightly larger 

reduction in water absorption was noticed for the samples treated with KSE 300HV (by 94%, 

73%, 89%, and 87% for LH, LJ1, LJ2, and LUQ2 respectively). The reduction of water 

uptake coefficient can be attributed to the changes in pore size distribution and the 

connectivity of capillary pores (due to polymer deposition in pores), as well as to the 

hydrophobic effect of the consolidants (Honsinger and Sasse, 1991; Stück et al., 2008). 
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Figure 7.16: Average w-value of the stone samples before and after consolidation treatments. 
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Figure 7.17: Capillary water absorption curves of the untreated and treated samples. 
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As for the evaluation of the effectiveness and success of consolidation treatments, the 

capillary water uptake coefficient of the treated stone should be equal or smaller than that of 

the untreated unweathered stone (see Table 4.1). This requirement is clearly fulfilled and the 

treatment with both consolidants seems to be successful in this regard. 

In fact, the absorption of water was considerably reduced, particularly for the stone treated 

with KSE 300HV. This is mostly desirable, although it is not an essential requirement for a 

consolidant to impart hydrophobicity. 

 

7.2.5 Water vapor diffusion resistance coefficient (µ-value) 

 

The permeability of stone to water vapor is an important physical property that allows the 

escape of water vapor from inside the stone. The treated zone should not, therefore, act as a 

barrier against water vapor diffusion (Honsinger and Sasse, 1991). A significant decrease in 

water vapor permeability due to consolidation treatment can lead to trapping of water vapor 

inside the stone, raising thereby the risk of stone damage, particularly frost damage (Scherer 

and Wheeler, 2009). 

 

The requirement for successful consolidation treatments regarding the permeability of stone to 

water vapor implies that the increase in water vapor diffusion resistance (µ-value) should be 

lower than 20% (Snethalge and Wendler, 1995; Sasse and Snethalge, 1997). This value is not 

based on strict scientific measurements but on general experience. Lower ratios of increase in 

µ-value (below 20%) are mostly located within the range of natural variation of a stone and 

are therefore acceptable (Snethlage, 2008). 

 

Table (7.20) shows the water vapor diffusion resistance of the stone samples before and after 

consolidation with KSE 300 and KSE 300HV as well as the percentage increase associated to 

it. The permeability of the stone samples to water vapor was decreased after treatment as 

indicated by the increase in µ-value. The more weathered samples showed seemingly a 

greater reduction in permeability. The consolidant KSE 300 induced a lower increase in water 

vapor diffusion resistance compared to KSE 300HV. The increase in diffusion resistance of 

the stones falls within the acceptable range (< 20%) except for the sample LUQ2 treated with 

KSE 300HV, which showed a slightly higher increase (22%). Hence, the treatments with both 
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consolidants can generally be considered successful concerning their influence on water vapor 

permeability. 

 

Table 7.20: Water vapor diffusion resistance of treated and untreated samples and the percentage 
increase after treatment. 

 Sample LH LJ2 LJ3 LUQ2 

UT 60.12 50.57 52.78 34.95 
KSE 300 64.93 56.83 57.41 39.50 µ-value 

KSE 300HV 66.63 58.09 61.42 42.52 
KSE 300 8 12 9 13 Change 

[%] KSE 300HV 11 15 16 22 

 

7.2.6 Drying curve 

 

Figure (7.18) shows the drying curves of the naturally weathered and treated stone samples. 

The initial water content of all treated samples is lower than that of the untreated ones due to 

the reduction in free porosity brought about by consolidation treatments. The treated samples 

exhibit a lower drying rate compared to the weathered untreated stones (Table 7.21). This can 

be attributed to the decrease in the proportion of capillary pores after treatment, which could 

be proved by MIP measurements for all stones except for LH and LJ3 treated by KSE 300HV. 

The MIP data of these samples showed erroneously larger porosity values and they were most 

probably influenced by measuring errors and stone heterogeneity. 

The treated samples, except for LH, showed also higher critical moisture content, which is 

attributed to the increase in the proportions of micropores after consolidation (Buj and 

Gisbert, 2010). 

 

Table 7.21: Drying rate and critical moisture content before and after consolidation. 

 Sample LH LJ2 LJ3  LUQ2 

UT 105 ± 6 116 ± 7 97 ± 13 132 ± 15 
KSE 300HV 92 ± 5 97 ± 2 88 ± 4 102 ± 7 g [g/(m

2
.h)] 

KSE 300 98 ± 2 109 ± 3 90 ± 9 101 ± 9 
UT 62 30 47 31 

KSE 300HV 40 42 69 55 µc (Ψc) 

KSE 300 56 34 63 59 
 

These changes led to a slower drying process in the liquid phase. The permeability to water 

vapor was also reduced for the treated stones, leading thereby to a slower drying during the 
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diffusion phase as well. No significant variations in the drying behavior between the samples 

treated with the consolidants KSE 300 and KSE 300HV can be noticed. 

