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1
Introduction

In order to assure a high level of process monitoring performance, researchers
and practitioners frequently use many statistical methods called Statistical
Process Control (SPC). For many decades, the primary use of SPC methods
was focused on industrial quality control applications. However, with recent
increase of information technology systems, new areas of SPC applications
have emerged. Examples of new applications range from video surveillance
systems (Elbasi et al. (2005)), network intrusion detection (Park (2005)) to
health and safety management (Benneyan et al. (2003)). The introduction of
SPC methods to these new areas, the increase of processes complexities and
the increase of control improvement requirements, has led to the necessity of
enhancing classical SPC procedures. Indeed, in order to apply classical SPC
methods, very restrictive assumptions that are usually difficult to be satis-
fied in several process control applications are imposed. To overcome these
limits, introduction of advanced computational intelligence tools into SPC
has lately witnessed lot of interest. The use of these techniques can allow
managing and monitoring of complex processes with high accuracy. More-
over, computational intelligence methods can overcome several restrictions
and provide better process control results. Some of the most recent promis-
ing computational intelligence methods are Kernel methods. These methods
have many advantages since they allow learning the particular structure of a
model from data, can handle non linear relationships and could be applied
in a number of off-line and on-line process assessments. Moreover, Kernel
methods are very flexible and have various forms to handle different prob-
lems such as one-class classification, data reduction and regression problems.
Therefore, this study investigates development of several kernel methods in
order to provide advanced SPC procedures that can be applied to several
processes where assumptions of classical methods are not satisfied. Main
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CHAPTER 1. INTRODUCTION

developments of kernel methods for SPC will be carried through three meth-
ods namely Kernel Principal Component Analysis (KPCA), Support Vector
Regression (SVR) and Support Vector Domain Description (SVDD). In this
section first an insight into SPC will is given, then an overview of the orga-
nization of this dissertation is exposed.

1.1 Statistical Process Control

As stated by Montgomery (2005), SPC is a collection of tools that help
achieving process stability and improving capability through reduction of
the variance. This objective is mainly obtained by quick detection and elimi-
nation of unusual disruptions and faults. Formally speaking, a fault is defined
as a departure of a calculated statistic from an acceptable range. Therefore,
fault detection is considered as a hypothesis testing, where one should decide
whether the process is in-control or out-of-control. To distinguish between
these two states, one should distinguish between common causes of variations,
that are a natural change of the process and that can not be eliminated, and
unusual shocks and disturbances that should be removed. Usually, this goal
is achieved through the use of control charts. As defined by Stapenhurst
(2005), a control chart is a plot of process characteristics usually through
time with statistically determined limits. The control chart summarizes all
provided process information into a single index that gives an idea about the
quality of the operating system. Then, control limits of this index are used
to decide if faults are present in the process. Figure 1.1 illustrates one of the
most frequently used control charts which is called Hotelling’s T2 chart.

The construction of any control chart includes two distinct phases (Woodall
(2000)). In phase I, when the first observations are available, one should de-
cide whether the process is in control or not. In this phase, the role of the
engineers and practitioners is very important. The process should be studied
in order to define and give an idea about the degree of the process quality.
The data collected during this phase are then analyzed in an attempt to
define what is meant by a process being statistically in control. This fact is
achieved by determining or estimating process parameters and constructing
control chart limits. In phase II, the control chart is used to monitor the
process. This is performed by testing whether the process remains in con-
trol when future observations are available. In certain cases some changes

14



1.2. OUTLINE OF THE DISSERTATION

Figure 1.1: Illustration of Hotelling’s T2 control chart

in the process characteristics can be considered as normal and therefore the
in-control state conditions are re-estimated.

1.2 Outline of the Dissertation

Despite the wide use of classical control charts there are some problems re-
lated to their application in real situations. In fact, usually assumptions to
different models such as linearity are imposed. Also, conventional charts are
not adequate for analyzing large data sets and dealing with real time pro-
cesses since they are basically non-adaptive procedures. This control strat-
egy does not suit non-stationary continuous systems that tend to drift due
to various phenomena as the process may undergo changes. This drift may
change the relationship between variables and could cause control chart to be-
come invalid. Therefore, the first part of this dissertation is dedicated to the
development of a monitoring procedure applied to different non-stationary
processes. The proposed chart is based on an adaptive KPCA method that
allows modelling of non-linear process behaviour without the need to impose
a predefined structure.
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CHAPTER 1. INTRODUCTION

Moreover, conventional charts stipulate that process observations should
be independently distributed. However, due to advances made in process
automation, violations of this assumption are frequent and process variables
are usually autocorrelated. Indeed, high sampling collection often produces
series of observations that are close enough to be dependent. As mentioned
by Psarakis and Papaleonida (2007), autocorrelation is present in most con-
tinuous systems. This violation could affect the performance of control charts
and one of its typical effect is the increase of false alarms rate. An approach
to overcome this issue is the use of residuals control charts. These charts
model the autocorrelation structure and then use residuals, which would ap-
proximately be independent, for process monitoring. However, time series
modelling could be difficult in many applications because of the specification
problem especially for nonlinear processes. Thus, the second part of this dis-
sertation is devoted to the development of residuals control charts based on
SVR method that allow monitoring of nonlinear systems without requiring
lot of knowledge about the process structure.

In addition to the above mentioned assumptions, most conventional charts
impose certain probability distribution and in most cases a normal distribu-
tion is used. However, in practice this assumption rarely holds. Moreover, for
complex systems it is usually difficult to determine which distribution is ap-
propriate to a given process. Another issue that is not enough investigated in
the literature is the monitoring of processes that run under multiple operating
modes. Indeed, classical control charts assume that the underlying process
is operating only under one nominal operating region. However, in many
cases systems can run under several modes because of product changes, set-
point changes and manufacturing strategies (Zhiqiang and Zhihuan (2008)).
Therefore, the third part of this dissertation investigates the development of
local SVDD based control chart to monitor such systems.
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Part I

Adaptive Kernel Principal
Components Analysis for

non-stationary process control
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Many studies have shown that adaptive control charts, in which one or
more design parameters vary in real time during the production process,
have superior statistical and economic performances, when compared to tra-
ditional control charts (Magalhaes et al. (2006)). The statistical design of
adaptive classical charts has only focused on adapting few parameters of the
chart such as the upper percentage factor that is used for determining the
limit. Adaptive classical control charts allow changing only few parameters of
the chart and not those related to process structure. For this reason several
researchers proposed adaptive techniques to better suit on-line monitoring
and construct online control charts. Development of adaptive data reduc-
tion techniques for process monitoring has mostly concerned linear Principal
Components Analysis (PCA). In fact, Li et al. (2000) proposed an Adaptive
Principal Components Analysis (APCA) algorithm for an adaptive process
monitoring by introducing an efficient approach to update the correlation
matrix, the number of principal components and the confidence limits recur-
sively. To deal with changing process conditions, Lee et al. (2005) developed
adaptive multiway PCA models to update the covariance structure at each
scale. The proposed adaptive multiscale method is successfully applied to a
sequencing batch reactor. Choi et al. (2006) introduced recursive updated
PCA along with two monitoring metrics, Hotelling’s T2 and the Q statistic,
for monitoring time-varying processes. However, PCA assumes that the rela-
tionship between variables is linear and therefore its application to nonlinear
processes can provide poor results. Thus, many researchers have proposed
the use of Kernel Principal Components Analysis (KPCA) method in order
to monitor such processes.

Lee et al. (2004) applied KPCA technique as a new nonlinear process
monitoring technique for fault detection in two multivariate processes. Au-
thors showed that the proposed approach is effective in capturing the non-
linear relationship in the process variables and that it has superior process
monitoring performance compared to linear PCA. Hoffmann (2007) investi-
gates the use of KPCA for novelty detection and demonstrated that it has a
competitive performance on two-dimensional synthetic distributions and on
two real-world data sets. Ruixiang et al. (2007) present a novel approach,
called Evolving Kernel Principal Component Analysis, to fault classification
based on the integration of KPCA with an evolutionary optimization algo-
rithm. The application in fault diagnosis to a large-scale rotating machine
shows that the proposed method is efficient in discovering the optimal nonlin-
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ear features corresponding to real-world operational data. Cui et al. (2007)
improved KPCA for fault detection in two aspects. Firstly, a feature vector
selection scheme based on a geometrical consideration is given to reduce the
computational complexity of KPCA. Secondly, a KPCA plus Fisher Discrimi-
nant Analysis scheme are adopted to improve the fault detection performance
of KPCA. Their simulation results show the effectiveness of these improve-
ments for fault detection performance in terms of low computational cost
and high fault detection rate.

Recently Liu et al. (2009) proposed application of adaptive KPCA for on-
line process monitoring called Moving Window Kernel Principal Components
Analysis (MWKPCA). Results showed that applying such models provides
good detection capabilty. However, in order to train KPCA continually, the
approach adopted by Hoegaerts et al. (2007) is used. This adopted method
allows introducing and to eliminate only one observation. Also because of
this fact the window size of KPCA is assumed to be constant. However, in
many practical situations not only one new observation but a block of new
data is present. Moreover, sometimes it is of interest to freeze the model for
certain time or to eliminate a number of observations that do not characterize
the process states. Therefore, in this part, to have a flexible control strategy,
an adaptive block KPCA technique is applied in a monitoring procedure with
a variable window size model. Also, a method to recursively determine both
window size and chart control limits is proposed. Moreover, we present an
efficient adaptive KPCA method that allows introduction or elimination of
a data block at the same time. When a block of data need to be introduced
in the model, this adaptive KPCA could overcome the computational cost of
storing and manipulating the kernel matrix and it is faster than batch com-
putation of KPCA and adaptive KPCA of Hoegaerts et al. (2007). Then,
a comparison between developed adaptive KPCA and different PCA control
charts is performed.

This Part of the thesis is outlined as follows: The first chapter presents an
overview of linear PCA and KPCA methods and discusses principle of PCA
based control charts along with the proposed monitoring chart. Chapter 2
proposes a fast adaptive block KPCA method and evaluates its computa-
tional cost and its accuracy. Chapter 3 is devoted to the application and
analysis of the proposed chart to simulated data and to a real case study.
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2
Process Monitoring using PCA models

This chapter is organized as follows: First section gives an overview of PCA
method. Then, the nonlinear Kernel PCA method is presented in Section
2. Section 3 exposes the way to construct Kernel functions and highlights
most used functions. In Section 4, PCA and KPCA based control charts
are discussed. Section 5 outlines a proposition for development of a variable
window size adaptive KPCA chart for non-stationary process monitoring.
Eventually, Section 6 resumes this chapter.

2.1 Principal Components Analysis

As stated by Montgomery (2005), conventional multivariate control charts
are effective as long as the number of process variables is not very large.
When the number of controlled variables increases, classical control charts
lose their effectiveness. Therefore, methods which resume most important
process information in few variables should be used. One of the most widely
used methods to reduce a complex data set to a lower dimension is PCA. The
objective of PCA method is to compute the principal components y1, ..., ym
of the original variables x1,...,xm by finding a set of linear combinations such
that

yi = wi1x1 + ...+ wimxm ∀ i = 1, ..,m. (2.1)

However, the hope is that only a reduced set of p principal components
approximates the original space. Following Hotelling (1933), the p principal
axes are those orthonormal axes onto which the variance retained under
projection is maximal. Let X be an (m × n) matrix of the centred original
variables, n being the number of observations, y1 being the first principal
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CHAPTER 2. PROCESS MONITORING USING PCA MODELS

component to find and w = [w1...wm], a column vector with size m, then the
empirical variance of y1 is calculated as follows,

V (y1) = V (wTX),

=
1

n
wTXXTw,

= wTSw, (2.2)

where S is the empirical covariance matrix. Then, we choose w to maximize
wTSw while constraining w to have unit length such that,

Max wTSw (2.3)

wTw = 1.

Using the method of Lagrange multipliers, we obtain

L(w, α1) = wTSw − α1(wTw − 1), (2.4)

where α1 is the lagrange multiplier.

Solving this optimization problem, we can easily show that

Sw = α1w. (2.5)

This fact clearly shows that α1 and w are respectively an eigenvalue and
an eigenvector of the covariance matrix S.

2.2 Kernel Principal Components Analysis

Since basic PCA performs well only on linear processes, a nonlinear PCA
technique for estimating nonlinear problems, called kernel PCA, was intro-
duced by Schölkopf et al. (1998). The basic idea of KPCA is to first map the
input space into a feature space via nonlinear mapping and then to compute
the principal components in that feature space. This stipulates that the data
can always be mapped into a higher-dimensional space in which they vary
linearly. As a result, KPCA performs a nonlinear PCA in the input space.
Figure 2.1 illustrates the principle of this method.
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2.2. KERNEL PRINCIPAL COMPONENTS ANALYSIS

Figure 2.1: Basic idea of Kernel PCA

First, we note that KPCA is a basis transformation of the empirical co-
variance matrix of the transformed data xi ∈ Rm, i = 1, .., n, defined as

C =
1

n

n∑
i=1

φ(xi)φ(xi)
T , (2.6)

where it is assumed that
n∑
i=1

φ(xi) = 0 and φ(.) is a nonlinear mapping. To

find the principal components, we solve the eigenvalue problem in the feature
space such that

λµ = Cµ, (2.7)

where eigenvalues λ ≥ 0, µ is a vector of eigenloadings and there must exist
coefficients γi , i = 1, .., n, such that

µ =
n∑
i=1

γiφ(xi). (2.8)

Equation (2.7) is equivalent to

λ < φ(xk), µ >=< φ(xk), Cµ > ∀ k = 1, .., n. (2.9)
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Combining Equations (2.6), (2.8) and (2.9), we obtain for k = 1, ..., n,

λ

n∑
i=1

γi < φ(xi), φ(xk) >=
1

n

n∑
i=1

γi

〈
φ(xk),

n∑
j=1

φ(xj) < φ(xj), φ(xi) >

〉
.

(2.10)

Calculating the feature vectors φ(xi) can be computationally expensive
or even impossible if the dimension of the feature space is high or infinite.
Clearly this approach is not feasible and there is a need to find a computa-
tionally cheaper way. Fortunately, all the calculation involving the φ(xi)’s
appear as inner products. Instead of explicitly mapping the vectors and then
computing the inner product, there exist under certain condition a function
K(xi, xj) whose value gives the inner product < φ(xi), φ(xj) >. To show this
let us consider the map φ : R2 −→ R3,

φ(x) = φ(X1, X2),

= (X2
1 ,
√

2X1X2, X
2
2 ).

(2.11)

Thus, we have

< φ(x), φ(x′) > = < φ(X1, X2), φ(X ′1, X
′
2) >,

= < (X2
1 ,
√

2X1X2, X
2
2 ), (X ′21 ,

√
2X ′1X

′
2, X

′2
2 ) >,

= (X1X
′
1 +X2X

′
2)2,

= < x, x′ >2 .
(2.12)

As a consequence, when using a function K =< x, x′ >2, the inner prod-
uct is computed efficiently by saving lot of calculation. In the literature the
function K(., .) is usually called a Kernel and can be considered as a measure
of similarity. Then, the inner product < φ(xi), φ(xj) > of Equation (2.10) is
changed by the kernel function K(xi, xj) and abbreviated by Kij as follows,

λ

n∑
i=1

γiKik =
1

n

n∑
i=1

γi

(
n∑
j=1

KkjKji

)
∀ k = 1, .., n. (2.13)

Equation (2.13) can be written as follows,
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λKV =
1

n
K2V , (2.14)

If K is invertible, then λV =
1

n
KV , (2.15)

where V = [γ1, ..., γn]T and K is an (n× n) matrix defined by Kij.

Now, applying PCA can be realized by solving the eigen-problem of Equa-
tion (2.15). This yields eigenvectors V 1, ..., V n with eigenvalues λ1 ≥ ... ≥ λn.
In order to insure the normality of µ1, ..., µn, (Equation (2.7)), the corre-
sponding vectors V 1, ..., V n should be scaled such that

< µl, µl >= 1, ∀ l = 1, .., n (2.16)

Using Equation (2.8) this translates to

n∑
i=1

n∑
j=1

γliγ
l
j 〈φ(xi), φ(xj)〉 = 1, l = 1, .., n (2.17)

n∑
i=1

n∑
j=1

γliγ
l
jKij = 1, l = 1, .., n (2.18)〈

V l, KV l
〉

= 1, l = 1, .., n (2.19)

Using Equation (2.15), V 1, ..., V n should be normalized such that

nλl
〈
V l, V l

〉
= 1, l = 1, .., n (2.20)〈

V l, V l
〉

=
1

nλl
, l = 1, ..., n (2.21)

The first p principal components (tz) of a test vector x are then extracted
by projecting x onto eigenvectors V 1, ..., V p, where,

tz =
n∑
i=1

V z
i K(xi, x), z = 1, ..., p. (2.22)

Because the kernel function is known as a measure of similarity, KPCA
can work very well for process monitoring since the goal is to distinguish
aberrant observations from others. Next section examines the necessary con-
ditions that must be satisfied by a valid kernel function, along with providing
some well known kernels.
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2.3 Construction and examples of Kernel func-

tions

2.3.1 Condition of kernel functions

A kernel function is a function that returns the inner product between images
of two inputs in some feature space. Which function K(., .) corresponds to a
dot product in some feature space is given by the following condition given
by Mercer (1909).

Let G a matrix containing measures of similarity of a given training set,

G =


k11 k12 ... k1n

k21 k22 . .
. . . .
kn1 kn2 . knn

 (2.23)

This matrix is called Gram matrix.

Theorem: The function K(x, x′):χ× χ −→ R is a kernel if and only if

G = (K(xi, xj))i,j=1:n, (2.24)

is non-negative definite for all finite sequence of points x1, ..., xn of the interval
χ. That is, for any non-zero vector λ ∈ Rn, λTGλ ≥ 0.

2.3.2 Standard kernel functions

In practice it is difficult to check if some particular kernel satisfies Mercer’s
conditions, since these conditions should hold for every non-zero vector λ ∈
Rn. For this reason, usually some well known kernels are used. In this section
we present the most widely used functions.

