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CHAPTER 1

Introduction

The history of electrical computing systems is still young |103, 126], nevertheless
the speed of development and frequency of innovations has dramatically increased
in the past decades: while mainframe systems in the middle of the last century
filled whole living rooms or even buildings, their computational performance was
very limited. Additionally, these systems have been only accessible by governments,
military or research institutes due to exorbitant costs. With the advent of the
personal computer in the early eighties of the last century, computing systems have
become affordable by everybody. Unprecedented memory sizes were made available
by magnetic memories such as floppy disks and hard disks as well as innovations in
semiconductor technologies yielding various random access memory (RAM) designs.
Together with rapidly increasing computational power, personal computers have
become popular for various fields of applications like home entertainment, research
or in the business sector.

In the beginning of the current millennium, a trend towards smaller computa-
tional units which enable mobile application scenarios started. Battery-driven units
were integrated into a wider range of products which, so far, were realized purely
mechanically with few electrical components. Cars, for instance, were suddenly
equipped with a lot of advanced driver assistance systems such as anti-lock braking
systems (ABS), electronic stability control (ESC) or a clutch of airbags. Entertain-
ment and comfort systems (among others automatic climate controls, navigation
systems and head-up displays) have been simply impossible before these small and
powerful computing systems have been introduced.

Since most of the mentioned computing systems are hidden from the user and
are embedded into the actual product, those systems are also called embedded sys-
tems [82]. In the case of systems heavily interacting with their physical environment
such as driver assistance systems or flight control systems, these systems are referred
to as cyber-physical systems [67]. Along with shrinking in size, embedded/cyber-
physical systems became cheaper in production which made them even more attrac-
tive for nearly arbitrary purposes. This lead to the fact that practically everybody
is surrounded by a wealth of such systems without perceiving them at first sight.
Accordingly, this trend is called ubiquitous computing [124] or pervasive computing.

The following, incomplete list should provide a brief overview of popular domains
and application scenarios for embedded/cyber-physical systems:
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Automotive: After its invention, automobiles were the domain of mechanical
and electrical engineers during the period of a century. Nowadays, the design of
automobiles without electrical control units (ECU) cannot be imagined: restrictive
exhaust emission standards put high requirements on engine control which cannot
be realized without the usage of embedded systems. ABS and ESC as active safety
instrumented systems indisputably save lives. Therefore, the European Commission
regulated their installation in new car models as from 2011 by law [111]. Nev-
ertheless, all such electronic systems can have errors or require adaptions due to
new regulations. Since the replacement of such highly integrated components en-
tails large costs, embedded/cyber-physical systems are employed which are usually
equipped with rewritable flash memories. This enables easy updates of software
applications integrating error fixes, adaption to new regulations or even new fea-
tures without replacement of hardware. The BMW Series 7 as of 2006, for instance,
integrated already up to 70 ECUs with an overall program size of up to 110 MB [90,
p. 58-59].

Avionics: In recent times, aircraft became not flyable without electronic help
[28, 48, 12]; altitude/heading reference systems and controls are standard and re-
alized by embedded systems. Jumbo jets such as Boeing 747-8 and Airbus A380
are not realizable at all without cyber-physical systems implementing fly-by wire.
Technological advances bring comfort to the passengers by intelligent air conditions
and individual entertainment systems mounted in back rests.

Handhelds: Handheld devices are usually ultra mobile devices running on bat-
teries. Examples for such devices are first-generation personal CD players which are
entirely replaced by small MP3 players. Further examples comprise game consoles,
personal digital assistants (PDA), personal navigation assistants (PNA) and smart
televisions. Smart phones by now combine the functionalities of mobile phones, digi-
tal cameras, PDA, PNA, game consoles as well as audio and video players/recorders.
These devices have to cope with a growing amount of multimedia data which steadily
increases the demands on embedded/cyber-physical systems. Therefore, powerful
embedded systems are developed with dual or even multi-core processors equipped
with RAM and flash memories in the range of gigabytes. Such devices already
outperform stationary personal computers from the last decade.

Telecommunication: The rapidly growing dissemination of ubiquitous comput-
ing does not pass over the domain of telecommunication; the triumph of analog
telephone systems was followed by digital communication for speech and data. Var-
ious data services such as digital subscriber line (DSL), internet via fiber optics or
cable connection made fast World Wide Web (WWW) access affordable for every-
body. The cordless DECT standard [29] and other radio services such as Bluetooth
or WiFi converted stationary installations to comfortable, mobile services. Since



most of these devices are powered 24/7, not only high-performance but also energy
conserving embedded systems are required.

As can be summarized from this overview of application scenarios, high per-
formance is one of the most important requirements for embedded/cyber-physical
systems. Besides additional, always present demands for low production costs and
short time to market cycles, systems employed in ubiquitous or pervasive computing
have to fulfill a number of further non-functional criteria [82, p. 5-10] discussed in
the following.

Dependability: Embedded/cyber-physical systems have to be dependable which
comprises several aspects:

e The probability of failure depends on a system’s reliability.

e In case of a failure, maintainability characterizes time and effort required to
bring a system back to normal operation.

e Reliability and maintainability of a system affect its overall availability which
is the probability that a system is operational.

e In order to avoid damage or even loss of life, high safety requirements are
imposed to embedded/cyber-physical systems.

e To provide integrity and confidentiality of processed and communicated data,
security is important for a large number of systems.

Efficiency: Besides demanded dependability, embedded/cyber-physical systems
have to be efficient in various ways at the same time:

e Today, almost any electronic system has to be energy efficient which is
expressed by the buzzword green computing. Despite a growing number of
embedded/cyber-physical systems, the environmental pollution — and espe-
cially the carbon dioxide emissions — should be reduced. In face of a high
amount of battery-driven devices, the energy consumption should be reduced
as well in order to extend the operating time and save battery cost and weight,
respectively.

e Systems should be runtime efficient in the fashion of exploiting the under-
lying hardware platform as effectively as possible. Inefficiency as well as long
idle times should be avoided in order to achieve high energy savings and to
avoid unnecessarily high clock rates.

e Embedded systems’ memories are limited since they are usually not equipped
with hard disks. Even though internal flash becomes cheaper, applications
stored in it should have a small code size to save costs.
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e Mobile and handheld devices should have a low weight which is often a
buying criterion.

e Devices especially in the high-volume segment should have low costs. To
cut down production costs, as cheap as possible hardware should be used.
Therefore, existing hardware resources should be used efficiently in order to
avoid an oversizing of the hardware platform. Optimizing compilers and highly
specialized applications are crucial to fulfill this requirement [59].

While dependability aspects are mainly influenced by the employed hardware
(technology) and software development paradigms, efficiency aspects are in large
part depending on the software running on a system. Embedded systems were pro-
grammable in assembly at their time of origin. Modern embedded/cyber-physical
systems, however, are by far too complex for such a programming style. Grow-
ing requirements demand modern development platforms supporting high-level pro-
gramming languages or graphical design languages. ANSI C [5] was established
as de facto standard programming language in the embedded domain and is also
synthesized by most of the graphical design tools.

In order to achieve high code quality w.r.t. energy or runtime efficiency, the
usage of modern compilers is mandatory which apply aggressive optimizations. In
this way, redundant computations can be avoided and specific hardware features
can be exploited yielding high software efficiency. Although sophisticated compilers
already exploit specialized instruction sets such as digital signal processing (DSP)
extensions or saturating arithmetic, the programmer is still free to write performance
critical parts handcrafted using inline assembly.

Established optimizing compilers — also these ones targeting embedded/cyber-
physical systems — almost exclusively focus on average-case execution time (ACET)
reduction. The latter denotes that runtime that is required in the average case for
the execution of a certain program and a representative set of input data. Compilers
employ elaborate heuristics for program code and data optimization with the ob-
jective of reducing the number of elapsed processor cycles until a program has been
processed. Due to the lack of a detailed timing model, a heuristic can only estimate
if a modification to apply will actually result in a performance increase. Since par-
ticular transformations can result in a performance decrease as well [68], they aim
at achieving a runtime reduction added up over all applied code modifications.

1.1 Real-Time Systems Design

Embedded systems are often subject to stringent timing constraints which is why
they are often also called real-time systems. For such systems, the correctness of a
computation does not only depend on the actual computed results but also on the
time period within they are delivered. In case of a safety-critical system such as a
flight attitude control, exceeding of hard deadlines can cause loss of life if resulting
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instable control loops lead to an airplane crash. Thus, the worst-case execution time
(WCET) of a program or an entire system plays an eminent role in the design phase
of such hard real-time systems.

Depending on the set of input data, the actual system state and the current
environment, a task can exhibit a widespread distribution of execution times. Fig-
ure 1.1 depicts an example of such a distribution. The x-axis represents possible
execution times for the considered task whereas the y-axis represents the number of
occurrences for a certain execution time. According to the choice of the input data
set, certain execution times can be observed by simply executing the task, denoted
by the dashed curve. For common applications running on complex systems, the
solution space of possible input data combinations is quite large. Thus, it is exceed-
ingly difficult if not impossible to evaluate all possible input data combinations in
order to find the scenario leading to the WCET.

If the worst-case input is not guaranteed to be tested, it can happen that the
actual WCET, also termed WCET,..q;, exceeds the observed WCET (as shown in
Figure 1.1). Hence, measurement based determination of the maximum runtime of
an application may lead to an underestimation of the execution time. An unsafe
WCET would be the result. Since the WCET is employed for scheduling to verify
if tasks meet their deadlines, this not acceptable in a hard real-time environment.

Therefore, static timing analyzers have been developed which allow calculating a
program’s runtime based on sophisticated analytic models. Static timing analyzers
do not execute the program under analysis but analyze its control flow with the
help of user-provided annotations in order to determine the worst-case execution
path (WCEP) triggered by the worst-case input. The WCEP is the longest path
inside the control flow graph (CFG) of a program, and its length corresponds to the
WCET. Due to modern hardware equipped with speculative units such as caches,
branch prediction units and possibly speculative execution, it is almost impossible
to derive the behavior of all hardware components for every point of time and
thereby compute the actual WCET. A static timing analyzer thus has to assume
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the worst-case behavior in such cases which leads to a certain overestimation. For
the estimated WCET, also termed WCET,4, the following partial order must hold:

Safeness : WCET 54 > WCET,cqi > WCET pserved

An overestimated WCET leads to an unwanted  since costly  oversizing of
hardware units to guarantee timeliness of the executed tasks. Thus, highly precise
static timing analysis techniques are desired to minimize the overestimation:

Tightness : WCET.st — WCET cqp ~ min.

All techniques and optimizations proposed in this thesis are focused on the reduc-
tion of the WCET.s which is an important metric of real-time systems. Although
the BCET is only infrequently of importance, all approaches proposed in this thesis
can be adapted for BCET optimization.

1.2 Compilation for Real-Time Systems

Although the WCET of a system is often a key parameter in the design process of
embedded/cyber-physical systems, modern compilers are unfortunately not aware of
the worst-case timing behavior. Thus, the design process of embedded application
software usually induces a lot of trial-and-error work: A developer has to manually
evaluate the WCET of an application employing a timing analysis tool in order to
verify if all deadlines are met. If not, the source code of the application has to
be optimized by hand and a new WCET evaluation has to be performed. This
evaluation/optimization loop is carried out until no more deadlines are violated.
Such a software development process is time-consuming and error-prone since a
programmer cannot only focus on the actual task the development of embedded
application software.

To overcome this disadvantage and to relieve a developer from repetitive WCET
estimations and optimizations, an optimizing compiler which is aware of the WCET
as metric is highly desired. Beforehand, the task is to extend a compiler by a
detailed WCET timing model. Since static timing analysis is a research domain on
its own, an existing, well-tested timing analysis tool should be employed to enable
WCET analyses within the compiler. But even if this issue is solved, designing
WCET-aware optimizations entails some pitfalls compared to established ACET
optimizations: The WCEP of a program is inherently variable, and this frequently
requires repetitive, time consuming WCET analyses in order to update the WCET
and WCEP information.

Figure 1.2 illustrates the WCEP variability if optimizations are applied. On the
left-hand side, an unmodified partial CFG comprising a number of basic blocks is
shown (cf. Appendix A.1.2 and A.1.1 for a definition of CFG and basic block).
Each basic block has a label and an execution time in processor cycles in brackets.
Here, the path L1—L2—L3—L4 obviously represents the WCEP (denoted by solid
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arrows) since its execution time is 195 cycles. The alternative path (denoted by
dashed arrows) L1—L5—L4 has a length of 155 cycles and thus does not contribute
to the WCET. If, however, an optimization applied to L2 reduces the execution time
to 50 cycles, the length of the path through L2 is not any longer the WCET. As
shown on the right-hand side of Figure 1.2, the path L1—+L5—L4 is the new WCEP
and the WCET is reduced to 155 cycles. At this point, further optimizations of L2
or L3 do not reduce the WCET since these blocks are not part of the WCEP.

Hence, optimizations have to keep track of possibly switching WCEPs in or-
der to achieve best possible WCET reduction. The WCET-aware C Compiler WCC
[34] supports WCET-driven optimizations by integrating the commercially available
static timing analyzer aiT from AbsInt [1]. In this way, the WCET of a program to
be optimized can be automatically evaluated and the current WCEP can be deter-
mined. WCC as the platform for the development of WCET-directed optimization
techniques therefore serves as basis for the optimizations and extensions presented
in this thesis.

1.3 Contributions of this Work

The memory interface of a system often turns out to be a bottleneck which limits
the performance of a system. In literature, this effect is also known as memory wall
problem [84]. In order to reduce the runtime of embedded/cyber-physical systems
applications, this thesis proposes numerous optimization techniques which improve
memory access times of applications based on their WCET data.

Modern processors try to store instructions likely executed as next in an in-
struction fetch buffer (IFB) which is part of the CPU core. For the first time, the
behavior of the branch prediction unit and its impact on the IFB is considered dur-
ing optimization. Optimization techniques are presented improving the efficiency
of this buffer w.r.t. the WCET of a system. If instructions are not found in the
IFB, the CPU core performs a fetch from main memory. Instruction caches try to
mask these accesses to the main memory by storing local copies in fast small cache
memories. In order to improve the efficiency of this part of the memory hierarchy as
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well, a memory content selection approach is introduced. The contents of cacheable
and non-cacheable memories are determined depending on their influence on the
WCET of a program.

Due to growing requirements on embedded/cyber-physical systems, multi-task
systems replaced systems running a single application in almost all domains. Es-
tablished optimizing compilers were not able to keep pace and still lack support for
multi-task sets. This thesis presents elaborate extensions for a compiler supporting
the compilation and WCET-aware optimization of multi-task systems. This multi-
task support was exploited to develop a number of novel optimizations for multi-task
systems. As first optimization, a WCET-driven software-based cache partitioning
demonstrates the effectiveness of considering the WCET for the optimization of a
set of tasks. Furthermore, many embedded systems integrate so-called scratchpad
memories (SPM) as tightly coupled memories. An optimization approach employ-
ing different heuristics is proposed which allows the application of existing single
task SPM allocation algorithms in a multi-task scenario. For the first time, a holis-
tic view of memory architecture compilation considers a number of memory-based
WCET optimizations and presents approaches for a combined application. An in-
telligent application order is elaborated and modifications for an interference free
collaboration are presented.

Existing compiler frameworks which are able to consider the WCET during
optimization are highly specialized and therefore they are limited to a particular
hardware platform. In order to support multiple platforms, this thesis presents tech-
niques to ease the integration of standard compilers into a WCET-aware compiler
framework. Automatic WCET analyses are supported which allow the application
of WCET-driven high-level optimizations to nearly arbitrary target platforms. Fea-
sibility of the presented techniques is shown in this thesis by extending the WCC by
a support for the ARM platform. A novel static cache locking optimization demon-
strates that assembly level optimizations are supported by this approach. The op-
timization selects memory blocks which are statically locked into the instruction
cache driven by WCET reductions.

All presented techniques and optimizations are implemented as part of the WCC
compiler framework. The efficacy of the proposed compiler extensions for multi-
task and multi-target compilation is demonstrated by novel optimizations exploiting
these extensions. Furthermore, the effectiveness of the presented optimizations is
evaluated on a large number of real-world applications.

1.4 Author’s Contribution to this Dissertation

According to §10 (2) of “Promotionsordung der Fakultét fiir Informatik der Technis-
chen Universitdt Dortmund vom 29. August 20117, a dissertation within the context
of doctoral studies has to contain a separate list that reveals the author’s contribu-
tions to research and results that were obtained in cooperation with others. Thus,
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the following list describes the author’s contribution to publications which lead to
the contents of each chapter:

e Chapter 3

The optimization cache-aware memory content selection presented in Section
3.4 was entirely developed by the author. The publication [96] cited in this
chapter was written by the author. The other authors contributed by technical
discussions and proof-reading of the publication. The idea and the concept
of the optimization WCET-driven branch prediction aware code positioning
was developed by the author (cf. Section 3.3). The way how the WCET of
a program is modeled within an integer-linear program (cf. Section 3.3.3.6)
stems from Dr. Heiko Falk and his former master’s student Jan C. Kleinsorge.
Concerning the second publication [93] cited in this chapter, the contribution
of the other authors is limited to technical advice and proof-reading. The
publication was written by the author of this thesis.

e Chapter 4

The presented multi-task compiler extensions as part of the WCC have been
entirely designed and implemented by the author (cf. Section 4.3). Based
on these extensions, the optimization discussed in Section 4.4 named WCET-
aware software based cache partitioning for multi-task systems was developed
by the author of this thesis. The original publication [95] was written by the
author and proof-read by the other authors. The memory architecture aware
compilation (cf. Section 4.6) was developed by the author in cooperation with
his former bachelor student Jens Méllmer.

e Chapter 5

The concept and the implementation of the retargetable WCET-aware com-
piler framework was developed by the author. The publication [94] cited in this
chapter presents early ideas and was written by Dr. Paul Lokuciejewski with
contributions by the author. The WCET-aware static locking of instruction
caches presented in Section 5.5, which is based on the multi-target extensions,
was entirely developed by the author. The publication [92] was written by
the author as well. The contribution of the remaining authors was limited to
technical discussions and proof-reading.

1.5 Overview

This section provides an overview of the remainder of this thesis:

o Chapter 2 introduces the WCET-aware C Compiler, abbr. WCC, which serves
as basis for the approaches and techniques presented in this thesis. WCC’s
components are discussed with the focus on those parts which are heavily used
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and which were extended by the optimizations presented in the following chap-
ters. Techniques for timing analyses are sketched before the tightly coupled
static timing analyzer a:T and its workflow is introduced.

In Chapter 3, the memory wall problem is discussed and methods to cir-
cumvent it are proposed. Therefore, processor-specific memory-based opti-
mizations are presented which help to mitigate the influence of slow main

memories.

Up to this day, almost all WCET-specific optimizations integrated into a com-
piler are limited to single tasks. To overcome this gap w.r. t. the design process
of embedded /cyber-physical systems, Chapter 4 shows how an optimizing com-
piler can be extended to consider multiple tasks for WCET optimizations. The
effectiveness of this approach is underlined by a two of novel WCET-driven
multi-task optimization techniques.

Chapter 5 tackles the lack of current WCET-aware compilers of supporting
multiple targets. Methods are presented which enable easy retargetability of
specialized compilers usually restricted to a single target architecture. Again,
the applicability of the presented approach is attested by a novel optimization
exploiting WCC’s multi-task extensions.

Finally, Chapter 6 concludes this thesis and gives an outlook on possible di-
rections for future research work.
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Embedded /cyber-physical systems are also often (hard) real-time systems which
have to satisfy timing constraints. The WCET of such systems thereby plays a sig-
nificant role during the design process. Reducing the WCET of the software helps
to cut down the production cost of a system since possibly slower and cheaper hard-
ware can be used. Thus, optimizing compilers have become popular in the design
process of software for embedded/cyber-physical systems which is predominantly
written in ANSI C. Even modern compilers lack a detailed timing model: opti-
mizations mainly employ heuristics which apply code modifications based on the
assumption that this decreases the average-case runtime of a program. Since the
resulting effect cannot be quantified inside the compiler, even adverse effects can be
the result. Studies have shown a possible negative effect of code transformations on
execution runtimes [18, 17, 30].

Furthermore, the effect of optimizations tailored towards ACET reduction on
the WCET of a program is in most cases unknown and almost unpredictable. Op-
timizations which improve one objective can worsen the other [93, 33]. Due to this
uncertainty, embedded system designers are often prevented from using compiler
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optimizations for timing critical software. Many applications in the automotive or
avionics domain are compiled without optimizations [110] wasting substantial per-
formance.

This chapter introduces the WCET-aware C Compiler WCC [34] which is de-
signed for automatic WCET reduction and tightly couples the sophisticated static
timing analyzer aiT from AbsInt [1]. The compiler is targeted at Infineon’s Tri-
Core TC1796/1797 and offers a large variety of standard compiler optimizations.
By integrating a fine-grained timing model, WCC allows effective code transforma-
tions optimizing the WCET of programs. WCC also serves as framework for the
development of dedicated WCET-driven optimization techniques.

The remainder of this chapter is organized as follows: In Section 2.1, a survey
of related work is presented which proposes the integration of WCET analyses into
compiler frameworks. Timing analysis techniques which allow the estimation of
an upper bound of the execution time of programs are presented in Section 2.2.
Section 2.3 introduces the workflow of the WCC compiler and presents extensions
compared to a standard optimizing compiler which enable a WCET optimizing
compilation flow. Section 2.4 provides detailed insight about WCC components
which form the basis for the development of WCET-driven optimizations. Finally,
Section 2.5 describes WCC'’s target architecture Infineon TriCore TC1796/1797 with
its capabilities and functionalities.

2.1 Related Work

One of the first approaches to integrate a timing analyzer into a compiler framework
was carried out by Borjesson in 1996 [11]. The IAR-Systems C compiler for the Intel
8051 processor was extended to read in source code files with user annotations for
loop bounds and recursion depths, called flow facts. In contrast to WCC’s flow
facts introduced in Section 2.4.5, the flow facts used in [11] cannot always be kept
valid during compilation since optimizations do not update them. Compared to
state-of-the-art microprocessors, the 8051 is fairly simple and predictable since no
speculative units as caches, pipelines or branch predictors are integrated.

Another project which tried to couple a compiler with a static analysis tool
is VISTA [127]. Zhao et al. proposed VISTA as an interactive compilation sys-
tem which assists the developer in finding the best optimization sequence w.r. t. the
WCET of a program. In an iterative compilation process where the user can interac-
tively select optimizations to be applied, the WCET of an application to be tuned is
automatically recomputed after each modification. Since the compiler lacks a high-
level intermediate representation, no source code level optimizations can be applied
which wastes optimization potential. The employed proprietary static timing an-
alyzer is rather simple since it features no cache analysis, and the employed loop
analysis can handle only simple loops. Since the analysis is based on a path-based
approach, it does not scale well and can exclusively analyze small applications.
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Heptane, developed by Colin et al. [23], is an open-source static WCET timing
analyzer with multi-target support including simple processors such as MIPS or
StrongARM 1110. The tool expects C code as input for which a high-level WCET
analysis based on a syntax tree can be performed where nodes represent source code
structures. Alternatively, the code can be compiled to binary code for which an ILP-
based analysis can be employed considering the extracted control flow graph. Since
the timing analysis relies on a match between the high-level syntax tree and the
corresponding low level control flow graph, most code transforming optimizations
are not allowed. Nevertheless, Heptane was used to develop optimizations which
keep this mapping valid [49].

The open-source timing analysis tool Chronos |70] estimates the WCET of em-
bedded applications targeted at the SimpleScalar simulator architecture [6]. A static
analysis of binary code is employed which supports complex microarchitectural fea-
tures such as out-of-order execution, branch prediction as well as data and instruc-
tion cache analyses. Chronos is among others utilized for the development of low-
level WCET-driven code and data layout optimizations [20] or new static analysis
modules for concurrent programs running on shared cache multi-cores |71].

TuBound 97|, a compiler framework which is most likely comparable to the
WCC presented in this chapter, aims at combining the static WCET analyzer
Calc WCET 67 targeting at Infineon’s C167CR and a compiler. TuBound processes
annotated C code and preserves the supplied information about loop bounds and re-
cursion depths during all applied optimizations. These features resemble WCC’s flow
facts presented in Section 2.4.5. Since a modified GCC version generates assembly
code out of the optimized source code, TuBound has no support for WCET-driven
low-level optimizations.

2.2 WCET Analysis

For applications running on real-time systems with hard timing constraints, their
functional correctness does not only depend on the accuracy of computation results
but also on the period of time within they can be delivered. In order to verify if
timing-critical applications can meet their deadlines, dynamic and static WCET
analysis techniques have been developed.

Dynamic timing analyzers, also called measurement-based timing analyzers, de-
termine an upper bound for the execution time of a program by executing or simu-
lating the program and observing the elapsed time. Since the runtime of a program
can highly vary depending on its input data, the task is to find the worst-case input
data leading to the highest execution time. Due to this uncertainty, a safety margin
of, for instance, 25% is added to the highest observed execution time. Neverthe-
less, it cannot be guaranteed that the WCET derived this way represents a safe
upper bound if the selected input data does not lead to the program’s worst-case
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behavior [125]. Depending on the program structure and the tested input data, the
WCET, ., can almost arbitrarily exceed the determined WCET ;.

Hence, static analysis techniques have been developed which allow a safe esti-
mation of upper bounds of the execution time by applying formal methods. Instead
of executing the program under analysis on real hardware, its control flow is stati-
cally analyzed to find the set of possible execution paths. The longest path of this
set is called worst-case execution path (WCEP) and its length corresponds to the
program’s WCET.

The tool a:T from Abslnt is one of the leading static WCET analyzers [1], and
it is employed inside the WCC to determine the WCET of a program to optimize.
aiT’s workflow depicted in Figure 2.1 is described in the following. aiT employs
a modular system where the static analysis flow is decomposed to separate phases
encapsulated in separate programs:

Binary Decoding: Safe estimations of WCETs are only possible if the application
is analyzed which will be finally run on the considered platform. Hence, a binary
executable is expected as input. The tool exec2crl disassembles the binary code
in order to reconstruct the control flow graph (CFG, cf. Appendix A.1.2) for each
contained function. Based on these local CFGs, an interprocedural control flow
graph (IPCFG, cf. Appendix A.1.3) is constructed which is used to explore possible
execution paths through the entire program. aiT employs its own intermediate
representation CRL2 (Control Flow Representation Language) [112| to represent
the IPCFG. Important binary properties as memory addresses, variable values or
registers are preserved in CRL2.

Although aiT integrates a static loop analysis which determines loop bounds
of simple loops, such a loop analysis is not decidable in the general case since it
includes the proof of the halting problem. Thus, additional information about loop
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bounds, recursion depths or address ranges of memory accesses can be specified by
the user using AIS files. exec2crl adds the supplied annotations to the generated
CRL2 for processing in the following analysis phases.

The human readable CRL2 representation is passed to all subsequent analysis
phases which in turn emit CRL2 as well.

Value Analysis: Register values and the memory content at certain addresses can
influence which path of a control flow graph is executed or which memory addresses
possibly is read or written. The value analysis thereby tries to determine this data
at each program point for every possible execution context (different points of time).
This can enable an automatic determination of loop bounds, recursion depths and
the outcome of conditional branches. In this way, infeasible paths can be classified if
the condition of branch instructions always evaluates true or always evaluates false
for certain or even all execution contexts.

Loop Analysis: The loop bound analysis tries to determine upper bounds for the
execution of loops in order to bound their runtime. Therefore a combination of value
analysis (cf. Section 2.2) and pattern matching is employed. The analysis success
depends on the structure and complexity of the program as well as the employed
code generator for which the patterns have to match.

The loop and recursion analysis, however, exploits the methodology of execution
contexts to distinguish between separate loop iterations. When a loop iterates the
first time, a number of memory fetches have to be performed in order to fill the cache.
Subsequent iterations can profit from the already present cache content probably
leading to cache hits. Hence, loop analysis can improve the precision of the WCET
analysis and can reduce the overestimation of the WCET.

Cache/Pipeline Analysis: The cache analysis tries to classify each memory ac-
cess at each possible point of time as a cache hit or a cache miss. Therefore, the
results of the value analysis are exploited which can give hints on the target addresses
of load/store instructions. Further indications provided by the value analysis can be
variable values on which conditional branches can depend. Thereby, the outcome of
jump instructions can be derived in order to determine if the outcome results in a
cache hit or a cache miss.

The task of pipeline analysis is to determine execution times of each instruction
or basic block (cf. Appendix A.1.1 for a definition). Therefore, the behavior of
the processor pipelines is modeled. The current pipeline states with their resource
occupancies, the content of the instruction prefetch buffer and the classification of
memory accesses as cache hits or cache misses have to be taken into account.

Path Analysis: Based on the results of the preceding microarchitectural analyses,
the path analysis determines the longest path among all feasible control flow paths.
This is done since the length of this path represents the a safe upper bound of the
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Figure 2.2: Workflow of the WCET-aware C Compiler WCC

execution time — in other words an estimate of the WCET. The program’s control
flow is therefore modeled using integer-linear programming (ILP) [8]. The predicted
WCET equals the ILP’s objective function, and execution counts of control flow
edges are represented by the corresponding final ILP variable values.