 

Figure 7.18: Drying curves of the weathered stones before and after consolidation with KSE 300 and 
KSE 300HV. Mass decrease per area (M/A) in function of time and density of vapor flow rate (g) in 
function of remaining moisture are displayed. 
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consolidation and the drying duration was not markedly increased for the treated samples. 

This satisfies the requirement for successful consolidation which implies no increase in the 

drying duration of the treated samples (Table 4.1). 

 

7.2.7 Color changes 

 
The changes in chromatic parameters (represented in CIEL*a*b* values) induced by 

consolidation treatments are given in Table (7.22). All treated samples showed a lower value 

of luminosity (negative ∆L*) compared to the untreated stones for both consolidants, which 

indicates a tendency towards darkening. The treated samples exhibited also a slight increase 

in the red (a*) (except for sample LJ2) and yellow (b*) coordinates. The total color change 

(∆E*) of the stones lies within the acceptable range (that is ∆E* ≤ 5), except for the samples 

LJ3 and LUQ2 treated with KSE 300HV, which showed ∆E* values of 7.29 and 5.48 

respectively. The highest degree of darkening, yellowing and total color change was induced 

by KSE 300HV on the sample LJ3. In general, the variations in color and visual properties of 

the stones after treatment can still be considered small and restricted. 

 

Table 7.22: The variations in chromatic parameters of the treated limestone samples. 

 KSE 300 HV KSE 300 

 ∆L* ∆a* ∆b* ∆E* ∆L* ∆a* ∆b* ∆E* 

LH -2.84 0.50 2.05 3.54 -0.42 0.13 1.76 1.81 
LJ2 -1.40 -0.23 1.62 2.16 -0.01 -0.41 0.23 0.47 
LJ3 -5.23 1.28 4.92 7.29 -2.56 0.27 2.50 3.59 

LUQ2 -4.65 0.34 2.87 5.48 -2.69 0.22 2.26 3.52 
 

7.2.8 Thermal expansion 

 

The thermal expansion of the stones was measured in the perpendicular direction to bedding 

planes before and after treatment with KSE 300 and KSE 300HV (Figure 7.19). The thermal 

expansion coefficient increased in all consolidated samples due to the partial filling of pores 

with consolidant. The consolidant containing coupling agent KSE 300HV caused a greater 

increase in thermal dilatation compared to KSE 300; the thermal expansion coefficient of the 

treated samples LH, LJ2, LJ3 and LUQ2 increased respectively by 13%, 18%, 19% and 29% 

for KSE 300HV and by 5%, 16%, 15% and 20% for KSE 300. 
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Figure 7.19: Thermal expansion coefficient of the weathered and treated samples (Temperature range 
60-20°C). 
 

7.2.9 Penetration depth as determined by water micro-drop absorption 
time 

 

The penetration depth of consolidants into a stone is a critical parameter for the success of 

consolidation treatments. It depends on the microstructure of the stone and the properties of 

consolidation product such as viscosity and surface tension (Maravelaki-Kalitzaki et al., 

2006). Consolidants should sufficiently penetrate and strengthen the weathered zone and 

increase its adhesion to the sound core of the stone. Superficial consolidation tends to fill the 

pores of the stone surface, which may result in the accumulation of moisture and salts behind 

the treated layers. Furthermore, interfacial delamination often occurs because of a marked 

difference in the properties of the treated and untreated stone (Clifton, 1980). 

 

The determination of the depth of penetration of stone consolidants can be achieved by 

different methods (Leroux et al., 2000). In this study, measurements in depth profile of 

ultrasonic velocity, water micro-drop absorption time, and biaxial flexural strength as well as 

drilling resistance (only to a depth of 1 cm) were used to determine the penetration depth of 

consolidants. The results of water micro-drop absorption time are discussed below. The 
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measurements of other properties (ultrasonic velocity, biaxial flexural strength and drilling 

resistance) are discussed separately. 

 

Water µ-drop absorption time 

Owing to the expected hydrophobic effect of some consolidation materials and the filling of 

pores with consolidant, the absorption of water is normally decreased in treated stone. By 

measuring the absorption time of water micro-drops applied at regular distances (in depth 

profile) on treated stones, the depth of penetration of consolidants can be estimated. Figure 

(7.20) shows the results of this test on the studied samples. 