Dot-product type Kernels

A function of dot-product type is given by k(x, x′) = k(< x, x′ >). Table 2.1
gives some well known dot-product kernel functions.
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Table 2.1: Standard dot-product type kernel functions

Name Formula Parameters
Homogeneous polynomial < x, x′ >p p ∈ N
Inhomogeneous polynomial (< x, x′ > + λ)p p ∈ N, λ ∈ R+

Sigmoid tanh(λ+ β < x, x′ >) λ ∈ R+, β ∈ R+

Translation Invariant type kernel

A translation invariant kernel has the following form: k(x, x′) = k(x − x′).
Table 2.2 provides some well known translation invariant kernel functions.

Table 2.2: Standard translation type kernel functions

Name Formula Parameters

Exponential Radial exp(
−‖x− x′‖

σ2
) σ ∈ R∗

Gaussian Radial exp(
−‖x− x′‖2

σ2
) σ ∈ R∗

Anisotropic Radial exp(
−(x− x′)

∑−1(x− x′)t

σ2
) σ ∈ R∗∑−1 is the inverse of the covariance matrix.

This study will concentrate on the use of the Gaussian kernel function. In
fact, Evangelista et al. (2007) stated that this function is a powerful kernel
used in pattern recognition. Moreover, it is employed with several heuristics.
Bu et al. (2009) mentioned that due to its superior property and versatility,
the Gaussian kernel has been widely used in practice.

2.4 PCA and KPCA based control charts

We now present two monitoring statistics based on KPCA, named the Squared
Prediction Error (SPE), known as the Q statistic, and Hotelling’s T2 statistic.
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2.4.1 Error based PCA control chart

For a new observation xnew, using linear PCA, the Q statistic is defined as
follows,

Q = xnewx
T
new − (xnewP )(xnewP )T , (2.25)

where xnew a row vector and P is the matrix of PCA eigenloadings. The
KPCA based monitoring method is similar to that using PCA in that the
Q statistic in the feature space can be interpreted in the same way. The Q
statistic is defined by Choi et al. (2005) as follows

Q = |k̄(xnew, xnew)− k̂(xnew, xnew)|, (2.26)

= |k̄(xnew, xnew)− ttT |, (2.27)

where k̄ is the scaled kernel product, k̂ the projection of k̄ into KPCA model
obtained from Equation (2.15) where

t = [k̄(xnew, x1), .., k̄(xnew, xn)]Vnp, (2.28)

where Vnp = [V 1, ..., V p].

The scaling is based on mean centering and variance scaling. Mean cen-
tering is performed as follows

k̃ij = kij −
1

n

n∑
j=1

kij −
1

n

n∑
i=1

kij +
1

n2

n∑
j=1

n∑
i=1

kij, (2.29)

whereas the variance scaling is as next,

k̄ij =
k̃ij

trace(k̃..)/(n− 1)
. (2.30)

The Q statistic indicates the extent to which each sample conforms to
the PCA model. It is a measure of the amount of variation not captured by
the principal component model. The upper limit for the Q statistic is given
by

Qlimit =
θ2

2θ1

χα

(
2θ2

1

θ2

)
, (2.31)
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where θ1and θ2 are the sample mean and variance of Q values, and χα is the
chi-squared distribution with risk level α (Nomikos and MacGregor (1995)).

For slowly time-varying processes, the confidence limit for detection in-
dices changes with time, making adjustment of this limit necessary for on-line
monitoring. For the Q statistic, parameter values of θ1, θ2 are recursively up-
dated using the p largest eigenvalues after each collection of new data block
making Qlimit time-varying. Also, a forgotten factor for Q is introduced. This
fact is performed by excluding the influence of the oldest Q value from the
mean and variance values, θ1 and θ2.

2.4.2 Hotelling’s T2 based PCA control chart

Hotelling’s T2 statistic allows measuring the distance of new observations to
the KPCA model. This statistic is calculated as follows,

T 2 = tΩ−1
p tT . (2.32)

where t is obtained by Equation (2.22) and Ωp is a diagonal matrix of eigen-
values λ1, ..., λp.

Since the principal components of non-stationary nonlinear processes may
not follow a multivariate normal distribution (Liu and Wu (2006)), the con-
trol limit of T2 can be calculated by the kernel density function estimator

f(x) =
1

ns

n∑
i=1

Φ(
x− T 2

i

s
), (2.33)

where s is a smoothing parameter and Φ is a gaussian function. The detailed
selection of s can be found in Wang (1995). Using the cumulative distribution
function F (x), the control limit of T2 control chart are then calculated by
the (1− α)th quantile of T2, such that

Tlimit = F−1(1− α). (2.34)

Since for non-stationary processes the T2 statistic can vary with time,
this method allows adjustment of the confidence limit of T2 by reestimating
the cumulative density function of Equation (2.34) and therefore adapting
the Tlimit.
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2.5 Adaptive variable window KPCA for non-

stationary processes

In order to have an efficient adaptive control chart, the definition of the win-
dow size which gives information about the training data is also an important
factor. A use of constant window size is very restrictive and sometimes pro-
vides poor performance because it may imply a use of corrupted training
samples especially for processes that undergo several changes. For certain
applications it is of interest to use a variable window size for training of
KPCA model. The idea here is to train the model in regions which better
characterize the actual state of the process. By this way the window size
can grow or decrease depending on the states of the process. An approach
to determine this window size H is to use the information contained in Q
and T2 statistics. If certain old observations imply an increase of the stan-
dard deviation of the Q or T2 statistics then this would mean that these
late observations differ from the actual process state and therefore better
to eliminate them from the model. We also note that other indexes than
the standard deviation of Q or T2 can be used. Let us suppose that the Q
statistic is used, then the estimated varying window size can be implemented
by the following algorithm. Let H denote the actual window size, Hmax and
Hmin the maximal and the minimal window sizes that can be used, h, k and
w (typically w = 5) are the number, the maximal number and the size of
samples to be eliminated. Table 2.3 shows how to determine KPCA model
size. Notice that Table 2.3 includes updating and downdating.

Table 2.3: Algorithm to determine KPCA window size
H ← H+ size(new data)
for h = 1 : k

SD(h)← std(Q((w(h− 1) + 1) : H))
end
h← Index( min (SD))
H ← H − (h− 1)× w
if H > Hmax

H ← Hmax

elseif H < Hmin

H ← Hmin
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In addition to the window size, to have an adaptive chart, not affected
by integration of out-of-control variables, a condition for updating KPCA
model, Qlimit and Tlimit values is introduced. This fact lets the model avoid
contamination by observations which could make the model insensitive to
faults. Moreover, because the model can produce false alarms, specially in
the case of non-stationary process, where sometimes an out-of control signal
can characterize a change in the relationship between variables and not a
proper fault, a margin of acceptability of observations is applied. By this
way the adjustment condition is activated only if Q or T 2 values of the
observation do not overstep the value of ηQlimit or ηTlimit, where η > 1. In
this study a value of η is taken to be equal to 1.1. The main algorithmic step
of the proposed adaptive window kernel principal component chart is shown
in Table 2.4.

Table 2.4: Algorithm of Adaptive Window KPCA control chart
Step 1: Given an initial standardized block of data do:

Step 1.1: Set PC numbers and kernel parameter.
Step 1.2: Construct the kernel matrix K and scale it.
Step 1.3: Estimate the initial KPCA model.
Step 1.4: Calculate the initial control limit of the monitoring statistic.

Step 2: For a new block of data of size N, do:
Step 2.1: Compute knew = (k1, ..., kN),

ki = [ki,1, ..,ki,n+i−1], (n is the actual number of observations of KPCA model).
Step 2.2: Obtain the scaled kernel vector k̄new .

Step 2.3: Project k̄new into KPCA and obtain k̂new.
Step 2.4: Calculate the monitoring statistic for every observation i = 1, ..., N .
Step 2.5: Test if each observation is out-of-control as in section 2.4.

Step 3: If updating condition is satisfied, do:
Step 3.1: Adapt the limit of the monitoring statistic using (2.31) and (2.34).
Step 3.2: Determine the new window size as in Table 2.3.
Step 3.3: Adapt KPCA model as in chapter 3.

Step 4: Return to Step 2.
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2.6 Conclusion

This chapter presented an overview of PCA and KPCA methods and intro-
duced linear and kernel PCA based control charts. To control non-stationary
processes, an adaptive control procedure that allows adjustment of KPCA
model, the confidence limits and the window size is proposed. The pro-
posed strategy requires that a continuous training of KPCA model should
be performed. Next Chapter proposes a fast updating procedure which eases
introduction of new block of data into previous KPCA model.
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3
Fast adaptive Kernel Principal

Components Analysis

Analysis of complex high dimensional systems, as in image processing, com-
puter vision recognition or fault detection issues, usually requires the use of
large datasets. However, in order to obtain a KPCA model from a database
that contains n observations and using a standard Singular Value Decompo-
sition (SVD) method, a computation cost of order O(n3) is needed. This fact
can limit the use of KPCA for online processes where continuous observations
are provided which need to be fastly integrated in the model. Therefore, to
allow a better fast updating procedure, Hoegaerts et al. (2007) proposed a
method to track the dominant KPCA components with reduced computa-
tion costs. Indeed the proposed algorithm requires only O(n2) operations
to train KPCA model. But to update KPCA model, this algorithm has the
disadvantage of allowing only the introduction of one observation at a time.
However, in many online processes data are provided by blocks of new ob-
servations. Suppose there are N observations that require to be integrated
in KPCA model, then the algorithm of Hoegaerts et al. (2007) needs to
repeat N times the training of KPCA which requires O(n2), .., O((n + N)2)
operations. In order improve the updating strategy, this chapter proposes an
extension of Hoegaerts et al (2007) algorithm to quickly update KPCA model
as soon as blocks of data are present using an algorithm that requires reduced
computation cost. This chapter provides an overview of the proposed fast
adaptive KPCA of dominant principal components.

This chapter is organized as follows: The first section presents an overview
of the way to update, downdate and downsize the KPCA model. Section 2
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provides complexity analysis of the proposed algorithm. In Section 3 appli-
cation and comparison of different adaptive methods is investigated.

3.1 Adapting KPCA model

3.1.1 Group updating of KPCA

Suppose that we have, for an initial kernel matrix Kn, the eigenvalue matrix
ΩP and the corresponding eigenvector matrix Vnp of the first p principal
components such that

Kn ≈ VnpΩPV
T
np and Kn =

 K11 ...... K1n

. .
Kn1 ...... Knn

 . (3.1)

The key idea is to update ΩP and V(n+N)p for each new sample group of
size N using Model (3.1) by adding the fact that the new kernel matrix gets
N additional rows and columns as shown below

Kn+N =


K11 ...... K1n

. . .
Kn1 ...... Knn

K1(n+1) .. K1(n+N)

. .. .
Kn(n+1) .. K1(n+N)

K(n+1)1 . K(n+1)n

. . .
K(n+N)1 . K(n+N)n

 K(n+1)(n+1) . K(n+1)(n+N)

. . .
K(n+N)(n+1) . K(n+N)(n+N)



 ,
(3.2)

Let αT =

K(n+1)1 .. K(n+1)n

. .. .
K(n+N)1 .. K(n+N)n

and β =

K(n+1)(n+1) .. K(n+1)(n+N)

. .. .
K(n+N)(n+1) .. K(n+N)(n+N)

 ,
then

Kn+N =

[
Kn α
αT β

]
, (3.3)

≈
[
VnpΩPV

T
np 0

0T 0

]
+

[
O α
αT β

]
, (3.4)
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where 0, 0 and O are respectively an n ×N, N ×N and n × n matrices of
zeros. First matrix of Equation (3.4) is derived as follows[

VnpΩPV
T
np 0

0T 0

]
=

[
Vnp
0T

]
ΩP

[
V T
np 0

]
= V0ΩPV

T
0 . (3.5)

Moreover, let

AT =



α1
β1

2
+ 1 0 . 0

α1
β1

2
− 1 0 . 0

α2
β2

2
+ 1 . 0

α2
β2

2
− 1 . 0

. . 0

. . 0

αN
βN
2

+ 1

αN
βN
2
− 1



and Λ = IN ⊗
[

1
2

0
0 −1

2

]
,

(3.6)
where αi=1:N =

[
K(n+i)1 ... K(n+i)(n+i−1)

]
and βi=1:N = K(n+i)(n+i). Then,

we can show that [
O α
αT β

]
= AΛAT . (3.7)

Now, let denote O a p× (2N) matrix of zeros, then we can approximate
the new kernel matrix by

Kn+N ≈
[
V0 A

] [ΩP O
OT Λ

] [
V T

0

AT

]
, (3.8)

≈ V ∗(n+N)(p+2N)Ω
∗
(p+2N)V

∗T
(n+N)(p+2N). (3.9)

Because of A, the new eigenvector matrix V ∗(n+N)(p+2N) is no more orthog-
onal and therefore the following extraction of the orthogonal part of A to V0
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is essential such that

A = (In+N − V0V
T

0 )A+ V0V
T

0 A. (3.10)

Also the part of A orthogonal to V0 needs to be mutually orthogonal.
Then, we perform the QR-decomposition to obtain

(QA, RA)← qr((In+N − V0V
T

0 )A). (3.11)

Integrating (3.10) and (3.11) into (3.8) we obtain

Kn+N ≈ Q∗R∗Ω∗(p+2N)R
∗TQ∗T , (3.12)

where Q∗ =
[
V0 QA

]
and R∗ =

[
IP V T

0 A
OT RA

]
.

Finally, in order to obtain the updated eigenspace, an SVD on the three
middle matrices is needed to get the p first principal components as follows

Kn+N ≈ V(n+N)pΩpV
T

(n+N)p, (3.13)

where

(V
′
,Ωp)← svd(R∗Ω∗(p+2N)R

∗T , p) (3.14)

and

V(n+N)p = Q∗V
′
. (3.15)

Assume we have N observations to be introduced into a KPCA model of
size n. While a batch updating of KPCA requires O((n+N)3) computation
steps and the updating using Hoegaerts et al. (2007) needs to train N times
the KPCA model, that is O(pn2), .., O(p(n + N)2) operations, the proposed
method uses only O(p(n + N)2) operations. Therefore, it makes a gain in
computation, especially when p � n, which is usually the case for SPC
problems. This fact makes the proposed control strategy useful for many
complex fault detection problems and fast real time processes.
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3.1. ADAPTING KPCA MODEL

3.1.2 Group downdating of KPCA

In order to use the KPCA model for process control, many strategies of
updating are possible. Depending on the objective, if for example the model
needs to be only sensitive to large shifts, we may leave the training data
grow for a certain time then an updating is performed. For a faster detection
of abnormal process behaviour, we should integrate a forgotten factor by
excluding the influence of the oldest observations. To downdate ΩP and Vn,p
by excluding the influence of oldest sample of size h using Model (3.1), we
need that the first h rows and columns of the projected new kernel K∗n equal
to zeros as shown below

K∗n =

[
0 0
0T Kn−h

]
. (3.16)

Let αT =

K1(h+1) .. K1n

. .. .
Kh(h+1) .. Khn

and β =

K11 .. K1h

. .. .
Kh1 .. Khh

 , then we have

K∗n = Kn −
[
β αT

α O

]
, (3.17)

≈ VnpΩPV
T
np +D∆DT , (3.18)

DT =



β1

2
+ 1 α1

β1

2
− 1 α1

0
β2

2
+ 1 α2

0
β2

2
− 1 α2

0 . .
0 . .

0 0
βh
2

+ 1 αh

0 0
βh
2
− 1 αh



and ∆ = IN ⊗
[
−1

2
0

0 1
2

]
.

(3.19)
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where αi=1:h =
[
Ki(i+1) ... Kin

]
and βi=1:h = Kii. Now, let denote O a

p× (2h) matrix of zeros, then we approximate the new kernel matrix by

K∗n ≈
[
Vnp D

] [ΩP O
OT ∆

] [
V T
np

DT

]
, (3.20)

≈ V ∗(n)(p+2h)Ω
∗
(p+2h)V

∗T
(n)(p+2h). (3.21)

Then, to perform downdating, the same procedure followed in KPCA
updating is used to obtain Vnp and Ωp.

3.1.3 Downsizing KPCA model

In order to downsize the KPCA model by eliminating the first h rows of
the obtained Vnp, that are approximately equal to zero, and to preserve the
orthogonality of the eigenvector, a QR decomposition of V(h+1:n)p that costs
a negligible O(2np2) operation is performed, such that

[V
′

(n−h)p, R] = qr(V(h+1:n)p). (3.22)

To absorb the effect of the QR transformation, the eigenvalues matrix is
adapted by Ω

′
p = RΩpR

T .

3.2 Complexity analysis of the block updat-

ing algorithm

To highlight the gain of using the proposed algorithm, suppose we need
to integrate N observations into an initial model of a size (n × p). While
a batch updating of KPCA using a standard SVD would require 22(n +
N)3 operations (Golub & Loan (1996)), the updating using Hoegaerts et
al. (2007) needs to repeat N times a recursive computation cost of order
O(n2), O((n+1)2)...O((N+n)2). The difference with the proposed algorithm
is that instead of repeating each step N times with a recursive updating of
the model size n, the algorithm integrates N observations at one time. For
example, using algorithm of Hoegaerts et al. (2007), the calculation of the
part of A that is orthogonal to V0 of Equation (3.10), needs (8p+2)n+(8p+
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Table 3.1: The Computation cost to update a model with N observations
using block updating

Equation Computation Cost
(In+N − V0V

T
0 )A 8npN + 2Nn

qr((In+N − V0V
T

0 )A) 16(n+N)2N +
16N3

3
− 8(n+N)N2

R∗Ω∗(p+2N)R
∗T 4(p+ 2N)3

SV D(R∗Ω∗(p+2N)R
∗T ) 22(p+ 2N)3

Q∗V
′

2(2N + p)(n+N)p

2)(n + 1) + ... + (8p + 2)(n + N − 1) operations, while performing this step
using the proposed block updating uses only (8p+ 2)Nn operations.