2.3 Workflow

WCET-driven optimizations and especially the optimizations presented in this work
need support of an underlying compiler to collect WCET data and perform re-
quired memory layout modifications. The WCET-aware C compiler framework,
called WCC [34], assists a developer of high- and low-level WCET-directed opti-
mizations by integrating the static WCET analyzer aiT [1].

Figure 2.2 depicts WCC’s internal structure (refer to Appendix A.3 for a defini-
tion of flowchart symbols). One or more ANSI-C source files of a program with user
annotations for loop bounds and recursion depths are read in. Such annotations are
called flow facts and are required for static timing analysis to bound the execution
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time. The source files are parsed by the ICD-C Parser and transformed into WCC'’s
high-level intermediate representation (IR), called ICD-C [100].

At this level, the compiler frontend provides several standard compiler analyses
like control- and data-flow analyses as well as various optimizations focussing on
ACET and WCET minimization like Constant Folding or WCET-aware Procedure
Cloning [74], respectively.

Afterwards, the component LLIR Code Selector translates the high-level IR into
a low-level IR called ICD-LLIR [27|. All optimizations presented in this these are
performed on this TC1796-specific low-level IR which is based on assembly instruc-
tions. In order to enable WCET-aware optimizations, aiT is employed which per-
forms static WCET analyses on the low-level IR. Therefore, mandatory information
about loop bounds and recursion depths is supplied by flow fact annotations. These
flow facts are automatically translated from the high-level IR to the low-level IR and
are always kept valid and consistent during each optimization and transformation
step of the compiler.

Optimizations exploiting memory hierarchies as presented in this work require
detailed information about available memories, their sizes and access times. For
this purpose, WCC integrates a detailed memory hierarchy specification available
at ICD-LLIR level.

WCET data which is provided in the compiler backend and can be exploited by
source-level optimizations as well. A module called Back-Annotation is employed
to translate low-level WCET information back to our intermediate representation
ICD-C in order to enable high-level WCET-aware optimizations.

Finally, WCC emits WCET-optimized assembly files and generates suitable bina-
ries using an individual linker script reflecting the resulting internal memory layout.

2.4 Components

After Section 2.3 illustrated the overall structure of the WCC framework, some of
the individual components should be discussed in detail. The provided knowledge
should help the reader to understand how an optimizing compiler operates, how
WCET analysis is integrated into the WCC and how WCET-directed optimizations
are realized. Based on this description of the components, chapters 3 5 indicate
how parts of the WCC were modified and extended based on the work presented in
this thesis.

2.4.1 ICD-C Compiler Frontend

The high-level intermediate representation (IR) ICD-C [100] is a target-independent
representation of ANSI C source code. It comprises elements such as functions,
different kinds of loops or expressions. Sophisticated analyses and a well-defined in-
terface are provided which assist a programmer in the development of even complex
source code optimizations. ICD-C itself offers a vast variety of standard compiler
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optimizations found in literature such as constant folding, copy propagation or func-
tion inlining [88].

2.4.2 Code Selector

Since the ICD-C IR is a target-independent high-level representation of code, a
lowering to assembly code is mandatory. Therefore, the TriCore TC17967/1797
specific code selector tries to find a semantically equivalent sequence of assembly
instructions for each source code construct. An approach based on tree pattern
matching is employed to find an optimal sequence w.r.t. a certain objective. A tree
grammar augmented with the size of the generated code patterns is used to find an
optimal overlapping of the trees with the source code represented by the ICD-C IR.
In this way, a code size optimal sequence of assembly instructions can be derived by
traversing the trees in the found order.

The code selector also captures information about data accesses within source
code expressions and attaches them to the corresponding assembly instructions.
Afterwards, low-level optimizations can exploit this information, for instance, in
order to move heavily used data objects to faster memories.

2.4.3 ICD-LLIR Compiler Backend

The assembly code emitted by the code selector is represented by the retargetable
low-level intermediate representation ICD-LLIR [27|. This low-level intermediate
representation (LLIR) is designed for the abstraction of assembly code and there-
fore provides generic data structures. By extending these generic data structures
by a target architecture description, the LLIR is turned into a processor-specific
representation.

Equipped with mechanisms and analyses to support the modification, transfor-
mation and optimization of the represented assembly code, the LLIR is best suited
for the development of assembly level optimizations. Since the code generated by
the code selector makes use of an unlimited number of registers, a virtual LLIR
is generated. By applying an optimization called register allocation, the unlimited
number of virtual registers is mapped to a limited number of physical processor
registers. Hence, the generated LLIR is called physical LLIR. The WCC employs a
graph-coloring based register allocator [13] by default. On both abstraction levels
(virtual, physical), optimizations can be applied which can profit from the selected
level of abstraction.

The LLIR’s compositional structure is based on the elements which can be found
in the assembly sources of a program. A simplified class hierarchy is depicted in
Figure 2.3. An object of an LLIR class contains the code of a single assembly file
which is generated from a single ANSI C source file. For programs consisting of
several source files, a list of LLIRs has to be maintained. An LLIR can comprise
several LLIR_DataObjects representing global variables as found in the C code and
LLIR_Functions which are named as the corresponding C functions.
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Each function in turn can be composed of a number of basic blocks represented by
the class LLIR_BB where a successor /predecessor relation specifies the flow of control
inside a function. Each basic block can contain a sequence of LLIR_Instructions,
and each of which can hold one or — in case of a Very Long Instruction Word
(VLIW) processor — multiple LLIR_Operations. Since the TriCore processor does
not support explicit parallelization, each instruction consists of a single operation.
For each operation, a list of possible parameters can be specified representing con-
stants, labels, instruction set specific operators or virtual and physical registers,
respectively. The TriCore instruction set supports up to five parameters for cer-
tain instructions. Registers are represented by a dedicated class LLIR_Register
which provides mechanisms required for register allocation or the specification of
hierarchical register sets.

The def/use chains and the register lifetime analysis |88, p. 443-447] make use
of the functionality of the LLIR_Register class and are examples for the variety of
static analysis integrated into the WCC and ICD-LLIR. The TriCore-specific LLIR
as compiler backend also offers architecture dependent analyses such as a bit-true
data flow analysis which enable processor-specific optimizations [38|.

In order to enable feedback-directed optimizations and especially the WCET-
driven optimizations presented in this thesis, the LLIR integrates support for de-
tailed objective models. LLIRObjectives are generic containers which can keep
arbitrary data and can be attached to any LLIR element. The objective handler
class LLIR_Handler is managing the different objectives attached to a certain LLIR



20 Chapter 2. WCC — WCET-aware C Compiler

LLIR_[Function,
BB, ...]

t

— & LLIR _Handler Q@ —

0.1 Yo..1 0.1

LLIR_ACET_OBJ LLIR_WCET_OBJ LLIR_ENERGY_OBJ]

Figure 2.4: Handling of LLIR Objectives

construct. It offers get and set methods for objectives and ensures that only one
objective of each type can be assigned to an LLIR element at the same time. The
objective which is heavily used for the WCET-directed optimizations presented in
this thesis is named LLIR_WCET_OBJ. Figure 2.4 depicts the class hierarchy of the
LLIR objective handling whereas [75] presents the fundamental concepts of this
mechanism.

2.4.4 Timing Analysis

Section 2.2 already presented the workflow of the static timing analyzer aiT . The
tight integration of a7 into WCC’s compilation flow is described in the following.
aiT’s initial workflow (cf. Figure 2.1) requires a binary file as input and is not
designed for the output of detailed WCET data. Hence, aiT’s tool flow is broken
up and a library called LIBLLIRAIT encapsulates the invocation of the individual
components and was initially published in [35]. Figure 2.5 shows the internal struc-
ture of this library which performs the necessary conversion between the different
binary intermediate representations LLIR and CRL2 as first step. The generated
CRL2 serves as input for the invoked ai7' timing analyzer in the second step. Fi-
nally, the emitted CRL2 is processed to extract the WCET data and convert it to
appropriate LLIR WCET objectives (cf. Section 2.4.3) which are attached to the
analyzed LLIR.

2.4.4.1 IR Transformation

A reliable timing analysis is only possible on machine code/assembly level where in-
formation on hardware timings is available. Hence, aiT" utilizes its own intermediate
representation CRL for representing the binary which should be analyzed. WCC
employs a converter called LLIR2CRL which replaces the binary decoder exec2crl
and emits a CRL2 comprising the control flow of the program to analyze. A physical
LLIR augmented with WCC’s internal memory layout reflecting the symbol table
of the corresponding program serves as input.
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The CRL2 generated by exec2crl typically comprises a single CFG which is
created by analyzing and transforming a program binary. Thus, the LLIR2CRL
converter has to build a global CFG by transforming the structures of all LLIRs of
a program as well. Due to the fact that both LLIR and CRL are low-level IRs, the
corresponding CRL entity has to be created for each construct such as functions
and basic blocks contained in the LLIRs. Besides the latter, memory addresses of
all binary structures have to be extracted from WCC’s internal memory layout and
annotated to each CRL object.

Compared to the creation of CRL functions or CRL basic blocks, the gener-
ation of appropriate operations and their parameters is substantially costlier: In
the LLIR, operations are uniquely defined by their mnemonics, their bit width —
either 16 or 32bit and a list of their explicit and implicit parameters. In contrast,
CRL operations are identified by a unique integer ID which is created by exec2crl
when the byte stream of the input binary is processed. Operations with the same
mnemonic but different parameter lists or bit widths are mapped to different IDs.
Thus, a lookup of the corresponding CRL ID has to be performed for each oper-
ation by evaluating all these attributes. Nevertheless, highest accuracy is crucial
during the conversion from LLIR to CRL2 in order to avoid deviations of a program
represented in CRL2 from the final binary which is produced by assembling and
linking the emitted LLIR. Otherwise, guarantees for safe estimations of a program’s
runtime cannot be made.

In order to allow the extraction of WCET data and assignment to the LLIR after
invoking ai7T, a mapping table keeps track of the LLIR constructs to be analyzed
and the corresponding generated CRL constructs.

2.4.4.2 Static Timing Analyzer Integration

The tight coupling of aiT into the WCC framework allows an automated evaluation
and optimization of a program w.r.t. its WCET. To allow such feedback-directed
optimizations which possibly require repetitive WCET analyses, aiT has to be in-
voked without intervention of the user. The WCC therefore controls the application
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of the required analysis steps (cf. Section 2.2) and provides the CRL generated by
LLIR2CRL as input.

To enable the estimation of runtimes of loops and recursive structures, the initial
ai’T analysis flow requires additional annotations in a user-specified input file. This
information is automatically collected by the WCC by evaluating the program’s
flow facts and added to the CRL which serves as input. Details on the cache
configuration and available memories with their timings are specified in the same
fashion.

This mechanism relieves the developer from the error-prone process of specifying
a new aiT input file for each analysis if the program structure was modified.

2.4.4.3 Transformation of WCET data

The output of aiT’s analysis run is a CRL enriched with detailed timing information.
This CRL is processed by the CRL2LLIR converter and the timing information is
imported into the compiler backend. To establish a relation between the WCET
data of CRL constructs and the corresponding LLIR constructs, the mapping table
created by LLIR2CRL is exploited. The gathered data is attached in the form of
LLIR objectives to the corresponding objects. The following information is extracted
and made available within the LLIR:

e worst-case execution times for the entire program, accumulated worst-case
execution time for each function and each basic block

e worst-case call frequency for each function

e worst-case execution frequency for each basic block reached by a certain CFG
edge

e execution feasibility of CFG edges
e accumulated I-cache misses for each basic block

e approximation of register values

2.4.5 Flow Facts

If a WCET analysis of a program is desired, the maximum iteration count and
recursion depths at binary level have to be known in order to determine how often
a certain instruction can be executed. By applying static analysis techniques [76],
the iteration counts of not too complex loops can be determined, but in the general
case, a static loop analysis is not decidable. To enable static WCET analyses yet,
the user has to specify those attributes of a program which cannot be determined
statically. Besides loop bounds and recursion depths, targets of computed jumps
and calls as well as address ranges for memory accesses can be annotated.

Kirner invented the notion of flow facts [61] in order to give hints about the
dynamic behavior of a program:
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Definition 2.1 (Flow facts)
Flow facts give hints about possible paths through the control flow graph of a

program. Flow facts can be expressed implicitly by the structure of the program
itself as also by additional user information.

WCC supports flow facts as ANSI C pragmas which are directly inserted into
the source code. Such a high-level annotation is a convenient way to specify user
flow facts since a user usually derives them from the same source code. Additionally,
only a single source code base has to be maintained compared to the specification
of flow facts in separate files. Two different kinds of flow facts are supported by
WCC’s source code annotations: Loopbounds and Flowrestrictions

Loopbounds: Loopbounds are the simple form of flow facts and are designed
to annotate well-defined loop structures such as for-, while and do-while-loops.
They can be employed for regular loops with a single entry point. For such loops
with well-defined termination conditions, loopbounds describe the minimum and
maximum number of loop iterations.

The following Eztended Backus Naur Form (EBNF) [57] syntax, developed by
Schulte [102], describes the specification of loopbounds as source code annotation:

LOOPBOUND = loopbound min NUM max NUM
NUM = Non-negative integer number

Example 2.1

Assuming that a regular loop has a variable iteration count depending on param-
eter cnt of function foo which can be in the range of 20 up to 50, the following
code snippet demonstrates the annotation of a corresponding loopbound:

void foo( int cnt ) {
_Pragma( "loopbound min 20 max 50" )
while( cnt > 0 ) {

cnt--;

Flowrestrictions: Since loopbounds can only be used for regular loops, so-called
flowrestrictions were introduced. Flowrestrictions allow the annotation of irregular
loops and recursive function calls by execution ratios of elements related to each
other. Therefore, so-called markers are employed to identify statements:

MARKER = marker NAME
NAME = Identifier
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Function names serve as reference points besides user-defined markers and allow
the specification of execution count relations of marked statements employing the
following EBNF syntax [102]:

FLOWRESTRICTION |~ flowrestriction SIDE COMPARATOR SIDE

SIDE = SIDE + SIDE | NUM * REFERENCE
COMPERATOR E>= | <= | =
REFERENCE = NAME | Function name

Example 2.2

For a triangular loop, flowrestrictions can be employed to describe the maximum
execution count of an inner statement STMTinner relative to an outer statement
STMTouter. Two markers have to be defined in order to identify both statements:

_Pragma( "marker outermarker" )
STMTouter;
for( int i = 0; i < 10; i++ )
for( int j =1i; j < 10; j++ ) {
_Pragma( "marker innermarker" )
STMTinner;

}

_Pragma( "flowrestriction l*innermarker <= 55*outermarker" )

The inequation which is described by means of the flowrestriction exactly
limits the execution count of statement STMTinner to 55 times the execution
count of statement STMTouter. If, however, loopbounds would be used to limit
the maximum iteration count of each loop to 10, a maximum execution count
of 100 for statement STMTinner would be the result leading to a potentially
overestimated WCE'T.

Conversion of flow facts: Up to now, flow facts are only available at a very
high abstraction level namely the source code level. In order to achieve the goal
of a fully automated WCET analysis, the flow facts have to be made available at
aiT’s low-level IR CRL2. Thus, a successive lowering and conversion between all
abstraction levels has to be performed.

Figure 2.6 illustrates the necessary conversion steps of flow facts starting from
the ANSI C source code to the CRL2 serving as input for ai7. The parser is respon-
sible for creating and attaching the flow facts to the corresponding ICD-C objects.
If the code is translated into semantically equivalent assembly code, the code selec-
tor also has to lower existing flow facts. Attached to the generated LLIR elements,
the flow facts are evaluated by the LLIR2CRL converter while the input LLIRs
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1 [PFLASH-C]

2 origin = 0x80000000

3 length = 0x200000 # 2048K size

4+ attributes = RXAC # read/execute/allocate/cached
5 cycles =6 # WS; Possible values are 1-7
6 sections = .text_cached

Listing 2.1: Memory Layout Description Example

are processed. Appropriate flow information is created and attached to the emitted
CRL2 which can be afterwards analyzed without user intervention.

Optimizations applied on an arbitrary level of abstraction can modify the code in
a way that flow facts can become invalid. If, for instance, loop unrolling is applied,
the corresponding loopbounds have to be updated and the min/max value has to
be divided by the unrolling factor. Even if code blocks are removed or merged
with others, the attached flow facts have to be kept valid. Markers then have
to be moved to a preceding or succeeding block in the control flow graph which is
executed whenever the removed block would have been executed in order to keep the
related flowrestrictions valid. A module called flow fact updater provides a uniform
interface which is used by all optimizations applied on ICD-C and ICD-LLIR level
performing problematic code transformations in order to maintain the set of flow
facts.

2.4.6 Memory Hierarchy Specification

The execution time of programs does not only depend on the sequence of executed
instructions but also on their position in memory. Slower memories cause pipeline
stalls, and the processor has to wait until the next instruction has been fetched or
data content has been written to or read from the respective memory. Even small
memory layout differences can cause substantially differing execution times: if, for
instance, instructions or loop headers cross two memory lines, two or more memory
lines have to be fetched for their execution. Hence, a WCET-optimizing compiler
requires detailed knowledge about the memory layout of a program to optimize or
analyze.
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WCC therefore employs its own memory layout description comprising all avail-
able memories, their sizes and access times. Section assignments can be made either
manually or automatically by optimizations which influence the automated gener-
ation of linker scripts reflecting WCC's internal memory layout. Listing 2.1 shows
a snippet of a memory layout description for the TriCore TC1796 processor. The
memory region PFLASH-C defined in line 1 is located in the cached memory area at
address 0x80000000 and has a size of 2 MB (lines 2-3). The attributes RXAC in line
4 indicate that the memory region is readable, its content is executable and should
be allocated by the linker. The cached attribute can be evaluated by optimizations,
for instance, in order to perform an allocation of heavily used code to cached mem-
ory regions. Access times influencing the WCET analysis and section assignments
influencing the linker can be specified as well (lines 5-6).

In order to keep track of the memory addresses of arbitrary LLIR constructs,
WCC maintains local symbol tables for each LLIR and a global symbol table for the
entire program. The symbol tables contain section assignments, sizes and addresses
of each code and data object belonging to a program. This mechanism enables
the development of approaches performing fine-grained memory layout based opti-
mizations such as the allocation of program code to faster memories as well as the
optimizations presented in this thesis.

2.4.7 Available Optimizations

Sophisticated compiler optimizations are mandatory in order to achieve a high code
quality. They can be applied at arbitrary abstraction levels such as platform inde-
pendent optimizations at source code level or target-specific code transformations at
assembly level. WCC therefore offers a vast variety of standard compiler optimiza-
tions: 23 standard source level optimizations and 11 assembly level optimizations
can be applied.

The offered source level optimizations include loop transformations such as loop
unrolling or loop deindexing, data flow optimizations like constant folding or value
propagation as well as the control flow optimizations function inlining and function
specialization. For a detailed discussion of implemented standard compiler optimiza-
tion, the interested reader is referred to [88, p. 319-704].

The majority of WCC’s assembly level optimizations is target specific and tai-
lored to Infineon’s TriCore processors. They can be divided into sets which are
either applied to a wirtual LLIR or the physical counterpart after register allocation
has been performed (cf. Section 2.4.3). Virtual LLIR optimizations are often more
powerful since they can make use of an unlimited number of virtual registers which
can enable a higher optimization potential. Examples for optimizations applied on
a virtual LLIR are redundant code elimination and loop invariant code motion.

Two optimizations are offered which optimize physical LLIRs. One of them is in-
struction tightening which replaces 32 bit instructions with equivalent 16 bit versions
in order to reduce the program’s code size. The second optimization is instruction
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Table 2.1: Available standard Compiler Optimizations

ICD-C Virtual LLIR Physical LLIR
00 Register Allocation Instruction Tightening
Jump Correction
Silicon Bugs Correction

01 | Constant folding Constant Folding
Dead Code Elimination Constant Propagation
Common Subexpr. Elimination Dead Code Elimination
Remove Unused Symbols Loop Invariant Code Motion
Simplify Code Peephole Optimizations
Value Propagation Redundant Code Elimination
02 | Create Multiple Function Exits Local Instr. Scheduling

Life Range Splitting

Loop Collapsing

Loop Deindexing

Loop Unswitching

Merge Identical String Constants
Optimize if-Stmts in Loop Nests
Redundant Load Elimination
Remove Unused Func. Arguments
Remove Unused Returns

Struct Scalarization

Tail Recursion Elimination
Transform Head-Controlled-Loops

03 | Function Inlining
Function Specialization

Loop Unrolling

scheduling which schedules the list of instructions in a way that TriCore’s different
pipelines are better utilized in parallel. Different scheduling heuristics thereby help
to reduce the overall runtime of a program. Two further code modifications are
applied on a physical LLIR but do not directly aim at performance improvements:
the silicon bugs correction applies workarounds for hardware bugs of the different
supported target processors as suggested by the hardware manufacturer [53, 54]. As
very last optimization, a fully automated jump correction is applied which corrects
the control flow by inserting and removing unconditional jumps as well as negating
test conditions. Preceding optimizations which change the order of basic blocks or
remove redundant code thus do not need to care about such a jump correction.
This simplifies the development of code transformation techniques, saves redundant
corrections integrated into various optimizations and ensures that the resulting code
will be always be valid w.r. t. its flow of control.

Table 2.1 lists all available optimizations and the abstraction levels at which
they are applied. The very left column contains the optimization level for which
the optimizations are activated; higher levels include the optimizations applied at
lower levels. As can be seen from the table, some optimizations such as dead code
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RPB

elimination or constant folding are provided both on WCC’s ICD-C and LLIR in
order to achieve a high code quality.

2.5 Target Architecture

Since all of the optimizations presented in this thesis are applied at assembly level
and exploit target-specific hardware features, this chapter closes with a presenta-
tion of the target architecture. WCC targets Infineon’s TriCore processor which is
designed for the usage in the automotive domain.

The TriCore derivative TC1796 [52] and TC1797 [55] are currently supported.
Both are 32 bit RISC microprocessors with Harvard architecture optimized for the
usage in embedded systems. Their RISC architecture is extended by a sophisticated
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DSP-specific instruction set with multiply-accumulate (MAC) and single instruction
multiple data (SIMD) instructions. Saturating arithmetic is available as well as a
dedicated floating point unit allowing efficient signal processing. Simplified 16 bit
instructions can be used in order to achieve a high code density. Both processors
implement a fast hardware controlled context switch logic allowing function calls
and task switches in 2-4 cycles.

Three 4-stage pipelines allow triple issues which means that in the best case,
three instructions can be executed in parallel. Zero-overhead loop instructions are
executed on a dedicated loop pipeline, whereas all other instructions are executed
either on the load-store or on the integer pipeline. A static branch prediction unit
and an 8 byte prefetch buffer try to fetch the next executed instructions in advance
in order to avoid pipeline stalls.

The register file is divided into 16 data and 16 address registers where the upper
half (registers 9-16) is automatically saved at a context switch. Moreover, two
32 bit registers of each type can be grouped to an extended 64 bit register in order
to express, for instance, the C data type long long by a single register.

Since the optimizations presented in this thesis frequently exploit the memory
hierarchy of the underlying system, both supported processors with their memo-
ries and buses are discussed separately. Figure 2.7 presents the architecture of the
TriCore TC1796 v1.3. Next to the CPU core, SRAM L1 memories for data and
program code are located which can be accessed with a latency of one cycle. The
so-called program memory interface (PMI) is split into an autonomous I-cache and
a scratchpad memory for the allocation of content by the user or a sophisticated
compiler. Data memory interface (DMI), the counterpart on the data side, is split
into a data scratchpad and a small dual port RAM. On level 2, the program memory
unit (PMU) is located which comprises the non-volatile boot ROM, program and
data flash. Content located within one of the flashes can be accessed with a latency
of six cycles for the first access and two cycles for directly following accesses to the
same memory line. The data memory unit (DMU) is located on the same level and
consists of another data SRAM and a stand-by RAM which keeps its content even
if the processor is in deep stand-by.

The internal architecture of the TC1797 v1.3.1 core is depicted in Figure 2.8.
Here, again, tightly coupled memories are located next to the core on level 1. Com-
pared to the TC1796, the program scratchpad memory PMI is only half as large.
The data side, however, comprises a significantly larger data scratchpad and is ad-
ditionally equipped with a D-cache. Both caches have a configurable size where the
unused cache area can be used as extension of the adjacent scratchpads. Both the
scratchpad memories and the caches can be accessed with one cycle latency. The
PMUs on level 2 implement a twice as large program flash but half as large data
flash in contrast to the TC1796. The access latencies of six cycles for the first ac-
cess and two cycles for directly following accesses to the same memory line remain
constant.
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3.1 Introduction

Embedded systems employed in the real-time domain underlie stringent timing con-
straints in the majority of cases. On the one hand, satisfying such constraints
requires a certain amount of computational power. But on the other hand, the
hardware platform should be energy-saving and production costs should be mini-
mized simultaneously. In order to fulfill these conflicting goals, advanced compiler
optimizations which ensure a high code quality are crucial.

The increasingly growing gap between high processor and low memory perfor-
mance encouraged the development of memory hierarchies. Frequently used data
and code should be allocated to fast but small, tightly coupled memories. This can
either be done fully automatically by a cache which keeps copies of frequently ac-
cessed memory blocks, or explicitly by the user or a compiler exploiting, for instance,
so-called scratchpad memories (SPM).

Caches grew in popularity since they work transparently from a programmer’s
point of view which means that no code modification is required. A hardware con-
troller manages the content of the cache which is exchanged automatically with
recently used memory blocks. Static analysis techniques have been developed to es-
timate the cache behavior [39]. However, due to this autonomous behavior, caches
are always a source of unpredictability: a timing analyzer tries to determine whether
a memory access results in a cache hit or a cache miss in order to consider possi-
ble wait states for estimating the WCET. If the outcome of a cache access remains
uncertain, the worst case has to be assumed which possibly leads to a highly over-
estimated WCET.

Scratchpad memories can be accessed as fast as caches since they are manufac-
tured employing the same SRAM technology. Since their content is not automat-
ically exchanged during runtime, scratchpads are fully predictable. The burden of
selecting promising content which is allocated to the SPM is shifted to the program-
mer or an intelligent compiler. Scratchpad memory allocation techniques have been
developed aiming for the reduction of a program’s WCET .4 [32, 108].

Besides well-known memories like caches or scratchpads, modern processors em-
ploy further memories, which operate in the background, to speed up a program’s
execution. Instruction fetch buffers (IFB) are located inside the CPU core and
provide the next couple of instructions to be executed. Branch prediction units de-
termine the outcome of conditional jumps in order to fill the instruction fetch buffer
with the correct branch target.

Compiler optimizations which exploit such parts of a system’s memory hierarchy
require detailed knowledge of the underlying platform. Hardware parameters such as
available memories, the bus architecture and resulting access times have to be known
as well as attributes of the program to optimize such as the size, address and access
frequency of memory objects. Since these parameters are only available at assem-
bly level and usually not accessible at higher levels of abstraction, memory-based
optimizations are implemented in a compiler’s backend. Hence, all optimizations



3.2. Existing Code Optimizations 33

presented in this thesis are implemented on ICD-LLIR level and heavily make use
of the memory hierarchy specification introduced in Section 2.4.6 on page 25.

This chapter presents new optimization techniques which exploit the memory
hierarchy of the TriCore TC1796/TC1797 processor (cf. Section 2.5) in order to
decrease the WCET.y; of a program to optimize. First, Section 3.2 provides an
overview of existing code optimization techniques for different types of memories
considering different objectives. Then, Section 3.3 presents a new WCET-aware
code positioning technique which tries to support the branch prediction unit in or-
der to increase the efficiency of the instruction fetch buffer. An optimized order
of basic blocks reduces the number of mispredicted branches and tries to avoid su-
perfluous unconditional jumps. An evolutionary algorithm is employed to fathom
the optimization potential of code positioning whereas an ILP-based approach al-
lows acceptable optimization times. In Section 3.4, an optimization aiming at the
improvement of the worst-case cache performance is presented. Therefore, the opti-
mization allocates functions which highly profit from a cached execution to cached
memory areas. All others are allocated to non-cached memories in order to avoid a
mutual eviction from the cache.

3.2 Existing Code Optimizations

Compiler optimizations at assembly level often target average-case runtime reduc-
tion and therefore optimize all paths of a program’s control flow graph are treated
likewise. Even if the performance of certain parts is worsened, the average perfor-
mance becomes improved in the majority of cases. Standard compiler optimizations
such as constant folding, copy propagation or various peephole optimizations are ap-
plied in order to remove redundant or useless code and computations [88, p. 329 331,
356-362, 579-605|, respectively.

In order to show the implications of code expanding optimizations on instruction
cache design, Chen et al. evaluate different types of optimizations and their influence
on different cache sizes [21]|. Kowarschik et al. give an overview of cache optimization
techniques and cache-aware numerical algorithms in [64]. They focus on the memory
bottleneck which often limits the performance of numerical algorithms. Both [21]
and [64] do not take the impact on the WCET of a system into account.

The influence of the register file size on the average-case performance, on the
energy consumption as well on the code size of a program is examined by Wehmeyer
et al. in [121]. Employing a parameterizable compiler equipped with an ARM7
energy model, different register file sizes are considered to draw conclusions for each
objective.