 

 

Figure 7.20: Micro-drop water absorption time of the treated sample as a measure of penetration 

depth. 

 

Except for the sample LH treated with KSE 300, both consolidants penetrated all the stones 

up to a depth of 3 cm. Roughly speaking, the applied consolidants seem to achieve a good 

penetration depth; it was suggested that a good consolidant should be able to penetrate a 

weathered stone to a depth of at least 2.5 cm (Clifton, 1980). For a more specific evaluation of 

the success of treatment in this respect, the achieved penetration depth should be compared 

with the thickness of the weathered zone and the resulting consolidation profile should also be 

studied. This is done in the following sections. 
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7.2.10 Drilling resistance measurement 

 

Figure (7.21) shows the drilling resistance (DR) profiles in the first 1 cm depth of the 

untreated and treated samples in the directions parallel and perpendicular to bedding planes. 

These results are the average DR curves of at least three holes measured with a 5 mm 

diameter drill bit under constant operative conditions of 600 rpm rotation speed and 10 

mm/min penetration rate. 

 

The drilling resistance profile of the untreated sample LH varies around a drilling force of 

5.19 N (obtained by averaging the force between 2 mm and 10 mm), and it is almost 

comparable to the profiles of treated samples with an average force of 6.18 N and 6.28 N for 

KSE 300HV and KSE 300 respectively. A very slight increase in the drilling resistance can 

only be seen in the perpendicular direction to bedding planes and it lies actually within the 

resolution limit of the instrument. Therefore, it is hard to speak of any consolidation effect for 

this sample with this method. 

 

The weathered sample LJ2 exhibits a very low DR of 1.47 N. The average drilling resistance 

of the sample was increased to 10.56 N and 6.27 N after treatment with KSE 300HV and KSE 

300 respectively. The drilling resistance profiles of the consolidated samples are almost 

homogenous, particularly for the sample treated with KSE 300HV. A slightly higher DR can 

be noticed in the surface zone up to a depth of around 4 mm. 

 

The sample LJ3 is a heterogeneous stone and some changes in the drilling profiles might thus 

be related to this heterogeneity rather than to consolidation treatments. The weathered 

untreated sample exhibits generally an average drilling resistance of around 7.76 N. The 

drilling resistance of the consolidated samples varies around 13.88 N and 12.03 N for KSE 

300HV and KSE 300 respectively. The resulting drilling profiles are not homogenous and 

overlap sometimes with the drilling profile of the untreated sample, which might indicate a 

penetration depth lower than 1 cm. However, the heterogeneity of the stone might be 

responsible for this overlapping. 

 

The weathered sample LUQ2 shows an average drilling resistance of 4.19 N along the entire 1 

cm depth. The resulting drilling resistance profiles after treatment with KSE 300HV and KSE 

300 are homogenous and vary around 12.35 N and 9.31 N respectively. No considerable over-
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strengthening of the superficial zone was induced; only a slightly higher drilling resistance 

can be seen in the first 2-4 mm depth. 

 

Figure 7.21: Drilling resistance profiles of the weathered and consolidated samples in the directions 

parallel and perpendicular to bedding. 
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The requirement for successful consolidation treatments regarding drilling resistance 

measurement implies the increase of mechanical strength in the weathered zone and the 

establishment of a homogenous profile. This requirement seems to be fulfilled for the samples 

LJ2 and LUQ2 treated with either consolidants. The sample LH exhibits no considerable 

consolidation effect, and the heterogeneity of the sample LJ2 makes it difficult to provide a 

reliable evaluation of the effectiveness of consolidation treatments. No considerable 

differences were noticed between the drilling resistance profiles measured in both directions; 

parallel and perpendicular to bedding. 

The drilling resistance profiles were only examined in the first 1 cm depth. For a fully and 

more accurate evaluation of the consolidation treatments, the performance of the consolidants 

along the entire weathering depth needs to be considered. 

 

In summary, both consolidants (KSE 300HV and KSE 300) seem to perform very well on the 

sample LJ2 and LUQ2 through increasing clearly the drilling resistance of the stones without 

causing considerable over-strengthening in the superficial zone and imparting an almost 

homogenous drilling profile along the whole investigated depth. The consolidant that contains 

coupling agent (i.e. KSE 300HV) seems to provide better results compared to KSE 300. 

 

7.2.11 Biaxial flexural strength and moduli of elasticity 

 

Measuring mechanical strength and elastic properties in depth profile is necessary in order to 

evaluate the condition of stone before and after treatment (Snethlage and Wendler, 1995). In 

this study, biaxial flexural strength and static modulus of elasticity were measured on 5 mm 

thick discs cut from drill cores of 5 cm in diameter according to Wittmann and Prim (1983). 