The steps to calculate the total computation cost of the proposed al-
gorithm are as follows: Performing efficient matrix multiplication, the cal-
culation of the part of A that is orthogonal to V0 of Equation (3.10) needs
(8p+2)nN operations. Then, performing the QR-decomposition of Equation
(3.11) requires 6(n+N)2N + 16N3

3
− 8(n+N)N2 operations (Golub & Loan

(1996)). Thereafter, calculation of the product of the three middle matrix of
Equation (3.12) would need 4(p + 2N)3 operations. Then, an application of
a small SVD in the obtained matrix of Equation (3.14) would require only
22(p+2N)3 operations. Eventually a rotation of the eigenvector using Equa-
tion (3.15) requires 2(2N + p)(n+N)p operations. Adding these numbers of
operations, we obtain the total computational cost present in Table 3.1.

This algorithm allows gain of computation only when a small number
of the dominant principal components are updated. Because the amount
of computation gain, of using the block updating method instead of using
batch updating with SVD or single updating of Hoegaerts et al. (2007), is not
clear, Figure 3.1 provides comparisons of the computation cost for different
algorithms using different numbers of principal components p.

It is clear from Figure 3.1 that for a reduced number of principal compo-
nents (p less than half of n) imply an important reduction in computation
cost compared to the SVD method and single updating. Moreover, Figure 3.2
shows that block updating of KPCA reduces computation cost as compared
to single updating. However, this gain in computation cost is at the expense
of an approximated solution of the eigenvalues and eigenvectors. To analyze
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Figure 3.1: Comparison of computation cost for different numbers of principal
components p with n equal to 1000 and N equal to 10

Figure 3.2: Computation cost in relation to the size of data block N with n
equal to 1000 and p equal to 10

40



3.3. COMPARISON OF BLOCK UPDATING BASED ON
BENCHMARK STUDY

the performance of the proposed algorithm in terms of accuracy next section
outlines results obtained using a benchmark data.

3.3 Comparison of block updating based on

benchmark study

In this section, based on a benchmark dataset, we present an analysis of
the proposed algorithm in terms of accuracy and speed. The dataset is
called Abalone (Blake and Merz, 1998) and it allows predicting the age of
abalone from physical measurements. The data set has 4177 instances and
7 exploratory variables. The radial kernel is used with a parameter sigma
equal to 5. Because handling the eigenproblem with batch SVD for a 4177×
4177 kernel matrix is difficult, only a set of 3000 observations is used to
analyze the different methods. Even though 5 principal components cover
more than 90 % of the total variance, as a caution, we select a number
of principal components equal to 20, which explain more than 99 % of the
total energy. The eigenvector problem starts with an initial model based
on training of the first 500 instances and tracking is made by introducing
10 observations into each updating step. In order to compare the speed of
different methods to update the KPCA model, Figures 3.3 and 3.4 provide
the time needed to update the model when new data are available. The
experiment is conducted in a Matlab environment with a computer that
has 1.75 GB RAM memory and 2.71 GHz processor. As comparison to
batch calculation using standard SVD, the gain of computation time increases
as the size of the training data becomes bigger. Also the time needed by
block KPCA to update the eigenproblem is more stable than when using
batch SVD. As comparison to single updating, we notice that Block SVD is
approximately 5 times faster than using single updating. This fact is useful
in many applications where the updating procedure needs to be processed
with other steps in a short time.
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Figure 3.3: Time needed to update the KPCA model using batch SVD and
block updating

Figure 3.4: Time needed to update the KPCA model using single updating
and block updating
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3.3.1 Relative error analysis

In order to assess the performance of the proposed method in terms of ap-
proximation accuracy, first, we use an overall measure of accuracy which is
the relative error calculated by the distance between the constructed matrix
obtained by KPCA model and the original data. This measure is calculated
by the matrix Frobenius norm, as follows

RE =

∥∥∥K − K̃∥∥∥
F

‖K‖F
, (3.23)

where K is the original matrix and K̃ = V ΩpV
T is a rank−p approximation

using KPCA model. This measure is computed for different algorithms and
comparison of the relative error of the proposed algorithm with that of single
updating and batch using SVD is given in Figure 3.5. We notice that the
relative errors are approximately the same with a maximal relative error equal
to 1.5 10−4. This means that different methods represent relatively well the
original data with a good tracking for single updating and block updating.

Figure 3.5: Comparison of reconstruction errors of different updating meth-
ods
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Another measure of accuracy is the Relative Error between the eigenval-
ues computed by batch SVD and those computed using block updating. This
indicator is calculated as follows

REλ =
λ− λ̃
λ

. (3.24)

where λ and λ̃ are the eigenvalues computed respectively by SVD and block
updating.

This measure is controlled over 250 iteration steps, for the 10 first dom-
inant components. From Figure 3.6 we notice that the dominant principal
components are well approximated, with maximal relative errors rate equal
to 3.5 10−6 . Also, we note that the accuracy increases for the first principal
components.

Figure 3.6: Relative errors of the first 10 principal components calculated by
the difference between eigenvalues obtained by batch SVD and block updat-
ing
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3.3.2 Orthogonality analysis

In order to test the orthogonality of the obtained principal components using
block updating for several iterations, a criterion of the orthogonality of the
eigenspace can be calculated by the scalar orthogonality measure, obtained
as follows

E⊥ =
∥∥I − V TV

∥∥
2
.

A zero value indicates a perfect orthogonality. During all the updating
process, the orthogonality of the KPCA model using block updating is very
well-preserved with values of scalar orthogonality measure between 10−8and
10−12. This fact means that the obtained components using block updating
of KPCA are, over several iterations, approximately orthogonal.

3.4 Conclusion

This chapter discusses a proposed block updating algorithm for training of
the dominant components of KPCA model. The updating method can pro-
vide a reduced computation cost in comparison to batch SVD and single
updating of Hoegaerts et al (2007). This gain facilitates extension of the
use of KPCA method to many machine learning based applications, where
fast updating of a large-scale model is required. Analysis of the accuracy
and stability of the proposed updating method shows that it provides a good
tracking of the original matrix with a small reconstruction error. Also in com-
parison to batch KPCA, the proposed algorithm has a good approximation
of the eigenvalues with a good preservation of eigenvectors orthogonality.
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4
Assessment of the proposed chart

using benchmark studies

An issue concerning the proposed adaptive monitoring technique is to eval-
uate it with respect to other PCA process control strategies. We propose to
compare performance of Adaptive window Kernel Principal (AKPCA) with
Moving Window KPCA (MWKPCA) and Adaptive PCA (APCA). APCA is
based on linear PCA and MWKPCA is based on KPCA model. In contrast
to the proposed AKPCA control chart, APCA and MWKPCA have fixed
model sizes and allow handling of a single observation at a time. Section
1 provides the way to tune control chart parameters. Section 2 investigates
performances of different charts using a simulated multivariate nonlinear pro-
cess. Section 3 applies the developed charts to monitor a complex industrial
chemical process called Tennessee Eastman (TE) process. Section 4 provides
the conclusion of this chapter.

4.1 Parameters selection

In order to implement the different control charts, several parameters need to
be tuned. These parameters are the sigma of the radial kernel function, the
number of Principal Components (PCs), the risk level of the control charts
and the size of the initial PCA models.

First of all, for KPCA based charts, the value σ of the radial kernel func-
tion is tuned based on the method of Park and Park (2005), which proposes
to select σ = C · Averd, where Averd is the mean distance between all ob-
servations in feature space and C is a predetermined value. In this study,

47



CHAPTER 4. ASSESSMENT OF THE PROPOSED CHART USING
BENCHMARK STUDIES

the C value is set to be equal to the square root of the number of process
variables. To select the number of PCs, this study uses two of the most used
procedures named cross-validation and Cumulative percent variance. The
first technique divides the dataset into a training dataset that allows obtain-
ing the eigenproblem solution and a test dataset that allows calculating the
reconstruction error of the PCA model. The number of PCs which provides
most contribution to the minimization of the reconstruction error is selected.
The cross-validation procedure is more adequate to select the number of PCs
for Q control chart because this statistic allows monitoring of the reconstruc-
tion error. However, the Cumulative percent variance procedure selects the
p first eigenvalues that capture 95 % of the total variance. This procedure is
used to select the number of PCs for T2 control chart since this statistic mea-
sures the distance obtained by projecting observations to the most important
PCs. The values of α levels of T2 and Q based control charts are set in a way
to provide approximately equally small false alarm rates. Concerning the
size of the initial PCA models and the size of the sample used to calculate
the initial control chart limits, while Li et al. (2000) used 22 % of the data,
Liu et al. (2009) used 30 % of the available data to train and calculate initial
PCA models and control charts limits. Also in this study, for each process,
30% of the data is used for construction of the different control charts, such
that 20 % of the available sample is used to train initial PCA models and
10 % to calculate initial control limits. For AKPCA chart, the size of the
window can vary between 80 % and 120 % of the initial KPCA model size.

Evaluation of different control strategies is given by reporting the degree
of accuracy of each method in detecting the true out-of-control situations
and avoiding false alarms. Performance evaluation of the accuracy can be
reported by using the false alarm rate (Type I error rate) and the detection
rate criterion. The first statistic gives information about the robustness of the
adopted method against normal system changes whilst the second statistic
gives information about the sensitivity and efficiency of detecting faults.

In order to assess different control strategies, we use two simulated bench-
mark case studies. The first simulated process is a nonlinear multivariate
non-stationary system and the second process is named Tennesee Eastman
process which contains 41 state variables that exhibit several nonlinear dy-
namics and multistage phases. The description of these processes as well as
performances of different control charts are presented in next sections.
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4.2 Multivariate nonlinear simulated process

The simulated multivariate nonlinear process is described as follows (Zhang
and Yang (2000)): 

y1 = 0.5t2 − 2t+ 0.5 + ζ
y2 = t2 + t+ sin(πt) + ζ
y3 = 2t2 − t− 2 cos(πt) + ζ

(4.1)

where ζ is a random noise and t ∈ [−1, 1].

An illustration of the simulated process is shown in Figure 4.1. In this
study, 20 normal samples, each containing 500 observations, are generated.
To test the detection performance of the different procedures, this study sim-
ulates 7 faults introduced after observation 200. These faults are presented
in Table 4.1.

Figure 4.1: Illustration of the simulated multivariate nonlinear process

For Q and T2 based APCA control charts, 2 PCs are selected based on
the cross-validation method and the Cumulative percent variance. This value
contributes to more than 95 % in the minimization of the reconstruction er-
ror and explains more than 95 % of the total variance. For KPCA based
models, the value of sigma is set to 5 and the number of PCs is set to
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Table 4.1: List of the simulated faults for the multivariate nonlinear process
Fault Description

1 Increase of y1 by 0.02k. (k is the sample number)
2 Increase of y2 by 0.02k.
3 Add to y3 a random effect N(0, 1).
4 y1 = y1 + 2t ; y2 = y2 + 0.02k. (t is the time index)
5 y1 = y1 +N(0, 1) ; y3 = y3 + 2t2.
6 y2 = y2 + 0.02k. ; y3 = y3 + 2t.
7 y1 = y1 + 2t ; y2 = y2 + 0.02k ; y3 = y3 + 2t.

10 for Q control chart and 4 for T2 control chart. Introduction of obser-
vations into the AKPCA model is made by blocks of 5. First, in order to
show that Batch PCA and KPCA models are not appropriate to monitor of
non-stationary processes, Figure 4.2 shows monitoring performances of both
methods when the process is operating under normal condition. The false
alarm rate provided by Batch PCA and Batch KPCA are respectively 48 %
and 90 %. Therefore analysis of the detection performance of these meth-
ods is not performed, since these control charts are not adequate to monitor
non-stationary processes. However, as shown in Figure 4.3 and in contrast to
the fixed models, applying adaptive PCA based control charts to the same
data set, allows better capabilities of adaptation to nonlinear non-stationary
behaviour of the process. It should be noted that the control limits Qlimit and
Tlimit of the different adaptive charts are slightly variable over time due to the
fact that they are calculated recursively as described in Section 4. This fact
allows a better adaptation to the condition in which the process is operating.
To analyze detection capabilities for the different adaptive procedures, mon-
itoring performances of APCA, MWKPCA and AKPCA are summarized in
Table 4.2.

First, we notice that Q based adaptive charts have overall better fault
detection capabilities than T2 based control charts, especially for Kernel
based procedures. This result confirms the analysis of Lee et al. (2004) which
states that T2 of KPCA is less reliable than Q chart. Moreover, detection
rates of AKPCA are higher than that of APCA and MWKPCA control
charts. As an example, when Fault 4 is introduced APCA (Q), MWKPCA
(Q) and AKPCA (Q) detects respectively on average 59 %, 45 % and 96
%, of the total faults. Therefore, this result confirms that AKPCA is more
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Figure 4.2: Batch PCA and KPCA monitoring charts in the case of normal
operating condition. The blue and red lines represent respectively the value
of the control statistic and its limit
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Figure 4.3: Adaptive PCA and KPCA based monitoring charts in the case
of normal operating condition
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Figure 4.4: Adaptive PCA and KPCA based monitoring charts in the case
of Fault 4, where the fault starts after observation 100
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robust in detecting disturbances. This can be explained by the fact that
AKPCA model does not update the model after one observation but after
a block of data is tested. Thus, the model has a better ability to overcome
contamination by out-of-control observations. This fact can be observed in
Figure 4.4, where APCA (Q) and MWKPCA (Q) charts first detect the
fault, but after testing and introducing certain observations into the models,
detection of this fault is not more possible since it is assimilated as a normal
operating change. Moreover, the extreme frequency of updating APCA and
MWKPCA models, which is made after each new observation, can imply a
decrease in the sensitivity to smaller shifts. In contrast, block AKPAC allows
a small delay for updating which can improve detection of this kind of shifts.

Table 4.2: Monitoring results of APCA, MWKPCA and AKPCA charts for
several faults

APCA MWKPCA AKPCA
T2 Q T2 Q T2 Q

False alarm rate 0.02 0.02 0.03 0.02 0.03 0.02
Detection rate

Fault 1 0.62 0.76 0.08 0.41 0.54 0.99
Fault 2 0.31 0.56 0.06 0.43 0.44 0.99
Fault 3 0.02 0.01 0.07 0.01 0.05 0.09
Fault 4 0.53 0.59 0.10 0.45 0.40 0.96
Fault 5 0.02 0.02 0.10 0.03 0.10 0.01
Fault 6 0.37 0.46 0.05 0.30 0.42 0.94
Fault 7 0.52 0.73 0.10 0.42 0.41 0.98

Mean Detection 0.34 0.45 0.08 0.29 0.34 0.71

4.3 Tennessee Eastman process

The Tennessee Eastman (TE) process is a benchmark simulation model of a
complex industrial chemical process proposed by Downs and Vogel (1993).
The system contains five major units: a reactor, a condenser, a recycle com-
pressor, a separator, and a stripper. The process has 41 state variables that
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are used for monitoring. About half of the measured variables are compo-
nent compositions, available at discrete sampling intervals. The remaining 22
measured variables are available at significantly higher sampling frequency
(0.01 h). The original process is open-loop unstable and therefore a control
strategy must be used to avoid process shutdown. This study uses the sim-
ulation program that is available at Ricker’s home page (Ricker, 2008). In
this study, a set of 1000 observations are simulated under normal operating
condition. In addition, more process data are generated with 20 fault cases,
introduced after observation 500. Table 4.3 presents these faults.

Figure 4.5: Illustration of the non-stationary behaviour for some variables of
Tennessee Eastman process

As shown in Figure 4.6 and based on a cross-validation and Cumulative
percent variance methods, 7 and 30 PCs are selected for respectively Q and
T2 based APCA control charts. For KPCA based procedures, for a sigma
value equal to 80, 30 PCs are selected for both Q and T2 based charts. As
mentioned previously, 30 % of the data are used to construct the different
control charts. Introduction of observations into the AKPCA is made by
blocks of size 10.