Steinke et al. employ SPMs to reduce the energy consumption of programs [105].
Therefore, an ILP selects an optimal combination of frequently used program and
data objects to be moved in the fast and energy saving SPM. A comparison with
the performance of data and instruction caches is also performed. Since the content
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of the SPM does not change during a program’s runtime, optimization potential
is possibly wasted. Therefore, Verma et al. develop dynamic overlay techniques
which exchange the content of SPMs during a program’s execution [118]. Since
content which is no longer used can be replaced be recently used memory blocks,
the approach presented in [105] can be significantly outperformed in terms of energy
consumption and ACET.

With a growing number of real-time applications, the development of WCET-
aware optimizations was brought into focus of research. Since timing analysis of a
program is performed at assembly level, most of the optimizations are implemented
in a compiler’s backend. Redundancy is usually removed by standard compiler
optimizations focusing on ACET optimization. Thus, WCET-driven optimizations
often aim at reducing the time for which the processor pipeline is stalled, for instance,
until a memory access is completed.

Register allocation reduces the time when a pipeline is waiting for accesses to
the memory by keeping frequently used data in processor registers. Falk et al. select
promising memory objects based on their impact on the WCET [31, 37]. In [31], a
standard graph coloring approach is extended by a precise worst-case timing model.
Based on this WCET data, spill code is avoided along the WCEP and preferably
inserted into concurrent paths. In order to avoid the required reevaluations of the
WCET, [37] employs integer-linear programming to model the influence of register
allocation on the WCEP. The approach extending a code size optimal register al-
locator [44] outperforms the WCET-aware graph coloring in terms of optimization
runtime and achieved WCET reductions.

3.3 Branch Prediction aware Code Positioning

Various code positioning techniques have been developed to improve the processor
performance. They have in common that the order of code blocks is modified but
exploit quite different hardware features: In systems equipped with caches, code
positioning techniques change the order of code blocks to increase the cache perfor-
mance. Memory blocks which are mapped to the same cache line can cause cache
conflict misses and thereby can degrade the performance. The more often such
blocks are alternately executed, the more evictions occur. Then, the code is posi-
tioned such that blocks which can evict each other are mapped to different cache
blocks.

Another code positioning technique which is applicable to all systems aims at
reducing the number of executed unconditional jump instructions. Such jumps
are, for instance, required for assembly code representing (nested) if-then-else
statements or loops or combinations of both. Code positioning builds contiguously
arranged sequences of frequently executed basic blocks in memory which were for-
merly connected by unconditional jumps bridging code inbetween. For such basic
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blocks where the jump target is the block directly succeeding in memory, the jump
instruction can be removed.

The last category of code positioning confines to the optimization of systems
equipped with branch prediction units. Branch predictors are developed to work
transparently with regard to the software running on a system by integrating a fully
autonomous hardware controller. Either dynamic or static techniques are applied
for predicting the branch target: dynamic branch prediction units store a history, for
instance, by implementing a simple counter denoting whether a branch was taken in
the past or not. If the branch has been taken in the past, it also tends to be taken
in the future. Thus, the branch target is fetched in advance. Otherwise, the branch
was predominantly not taken in the past and the instruction immediately following
the branch instruction is fetched from memory. Due to this dynamic behavior,
the branch predictor can adapt to changing situations if the outcome of a branch
condition changes due to different input data. This often improves the average-case
performance but also has the disadvantage that the impact of the branch prediction
is hardly predictable by static timing analyzers.

In contrast, a static branch prediction unit determines if a branch will be taken
based on static features like the branch direction, the instruction bit width or a
dedicated bit in the instruction code. The Infineon TriCore processor TC1796 [52],
which is considered in this chapter, predicts 16 bit jumps as always taken whereas
32 bit jumps are predicted depending on the branch direction. Forward jumps (to
higher addresses) are predicted not taken while backward jumps are predicted taken.
These static features influencing the branch prediction can be evaluated by analyzing
the object code without executing the program. Thereby, the influence of the branch
prediction can easily be modeled within a timing analyzer.

However, the effectiveness of such a static branch prediction unit highly depends
on the control flow of a program and the arrangement of its basic blocks in memory.
If the target of a jump instruction can be predicted correctly, the next instruction to
be executed can be fetched in advance and thus, the performance can be increased.
But if the branch target was mispredicted, the processor pipeline has to be stalled
until the next instruction has been fetched from memory. These penalty cycles can
lead to a performance decrease. Code positioning therefore rearranges a program’s
basic blocks such that most frequently executed targets are correctly predicted.

Techniques presented in this section focus on the last two scenarios namely the
optimization of unconditional and conditional jump instructions. The remainder
of this section is organized as follows: The example in Section 3.3.1 motivates the
benefits of compiler-guided code positioning. In Section 3.3.2, an overview of related
work is provided. Section 3.3.3 presents the new WCET-driven code positioning al-
gorithms. An evaluation of the performance which is achieved by the WCET-driven
branch prediction aware code positioning optimizations is presented in Section 3.3.4.
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Figure 3.1: Rearranging code layout to support branch prediction

3.3.1 Motivating Example

This section motivates the benefits of code positioning by an example. Branch
prediction units fetch the next instruction(s) supposed to be executed from mem-
ory in advance. This can either be the instruction which is directly following the
branch instruction in memory (fall-through edge) or the branch target (pass-through
edge). The instructions are stored in an instruction fetch buffer which helps to avoid
performance-decreasing pipeline stalls where the CPU would otherwise wait for the
completion of memory accesses.

If the control flow and the memory layout of a program are ill-arranged, it
can happen that the branch targets are predominantly mispredicted by a static
branch prediction unit. A high number of mispredicted branches lead to an increased
number of pipeline stalls and, as a result, to a performance decrease. Therefore,
rearranging the order of basic blocks may be promising in order to support the
branch prediction unit.

On the left-hand side of Figure 3.1, a code example for the TC1796 processor
and a disadvantageous memory layout is depicted. If register d10 is less or equal
zero, the instruction at the end of L1 branches to L3. Otherwise, the fall-through
edge is taken and L2 is executed which in turn jumps to L4. It should be assumed
that register d10 is usually greater than zero, and thus the frequently executed path
isL1 — L2 — L4 represented by solid arrows. Due to the static branch prediction
which assumes 16 bit jumps to be taken, the first instruction of L3 is fetched in
advance if the jlez instruction leaves the decode stage of the processor pipeline.
After evaluating the instruction in the execute stage, the first instruction of L2 has
to be fetched as actual branch target resulting in two clock cycles in which the
pipeline is stalled.

Rearranging the code structure as can be seen on the right-hand side of Figure
3.1 helps the branch prediction to fetch the correct instruction in advance. For this
purpose, the position of L2 and L3 has to be switched and the test condition of L1
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has to be negated in order to restore the semantics if branching to the new target
L2. In this way, one processor cycle can be saved for each execution of L1 since the
correctly predicted branch target is fetched advance. As the unconditional jump at
the end of L2 is now superfluous, two additional cycles on the frequently-taken path
can be saved; one cycle for executing the jump instruction and one for fetching the
branch target. Overall, three clock cycles can be saved. Inserting a jump at the end
of L3 to correct the control flow does not worsen the execution time as long L3 is
not executed.

The WCC' compiler comprises a jump optimization which automatically corrects
the control flow by inserting unconditional jumps as well as a correction of branch
conditions. Superfluous unconditional branches are removed as well. Thus, its
application to optimized programs is not explicitly mentioned in the following.

In order to support an automatic optimization of the code layout which is
aware of possible WCEP switches, Section 3.3.3.1 presents an evolutionary approach,
whereas Section 3.3.3.2 presents an ILP-based optimization technique.

3.3.2 Related Work

Burguiére et al. [14] compare static and dynamic branch prediction in terms of
suitability for WCET analysis. They argue for employing static instead of dynamic
branch prediction and show that static branch prediction can achieve lower WCETs
in most cases. However, Mitra et al. present schemes for estimating the effect of
dynamic branch predictors on the WCET of a program in [86]. They derive linear
inequations which can be integrated into ILP models for WCET analysis to bound
the number of mispredicted branches during execution.

In [42|, Gebhard et al. presents a technique for rearranging the positions of
tasks to improve the cache performance. The interdependency relation of tasks is
evaluated in order to determine a memory layout which maximizes the number of
persistent cache sets for each task.

A technique for procedure placement to reduce the cache miss ratio of programs is
presented in [45]. Guillon et al. provide an optimal algorithm for memory placement
which is improved regarding the sometimes unavoidable code size increase caused
by gaps in the address space. In contrast to the optimizations presented in this
section, their approach does not target WCET reductions and the order of basic
blocks stays untouched which wastes optimization potential.

The authors of [73| present a basic block reordering method based on neural net-
works. For this purpose, Liu et al. detect typical structures in the control flow graph
and employ a branch cost model to choose the layout with minimal costs. Unlike
the approach presented in this section, their model focuses on the optimization of
the average-case execution time and is unaware of the WCET of a program.

Zhao et al. also address the problem of determining improved code layouts which
decrease the WCET of a program [128|. As opposed to the optimizations presented
in this thesis, only architectures without branch predictors are considered where
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unconditional and taken conditional branches always stall the pipeline for a constant
number of cycles. An iterative approach is proposed which selects single edges to
be contiguous in memory in order to avoid transfers of control.

Bodin et al. aim at improving the WCET of processors supporting compiler-
directed branch predictions [10]. By setting a dedicated bit of conditional branch
instructions during optimization, the direction to predict is indicated. Optimization
potential is wasted, compared to the work presented in this chapter, since uncondi-
tional branches cannot be removed due to missing reordering techniques. In contrast
to [128] and [10], our approaches are able to optimize both unconditional and stat-
ically predicted conditional branches. Both works also do not explore the space of
possible solutions in order to evaluate the quality of their results as it is done in
this chapter by employing an EA as basis of comparison. Finally, our ILP-based
algorithm avoids time consuming repetitive WCET analyses required by state-of-
the-art optimization techniques. This is done by explicitly modeling all possible
control flow paths as part of the ILP in order to always optimize along the WCEP.
Therefore, only a single WCET analysis is required.

Falk et al. propose a code positioning optimization [33] aiming at the improve-
ment of the instruction cache behavior. A weighted cache conflict graph based on
WCET data is employed for code positioning of basic blocks and entire functions.
Based on this formal cache model, two heuristics try to reduce the number of accu-
mulated cache misses and thereby the WCET. Even if code positioning techniques
are employed, the impact on the branch prediction is not considered. Thus, syn-
ergetic effects of the presented code positioning on the cache performance and the
branch prediction cannot be exploited.

Another work considering scratchpad allocation is presented in [107]. Suhendra
et al. developed an ILP-based allocation of frequently accessed data objects to faster
memories in order to decrease the overall WCET. Their model of the program’s
WCET and possible execution paths serves as basis for the ILP-based algorithm
employed for the technique discussed in Section 3.3.3.2.

3.3.3 WCET-driven Code Positioning

In contrast to existing optimization approaches, the novel branch prediction aware
code positioning, which is discussed in the following, is able to optimize both the
number of executed unconditional and correctly predicted branches. Therefore, this
section presents two novel WCET-driven code positioning algorithms to rearrange
the order of basic blocks of a function. The first algorithm employs a genetic ap-
proach which starts with a random population. By exploiting the evolutionary tech-
niques crossover and mutation, offspring individuals are generated which desirably
converge to the optimal solution w.r.t. the WCET of a program.

Usually, evolutionary strategies can be implemented with small effort and often
without understanding the mechanism behind the optimization problem. Even small
memory layout modifications, for instance, can have hardly predictable effects on
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the instruction fetch unit of a processor. Evolutionary algorithms (EA) implicitly
consider such effects by evaluating the WCET to determine the fitness values of
newly created individuals. Thus, an EA is employed to understand the mechanisms
behind the optimization problem and to explore the possible optimization potential
of code positioning techniques before developing complex algorithms.

The second optimization discussed in this thesis is a more methodical approach.
A more promising order of basic blocks is determined based on an integer-linear
programming approach. The ILP explicitly models the WCEP as well as the impact
on the branch prediction and thereby avoids repetitive WCET analyses.

3.3.3.1 Evolutionary Approach

Finding an improved order of basic blocks inside a function w.r.t. the WCET of a
program is a complex task which —in most cases —cannot be done manually. In order
to explore the possible space of solutions automatically, an evolutionary approach
was developed. In this way, it is possible to fathom the optimization potential of
code positioning algorithms with small implementation effort. Such a procedure
is advisable before spending time and effort on developing complex optimization
techniques with uncertain practical effect.

Evolutionary algorithms stem from the domain of artificial intelligence and im-
plement the principles of biological evolution. By employing reproduction mech-
anisms including mutation and recombination, offspring generations are created.
From a new generation, stronger individuals w.r.t. a certain fitness function are
selected as parents for the next generation. With such an approach, preferably
improved solutions are “cultured” instead of tackling an optimization problem ana-
lytically.

The PISA framework [9] was employed which defines a common interface for
the communication of the so-called selector and variator modules (cf. Figure 3.2).
The selector is the algorithm which is responsible for picking out individuals for the
archive containing promising individuals for later use and as parents for an offspring
generation, whereas the variator models the application scenario and implements the
problem representation such as the code positioning or an approach for solving ar-
bitrary problems. The variator is responsible for creating offspring individuals from
parents by applying the mentioned crossover and mutation operators as well as for
the evaluation of the fitness value. Parent and offspring individuals are maintained
in a pool called population. There are several optimization algorithms for single-
and multi-objective optimizations problems providing an interface for PISA. The
Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [129] shows good performance
for different numbers of objectives at negligible computational power requirements.
Hence, it was chosen as selector although a simpler algorithm could be applied as
well.

The presented implementation of the variator creates individuals which repre-
sent the order of basic blocks by a mapping of consecutively numbered positions
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Figure 3.2: PISA Framework

in memory to basic block names. Figure 3.3 illustrates the representation of the
basic block mapping of individuals: for each function fi... f,, a vector stores the
basic block names, and the position of the blocks inside the vector correspond to the
order of blocks in memory and thereby encodes their position (e.g. position 1...14
for function f; consisting of ¢ basic blocks).

The most commonly used one-point crossover is applied at a random position %
as recombination operator to create new individuals. As demonstrated in Figure 3.4,
the first ¢ of n functions (here i = n — 1) of the first parent individual are combined
with the last n — ¢ functions of the second parent individual to create an offspring
individual. Crossover points have to be aligned at function boundaries to guarantee
the creation of valid individuals. Otherwise, an invalid individual could be the result
if, for instance, crossover is applied in the middle of two genes {L1,L2,L3,L4} and
{L1,L3,L2,L4} representing the same function with different orders of basic blocks.
The resulting genes {L1,L2,L2,L4} and {L1,L3,L3,L4} exhibit duplicate as well
as missing basic blocks leading to a semantically different behavior.

A newly created one is mutated with a probability of 1 by exchanging two ran-
domly chosen basic blocks of a randomly chosen function. New individuals could
be generated by applying only mutation to a single parent individual (without
crossover) as well. But this would reduce the speed of exploring the solutions space
since good characteristics of two parent individuals could not be combined.

For the evaluation of the fitness of an individual which corresponds to the WCET
of the modified program, a WCET analysis employing ai7T is performed. Since
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Figure 3.3: Encoding of basic block positions.
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potentially many individuals are created, a high number of time-consuming analyses
is required. A method to avoid redundant WCET analyses is a lookup table for
already evaluated solution vectors: if an older individual represents the same solution
vector as a newly created one, the appropriate WCET is read from the lookup table
instead of invoking aiT.

A more sophisticated way to determine an improved order of basic block posi-
tions without the need of repetitive WCET estimations is explained in the following
section.

3.3.3.2 ILP-based optimization

Trial-and-error approaches realized by evolutionary techniques as presented in the
last section are often time-consuming. This is due to the repetitive creation of in-
dividuals and evaluation of the fitness function. In contrast, an analytic strategy
may yield a problem-aware optimization technique which also leads to good or even
optimal solutions. Often, the disadvantage of such “methodological techniques” is
their complexity. They also require a high level of knowledge w.r. t. the optimization
problem on the part of the developer. Especially for WCET-driven optimizations,
the recognition and handling of possible WCEP switches makes optimizations chal-
lenging.

This section presents the novel ILP-based optimization technique which is capa-
ble to model a program’s control flow in order to always optimize along the WCEP.
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It determines an improved order of basic blocks w.r.t. the WCET of a program.
The algorithm requires only a single WCET analysis and is able to consider the
influence of the code layout on the branch prediction.

Section 3.3.3.3 describes the modeling of a function’s control-flow in the ILP
whereas Section 3.3.3.4 introduces constraints steering the position of basic blocks.
In Section 3.3.3.5, jump penalties for various jump scenarios are modeled. Finally,
Section 3.3.3.6 models the global control flow whereas Section 3.3.3.7 describes the
ILP’s objective function.

3.3.3.3 ILP Model of the Control Flow of Functions

By applying optimizations, the worst-case execution path can possibly switch. In
order to keep track of this critical path, the control flow within functions and the
paths’ lengths representing their execution times has to be modeled within the ILP.
In the following, ILP variables are represented using lowercase letters whereas con-
stants are represented by uppercase letters. The costs C; of basic block b; represent
the WCET of this block for a single execution as part of the unoptimized program.

Definition 3.1 (Reducible Control Flow Graph )

According to [88], a control flow graph G = (V, E,s) is reducible iff. E can be
partitioned into disjoint sets Er, the set of forward edges, and Ep, the set of
backward edges, such that (V, Er, sp) forms a directed acyclic graph (DAG) in
which each node can be reached from the entry node Sp. All edges in Ep are
back edges which connect nodes with one of their ancestors.

According to Definition 3.1, subgraphs of a reducible control flow graph can be
collapsed into into single nodes by applying transformations. Such a collapsing can
be successively applied from inner subgraphs (usually starting at innermost loops) to
outer subgraphs such that the CFG can be turned into simpler graphs. Ultimately,
the entire graph can be reduced to a single node.

For such reducible CFGSs, an innermost loop L of a function F' has exactly one
basic block beLntTy being the loop’s unique entry point, and possibly several back-
edges turning it into a cyclic graph. Not considering these back-edges turns L’s
CFG into an acyclic graph. G = (V, E') denotes this acyclic graph in the following.
It can be assumed that there is at least one basic block b .. in G, being the loop’s
exit node. The WCET w? . of block bL , 1s equal to its costs:

ext ext

wk. = ck (3.1)

exit — “exit

The WCET of a path leading from a node b; # b . of G to one of the exit

ext
nodes bém must be greater than or equal to the WCET of any successor of b; in

G, plus the cost C; of b;:

Vb€ V\{bE .} Y(bi, bsuee) € E 1 wi > Weuee + C (3.2)

exit
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Example 3.1 (Path Modeling)
In the following, a small example illustrates the modeling of the WCEP for a

sequence of basic blocks:
10 cycles

30 cycles [ b; ] [ by ]200yc]es

15 cycles

The annotated execution time for each block b represents its costs C. A
path is modeled bottom-up starting at basic block b;. As per Equation (3.1), its
WCET only depends on the costs C;  the time for a single executions of b;:

w; =C; =15

According to Equation (3.2), the WCET of block b; (b is modeled analo-
gously) is equal to its own costs plus the WCET of its only successor b;:

w; = Cj+wl = 30+15 = 45
wp, = Cp+w;, = 20415 = 35

Finally, the WCET of the first basic block b; which ends with a conditional
branch instruction is modeled as follows:

Ci+w; = 10445 = 55
Ci+w, = 10+35 = 45

Based on the costs and the resulting WCETs, the path b; — b; — by, is the
WCEP since it is the longest path with 55 clock cycles representing the WCET
of the whole sequence of basic blocks.

During optimization, a WCEP switch of a program can only happen at such
points in the CFG where a basic block b; has more than one successor. Only there,
forks in the control flow are possible where the outgoing paths can have different
WCETs. But since Equation (3.2) is formulated for each successor of b;, variable
w; always reflects the WCET of any path starting at b; —irrespective of the fact
which successors are actually part of the current WCEP. This way, the constraint
of Equation (3.2) realizes the implicit consideration of WCEPs and their changes in
the ILP.

Since paths are built bottom-up, variable weLmry models the WCET of all paths
of a loop L if it is executed exactly once. In order to model multiple executions of
L, all CFG nodes v € V of GG, are represented by a super-node vy,. The costs of vy,
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are the product of L’s WCET for a single execution and L’s maximal loop iteration
count:
s« Countl (3.3)

_ ..L
CL = Weptry

Replacing a loop L by a super-node vy, in the CFG may turn another loop L’
of F directly surrounding L into an innermost loop with acyclic CFG G’;. Hence,
the constraints of Equations (3.1) to (3.3) can be formulated for L’. This way, the
innermost loops of F' are successively collapsed in the CFG so that ILP constraints
modeling F’s control flow are created from the innermost to the outermost loops.

Example 3.2 (Loop Representation)

If the sequence of basic blocks in example 3.1 is turned into a loop named L1
which is an inner loop of a loop named L2, the resulting control flow can be as

follows:
5
25 cycles by, |e———
b, 10

txJ G
p—

10 cycles @7

According to Equation (3.3), the costs of the supernode vy representing loop
L1 amount to the WCET of its entry basic block b; multiplied by its maximum

iteration count:

wr = wi*CountTLnlaz = 55%10 = 550

Thereby, the subgraph of the innermost loop L1 can be reduced to a node
L1 turning the outer loop L2 in an innermost loop:

25 cycles by, 2

550 cycles L1

10 cycles b '—
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Now, the modeling of the path b, — L1 — b,, is done as in Example 3.1
before the loop L2 is reduced just as L1 in this example. The WCET of L2
amounts to:

wry = wy * CountE? = (2545504 10) x5 = 2925

max

Of course, the WCET w; of 550 clock cycles only hold for the concrete
values of this example as long a no path switch in Example 3.1 occurs. But due
to the nature of Equation (3.2), the equations in this example always consider
the actual WCET w; and thereby model the WCEP.

The fundamental structure of the ILP constraints of Equations (3.1) — (3.3) stem
from the work of Suhendra et al. proposed in [107]. In order to implement a fully
functional code positioning technique, these basic constraints had to be refined sub-
stantially. Extensions of the original ILP formulation are described in the following
sections.

3.3.3.4 Position Constraints

For a function F', the order of its basic blocks in memory is consecutively numbered.
The position of a basic block b; inside F' is represented by an integer variable z; as
part of the ILP model. Thus, the value of x; represents the absolute position inside
F which consists of N basic blocks:

zef{1,..,N} (3.4)

The decision variable z; for a basic block b; allows a free positioning of each
basic block inside a function. However, there are some constraints which have to
be taken into account. First, without loss of generality, each function F' has one
dedicated entry block bfmry with its corresponding decision variable xfntry which

has to be kept as first block of the function:

xj;t,y =1 (3.5)

Furthermore, at each logical position of a function F', exactly one block must
be assigned. Let V' be the set of F’s basic blocks, b; and b; two basic blocks with
their corresponding decision variables x; and xj, respectively. Then, a number of
constraints have to be formulated to ensure that there are no two variables with the
same value in order to avoid several basic blocks at the same position:

Vbi,bj € Vibi#bjil‘i#l‘j (36)

Due to the value range of x;, defined in Equation (3.4), Equation (3.6) implicitly
ensures that each basic block is allocated to a valid position. For the formulation of
the # operator, please refer to Equation (A.1) in the Appendix.
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Table 3.1: TriCore Jump Penalties [cycles]

Predicted
Outcome Taken | Not Taken
Taken 1 2
Not Taken 2 0

3.3.3.5 ILP Model of Jump Penalties

The WCET of a basic block b; does not only depend on its own WCET and the
WCET of the outgoing paths starting at b;, but also on possible jump penalties
resulting from rearranging the order of blocks inside a function.

By default, the WCET for a single execution of a basic block b; also comprises
possible jump penalties of unconditional and conditional jump instructions. Table
3.1 depicts the resulting penalty cycles for which the pipeline is stalled after pro-
cessing a branch instruction which was predicted taken or not and the real outcome
during execution. As can be seen, the worst case is a mispredicted branch causing
two cycles pipeline stall.

The execution time of a basic block determined by a static timing analyzer
always includes penalty cycles caused by the branch prediction according to Table
3.1. In order to simplify the jump penalty constraints presented in the following, the
pure execution time of each basic block without such penalties is required. Thus, the
penalty cycles of jump instructions depending on the prediction an the real outcome
are distilled in advance. Then, the costs C; of a basic block b; used in Equations
(3.1) — (3.3) thus have to be redefined:

e If block b; does not end with a jump instruction, its costs C; equal the WCET
for a single execution.

e For a block b; with an unconditional jump as last instruction, two cycles are
subtracted from the WCET to derive the costs C;. These two cycles are
composed of one cycle for executing the jump and of one cycle pipeline stall
for determining the jump target.

e The WCET of a block b; ending with a conditional jump instruction is deter-
mined by evaluating all outgoing edges to find the edge resulting in the highest
execution time of b;. Depending on whether this is the fall- or pass-through
edge, it is also known if the branch is taken or not in the worst case. To
determine the jump penalties for a conditional branch instruction from Table
3.1, the bit width and the jump direction has to be evaluated, too. If, for in-
stance, a conditional branch was mispredicted, two cycles pipeline stall occur.
In contrast to an unconditional jump, only these two cycles are subtracted
from the WCET of the corresponding block b; in order to calculate the costs
C;. This is done since the conditional jump itself cannot be removed.
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Example 3.3 (Unconditional jump instruction)

Two basic blocks b; and b; are connected by an unconditional jump instruction
bypassing a number of basic blocks as depicted in Figure 3.5b, p. 48.

If b; has an execution time for a single execution of ¢; = 20 cycles, two cycles
are subtracted in order to distill the influence of the jump instruction at the end
of b;. Thus, the block’s costs are redefined to ¢; = 18 cycles.

Example 3.4 (Conditional jump instruction)

A basic block b; ends with a conditional jump instruction which branches to
a block by if a test condition applies. Otherwise, b;’s implicit successor b; as
depicted in Figure 3.5d, p. 48, is executed.

It is assumed that the branch is predicted taken and the jump target by is
executed leading to one penalty cycle where the pipeline is stalled. If b; has
an execution time for a single execution of ¢; = 20 cycles, the penalty cycle is
subtracted in order to distill the influence of the jump instruction at the end of
b;. Thus, the block’s costs are redefined to ¢; = 19 cycles.

To determine the jump penalties as ILP constraints, the different jump scenarios
which are depicted in Figure 3.5 and their impact on the branch prediction of the
employed processor have to be modeled: the simple case in Figure 3.5a is an implicit
edge between two contiguous basic blocks b; and b; where b; does not end with a
jump instruction. If the ILP computes to not allocate these blocks contiguously
(x; # x; — 1), then an unconditional jump has to be inserted at the end of b;
resulting in two cycles penalty:

jpiimpl =22« (bl © b]) (37)

In Equation (3.7), the operator o checks if two blocks are contiguous in memory
by evaluating the corresponding decision variables:

1 fx;=2;—1
b;ob;) = v 3.8
(b j) {O else (38)

The way how the o operator is modeled within the ILP is omitted at this point.
Refer to Equation (A.3) in the Appendix for a detailed specification of its constraints.

An unconditional branch, as shown in Figure 3.5b, also connects exactly two
basic blocks b; and b; and usually bypasses a number of other basic blocks with a
jump instruction. Due to the fact that the jump costs were distilled from the costs
C; in advance, this case can be also handled by Equation (3.7): If the ILP decides to
allocate these blocks contiguously, nothing has to be done since removing the jump
results in jump scenario 3.5a. Otherwise, two cycles penalty have to be readded for
each execution of b;.

Compared to the unconditional branch instructions, conditional jumps require
a rather complex modeling of jump constraints: The static branch prediction of the
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(a) Implicit (b) Uncondi- (¢) Conditional (d) Conditional
tional Backward Forward

Figure 3.5: Typical Jump Scenarios

TriCore TC1796 distinguishes between 16 bit conditional jumps which are always
predicted taken and 32 bit conditional jumps where the prediction depends on the
jump direction. A 32bit conditional jump with backward displacement (cf. Figure
3.5¢) is predicted taken whereas the same instruction with forward displacement (cf.
Figure 3.5d) is predicted not taken.

Jumps with 16 bit width are always predicted taken; in compliance with the
second column of Table 3.1 either one cycle for a correctly predicted (pass-through
edge) or two cycles for a mispredicted branch (fall-through edge) have to be added
as penalty. Since the costs C; of a block b; are free of any jump penalties, the jump
penalty constraints for both successors can now be handled in the same way. For
each edge to successor beyee € {bj,br}, a separate constraint determines the jump
penalty depending on whether blocks b;, by are contiguous in memory or not:

]pzlzﬁtdcffi =1 + (b; 0 bsucc) (3.9)

If b; — bsyce 18 not contiguous (pass-through edge), the penalty for visiting bsyce
from b; is only one cycle for a correctly predicted branch. But if the edge to bgycc 18
the fall-through edge ((b; o bsuee) =1 ), a second cycle for a mispredicted branch is
added to the penalty.