The outer 2 mm surface of the drill core samples was removed to get an even surface and 

several 5 mm thick discs were then cut by a diamond cutting saw with a step loss of 1 mm; 

that is with a net thickness of 5 mm of each cut disc (and considering the 2 mm thick lost 

layer of the outer surface), the first disc corresponds to a depth of 2-7 mm, the second of 8-13 

mm, the third of 14-19 mm, and so on. 

 

As explained earlier, the aim of consolidation treatment is to restore the mechanical strength 

of the weathered zone to the level of the unweathered stone, in order to establish a 

homogeneous profile of mechanical strength from the outer surface of the stone to its 

unweathered core. The outer zone should not be over-strengthened, and particularly the 
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modulus of elasticity should not disproportionately increase, as this may lead to considerable 

stress at the interface of treated-untreated zones (Snethlage, 2008). An over-strengthening of 

the outer zone can be acceptable if certain criteria (see Table 4.1) for mechanical strength and 

elasticity modulus can be applied (Snethlage, 2008). These require that the biaxial flexural 

strength and the modulus of elasticity of the treated zone are lower than 1.5-times their values 

in the untreated unweathered stone (i.e. βBFS,t ≤ 1.5 βBFS,u and Et ≤ 1.5 Eu). Furthermore, the 

modulus of elasticity of the treated zone should at most increase by the same factor as the 

strength, that is Et/ Eu ≤ βBFS,t /βBFS,u. The gradient, in depth profile, of biaxial flexural 

strength and elasticity modulus of the treated zone should approximately be smaller than 0.2 

N/mm²ּmm and 1 kN/mm²ּmm respectively (∆βBFS,t/∆x < 0.2 N/mm²ּmm, and ∆E/∆x ≤ 1 

kN/mm²ּmm). 

 

Biaxial flexural strength (βBFS) 

Figure (7.22) shows the biaxial flexural strength of the studied stones in depth profile before 

and after treatment with KSE 300 and KSE 300HV. The blue slashed line indicates the 

desired homogeneous strength profile βBFS,t = βBFS,u, and the red slashed line represents the 

threshold value βBFS,t = 1.5 βBFS,u that should not be exceeded for successful treatment. 

 

 

Figure 7.22: Biaxial flexural strength in depth profile of the treated and untreated samples. The 
strength value is plotted at the upper depth limit of the tested disc (The first disc, for example, 
corresponds to a depth of 2-7 mm, and the strength value is plotted at 7 mm). 
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For the sample LH, the depth profile of the biaxial flexural strength of the weathered 

untreated stone manifests a loss of mechanical strength due to weathering in the first 1.5 

centimeters in depth. Both consolidants penetrated the stone beyond this depth and increased 

the biaxial flexural strength of the weathered zone close to the level of the unweathered stone, 

producing thereby an almost homogenous strength profile. No over-strengthening was noticed 

in the superficial zone and the increase in strength is clearly below the threshold value that 

should not be exceeded for successful treatment. The KSE 300HV, which contains an 

additional coupling agent, induced a slightly higher increase in strength than KSE 300 and led 

to a more homogenous strength profile. 

 

The strength profile of the weathered sample LJ2 shows a loss of mechanical strength up to 

2.5 cm. The consolidation treatment with KSE 300HV restored the biaxial flexural strength of 

the weathered zone and produced a homogenous strength profile. The consolidant KSE 300 

induced a lower increase (the first 1 cm exhibited even almost no increase) in strength 

compared to KSE 300HV and the resulting strength profile is also less homogenous. 

 

The strength depth profiles of the sample LJ3 showed several variations that are most 

probably related to its observed heterogeneity. This stone is criss-crossed by numerous short 

irregular veins and patches of compact sparry calcite. This heterogeneity makes it difficult to 

provide a reliable evaluation of the effects of consolidation treatments. However, the stone 

seems to be weathered up to an estimated depth of 2.5 cm. The consolidant KSE 300 

increased the biaxial flexural strength only in the outer surface (up to a depth of 1 cm) of the 

stone. On the other hand, KSE 300HV brought about a clear increase in the strength of the 

weathered zone and produced almost homogenous profile of strength along the whole depth 

of weathering. At the depth between 30 mm and 45 mm, the βBFS value is suddenly higher, 

which is more likely attributed to stone heterogeneity rather than to consolidation effect. 