Table 4.4 summarizes results of different methods for the Tennessee East-
man process. As Table shows, overall, AKPCA (Q) control chart provides
better results in comparison to APCA and MWKPCA control charts. More-
over, there is a clear improvement of kernel based PCA procedures. Indeed,
the detection rate increased from MWKPCA(Q) to AKPCA(Q) from 31 % to
50 %. Moreover, when the T2 statistic is used for Kernel based PCA charts,
monitoring reliability of detecting abnormalities decreases in comparison to
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Figure 4.6: Cross-validation errors and Percent of explained variance for
different numbers of Principal Components

56



4.3. TENNESSEE EASTMAN PROCESS

Table 4.3: Process faults for Tennessee Eastman process
Fault Description Type

1 A/C feed ratio, B constant Step

2 B composition, A/C ratio constant Step

3 D feed temperature (Stream 2) Step

4 Reactor water’s temperature Step

5 Condenser ’s water temperature Step

6 A feed loss Step

7 C header pressure loss Step

8 A, B, C feed composition Random

9 D Feed Temperature Random

10 C feed temperature Random

11 Reactor’s water temperature Random

12 Condenser’s water temperature Random

13 Reaction kinetics Slow drift

14 Reactor’s water valve Sticking

15 Condenser’s water valve Sticking

16 Unknown -

17 Unknown -

18 Unknown -

19 Unknown -

20 Unknown -

the Q statistic. However, an interesting aspect of MWKPCA and AKPCA is
that when the Q statistic provides poor detection results, the T2 exhibits a
better performance. This fact can be observed for Fault 2, 4 and 15, where T2

based MWKPCA and AKPCA charts provide slightly better results. Figure
4.7 illustrates the performance of Q and T2 based PCA charts for, respec-
tively, Fault 9 and Fault 4. Though the fact that most charts detect the
fault introduced after sample 300, APCA and MWKPCA charts assimilate
the fault as a normal behaviour and after certain alarms the fault is no more
detectable because some faulty observations are introduced in PCA models.
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Figure 4.7: Monitoring chart in case of Fault 9 (Q statistic) and Fault 4 (T2

statistic)
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Table 4.4: Analysis of APCA, MWKPCA and AKPCA charts for several
faults

APCA MWKPCA AKPCA
T2 Q T2 Q T2 Q

False alarm rate 0.03 0.03 0.04 0.03 0.03 0.03
Detection rate

Fault 1 0.97 0.98 0.11 0.98 0.08 0.97
Fault 2 0.03 0.04 0.15 0.04 0.22 0.06
Fault 3 0.03 0.03 0.06 0.02 0.18 0.13
Fault 4 0.16 0.15 0.26 0.17 0.42 0.13
Fault 5 1 1 0.52 1 0.46 1
Fault 6 1 1 0.22 1 0.09 1
Fault 7 0.75 0.47 0.26 0.47 0.08 0.63
Fault 8 0.84 0.04 0.21 0.05 0.29 0.84
Fault 9 0.06 0.03 0.10 0.06 0.05 0.35
Fault 10 0.85 0.02 0.10 0.05 0.05 0.86
Fault 11 0.50 0.50 0.24 0.58 0.06 0.45
Fault 12 0.92 0.92 0.42 0.92 0.23 0.92
Fault 13 0.45 0.44 0.07 0.04 0.01 0.22
Fault 14 0.29 0.14 0.06 0.11 0.09 0.53
Fault 15 0.03 0.02 0.06 0.03 0.30 0.04
Fault 16 0.06 0.02 0.08 0.03 0.04 0.07
Fault 17 0.27 0.52 0.06 0.50 0.13 0.52
Fault 18 0.26 0.23 0.16 0.04 0.05 0.03
Fault 19 0.75 0.14 0.23 0.09 0.05 0.75
Fault 20 0.20 0.09 0.07 0.06 0.02 0.50

Mean Detection 0.47 0.34 0.17 0.31 0.15 0.50

59



4.4. CONCLUSION

4.4 Conclusion

Analysis and comparison with batch models, as well as with adaptive PCA
procedures, shows that first, Batch PCA and KPCA are unable to adequately
control non-stationary processes since they are based on the use of fixed
models for monitoring dynamic processes. Moreover, results show that the
proposed AKPCA chart provides overall better detection results in compar-
ison to AKPCA and MWKPCA. However, as stated by Lee et al. (2004),
the enhancement of the detection capability is made essentially by using Q
statistic. Also, this study shows that for certain cases, when the Q statistic
provides poor detection results, T2 exhibits better performance. Therefore, a
combination of these statistics into one AKPCA chart could be an interesting
topic for future research.
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Traditional control charts require several assumptions and a fundamental
one is that the process data should be independently distributed. However,
with the advances made in process automation, violation of this assumption
is frequent. In fact, high sampling collection often produces series of obser-
vations that are close enough to be dependent. As mentioned by Psarakis
and Papaleonida (2007), autocorrelation is present in most continuous and
batch process operations. Many studies reported the effect of the violation of
the independence assumption on control charts and showed that, when this
assumption is not satisfied, traditional models exhibit poor performances.
Bagshaw and Johnson (1975) stated that, for Autoregressive AR(1) or a Mov-
ing Average MA(1) processes, incorrect conclusions can be drawn by using
conventional CUSUM schemes. Harris and Ross (1991) discussed the impact
of autocorrelation on the performance of CUSUM and EWMA charts, and
showed that it affects the average and median run length. Alwan and Roberts
(1995) studied several chart applications and showed that they displayed in-
correct control limits due to violation of serial correlation which affects the
effectiveness of control charts. Noorossana and Vaghe (2006) showed that
breaking the independency assumption affects the average run length (ARL)
of the control charts and makes them unreliable. Psarakis and Papaleonida
(2007) asserted that even small levels of autocorrelation can have big effects
on the statistical properties of conventional control charts and may cause
substantial increase in the average false alarm rate and a decrease in the
ability of detecting changes on the process.

To deal with the problem of autocorrelation, one approach is to filter
out autocorrelation by a time series model and use residuals for control. In
fact, if the time series model is accurate, residuals would be statistically
uncorrelated. Then, assumptions of traditional quality control charts are
satisfied and conventional charts will be appropriate. The most widely used
time series methods are autoregressive integrated moving average (ARIMA)
models. Using AR(1) based control charts to monitor a sequential injection
analysis, Callao and Rius (2003) show that residuals control charts provide
better understanding of the system behaviour over time and efficient detec-
tion abilities. Loredo et al. (2002) presented a regression adjustment scheme
to monitor autocorrelated processes and showed that the residuals based
control is better than observation control charts in detecting a mean shift in
data.
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However, time series modelling may be often awkward in actual appli-
cations because of the specification problem (Zhang, (1998), Jiang et al.
(2000)). Stone and Taylor (1995) reported some industrial processes that
exhibit autocorrelation and which are not adequately handled by standard
time series models. Many researchers seem to agree that residuals charts do
not have the same properties as traditional charts and that their ability to
detect a shift depends on the model that is assumed to describe the data
appropriately. Longnecker and Ryan (1992) investigated AR(1), AR(2) and
ARMA(1,1) models for a residuals X-chart and pointed out that the lat-
ter chart may have poor capability to detect the process mean shift. Apley
and Tsung (2002) state that, if the model is inaccurate, residuals will not
be uncorrelated, and the in-control ARL of a residual-based CUSUM may
be substantially shorter than what is intended. Moreover, basic time series
methods require a predefined structure of the process. Therefore, applica-
tion of such models for process control needs a lot of expertise of the process
on hand. Also, basic methods allow only handling of linear processes and
are not capable of modelling nonlinear processes. In fact, to handle non-
linear systems different differential equations are provided. However, Shi et
al. (2001) stated that there is a problem in finding analytical solutions to
describe phenomena of interest.

To overcome this problem, researchers have presented great interest in
Artificial Neural Networks (ANN) for quality monitoring because of the ca-
pability of ANN to determine the process structure from the data and to
model nonlinear systems. Dooley and Guo (1992) applied ANN models to
detect positive changes in the process mean and variance. While Hwarng and
Hubele (1993) integrated several ANN models for construction of Shewhart
X control charts for identification of out control situations. Recently, Jamal
et al. (2007) have introduced an ANN based model to construct residuals
Multivariate CUSUM chart for multivariate AR processes and showed that
it performs better than MCUSUM. Pacella and Semeraro (2007 ) proposed
a simple NN model to control autocorrelated processes and showed that it
performs well for several mean shifts. Despite their advantages, most ANN
methods have some drawbacks that can affect their performance such as the
problem of optimal parameters selection. Indeed, ANN have several param-
eters to tune such as transfer functions, number of nodes, number of layers,
number of epoches, momentum rate, learning rate, etc. This implies a certain
difficulty to construct an ANN model. Also, ANN is prone to the problem
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of overfitting, which means that the model can provide bad generalization
performance on data not used in the training phase. Moreover, ANN does
not guarantee global optima in the optimization phase. In fact Ryan (2000)
claims that when ANN is repeatedly run on the same dataset different results
are produced.

As an alternative method to deal with this shortcoming, several researchers
suggest the use of Support Vector Regression (SVR) (Thissen et al. (2003)
and Sato et al. (2008)). This method allows learning the process structure
directly from the data and no predefined process structure is required. The
model can handle systems that present linear or nonlinear time series. In
comparison to ANN, the optimal solution provided by SVR model is global
and therefore the model is stable when it is reapplied to the same dataset.
Also, the model includes a generalization term that allows overcoming the
problem of overfitting. Eventually, few parameters need to be tuned and it is
easy to construct an SVR model that performs well. To confirm their attrac-
tive properties, Müller et al. (1997) used SVR to time series forecasting and
demonstrated its superiority to ANN. Tay and Cao (2001) and Ping-Feng
and Chih-Sheng (2005) showed that SVR has a good prediction performance
when applied to financial assets. Thissena (2003) applied SVR to complex
time series and showed that it outperforms ARMA and ANN models. Sato
et al. (2008) tested SVR for nonlinear processes and concluded that the
approach is adequate even for small samples. Therefore, this chapter pro-
poses the use of SVR method to construct residuals control charts. Also, the
majority of process control articles focus on monitoring the mean of linear
time series, further characteristics of a time series have not been enough con-
sidered. In this study we propose to extend application of SVR time series
control charts to nonlinear processes. In order to detect not only mean shifts
but also other parameters shifts, several control charts are investigated in
the next chapter.
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5
SVR residuals control charts

This chapter is organized as follows: Section 1 focuses on presenting the
principal of using SVR method for time series estimation. In this section,
the way to estimate Autoregressive AR models is presented. Then, Section 2
presents most used univariate and multivariate residuals control charts along
with their properties. Section 3 proposes residuals Support Vector Control
charts and the way they are evaluated. Section 4 resumes this chapter.

5.1 Time series regression using SVR

Time Series models forecast future values of time series variables by extrap-
olating trends and patterns in the past values of the series. There are many
models used for time series and the most important one is AR model. This
section presents the way these models are estimated using SVR method.
The problem of SVR for AR(p) time series model estimation is, given a set
of observations Y = (y1, ...., yn) ∈ Rn , find under a specific loss function a
function f : Rp −→ R. For linear functions, f is defined as follows,

yt = f(y(t−1), .., y(t−p)) = b+ < w, xt >, (5.1)

where xt = [y(t−1), .., y(t−p)]
T , w is a vector of dimension p and b a bias term.

The measurable function needs to minimize the following risk functional
R(f) which measures the average amount of error probability associated with
the estimator f.

R(f) =

∫
L(yt, f(xt))dP (xt, yt).

where L is the loss function.
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For SVR case, the particularity of the loss function is such that errors of
points that do not exceed a given distance ε are not considered as errors and
therefore they do not contribute to any loss to the objective function. For
this reason, the loss function is insensitive to these points. Vapnik (1998)
used the following insensitive loss

L(yt, f(xt)) = max{0, | yt − f(xt) | − ε}, (5.2)

where ε is called the insensitivity margin, errors below positive ε are not
penalized.

Figure 5.1: Error lying outside the ε-insensitive band around the regression
function

But, the problem is that there could be infinitely many linear regressors
that estimate the training set with reduced errors. Consequently, the task is
to find the best one taking into account its capacity of generalization. That
is, the function has to perform well on unseen data not used in training.
Therefore, the regression algorithm is developed to reach a small regularized
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risk R̂ using ‖w‖2 as a regularization parameter of the function complexity.
This last term restricts the set of admissible functions, in order to have a
good capacity of generalization. Then, the algorithm needs to minimize the
following objective

1

2
‖w‖2 + C · (ν · ε+ R̂(f)), (5.3)

where the parameter ε is the ε-insensitivity margin, C and υ are constants
determining the trade-off between the error risk R̂ and the complexity regu-
lator ‖w‖2. The error risk is defined by

R̂(f) =
1

n

n∑
t=1

max(|yt − f(xt)| − ε, 0). (5.4)

Then, we have to solve the following constrained optimization problem



Min
(w,b)

‖ w ‖2

2
+ C · (υ · ε+

1

n

n∑
t=1

(ξt + ξ∗t ))

s.t.
(< w, xt > +b)− yt ≤ ε+ ξt ∀t = 1, ..., n
yt − (< w, xt > +b) ≤ ε+ ξ∗t ∀t = 1, ..., n

ε, ξt, ξ
∗
t ≥ 0 ∀t = 1, ..., n

(5.5)

Solving the problem is finding parameters w and b. It is useful to trans-
form formulation (5.5), called Primal, to the Dual form by Lagrangian trans-
formation. There are two reasons for this transformation. First, the con-
straints are replaced by constraints on Lagrange multipliers themselves, which
is much easier to handle. Second, the training data will only appear in the
form of dot products between vectors. This is a crucial property which will
allow us to generalize the procedure to the non linear case. We define La-
grangian of Equation (5.5) as follows
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L(w, b, ε, ξ, β, µ, γ) =
‖ w ‖2

2
+ C(υ · ε+

1

n

n∑
t=1

(ξt + ξ∗t ))

−
n∑
t=1

βt (−(< w, xt > +b) + yt + ε+ ξt )

−
n∑
t=1

β∗t ((< w, xt > +b)− yt + ε+ ξ∗t )

−
n∑
t=1

(µtξt + µ∗t ξ
∗
t )− γε,

(5.6)

βt, β
∗
t , µt and µ∗t ≥ 0 ∀ t = 1, .., n. (5.7)

Then, the solution is given by the saddle point of the Lagrangian. The
Lagrangian has to be minimized with respect to w, b, ε, µt and maximized
with respect to the lagrange multipliers βt, β

∗
t , µt, µ

∗
t and γ. Following up,

at this saddle point, the following derivatives of L with respect to the primal
variables must vanish,

∂

∂b
L = 0 =⇒

n∑
t=1

(βt − β∗t ) = 0. (5.8)

∂

∂w
L = 0 =⇒

n∑
t=1

(β∗t − βt)xt = w. (5.9)

∂

∂ε
L = 0 =⇒

n∑
t=1

(βt + β∗t ) = C · υ − γ. (5.10)

∂

∂ξt
L = 0 =⇒ C/n− βt − µt = 0. (5.11)

∂

∂ξ∗t
L = 0 =⇒ C/n− β∗t − µ∗t = 0. (5.12)

Introducing results of the Lagrangian derivatives into Equation (5.6), we
get the following problem that needs to be solved numerically,
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

Max
βi,β∗i

− 1
2

n∑
i=1

n∑
j=1

(β∗i − βi)(β∗j − βj) < xi, xj > +
n∑
i=1

yi(β
∗
i − βi)

s.t.
n∑
i=1

(βi − β∗i ) = 0

n∑
i=1

(βi + β∗i ) ≤ C · υ

0 ≤ βi ≤ C/n ∀ i = 1, .., n
0 ≤ β∗i ≤ C/n ∀ i = 1, .., n

(5.13)

Then, the function f of Equation (5.1) takes the following form

yt =
n∑
i=1

(βi − β∗i ) < xi, xt > +b (5.14)

In order to compute b, the Karush Kuhn Tucker (KKT) theorem is used.
According to KKT, only the Lagrange multipliers β′ts and µ′ts that are non
zero at the saddle point correspond to constraints which are exactly satu-
rated. These conditions state that at the point of the solution we have

µtξt = 0 ∀ t = 1, .., n (5.15)

µ∗t ξ
∗
t = 0 ∀ t = 1, .., n (5.16)

((< w, xt > +b)− yt − ε− ξt ) βt = 0 ∀ t = 1, .., n (5.17)

((< w, xt > +b)− yt + ε+ ξ∗t ) β∗t = 0 ∀ t = 1, .., n (5.18)

Using Equations (5.11) and (5.15), we show that ξt > 0 only when βt =
C/n. Thus, for βt ∈ ]0, C/n[, we have ξt = 0. Hence, b can be computed by
using the fact that

b = yt− < w, xt > +ε for βt ∈ ]0, C/n[ (5.19)

b = yt− < w, xt > −ε for β∗t ∈ ]0, C/n[ (5.20)

This section provides a discussion of linear SVR formulation. Generaliza-
tion to non-linear functions is performed by using the kernel mapping such
that the dot product < xi, x > is replaced by the kernel function k(xi, x).
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5.2 Residuals control charts

Residuals control charts are based on charting residuals that should be inde-
pendently distributed over N(0, σr), if process parameters are well estimated.
This section presents control charts that only use the current observation
or sample to monitor the process. Moreover, we first discuss univariate
control charts that are used when only one process variable is monitored.
These charts are Shewhart, Cumulative Sum (CUSUM) and Exponentially
Weighted Moving Average (EWMA) control charts. Then, we discuss the
case of monitoring a battery of variables. In this case we use multivariate
control charts named Hotelling’s, Multivariate Cumulative Sum (MCUSUM)
and Multivariate Exponentially Weighted Moving Average (MEWMA).

5.2.1 Residuals univariate control charts

X-Shewhart Control chart

A simple univariate statistic used to monitor the stability of the process
against large shifts is the well known Shewhart X-Chart. Statistically speak-
ing, a large magnitude is defined in terms of standard deviation. Since resid-
uals are assumed to have a zero mean and a σr standard deviation, an obser-
vation is considered in-control if the target residual value ri lies between the
Upper Control Limit (UCL) and the Lower Control Limit (LCL) as follows

UCL = λσr. (5.21)

LCL = −λσr. (5.22)

where σr is the estimated residuals standard deviation and λ determines a
given in-control Run Length (RL) property.

CUSUM Control chart

CUSUM chart was developed to overcome the problem of Shewhart which
is relatively insensitive to moderate shifts, since they use only information
from the most recent observation. Let S+

0 = S−0 = 0 and kcusum > 0 be
pre-specified constants. The CUSUM statistic is calculated iteratively using
the following equations
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S+
i = max{0, S+

i−1 + ri − kcusum}, (5.23)

S−i = max{0, S−i−1 − ri − kcusum}. (5.24)

The CUSUM scheme signals when the statistic S − > Hcusum or S + >
Hcusum, where kcusum and Hcusum need to be determined previously by a
given in-control desired RL property.

EWMA Control chart

While CUSUM charts take into account all previous measurements, EWMA
charts weight the latest observation based on its importance in characterizing
the process. The larger the value of λ is, the greater is the influence of
the latest observation and vice versa. The EWMA statistic is calculated as
follows

Zi = (1− λ)Zi−1 + λri. (5.25)

EWMA scheme signals if the statistic Z > UCL or Z < LCL, where
limits are calculated as follows

UCL = Lσr

√
λ

2− λ
, (5.26)

LCL = −Lσr
√

λ

2− λ
. (5.27)

where L is pre-determined for a given in-control RL property.