In contrast, 32 bit jumps require more complex constraints since the prediction of
the target depends on the direction of the jump. For a backward jump which can be
seen in Figure 3.5¢, the second column of Table 3.1 has to be modeled whereas for a
forward jump, the third column applies. As done for the 16 bit jump penalties, there
is no need to care about the initial order of the basic blocks and the resulting jump
penalties due to the distilled costs C;. Instead, the four possible jump scenarios for
a block b; and its successors b; and by are modeled as constraints. In the following,
the jump penalties of edge b; — b; are presented, but edge b; — by is modeled
analogously:

1. Blocks b; and b; are contiguous (fall-through edge) and jumping to by results
in forward displacement (predicted not taken). According to Table 3.1, the
correctly predicted implicit edge results in no penalties:
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Pease = 0% (bi 0 by A my < ) (3.10)

Of course, this constraint is not added to the ILP but depicted for the sake
of completeness. At this point, the interested reader is referred to Equations
(A.4) and (A.2), Appendix p. 146, which describe the modeling of the and as
well as the less-than operator.

2. Blocks b; and b; are contiguous (fall-through edge) and jumping to b results
in backward displacement (predicted taken). If the fall-through edge is visited
although the jump was predicted taken, two penalty cycles are the result:

Prase = 2% (bi o by Am; > ay) (3.11)

3. Blocks b; and by, are contiguous and jumping to b; (pass-through edge) results
in forward displacement (predicted not taken). Since the fall-through target by
is predicted to be executed, jumping to b; would result in two cycles penalty:

Prase = 2% (bi o by Az < ) (3.12)

4. Blocks b; and by, are contiguous and jumping to b; (pass-through edge) results
in backward displacement (predicted taken). If jumping to b; is predicted
correctly, only one cycle penalty has to be added:

Paaze = 1% (bio by Az > a7) (3.13)

Depending on the jump scenario (JS) of a basic block b;, the overall jump penalty
jpi is defined as follows:

jpfmpl if JS of b; is implicit or initially unconditional

jpif;‘jfﬁ if JS of b; is conditional 16 bit

ipi =" isuce - . L ] (3.14)
IPond32 if JS of b; is conditional 32 bit

0 else

The jump penalties are used to extend the basic control flow constraints defined
in Equations (3.1) and (3.2):

whi = Clis + ipks (3.15)

exit — “exit

Vb € V\{bL,}: V(b bouee) € E -

_ (3.16)
Wi 2 Wsyee + Ci + Jpi
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3.3.3.6 ILP Model of the Global Control Flow

Up to this point, Equations (3.4) - (3.16) only model the intra-procedural control
flow of a single function F' within the ILP. Without loss of generality, one dedicated
entry block bfntry is assumed as first block of F'. For bfmry, the ILP variable wf,my

denotes the WCET of any path starting at bfmry for a single execution of F.
However, some basic block b; of a function F’ may contain a call to function F.
In this situation, F’s WCET represented by variable wfntry has to be added to the

WCET of block b;. Thus, the control flow constraint in Equation (3.16) is extended
by w;”y, representing F’'s WCET, if block b; calls F":

Wb € V\ bl } o V(bisbsuee) € E (3.17)

Wi > Wsyee + C; + jpﬁmpz + wgltry

Although a call is not counted as jump instruction, the modeling of jump penal-

ties is required for the control flow edge to the implicit successor. If the succeeding

basic block is moved away, an implicit jump has to be inserted to restore the control
flow.

Example 3.5 (Global Control Flow)
Assumed that basic block b; of Example 3.1 calls a function foo, the WCET of

foo’s entry basic block bﬁ,‘;@’ry is added to the costs of b; according to Equation

(3.17). Only the constraint of Example 3.1 modeling the WCET of b; thus has
to be extended:

wj = C] + wq + wfoo = 30 + 15 + w:z(t)ry = 45 + wgflgry

entry

The basis for Equation (3.17) stems from [62].

3.3.3.7 Objective Function

The overall goal of the ILP is to minimize a program’s WCET by rearranging the
order of basic blocks inside a function. Due to the nature of Equations (3.16)
and (3.17), variable w’ .~ corresponds to the WCET of function F including the

entry

WCETs of all functions called by F' extended by possible jump penalties. Function
main is the unique entry point of an entire program; hence, variable wg‘fjﬁ‘y denotes
the overall WCET of the program. As a consequence, the value of this variable has

to be minimized by the ILP:

wg‘;#; ~ min. (3.18)
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3.3.4 Evaluation

This section evaluates the performance of the WCET-driven branch prediction aware
code positioning algorithms applied to real-life benchmarks. In Section 3.3.4.1, the
experimental environment which is employed to perform evaluations is presented.
Section 3.3.4.2 discusses the WCET reductions achieved by the code positioning
algorithms described in Section 3.3.3, whereas Section 3.3.4.3 discusses the achieved
ACET reductions. Finally, Section 3.3.4.4 deals with the computational complexity
of the proposed optimizations.

3.3.4.1 Experimental Environment

For benchmarking, the optimization level O3 is used for which the WCC compiler
(cf. Figure 2.2) applies all 33 optimizations listed in Table 2.1, p. 27, in order to
evaluate the performance of the new algorithms on highly optimized code. The
compiler generates code for the Infineon TriCore TC1796 processor. This TriCore
v1.3 family is equipped with a static branch prediction unit for which equations
(3.7) - (3.16) are tailored.

For all measurements, 15 benchmarks stemming from the benchmark suites Me-
diabench 65|, MiBench [47|, MRTC [46] and UTDSP [115] were used. The number
of benchmarks was limited since the evolutionary optimization algorithm would
otherwise require several weeks of optimization runtime as discussed in Section
3.3.4.4. As listed in Table 3.2, the number of functions of the benchmarks ranges 1
(9721 _decoder) up to 28 (¢723_encoder) whereas the overall number of basic blocks
ranges from 10 up to 380 (¢723 encoder).

Today’s embedded systems are equipped with main memories in megabyte ranges.
Nevertheless, all evaluations are performed with the program code residing in the
fast SPM in order to avoid undesired side-effects by hardly predictable access la-
tencies of FLASH memories due to their page buffers. This enables comparable
results for both optimization algorithms. Otherwise, the evolutionary algorithm
would have a slight advantage since the repetitive creation and evaluation of indi-
viduals implicitly considers memory hierarchy effects by repetitive WCET analyses.
In contrast, these effects are very difficult to express adequately within an ILP-based
optimization.

In order to evaluate the achievable WCET reduction, the evolutionary approach
is invoked with an initial population of @ = 20 individuals. Each offspring generation
has p = 20 parents and also comprises A = 20 individuals. The maximum number
of generations amounts to maxGen = 20.

In order to derive the basic block costs C; required for the ILP model described in
Sections 3.3.3.3 to 3.3.3.7, a single WCET analysis employing a:T' is performed. The
loop iteration counts, however, are directly read from the flow facts (cf. Section
2.4.5) attached to the basic blocks representing the loop headers. To solve the
generated ILP, IBM ILOG CPLEX [56] is employed which is a sophisticated solver
for integer-linear programming problems.
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Table 3.2: Benchmark Characteristics

Benchmark ‘ #Functions ‘ #Basic Blocks | Code Size |bytes| ‘
basicmath 20 282 10,088
binarysearch 2 10 1,712
countnegative 3 19 1,928
cre 3 28 2,136
fir 256 64 2 10 1,704
g721 decoder 1 14 1,720
g723 encoder 28 380 6,912
janne complex 2 15 1,680
lmsfir 32 64 2 18 1,960
ndes 6 87 3,712
prime 3 14 1,744
qurt 3 26 2,208
select 2 31 2,488
selection _sort 2 16 1,712
sqrt 2 14 1,800
Average 5 64 2,900

3.3.4.2 WCET Estimations

Figure 3.6 depicts the results achieved by the branch prediction aware code posi-
tioning algorithms for the considered 15 benchmarks. For each benchmark, the left
bar represents the result for the evolutionary code positioning technique, whereas
the right bar represents the result if the ILP-based algorithm is applied. The 100%
line is equal to the estimated WCET of the benchmarks compiled with the optimiza-
tion level 03 without code positioning (the code layout mainly matches the logical
order found in the C source code). The bars depict the WCET .4 of the optimized
program computed by the static WCET analyzer as percentage of its “unoptimized”
version.

The evolutionary algorithm reduces the WCET g4 of the benchmarks by up to
24.7% (prime benchmark). For the same benchmark, the ILP-based algorithm is
able to achieve WCET.g reductions of up to 20.0%. Significant WCET s reduc-
tions could be achieved for almost all benchmarks except for basicmath. Here, the
EA achieved only a marginal WCET,g reduction of 0.6% whereas the ILP-based
approach did not achieve any improvement. On average, the WCET .4 for all bench-
marks was reduced by 8.9% by applying the evolutionary approach and by 6.7% for
the ILP-based optimization, respectively.

Table 3.3 shows the ratio of executed unconditional (columns labeled “Uncond.”)
and mispredicted conditional jump instructions (columns labeled “Mispr.”) on the
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Figure 3.6: Relative WCET,4s after Code Positioning Optimizations

WCEP. For each benchmark, values for the unoptimized version, the evolutionary
and the ILP-based approach were collected. Here, 100% equals the overall number
of executed jump instructions on the WCEP (conditional and unconditional) in
columns labeled with “#JI”. Multiple executions of a jump are counted multiple
times.

Considering the amount of mispredicted branches, both algorithms perform best
for the selection sort benchmark where reductions of 56% (EA) and 55.1% (ILP)
were achieved. Conversely, unconditional jumps had to be inserted in order to
correct the control flow. They amount to 21.3% (EA) and 20% (ILP) of the overall
executed number of jumps. Thereby, WCET . reductions of 14.4% and 14.6% were
achieved, respectively.

The amount of unconditional jumps could be decreased by 32.4% and 33% for the
benchmark fir 256 64 by applying the evolutionary and the ILP-based approach,
respectively. Even though considerable reductions can be achieved, in the majority
of cases, the number of executed unconditional jumps was increased by up to 33.3%
(9721.marcuslee_ decoder, EA) and 33.9% (ndes, ILP).

On average, the number of mispredicted branches was reduced by 16.8% (EA)
and 21.4% (ILP) whereas the unconditional jumps were increased by 4.1% (EA) and
6.7% (ILP).

Corner cases: For the benchmark with the highest WCET .4 reductions (prime),
it turned out that both reordering algorithms were able to eliminate almost all
mispredicted branches. No unconditional jumps are executed at all. Nevertheless,
the EA algorithm was able to outperform the ILP-based approach by 4.7% w.r.t.
WCET,.,; reduction.
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Table 3.3: Ratio of unconditional and mispredicted jumps

Unoptimized EA ILP
#JI ‘ Ucond. ‘ Mispr. #JI ‘ Ucond. ‘ Mispr. #JI ‘ Ucond. ‘ Mispr.
basicmath 76691 0.0% 0.5% 77407 0.9% 0.6% 76691 0.0% 0.5%
binarysearch 15 0.0% | 66.7% 14| 14.3% | 35.7% 17| 29.4% | 29.4%
countnegative 1240 | 32.3% 0.1% 1041 | 19.3% 0.1% 840 0.0% 0.1%
cre 8878 | 23.1% | 24.0% 8892 | 23.2% | 24.0% 9388 | 27.3% | 16.4%
fir 256 64 768 | 33.2% 0.1% 517 0.8% | 49.3% 514 0.2% 0.2%

g721.marcuslee 14442 0.0% | 50.0% 21664 | 33.3% 0.0% 16849 | 14.3% | 14.3%
g723 encoder 95980 2.3% | 23.5% 96133 2.5% | 23.8% || 141217 | 35.0% 9.2%

janne__complex 70 5.7% | 47.1% 75 12.0% | 22.7% 71 7.0% | 16.9%
Imsfir 32 64 14802 | 17.0% | 24.5% 14962 | 17.9% | 17.0% 14931 17.7% 1.1%
ndes 4369 0.1% | 74.3% 6007 | 27.3% | 41.6% 6617 | 34.0% | 33.3%
prime 865 0.0% | 49.7% 865 0.0% 0.2% 866 0.0% 0.1%
qurt 240 0.0% | 27.5% 246 2.4% 1.2% 277 | 13.4% | 13.4%
select 969 0.0% 1.8% 970 0.1% 1.8% 1004 3.5% 1.8%
selection sort 341160 0.0% | 74.9% || 433315 | 21.3% | 18.9% || 425300 | 20.0% | 19.8%
sqrt 547 0.0% | 24.3% 547 0.0% 0.0% 620 | 11.8% | 11.8%
Average 37402 7.6% | 32.6% || 44177 | 11.7% | 15.8% || 46347 | 14.2% | 11.2%

This behavior is caused by the impact of the resulting memory layout of the
modified program on the WCET,.4: it is, for instance, worthwhile to align loop
headers at the beginning of memory lines. Otherwise, the crossing of memory lines is
more frequent. This often results in a decreased performance since multiple memory
lines have to be fetched in order to execute the loop header. The ILP is not aware of
any memory addresses during the rearranging of basic blocks with the result that line
crossing effects cannot be modeled. In contrast, the evolutionary approach always
implicitly takes the impact of memory layout modifications on the WCET,4; into
account by evaluating the fitness of each newly created individual using as7.

For the fir 256 64 benchmark, both algorithms were able to remove almost all
executed unconditional jump instructions (0.8% respectively 0.2% remaining). But
the evolutionary algorithms was able to outperform the ILP optimization by 16%
WCET,.s reduction (77.7% vs. 93.7% resulting WCET ) although the number
of mispredicted branches is increased by 33%. The ILP generates a basic block
order where 99.6% of the conditional branches are correctly predicted taken, each
resulting in one cycle pipeline stall (cf. Table 3.1). The EA, however, determines a
memory layout where half of the branches are correctly predicted not taken resulting
in no penalty cycles. The remaining conditional jumps were mispredicted, each
resulting in two cycles penalty. Since the executed jumps induce the same amount
of overall pipeline stall cycles, the evolutionary algorithm only performs better due
to a memory layout causing less line crossings of instructions.

Although the evolutionary approach should have a small advantage compared
to the ILP-based optimization, there are cases, for instance the benchmark selec-
tion_ sort, where the ILP-based approach performs better (in finite time): the ILP
optimization explicitly models absolute positions of basic blocks and the influence of
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Figure 3.7: Relative ACETs after Code Positioning Optimizations

possible branch penalties on the WCET. The corresponding constraints are always
considered during solving the equations. Thus, the complexity only depends on the
number of constraints which in turn depend on the control flow of a program. Hence,
the overhead for solving the ILP is depending on the total number of basic blocks
but not on the number of blocks which have to be moved during optimization.

In contrast to the ILP model, the evolutionary approach can only apply small
modifications to the order of basic blocks of a function by employing the opera-
tors crossover and mutation when a new offspring individual is created. Thus, for
benchmarks with complex control flows with a lot of control flow edges, a large num-
ber of offspring individuals has to be created until the space of valid solutions can
be explored extensively in order to find an improved solution. The selection  sort
benchmark is an example where the optimal result is typically found after 40 gen-
erations, leading to up to 800 WCET analyses.

Such an insufficiency could be tackled by tuning the evolution parameters; for
instance, each position of the solution vector could be mutated with a certain prob-
ability instead of mutating only a single position. In this thesis, the evolutionary
approach only serves as a case study if reordering basic blocks w.r.t. the WCET of
a program pays off. Another aim is to obtain WCET reference data for a compar-
ison with the ILP-based approach. Thus, improving the evolutionary approach is
omitted at this point.

Both algorithms are not able to achieve appreciable WCET reductions for the
basicmath benchmark. The initial order of basic blocks generated by WCC’s code
selector already supports the branch prediction such that only 0.5% of the branches
were mispredicted. Since there are less than 0.1% unconditional jump instructions
on the WCEP, there is almost no optimization potential w.r.t. the order of basic
blocks.



56 Chapter 3. WCET-aware Memory-based Optimizations

3.3.4.3 ACET Estimations

Figure 3.7 depicts the impact of the branch prediction aware code positioning algo-
rithms on the ACET. The commercial, cycle-true instruction set simulator CoMET
[109] was employed to measure ACETs. Once again, the bars depict the result-
ing ACET of the optimized program as percentage of its “unoptimized” version. For
each benchmark, the left bar represents the result achieved by the evolutionary code
positioning technique, whereas the right bar represents the result if the ILP-based
algorithm is applied. The 100% line is equal to the ACET of the benchmarks com-
piled with the optimization level O3 without any code positioning optimization (the
code layout matches the logical order found in the C' source code).

The evolutionary algorithm was able to decrease the ACET of the considered
benchmarks by up to 14.4% (selection sort). But there are also cases, where the
ACET is increased (sqrt, 24.7% increase). On average, a marginal ACET decrease
of 0.3% can be achieved.

Evaluating the ILP-based optimization shows that the algorithm does not per-
form better than the EA. Here, too, ACET reductions can be observed (only up
to 10.4% for ¢721.marcuslee_ decoder). But once again, there are cases of increased
ACETs (up to 24.7% for sqrt). On average, the ACET is even worsened by 1.7%.

Comparing Figures 3.6 and 3.7 shows that both algorithms behave completely
different for the estimated WCET and the ACET: the WCET-driven branch predic-
tion aware code positioning is best suited to achieve WCET reductions but performs
worse for ACET optimization. This is caused by the fact that the WCET serves
as metric during the optimization of the programs. The EA evaluates the fitness of
individuals by invoking a static timing analyzer. The ILP-based optimization em-
ploys WCETs of basic blocks as well as worst-case execution frequencies to set up
the constraints modeling the objective function. Hence, the impact of any reordering
on the ACET is not taken into account.

The WCET,s of the benchmark sgrt, for instance, can be decreased by 6%
whereas the ACET is worsened. In sqrt, a loop performs square root computations
on floats. For average-case scenarios, this loop exits usually after few iterations. Re-
gardless of this fact, a WCET analyzer has to assume the maximum iteration count
of the loop as worst case. Thus, the WCEP is different from the most frequently
used path. The positions of the benchmark’s basic blocks are changed in order to
shorten the WCEP. In order to correct the control flow, unconditional jumps are
inserted on that path that is most frequently used in an average-case scenario, but
which (in this case) does not contribute to the WCEP. The inserted jumps lead to
an ACET increase of 24.7%.

These observations obtained comparing the ACET and WCET performance of
WCET-tailored optimizations conform to the observations presented in [31].
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3.3.4.4 Optimization Time

To consider the optimization time, an Intel Xeon E5506 (2.13 GHz) was utilized.
Most of the time necessary for the novel WCET-driven branch prediction aware
code positioning algorithms was consumed by the WCET analyses using ai7. The
maximal number of WCET analyses during an evolutionary optimization run is
equal to the number of created individuals and amounts to

#Analyseswcopr < o+ X x (mazGen — 1) = 400 (3.19)

where « is the size of the initial population and A the number of offspring
individuals. For the ILP-based approach, only a single WCET analysis is necessary
to determine the costs C; for each basic block b; (cf. Section 3.3.3.2).

For a single WCET analysis, up to 20 CPU minutes are required for the basicmath
benchmark. Thereby, the evolutionary approach requires almost 2 days for the
optimization of this benchmark on a CPU single core which is not feasible in practice.
The ILP-based optimization, in contrast, merely spends 20 minutes for the one
required WCET analysis which is highly suitable for most application scenarios.
The immense WCET analysis time for the evolutionary approach is the reason why
the number of benchmarks had to be limited to 15 in order to avoid optimization
times of months.

The complexity of solving the ILPs generated by the optimization discussed in
Section 3.3.3.2 is of no practical relevance. For a CFG with n nodes, the ILP has a
size of O(n?) constraints and variables. The employed ILP solver CPLEX takes up
to 2 CPU minutes (basicmath) but mostly terminates within a few seconds for the
considered benchmarks. Compared to the WCET analysis required to determine
the cost constants C; for each basic block and the immense time required for the
evolutionary algorithm, these values are convenient.

The publication [93] has arisen from the techniques presented in this section.

3.4 Cache-aware Memory Content Selection

Memory content selection techniques aim at improving a certain objective by intel-
ligently allocating memory objects to available memories. In order to reduce the
average-case runtime of a program, frequently executed code blocks or used data
objects are typically allocated to faster memories. The WCET-driven scratchpad
allocation presented in [32] is an example for memory content selection. This chap-
ter, however, addresses the allocation of memory content with regard to the effect
on the I-cache performance and the resulting WCET.4; of a program to optimize.
In systems equipped with caches, the latency of an access to a certain main
memory address highly depends on the contents of the cache. If an instruction to
be fetched already resides in the cache, a cache hit occurs and the fetch can be
usually performed within one processor clock cycle. Otherwise, the access results in



58 Chapter 3. WCET-aware Memory-based Optimizations

a cache miss. The required data then has to be fetched from the slow main mem-
ory (e.g. Flash) leading to penalty cycles depending on the processor and memory
architecture.

The disadvantage of systems with caches is the limited predictability. It is hard
to determine if an access results in a cache hit or miss and thus, it is hard to
predict the execution time of a program executed from a cached memory. This is
caused by the fact that caches only speed up the execution if a program tends to
reuse instructions in the near future. If, however, the code of a program is not
suitably arranged in the address space and the memory accesses are random or
widely spread over the address space, the performance can be also decreased by the
usage of a cache. Hence, static analysis techniques have been developed to allow
safe predictions of a cache’s impact on the worst-case performance of a system [113]
in order to estimate tight bounds for the WCET of a program.

Intelligent allocation of beneficial functions to cached memory areas and un-
favorable functions to non-cached memory areas can ensure that functions whose
WCET highly profits from a cache are not evicted from the cache by functions with
a low benefit. This can lead to a faster execution and a decreased WCET due to a
dramatically decreased number of real cache misses. Furthermore, it is possible to
reduce the overestimation of the WCET which is introduced by pessimistic assump-
tions concerning the I-cache performance: If the memory access pattern cannot be
determined at a certain point of the program execution, a static WCET analyzer
has to consider an assumed cache miss and invalidated cache content. By allocating
only a promising subset of functions to cached memory areas, the amount of unpre-
dictable cache accesses can be decreased. As a result, the cache analysis assumes
less cache misses caused by such unpredictable accesses and a tighter bound for the
WCET can be computed.

In the following, a novel WCET-driven cache-aware memory content selection
algorithm is presented which selects functions to be placed in a cached memory area
in order to improve the worst-case I-cache performance. The proposed algorithm
uses a greedy approach and evaluates the impact of executing a function from a
cached memory area on the WCET. The algorithm always selects the function with
the largest profit and keeps track of changing WCEPs by subsequently performing
a WCET analysis.

This chapter is organized as follows: In the next section, cache-aware memory al-
location techniques are motivated by an example, followed by an overview of related
work in Section 3.4.2. Section 3.4.3 presents our new WCET-driven cache-aware
memory content selection algorithm. An evaluation of the performance which is
achieved by our WCET-aware memory allocation algorithm is presented in Section
3.4.4.
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1 void fool() {
2 for(i=0; i<10; i++) {

o

Figure 3.8: Exemplary Program and resulting Call Graph
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Figure 3.9: Cache thrashed by mutual Evictions of Functions

3.4.1 Motivating Example

Nowadays, embedded systems are equipped with caches in kilobyte ranges, typically
from 1kB up to 16 or 32kB. Compared to growing main memories in megabyte
ranges, caches are rather small. The I-cache controller tries to keep copies of fre-
quently executed memory lines containing sequences of instructions as cache content
for a faster access. If a cache miss occurs, a complete cache line containing the ad-
dressed item is fetched from the main memory and possibly evicts valid content
from the cache. The amount of cache misses highly depends on the ratio of cache
to memory size, the cache replacement policy and the structure of the executed
program. A high amount of cache misses implies costly reloading of content from
the slow main memory and leads to a high number of penalty cycles due to pipeline
stalls.

Figure 3.8 depicts an examplary program for which a high number of cache
misses can occur: The left-hand side shows the C code of a function fool containing
a loop which calls functions foo2 and foo3. The resulting call graph of this simple
program is shown on the right side. If the functions are consecutively arranged in
the memory, fool and foo2 can be simultaneously stored in the cache (cf. Figure
3.9). Since the cache capacity is not large enough to store the whole program, foo3
evicts the complete cache content during its execution. Thus, a lot of conflict misses
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Figure 3.10: Exploiting non-cached Memory Areas to avoid Cache Thrashing

occur and the complete cache has to be refilled twice during each iteration of the
loop in fool. This might lead to a dramatically increased execution time caused by
pipeline stalls due to a high number of cache misses.

Many embedded systems have parameterizable caches and memory layouts which
allow that parts of the address space can be included or excluded from caching. An
optimizing compiler can exploit such a memory system and allocate frequently called
functions to cached memory regions and rarely used functions to non-cached memory
regions. This strategy can ensure that functions which highly benefit from a cached
execution cannot be evicted from the cache by functions with a lower benefit.

In the following we assume the WCETs for functions fool, foo2 and foo3 as
depicted in Table 3.4. WCET py44p is the overall WCET of a function f if the entire
function is executed from a non-cached memory area summed up over all iterations
of the loop in fool. WCETucheq is £'s WCET if it is executed from a cached
memory area. Obviously, it is more favorable if functions fool and foo2 can be
kept in the cache since the accumulated WCET of fool and foo2 is decreased from
1040 cycles to 665 cycles. Overall, the WCET is reduced by 375 cycles compared to
131 if foo3 is kept in the cache. An optimized memory layout for the example in
Figure 3.8 is shown in Figure 3.10. Function foo3 is moved to a non-cached memory
area in order to prevent a constantly repetitive eviction of function fool and foo2.

Table 3.4: WCETs for Functions depending on the Memory Region

Function WCETFlash WCETCached
fool 350 195
foo2 690 470
foo3 500 369
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3.4.2 Related Work

Theiling et al. present static WCET analyses for systems with caches based on their
research in [113]. They separate microarchitectural analysis from path analysis in
order to manage the overall analysis complexity. This way, a fast and still precise
WCET analysis is feasible.

Work presented in [106] by Suhendra et al. examines a combination of locking
and partitioning of shared caches on multi-core architectures in order to guarantee a
predictable system behavior. The proposed algorithms are not WCET-aware since
their decisions are not based on any WCET values; nevertheless, the authors evaluate
the impact of their caching schemes on the worst-case application performance.

In [36], Falk et al. present a cache locking algorithm which explicitly takes the
worst-case execution path into account during each step of the optimization proce-
dure. This way, they can make sure that always those parts of the code are locked
in the I-cache that lead to the highest WCET reduction. Puaut et al. [99] propose
locked instruction caches in multi-task real-time systems. They propose two low-
complexity algorithms for cache content selection. A drawback of statically locking
the cache content is that the dynamic behavior of the cache is lost. In contrast
to the techniques proposed in this chapter, code is no more automatically loaded
into the cache. Thus, code which is not locked into the cache cannot profit from it
anymore.

Vera et al. [117] combine cache partitioning, dynamic cache locking and static
cache analysis of data caches to achieve predictability in preemptive systems. This
eliminates overestimation and allows to approximate the worst-case memory perfor-
mance, however, unlike our new approach, they are not able to explicitly optimize
the WCET of a system.

In [42], a technique rearranging the positions of tasks to improve the cache
performance is presented. Gebhard et al. propose to evaluate the interdependency
relation of tasks in order to determine a memory layout which maximizes the number
of persistent cache sets for each task. In contrast to the optimization presented
in this chapter, intra-task cache conflicts cannot be optimized since the order or
allocation of functions inside a task stays untouched.

A technique for procedure placement to reduce the cache miss ratio of programs
is presented by Guillon et al. in [45]. The authors provide an optimal algorithm for
memory placement which is improved regarding the unavoidable code size increase
caused by gaps in the address space. In contrast to our optimizations, the presented
approach does not take the WCET as metric into account.

Another technique for procedure positioning is presented by Lokuciejewski et
al. in [77]. The authors propose an iterative algorithm which evaluates the worst-
case calling frequencies and takes the WCET as metric into account. Unlike the
work presented in this chapter, their algorithm exploits preloading if parts of con-
tiguous functions occupy the same cache line but suffers from small caches leading
to increased cache miss rates.
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Falk et al. counteract the possible predictability problems of caches with a static
allocation of program code to so-called scratchpad memories (SPM) [32]. They em-
ploy integer-linear programming to select the optimal content of the SPM w. r. t. the
program’s WCET. Static SPM allocation has the disadvantage that the content is
fixed during the program’s execution. Thus, only the code located in the SPM profits
from an accelerated execution. Furthermore, jump instructions have to be inserted
in order to keep the control flow consistent. Such a code modification introduces
additional runtime overhead.

3.4.3 WCET-driven Memory Content Selection Algorithm

In the following, a novel algorithm for a WCET-driven cache-aware memory content
selection is described which moves functions to different memory areas depending
on their impact on the overall WCET.

As already stated in [77], even local code modifications can have a strong impact
on the WCET of other parts of a program. This impact is hardly predictable
without performing a complete static WCET-analysis of the program. Moreover,
the situation becomes even more complicated if systems are equipped with caches.
To deal with this handicap, a greedy optimization algorithm has been developed
which moves single functions between memory areas and evaluates the influence
on the WCET of the program to optimize by performing a WCET-analysis using
aiT. The new assignment of functions to cached and non-cached memory areas acts
as starting point for the next iteration which moves another function in case of a
preceding WCET decrease. But if the WCET is increased, the last modification is
rolled back in order to guarantee that the optimized program is never worse than
the original code w.r.t. its WCET.

Algorithm 1 shows the pseudo code of the greedy algorithm requiring a set F
of functions to be optimized as input. The first two lines define sets of functions
which are decided to be placed in a cached memory region (set C'F') or a non-cached
memory region (set NCF). The variable S is initialized with the cache size (line 3)
and acts as counter for the free cache in bytes.