 

The sample LUQ2 exhibits the lowest biaxial flexural strength and the highest degree of 

weathering that extended to a depth of about 2.5-3 cm. Both consolidants penetrated the stone 

up to a depth of 3 cm and brought about a slight increase in mechanical strength. KSE 300HV 

provided better results compared to KSE 300; the resulting strength profile induced by KSE 

300HV is more homogeneous and only slightly lower than the corresponding level of the 

unweathered stone. 
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The treatment with both consolidants led to an increase in the biaxial flexural strength for all 

the stones, without inducing considerable over-strengthening in the outer treated surface. The 

consolidant with coupling agent (KSE 300HV) produced more satisfactory results than KSE 

300; it increased the strength of the stones more than KSE 300 and induced as well a more 

homogeneous strength profile. 

 

The static modulus of elasticity (Estat) 

The modulus of elasticity is actually considered more important for estimating the risk of 

over-strengthening and possible consequent damage (Snethlage and Wendler, 1995; Sasse and 

Snethlage, 1997). The modulus of elasticity of the treated surface zone should not 

considerably exceed that of the untreated sound core; otherwise, there is a risk of scaling as a 

result of over-strengthening (see Table 4.1). Sasse and Snethlage (1997) point out that a 

smooth slope of the E-modulus over the penetration depth is more important than a large 

increase in strength. 

 

The depth profiles of the static modulus of elasticity (Figure 7.23) provide almost comparable 

results to those obtained from the corresponding strength profiles. 

 

Figure 7.23: Static modulus of elasticity in depth profile of the treated and untreated samples. 
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Irrespective of few slight variations, the modulus of elasticity increased in the treated samples 

and a quite homogenous profile of elasticity modulus was almost produced, particularly in the 

samples treated with KSE 300HV. These results confirm again that no considerable over-

strengthen took place in the samples treated by either consolidants (KSE 300 and KSE 

300HV); the threshold value 1.5 Estat (represented by the red line in the figure) was not 

exceeded. 

 

The dynamic modulus of elasticity (Edyn) 

The dynamic modulus of elasticity was measured on the prismatic specimens. The results are 

shown in Figure (7.24). The samples treaded with KSE 300 exhibited a percentage increase in 

dynamic modulus by 23%, 61%, 26%, and 48% for the samples LH, LJ2, LJ3, and LUQ2 

respectively. A larger increase in the dynamic modulus was induced by the consolidant KSE 

300HV with 29%, 150%, 63%, and 168% for LH, LJ2, LJ3, and LUQ2 respectively. 
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Figure 7.24: Dynamic modulus of elasticity before and after consolidation treatments. 

 

The dynamic modulus of elasticity for all weathered and treated samples is markedly smaller 

than the corresponding static modulus. As explained earlier in Section (7.1.1.8), this finding 

disagrees with what is usually expected; microcracks in stone have greater influence on static 
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modulus than on dynamic one, and hence the static modulus of stone is generally assumed to 

be lower. 

 

7.2.12 Ultrasonic velocity (Vp) 

 

Ultrasonic velocity measurements were performed on different specimen forms of the studied 

samples before and after treatment. Ultrasonic velocity was determined in 5 cm cubes (along 

three orthogonal directions) and in 5x2x2 cm prismatic specimens that were treated by 

capillary rise until saturation and then by total immersion. The anisotropy of ultrasonic 

velocity was measured on the cubic specimens from the minimum and maximum velocities 

measured in the different directions. Ultrasonic measurements were carried out using a point-

shaped ultrasonic transmitter vibrating at 46 kHz. On the prismatic specimen, however, 

another ultrasonic transmitter with a frequency of 250 kHz was also used. 

The velocity of ultrasonic waves in depth profile was determined on drill core specimens (5 

cm in diameter), treated by capillary rise for one hour, in two directions; parallel and 

perpendicular to bedding planes. Measurements were carried out with two different ultrasonic 

frequencies, 46 kHz and 350 kHz. 

 

Ultrasonic velocity in cubic specimens (with 46 kHz) 

Figure (7.25) shows the average velocity of ultrasonic longitudinal waves in the cubic 

specimens along three orthogonal directions before and after treatment with KSE 300 and 

KSE 300HV. An increase of ultrasonic velocity in the treated samples can be clearly seen. 