5.2.2 Residuals multivariate control charts

In order to monitor more than one quality autocorrelated characteristic, it
is necessary to control residuals variation as shown in the next sections.
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T2 Chart

The multivariate extension of Shewhart-type chart is the Hotelling’s T2 chart.
This chart reduces residuals to a scalar using the Mahalanobis distance. An
observation is assumed to be in-control if the following condition is satisfied

T 2
i = RT

i Σ−1
R Ri ∼

m(n− 1)

n−m
Fm,n−m(α). (5.28)

where m is the number of variables, Ri is the residuals vector and Fm,n−p(α)
is a Fisher distribution. The term α is the risk level and it ensures a desired
in-control ARL or in-control rate of false alarms. Σ−1

R is the inverse of the
estimated residuals covariance matrix.

MCUSUM Chart

MCUSUM chart was developed to overcome the problem of Hotelling control
charts which are relatively insensitive to moderate shifts. To detect small
process shifts, MCUSUM charts accumulate deviations of the residuals of
previous observations from a given target. The most widely used MCUSUM
control procedure is Croisier’s chart. For S0 = 0, where 0 is a 1×m matrix
of zeros, the statistic is as follows,

Si =

{
0 if Ci ≤ k
(Si−1 +Ri)(1− kcro/Ci) otherwise

(5.29)

where

Ci = (Si−1 +Ri)Σ
−1
R ((Si−1 +Ri)

T . (5.30)

Croisier’s chart signals a shift when T 2
S = ST

i
Σ−1
R Si exceeds a pre-determined

limit Hcro.

Residuals MCUSUM charts for nonlinear processes exhibit some differ-
ences as compared to linear systems. Indeed, any shift in a parameter of
a nonlinear process can not only affect the mean of residuals but also the
residuals distribution. Therefore, an alternative simple and efficient control
procedure is the use of the cumulative sum of T2. This chart is named the
COT scheme and is the most direct extension of the multivariate T2 chart.
Let S0 ≥ 0 and kcot > 0 be a pre-specified constants. The MCUSUM statistic
is calculated iteratively using the following equation,

74



5.3. DESIGN OF SUPPORT VECTOR CONTROL CHARTS

Si = max{0, Si−1 + T 2
i − kcot} for i = 1, 2, .., (5.31)

The MCUSUM scheme signals when the S statistic exceeds a certain level
H. That is, the chart signals a process change if Si > Hcot, where kcot and
Hcot need to be determined previously for a given in-control desired RL
characteristic.

MEWMA Chart

While MCUSUM charts take into account all previous measurements, MEWMA
charts weight the last observation based on its importance in characterizing
the process. The larger the value of λ is, the greater is the influence of the
last observation and vice versa. The MEWMA statistic is defined iteratively
as follows

Zi = (1− λ)Zi−1 + λRi for i = 1, 2, .., (5.32)

where λ is a diagonal matrix of values λj, j = 1, ...,m. The MEWMA scheme
signals if the T 2

Z = ZT
i

Σ−1
Z Zi exceeds a predetermined value H.

In practice, usually the weight values λj are taken to be equal, such that
λ1 = .. = λm. In this case, we proposes to use a simple extension chart of T2

for MEWMA, called EWMAT, based on the following statistic

Zi = (1− λ)Zi−1 + λT 2
i for i = 1, 2, .., (5.33)

EWMAT scheme signals if the Z statistic exceeds a value L, pre-determined
for a given in-control RL property.

5.3 Design of Support Vector Control charts

In designing SVR based control charts, there are two phases. Phase I defines
SVR parameters and control chart limits based on in-control set of observa-
tions. Because SVR has two parameters to tune besides the parameter of
the kernel function, the use of grid search technique with a cross-validation
method allows selecting the optimal parameters. These parameters should
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guarantee not only the smallest Mean Squared Error (MSE) but the residu-
als should also be independent. A way to examine the autocorrelation of the
residuals is the use of Ljung-Box Q test given by

Q = n(n+ 2)
h∑
k=1

ρ̂k
n− k

, (5.34)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and h is
the number of lags being tested. For a significance level α, the critical region
for rejection of the hypothesis of residuals independency is

Q > χ2
(1−α,h), (5.35)

where χ2
(1−α,h) is the α-quantile of the chi-square distribution with h degrees

of freedom.

After parameters tuning, we perform estimation of parameters of the
monitored process. To perform time series estimation for a multivariate
process by SVR, the input variable Yt is modelled by the previous variables
of the series (Y(t−1), .., Y(t−p)), where p is the lagged time. Suppose we have
an AR process with order p represented by the following function that need
to be estimated,

Yt = f(Y(t−1), .., Y(t−p)). (5.36)

Estimation of the process using SVR provides f̂ which allows predicting
Yt as follows,

Ŷt = f̂(Y(t−1), .., Y(t−p)). (5.37)

If the function f is well estimated, then the error term êt = (Yt − Ŷt),
which would be time independent and normally distributed with zero means,
is used to construct the control chart. Indeed if a shift is present, then the
process is no more represented by the function f and therefore the residual
term êt would be also affected and shifted. Specifying control limits is also
one of the critical decisions that should be made in designing a control chart.
Moving control limits further leads to a trade off between the risk of a type I
error and that of type II error. That is, the first one is the risk of indicating an
out-of-control condition when no assignable cause is present and the second is
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indicating normal system condition while the process is really out of control.
To evaluate the control chart parameters, the most used statistic is the ARL
which represents the average number of points that must be plotted before
a point indicates an out-of-control condition.

5.4 Conclusion

This chapter presents an overview of estimating time series models using
Support Vector Regression method. Moreover, several residuals univariate
and multivariate control charts are discussed. To control nonlinear autocor-
related processes, a procedure that allow estimating the process structure in
order to filter out autocorrelation and to use residuals for control is proposed.
The evaluation of the effectiveness of the proposed procedure is conducted
in the next chapter.
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6
Assessment of the proposed chart

using simulated processes

This chapter investigates application of the proposed residuals based SVR
control charts with different simulated nonlinear processes. Section 1 dis-
cusses monitoring of univariate autocorrelated nonlinear processes. Then, in
Section 2, the extension to multivariate processes is performed. Eventually,
Section 3 resumes provides a conclusion.

6.1 Univariate process control analysis

In order to analyze the proposed procedures, a univariate nonlinear time
series is used. The process follows an Exponential autoregressive model Ex-
pAR of order 2 which represents a random oscillation process with nonlinear
dynamics. The equation of the system is as follows

xt = (α1 + α2e
−θx2t−1)xt−1 − (α3 + α4e

−θx2t−1)xt−2 + εt (6.1)

where εt ∼ N(0, δ).

In this study the used simulation parameters are as follows α1 = 1.95,
α2 = 0.23 , α3 = 0.96, α4 = 0.24, δ = 0.05, θ = 1 and initial values x1 = 0.2
and x2 = 1. Figure 6.1 illustrates the nonlinear dynamics of the process and
Figure 6.2 presents its sample autocorrelation.

Example of such system can be found in Messaoud et al. (2008), which
applied the ExpAR function for Deep-Hole Drilling Process in order to con-
struct residuals EWMA control chart. Shi et al. (2001) used ExpAR model to
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Figure 6.1: Exponential autoregressive nonlinear process

Figure 6.2: Process variables autocorrelation
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monitor the dynamics evolution of Boiling water reactor oscillation to control
nuclear systems. First of all, this section provides results obtained from the
exact specification model by using an ExpAR (2) model. This fact allows
comparing results of SVR model which does not require any pre-specified
model structure. Estimation of this model using the maximum likelihood re-
quires the use of nonlinear optimization procedure that can provide multiple
local optima, since the derivative-based method does not guarantee conver-
gence to a global optimum (Shi et al. (2001)). Therefore, we used the method
of Haggan and Ozaki (1981) which is based on the approximation of a pre-
specified interval for the value of the term θ. This optimal value is selected
using a grid of candidate values. Then, the parameters are estimated by lin-
ear least squares method. Usually, the order p of the fitted model is selected
based on the Akaike Information Criterion. However, we suppose that the
exact order is known beforehand. In this study 10 validation samples with
2000 in-control observations each are used. For each iteration one sample is
used for training and the other samples are used for testing. Using the de-
scribed re-sampling method for training and validation, the exact estimated
ExpAR model structure provides an average p-value of 0.34 for Ljung-Box
Q-test and an MSE of 0.003.

To estimate the process structure through SVR, ν, σ2 and C parameters
need to be estimated. Using grid search method, Table 6.1, provides the
obtained results taking into account several criteria. These criteria are the
MSE criteria and the mean of the p-values of Ljung-Box Q-test. Analyzing
results present in Table 6.1, one can notice overall, by minimizing the MSE
criteria, the p-value is maximized. Also several combinations of parameters
provide better results for some criteria and worse for others. Indeed, the
optimal parameters based on the MSE criterion are ν = 0.5, C = 28 and
σ2 = 27. Whilst using the p-value as a criterion, we obtain ν = 0.5, C = 28

and σ2 = 25. One can notice here that only the value of σ2 is different. There-
fore, we use the mean of both optimal values, i.e. σ2 = 26. These optimal
parameters provide an MSE equal to 0.006 and a mean p-value of Ljung-Box
Q-test equal to 0.35. This fact shows that SVR method provides comparable
results to the estimated ExpAR model without a need for any model spec-
ification structure. Also, we tested the normality of process residuals using
Jarque-Bera test (Jarque and Bera (1987)). We obtained a p-value greater
than 0.5, which means that residuals are normally distributed. Figure 6.3
and Figure 6.4 illustrate residuals independency.
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Table 6.1: Grid search for parameters optimization
C 23 24 25 26 27 28

v σ2 MSE
22 0.209 0.192 0.181 0.174 0.166 0.158
23 0.096 0.082 0.075 0.067 0.060 0.053

0.3 24 0.037 0.029 0.026 0.023 0.021 0.018
25 0.014 0.011 0.009 0.008 0.007 0.006
26 0.08 0.007 0.005 0.005 0.004 0.004
22 0.207 0.190 0.178 0.171 0.159 0.154
23 0.095 0.080 0.073 0.064 0.058 0.052

0.4 24 0.036 0.028 0.025 0.022 0.019 0.018
25 0.014 0.011 0.009 0.008 0.007 0.006
26 0.008 0.006 0.005 0.005 0.004 0.004
22 0.206 0.190 0.175 0.166 0.152 0.147
23 0.093 0.078 0.070 0.062 0.055 0.051

0.5 24 0.035 0.028 0.024 0.021 0.019 0.016
25 0.013 0.010 0.008 0.007 0.007 0.006
26 0.008 0.006 0.005 0.005 0.004 0.003

Mean p-value
22 0.130 0.229 0.288 0.317 0.326 0.330
23 0.197 0.247 0.290 0.327 0.340 0.357

0.3 24 0.267 0.298 0.320 0.335 0.346 0.362
25 0.259 0.295 0.307 0.324 0.342 0.355
26 0.171 0.238 0.269 0.289 0.297 0.316
22 0.157 0.253 0.295 0.321 0.327 0.330
23 0.215 0.265 0.306 0.326 0.340 0.350

0.4 24 0.283 0.306 0.325 0.336 0.351 0.362
25 0.274 0.300 0.312 0.323 0.331 0.339
26 0.196 0.255 0.272 0.295 0.309 0.330
22 0.184 0.268 0.305 0.321 0.332 0.332
23 0.228 0.277 0.317 0.337 0.343 0.352

0.5 24 0.290 0.317 0.328 0.340 0.358 0.373
25 0.283 0.305 0.311 0.322 0.339 0.357
26 0.209 0.259 0.277 0.295 0.311 0.337
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Figure 6.3: Process residuals using SVR model

Figure 6.4: Process residuals autocorrelation

Using the estimated model, parameters of the control charts are defined in
order to have an in-control ARL being approximately equal to 302. Selected
chart parameters are as follows: for X-Shewhart, λ = 2.97, for CUSUM,
Hcusum = 0.75 and kcusum = 2.8 and for EWMA, λ = 0.1 and L = 2.78.
To evaluate the performance of residuals control charts, 1000 samples are
simulated for each shift. Shifts affect all process parameters. Using the
defined SVR and control chart parameters, Table 6.2 provides performances
of different control charts by providing detection delays measured by ARL.
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Table 6.2: Fault detection results of the simulated univariate nonlinear pro-
cess

Parameters shift X CUSUM EWMA
ARL ARL ARL

In-control 302 302 302

Fault 1 4δ = 0.01 89 101 142
Fault 2 4δ = 0.02 36 49 81
Fault 3 4δ = 0.05 9 17 24
Fault 4 4δ = 0.15 2.3 6.2 6

Fault 5 4α1 = 0.03 17 303 13
Fault 6 4α1 = 0.05 9.8 28 7.3
Fault 7 4α1 = 0.15 1.9 1.7 2.4

Fault 8 4α2 = 0.1 210 138 172
Fault 9 4α2 = 0.25 57 28 37
Fault 10 4α2 = 0.5 6.5 14 27

Fault 11 4α3 = −0.03 19 286 14
Fault 12 4α3 = −0.05 11 33 8
Fault 13 4α3 = −0.15 2.1 2 2.8

Fault 14 4α4 = −0.1 255 102 91
Fault 15 4α4 = −0.2 75 31 35
Fault 16 4α4 = −0.3 39 22 29
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Figure 6.5: Run Length cumulative distributions of SVR-X, SVR-CUSUM
and SVR-EWMA charts for the different applied shifts. Blue line represents
the in-control situation. Red, green, black and violet lines represent the shift
magnitude

85



6.2. MULTIVARIATE PROCESS CONTROL ANALYSIS

First of all it is obvious that overall the applied control charts are able to
capture all drift disturbances. For example a shift of the standard deviation δ
equal to 0.02 decreased the ARL from 302 in in-control situation to 36, 49 and
81. Whereas a shift of 0.15 implied an ARL of 2.3, 6.2 and 6 for respectively
SVR-X, SVR-CUSUM and SVR-EWMA. On the other hand, the monitoring
results in Table 6.2 show that SVR-X control chart provides better results
for parameter shifts in δ, α1, and α3. However, for shifts in α2 and α4, SVR-
CUSUM and SVR-EWMA provide overall better detection abilities. We
notice that SVR-EWMA is always better for small and medium sized faults
than the other charts except for δ. Moreover, SVR-CUSUM is unable to
detect small shifts in α1 and α3. This is explained by the fact that this chart
stipulates that shifts are linear and thus some nonlinear shifts can not be
detected. These conclusions are illustrated in Figure 6.5 which presents RL
cumulative distributions of the different control charts when the process is
in-control(Blue line) and cumulative distributions when shifts are introduced.

6.2 Multivariate process control analysis

In order to study performances of different multivariate control charts an
analysis of a multivariate nonlinear autocorrelated system is performed. The
used nonlinear benchmark multivariate process is proposed by Chen and Liao
(2002) and used by Choi and Lee (2004) and Yoo and Lee (2006). The process
dynamics are as follows,

Y (t) = Z(t) + v(t)
Z(t) = A× Z(t− 1) +B × u2(t− 1)
u(t) = C × u(t− 1) +D × w(t),

(6.2)

where w(t) ∼ N(0, σ1) and v(t) ∼ N(0, σ2). Parameters used in this study
are as follows: σ1 = 0.5, σ2 = 0.1,

A =

0.8 −0.2 −0.1
0.1 0.9 0.2
0.1 −0.1 0.9

 , B =

0.05 0.01
0.05 0.05
0.01 0.05

 ,
C =

[
0.8 −0.2
0.5 0.4

]
and D =

[
0.2 0.7
−0.3 −0.75

]
.

Figure 6.6 illustrates process nonlinear multivariate dynamics and vari-
ables autocorrelation. To perform time series estimation for a multivariate
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process by SVR, each input variable Y(i=1..m)t is defined by previous variables
of the series (Y1(t−1), .., Y1(t−p), .., Ym(t−1), .., Ym(t−p)), where m is the number
of variables and p the lagged time. This study used 10 validation samples
that contains 1000 in-control observations each. For each iteration one sam-
ple is used for training and the other samples are used for testing. Applying
an AR model of order p = 3, the selected optimal parameters of SVR are
σ = 2, C = 2, ν = 0.1, for variables Y1 and Y3 and ν = 0.2, for variable
Y2. These parameters provide an MSE equal to 0.014, 0.018 and 0.014 and
a p-value of the Ljung-Box Q test equal to 0.13, 0.22 and 0.12 for respec-
tively variables Y1, Y2 and Y3. Moreover, we tested the normality of process
residuals using Henze-Zirkler test (Henze and Zirkler (1990)). We obtained a
p-value equal to 0.48, which means that residuals have a multivariate normal
distribution. Figure 6.7 presents process residuals and their autocorrelation
for the different variables.

Figure 6.6: Illustration of the multivariate nonlinear process and variables
autocorrelation

87



CHAPTER 6. ASSESSMENT OF THE PROPOSED CHART USING
SIMULATED PROCESSES

Figure 6.7: Illustration of multivariate process residuals and residuals auto-
correlation

Control chart limits are defined such that the in-control ARL is approxi-
mately equal to 202. Applying 1000 samples, the defined SVR control charts
parameters have the following values: α = 0.5 %, Hcot = 12.2, kcot = 4.5,
λ = 0.1 and L = 4.36. To evaluate the performance of multivariate residuals
control charts, 1000 samples are simulated for each shift. As made for uni-
variate SVR residuals control chart analysis, different shifts in the process
parameters are introduced. Analysis of the detection capability of the charts
is presented in Table 6.3 which provides the detection delays measured by the
ARL of SVR based T2, COT and EWMAT charts for several shifts. Figure
6.8 compares the cumulative distribution of RL for in-control process with
shifted processes.