The profit for a function f if it will be moved from a non-cached memory region
to a cached memory region is calculated in line 4. The profit of a function f is

defined as:

profit(f) = WELV) ;;z]f;)ed WCET(f)

WCET(f) is the WCET of function f if it is allocated to a non-cached memory
region, while cachedW CET(f) is f's WCET if it is executed from a cached memory.
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Algorithm 1 Greedy WCET-driven Memory Content Selection Algorithm

Require: set<functions> F

e e e e
w22

15:
16:
17:
18:
19:
20):
21:
22:
23:
24:
25:
26:
27:
28:

set<functions> CF = ()
set<functions> NCF = ()
S = cache size
calculateProfit( F )
while (S >0AF #0) do
for f € F : max( getProfit(f) ) do
if ( getSize(f) > S ) then
break;
end if
CF=CFUFf
F=F\f
S =85 — getSize( f)
end for

. end while

/* From now on evaluate the WCET trend since the cache is full */
WCET lastWCET = evaluateW CET()
for all f € F : max( getProfit(f) ) do

CF=CFUf

F=F\Ff

WCET newWCET = evaluateW CET()

if (newWCET > lastWCET') then

CF=CF\ f
NCF =NCFUf
else

lastWCET = newWCET
calculateProfit( F)
end if
end for
return CF
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To avoid side effects caused by cache conflict misses when two or more functions
are mapped to the same cache lines, either the cache has to be large enough to
store copies of all functions or only a subset of functions has to be placed into
the cached memory region and analyzed at a time. For that, cachedWCET(f)
could be determined by moving each function separately into the cached memory
and determining its WCET using a timing analyzer. However, this approach has the
drawback that several static WCET analyses are required to compute cachedW CET
for all functions.

The static WCET analyzer aiT employed in this thesis is able to compute a
program’s WCET for systems with different cache sizes. To save time consumed by
repetitive WCET analyses, a virtual large I-cache larger than the code size of the
analyzed program is chosen for the evaluation. Moreover, we align each function at
the start address of a cache line in order to achieve the same values as if all functions
were analyzed separately.

In a few cases, a negative profit is detected. Then, function f incurs a WCET
increase due to a cached execution and therefore is excluded from optimization.

The loop in lines 5-14 allocates functions to the cached memory as long as the
overall code size still fits into the cache and not all functions are allocated. Inside
the loop, the function with the highest profit (line 6) is removed from the set of
unhandled functions and allocated to the cached memory region (lines 10-11). Line
12 keeps track of the allocated overall code size and lines 7-9 break the loop if the
function with the highest profit does not fit into the cache anymore.

If the cache can store no more functions simultaneously, it is yet possible that
allocating another function to a cached memory can decrease the WCET. Hence,
lines 15-27 test if moving another function to the cached memory can achieve further
reductions of the WCET.

Line 15 stores the current WCET of the program with the allocation decisions
made in the preceding loop. The loop starting in line 16 iteratively moves one of
the remaining functions with the highest profit to the cached memory region (line
17-18) and evaluates its effect on the WCET (line 19). If a WCET increase was
detected in line 20, the following two lines roll the last change in the memory layout
back and function f is stored in the set NCF of non-cached functions. Otherwise,
the new decreased WCET serves as reference for the next iteration (line 24).

A new profit calculation is performed in line 25. Here, again, the WCET of the
remaining functions f € F' is taken into account if stored in non-cached memory
as well as stored in cached memory. Therefore, we can recycle the WCET analysis
results gathered in line 4 where cachedWCET(f) was already determined for all
functions in a cached memory. WCET(f) can be reused from the results computed
in line 19 where the remaining functions were stored in the non-cached memory.

WCET(f) for a function f stored in a non-cached memory will be zero iff f is
not lying on the WCEP. Thus, profit(f) < 0 is true and f is not considered as a
possible candidate to move to a cached memory area during the next loop iteration.
Hence, the algorithm inherently keeps track of a possible change of the WCEP.
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Table 3.5: Benchmark Characteristics

Benchmark ‘ #Functions ‘ #Basic Blocks | Code Size |bytes| ‘
adpcm 11 283 9920
g721 encode 28 380 6912
g723 encode 28 380 6291
gsm 38 467 21320
h264dec 4 142 14336
md5 12 67 5592
rijndael decoder 6 94 12304
rijndael encoder 8 109 12024
statemate 8 408 10688
v32.modem benc. 9 140 6272
Average 13 210 10566

The algorithm terminates if all functions are either located in set C'F' for func-
tions to be cached or set NC'F' of functions to exclude from caching.

Finally, all functions in set C'F will be attached to a section which is allocated
to a cached memory area by the linker. All remaining functions of set NCF belong
to the .text section which is allocated to a non-cached area by default.

3.4.4 Evaluation

This section evaluates the capability of our WCET-driven cache-aware memory con-
tent selection algorithm applied to real-life benchmarks. For benchmarking, the
optimization level O8 was used for which the WCC compiler activates 33 different
optimizations (cf. Table 2.1, p. 27) in order to evaluate the performance of our
new algorithm on highly optimized code. The compiler emits code for the TC1796
processor with a 16 kB 2-way set associative I-cache and laest recently used (LRU)
replacement policy. The TC1796 integrates a 2 MB program Flash as main memory
which is mapped to two different addresses in the memory layout. The first memory
region allows a cached access to the Flash whereas code executed from the other
region in the address space is excluded from caching.

For our measurements, the 10 largest benchmarks from the benchmark suites
DSP Stone [130], Mediabench (65|, MiBench [47], MRTC |46|, NetBench [85] and
UTDSP [115] were utilized. As listed in Table 3.5, the number of functions of the
benchmarks ranges from 4 (h264dec) up to 38 (gsm) whereas the code size ranges
from 5.4kB (md5) up to 20.8kB (gsm).

Today’s embedded systems are equipped with main memories in megabyte ranges
and caches typically ranging from 1kB up to 16kB or at most 32kB. Since the
employed benchmarks would entirely fit into the cache, comparable results could
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Figure 3.11: Relative WCET4s after memory content selection

not be achieved. Therefore, the cache sizes were artificially limited to 5, 10 and 20%
of the program’s overall code size. This guarantees that a similar ratio of cache size
to program size is used for all optimizations and static WCET analyses, found in
current embedded systems in order to generate comparable results.

3.4.4.1 WCET Estimations

Figure 3.11 depicts the results achieved by our new memory content selection al-
gorithm for the considered 10 benchmarks. For each benchmark, each of the three
bars represents the results for different cache sizes. The bars depict the estimated
WCET of the optimized program computed by the static WCET analyzer relative
to the estimated WCET if the benchmark is executed with all functions located in
a cached memory region.

Our algorithm was able to reduce the estimated WCET of the benchmarks by
up to 19.5% for 5% and 10% cache size for the rijndael decoder. For the same
benchmark, the proposed optimization was able to achieve a WCE T reduction of
20.1% for 20% cache size. The reasons why the worst-case performance of benchmark
gsm could not be improved are twofold. First, the loop of a filter function which
consumes about 95% of the program’s estimated WCET amounts to only 3% of the
program size and fits into all considered cache sizes. Second, the program’s control
flow is highly serial with only few branches. Thus, only few cache conflict misses
occur and the best performance is achieved if all functions reside in a cached memory
area during execution.

Due to the fact that our optimization is based on a heuristic to select the most
promising functions, wrong decisions could be made leading to suboptimal results.
The benchmark h264dec clearly indicates suboptimal results for the cache sizes of
5% and 20% of the program size. For these cases, the memory content selection
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algorithm optimized on a local minimum where a different set of functions allocated
to the cached memory would achieve a better worst-case performance.

On average, the estimated WCET of all benchmarks could be reduced by 8%
for the smallest considered cache size and by 6 and 4% for 10% and 20% cache size,
respectively.

For most of the benchmarks, it can be observed that our algorithm performs
better for smaller cache sizes which has two reasons. On the one hand, there is
more optimization potential since the number of cache misses necessarily grows with
caches diminishing in size. On the other hand, the principle of locality |25] which
states that programs tend to reuse data or instructions they have used recently
also applies to most of the programs running on embedded systems. Based on the
principle of locality, a widely known rule of thumb is that most of the programs spend
90% of their execution time in only 10% of the code [51, p. 47]. As a consequence,
the considered 10% cache size can often already keep copies of a program’s hot spots.
Thus, it is very likely that the execution time of the program can be improved by at
most 10% by storing the remaining 90% of the code in the cache. The middle bar
of each benchmark shown in Figure 3.11 represents exactly these 10% cache size.
The 100% line represents the WCET,; of a system with a normally operating cache
which can store copies of just these program’s hot spots. Seen from this perspective,
the achieved average WCET.4 reductions of 4-8% seem to be hardly improvable.

3.4.4.2 Optimization Time

To consider the optimization time, an Intel Xeon X3220 (2.40 GHz) was utilized.
Most of the time necessary for our novel WCET-driven cache-aware memory con-
tent selection algorithm was consumed by the repetitive WCET analyses using aiT.
For a program consisting of n functions, the maximum number of WCET analyses
amounts to:

#Analyseswepr =3 +n (3.20)

Initially, two analyses have to be performed in order to calculate the profit (line
4) and one for determining the reference WCET (line 15). Another analysis is
required after each allocation of a function to evaluate its impact on the overall
WCET (line 19).

Most of the time was consumed by the optimization of the rijndael decoder
where 6 WCET analyses require almost 2 hours of CPU time. The highest number of
WCET analyses (17) was performed during the optimization of the two benchmarks
9721 encode and ¢723 encode which amounts to 8 and 10 minutes of analysis time,
respectively.

The optimization presented in this section lead to publication [96].
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3.5 Summary

This chapter presented novel WCET-driven memory-based optimization techniques
which optimize the assembly code of a program. All optimizations are integrated
into the WCC compiler framework presented in Chapter 2. Unlike prevalent ACET
optimizations which are based on heuristics or exploit profiling information to apply
code modifications, the presented optimizations rely on WCC'’s integrated WCET
timing model. Based on this WCET data, optimizations are able to focus on the
optimization of those code parts lying on the WCEP. Thereby, the impact of applied
code transformations on the WCET can easily be evaluated to prevent adverse
effects. The effectiveness of the discussed optimizations exploiting processor-specific
features was demonstrated on real-life benchmarks.

The first optimization proposed in this chapter was branch prediction aware code
positioning with the objective to decrease the WCET of a program. The order of
basic blocks inside a function is changed with the goal to support the branch predic-
tion of conditional branches in order to fetch the most frequently visited successor
in advance and to avoid unconditional branches. An evolutionary approach is pre-
sented which employs the well-known techniques mutation and crossover. Offspring
individuals are created whose order of basic blocks hopefully tends to decrease the
WCET of the represented program. An ILP-based approach was introduced avoid-
ing time-consuming repetitive WCET analyses. Therefore, the control flow of a
program and the resulting jump penalties were explicitly modeled to determine an
improved order of basic blocks w.r.t. the WCET. By applying these techniques,
a WCET decrease of up to 24.7% can be achieved. The evolutionary approach
was able to reduce the average WCET reductions by 8.9% with the drawback of
repetitive WCET estimations incurring high optimization times. The ILP-based
algorithm was able to decrease WCET of programs by 6.7% on average.

Secondly, a novel algorithm for WCET-driven cache-aware memory content se-
lection was introduced. It was shown how the I-cache performance can be improved
in order to decrease the WCET of a program. Therefore, the presented greedy al-
gorithm selects the set of functions to be cached. Only frequently used functions
whose WCET highly benefits from a cached execution are moved to cached memory
regions. This ensures that they cannot be evicted from the cache by functions with
a lower WCET decrease being allocated to non-cached memories. The influence
on the WCET of a program is evaluated when a promising function is moved to a
cached memory region in order to always optimize along the WCEP. Applying this
technique, a WCET decrease of up to 20% can be achieved, and at the same time, it
can be ensured that the performance of the optimized program is never worse than
the original. On average, WCET reductions of 4% to 8% were achieved for cache
sizes ranging from 5% to 20% of the overall code size.

The results presented in this chapter indicate that optimizations can have ad-
verse effects on different objectives. In order to optimize a certain objective, this
objective has to be considered during the code transformation process so that the
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full optimization potential can be exploited. In case of WCET optimization, the
resulting WCET data of a program has to be taken into account. Profiling-based
approaches cannot guarantee good or even optimal performance as well since a fre-
quently used path of a program, identified as critical path, does not necessarily be
equal to the WCEP. However, considering and shortening the WCEP, as done by
the optimizations presented in this chapter, immediately decreases the WCET
possibly by worsening concurrent paths not contributing to the WCET. For input
data not leading to the WCET, such concurrent paths can yet be frequently used
paths for which a worsening leads to an increased ACET.

Furthermore, this chapter shows that only optimizing compilers considering the
underlying hardware platform can yield the best performance by exploiting special-
ized hardware features. Especially the employed memory system has to be taken
into account since exploiting available memories and optimizing access patterns of
programs shows a high optimization potential. Otherwise, units such as caches can
have an adverse effect on the WCET and predictability of a system.
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4.1 Introduction

In the course of this thesis, Chapters 2 and 3 presented the WCC compiler framework
and how it can be employed to develop optimizations aiming at WCET reduction of
single programs. Current embedded/cyber-physical systems, however, exhibit the
computation power to execute a number of concurrent tasks. Since the demands
on such systems are growing as well, multi-task systems are employed which of-
ten implement various functional units in a single system. FExisting compilation
frameworks lack a multi-task representation and therefore are not suited for the
optimization of such systems: If, for instance, tasks do not meet their deadlines, a
standard compiler is not able to prioritize those tasks during optimization. A multi-
task aware compiler, in contrast, could assign scratchpad memory to such tasks in
order to speed up their execution with the result that all deadlines are (hopefully)
met.

In this chapter, novel compiler extensions and optimizations for systems run-
ning multiple tasks are presented. All optimizations focus on the reduction of the
overall WCET,g of a set of programs running on the TriCore TC1796/TC1797 pre-
sented in Section 2.5. Section 4.2 gives an overview on existing multi-task compiler
framework before Section 4.3 proposes extensions which make the WCC aware of
multi-task systems. Afterwards, Section 4.4 introduces a software-based cache par-
titioning for multi-task systems with the objective of WCET reduction. In order
to introduce predictability, the cache is partitioned and each partition is exclusively
assigned to a certain task. This ensures that tasks do not compete for the same
cache lines and evict each other from the cache. An ILP is employed to select the
optimal partition size w.r.t. a system’s overall WCET.4. As second optimization,
a technique for extending single-task scratchpad memory allocation techniques to
multi-task scenarios is proposed in Section 4.5. Three different heuristics are pre-
sented which determine the amount of scratchpad memory assigned to each task in
order to decrease the overall system’s WCET. An established scratchpad allocation
technique for single tasks is exploited to perform an allocation for each task and the
determined scratchpad size.

Up to now, at most one single WCET-driven optimization is applied to a pro-
gram to optimize and nothing is known about possible interactions or side-effects of
optimization chains. Thus, Section 4.6 tackles this issue by evaluating the effects of
combined WCET-driven optimizations. A strategy for an intelligent cooperation of
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multi-task scratchpad memory allocation, cache partitioning and cache-aware mem-
ory content selection is presented. Finally, Section 4.7 provides a brief summary
and concludes this chapter.

4.2 Existing Multi-Task Approaches

Recent literature covering the design process of embedded/cyber-physical systems
also considers systems running multiple tasks in parallel. In [82], Marwedel describes
the design process of real-time systems including available real-time operating sys-
tems and basics of real-time task scheduling. Compilation and optimization tech-
niques for embedded systems are presented as well, but tasks are always considered
separately.

Gebhard et al. try to improve the cache performance by applying task place-
ment techniques [42]. Therefore, the interdependency relation is evaluated in order
to maximize the number of persistent cache sets for each task by an optimized mem-
ory layout. Although multi-task sets are optimized, the presented approach is not
integrated into a compiler but expects precompiled object files for which a suitable
linker script is generated which reflects the optimization decisions.

Up to now, no fully integrated compiler framework exists which supports a sys-
tem developer in creating multi-task software projects for embedded/cyber-physical
systems. Especially the integration of a static timing analyzer and multi-task ca-
pabilities are missing in existing compilers. This makes an automated compilation,
optimization and analysis workflow infeasible.

WCET timing analysis of multi-task systems is more complicated than the analy-
sis for a single task system. aiT, for instance, is only able to analyze a single program
under the assumption that the task is not interrupted by another task, scheduler
or interrupt handlers. This is due to the fact that the point of time for such an
interruption is not predictable. Thus, the program point, the resulting pipeline and
cache states at which an interruption occurs cannot be determined. Each time a
timing analyzer is not able to determine the actual behavior, the worst case has to
be assumed. This would be interruptions at arbitrary points of time in a multi-task
scenario. For each of these points, an analysis has to flush the processor pipeline and
invalidate the cache content. The result would be a highly overestimated WCET.

Even if the points are arbitrary at which a program is interrupted in a multi-task
scenario, the number of interruptions is usually limited. Such preemptions of tasks
mainly lead to additional costs caused by cache misses if different tasks are mapped
to the same cache blocks. This fact is exploited by Lee et al. who introduced a cache-
related preemption delay (CRPD) analysis [66]. A path analysis of the preempted
tasks is performed to determine the program point with the highest cache utilization.
Based on the number of utilized cache sets, the CRPD for a single preemption can

be computed. Considering the number of possible preemptions, an upper bound of
the task’s WCET including CRPD can be determined.
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The concept of CRPD usually overestimates the number of required cache refills
caused by preemption. Not all cache blocks of a preempted task will be reused
and a preempting task does not evict all content from the cache. Therefore, the
notion of useful cache blocks (UCB) and ewvicting cache blocks has been introduced
by Burguiére et al. [15]. Considering UCB and ECB during cache analysis can reduce
the overestimation for direct-mapped caches and way-associative caches with LRU
replacement policy.

For set-associative caches, an access of a preempting task to a cache set does
not necessarily lead to an eviction of a preempted task. Altmeyer et al. tighten the
CRPD analysis for set-associative caches with LRU replacement policy by computing
the resilience of memory blocks of the preempted task [4]. The resilience of a
memory block is the number of accesses which can be performed to the same cache
set without evicting the block. Considering the resilience during multi-task cache
analysis helps to reduce the overestimation compared to the UCB/ECB approach.

Kleinsorge et al. combine the most accurate algorithms for CRPD, UCD and
ECB analysis for set-associative caches [63]. Compared to existing approaches which
either exhibits high accuracy or high performance at the cost of higher overesti-
mation, improvements are presented which enable short analysis times at highest
possible accuracy.

All presented approaches considering the analysis of multi-task systems have in
common that they introduce a certain amount of overestimation since the analyzed
systems are not fully predictable. To overcome this obstacle, this chapter presents
optimization techniques which make multi-task systems fully predictable.

4.3 Multi-Task Compiler Extensions

The WCC compiler framework presented in Chapter 2 is eminently suited for the
compilation and optimization of single task programs w.r.t. the resulting WCET ¢4;.
In order to extend the existing compilation workflow to handle multi-task systems,
a multi-task representation was added to the WCC compiler. In the following, the
necessary modifications are presented.

According to Figure 2.2, p. 16, the single-task WCC reads one or more source
files belonging to a single program to optimize. These source files are represented by
the high-level IR ICD-C (cf. Section 2.4.1) and a semantically equivalent sequence
of assembly instructions maintained in a list of LLIRs (cf. Section 2.4.3). Such
a representation is insufficient for maintaining a set of tasks with their scheduling
parameters, possibly a task-specific compiler configuration and the ICD-C as well as
the LLIRs representing the task itself. Hence, the WCC was extended by a multi-
task representation called task set which can comprise a number of tasks in the form
of task entries. Figure 4.1 depicts the resulting optimization flow.

In contrast to WCC'’s original workflow, the compiler now expects the specifica-
tion of a task set as input. Based on this specification, a number of task entries is
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created. Compiling and optimizing the task set is performed for each contained task
separately. Since WCC'’s internal memory layout reflects the target architecture, all
tasks share the same address space. Thus, modifying the code or data layout of a
single task can have an impact on the memory layout of all remaining tasks in a task
set. This ensures that WCET estimations performed on single tasks always implic-
itly consider the resulting memory layout of the final multi-task system. Otherwise,
safe guarantees concerning the runtime of individual tasks and all the more of the
entire system cannot be made.

In a final optimization step, dedicated multi-task optimizations are applied to
the entire task set as presented in the remainder of this chapter.

Specification of Task Sets

Compared to standard compilers, only specifying a list of ANSI-C source files is
not sufficient for multi-task compilation since it cannot be distinguished to which
task a source file belongs. Hence, an XML-based file format for specifying task sets



76 Chapter 4. Optimization of Multi-Task Systems

1 <task>

2 <name>mult_4_4</name>

3 <sources>

4 <file>UTDSP/mult_4_4/mult_4_4.c</file>
5 <file>UTDSP/mult_4_4/input_dsp.c</file>
6 </sources>

7 <scheduling>

8 <period>1000000</period>

9 </scheduling>

10 <wccrc>UTDSP/mult_4_4/.wccrc</wccrc>

11 </task>

Listing 4.1: Exemplary task specification file

was introduced which is read by WCC as input. An example for the employed file
format is depicted in Listing 4.1.

The described task set can comprise multiple tasks enclosed by <task> tags
which are identified by a unique name in <name> tags. For each task, a list of source
files (between <sources> tags) can be specified — each initiated by a <file> tag.
If scheduling of tasks should be considered, scheduling parameters can be added
such as the <period> in processor cycles or the task’s priority. A separate compiler
configuration file can be specified by wccrc tags which can contain miscellaneous
parameters such as parameters steering the analysis precision of the WCET analysis.
Task-individual optimization parameters could be specified in this file as well.

Task Set Representation

If WCC parses a task set specification, a data structure named task set is created
which contains a number of task entries representing the specified tasks running on
a system. According to Figure 4.2, a global memory layout is an inherent part of
a task set reflecting the system’s memory layout based on the present tasks. An
ICD-C IR which is generated from the task’s source files can be attached to each task
entry. The list of LLIRs, generated during WCC’s code selection phase (cf. Section
2.4.2, p. 18), is attached to the corresponding task entry as well. In this way, a task
entry holds all data structures in different abstraction levels which represent a task
running on a system.

4.4 WCET-aware Software Based Cache Partitioning for
Multi-Task Systems

Nowadays, embedded systems have to fulfill a growing number of functions and
thus, the number of tasks running on such a system is growing as well. This section
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presents a cache partitioning approach which is able to optimize such multi-task
systems by dividing the cache into disjoint partitions. Optimization techniques can
assign code or data objects to these partitions in order to ensure that objects from
different partitions cannot evict each other. Cache partitioning can be performed
either in hardware where the cache controller logic ensures a proper mapping of tasks
to their partitions. Or cache partitioning can be realized in software by exploiting
the modulo addressing function of the cache controller.

Since no commercial available CPU equipped with caches integrates a hardware-
based partitioning scheme, this chapter introduces software-based cache partitioning
techniques. An existing technique [89] is adapted to make the instruction cache (I-
cache) behavior more predictable. This can be guaranteed since every task has
its own cache partition from which it cannot be evicted by another task. A novel
WCET-aware cache partitioning aims at selecting the optimal partition size for each
task of a set to achieve the minimal overall WCET.

The rest of this chapter is organized as follows: The next section illustrates
the problems of multi-task systems equipped with caches in order to motivate the
techniques presented in this chapter. Section 4.4.2 gives an overview of related work.
Existing techniques to partition a cache as well as our new algorithm are explained
in Sections 4.4.3 — 4.4.5. An evaluation of the performance which is achieved by our
WCET-aware cache partitioning is presented in Section 4.4.6.

4.4.1 Motivating Example

In environments with preemptive schedulers running more than one task, it is often
impossible to make proven assumptions about memory access patterns. This is
mainly caused by interrupt-driven scheduling algorithms causing context switches
at unknown points of time. Figure 4.3a shows a possible memory layout and a
resulting cache state after a number of task switches. Assuming that task 77 initially
occupied the complete cache and tasks T5 as well as T3 can interrupt the execution
of task 17, parts of 17 are evicted by the other tasks.

Since the program point is not known at which a context switch occurs, it is
also unknown at which address the execution of e.g. task 77 continues. Hence,
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it is usually unpredictable which line of the cache is evicted next. An unknown
cache behavior forces a timing analyzer to assume a cache miss for every memory
access implying a highly overestimated system’s overall WCET. In order to reduce
this overestimation, Section 4.2 presented various cache analysis techniques which
help to narrow the number of cache block possibly evicted due to a context switch.
Since an overestimation cannot entirely be avoided, the underlying system has to
be oversized to meet real-time constraints resulting in higher costs for hardware.

To overcome this situation, partitioned caches are recommended in literature
[89, 22, 87| which are divided into disjoint partitions. Each of these partitions is
assigned to exactly one task. As depicted in Figure 4.3b, tasks then can only evict
cache lines residing in the partition they are assigned to. Reducing the prediction
problem of cache interference between tasks to one task with its own cache partition
makes the system fully predictable w.r.t. context switches. Since tasks cannot evict
each other, no CRPD occurs and the context switch overhead is reduced to refilling
the processor pipeline with instructions of the preempted task after the preempting
task is finished. Thereby, an overestimation of the CRPD can be entirely avoided.

Such a configuration allows the application of well-known single-task approaches
for WCET- and cache performance estimation. The overall execution time of a task
set is then composed of the execution time of the single tasks with a certain partition
size and the overhead required for scheduling including additional time for refilling
the processor pipeline.

4.4.2 Related Work

The papers [89, 22, 87| present different techniques to exploit cache partitioning
realized either in hardware or in software. In contrast to our work, these imple-
mentations either do not take the impact on the WCET into account or do not
employ the WCET as the key metric for optimization which leads to suboptimal
or even degraded results. In [89], the author presents ideas for compiler support
for software-based cache partitioning which serves as basis for the partitioning tech-



4.4. WCET-aware Software Based Cache Partitioning for Multi-Task
Systems 79

niques presented in this paper. Non-linear control flow transformations are proposed
for instruction cache partitioning whereas partitioning for data caches involves code
transformation of data references. Compared to the work in this paper, a functional
implementation or impacts on the WCET are not shown.

In |22], a hardware extension for caches is proposed to realize a dynamic parti-
tioning through a fine-grained control of the replacement policy via software. Access
to the cache can be restricted to a subset of the target cache set which is called
columnization. For homogeneous on-chip multi-processor systems sharing a unified
set-associative cache, |87| presents partitioning schemes based on associativity and
sets.

A combination of locking and partitioning of shared caches on multi-core archi-
tectures is researched in [106] to guarantee a predictable system behavior. Even
though the authors evaluate the impact of their caching schemes on the worst-case
application performance, their algorithms are not WCET-aware. Kim et al. [60]
developed an energy-efficient partitioned cache architecture to reduce the energy
dissipation per access. A partitioned L1 cache is used to access only one sub-cache
for every instruction fetch leading to dynamic energy reduction since other sub-
caches are not accessed.

The authors of [21] show the implications of code-expanding optimizations on
instruction cache design. Different types of optimizations and their influence on
different cache sizes are evaluated. [64] gives an overview of cache optimization
techniques and cache-aware numerical algorithms. The authors focus on the memory
interface which often limits the performance of numerical algorithms and point out
ways for the development of cache-aware algorithms to overcome this issue.

Puaut et al. counteract the problem of unpredictability with locked instruction
caches in multi-task real-time systems. They propose two low-complexity algorithms
for cache content selection in [99]. A drawback of statically locking the cache content
is that the dynamic behavior of the cache gets lost. Code is no more automatically
loaded into the cache, thus code which is not locked into the cache cannot profit
from it anymore.

Vera et al. [117] combine cache partitioning, dynamic cache locking and static
cache analysis of data caches to achieve predictability in preemptive systems. This
eliminates overestimation and allows to approximate the worst-case memory perfor-
mance.

4.4.3 Software-based Cache Partitioning

The author of [89] presents a theory to integrate software based cache partitioning
into a compiler toolchain without an existing implementation. Code should be
scattered over the address space so that tasks are mapped to certain cache lines.
Therefore, all tasks have to be linked together in one monolithic binary, and a
possible free space between several parts has to be filled with NOPs. Partitioning
for data caches involves code transformation of data references.
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Figure 4.4: Addressing of cache content

The theory to exactly position code in the address space to map it into cer-
tain cache lines is picked up here, but a completely different technique is applied to
achieve such a distribution. We restrict ourselves to partitioning of I-caches, thus
only software based partitioning of code using the new technique is discussed. How-
ever, a partitioning of data caches w.r.t. WCET decrease is straightforward using a
modified version of our algorithm.

For the sake of simplicity, a direct-mapped cache is assumed in the following.
Way-associative caches can be partitioned as well: the desired partition size has
to be divided by the degree d of associativity since any particular address in main
memory can be mapped in one of d locations in the cache. The replacement policy
has no influence on the partitioning procedure since a replacement only happens
within a task’s partition.