The samples treated with KSE 300 exhibited an increase of ultrasonic velocity by 6%, 9%, 

11%, and 17% for LH, LJ2, LJ3, and LUQ2 respectively. The increase in ultrasonic velocity 

is greater for those samples treated with the consolidant KSE 300HV. The velocity here 

increased by 10%, 26%, 17%, and 22% for the samples LH, LJ2, LJ3, and LUQ2 

respectively. The increase in ultrasonic velocity after consolidation treatment can be attributed 

to the filling of pores with consolidant and the enhancement of linkage between grains (Stück 

et al., 2008). 
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Figure 7.25: Average ultrasonic velocity of treated and untreated limestone samples measured in cubic 
specimens along three orthogonal directions (46 kHz ultrasonic frequency). 

 

The samples treated with KSE 300HV exhibited a greater increase in ultrasonic velocity (360-

756 m/s; 10-26%) than those treated by KSE 300 (216-364 m/s; 6-17%). This is attributed to 

the effect of coupling agent contained in KSE 300HV which acts to enhance the bonding with 

calcite grains. 

 

The naturally weathered samples exhibit a considerable anisotropy in ultrasonic velocity, 

particularly LJ3 and LUQ2 with 29%, and 48% respectively. This anisotropy is attributed to 

the diagenetic and textural properties of the stones. The degree of anisotropy of all the 

samples decreased after consolidation (Table 7.23). This can be attributed to the deposition of 

consolidant in pore space, especially in between bedding planes along which selective 

weathering normally occurs. As a result, the difference between ultrasonic velocities 

measured in the directions parallel and perpendicular to bedding planes, and consequently the 

anisotropy, can be reduced. 
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Table 7.23: The calculated anisotropy in ultrasonic velocity before and after treatment. 

Sample Anisotropy (A) [%] 

UT 7  

KSE 300 HV 5  LH 

KSE 300 4  

UT 10  

KSE 300 HV 6  LJ2 

KSE 300 6  

UT 29  

KSE 300 HV 23  LJ3 

KSE 300 23  

UT 48 

KSE 300 HV 39 LUQ2 

KSE 300 40 

 

Ultrasonic velocity in prismatic specimens (with 46 kHz and 250 kHz) 

For the purpose of investigating the influence of used ultrasonic frequency on the accuracy of 

measurements, ultrasonic velocity was also measured in 2x2x5 cm prismatic specimens in the 

direction perpendicular to bedding with two different ultrasonic frequencies, namely 46 kHz 

and 250 kHz. The measured velocity with both frequencies in the treated and untreated 

samples, along with the percent increase in velocity after treatments, is given in Table (7.24). 

No significant difference between the velocities measured with both frequencies can be 

noticed. In fact, the velocities measured with 250 kHz are slightly higher than those measured 

with 46 kHz. However, the difference lies almost within the accuracy limits of the used 

ultrasonic instrument. 

 

By comparing the results of velocity measurements on the prismatic specimens with those on 

the cubic ones, it can be seen that the measured velocities in the prismatic specimens are 

clearly lower, particularly for the samples LJ3 and LUQ2. This is actually attributed to the 

anisotropy of the samples and the fact that the velocity in the cubic specimens is the average 

velocity along three orthogonal directions whereas that in the prismatic specimens is only 

measured along the direction perpendicular to bedding. 
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Table 7.24: Ultrasonic pulse velocity in untreated and treated prismatic specimens measured using 
ultrasonic frequency of 46 kHz and 250 kHz along one direction (perpendicular to bedding planes). 

Sample 
Vp – 46 kH  

[m/s] 

% Increase 

[%] 

Vp – 250 kHz 

[m/s] 

% Increase 

[%] 

UT 3193 ± 80 - 3215 ± 67 - 

KSE 300 HV 3482 ± 40 9 3526 ± 47 10 LH 

KSE 300 3422 ± 71 7 3416 ± 63 6 

UT 2815 ± 105 - 2964 ± 79 - 

KSE 300 HV 3267 ± 71 16 3458 ± 79 17 LJ2 

KSE 300 3137 ± 74 11 3218 ± 30 9 

UT 2676 ± 115 - 2758 ± 138 - 

KSE 300 HV 3101 ± 94 16 3161 ± 95 15 LJ3 

KSE 300 2897 ± 115 8 3035 ± 79 10 

UT 1333 ± 110 - 1422 ± 86 - 

KSE 300 HV 1619 ± 40 21 1760 ± 56 24 LUQ2 

KSE 300 1553 ± 62 17 1670 ± 79 17 

 

Ultrasonic velocity in depth profile (on drill cores with 46 kHz and 350 kHz) 

Ultrasonic velocity in depth profile was measured on drill cores (5 cm in diameter) before and 

after treatment with KSE 300 and KSE 300HV. To inspect the influence of ultrasonic 

frequency in relation to specimen size on the accuracy of measurements, point-shaped 

ultrasonic transmitter vibrating at 46 kHz and 350 kHz were used. Owing to the pronounced 

anisotropy detected on the studied samples, measurements were performed in the directions 

parallel (Vp//) and perpendicular (Vp┴) to bedding planes. 