88



CHAPTER 6. ASSESSMENT OF THE PROPOSED CHART USING
SIMULATED PROCESSES

Table 6.3: Fault detection results of the simulated multivariate nonlinear
process

Shift SVR-T2 SVR-COT SVR-EWMAT
ARL ARL ARL

A(1, 1) = 0.9 143 130 122
A(1, 1) = 1 49 41 43
A(1, 1) = 1.2 16.5 15.4 16.5
A(2, 2) = 0.95 122 114 109
A(2, 2) = 1.05 30 28 28.7
A(2, 2) = 1.2 9.8 9.8 10.8
A(3, 1) = 0.15 174 165 159
A(3, 1) = 0.2 130 119 114
A(3, 1) = 0.5 35 32.5 33

B(1, 2) = −0.05 161 154 153
B(1, 2) = −0.1 86 83 81
B(1, 2) = 0.5 6.4 6.1 8
B(3, 1) = 0.02 163 167 162
B(3, 1) = 0.05 63 50.5 57
B(3, 1) = 0.1 21.3 17.5 20.5
D(1, 1) = 0.5 111 102 104
D(1, 1) = 0.7 67 63 63
D(1, 1) = 1 33 29.5 33
C(2, 1) = 0.7 129 122 123
C(2, 1) = 1 49 42 46
C(2, 1) = 1.2 26 23 27
σ1= 0.6 75 70 70
σ1= 0.8 22 19.5 22
σ1= 1.5 3.3 3.3 4.3
σ2= 0.11 97 90 81
σ2= 0.13 30 23.6 26
σ2= 0.2 3.9 3.7 6.5
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Figure 6.8: Run Length cumulative distributions of SVR-T2, SVR-COT and
SVR- EWMAT charts for different applied shifts.Blue line represents the in-
control situation. Red, green and black lines represent the shift magnitude
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First of all, it is obvious that overall SVR control charts are able to
capture all drift disturbances. For example a small shift in A(1, 1) of 0.1
decreased the ARL from 202 in in-control situation to 143, 130.5 and 122,
whereas a shift of 0.4 implied an ARL of 16.5, 15.4 and 16.5 for respectively
SVR-T2, SVR-COT and SVR-EWMAT. For B(3, 1), a shift of 0.05 decrease
the ARL to 174, 165 and 159, whereas a shift of 0.4 implied an ARL equal
to 35, 32.5 and 33 for respectively SVR based T2, COT and EWMAT. Also
an increase of the standard deviation σ1, by 0.1 decreased the ARL to 75, 70
and 70 for respectively SVR-T2, SVR-COT and SVR-EWMAT. These results
are summarized in Figure 6.8 which present the cumulative distribution of
run length and which makes clear the good sensitivity of the charts to the
different applied shifts.

On the other hand, the monitoring results of Table 6.3 show that SVR-
COT and SVR-EWMAT control charts tend to provide better results for
smaller parameter shifts. Meanwhile, the detection results can not confirm
which control chart between SVR-COT and SVR-EWMAT has better de-
tection ability for small shifts. Indeed as shown in Table 6.3, each chart
provides better performance for a certain specific shift. However, for larger
shifts in the same parameters, different control charts seem to provide overall
equivalent detection abilities.

6.3 Conclusion

This chapter investigates monitoring of multivariate nonlinear autocorre-
lated processes by means of several SVR based control charts. The proposed
schemes allow handling of complex systems without requiring a predefined
process structure and can be of great interest in manufacturing of high tech-
nology where nonlinear continuous processes are frequently assessed, such as
in chemical industry. Results show that the used control charts can effec-
tively monitor the process behaviour guaranteeing an acceptable robustness
against in-control false alarms. Indeed, introduction of shifts to different pa-
rameters is efficiently detected by the different charts with a slightly better
sensitivity performance for some charts over the others. An interesting future
research concerns the use of adaptive SVR method for online estimation of
the parameters when the process exhibits a non-stationary behaviour.
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Multimodal process monitoring
using Local Support Vector

Domain Description

93





As technologies become more complex, modelling and detection of poten-
tial faults become more and more difficult. Indeed, usually modern processes
do not satisfy classical methods assumptions, such as normality or linearity.
To overcome these difficulties many non-parametric and non-linear proce-
dures have been recently proposed. One of these methods is the Support
Vector Domain Description (SVDD), proposed by Tax and Duin (1999). This
method belongs to the unsupervised learning category and it detects novel-
ties and outliers whose application involves machine faults diagnosis. Sun
and Tsung (2003) demonstrated that SVDD based control procedure can
perform better than conventional charts when the underlying process distri-
bution is not multivariate normal. Shin et al. (2005) applied this method
for detection of faults in an electromechanical machinery and concluded that
SVDD method and kernel-based learning algorithms are highly competitive
on a variety of problems and are efficient for machine fault detection. Bu et
al. (2009) used SVDD method to detect gradual change fabric defects and
proved that a low missing rate can be achieved simultaneously under a low
false alarm rate.

However, despite the success of applying SVDD method to fault detection
of several processes, there was not enough research concerning applications of
such methods to processes that run under multiple operating modes, because
of product changes, set-point changes and manufacturing strategies (Zhiqiang
and Zhihuan (2008), Hwang and Han (1999)). Unfortunately, direct appli-
cation of current methods to such processes tends to produce unsatisfactory
performance due to the adopted assumption of only one nominal operating
region for the underlying process.

To address the above problem, this part of the dissertation proposes a
process monitoring scheme based on separate local models. On the one hand,
this fact would simplify and reduce the complexity of the problem which can
help selecting SVDD parameters without a need for optimization. On the
other hand this permits not only detecting faults but also distinguishing
in which mode the underlying faults are happening. But because different
modes are usually not well-defined, this study applies a clustering method
in order to separate different process modes. Finding these local regions can
be successfully solved through the k-means algorithm which is well known in
pattern classification. The aim of k-means clustering is to group observations
on the basis of similarities using the sum-of-squares criterion. However, if
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the separation boundaries between clusters are nonlinear then basic k-means
may fail (Girolami (2002)). In order to overcome this problem, we use Kernel
k-means to cluster datasets. This fact is performed by mapping the data into
another space where k-means can be applied efficiently. Then, for each cluster
group an SVDD model will be trained.

This part of the dissertation is outlined as follows: Chapter 1 introduces
the principal of SVDD method, presents the problem of parameter estimation
and provides an overview of kernel k-means clustering method. Then, a
control chart based on local SVDD models for monitoring of multimodal
systems is proposed. Chapter 2 studies the performance of the proposed
chart based on simulated and benchmark processes.
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7
Multimodal Support Vector Domain

Description control chart

This Chapter is organized as follows. In Section 1, an overview of the SVDD
method is presented. Section 2 discusses the problem of parameters selection
for SVDD method. Section 3 exposes Kernel k-means clustering method.
Then, in Section 4, the proposed control chart is discussed.

7.1 Support Vector Domain Description

SVDD is a method presented by Tax and Duin (1999) that allows detecting
novel or abnormal observations by modelling the support of the target class
from the outlier class. Therefore, SVDD defines a function that is positive
where most observations lie and negative elsewhere. This goal is achieved
by finding a spherical boundary with a minimal radius R and center a that
contains most of the data. To take into account outliers that have a distance
larger than the sphere radius, slack variables εi are introduced. This principal
is illustrated in Figure 7.1. Thus, the task is to minimize the volume R2 and
slack variables εi as follows,

min(R,a) R
2 + 1

nv

n∑
i=1

εi

(xi − a)(xi − a)T ≤ R2 + εi ∀i = 1, .., n
εi ≥ 0 ∀i = 1, .., n

(7.1)

where v ∈ [0, 1] allows a trade-off between minimizing R2 and
n∑
i=1

εi.
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Figure 7.1: Principle of Support Vector Domain Description

The solution of the problem (7.1) can be solved through introduction of
Lagrange multipliers that are constructed as follows:

L(R, a, εi, α, β) = R2+
1

nv

n∑
i=1

εi−
n∑
i=1

αi
(
−(xi − a)(xi − a)T +R2 + εi

)
−

n∑
i=1

βiεi.

(7.2)
where αi and βi are Lagrange multipliers.

Then, the following conditions at the solution point can be derived,

∂

∂R
L = 0 =⇒

n∑
i=1

αi = 1. (7.3)

∂

∂εi
L = 0 =⇒ 1

nv
− αi − βi = 0. (7.4)

Because of Equation (7.3),

∂

∂a
L = 0 =⇒ a =

n∑
i=1

αixi. (7.5)

Since αi ≥ 0 and βi ≥ 0, we can remove variables βi from Equation (7.4)
and use the constraint 0 ≤ αi ≤ 1

nv
.
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Developing Equation (7.2) and integrating Equations (7.3), (7.4) and (7.5)
into the Lagrange function, we obtain the next optimization problem to solve
numerically

minα
n∑
i=1

n∑
j=1

αiαj < xi, xj > −
n∑
i=1

αi < xi, xi >

0 ≤ αi ≤ 1
nv

∀i = 1, .., n
n∑
i=1

αi = 1

(7.6)

Only few observations have an αi 6= 0 and they are called Support Vectors
(SV). According to KKT, only the Lagrange multipliers α′is and β′is that are
non zero at the saddle point correspond to constraints which are exactly
saturated. These conditions state that at the point of the solution we have

βiεi = 0 ∀ i = 1, .., n (7.7)

αi
(
(xi − a)(xi − a)T −R2 − εi

)
= 0 ∀ i = 1, .., n (7.8)

Using Equation (7.7), εi = 0 when βi > 0. Thus, using Equation (7.4),
we get αi ∈ ]0, 1

nv
[. These SV are called Boundary SV. From equation (7.8),

we notice that these points are located on the sphere boundary. The other
SV are then called Non-boundary SV. This is illustrated in Figure 7.2.

Figure 7.2: Support Vectors illustration for SVDD
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The euclidean distance of any observation z to the center a is calculated
as follows

Distance (z, a) =
√

(z − a)(z − a)T , (7.9)

=
√
< z, z > −2 < z, a > + < a, a >. (7.10)

Using Equation (7.5), we obtain

Distance (z, a) =

√√√√< z, z > −2
n∑
i=1

αi < z, xi > +
n∑
i=1

n∑
j=1

αiαj < xi, xj >.

(7.11)
Since the distance of a boundary SV xsv to the center a is equal to the

radius R, we can calculate R as follows

R =

√√√√< xsv, xsv > −2
n∑
i=1

αi < xsv, xi > +
n∑
i=1

n∑
j=1

αiαj < xi, xj >. (7.12)

Figure 7.3: Kernel mapping into another space where data can be spherically
distributed

As illustrated in Figure 7.3, in certain cases applying a spherical boundary
in the original space does not provide a good characterization of the target
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class. Therefore, to overcome this problem, one can use the kernel trick
by mapping the dataset into another space where they can be spherically
distributed. Then, by using the kernel function the quadratic optimization
problem (7.6) becomes as follows

minα
n∑
i=1

n∑
j=1

αiαjk(xi, xj)−
n∑
i=1

αik(xi, xi)

0 ≤ αi ≤ 1
nv

∀i = 1, .., n
n∑
i=1

αi = 1

(7.13)

Using a boundary support vector xsv, R is calculated as follows,

R=

√√√√k(xsv, xsv)− 2
n∑
i=1

αik(xi, xsv)+
n∑
i=1

n∑
j=1

αiαjk(xi, xj). (7.14)

In order to test if a new observation xnew is in-control, R is used as a
limit. An observation xnew is considered to be in-control if the distance

√√√√k(xnew, xnew)− 2
n∑
i=1

αik(xi, xnew) +
n∑
i=1

n∑
j=1

αiαjk(xi, xj). (7.15)

is below R.

7.2 Optimal SVDD parameters estimation

7.2.1 The Problem of SVDD parameters estimation

To apply SVDD method, several parameters need to be tuned. These param-
eters are the type of the kernel function and its parameter value. However, as
mentioned previously, this study uses the Gaussian kernel function. Added
to that, one needs to optimize the parameter v of the problem defined in
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Equation (7.1). Schölkopf et al. (2001) proved that v is an upper bound
on the fraction of outliers and also a lower bound on the fraction of SV of
the training dataset. Tax and Duin (2004) show that the expectation of the
fraction of SV is the upper bound of false alarm rate. Then, knowledge about
the false alarm rate can help specifying the corresponding value of v.

Concerning the parameter σ of Gaussian kernel, an appropriate value
is important for designing a detector with a good performance. When σ is
chosen to be too small then an underfitting problem can occur. This means a
detector with a simple decision boundary that almost looses its discriminating
capability and hence poor results can be obtained when testing is performed.
In contrast, large values of σ may imply an overfitting problem, which gives
an excessively complicated decision boundary with poor generalization during
testing. Tax et Duin (1999) proposes to use a value of σ that provides a
priori approximately the maximal allowed rate of outliers, i.e. the error on
the target set. Applying leave-one-out estimation on the training set, Tax
and Duin (1999) estimate the error on the target set by the fraction of SV
as follows

E(P (error)) =
NSV

N
, (7.16)

where NSV is the number of SV and N is the number of observations.

Tax and Duin (1999) stated that Equation (7.16) is a good estimate of the
error on the target class and used the fraction of SV to determine the value
of σ. Using the same idea, Schölkopf et al. (2001) proposes a simple heuristic
that starts with a large σ value and decreases it until the number of SV
does not decrease any further. Banerjee et al. (2006) used cross-validation
method to search for the value of σ that minimizes the expectation of the
fraction of SV and hence the upper bound of false alarm rate. However,
using this principal a problem arises when the used dataset does not contain
any outlier and therefore the rate of SV can not be set to zero. Moreover,
Bu et al. (2009) showed that, for another experiment, the average fraction
of SV does not guarantee the expected alarm rate. Therefore, using cross-
validation, Bu et al. (2009) stipulate that an optimal value should minimize
the difference between the average of fractions of Support Vectors obtained
from training datasets and the average of alarm rates from testing datasets.
Next, we summarize the selection criteria.
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BestTax and Duin (1999) : Choose v and σ such that

NSV

N
' A priori outliers rate (7.17)

BestBu et al. (2009) : Choose v and σ such that

v ' A priori outliers rate (7.18)

σ ← min σ

(
Mean

(
NSV

N

)
−Mean (Error rate)

)
(7.19)

This short literature overview shows that researchers provided different
methods for estimation of SVDD parameters and there is no consensus about
the best method. Therefore, next section is dedicated to the analyses of
optimal selection methods.

7.2.2 Analysis of optimal SVDD parameters estima-
tion

In order to analyze the effectiveness of SVDD optimal parameters selection
methods, we use several simulated nonlinear processes as well as some bench-
mark datasets. The simulated datasets are a cross, a ring and a simple
multimodal form and they are illustrated in Figure 7.4.

Figure 7.4: Simulated datasets. The blue points are in-control observations
and the green points are out-of control

Concerning the benchmark datasets, this study uses Iris, Balance, Iono-
sphere and Breast datasets. These datasets are frequently used in literature
to assess classifications methods and are available in UCI Repository. In
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Table 7.1: Benchmark datasets used to evaluate SVDD parameters selection
methods
Dataset Number of observations Number of variables Number of labels

Iris 150 4 3
Balance 625 4 3
Ionosphere 351 34 2
Breast 682 9 2

order to use them for one class method evaluation, each time one label is
used as a outlier class and the other labels are used as target class. Table
7.1 describes the used datasets

Moreover, in order to test the influence of the outliers when they are
introduced into the training datasets, this study affects the target class of
the simulated datasets with 0 %, 2% and 5% of outliers. Table 7.2 presents
performances of the optimal parameters based on Tax and Duin (1999) and
Bu et al (2009) criteria. In this study, we suppose that we can allow 5 % of
rejection from the target class plus the supposed rate of outliers introduced
in the training dataset. That means that we select the smallest σ and v
that allow an approximate 5 %, 7 % and 10 % of Support Vectors when
respectively a rate of 0 %, 2% and 5% of outliers are introduced. Concerning
Bu et al (2009) criterion, v is set to 0.05 when 0 % and 2 % of outliers
are introduced in the simulated datasets and 0.1 when 5 % of outliers are
introduced in the simulated datasets.

In Table 7.2, performances of SVDD parameters optimization methods
for all simulated and benchmark datasets are presented. To estimate results,
5-fold cross validation is used. Results contain the false alarm rates and the
detection rates. First, we notice that the bound provided by Tax and Duin
(1999) does not guarantee the False alarm rate for the test sets. This prob-
lem is due to the fact that the used bound concerns only the training set.
Concerning the detection results, Table 7.2 shows that both methods of Tax
and Duin (1999) and Bu et al (2009) present overall approximately equiva-
lent results with little better performance using the criterion of Tax and Duin
(1999) for only some datasets. Concerning the ring and multimodal datasets,
results show that as outliers rate in the training dataset increases, the detec-
tion performance increases which is not the case for the cross dataset. This
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Table 7.2: Fault detection results of SVDD with different parameters selec-
tion methods

Tax and Duin (1999) Bu et al (2009)

(v, σ) False alarm Detection (v, σ) False alarm Detection
rate rate rate rate

Ring dataset
0 % outliers (0.05, 24.5) 0.06 0.5 (0.05, 24.5) 0.07 0.5
2 % outliers (0.05, 23.5) 0.06 0.69 (0.05, 25) 0.04 0.5
5 % outliers (0.05, 23) 0.06 0.86 (0.1, 23) 0.06 0.86
Cross
0 % outliers (0.05, 25) 0.06 0.83 (0.05, 25) 0.06 0.83
2 % outliers (0.05, 24) 0.05 0.81 (0.05, 25) 0.06 0.76
5 % outliers (0.05, 23.5) 0.06 0.64 (0.1, 23.5) 0.06 0.64
Multimodal
0 % outliers (0.05, 24) 0.06 0.63 (0.05, 24.5) 0.07 0.53
2 % outliers (0.05, 22) 0.06 0.99 (0.05, 25) 0.05 0.5
5 % outliers (0.05, 22) 0.04 0.84 (0.1, 21.5) 0.04 0.84
Iris
Class 1 (0.05, 23) 0 0 (0.05, 23) 0 0
Class 2 (0.05, 22.5) 0.2 0 (0.05, 23) 0.15 0
Class 3 (0.05, 21.5) 0.2 1 (0.05, 23) 0 0

Balance
Class 1 (0.05, 23) 0.04 0.29 (0.05, 25) 0.07 0.25
Class 2 (0.05, 25) 0.07 0.12 (0.05, 24.5) 0.06 0.12
Class 3 (0.05, 21.5) 0.18 0.8 (0.05, 23.5) 0.06 0.31

Ionosphere
Class 1 (0.05, 25) 0.2 0.01 (0.05, 25) 0.2 0.01
Class 2 (0.05, 25) 0.13 0.63 (0.05, 22.5) 0.13 0.74

Breast
Class 1 (0.05, 23) 0.06 0.97 (0.05, 24.5) 0.08 0.97
Class 2 (0.05, 25) 0.06 0.97 (0.05, 25) 0.06 0.97
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result is explained by the fact that these datasets have different complexities.
However, the proposed parameters selection criteria take into account only
the rate of outliers contained in the training dataset. In fact, as the complex-
ity increases the rate of SV should increase. Therefore, one should integrate
also the problem complexity as a criterion in order to select the optimal pa-
rameters. Concerning real world datasets, both Tax and Duin (1999) and
Bu et al. (2009) criteria provide good and equivalent detection performance
for Breast dataset. However, Tax and Duin (1999) gives acceptable results
only when the testing Class is 3, 3 and 2 for respectively Iris, Balance and
Ionosphere datasets. For Bu et al (2009) criterion, results are only acceptable
for Class 2 of Ionosphere dataset. The poor performance for other datasets
can be explained by the distribution of the classes. In fact Tax and Duin
(1999) show that when the outlier class lies between the other classes the
detection performance becomes very poor. In order to overcome these prob-
lems namely the definition of the problem complexity and the problem when
the outlier class lies between the training classes, we propose to use clus-
tering method in order to construct several local SVDD models. Clustering
the dataset would reduce the problem complexity and therefore parameters
selection can be easier when using several local models. Also, this fact can
overcome the problem of SVDD method when used in multimodal processes
where the oultier class lies between the other classes. Another important
advantage of using the proposed method is the interpretation of the out-of-
control condition. In fact, when using a global SVDD model one can not
decide in which mode the problem is happening which is not the case when
using several clusters.