Assuming a very small cache with S = 256 bytes capacity divided into cache lines
of Siine = 16 bytes size. When an access to a cached memory address is performed,
the address is split into a tag, an index, and an offset part. For a system with
byte-based addressing, the example in Figure 4.4 shows the Off = loga(Sjine) = 4
offset bits addressing the content inside a cache line, whereas Ind = log2(S/Sline) =
log2(16) = 4 index bits select one of | = 24 = 16 cache lines. The remaining
address bits form the tag which is stored in conjunction with the cache line. The
tag bits have to be compared for every cache access since arbitrary memory addresses
with the same index bits can be loaded into the same line.

The cache line a memory address is mapped to is calculated as follows:

line(Addr) = (Addr > Off) mod [ (4.1)

For a memory address Addr, the least significant Off bits addressing a word
within a cache line are stripped by shifting right the required number of bits. The
addressed cache line is determined by computing the modulus of the remaining
relevant bits and the number of cache lines [.
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Figure 4.5: Mapping of tasks to cache lines

To partition a cache, it has to be ensured that a task assigned to a certain
partition only allocates memory addresses mapped to cache lines belonging to this
partition. For an instruction cache divided into two partitions of 128 bytes, one
partition ranges from cache line 0 to line 7 and the second one from line 8 up to 15.
If a task T} is assigned to the first partition, each occupied memory address must
have index bits ranging from 0000b up to ®111b accessing the cache lines 0 to 7.
According to Equation 4.1, the least significant bits of an address corresponding to
index and offset bits ranging from 0x00 to 0x7f are mapped to the desired cache
lines 0 up to 7. A task 75 assigned to the second partition has to be restricted to
cover only memory addresses with the least significant bits ranging from 0x80 up
to O0x£ff (index bits 1000b up to 1111b).

Tasks exceeding the size of the partition they are mapped to have to be split and
scattered over the address space. Figure 4.5 illustrates the partitioning for tasks 7T}
and 75 into such 128 bytes portions and the distribution of these portions over the
main memory. Task 77 is allocated to portions which are mapped to the first half
of the cache since all occupied memory addresses modulo cache size range from 0 to
127. The same has to meet for task 75 occupying memory addresses modulo cache
size ranging from 128 to 255.

Obviously, partitioning does not depend on the cache line size since a contiguous
part of the memory is always mapped into the same amount of cache memory. Only
the atomic size for composing partitions is equal to the cache line size, thus the
partition size must be a multiple thereof.

In contrast to the approach in [89], WCC’s workflow employs the linker to achieve
such a distribution of code over the address space. Individual linker scripts are used
(compare Listing 4.2 for the aforementioned example) with relocation information
for every task and its portions it is divided into. For linker basics refer to [19].

The output section .text to be created in the output binary (line 1), is aligned
to a memory address which is a multiple of the cache size to ensure that the mapping
starts at cache line 0. Line 3 allocates the assembly input section .taskl_partl at
the beginning of the .text output section, thus the beginning of the cache. The
content of this section must not exceed 128 bytes since line 4 sets the relocation
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1 .text: {

2 _text_begin = .;

3 *(.taskl_partl)

4 . = _text_begin + 0x80;
5 *(.task2_partl)

6 . = _text_begin + 0x100;
7 *(.taskl_part2)

8 . = _text_begin + 0x180;
9 *(.task2_part2)

10 . = _text_begin + 0x280;
11 *(.task2_part3)

12 } > PFLASH-C
Listing 4.2: Linker script example

counter to the address 128 bytes beyond the start address, which is mapped into
the first line of the second cache half. Line 5 accomplishes the relocation of section
.task2_partl to the new address. The other sections are mapped in the same
manner.

On assembly level, each code portion which should be mapped to a partition,
has to be attached to its own linker section to cause a relocation by the linker;
e.g. .task_partl for the first 128 bytes memory partition of task 7. To restore
the original control flow, every memory partition has to be terminated by an addi-
tional unconditional branch to the next memory partition of the task unless the last
instruction of this block already performs an unconditional transfer of control.

For this and further jump corrections required by growing displacements of jump
targets and jump sources, WCC’s integrated jump correction is applied (refer to
Section 2.4.7, p. 26).

4.4.4 Size-driven Partition Size Selection

The author in [89] proposes to select a task T;’s partition size depending on its size
relative to the size of the complete task set. Since the original version does not
take scheduling into account, the approach is extended to consider the execution
frequency f; of T} in a hyperperiod H.

Definition 4.1 (Hyperperiod)

In systems with a number of n periodically scheduled tasks, the timespan after
which the schedule repeats is called hyperperiod. Since each task 7T; is invoked an
integer number of times, the length of the hyperperiod H is the least common
multiple of the tasks’ periods p;:

length(H) = lem(p1 - .. pn)
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As a consequence, task T; is executed f; times within the period H:

_ length(H)
pi

fi

The hyperperiod and the tasks’ execution count can be computed based on the
values provided by WCC’s multi-task representation (cf. Section 4.3). Based on T;’s
code size s(T;), its partition size computes as follows:

p(,Tz) = fz - S(E) * Scache (42)

I gy wes(Ty)

Example 4.1
A task set with |T| = 4 tasks T1 — T, with the following code sizes s(7;) and

execution counts f; in a hyperperiod is assumed:

Task ‘ s(T;) ‘ fi

T 32| 4
T 128 | 2
Ts 512 | 1
T, 128 | 1

The complete task set has an overall code size of 800 bytes, whereas the
assumed cache from the previous section with a capacity of S = 256 bytes is
used.  According to Equation (4.2), T7 is assigned to a partition with the
following size:

4 % 32 bytes
T = 256 byt
(1) 4 % 32 bytes + 2 x 128 bytes + 512 bytes + 128 bytes * yres
128
= {004 * 256 bytes
= 1/8 % 256 bytes
= 32 bytes

Thus, the assigned partition sizes are: p(Ty) = 32 bytes, p(T2) = 64 bytes,
p(T3) = 128 bytes and p(Ty) = 32 bytes.

4.4.5 WCET-driven Partition Size Selection

The size of a cache may have a drastic influence on the performance of a task or an
embedded system. Caches with sufficient size can decrease the runtime of a program
whereas undersized caches can lead to a degraded performance due to a high cache
miss ratio. Hence, it is essential to choose the optimal partition size for every task
in order to achieve the highest possible decrease of the system’s overall WCET.
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Current approaches select the partition size depending on the code size or a task’s
priority [89, 106]. They aim at improving a system’s predictability and examine the
impact of partitioning on the WCET but do not explicit aim at minimizing its
WCET.

In this section, a novel approach is presented to determine the optimal partition
sizes for a set of tasks w.r.t. the lowest overall WCET of a system. Integer-linear
programming is utilized to select the partition size for each task from a given set of
possible partition sizes.

As in Section 4.4.4, a set T comprising |7T'| tasks which are scheduled periodically
is assumed. Furthermore, a set P of given partition sizes is assumed with |P]
partitions, e.g. P = {0,128,256,512,1024} measured in bytes. Let z;; be a binary
decision variable determining if task 7; is assigned to a partition with size P; € P:

1, if T; assigned to P;
:L‘Z'j =

0, else

To ensure that a task is assigned to exactly one partition, the following ||
constraints have to be met:

|P|
Vi=1.|T|: Y ay=1 (4.3)
j=1
WCET;; is T;'s WCET for a single execution if assigned to partition P;; the
WCET for a single task 7; is calculated as follows:

|P|
w(Ti) =Y i« WCET; (4.4)
j=1

Focused on WCET minimization, a cost function modeling the system’s overall
WCET based on the tasks” WCET and execution frequency within a hyperperiod

is defined:
|7

WCET =Y f; % w(T;) ~ min. (4.5)
i=1
Although scheduling requires a certain amount of computational power and
thereby has influence on the systems overall WCET, the number of context switches
and the resulting overhead remains constant. Thus, the scheduling overhead has no
influence on the optimization decisions and is omitted in Equation (4.5).
To keep track of the limited cache size S, another constraint is introduced:

7| 1P|

DD wmyxP <8 (4.6)

i=1 j=1

Using equations (4.3) to (4.6), the cost function and m+1 constraints can be set
up as input for an ILP solver like Ip solve [79] or CPLEX [56]. After solving the set
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of linear inequations, the minimized WCET and all variables x;; = 1, representing
the optimal partition sizes for all tasks, are known.

To determine the constant values W CET;; in order to set up all equations and
to apply partitioning, Algorithm 2 is employed. A given task set, the instruction
cache size, a set of possible partition sizes as well as execution counts in a hyper
period of the tasks are required as input data. The algorithm iterates over all tasks
(line 2) and temporarily partitions each task (line 3 to 4) for all given partition sizes.
Subsequently, the WCET for the partitioned task is determined invoking AbsInt’s
static analyzer aiT (line 5). Exploiting the information about tasks, their execution
counts, partition sizes, cache size and gathered WCETs, an ILP model is generated
regarding equations (4.3) to (4.6) (line 9) and solved in line 10.

Algorithm 2 Pseudo code of cache partitioning algorithm
Require: Set of tasks T, set of partition sizes P, execution counts C', cache size S
1: set<WCET> WCETs = ()
2: for T; € T do
3 for P; € P do
4 partitionTaskTemporary( T;, P; )
5: WCET WCET;; = determineWCET( T; )
6
7
8
9

WCETs — WCETs U WCET;;
end for

: end for

. ilp = setupEquations( T, P, WCETs, C, S)
10: X — solveILP( ilp )
11: for all Tij € X Tij = 1do
12 partitionTask( T3, P; )
13: end for
14: return T

Afterwards, the set X includes exactly one decision variable x;; per task T; with
the value 1 whereas P; is T;’s optimal partition size w.r.t. minimization of the
system’s WCET. Finally, lines 11 to 12 perform software based partitioning of each
task with its optimal partition size, as described in Section 4.4.3.

4.4.6 Evaluation

This section evaluates the performance of our WCET-driven cache partitioning and
compares it to existing partition size selection heuristics based on tasks sizes. Dif-
ferent task sets from media and real-time benchmark suites are used to evaluate
our optimization on computing algorithms typically found in the embedded systems
domain. Namely, tasks from the suites DSPstone [130|, MRTC |46] and UTDSP
[115] are evaluated. WCC’s support for the Infineon TriCore architecture in the
form of the TC1796 processor is employed for the evaluation. The processor inte-
grates a 16 kB 2-way set associative I-cache with 32 bytes cache line size. For the



86 Chapter 4. Optimization of Multi-Task Systems

T T T T T
E?100% J
&5
= 80% & :
()
7 g
2 60% |- :
d‘é 0% | | ’+5 Tasks —e— 10 Tasks —— 15 Tasks
956 512 1024 2048 4096 8192 16384

Cache Size |[bytes]

Figure 4.6: Optimized WCET . for DSPstone relative to standard approach

evaluation, seven cache sizes with the power of two are taken into account, ranging
from 256 bytes up to 16 kB.

Overall, the used benchmark suites include 101 benchmarks so that we have
to limit the evaluation to a subset of tasks for cache partitioning. Due to the
lack of specialized multi-task benchmarks suites, sets of tasks stemming from the
aforementioned benchmark suites, as proposed in [50], are generated and compiled
with the optimization level O3. Using these sets, the capability of decreasing the
WCET achieved by standard partitioning algorithms compared to our WCET-aware
approach is determined.

Different numbers of tasks (5, 10, 15) in a set are checked to evaluate their
effect on the WCET. To gather reliable results, the average of 100 sets of randomly
selected tasks is computed for each considered cache size and task set size. The
overall number of ILPs for every benchmark suite, which has to be generated and
solved for the seven considered cache sizes, is:

|ILPs| =3 %100 %7 = 2100

Equation (4.5) modeling the systems overall WCET takes scheduling into ac-
count. Since this evaluation employs synthetic task sets for benchmarking, the
task’s execution frequencies f; in this equation are set to one due to the lack of real
values. Thus, the system’s WCET is composed of the task’s WCETs for a single ex-
ecution. Other values might influence the optimization decisions but not the result
of this evaluation.

The following section discusses the achieved WCET reductions whereas Section
4.4.6.2 gives an insight into required optimization times.

4.4.6.1 WCET Estimations

Figure 4.6 shows the relative WCET .4s for the benchmark suite DSPstone, achieved
by our novel optimization presented in Section 4.4.5 as a percentage of the WCET 4
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Figure 4.7: Optimized WCET.4; for MRTC relative to standard approach

achieved by the standard heuristic presented in Section 4.4.4. Thus, the 100% line
represents the results achieved by this size-driven partition size selection approach.

The nominal sizes of the task sets range on average from 1.5 kB for 5 tasks up to
5kB for 15 tasks. Substantial WCET.; reductions can only be obtained for smaller
caches of up to 1kB since almost all tasks fit into the cache from 4kB on. There,
WCET,. reductions between 4% and 33% can be observed. In general, larger task
sets result in higher optimization potential for all cache sizes.

Figure 4.7 depicts the average WCET.g; for the MRTC benchmark suite. The
average code size of the generated task sets is comparatively large with 6 kB for 5
tasks, 12kB for 10 tasks and 19kB for 15 tasks. Hence, there is more potential
to find a better distribution of partition sizes. This can be seen in a nearly linear
correlation of the exploited optimization potential and the quotient of task set size
and cache size. For 5 tasks in a set, WCET s reductions up to 30% can be gained.
10 tasks per set exhibit a higher optimization potential, so that 7% to 31% decrease
of WCET,s can be observed. Optimizing the sets of 15 tasks, 9% up to 31% lower
WCET4s can be achieved.

A similar situation can be observed in Figure 4.8 for the UTDSP benchmark
suite. The average code sizes for the task sets range from 9kB to 27kB. For a 5
task set, this leads to an optimization potential of 25% WCET,,; reduction for the
smallest cache size down to 4% if all tasks completely fit into the 16 kB cache. For
a 15 task set, between 17% and 36% lower WCET.s can be achieved. For this
benchmark suite, the same behavior can be observed: for smaller cache sizes and
larger code sizes, our algorithm achieves better results compared to the standard
approach.

Using caches larger than 16 kB, our algorithm is not able to achieve better or
only marginally better results than the standard method from Section 4.4.4. This
comes from the fact that there is almost no optimization potential if all tasks fit
into the cache. For realistic applications, the cache would be much smaller than
the amount of code. There is also no case where the standard algorithm performs
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Figure 4.8: Optimized WCET .4 for UTDSP relative to standard approach

better than our approach since we use ILP models to always obtain the optimal
partition size distribution. Since all presented results are improvements compared
to established cache partitioning optimizations based on the tasks’ sizes, this evelu-
ation eminently demonstrates that our optimization outperforms state-of-the cache
partitioning techniques.

4.4.6.2 Optimization Time

To consider compilation and optimization time on the host system, we utilize an
Intel Xeon X3220 (2.40 GHz). A complete toolchain iteration is decomposed into
the three phases compilation, WCET analysis and optimization. The stage WCET
analysis comprises all ai7" invocations necessary to compute the tasks’” WCETs for
possible partition sizes and requires most of the overall compilation time. For a
task set T" and a set of considered partition sizes P, the number of required WCET
analyses to set up Equations (4.4) and (4.5) amounts to:

#Analyseswopr = |T| * | P| (4.7)

The time required for a combined compilation and optimization phase ranges
from less than one second (fir from MRTC) to 30 seconds for adpcm from UTDSP.
Compared to this, the duration for performing static WCET analyses used for con-
struction of an ILP is significantly higher (up to 10 hours).

The work presented in this chapter has been published in [95].

4.5 WCET-driven Multi-Task Program Scratchpad Al-
location

Scratchpad memory allocation techniques are widely studied in the context of av-
erage-case and worst-case execution time optimization as well as the reduction of
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energy consumption [123]. But especially concerning scratchpad allocation of pro-
gram code for WCET reduction, either only single-task systems can be optimized by
an optimal approach [32] or multi-task systems can be handled by a time-consuming
iterative approach considering the worst-case response time of tasks (WCRT) as ob-
jective [108].

The WCC compiler already provides an optimal program scratchpad allocation
for single tasks [32]. In order to enable the optimization of an entire embedded sys-
tem, this chapter presents a heuristics-based approach for static program scratchpad
allocation which extends the existing technique by multi-task capabilities. For a set
of tasks, different heuristics can determine an individual scratchpad memory size
per task. For these scratchpad sizes, the existing program scratchpad allocation
determines the optimal set of basic blocks to be allocated to the SPM in order to
minimize the tasks’ WCET of the task.

The remainder of this chapter is organized as follows: Section 4.5.1 motivates
the technique of multi-task scratchpad allocation by an example, whereas the follow-
ing section provides a brief overview of related work. The optimization heuristics
employed for selecting the tasks’ scratchpad sizes are presented in Section 4.5.3.
An evaluation of the effectiveness of the proposed multi-task scratchpad allocation
closes this chapter.

4.5.1 Motivating Example

In a multi-task system, caches are shared among all executed tasks except for the
case that certain tasks are excluded from caching if, for instance, an extended cache-
aware memory content selection as presented in Section 3.4 is applied. Techniques
such as the cache partitioning (cf. Section 4.4) can make multi-task systems pre-
dictable but also limit the available cache space per task.

In order to release pressure from the cache, fast scratchpad memories can be
employed to store frequently used code or data objects. Since these memories are
rather small, a skillful content selection is crucial in order to achieve a high perfor-
mance. For average-case execution time optimizations, this problem can be reduced
to solving the Knapsack problem (refer to Appendix A.1.4 for a definition). The
size of the objects to allocate represents the weights whereas the gain is represented
by the improvement w.r.t. the considered objective here the saved runtime in
processor cycles.

Optimizing the WCET of a program is a more complex task since possible WCEP
switches can have direct influence on the gain of a certain memory object. Iterative
allocation approaches cannot guarantee an optimal solution w.r.t. the considered
objective. Falk et al. therefore developed an ILP-based approach which models the
influence of allocation decisions on the WCEP and the resulting WCET similar to
the modeling presented in Section 3.3.3.2, page 41. This approach is best suited for
the optimization of a single task running on a system but is not aware of partitioning
a scratchpad for a multi-task usage.
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Figure 4.9: Scratchpad memory allocation problem

In a multi-task scenario, the question is not only which objects of a task should
be allocated to the scratchpad but also how much memory area is reserved for a
certain task. Such a partitioning problem is similar to the partition size selection in
the context of cache partitioning (cf. Section 4.4.5). But unlike caches, scratchpads
can be divided in a finer-grained manner. As depicted in Figure 4.9, the scratchpad
can be divided at almost arbitrary boundaries (usually word aligned). The selected
scratchpad partition size can have a direct impact on the allocation decision of
conventional scratchpad allocation techniques.

For that reason, Section 4.5.3 presents techniques to select partition sizes for a
given set of tasks. Afterwards, a conventional scratchpad allocation approach can
be separately applied to each single task for a given partition size.

4.5.2 Related Work

One of the first works exploring the effect of program scratchpads on the WCET
prediction is presented in [122]. Wehmeyer et al. employed an ILP model which
minimizes the overall energy consumption of a program. Afterwards, the trend in
terms of runtime and WCET is evaluated. Unfortunately, the WCET is not taken
into account as optimization metric, and the approach is limited to single task
optimizations.

Verma et al. propose partitioned program scratchpads for the optimization of
multi-task embedded systems [120]. Either a static or a dynamic partitioning or a
combination of both is employed to divide the scratchpad. An ILP is employed to
select the optimal partition size w.r.t. the overall energy consumption of a system.
Nevertheless, the ILP is not able to take the WCET and switching WCEPs into
account.

In [107], Suhendra et al. reduce the WCET of programs by allocating frequently
accessed data objects to faster memories. A program’s possible execution paths are
modeled in an ILP in order to consider its WCET. Since only the intra-function
control flow is modeled, a time-consuming branch-and-bound approach or a sub-
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optimal heuristic is employed to optimize along the WCEP. Furthermore, allocation
of program code is left out as well as the optimization of multi-task systems.

Decreasing the WCET is also the objective of Falk’s program scratchpad allo-
cation 32| which is exploited by our multi-task scratchpad allocation presented in
this chapter. Similar to [107], a program’s execution paths and their influence on
the resulting WCET is modeled. But in contrast to [107], the overall control flow
is modeled in order to optimize along the WCET. Thereby, optimization requires
no time-consuming iterative techniques, and only a single ILP has to be solved to
determine the optimal combination of basic blocks for the scratchpad. As mentioned
above, only single tasks can be optimized.

Another work of Suhendra [108] considers the program scratchpad allocation for
multi-task systems. A time-consuming iterative approach is required to consider
the worst-case response time (WCRT) of the tasks as objective. In contrast to the
work presented in this chapter, a dynamic allocation is performed which means that
reloading of scratchpad content is performed at appropriate program points. Such
a dynamic behavior complicates a static timing analysis and often forbids such a
scratchpad allocation technique for hard real-time systems.

4.5.3 Multi-Task Program Scratchpad Allocation

The fundamental idea of our multi-task scratchpad allocation is to exploit the so-
phisticated WCET-driven static program scratchpad allocation for single tasks [32].
The single-task version achieves high WCET reductions since its ILP-based ap-
proach always optimizes along a program’s WCEP. A program to optimize as well
as the available scratchpad size is required as input.

The problem of selecting the optimal SPM partition size for each task in a set
leading to the maximum reduction of the WCET is similar to the cache partition
size selection presented in Section 4.4. In a similar fashion, a single-task scratch-
pad allocation could be performed for each task and each considered partition size.
Based on the resulting WCETs, an ILP could select the optimal SPM partition sizes
w.r.t. the overall WCET of a system. Since a single-task scratchpad allocation
performs two separate WCET analyses during optimization, the drawback of such
an ILP-based approach would be a doubling of the anyway high optimization times
(cf. Section 4.4.6.2).

Therefore a multi-task extension was developed which employs heuristics deter-
mining the assigned program scratchpad size for each task based on static features in
order to decrease the WCET of the entire system. For each of the tasks, a single-task
scratchpad allocation is invoked with the determined scratchpad size as parameter.
In the following, the different heuristics based on characteristics of the programs
to optimize, namely the WCETs, the code sizes and a combination of both, are
presented.
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WCET-based Heuristic

The basic idea of the WCET-based heuristic is that tasks which highly contribute
to the system’s overall WCET obtain larger parts of the scratchpad than tasks with
lower WCETs. Such a strategy expects that the size of the frequently executed
program parts correspond with the WCET of a program. Programs with a high
WCET hence should have a high code size on the WCEP and probably benefit from
a large assigned scratchpad partition.

The available scratchpad memory is distributed amongst the tasks depending on
their share in the system’s overall WCET. For a set T of tasks, first of all, the WCET
w(T;) for each task T; has to be determined by employing a static timing analyzer.
According to the task’s execution frequency f; in a hyperperiod H (cf. Definition
4.1, Section 4.4.4) and to the scratchpad memory size Sspys, T;'s partition size
computes as follows:

_ fixw(Ty)
o T

S5 £+ w(T)
A tasks T;’s overall WCET in a hyperperiod is the products of its WCET ¢ and

its execution frequency within H. Thus, the ratio of this resulting WCET to the
system’s overall WCET correlates with 7;’s share in the SPM.

p(T3) * Sgpm (4.8)

Code Size based Heuristic

Code size based partition size selection assumes that tasks with larger code sizes
potentially have more program blocks which contribute to the WCET of the task.
Of course, this strategy only succeeds if there are only few dead code blocks and all
parts of the program contribute to the WCET as equal as possible.

Depending on a task’s share in the systems overall code size, the scratchpad
memory is divided into partitions. For a given set T of tasks, task T;’s code size is
denoted s(T;). Regarding a scratchpad memory size Sgpas, 1;’s partition size p(75)
computes as follows:

Zj:l fi = s(Ty)

x* Sopm (4.9)

Hybrid Heuristic

Both the WCET- and the code size based heuristic have in common that they rely
on assumptions on the program structure and the size of the program parts residing
on the WCEP. If these assumptions are incorrect, the heuristic cannot achieve good
results. Large programs, for instance, can have only few hot spots such that all
parts contribute to the WCET to the same extent. Such programs cannot efficiently
be optimized by the WCET-based heuristic. Conversely, the heuristic based on the
tasks’ code size possibly cannot efficiently optimize small programs which highly
contribute to the system’s WCET.
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Table 4.1: Multi-task benchmark sets

Benchmark Code size |bytes] ‘ WCET, [cycles]
Setl | g721 encode 4,852 2,278,604
edge detect 770 39,072,467
latnrm _ 32x64 418 311,380
Set2 | crc 518 252,160
g721 marcuslee decoder 144 231,114
h264dec ldecode block 13,994 325,171
Set3 | trellis 3,086 1,187,540
fft1 1,936 91,982
gsm_decode 6,532 17,371,046
cre 518 252,160
Set4d | h264dec_ldecode block 13,994 325,171
g721 marcuslee_decoder 144 231,114
cre 018 252,160
histogram 276 387,459
latnrm _ 32x64 418 311,380

In order to cover such cases, a hybrid heuristic is employed which tries to take
the influence of a task’s code size as well as its WCET into account. For a set
of tasks comprising |T| tasks, the task’s code size s(T;), their WCET w(T;), their
execution frequency f; within a hyperperiod and the scratchpad memory size Sgpys
is given. Then, T;’s partition size p(T;) computes as follows:

Ji* s(T}) Ji* w(T) ) 5
7] 7] *osPM
S fixs(Ty) S fix w(Ty)

Independent of Equations (4.8) — (4.10), all presented heuristics have in common
that the partition size per task can only grow up to the task’s code size. This avoids

p(T;) = 0.5 % < (4.10)

wasting of scratchpad memory since the remaining space is distributed among the
remaining tasks.

4.5.4 Evaluation

This section evaluates the effectiveness of the different heuristics presented in the
preceding section. All evaluations are performed for the TriCore TC1796 with the
WCC at optimization level O3 (refer to Section 2.4.7 for details). As stated in
Section 2.5, content allocated to the scratchpad can be accesses with on cycle latency
whereas the content of the flash can be accessed with six cycles latency for the
first access and two cycles for directly following accesses to the same memory line.
The heuristics for multi-task scratchpad allocation are applied to different sets of
benchmarks stemming from various benchmark suites. Table 4.1 lists the employed
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Figure 4.10: Optimized WCET,4 for multi-task PSPM allocation applied to Setl

four benchmark sets comprising three up to five benchmarks implementing typical
tasks in multimedia embedded systems. Cellular phone codecs are combined with
several audio and video codecs with widely spread code sizes ranging from 144 bytes
(9721 _marcuslee_ decoder) up to 13kB (h264dec_ldecode_ block kernel). Moreover,
the WCETs of the benchmarks differ by a factor of up to 425 (fft1 vs. edge detect).

All evaluations are performed for instruction scratchpad sizes from 0% up to
25% of the overall program size of the task set. Hence, the tested range of SPM
sizes features a reasonable ratio of scratchpad memory to main memory and can be
found in most of the embedded systems equipped with SPM. As done in Section
4.4.6, the tasks’ execution frequencies f; are set to one since synthetic benchmark
sets are employed for which no real values exist.

The following Section 4.5.4.1 presents the evaluation of the WCET estimates for
all benchmark sets whereas Section 4.5.4.2 gives an overview of time required for
compilation and optimization.

4.5.4.1 WCET Estimations

Figure 4.10 depicts the results if the heuristics are applied to benchmark Setl. The
x-axis represents the evaluated program scratchpad memory sizes (PSPM) relative to
the overall program size of the entire benchmark set. The achieved relative WCET .4
of the benchmark set is shown on the y-axis as percentage of the WCET. 4 in a
system without SPM. Thus, the 100% line represents the sum over the WCET .45
of the benchmark in a set as depicted in Table 4.1. All proposed heuristics are able
to reduce the WCET,g; of the considered benchmark set by up to 35.6% for SPM
sizes from 20% on, whereas the code size heuristic achieves slightly lower reductions
of 33.3%. For smaller scratchpad sizes, the code size heuristic performs considerably
worse compared to the others. On average, the WCET-based heuristic performs best
since it is able to reduce the WCET,.g; by 30.0% even for small SPMs of 5%.

The results indicate that the size of the program code on the critical path (the
WCEP) highly correlates to the WCET.g; of the tasks and does not depend on
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Figure 4.11: Optimized WCET, 4 for multi-task PSPM allocation applied to Set2
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Figure 4.12: Optimized WCET,4 for multi-task PSPM allocation applied to Set3

their code sizes. Otherwise, the code size based and hybrid heuristic would perform
better.

The results for applying the three heuristics to benchmark Set2 are shown
in Figure 4.11. Now, the maximally achievable WCET s reductions are widely
spread. The hybrid heuristic as well as the WCET-based heuristic achieve the high-
est WCOET.; reductions of up to 43.4% for 25% SPM size. The code size based
heuristics only reduces the WCET.s by up to 8.0%. For smaller SPM sizes, the
same behavior can be observed: the code size based heuristic is outperformed by
the WCET-based heuristic which achieves similar results compared to the hybrid
heuristic. Only for 3% SPM size, the hybrid heuristic achieves WCET s reduction
of 12.6% whereas the other heuristics cannot reduce the WCET ;.

Comparing the achieved WCET,, reductions shows that the results of the hy-
brid heuristic is a linear combination of the code size and WCET-based heuristics.
In contrast to Setl, the size of the program code of Set2 which resides on the WCEP
does not only depend on the WCET,., of the tasks or their code sizes. Instead,
both factors influence the critical program size which makes the hybrid heuristic
powerful in selecting the SPM partition size for each task.