 

Measurement with 46 kHz 

Figure (7.26) shows the velocity profiles of the limestone samples measured with ultrasonic 

frequency of 46 kHz before and after treatment. 

 

The sample LH exhibited the least degree of weathering and showed a slight reduction in 

ultrasonic velocity by around 150-200 m/s in the first 1-1.5 cm depth. The velocity depth 

profiles of the weathered and treated samples are almost equivalent with only slightly higher 

velocity of the treated samples in the outermost surface layer. In general, the observed 

consolidation effect was small, but satisfactorily sufficient to produce a homogenous velocity 

profile. 
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Figure 7.26: Ultrasonic pulse velocity in depth profile of the weathered and treated samples measured 
in two directions (parallel and perpendicular to beddings) with ultrasonic frequency of 46 kHz. 
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treatments (Table 4.1); both consolidants penetrated sufficiently into the weathered zone and 

produced a homogenous velocity profile almost comparable to that of the unweathered stone. 

 

The velocity profiles of the sample LJ3 indicate an average reduction in ultrasonic velocity by 

around 250 m/s in the outer surface layer (~2 cm). The consolidation treatments seem to 

compensate for this reduction and to produce homogenous velocity profiles. This sample 

exhibits a noticeable anisotropy in ultrasonic velocity along and perpendicular to bedding 

planes. 

 

The sample LUQ2 was subject to extensive weathering and exhibited a reduction in ultrasonic 

velocity up to 400 m/s to a depth of more than 3 cm. The sample is characterized by a 

noticeable anisotropy. Both consolidants penetrated sufficiently into the stone and restored the 

velocity to its value in the unweathered stone, producing a homogenous profile. The 

consolidant KSE 300HV induced a relatively higher increase in ultrasonic velocity, 

particularly in the direction perpendicular to bedding planes. 

 

Measurement with 350 kHz 

The velocity profiles of the weathered and treated samples measured using 350 kHz are 

shown in Figure (7.27). 

 

For sample LH, the obtained velocity profiles are comparable to those obtained using the 

transmitter vibrating at 46 kHz. However, the reported velocity values with this frequency are 

slightly higher. The increase in velocity after treatment is small and the effect of consolidation 

is not that noticeable. 

 

The velocity profiles of the sample LJ2 indicate again a weathering depth of 3 cm. Compared 

to the results obtained with 46 kHz, both consolidants seem to induce a slightly lower increase 

in ultrasonic velocity. Furthermore, the consolidant KSE 300 seems to penetrate up to a depth 

of around 1.5 cm only. 

 

For the sample LJ3, the velocity profiles obtained with this frequency are almost similar to 

those obtained using 46 kHz. The stone is weathered to a depth of around 2.5 cm with an 

average loss of velocity of around 300 m/s in the weathered zone. Both consolidants, 
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particularly KSE 300HV, penetrated the weathered stone sufficiently and enhanced its 

ultrasonic velocity. 

 

 

Figure 7.27: Ultrasonic pulse velocity in depth profile of the weathered and treated samples measured 
in two directions (parallel and perpendicular to beddings) with ultrasonic frequency of 350 kHz. 
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The sample LUQ2 showed comparable results for both ultrasonic frequencies. However, the 

ultrasonic velocities measured with 350 kHz are slightly higher than those obtained by 46 

kHz. The resulting ultrasonic profiles indicate a weathering depth of 3.5 cm and a slightly 

deeper penetration and a better consolidation behavior of KSE 300HV compared to KSE 300. 

 

The results obtained with both ultrasonic frequencies are comparable. The observed variations 

in the measured velocities with both ultrasonic frequencies are not significant to speak of a 

clear influence of the used ultrasonic frequency in relation to specimen size on the accuracy of 

measurements. However, it has to be emphasized that this does not generally mean that the 

used ultrasonic frequency has no influence on the accuracy of measured velocities. More 

specific studies with homogenous samples are needed in order to thoroughly explore the exact 

influence of the used ultrasonic frequency, in light of the dimensions of investigated 

specimens, on the accuracy of velocity measurements. 