7.3 Kernel k-means clustering

Clustering is an unsupervised method that aims to partition a dataset into
smaller subsets of similar characteristics. One of the most used clustering
approaches is k-means. To cluster a dataset, classical k-means uses distances
that assume that the shape of the individual cluster is hyperspherical (Eu-
clidean) or hyperelliptical (Mahalanobis) (Jain and Dubes (1998)). Given
an unlabeled dataset Xi=1,..,n, euclidean k-means estimates the centroides
mi=1:c, where c is a predefined number of clusters, based on the following
optimization,
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Min(mi)

c∑
i=1

∑
j∈πi

||xj −mi||, (7.20)

mi =

∑
j∈πi

xj

|πi|
, (7.21)

where πi is the cluster i and |πi| is the number of its observations.

Unfortunately due to the shape assumption, the use of classical k-means in
many applications fails when used to non-hyperelliptical data. To overcome
this limitation, among solutions that have been provided is the Kernel k-
means method. This approach stipulates that by mapping the data into a
higher space, we can find a higher dimensional space where the hyperelliptical
shape can be used.

Kernel k-means apply a nonlinear mapping function from the initial fea-
ture space to a high dimensional feature space by using a nonlinear map
Φ. Then, the estimation of centroides is based on the optimization of the
following problem, where xj of Equation (7.20) is replaced by Φ(xj).

Min(mi)

c∑
i=1

∑
j∈πi

||Φ(xj)− Φ(mi)||, (7.22)

Φ(mi) =

∑
j∈πi

Φ(xj)

|πi|
, (7.23)

Φ(mi) =

n∑
k=1

δikΦ(xk)

n∑
k=1

δik

, (7.24)

Φ(mi) =
n∑
k=1

νikΦ(xk), (7.25)

where
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νik =
δikΦ(xk)

n∑
k=1

δik

(7.26)

and

δik =

{
1 if xk ∈ πi
0 otherwise

(7.27)

However because Φ is not explicitly known, we could use the kernel trick
to compute distances between patterns and codevectors Φ(mi). Indeed, this
can be done using the kernel trick as follows:

||Φ(xi)− Φ(xj)||2 = < Φ(xi),Φ(xi) > + < Φ(xj),Φ(xj) >

−2 < Φ(xi),Φ(xj) >,

= K(xi, xi) +K(xj, xj)− 2K(xi, xj). (7.28)

By writing each centroid in feature space as a combination of data vectors
in feature space, we have

||Φ(xj)− Φ(mi)||2 = ||Φ(xj)−
n∑
k=1

νikΦ(xk)||2, (7.29)

= kjj − 2
n∑
k=1

νikkjk +
n∑
r=1

n∑
s=1

νirνiskrs. (7.30)

For a new observation xnew, prediction of the cluster membership is based
on the minimal distance to centroid calculated in the higher dimensional
space as follows

Membership (xnew) = mini(||Φ(xnew)− Φ(mi)||2). (7.31)

Then, kernel k-means algorithm has different steps present in Table 7.3.
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Table 7.3: Kernel K-means algorithm
Step 1. Set the number of clusters p and the kernel parameters.
Step 2. Project the dataset X using kernel functions.
Step 3. Random initialization of clusters memberships.
Step 4. Compute distances to each cluster centroid mΦ

i .
Step 5. Update the membership of each observation using Equation 7.31.
Step 6. Go to step 4 until no membership change is performed.

7.4 Kernel k-means based SVDD fault detec-

tion

To address the problem of monitoring systems with multiple operating modes
that have several local different characteristics, this study implements a con-
trol procedure based on separate local SVDD models. The proposed scheme
is applied by combining the Kernel k-means clustering algorithm and SVDD
algorithm presented in the preceding section. To design the monitoring chart,
first the dataset is clustered using Kernel k-means method. This fact would
allow separating different groups of datasets that have common characteris-
tics. Then, for each group of data a local SVDD method is trained to obtain
the underlying data distribution model. At this stage new observations are
monitored by first determining their group membership and then by com-
puting their distance within the underlying group using the corresponding
SVDD model.

Another important issue in designing the control chart is the determina-
tion of different parameters. The first parameter to estimate is the number of
clusters. Indeed although in certain cases this number is known beforehand,
usually the number of modes or clusters is unknown. Therefore a method
to estimate the number of clusters need to be investigated. As indicated by
Girolami (2002), an estimation of the number of clusters within the data can
be given by the eigenvalue decomposition of the kernel matrix. A principal
components decomposition gives the approximation of the kernel matrix by
Equation (7.32),

K = VΛVT , (7.32)
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where V and Λ represent respectively matrices of eigenvectors vi and eigen-
values λi. Therefore, Equation (7.32) can be rewritten as follows:

ITnKIn = ITn

{
n∑
i=1

λiviv
T
i

}
In =

n∑
i=1

λi
{
ITnvi

}2
, (7.33)

where In is an n dimensional vector of elements 1/n.

Equation (7.33) indicates that the biggest contribution to ITnKIn is made
by the most significant terms λi

{
ITnvi

}
. So if there are c separate clustered

regions within the sample then the kernel matrix is approximated by the
c dominant terms in the summation. Thus, the eigenvalue decomposition
provides an accurate estimate of the number of clusters to use in the kernel
space. Therefore, we use as an estimate of the number of clusters, the mini-
mal number of principal components which guarantee α percent of the total
explained variance. In this study, we use α = 95 %.

The other parameters to tune are the kernel function and the parameter v
of the SVDD method. The application of local SVDD models based on clus-
tering of the data allows a simple and automatic parameter selection without
a need for optimization. A method to determine the kernel parameter δ2 is
to consider it as a scale for the kernel product, by taking it to be equal to
the sum of data variance. Suppose that the problem has m variables, then
we have

δ2 =

n∑
i=1

m∑
j=1

(xji − x̄j.)2

n
. (7.34)

Concerning the parameter v of SVDD method and as mentioned in Sec-
tion 2, it represents an upper bound for the outlier rate. Therefore an appro-
priate value can vary between 0.01 and 0.05, and here we opt for 0.05 which
allows, in the training sample, a maximal outlier rate of 5 %. As discussed
in Section 7.2.2, the upper bound concerns only the training set and does
not guarantee the same outlier rate for the test sets. Therefore, in this study
we smooth the radius R of SVDD by using as limit (1 + λ)R, where λ is
tuned to have a given in-control alarm rate using cross-validation method.
In order to conclude this section, we provide the different steps to construct
the proposed control chart in Table 7.4.

110



7.5. CONCLUSION

Table 7.4: Algorithmic steps of the proposed control procedure
Step 1: For an initial block of data do
Step 1.1: Determine the kernel parameter δ2.
Step 1.2: Construct the kernel matrix.
Step 1.3: Estimate the number of clusters to apply.
Step 1.4: Cluster data using Kernel k-means.
Step 1.5: For each cluster do

Step 1.5.1: Determine δ2 of the underlying cluster.
Step 1.5.2: Train a separate SVDD model.

Step 2: For each new observation xnew do
Step 2.1: Construct the kernel column
Step 2.2: Calculate its distance to each cluster.
Step 2.3: Determine cluster membership i.
Step 2.4: Using SVDD model of cluster i,

test the state of xnew.

7.5 Conclusion

This chapter investigates control of complex and multimodal processes using
Kernel k-means clustering to construct local SVDD models. This monitoring
strategy monitors processes without requiring a predefined data distribution.
Moreover, construction of local models allows simplifying the parameters op-
timization process and can provide better detection results. Also we have
a better interpretation of out-of-control situations. This control chart can
be used in many domains such as biology, industrial multimodal systems,
audio-visual systems... etc, where problems are usually complex and where
multimodality is frequently present. Analysis of this control strategy is con-
ducted in the next chapter.
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8
Performance evaluation of Kernel

k-means local SVDD

This chapter is devoted to the analysis of local SVDD based Kernel k-means
control chart. Section 1 assesses the proposed chart through simulation of two
processes. Section 2 analyses a real case study of a Semiconductor process
and Section 3 concludes this chapter.

8.1 A multivariate simulated multimodal pro-

cess study

In order to assess performances of the proposed procedure, two simulated
datasets are used. The first dataset is simulated by using 4 normally dis-
tributed clusters that have the following parameters

u1 = [5;7]
u2 = [8 ;12]
u3 = [2; 3]
u4 = [17 ;25]

 ,


Σ1 =

(
2 0.2

0.2 3

)
Σ3 =

(
0.2 0.2
0.2 1

)

Σ2 =

(
1 1.2

1.2 2

)
Σ4 =

(
3 1.2

1.2 5

)
 .

Faults are introduced after 300 in-control observations and they are sim-
ulated following a normal distribution with parameters
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u5 = [13; 17] and Σ5 =

(
1 0.5

0.5 1

)
.

For the second dataset, simulation is based on modelling a ring with
two clusters that have as radius r1 ∼ N(5, 1) and r2 ∼ N(15, 1). Faults are
introduced after observation 400 and they concern 10 out-of-control observa-
tions with r ∼ N(10, 1) and another 10 faults with r ∼ N(20, 1). Figure 8.1
illustrates both simulated data.

Figure 8.1: Illustration of the simulated datasets. The green points (+) are
in-control observations and the blue points (*) are out-of control data that
will be tested

Figure 8.2 and 8.3 illustrate several SVDD models with different numbers
of clusters. As figures show, when using a global SVDD model with only one
cluster, the decision boundary provides a poor decision capability for obser-
vations lying between the different modes. This fact is clear in Figure 8.3,
where the decision boundary includes observations in one circle and implies
a poor detection for outliers located between the two rings. However, the
increase of the number of clusters improves the decision boundary and hence
the detection capability. Nevertheless, as Figure 8.2 shows, when the num-
ber of cluster exceed a certain number, local SVDD models turn to provide
complex decision boundaries with poor generalization capability.
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Figure 8.2: SVDD models with different numbers of clusters for the multi-
modal process. Red circles are Support Vectors

Figure 8.3: SVDD models with different numbers of clusters for the ring
process. Red circles are Support Vectors
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To define the optimal number of clusters to use, this study applies the
method discussed in Section 4. Figure 8.4 illustrates the contribution of
different number of Principal Components to the total variance. The number
of principal components provides an idea about the number of clusters to use.
For the first model, 2 clusters are selected and they explain more than 95 %
of the total variance, whereas for the ring data, 5 clusters are selected.

Figure 8.4: Contribution of different numbers of principal components to the
total variance. The left figure concerns the first simulated data and the right
one is for the ring data

Using 10-fold cross validation samples, where each time 90 % of the in-
control data is used for training and 10 % for validation, we smooth the
radius R of SVDD in order to have approximately the same alarm rate of
2 % for all models. The illustration of boundary smoothing is present in
Figure 8.5. Table 8.1 resumes the obtained results based on several number
of clusters. As Table 8.1 shows, despite that global SVDD model provides
the same false alarm rate, the detection of faults measured by the detection
rate is very poor with respectively detection rates of 22 % and 50 %. This
fact is understandable because using only one global SVDD model does not
allow modelling the data distribution within the class. Thus, when faults lie
between the clusters a single SVDD model would be unable to detect them.
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Figure 8.5: Boundary smoothing of SVDD models

However, clustering the data and using several local SVDD models improves
the detection rate. In terms of faults detection, the improvement of detection
rate is significant with a detection rate of 100 % for Process 1 and 91 %
for Process 2. Moreover, eventhough the use of several number of clusters
provides an acceptable improvement in detection performance, models with
a number of clusters equal to 2, for Process 1 and 5 clusters for the ring data,
provide the best results as compared to single SVDD. These models follow
the discussed rule to select the best numbers of clusters in Section 7.4.

Table 8.1: Detection results for the multivariate simulated multimodal pro-
cesses using different models

SVDD Kernel k-means SVDD
Nbr of clusters - 2 3 4 5
False alarm rate

Process 1 0.02 0.02 0.02 0.02 0.02
Process 2 0.02 0.022 0.022 0.022 0.02

Detection rate
Process 1 0.22 1 0.82 0.82 0.83
Process 2 0.5 0.75 0.78 0.89 0.91
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8.2 Fault detection evaluation of Metal Etch

process

This section evaluates the proposed process monitoring model using a real
case study of a Semiconductor process. The dataset is publicly available and
can be downloaded from Eigenvector Research, Inc. Metal Etcher Semicon-
ductor is a chemical process that aims to etch the TiN/Al - 0.5% Cu/TiN/oxide
stack with an inductively coupled BCl3/Cl2 plasma. The process consists of
a series of six steps. The first two are for gas flow and pressure stabilization.
Step 3 is a brief plasma ignition step. Step 4 is the main etch of the Al layer
terminating at the Al endpoint, with Step 5 acting as the over-etch for the
underlying TiN and oxide layers (Wise et al. (1999)).

To monitor this process, several sensor systems for machine state variables
are used. The data corresponds to three experiments run several weeks apart.
Data from different experiments have different means and slightly different
covariance structure. Faults are intentionally introduced by changing specific
manipulated variables (transformer coupled plasma power, radio frequency
power, pressure, plasma flow rate and helium chunk pressure). The controlled
8 engineering variables are listed in Table 8.2.

Table 8.2: Variables used to monitor the Metal Etch process
Variable Definition
1 BCI 3 Flow
2 End point A detector
3 Pressure
4 Radio frequency load
5 Radio frequency phase error
6 Radio frequency power
7 Transformed-coupled Plasma tuner
8 Transformed-coupled Plasma load

The data consists of 128 observations in which variable means over sev-
eral runs throughout the batch are used, with 108 normal observations and
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Figure 8.6: Illustration of the data distribution of Metal Etch process. Blue
points are in-control data, whereas green points are faults
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21 observations with intentionally induced faults. The 56th observation is
excluded from the normal sample because it has very few runs compared
with other normal observations. To select the number of clusters, Figure 8.7
illustrates the contribution of the number of clusters in the total variance.
As it is shown, a model with 3 clusters provides more than 95 % of the total
variance and can be considered as an optimal value.

Figure 8.7: Contribution of different numbers of principal components to the
total variance

To conduct analysis, 10-fold cross validation sets are constructed from
the normal wafers. In this case, in each resampling step 90 % of the normal
batches are used to build the SVDD model and the remaining 10 % of normal
batches are selected for validation. We smooth the radius R of SVDD in order
to have approximately the same alarm rate of 5 % for all models. Table 8.3
shows performances of the different charts based on different numbers of
clusters.

As results indicate, although single SVDD provides the same false alarm
rate on the validation set, the chart has poor detection abilities measured by
a detection rate of 34 %. However, by clustering the data and using several
local SVDD models, the detection rate increases with the used number of
clusters. If we use the model based on 3 clusters, which follows the selection
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rule discussed in Section 7.4, then this model provides an acceptable false
alarm rate of 4.8 % and a significant improvement of detection with a rate
of 67 %.

Table 8.3: Detection results for Metal Etch process using different models
SVDD Kernel k-means SVDD

Nbr of clusters - 2 3 4 5

False alarm rate

Mean 0.057 0.054 0.048 0.055 0.056

Detection rate

Mean 0.34 0.48 0.67 0.55 0.55

Fault 1 1 1 1 1 1

Fault 2 0 0 0 0 0.1
Fault 3 0 0 0 0.8 0.2

Fault 4 1 1 1 1 1

Fault 5 0 0.9 1 1 1

Fault 6 0 0 0 0 0

Fault 7 1 1 1 1 1

Fault 8 0.1 0 0.1 0 0.1
Fault 9 0 0 0 0 0

Fault 10 1 1 1 1 1

Fault 11 0 0 0 0 0

Fault 12 1 0 1 1 1

Fault 13 0 1 0 0 0

Fault 14 0.1 1 1 1 1

Fault 15 0.1 1 1 1 1

Fault 16 0 1 1 1 1

Fault 17 0 0 1 0.1 0.4

Fault 18 0 0 1 0.1 0.4

Fault 19 0 0 1 0.1 0

Fault 20 0.9 0.1 1 0.7 0.4

Fault 21 1 1 1 1 1
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8.3 Conclusion

This chapter presents a local SVDD fault detection algorithm based on Ker-
nel k-means clustering, which increases sensitivity of the charts to faults. The
algorithm detects faults by first deciding to which cluster it belongs then by
testing their state with the underlying SVDD. Unlike existing global SVDD
control procedures, using membership measurements, the algorithm uses dif-
ferent SVDD models for each cluster. Simulation results show that this
procedure gives better detection rate than those with global SVDD model.
Future research concerns application and evaluation of adaptive models to
handle non-stationary processes. Moreover procedures to train online Kernel
k-means and SVDD models can be investigated.
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9
Summary and further research

In this thesis we have investigated development and application of Kernel
methods to enhance Statistical Process Control procedures. The main results
of the thesis are summarized in Section 1, then, further research that can be
investigated to improve and extend this work is discussed in Section 2.