In Figure 4.12, the results for the proposed heuristics and benchmark Set3 are
shown. All heuristics are able to achieve similar WCET.4 reductions: The hybrid
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Figure 4.13: Optimized WCET,4 for multi-task PSPM allocation applied to Set4

heuristic is able to achieve WCET,,; reductions of up to 47.5% whereas the WCET-
based and the code size heuristic reduce the WCET.s by up to 47.0% and 47.4%,
respectively. Substantial WCET s reductions are achieved by all heuristics from
5% SPM size on. At this point, the WCET-based heuristic marginally outperforms
the others by 1%. For Set3, no clear advantage of one heuristic can be figured out
— only the code size heuristic cannot be recommended since it performs worse for
3% SPM size.

Finally, Figure 4.13 depicts the results if the proposed heuristics are applied to
Setd. The WCET-based and the hybrid heuristics perform best since the WCET .
can be reduced by up to 31.5% whereas the code size based heuristic achieves only
WCET,.s reductions by up to 7%. In contrast to the other benchmark sets, sub-
stantial WOET,4; reductions are achieved from 15% SPM size on. Again, the hybrid
heuristic is a linear combination of the WCET-based and the code size based heuris-
tic — but outperformed by the WCET-based heuristic.

The results for the four benchmark sets clearly indicate that the WCET heuristic
performs best. The hybrid heuristic performs worse — except for benchmark Set2 —
but considerably outperforms the code size based heuristic.

4.5.4.2 Optimization Time

In order to consider the optimization time required for multi-task scratchpad allo-
cation, an Intel Xeon E5650 (2.67 GHz) was utilized. As observed for other WCET
optimizations presented so far, most of the time necessary for our novel WCET-
driven multi-task scratchpad allocation was consumed by WCET analyses using
aiT. As for the single task SPM allocation presented in [32]|, the WCET of each
task has to be analyzed once residing in main memory and once in SPM. Thus, the
maximal number of WCET analyses for a set T of tasks amounts to:

n=2x%|T]| (4.11)

The computational power for determining the share of each task in scratchpad
memory (cf. Equations (4.8) — (4.10)) is negligible compared the time spent for
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estimating the WCET and applying the single task SPM allocation. Table 4.2
depicts the optimization times for each task without distinguishing the different
heuristics for SPM size selection.

Depending on the complexity of the task set, the required optimization time
ranges from 9 minutes for Set2 up to 57 minutes for Set3.

Table 4.2: Optimization times for multi-task SPM allocation

Benchmark Set | Optimization Time [s]

Setl 037
Set2 454
Set3 3,397
Set4 932

4.6 Memory Architecture aware Compilation

It is common practice that WCET-driven optimizations are developed stand-alone
and are applied separately at the very end of the optimization process. Only a sin-
gle WCET optimization is usually performed after applying various standard com-
piler optimizations. This strategy avoids unintended interactions of, for instance,
memory-based optimization techniques but also wastes optimization potential: syn-
ergetic effects by an intelligent combination of existing WCET optimizations cannot
be exploited.

To the best of the author’s knowledge, this chapter for the first time explores
the possible optimization potential of combined WCET-driven optimization tech-
niques and gives recommendations for the order in which memory-based optimiza-
tions should be applied. The optimizations presented in Sections 3.4, 4.4 and 4.5,
namely cache-aware memory content selection (MCS), software based cache par-
titioning (CP) and multi-task program scratchpad allocation (MPSPM), are em-
ployed in this chapter. The optimizations are examined for their impacts on the
memory layout of a program, and a convenient application order is derived which
exploits modifications of preceding optimizations. Necessary modifications are sep-

arately discussed for each optimization.

The remainder of this chapter is organized as follows: The following Section
4.6.1 motivates the need of dedicated optimization sequence considerations by an
example. Section 4.6.2 provides an overview of research which is related to the work
presented in this chapter. Section 4.6.3 presents reflections about how to derive a
convenient order of memory-based optimizations whereas Section 4.6.4 describes the
required modifications of the individual optimizations in such a chain. Finally, an
evaluation concludes this chapter in Section 4.6.5.
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Figure 4.14: Memory layout interference

4.6.1 Motivating Example

Besides the optimizations presented in this thesis, various publications [119, 123, 91,
31] have shown that the memory subsystem is often a performance-limiting factor
and entails an immense optimization potential. Such techniques have in common
that they improve the worst-case performance of a system by optimizing its memory
access patterns. This can be achieved by allocating program or data objects to faster
memories, by solving cache conflicts or prefetching of memory objects which will be
used in the near future.

Applying a number of memory-based optimizations in an arbitrary order can
have adverse effects if an optimization has disadvantageous influence on the mem-
ory layout arranged by a preceding optimization. Assumed that software-based
cache partitioning (cf. Section 4.4) is applied to a multi-task set, a memory layout
as depicted in Figure 4.5, p. 81, can be the result. If multi-task program scratch-
pad allocation is applied afterwards, the allocation of basic blocks to a scratchpad
memory creates gaps in the address space represented by lined boxes in Figure 4.14.

Such parts of tasks 717 and T, which are allocated to the fast SPM cannot easily
be filled with the remaining code due to the fixed binding of task partitions to
certain memory addresses. Thus, cache area where the moved code blocks have been
mapped before may remain unused (ruled boxes). In view of the tasks’ decreased
code sizes residing in main memory, the cache partitioning would probably make
different partition size selection decisions since otherwise optimization potential is
wasted. Hence, it would be more sensible to perform a scratchpad memory allocation
before applying a cache partitioning technique. The cache partitioning, however, has
to regard preceding allocation decisions and must not move basic blocks located in
the SPM.
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4.6.2 Related Work

Optimization sequence determination is also termed as phase-ordering problem by
Touati et al. [114]. The authors formalize the problem of finding an improved order
of optimization phases achieving the optimal performance. The presented approach
does neither analyze the interference of memory-based optimization nor considers
the WCET as metric.

In [101], Queva presents a phase manager which helps to solve the phase-ordering
problem. Based on data-flow analyses, metrics are calculated which are used to eval-
uate where a certain transformation can be applied. Unfortunately, the presented
framework is not able to consider memory-based optimization techniques since most
of them have no impact on the data-flow of a program.

Ishizaki et al. introduce a Java Just-In-Time compiler and ranked existing op-
timizations w.r.t. the performance improvement for three target platforms [58].
Compared to the work presented in this chapter, their approach considers optimiza-
tions as black boxes and does not analyze the mechanics behind which can lead to
interference between optimizations. The order of optimizations is not changed at
all.

A work considering the influence of compiler optimization sequences is considered
by Almagor et al. in [3]. Besides a simple heuristic, an evolutionary approach is
employed to find improved optimization sequences which outperform handcrafted
optimization levels of standard compilers. Nevertheless, no insight into interference
of optimizations is provided, and the WCET is not considered as metric.

Lokuciejewski et al. extended the ideas presented in [3] in order to find improved
optimization sequences for multi-objective optimizations [78]. Although WCET
reductions are considered besides ACET and code size savings, their approach only
utilizes well-known standard ACET optimizations which are not tailored to reduce
the WCET. The interference of particular optimizations is only implicitly considered
by their influence on the considered objectives.

Up to now, only Srikant et al. examine possible interactions of compiler opti-
mizations and provide at least partial knowledge of these mechanisms [104|. Unlike
the work presented in the following, no work considers the application order of
WCET-driven optimizations and/or provides modifications for existing optimiza-
tions in order to improve their interactions.

4.6.3 Optimization Sequence Determination

In order to make statements about promising optimization sequences, the influence
of the considered optimizations has to be evaluated. All optimizations have in com-
mon that they modify the memory layout of tasks in a certain way: the scratchpad
memory allocation moves basic blocks to a fast SPM in order to speed up their
execution. The memory content selection and the cache partitioning, in contrast,
optimize the cache access pattern of tasks. Thus, it would be harmful if the SPM
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allocation is applied after any cache-based optimization and thereby disturbs the
optimized cache access patterns.

Concerning the application order of the two cache-based optimizations, a mutual
dependence exists. On the one hand, the cache partitioning algorithm would possibly
select different partition sizes if the memory content selection omits functions from
caching. But on the other hand, the memory content selection algorithm is sensitive
for the available cache size and thus for the partition size determined by the cache
partitioning. Hence the following optimization sequence is proposed:

1. Scratchpad memory allocation

Applied as first WCET optimization, the SPM allocation is able to move such
basic blocks to the fast SPM which contribute most to the WCET. This also
has two positive side-effects: firstly, the cache pressure is reduced since less
code blocks are allocated to the cached memory and can compete for the
same cache lines. Secondly, the SPM allocation does not interfere with the
succeeding cache-based optimizations.

2. Software based cache partitioning

As second optimization, cache partitioning is applied which is able to process
and optimize a multi-task set. To set up Equations (4.3) to (4.6), p. 84, the
WCET for each task and each considered cache size has to be determined.
Thus, it seems to be promising to apply the memory content selection for each
task and each partition size before estimating the WCET.

3. Memory content selection

Since the optimization is not aware of partitioned caches, the original ver-
sion cannot be employed. On this account, the memory content selection is
integrated into the cache partitioning optimization which is described in the
following.

4.6.4 Modification of Optimizations

This section describes the modifications required for a fine-tuned optimization se-
quence comprising the above mentioned WCET-driven memory-based optimiza-
tions. Since the scratchpad memory allocation is applied as the very first one,
no modification of the original implementation is necessary.

The idea for a tight integration of the WCET-aware memory content selection
into the software based cache partitioning is sketched in Figure 4.15. The cache
partitioning optimization starts to iterate over all task entries of the task set under
optimization and has to determine the WCET for each task entry and each consid-
ered partition size (cf. Section 4.4.5). For this purpose, a modified memory content
selection is employed which tries to determine the optimal set of cached functions
for the actual considered task entry and partition size.
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Therefore, memory content selection is extended to be aware of partitioned
caches. For this purpose, the mechanism to partition a cache in software was inte-
grated into the optimization. If an allocation decision is made, the set of functions
to be placed in the cache memory is partitioned according to the current partition
size. Afterwards, the resulting WCET of the actual task can be evaluated for the
current set of cached /non-cached functions under the current cache partition size.
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If a promising set of cache functions has been found, the memory content selec-
tion terminates.

Then, the cache partitioning optimization continues with determining the WCET
for the remaining partition sizes and task entries by invoking the memory content
selection repetitively. If the required WCET data for each task and each partition
size is collected, the ILP is set up and solved. Finally, the task set is partitioned
according to the solutions gathered from the ILP.

At the same time, the flow diagram in Figure 4.15 also reveals the drawback
of such a combined optimization approach: the necessary — but time consuming —
WCET analyses for each task and each partition size is performed within a threefold
nested loop. Thereby, the number of WCET analyses is multiplied which increases
the optimization time. An evaluation of the achieved WCET reductions as well as
the required optimization time for combined WCET optimizations is presented in
the following section.

4.6.5 Evaluation

This section evaluates the effectiveness of the presented memory architecture aware
compilation based on the optimizations multi-task scratchpad memory allocation,
cache partitioning and memory content selection. The environment is similar to the
one presented in Section 4.5.4: WCC is employed to generate code for the Infineon
TriCore processor TC1796 at optimization level O3. The same set of benchmarks as
depicted in Table 4.1, p. 93, is utilized. The employed SPM size is varied from 0% up
to 25% of the task sets’ overall program size. This is done in order to gather results
comparable to the stand-alone multi-task scratchpad allocation presented in Section
4.5. The explored cache size ranges from 0% up to 25% of the task sets’ overall
program size as well. This supports a comparison whether one of the memories is
more useful for improving the WCET of multi-task sets or if a combination of both
is worthwhile.

A separate evaluation of the employed WCET optimizations was presented in
Section 3.4.4, p. 65, for the cache-aware memory content selection, in Section 4.4.6,
p- 85 for the software based cache partitioning and in Section 4.5.4, p. 93, for the
multi-task program scratchpad allocation. In the following, possible and useful com-
binations are considered in order to evaluate the effect of individual optimizations.
Therefore, Section 4.6.5.1 evaluates the influence of combined cache partitioning and
memory content selection on the WCET of multi-task sets whereas Section 4.6.5.2
tests the combination multi-task scratchpad memory allocation and cache partition-
ing. Section 4.6.5.3 combines both latter with memory content selection. Finally,
Section 4.6.5.4 highlights the optimization time necessary for combined WCET op-
timizations.
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Figure 4.16: Optimized WCET for Cache-aware Memory Content Selection and
Cache Partitioning applied to Setl

4.6.5.1 WCET Estimations for Cache Partitioning combined with Mem-
ory Content Selection

Since MPSPM allocation is applied as the very first optimization, no interference
with the following optimizations is expected. Thus the application of MCS coupled
with CP is examined in this section. Figures 4.16 and 4.17 compare a combined
application of both optimizations with applying only cache partitioning to Setl
and Set3, respectively. Applying the optimizations to Set2 and Set4 yields similar
results which are not explicitly discussed in the following. Full results are given in
Figures A.1 and A.2 in the Appendix.

The x-axis in Figure 4.16 shows the employed cache size as percentage the over-
all program size of the task set whereas the y-axis depicts the resulting WCET .4
compared to the unoptimized version. The 100% line represents this unoptimized
version of a system running without any cache. Applying cache partitioning achieves
WCET,, reductions by up to 29.0% for a cache size of 25% of the overall code size.
Combining MCS with CP achieves the same maximum WCET.. reduction. For
cache sizes below 5%, only marginal WCET,; reductions can be achieved for both
combinations of optimizations. But for cache sizes from 5% on, additionally apply-
ing MCS is worthwhile since it outperforms traditional CP by up to 25.0% for 10%
cache size. Only if the cache becomes large enough to store all code blocks residing
on the the WCEP, traditional CP catches up to the combination of MCS and CP.

Figure 4.17 depicts the result if CP and MCS are applied to Set3. Here, both
CP and CP combined with MCS are able to reduce the WCET,. by up to 44.7%.
Since for cache sizes from 10% on, almost all code residing on the critical path fits
into the cache, additionally applying MCS does not yield lower WCET 4s. Only
for 5% cache size, MCS can decrease the WCET .4 by additional 6.3% compared
to applying only CP.

Whether a combined application of cache partitioning and memory content se-
lection is worthwhile or cache partitioning should be applied solely depends on the
code size residing on the critical path and cannot be answered for the general case.
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Table 4.3: Optimized WCET,.s for MPSPM allocation and CP applied to Setl

SPM/C || 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%

0% 100.0% | 99.4% | 98.3% | 97.3% | 97.0% | 85.2% | 85.2% | 71.2%
1% 99.1% | 98.8% | 97.3% | 96.7% | 96.2% | 85.2% | 82.2% | 71.2%
3% 96.8% | 96.4% | 94.9% | 94.0% | 93.8% | 83.2% | 80.6% | 70.8%
5% 70.0% | 69.6% | 68.1% | 67.2% | 67.0% | 67.0% | 66.8% | 66.8%
10% 67.7% | 67.3% | 66.1% | 64.9% | 64.7% | 64.7% | 64.5% | 64.5%
15% 65.3% | 65.3% | 65.3% | 64.7% | 64.6% | 64.5% | 64.4% | 64.3%
20% 64.6% | 64.6% | 64.6% | 64.5% | 64.4% | 64.4% | 64.3% | 64.2%
25% 64.4% | 64.4% | 64.4% | 64.4% | 64.3% | 64.2% | 64.1% | 64.1%

4.6.5.2 WCET Estimations for Multi-Task SPM Allocation combined
with Cache Partitioning

The previous section evaluated the influence of combining cache partitioning with
memory content selection. This section evaluates the impact if cache partitioning is
combined with multi-task scratchpad memory allocation. Therefore, the Cartesian
product of cache and SPM sizes from 0% up to 25% are evaluated for Setl and
Set2. The results are presented in Table 4.3 and 4.4, respectively.

In Sections 4.5 and 4.4.6, it was already demonstrated that applying CP or only
MPSPM , to the benchmark sets achieves WCET,.,; reductions of up to 47.3% and
44.7% for MPSPM allocation and cache partitioning, respectively. This section
should evaluate if a combined application of both optimizations entails even higher
optimization potential. As in preceding sections, the SPM size and the cache size
are varied from 0% to 25% of the overall code size of the considered task set. A
full evaluation of the different heuristics for MPSPM allocation is omitted at this
point. Instead, the most powerful WCET-based heuristic is employed.

Table 4.3 presents the achieved WCET s for Setl. The utilized cache size for
each cell is depicted at the column header whereas the SPM size for each row is de-
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Table 4.4: Optimized WCET .5 for MPSPM allocation and CP applied to Set2

spM/C || 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%

0% 100.0% | 100.0% | 97.2% | 91.9% | 80.2% | 77.5% | 76.8% | 69.1%
1% 100.0% | 100.0% | 97.2% | 91.9% | 80.2% | 77.5% | 76.8% | 69.1%
3% 100.0% | 83.5% | 75.8% | 70.3% | 64.2% | 60.5% | 59.7% | 56.3%
5% 83.8% | 66.5% | 63.9% | 61.2% | 55.1% | 53.2% | 52.4% | 51.9%
10% 70.3% | 65.7% | 63.0% | 58.9% | 52.5% | 52.4% | 51.8% | 51.8%
15% 65.7% | 62.4% | 53.6% | 53.0% | 52.5% | 52.3% | 51.6% | 51.6%
20% 60.4% | 60.1% | 53.6% | 52.8% | 52.5% | 52.3% | 51.7% | 51.7%
25% 56.6% | 56.6% | 53.6% | 52.8% | 52.5% | 52.3% | 51.7% | 51.7%

picted in the first column. The 0% column respective 0% row represent the results if
the cache partitioning and multi-task scratchpad allocation optimizations, presented
in Section 4.4 and 4.5, are applied separately. With growing SPM /cache sizes, the
WCET,.s of the task set is decreased. The highest WCET.s decrease of 35.9%
is achieved for 25% SPM size and cache sizes from 20% on. MPSPM allocation is
better suited than CP to optimize this task set since even small SPM sizes of 5% are
able to achieve reductions of 30% w.r.t. WCET.,,. In this case, a combination with
CP does not pay off since only marginal WCET.s improvements of 0.4%  3.2%
can be observed for larger cache sizes if combined with MPSPM allocation. This is
caused by the program structure of the tasks which exhibits few hot spots which
can be simply allocated to an SPM but otherwise would cause cache thrashing by
mutual eviction from the cache.

The benefits achieved by applying CP and MPSPM allocation to Set2 are
listed in Table 4.4. The WCET.; of the task set is decreased with growing SPM
and cache sizes whereas a maximum WCET,.,; reduction of 48.4% can be achieved
for 15% SPM and 20% as well as 25% cache size. Although no interference between
the MPSPM allocation and CP was expected, the results for 20% SPM and 20%
cache size proves the opposite: The WCET.4 slightly worsens by increasing the
SPM from 15% to 20% of the overall task set size at unchanged 20% cache size. An
altered memory layout caused by a different allocation of code blocks to the larger
SPM can lead to a completely different cache behavior if new cache conflicts arise.
In view of the marginal WCET,; increase of 0.1%, this interference is negligible.

In contrast to Setl, the WCET.s of Set2 is not induced by small hot spots.
Large parts of the code contribute to the WCET,4; leading to a continuous WCET 4
decrease if the SPM and cache size are increased. Here, a combination of CP with
MPSPM is worthwhile since the results outperform a separate application of the
individual optimizations by 4.9% (compared to MPSPM) and by 17.4% (compared
to CP). The best compromise seems to be a cache size and SPM size of 10% resulting
in a WCET,.. reduction of 47.5%.
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Table 4.5: Optimized WCET g for MPSPM allocation, CP and MCS applied to
Setl
SPM/C | 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%
0% 100.0% | 98.6% 97.9% 74.2% 71.9% 71.9% 711% | 71.1%
(99.4%) | (98.3%) | (97.3%) | (97.0%) | (85.2%) | (85.2%)
1% 99.1% 97.8% 97.1% 75.1% 72.8% 72.8% 71.2% | 71.2%

(98.8%) | (97.3%) | (96.7%) | (96.2%) | (85.2%) | (82.2%)
3% 96.8% | 95.5% | 94.8% | 74.0% | 7T1.7% | TL.7% | 70.9% | 70.9%

(96.4%) (94.0%) | (93.8%) | (83.2%) | (80.6%)
5% 70.0% | 68.6% | 67.9% | 67.7% | 67.1% | 67.1% | 66.8% | 66.8%
(69.6%)

10% || 67.7% | 663% | 65.6% | 654% | 64.7% | 64.7% | 64.5% | 64.5%
(67.3%) | (66.1%)
15% || 65.3% | 65.3% | 65.1% | 64.6% | 64.4% | 64.4% | 64.3% |64.3%
20% || 64.6% | 64.6% | 64.5% | 64.4% | 64.3% | 64.3% | 64.2% | 64.2%
25% || 64.4% | 64.4% | 64.3% | 64.2% | 64.1% | 64.1% | 64.0% | 64.0%

The results for Set3 and Set4 exhibit similar results as Set1 and Set3. A detailed
discussion is omitted at this point; the interested reader is referred to Appendix A.1
and A.2 for detailed results.

4.6.5.3 WCET Estimations for Multi-Task SPM Allocation, Cache Par-
titioning and Memory Content Selection

The previous section evaluated the impact of multi-task program scratchpad al-
location combined with cache partitioning. The evaluation presented in Section
4.6.5.1 pointed out that the effectiveness of CP can be improved by combining it
with memory content selection. Hence, this section evaluates the effectiveness if
MPSPM allocation, CP and MCS are combined as described in Section 4.6.3.
Table 4.5 depicts the results if the three optimizations are applied to Setl. The
results represent the WCET.y reduction if memory content selection is applied in
combination with cache partitioning and multi-task program scratchpad allocation.
The values in parantheses show the results from Table 4.3 if more than 0.1% lower
WCET,s are achieved compared to only applying MPSPM allocation and CP.
Since the maximum achievable WCET,.; reductions are identical to the results
achieved by applying only MPSPM allocation and CP, the improvements by ad-
ditional memory content selection are highlighted in the following. As already ob-
served in Section 4.6.5.1, memory content selection yields an advantage for smaller
cache sizes where not all code on the critical path does fit into the cache simulta-
neously. Up to 23.4% w.r.t. the WCET. of the task set can be saved for 10%
cache size and 1% SPM size (note that the 0% row only reflect the results gathered
in Section 4.6.5.3). MCS is able to improve the WCET .y for smaller SPM sizes
(1-3%) where not all hotspots can be moved to the fast SPM. If the cache and the
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Table 4.6: Optimized WCET. g for MPSPM allocation, CP and MCS applied to
Set2
SPM/C || 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%

0% |[100.0% | 86.9% | 83.0% | 66.0% | 602% | 60.1% | 52.6% | 52.6%
(100.0%) | (97.2%) | (91.9%) | (80.2%) | (77.5%) | (76.8%) | (69.1%)
1% || 100.0% | 86.9% | 83.0% | 66.0% | 60.1% | 60.1% | 52.6% | 52.6%
(100.0%) | (97.2%) | (91.9%) | (80.2%) | (77.5%) | (76.8%) | (69.1%)
3% || 100.0% | 72.8% | 66.0% | 65.9% | 60.1% | 60.1% | 52.6% | 52.6%
(83.5%) | (75.8%) | (70.3%) | (64.2%) | (60.5%) | (59.7%) | (56.3%)
5% 83.8% | 65.9% | 658% | 64.7% | 57.1% | 57.1% | 52.6% | 52.6%
(66.5%)
10% || 703% | 65.7% | 65.7% | 60.1% | 52.5% | 52.5% | 52.2% | 52.2%
15% | 65.7% | 62.4% | 585% | 53.3% | 52.5% | 52.5% | 52.0% | 52.0%
20% || 604% | 60.1% | 538% | 532% | 525% | 524% | 52.1% | 52.0%
25% || 56.6% | 56.6% | 55.8% | 53.2% | 52.5% | 525% | 52.1% | 52.1%

SPM grow in size, the number of cache conflict decreases as well as the performance
of MCS.

The results for applying MPSPM, CP and MCS to Set2 are shown in Table
4.6. As already observed for Setl, MCS performs well for SPM sizes up to 3%
of the overall task set size. Up to 25.9% lower WCET.4s can be achieved if MCS
is additionally applied (5% cache, 1% SPM). Since the remaining Set3 and Set4
behave similar, a full discussion is omitted but all results can be looked up in Tables
A.3 and A .4, Appendix.

The results presented in Section 4.6.5.1 — 4.6.5.3 attest that adjusting and com-
bining WCET-driven optimizations yields high optimization potential. However, in
case of memory-based optimizations, an exact knowledge and consideration of the
applied code modifications is mandatory to adjust the utilized optimizations.

4.6.5.4 Optimization Time

Evaluations performed in this chapter already pointed out that the optimization time
of the presented WCET-driven optimizations highly depends on the complexity of
the benchmarks to optimize as well as on the number of required WCET analyses.
Since the optimization loop presented in Figure 4.15 often requires a high number
of WCET analyses, this section evaluates the required optimization time.

Cache Partitioning combined with Memory Content Selection: The opti-
mization time necessary for stand-alone cache partitioning was evaluated in Section
4.4.6.2. Now, it should be figured out how much this time is increased if memory
content selection is coupled with cache partitioning.

Concerning cache-aware memory content selection, Equation (3.20), p. 67, states
that for a task with n functions at most 3 + n WCET analyses are performed.
According to Equation (4.7), p. 88, the number of WCET estimations during cache
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Table 4.7: Optimization times for CP combined with MCS

Benchmark Set | Minimum | Maximum

Setl 25 min 96 min
Set2 47 min 103 min
Set3 29 min 191 min
Set4 52 min 120 min

partitioning depends on the number of tasks in set 7" and the number of considered
cache partition sizes in set P. If cache partitioning is combined with memory content
selection, the number of WCET analyses amounts to not more than:

7|

# Analysesyworr = |P| * Z n; +3 (4.12)
i=0

This equation considers that the modified cache partitioning no longer has to
perform WCET estimations since it can exploit the analysis results gathered during
the memory content selection phase. Since the considered partition sizes grow with
a power of two, the number of considered partition sizes |P| grows logarithmic with
the cache size.

Table 4.7 lists the minimum and maximum optimization runtimes for each task
set if C'P is combined with MCS. The minimum values represent the time required
for 1% cache size compared to the overall program size, whereas the maximum values
denote the times for 25% cache size. In the best case, 25 minutes are required to

optimize Setl whereas approximately 3 hours are spend in the worst case to optimize
Set3.

Multi-task Program Scratchpad Allocation combined with Cache Par-
titioning: This paragraph evaluates the compilation time for a combined appli-
cation of multi-task scratchpad allocation and cache partitioning to the benchmark
sets. For the employed SPM allocation technique, the same as for cache partition-
ing applies: the optimization time is dominated by the number and complexity of
performed WCET analyses.

During MPSPM allocation for a task set 1", the number of analyses amounts to
2% |T| (cf. Equation (4.11), p. 96). According to Equation (4.7), p. 88, the number
of performed WCET analyses within CP for a set of partition sizes P amounts to
|T|  |P|. For a combined optimization by both algorithms, the upper bound of
performed WCET analyses computes as follows:

#Analyseswopr = |T| * (2 + | P|)

Since the number of considered partition sizes again depends on the available
cache size, Table 4.8 depicts the minimum and maximum optimization time for each
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Table 4.8: Optimization times for MPSPM allocation combined with CP

Benchmark Set | Minimum | Maximum
Setl 17 min 45 min
Set2 22 min 35 min
Set3 27 min 108 min
Set4 30 min 47 min

Table 4.9: Optimization times for MPSPM allocation combined with CP and MCS

Benchmark Set | Minimum | Maximum
Setl 26 min 93 min
Set2 42 min 114 min
Set3 28 min 216 min
Set4 60 min 151 min

task set. The shortest optimization time was observed for Setl with 17 minutes
whereas the longest time was consumed by Set3 with 108 minutes.

Multi-task Program Scratchpad Allocation combined with Cache Par-
titioning and Memory Content Selection: Finally, the required optimization
time for applying all optimizations employed in this chapter should be evaluated.
The MPSPM allocation performs 2 % || WCET analyses as computed in Equation
(4.11), p. 96. The number of analyses for combined CP with MCS is computed
according to Equation (4.12) such that the overall number of performed WCET

estimations is not more than:

||
#Analysesworpr = 2 *|T| + | P| * an +3
i=0
Obviously, combining three optimizations exhibits the highest optimization time
which is listed in Table 4.9. As for all combinations of optimizations with cache
partitioning, the optimization time depends on the available cache size. In order to
optimize Setl, at least 26 minutes are spent whereas at most four hours are required
to optimize Set3.
The work presented in this chapter has not been published yet.

4.7 Summary

This chapter presented multi-task compiler extensions which were integrated into the
WCC. Based on these extensions, novel WCET-driven optimization techniques for
multi-task systems were presented. All optimizations are integrated into the WCC
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compiler framework presented in Chapter 2. Unlike existing ACET and WCET
optimizations which are able to apply code modifications to single tasks only, the
presented optimizations exploit the introduced multi-task capabilities within WCC.
Based on this framework, optimizations are able to consider the contribution of
individual tasks to the overall system’s WCET and the impact of modifications ap-
plied to one task on the remaining tasks. Furthermore, the combined application
of a number of WCET-aware memory-based optimization was examined in order to
point out interference and synergetic effects. Based on these results, the existing
approaches were adapted in order to improve the optimization results. The effec-
tiveness of the discussed optimizations exploiting the novel multi-task support was
demonstrated on real-life benchmarks.