 

In summary, the velocity profiles of the untreated weathered samples allow the determination 

of the thickness of weathering zone. The depth of weathering is estimated to be around 1.5 

cm, 3 cm, 2.5 cm, and 3-3.5 cm for LH, LJ2, LJ3, and LUQ2 respectively. The criterion for 

successful treatment requires the increase of ultrasonic velocity up to the level of unweathered 

stone and the establishment of a homogenous profile from the outer surface of the stone to its 

interior (Table 4.1). Irrespective of some small variations, this requirement was generally 

fulfilled for the treatments with both consolidation products. Both consolidants penetrated 

into the weathered zone and reached the sound core of the stone, increasing thereby the 

velocity of ultrasonic waves in the weathered part. The resulting velocity profiles, particularly 

for KSE 300HV, are almost homogenous and the consolidation treatments can be considered 

successful. 
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8 Summary and conclusions 
 

The aim of this study was to investigate natural and consolidated archeological stone samples 

from north and northeast Jordan with non-destructive ultrasonic velocity validated by 

physico-mechanical tests. The work entailed the study of the deterioration of the stone 

samples upon accelerated weathering and the assessment of their durability as well as the 

evaluation of the effectiveness of consolidation treatments on naturally weathered samples. 

 

The selected stone samples were characterized by physico-mechanical methods and their 

microstructure was studied. Consequently, the possible geological formations of the selected 

stone samples were determined. If compared with petrographic characteristics of stone in 

local quarries, this information could help to determine the most probable quarry sources of 

the stones. This knowledge is extremely important for the assessment of the weathering 

condition of the samples in reference to the corresponding fresh stone as well as for selection 

of restoration materials. 

 

The study of the changes of the properties of the sound stone samples upon artificial 

weathering (by salt crystallization test for limestone and basalt, and thermal treatment for 

marble) helps to understand their weathering behavior and to evaluate their resistance to 

deterioration. The studied limestone samples exhibited weathering in form of granular 

disintegration and pitting or cracking. The damage induced in the stones after salt 

crystallization test was evaluated by two indicators; total dry weight loss of stone material 

(DWL) and change in fracture density (∆FD). On the one hand, the petrophysical properties of 

the stones seemed to be very important for determining their susceptibility to salt damage. 

The proportion of micropores and the water absorption capacity (or free porosity) of the 

stones were the most important parameters that determined the induced damage in terms of 

DWL. On the other hand, the mechanical and elastic properties were not directly correlated 

with stone damage indicated by loss of stone material. These properties were instead more 

related to the fracturing behavior of the stones. The degree of fracturing could be estimated by 

non-destructive ultrasonic velocity measurements in dry and water-saturated conditions. This 

is particularly important for stones with porosity in forms of crack such as marble. 

 

Based on these results, durability estimators were developed to assess the susceptibility of 

stone to weathering. These estimators can be used for the selection of suitable restoration 
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materials as well as for the testing of stone quality and the selection of building materials in 

the field of architecture and civil engineering. The size of the samples used to develop these 

estimators was, however, small. Further research with a larger number of samples and various 

stone varieties would be required for confirming the results. 

 

The effectiveness of two ethylsilicate-based consolidation products was evaluated on 

naturally weathered limestone samples by studying the changes in stone properties as 

compared to the untreated unweathered stone. Furthermore, the effect of contained coupling 

agents in the consolidation products for particular applications on limestone was examined. 

The consolidation treatments seemed to perform properly on the stones, especially for the 

product with coupling agent. The results from ultrasonic velocity measurements agreed 

satisfactorily with those from traditional physico-mechanical tests and this technique proved 

to be effective for evaluating the success of consolidation treatments. 

 

This work serves as a base for future studies on the assessment of weathering condition of 

archaeological Jordanian stone. Classifications schemes for assessing the weathering 

condition of stone can be established by correlating the ultrasonic velocity values with the 

values of other suitable stone properties for a particular stone in fresh and various weathering 

conditions. Non-destructive ultrasonic velocity measurements could thus be sufficient to 

provide reliable evaluation of the weathering state of stone and to establish a priority list for 

conservation interventions. 

 

As mentioned in this study, little work has been so far done to characterize archeological 

stone in Jordan. It is, therefore, recommended to conduct more research for the 

characterization of Jordanian archaeological stones and their historical quarries. This is a 

primary knowledge for any further investigation of the stones. 

 

The present study provides additional evidence with respect to the validity of the use of non-

destructive ultrasonic technique for the investigation of stone. The velocity of ultrasonic 

waves was able to detect the changes in stone structures induced by weathering and 

consolidation treatments on laboratory samples. The application of this technique for the 

investigation of Jordanian stone in situ would be very interesting. 
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In this study, the used ultrasonic frequency, in relation to specimen’s size, seems to have no 

significant implications on the accuracy of measurements. However, this point was roughly 

addressed here; a thorough investigation of this issue is strongly recommended. 
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