9.1 Summary

Chapter 1 proposed a control chart based on adaptive Kernel Principal Com-
ponents Analysis to model non-stationary nonlinear process behavior. Chap-
ter 2 presented an efficient adaptive KPCA method that allows introduction
or elimination of a data block at the same time. This updating method
provides a reduced computation cost and allows a fast updating of a large-
scale KPCA model. Analysis of the accuracy and stability of the proposed
updating method shows that it provides a good tracking of the original ma-
trix with a small reconstruction error. Chapter 3 compare the proposed
adaptive KPCA and different PCA control charts. Analysis and comparison
with batch models, as well as with other adaptive PCA procedures, shows
that first, Batch PCA based control charts are unable to adequately control
non-stationary processes since they are based on the use of fixed models for
monitoring dynamic processes. Moreover, results show that the proposed
chart provides overall competitive detection results.

In order to monitor nonlinear autocorrelated processes, the second part of
this thesis is dedicated to the development of residuals control charts. Chap-
ter 4 is devoted to the development of control charts based on SVR method
to monitor nonlinear systems without requiring much knowledge about the
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process structure. The advantage of using SVR method is that this method
allows modelling of nonlinear processes without the need to find analytical
solutions to describe phenomena of interest. Chapter 5 evaluates the ef-
fectiveness of the proposed control charts using univariate and multivariate
simulated nonlinear processes. Results show that the used control charts can
effectively monitor the process behaviour while guaranteeing an acceptable
robustness.

The third part of this dissertation deals with development of local SVDD
based control chart to monitor complex and multimodal processes without
specifying a probability distribution. Chapter 6 discusses the problem of
parameters selection for SVDD and shows that knowledge about the rate of
outliers and the dataset complexity plays an important role to set optimal
parameters. Then, a monitoring scheme based on separate local models is
discussed. This procedure allows simplifying and reducing the complexity
of the problem which can help selecting SVDD parameters. Chapter 7 is
devoted to the analysis of local SVDD based control chart based on simulated
and real case study. Results show that this procedure allows better detection
rate while guaranteeing a reduced false alarm rate.

9.2 Further research

Methods used in this thesis could be further enhanced. A monitoring pro-
cedure based on a recursive updating of KPCA model accompanied by a
recursive determination of kernel parameters could be investigated. More-
over, an interesting problem is the use of adaptive SVR method or adaptive
local SVDD control charts for online estimation of the parameters when the
process exhibit a non-stationary behavior.

Also, further investigation of kernel functions can be investigated. Indeed,
performances of kernel methods depend on the used kernel function. How-
ever, current kernel selection methods are mainly dedicated to learning the
kernel function for supervised problems. In contrast, for unsupervised prob-
lems, such as KPCA, SVDD or Kernel k-means, no general rule for kernel
selection is used and existing methods choose the kernel function empirically
from a given set of candidates. Moreover, only some standard kernel func-
tions such as Gaussians or Polynomials are investigated. Therefore, further
theoretical and empirical analysis of kernel functions is very important. For
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example one can investigate the adequacy of certain functions to the geomet-
rical distribution of data. Also, one can further investigate criteria to use in
order to optimize the kernel parameters in the case of data reduction, one
class classification or Kernel clustering. Another interesting research that
is linked to parameter selection is the development of complexity measures
of datasets. This could have an impact on the selection of kernel meth-
ods parameters, by either reducing the optimization parameters space or by
approximating the value of optimal parameters.

125





Bibliography

[1] Alwan, L.C. and Roberts, H.V., 1995, The problem with misplaced con-
trol limits, Applied Statistics, 44, 269-278.

[2] Apley, D.W. and Tsung, F., 2002, The Autoregressive T2 Chart for Mon-
itoring Univariate Autocorrelated Processes, Journal of Quality Technol-
ogy, 34, 80-96.

[3] Bu, H., Wang, J. and Huang, X., 2009, Fabric defect detection based on
multiple fractal features and support vector data description, Engineer-
ing Applications of Artificial Intelligence, 22, 224-235.

[4] Bagshaw, M. and Johnson, R. A., 1975, The effect of serial correlation
on the performance of CUSUM tests II, Technometrics, 17, 73-80.

[5] Banerjee, A, Burlina, P. and Diehl, C., 2006, A Support Vector Method
for Anomaly Detection in Hyperspectral Imagery, IEEE Transactions on
geoscience and remote sensing, 44, 2282-2291.

[6] Blake, C. and Merz, C., 1998, Uci repository of machine learning
databases, Online: http://archive.ics.uci.edu/ml/.

[7] Benneyan, J.C., Lloyd, R.C. and Plsek, P.E. 2003, Statistical Process
Control as a Tool for Research and Healthcare Improvement, Quality
and Safety in Health Care, 12, 458-464.

[8] Choi, S. and Lee, I., 2004, Nonlinear dynamic process monitoring based
on dynamic kernel PCA, Chemical Engineering Science, 59, 5897-5908

[9] Chen, J. and Liao, C.M., 2002, Dynamic process fault monitoring based
on neural network and PCA, Journal of Process Control, 12, 277-289

[10] Callao, M. and Rius, A., 2003, Time series: a complementary technique
to control charts for monitoring analytical systems, Chemometrics and
Intelligent Laboratory Systems, 66, 79-87.

[11] Choi, S.W., Martin, E.B., Morris, A.J. and Lee, I., 2006, Adaptive Mul-
tivariate Statistical Process Control for Monitoring Time-Varying Pro-
cesses, Industrial Engineering and Chemical Research, 45, 3108-3118.

127



BIBLIOGRAPHY

[12] Choi, S.W., Lee, C., Lee, J.MP., Park, J.H. and Lee, I.B., 2005, Fault
detection and identification of nonlinear processes based on KPCA,
Chemometrics and Intelligent Laboratory Systems, 75, 55-67.

[13] Cui, P., Li, J. and Wang, G., 2007, Improved kernel principal component
analysis for fault detection, Expert Systems with Applications, 36, 1423-
1432.

[14] Dooley, J. and Guo, K., 1992, Identification of change structure in sta-
tistical process control, International Journal of Production Research,
30, 1655-1669.

[15] Downs, J.J and Vogel, E.F, 1993, A plant-wide industrial process control
problem. Computers and Chemical Engineering, 17, 245-255.

[16] Elbasi, E., Zuo, L., Mehrota, K., Mohan, C. and Varshney, P., 2005,
Control Charts Approach for Scenario Recognition in Video Sequences,
Turkish journal of electrical engineering and computer sciences, 13, 303-
309.

[17] Evangelista, P., Embrechts, M. and Szymanski, B., 2007, Some prop-
erties of the Gaussian kernel for one class learning, Lecture Notes in
Computer Science, 4668, 269-278.

[18] Girolami, M., 2002, Mercer Kernel-Based Clustering in Feature Space,
IEEE Transactions on Neural Networks, 13, 780-784.

[19] Golub, G.H., and Loan C.F.V., 1989, Matrix computations, Baltimore,
MD 21218: The John Hopkins University Press.

[20] Henze, N. and Zirkler, B., 1990, A class of invariant consistent tests
for multivariate normality, Communications in Statistics - Theory and
Methods, 19, 3595-3617.

[21] Hotelling, H., 1933, Analysis of a complex of statistical variables into
components. Journal of Educational Psychology, 24, 417-441.

[22] Hwang, D. and Han, C., 1999, Real-time monitoring for a process with
multiple operating modes, Control Engineering Practice, 7, 891-902.

128



BIBLIOGRAPHY

[23] Hwarng, H.B. and Hubele, N.F., 1993, X-bar control chart pattern iden-
tification through efficient off-line neural network training, IEEE Trans-
actions, 25, 27-40.

[24] Harris, T.J. and Ross, W.H., 1991, Statistical process control procedures
for correlated observations, Canadian Journal of Chemical Engineering,
69, 48-57.

[25] Haggan, V. and Ozaki, T., 1981, Modelling nonlinear random vibra-
tions using an amplitude-dependent autoregressive time series model,
Biometrika, 68, 189-196.

[26] Hoffmann, H., 2007, Kernel PCA for novelty detection, Pattern Recog-
nition, 40, 863-874.

[27] Hoegaerts, L., Lathauwer, L., Goethalsa, I., Suykens, J.A.K, Vande-
walle, J. and De Moor, B., 2007, Efficiently updating and tracking the
dominant kernel principal components, Neural Networks, 20, 220-229.

[28] Jarque, C.M. and Bera, A.K., 1987, A test for normality of observations
and regression residuals, International Statistical Review, 55, 163-172.

[29] Jain, A.K. and Dubes, R.C., 1998, Algorithms for clustering Data, Up-
per Saddle River, Prentice Hall.

[30] Jiang, W., Tsui, K.L. and Woodall, W.H., 2000, A new SPC monitoring
method: The ARMA chart, Technometrics, 42, 399-410.

[31] Jamal, A., Seyed, T., Akhavan, N. and Babak, A., 2007, Artificial neural
networks in applying MCUSUM residuals charts for AR(1) processes,
Applied Mathematics and Computation, 189, 1889-1901.

[32] Longnecker, M. T. and Ryan, T. P., 1992, Charting Correlated Process
Data, Technical Report No.166, Texas A&M University, Department of
Statistics.

[33] Loredo, E.N., Jaerkpaporn, D. and Borror, C.M., 2002, Model-based
control chart for autoregressive and correlated data, Quality and Relia-
bility Engineering International 18, 489-496.

129



BIBLIOGRAPHY

[34] Lee, J.M., Yoo, C., Choi, S.K., Vanrolleghemb, P.A. and Lee, I., 2004,
Nonlinear process monitoring using kernel principal component analysis,
Chemical Engineering Science, 59, 223-234.

[35] Lee, D.S., Park, J.M. and Vanrolleghem, P.A., 2005, Adaptive multi-
scale principal component analysis for on-line monitoring of a sequencing
batch reactor, Journal of Biotechnology, 116, 195-210.

[36] Liu, X., Xie, L., Kruger, U., Littler, T., and Wang, S., 2009, Mov-
ing window kernel PCA for adaptive monitoring of nonlinear processes,
Chemometrics and Intelligent Laboratory Systems, 96, 132-143.

[37] Liu, F. and Wu, C., 2006, Improvement on Multivariate Statistical Pro-
cess Monitoring Using Multi-scale ICA, in Independent Components
Analysis and Blind signal Separation, Springer.

[38] Li, W., Yue, H.H., Valle-Cervantes, S. and Qin, S.J., 2000, Recursive
PCA for adaptive process monitoring, Journal of Process Control, 10,
471-486.

[39] Lee, J., Yoo, C., Choi, S., Vanrolleghem, P.A. and Lee, I., 2004, Nonlin-
ear process monitoring using kernel principal component analysis Chem-
ical Engineering Science, 59, 223-234

[40] Montgomery, D.C., 2005, Introduction to Statistical Quality Control,
5th Edition.

[41] Mercer, J., 1909, Functions of positive and negative type and their con-
nection with the theory of integral equations, Philosophical Transactions
of the Royal Society, London, A 209, 415-446.

[42] Müller, K.R., Smola, A., Ratsch, G., Schölkopf, B., Kohlmorgen, J. and
Vapnik, V., 1997, Predicting time series with support vector machines,
in: Gerstner, W., Germond, A., Hasler, M. and Nicoud J.D., Artificial
Neural Networks ICANN’97, Lecture Notes in Computer Science 1327,
999-1006.

[43] Messaoud, A., Weihs, C. and Hering, F., 2008, Detection of chatter
vibration in a drilling process using multivariate control charts. Compu-
tational Statistics & Data Analysis, 52, 3208-3219.

130



BIBLIOGRAPHY

[44] Magalhaes, M.S., Antonio, D., Costa, E., Francisco, F.B. and Netoc,
D.M., 2006, Adaptive control charts: A Markovian approach for pro-
cesses subject to independent disturbances, International Journal of Pro-
duction Economics, 99, 236-246.

[45] Nomikos, P. and MacGregor, J.F., 1995, Multivariate SPC charts for
monitoring batch processes, Technometrics, 37, 41-59.

[46] Noorossana, R. and Vaghefi, S.J.M., 2006, Effect of autocorrelation on
performance of the MCUSUM control chart, Quality and Reliability
Engineering International, 22, 191-197.

[47] Park, C.H. and Park, H., 2005, Nonlinear Discriminant Analysis using
kernel functions and the gerneralized Singular Value Decomposiotion,
Journal of Matrix analysis and applications, 27, 87-102.

[48] Pacella, M. and Semeraro, Q., 2007, Using recurrent neural networks
to detect changes in autocorrelated processes for quality monitoring,
Computers and Industrial Engineering, 52, 502-520.

[49] Ping-Feng, P. and Chih-Sheng, L., 2005, Using support vector machines
to forecast the production values of the machinery industry in Taiwan,
International Journal of Advanced Manufactoring Technology, 27, 205-
210.

[50] Psarakis, S. and Papaleonida, G. E. A., 2007, SPC Procedures for Mon-
itoring Autocorrelated Processes, Quality Technology and Quantitative
Management, 4, 501-540.

[51] Park, Y., 2005, A Statistical process control approach for network inru-
sion detection, Docoral dissertation, Georgia Institute of Technology.

[52] Ryan, T.P., 2000, Statistical Methods for Quality Improvement, 2nd
edition. John Wiley & Sons, New York.

[53] Ricker, N. L., 2008, Tennessee Eastman Challenge. Available at
http://depts.washington.edu/control/LARRY/TE/download.html.

[54] Ruixiang, S., Fugee, T. and Qu, L., 2007, Evolving kernel principal
component analysis for fault diagnosis, Computers and Industrial Engi-
neering, 53, 361-371.

131



BIBLIOGRAPHY

[55] Sukchotrat, T., Kim, S.B. and Tsung, F., 2010, One-class classification-
based control charts for multivariate process monitoring IIE Transac-
tions, 42, 107120.

[56] Shin, H., Eom, D. and Ki, S., 2005, One-class support vector machines:
an application in machine fault detection and classification, Computers
and Industrial Engineering, 48, 395-408.

[57] Schölkopf, B. and Smola, A.J., 2002, Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond, MIT
Press.

[58] Sun R., and Tsung F., A., 2003, Kernel-distance-based multivariate con-
trol charts using support vector methods, International Journal of Pro-
duction Research, 41, 2975-2989.

[59] Stapenhurst, T., 2005 ,Mastering Statistical Process Control: A Hand-
book for Performance Improvement Using SPC Cases, Elsevier.

[60] Stone, R. and Taylor, M., 1995, Time series models in statistical process
control: considerations of applicability, The Statistician, 44, 227-234.

[61] Sato, J.R., Costafreda, S., Morettin P.A. and Brammer, M.J., 2008,
Measuring Time Series Predictability Using Support Vector Regression.
Communications in Statistics, Simulation and Computation, 37, 1183-
1197.

[62] Shi, Z., Tamura, Y. and Ozaki, T., 2001, Monitoring the stability of
BWR oscilation by nonlinear time series modeling, Annals of Nuclear
Energy, 28, 953-966.

[63] Schölkopf, B., Smola, A. and Muller, K.B., 1998, Nonlinear component
analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-
1319.

[64] Tax, D., and Duin, R., 1999, Support vector domain description, Pattern
Recognition Letters, 20, 1191-1199.

[65] Tax, D. and Duin, R., 2004, Support Vector Data Description, Machine
Learning, 54, 45-66.

132



BIBLIOGRAPHY

[66] Thissena, U., Van Brakela, R., Weijerb, A.P., Melssena, W.J. and
Buydens, L.M., 2003, Using support vector machines for time series
prediction, Chemometrics and Intelligent Laboratory Systems, 69, 35-
49.

[67] Tay, F.E.H. and Cao, L.J., 2001, Application of support vector machines
in financial time series forecasting, Omega, 29, 309-317.

[68] Vapnik, V., 1998, Statistical Learning Theory, Wiley.

[69] Woodall, W.H., 2000, Controversies and contradictions in statistical pro-
cess control, Journal of Quality Technology, 32, 341-350.

[70] Wise, B.M., Gallagher, N.B, Butler, S.W, White, D.D. and Barna G.G.,
1999, A comparison of principal component analysis, multiway principal
component analysis, trilinear decomposition and parallel factor analysis
for fault detection in a semiconductor etch process, Journal of Chemo-
metrics, 13, 379-396.

[71] Wang, M.P. and Jones, M.C, 1995, Kernel Smooting, Chapman and
Hall, London, UK.

[72] Yoo, C.K. and Lee, I., 2006, Nonlinear multivariate filtering and biopro-
cess monitoring for supervising nonlinear biological processes, Process
Biochemistry, 41, 1854-1863.

[73] Zhiqiang, G. and Zhihuan, S., 2008, Online monitoring of nonlinear mul-
tiple mode processes based on adaptive local model approach, Control
Engineering Practice, 16, 1427-1437.

[74] Zhang, J. and Yang, X., 2000, Multivariate Statistical Process Control,
Beijing, China: Chemical Industry.

[75] Zhang, N.F., 1998, A statistical control chart for stationary process data,
Technometrics, 40, 24-39.

133