The first optimization proposed in this chapter was a technique to optimize
multi-task systems equipped with caches. The technique of software based cache
partitioning was exploited to improve the predictability of the worst-case cache be-
havior in focus of real-time systems executing multiple tasks. Employing partitioned
caches, every task has its own cache area from which it cannot be evicted. The novel
algorithm for WCET-aware software based cache partitioning in multi-task systems
thereby achieves predictability of cache behavior. An ILP model, based on the
tasks” WCETs for different partition sizes, selects the optimal partition size for each
task with the objective of minimizing the system’s WCET. The new technique was
compared to existing partition size selection algorithms. Inspecting small task sets,
the WCET is decreased by up to 30% compared to the standard approach. Better
results can be achieved for larger task sets with up to 33% WCET reduction. On
average, the size-based algorithm is outperformed by 12% for 5 tasks in a set, 16%
for task sets with 10 tasks, and 19% considering tasks sets with 15 tasks.

The second optimization presented in this chapter targets the allocation of pro-
gram code to scratchpad memories in a multi-task scenario. An existing scratchpad
allocation technique for single tasks was extended in order to be aware of the tasks’
WCETSs and their contribution to the overall system WCET. Therefore, three heuris-
tics were proposed which determine the share in SPM for each task based on static
features. The first, WCET-based heuristic determines a task’s scratchpad size based
on its contribution to the system’s WCET in a hyperperiod whereas the code size
based heuristic determines the SPM size based on the tasks’ code size. A hybrid
heuristic combines the ideas of the last two in order to find the best compromise. It
turned out that the WCET-based heuristic performs best in the majority of cases.
Nevertheless, the hybrid heuristic was able to achieve the highest WCET reduction
of up to 47.5%.

As third, an approach for memory architecture aware compilation was proposed.
Therefore, existing WCET-directed optimizations were analyzed w.r.t. their influ-
ence on the memory access patterns of tasks in order to recognize possible interfer-
ence. Based on these insights, a strategy was elaborated for a combined application
of three optimizations presented in this thesis. A promising application order was
proposed for the optimizations multi-task scratchpad memory allocation, software-
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based cache partitioning and cache-aware memory content selection. Afterwards,
the required modifications were presented which ensure a perfect cooperation. An
evaluation attests that a necessarily increased optimization time pays off: WCET
reductions of up to 48.3% for large caches and SPMs can be achieved by an intel-
ligently combined application of the optimizations. However, the actual strength
of the proposed memory architecture aware compilation is the optimization of sys-
tems with limited caches and SPMs. Significant improvements compared to separate
application of the employed optimizations were achieved.

This chapter presents results indicating that common optimizations focusing on
single tasks are not able to exploit the full optimization potential. In order to
optimize a multi-task system, the full set of tasks has to be considered during the
code optimization process. In case of WCET optimization, the resulting WCET
data of all tasks and their execution counts within a hyperperiod have to be taken
into account. Otherwise, a limited view of a single task may hide the influence of
modifications of one task on the WCET of the remaining tasks.

Once again, this chapter demonstrated that considering the underlying hardware
platform during optimization can yield the best performance by exploiting special-
ized hardware features. Likewise, tuning existing memory-based optimization for a
combined application pays off in terms of WCET reduction.
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5.1 Introduction

In the course of this thesis, a number of memory-based optimizations were presented
and it was shown how code for multi-task systems can be compiled and optimized
appropriately. All presented techniques have in common that they target a single
architecture namely the TriCore TC1796. Other WCET-aware compiler frameworks
(cf. Section 2.1) also model single processors. This strict binding to a particular
hardware involves two disadvantages. First, any developed WCET-aware optimiza-
tions are exclusively designed for the supported processor. Since evaluations are
limited to this processor as well, assumptions about the effectiveness of the opti-
mization w.r.t. other processors are difficult or even impossible. A later evaluation
might even reveal that an optimization performing well on the processor used during
the optimization’s design has a negative impact on another processor.

Second, a WCET-aware compiler framework that only supports a single pro-
cessor does not benefit from synergies in the development of WCET-aware opti-
mizations. Each generic software module implemented to assist optimizations for
a particular processor must be partially or even completely rewritten when ported
to another WCET-aware compiler framework. In contrast, a framework produc-
ing code for multiple processors might significantly shorten the development time
of new processor-specific optimizations since generic modules can be reused. For
example, data structures holding WCET information for particular code fragments
might be developed for scratchpad optimizations for one processor and reused for
cache optimizations of another processor.

Developing or porting optimizations to different target architectures is an ex-
tremely complex task: the employed compiler has to be ported to the new architec-
ture which is equivalent to a completely new implementation of the code selector
as well as the compiler backend. Writing a new code selector which generates small
but efficient machine code is an error-prone and time-consuming task which should
be avoided.

Standard compiler toolchains such as the GNU Compiler Collection (GCC) exist
for a variety of target architectures but are limited to average-case optimizations.
Since they lack a detailed WCET timing model and a multi-task support as provided
by WCC (cf. Chapter 2, 4), such compilers are ineligible as basis for the develop-
ment of WCET-driven optimizations. To overcome these obstacles, this chapter
presents techniques which enable a straightforward integration of new target archi-
tectures into WCC. Therefore, a standard compiler is exploited as code selector and
integrated into WCC’s compilation flow. In this way, only the retargetable compiler
backend has to be adapted to the new target architecture. The transformation of
flow facts from the C source level into the compiler backend and WCET timing data
in reverse direction is accomplished by a novel module exploiting debug information.

WCC’s retargetability is demonstrated by exemplarily implementing support
for the ARM architecture. Furthermore, a novel optimization for static locking of
instruction caches is presented which exploits this ARM support in order to demon-
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strate its suitability for use. The WCET-driven cache locking algorithm selects
content to lock into the cache based on its influence on the WCET of a program
to optimize. Integer-linear programming is employed to select the optimal set of
memory blocks to lock and to optimize along the WCEP of a program.

The remainder of this chapter is organized as follows: Section 5.2 provides a
brief overview of related work while Section 5.3 introduces the idea of a retargetable
WCET-aware compiler framework. Multi-target extensions implemented into the
WCC compiler are presented in Section 5.4. In Section 5.5, the static locking of
instruction caches for the ARM architecture is proposed. Finally, this chapter is
summarized in Section 5.6.

5.2 Related Work

One of the first works considering compilation for different target architectures dates
back to 1958 and was published by Convay [24]|. His universal computer oriented
language (UNCOL) is an universal intermediate representation for compilers. For
each programming language, a translator should translate a program to UNCOL.
Thus, only a new compiler backend should to be developed to generate code for a
new machine architecture. UNCOL has never been fully implemented since it was
not possible to represent the demands of all programming language, target machines
and their instruction sets in a single language.

In contrast to earlier works on compilers, Glanville [43] focuses on retargetable
code selection for a given, fixed programming language. A target-independent code
generation algorithm emits code for a desired architecture by exploiting a target
machine description. Nevertheless, the approach does not consider or support any
form of compiler optimizations which are mandatory in order to achieve high code
quality.

AT&T’s retargetable compiler project 1cc was examined by Fraser et al. in [40].
A C-specific, target-independent compiler frontend is employed. The retargetability
of the code selector is driven by tables and a tree-grammar which map high-level
constructs to instructions. Implementations for MIPS, SPARC and x86 are provided
as examples and demonstrate the realization of simple low-level optimizations.

The most prominent retargetable compiler is the GNU Compiler Collection [41].
GCC is a perfect example how a compiler can be ported to a large number of
programming languages, targets and host architectures. Therefore, the concept of
coupling a language-configurable front end with an architecture-independent middle-
end and a retargetable, target-specific backend is used. Optimizations can be applied
at each abstraction level.

All approaches have in common that they do not explicitly consider code gener-
ation for embedded/cyber-physical systems and are not aware of highly specialized
hardware features such as scratchpad memories or cache locking features.



116 Chapter 5. Compilation and Optimization for Multiple Targets

In contrast, Marwedel et al. present various approaches and techniques for code
generation targeting embedded systems [83]. Challenges in code generation and
retargetability are treated as well as the exploitation of specialized instruction sets
such as for DSP processors.

Leupers et al. achieve retargetability with their MSS(Q compiler [69]. A hardware
description language (HDL) specifies a target processor model as RT-level net lists.
Based on this description, a code generator for the desired architecture is created
fully automatically. Thereby, MSSQ can be ported to a number of architectures for
which a HDL processor models is available with small effort. By implication, this
means that porting MSSQ to commercially available processors is in the majority
of cases impossible since the required HDL models are kept under wraps.

Parallel to the development of compilers translating a programming language
into machine code, compiler for microprogramming emerged in the early 1980’s.
Such compilers translate programs into sequences of microinstructions which con-
trol the CPU on a fundamental level. In this way, single hardware circuits inside
the CPU core can be driven such as connecting of certain registers to the arith-
metic logic unit (ALU) or performing ALU operations. Baba et al. developed their
own microarchitectural programming language called MPGL |7]. The corresponding
retargetable compiler for microprogramming, called MPG, is based on a machine
description which is exploited to translate MPGL statements to microinstructions.
Although the generated code was efficient compared to hand-crafted microprograms,
MPGL was not able to achieve acceptance.

Marwedel developed the machine independent microprogramming language (MI-
MOLA) and presented an appropriate retargetable microcode compiler as MIMOLA
Software System [80]. The machine independent high-level microprogramming lan-
guage uses a Pascal like syntax. Simultaneously, the language is employed for
the hardware description required for the retargetable backend. In [81], Marwedel
presents an extension called TREEMOLA which is employed to write structural
hardware descriptions. In this way, a mapper can emit binary machine code with-
out any instruction set description. Both [80] and [81]| support horizontal micro-
programs which inherently support hardware parallel execution. Since [81] employs
pattern matching between hardware structures and the program to compile, the code
generation requires high computational power leading to high compilation times.

Also based on MIMOLA, Leupers et al. encounter high compilation times with
a retargetable microcode compiler employing a bootstrapping technique. Therefore,
a MIMOLA hardware description is compiled to a machine code compiler for the
processor’s instruction set. This compiler can be employed to compile high-level
programs to native machine instructions.

None of the approaches listed above integrates a WCET timing model. Gener-
ally, compiler-based WCET minimization is sparsely dealt within today’s literature.
All the more, no retargetable WCET-optimizing compiler is known to the best of
the author’s knowledge.



5.3. Retargetable WCET-aware Compiler Framework 117

ANSI-C

Sources &

Flow Facts
ICD-C Nich-Lo EXte".‘Ia'
Parser ICD-C R

Module

Target
--p| WCET
analysis

Low-Level

Back/Forw.-
Annotation LLIR
WCET- Memory

aware Hierarchy
Optimizat.

Specification

Linker
Script

Figure 5.1: Workflow of the retargetable WCC

WCET-
Optimized
Assembly

5.3 Retargetable WCET-aware Compiler Framework

This section introduces the techniques which extend WCC to a new architecture and
shows the resulting compilation workflow. WCC’s original compilation workflow
was already presented in detail in Chapter 2, thus only modifications of the original
workflow are discussed here. Figure 5.1 shows the compilation workflow as realized
for the ARM architecture.

Basic components such as the compiler frontend ICD-C with its substantial set of
high-level optimizations or WCC’s memory hierarchy specification stay untouched.
Reusing such core components eases the integration of new architectures. But the
unavoidable implementation of a code selector for a new architecture is often a
tedious task for which men-years can be spent. This task has to be done for every
compiler in a similar fashion — regardless of the objective the compiler tries to
optimize. Hence, the idea is to reuse existing implementations for code generation
in order to port WCC to a new architecture.
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To store the emitted assembly code, a target-specific implementation of the
LLIR is required. Thanks to LLIR’s modular structure and easy retargetability,
implementing the target-specific parts is possible with justifiable expenditure.

As stated in Section 2.4.2, WCC’s code selector is not only responsible for emit-
ting efficient machine code. Furthermore, flow facts have to be transformed from
their ICD-C representation to low-level equivalents attached to LLIR in order to
enable an automated WCET analysis. To enable this transfer of information as
well as annotating WCET data in the opposite direction, mapping information of
ICD-C elements to LLIR structures has to be maintained. Standard compilers are
not able to translate and maintain the information required for WCET analysis and
optimization. Therefore, a module is proposed which supports backward/forward
annotation of arbitrary data from one level of abstraction to the other if standard
compilers are employed for code selection.

But even if flow facts can be transferred between both levels of abstraction, the
interface to the static WCET analyzer has to be ported as well: up to now, the
existing library (cf. Section 2.4.4.1) coupling the timing analyzer aiT is exclusively
limited to the translation of TriCore assembly to an equivalent CRL2 representation.
Thus, an interface for WCET estimations targeting arbitrary architectures has to
be designed.

54 WCC Extensions

The overall workflow of the retargetable WCC was introduced in the previous sec-
tion. In the following, a detailed discussion of the modified components is pro-
vided. How an arbitrary compiler can be employed for code selection within WCC
is described in Section 5.4.1. A general-purpose module for exchanging information
between WCC'’s abstraction levels ICD-C and LLIR is presented in Section 5.4.2. Fi-
nally, Section 5.4.3 sketches the platform-independent interface to the static WCET
analyzer a:7.

5.4.1 Employing GCC for Code Selection

The first step towards a retargetable WCET-aware compiler framework is the elim-
ination of the TriCore-specific code selector. This is achieved by substituting it by
an arbitrary compiler for a processor supported by the static timing analyzer. The
employed compiler should be considered as black box to enable easy updates to new
versions or even the replacement by a totally different compiler for the same archi-
tecture. Thus, a modification of the employed compiler has to be avoided. This idea
for employing a standard compiler for code selection was published in [94].

The approach presented in [94] is restricted to a direct compilation of C code
generated out of an ICD-C IR to a binary program without access to the assembly
code. Thus, no possibility of developing and applying assembly-level optimizations
as extensively done in this thesis — exists. In the following, a significantly extended
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approach is proposed which enables the manipulation of the generated assembly
code and thereby supports the development of assembly-level optimizations in the
same way as already available for the TriCore processor.

As depicted in Figure 5.2, the LLIR code selector (cf. Figure 2.2, p. 16) is
replaced by an external compiler module. The input program, represented by an
ICD-C IR, is emitted to equivalent C source files. Since ICD-C also serves as source-
to-source optimizer, none of the analyses and optimizations provided by WCC’s
high-level IR is discarded but can be furthermore exploited. Due to WCC’s flow
fact manager, all source code flow facts are correctly adjusted and transformed
during optimizations until dumping the IR into equivalent C code. In this way, flow
facts stay valid if, for instance, loop unrolling is applied to the ICD-C IR, and the
corresponding loop bounds are adjusted.

The dumped code is passed to an arbitrary compiler which generates equiva-
lent assembly code for the target architecture. To support the backward/forward
annotation presented in the following section, the invoked compiler is instructed to
generate debug information. This information maps C statements to corresponding
parts of the assembly code. Unfortunately, the quality of the mapping information
depends on the complexity of the applied code modifications within the compiler.
For example, if basic blocks are merged, newly created or deleted, a proper mapping
to C statements cannot be ensured. To overcome this problem, the employed com-
piler is invoked without any optimizations which could modify the control flow and
corrupt the attached debug information. Since WCC applies its own optimizations
on both ICD-C and LLIR level, this limitation does not entail negative influence
w.r.t. the performance of the generated code.

The generated assembly annotated with debug information is parsed and equiv-
alent LLIR structures are created. Structures such as functions, basic blocks and
instructions are represented in a similar fashion in assembly and LLIR. However,
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assembly source files do not include explicit information on a program’s control flow.
In the LLIR, such information is expressed by predecessor /successor relations. Thus,
this data has to be extracted by analyzing the last instruction of each basic block in
order to determine its possible successors and link the blocks in the corresponding
LLIR.

The techniques presented in this Section, pooled in the box labeled Ezternal
Compiler Module in Figure 5.2, are a replacement for WCC’s TriCore-specific code
selector (cf. Section 2.3).

5.4.2 General-Purpose Exchange of Information

Inside WCC, an exchange of information between the two abstraction levels ICD-C
and LLIR is essential: The concept of flow facts storing user annotations on loop
bounds and recursion depths was already introduced in Section 2.4.5. Since these
flow facts are mandatory for WCET estimations, they are always kept valid and
consistent during optimizations and the code selection phase.

Exchange of information is required in the opposite direction, from LLIR to ICD-
C, as well. WCC already provides a module named Back-annotation, a methodology
enables transformation of objectives between both levels. The approach relies on
the ICD-LLIR code selector to keep track of which ICD-C IR constructs correspond
to which ICD-LLIR components. The mapping function with the finest granularity
of basic blocks in both levels is defined as follows:

backanny, : bbjoy, — bbpigh

This eases the exchange of information between both code representations. When
applying an arbitrary compiler without the insight into its code selector, the com-
piler must be considered as a black box where the relationship between the source
code and the binary executable is not apparent. Thus, a concept has to be developed
to gather a proper mapping of objects from one abstraction level to the other.

The problem of bridging the gap between the source code and the machine code
is not new. Especially in the domain of software debugging, it is mandatory to
analyze the binary executable by stepping through the source code. To inform the
debugger, e.g. GNU GDB, which source code construct belongs to which machine
code fragment, different debugging formats, e.g. STABS or DWARF2 [26] (the lat-
ter is used in the framework presented in this chapter) are employed. In particular,
problems arise when optimized code is debugged since an unambiguous mapping
between the source code and the optimized target program becomes infeasible. This
is known as the Code Location Problem [116]. The debug code is generated during
the internal code selection phase of the compiler and inserted into the binary and
is subsequently interpreted by the debugger. Since most compilers generate debug
code before any code transformations are performed, it is crucial to disable all com-
piler optimizations to obtain a correct mapping of the original source code and the
resulting machine code.
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Since the involved compiler serves as a pure code selector in the proposed work-
flow, it produces non-optimized assembly annotated with DWARF2 debug infor-
mation. Among others, this information indicates which machine code results from
which high-level constructs. The mapping function assigns assembly instructions to
C statements specified by file, source code line and column:

DWAREF : assembly instruction — source file, line, column

With this information, it is straightforward to assign FF' to such assembly basic
blocks corresponding to a certain source level statement or — in the opposite direction
— WCET information to the corresponding source code constructs. This mapping
is performed by the WCC module labeled backward/forward annotation in Figure
5.1. Hereby, an automated WCET estimation is enabled by low-level flow facts
and the derived WCET data can be employed to assist WCET-driven high-level
optimizations.

5.4.3 Retargetable Timing Analysis

The static timing analyzer employed by WCC, AbsInt’s aiT, supports a large num-
ber of processors. In combination with an appropriate compiler as code selector, the
WCET-aware compiler should be highly flexible and allow the compilation and op-
timization for different target architectures. However, the initial interface coupling
the static timing analyzer is limited to the TriCore architecture (cf. Section 2.4.4).

The module LIBLLIRAIT processes the LLIRs of a program to analyze and gen-
erates an equivalent binary representation in a:7’s CRL2 format. Since instructions
and registers have to be created as CRL2 structures as well, the entire target in-
struction set has to be supported. Thus, the existing implementation would require
a complete reimplementation for each additional architecture. Such an implementa-
tion is a tedious and error-prone task since the safeness of a WCET analysis depends
on a proper representation of the program in CRL2.

As sketched in Figure 2.1, p. 14, aiT employs its own tool exec2crl which
decodes a binary program and generates a CRL2 representation. This binary de-
coder is provided for all target architectures supported by aiT and ensures a perfect
conversion to AbsInt’s CRL2 format. Hence, exec2crl is exploited by WCC’s re-
targetable timing analyzer interface. Therefore, the module [lirait emits a binary
executable which is provided as input to the WCET analyzer. The retargetable aiT
interface is depicted in Figure 5.3.

Although aiT’s value and loop analysis extract loop bounds for simple loops,
additional user annotations are usually required to make a WCET analysis feasible.
A human-readable AIS file with user annotations is provided as input to exec2crl.
Information attached to flow facts (cf. Section 2.4.5), the memory hierarchy speci-
fication (cf. Section 2.4.6) and the cache configuration can be specified:
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Figure 5.3: Retargetable interface to aiT'
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Now, the conventional a:7" WCET analysis workflow starting with the binary
decoder exec2crl as sketched in Figure 2.1, p. 14, is be employed for estimating the
WCET of the program to analyze. Therefore, the binary program and the AIS file
reflecting the program under analysis are provided as input. The programs belonging
to aiT’s analysis flow as well as the input/output file handling are encapsulated in
LIBLLIRAIT and are completely hidden from the user. This enables transparent
and fully automated WCET analyses within WCC. The final CRL2 file is processed
by the CRL2LLIR converter which extracts the determined WCET data. Finally,
an LLIR annotated with WCET data is emitted.

The entire box labeled Target WCET analysis corresponds to the identically
named box in Figure 2.1 and replaces the box labeled aiT WCET analysis of WCC’s
original compilation flow presented in Figure 2.2, p. 16. Hence, the approach pro-
posed in this section can be transparently integrated into WCC’s original workflow.

Apart from the idea of employing a standard compiler for code selection pre-
sented in [94], the work presented in this chapter has not been published yet.

5.5 WCET-aware Static Locking of Instruction Caches

Caches have become popular since they effectively improve the average-case per-
formance. Nevertheless, they are a source of predictability problems due to their
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1 void fool(int x) {
2 if(x<100)
3 foo2();

4 else
5 foo3();

Figure 5.4: Exemplary program and resulting call graph

dynamic behavior. Various optimization techniques have been developed to improve
a cache’s predictability and improve their performance w.r. t. the runtime of a pro-
gram. Examples are the memory content selection presented in Section 3.4 or the
cache partitioning proposed in Section 4.4. Another cache-based optimization tech-
nique is cache locking which prevents cache content from eviction by manipulating
the replacement strategy.

This section presents a novel WCET-aware optimization for static locking of
instruction caches. The optimization aims at reducing the WCET of a program by
statically locking parts of a program into the cache. Statically means that the cache
content is loaded and locked before the program is executed and does not change
during its execution. The proposed approach employs an integer-linear program to
select memory blocks to lock. The ILP explicitly models the CFG of a program in
order to cope with switching WCEPs. The impact of locked cache contents on the
execution time of the contained basic blocks is modeled as well and thereby avoids
repetitive WCET analyses.

The remainder of this section is organized as follows: Section 5.5.1 motivates
the advantages of static cache locking by an example. An overview of related work
considering memory and cache-based optimizations is provided in Section 5.5.2.
Section 5.5.3 introduces a state-of-the-art, function-based instruction cache lock-
ing technique. The novel WCET-aware ILP-based algorithm for fine-grained static
cache content selection is proposed in Section 5.5.4. An evaluation in Section 5.5.5
compares the performance of both the state-of-the-art cache locking techniques and
the novel WCET-aware locking approach with a system equipped with a regular
cache.

5.5.1 Motivating Example

This section demonstrates the advantages of static cache locking by an example. The
amount of cache misses highly depends on the ratio of cache to memory size, the
cache replacement policy and the structure of the executed program. A high amount
of cache misses implies costly reloading of content from the slow main memory and
leads to a high number of penalty cycles due to pipeline stalls.



124 Chapter 5. Compilation and Optimization for Multiple Targets

Set Cache Main Memory _ Set
0 fool 0
1 R 1
2 2
3 % 3
4 ) foo2 4
5 \‘ 5

\‘ 0
1
2
3
4
5

Figure 5.5: Worst-case cache behavior

Besides such unavoidable real cache misses, the computed WCET of a program
is affected by the overestimation of a static WCET analyzer as well: if the memory
address of an instruction fetch cannot be determined, it also cannot be determined if
a memory access results in a cache hit or a cache miss. In such a case, the worst case
— usually a cache miss — has to be assumed (called assumed cache misses). Figure
5.4 shows a code snippet and the resulting call graph for which such a situation can
occur. If the value analysis of a static timing analyzer cannot determine whether
foo’s parameter x is less than 100, a cache analysis has to consider both the if-
and the else-path. For a memory layout as depicted in Figure 5.5, fool and foo2
are mapped to the same cache area as foo3. Now, the worst case has to be assumed
where for each execution of fool, x toggles between a value less than 100 and equal
or above. Thus, for each execution of fool, it has to be assumed that either fool
and foo2 evict foo3 from the cache or vice versa. This leads to an unnecessary high
number of assumed cache misses if, for instance, x is usually below 100.

To overcome the problems of real and assumed cache misses, several processor
architectures — especially in the embedded domain — are equipped with mechanisms
to lock the content of caches. In this way, it can be ensured that an access to locked
content always results in a cache hit and thus the number of real cache misses can
be reduced. Overestimation of the WCET (caused by assumed cache misses) can
be reduced as well since a static timing analyzer can doubtlessly determine which
memory accesses result in cache hits and which ones have to be fetched from main
memory.

Lockdown mechanisms with differing granularity exist. Either, each cache line
can be locked individually or a way can be iteratively locked starting at the first
line. However, different locking granularities and schemes are possible as well. For
example, the embedded processor ARM926EJ-S [2], which is considered in this
chapter, uses a cache-way-based locking scheme. This means that memory blocks
with the cache’s way size, starting at memory lines which are mapped to the first
cache set, can be entirely loaded and locked into the cache. Dedicated locking bits
steer if the normal cache allocation is allowed to access the corresponding cache way.
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Selected content is loaded and locked into the cache by additional instructions
located in the startup code of a program. This guarantees that the cache is filled
and locked before the execution of the actual program starts.

5.5.2 Related Work

Falk et al. counteract possible predictability problems of caches with a static allo-
cation of program code to so-called scratchpad memories (SPM) [32]. They employ
integer-linear programming to select the optimal content of the SPM w.r.t. the
program’s WCET 4. The disadvantage of moving parts of the code to SPMs is the
necessary correction of the control flow: far jumps have to be inserted to branch
between different memories leading to an unavoidable code and runtime overhead.
In contrast, the cache locking based optimization presented in this work exploits the
transparent behavior of a cache and performs a lockdown of cache content inside
the startup code of a program.

Another work considering scratchpad allocation is presented in [107|. Suhendra
et al. developed an ILP-based allocation of frequently accessed data objects to faster
memories in order to decrease the overall WCET s Their model of the program’s
WCET and possible execution paths serves as basis for the ILP-based algorithm
presented in [32] and was also employed for the technique discussed in Section 5.5.4.
Since only the intra-function control flow is modeled, a time consuming branch-and-
bound approach or a sub-optimal heuristic is employed to optimize along the WCEP.
Furthermore, moving data objects to SPM is much easier than locking instruction
blocks into the I-cache. Data elements can be almost arbitrarily moved around to
fill the SPM without gaps. Thereby, elements are never competing for the same
memory/cache lines as occurring during cache locking.

In [42], Gebhard et al. present a technique for rearranging the positions of tasks to
improve the cache performance. The interdependency relation of tasks is evaluated
in order to determine a memory layout which maximizes the number of persistent
cache sets for each task.

Papers [99] and [16] present techniques for statically locked instruction caches
which are very close to the work presented in this paper. In [99], Puaut et al. present
two algorithms which try to minimize the CPU utilization and the interferences be-
tween different tasks, respectively. Although they consider the WCET as metric,
they are not able to react on switching WCEPs since they always optimize along
an initially determined WCEP. Compared to [99], [16] presents an additional ge-
netic algorithm which has the disadvantage that for each created individual, a time
consuming WCET analysis has to be performed.

Puaut also presents techniques for I-cache locking [98] which consider changing
WCEPs. However, the way how WCEPs are recomputed is not detailed. The au-
thors use a parameter N trading off accuracy of WCEP recomputation with runtime
consumption. Since runtimes for WCEP recomputation are still very high, the au-
thors are unable to provide results for some of their benchmarks. In contrast, the
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techniques presented in this work scale much better so that results for very large
benchmarks can be gathered.

A function-based static I-cache locking is also proposed by the author of this
thesis in [36]. An FEzecution Flow Graph (EFG) is employed to model possible
execution paths on function level. The WCEP is determined by applying a modified
Dijkstra algorithm before the most promising function on the WCEP is locked into
the cache. To consider paths which are not the initial WCEP, two analyses are
required for each alternative path in order to compute the gain of the functions
on such a path. As opposed to this, the approach presented in this chapter only
requires two WCET analyses in total. The work presented in [36] serves as reference
implementation for function-based cache locking and is briefly introduced in Section
5.5.3.

An extension of the function-based locking presented in Section 5.5.3 was de-
veloped by Liu et al. in [72]. There, an Ezecution Flow Tree is presented which
is traversed to generate a simple ILP which selects the functions to lock into the
cache. In contrast to 72|, the approach proposed in Section 5.5.4 is able to model
the intra-function WCEP including loops at basic block level. The influence of the
memory layout on lockable memory blocks and thereby the runtime of basic blocks
— is also taken into account; [72] ignores the fact that selected functions may conflict
in the cache and thus cannot be locked simultaneously.

5.5.3 Function-based static I-Cache Locking

The choice of cache content to be locked has a significant impact on the WCET of a
program. Due to the limited cache capacity, only content which highly profits from
a cached execution should be locked. This section introduces an existing approach
[36] which iteratively selects functions to be locked based on a so-called ezecution
flow graph (EFG). The creation of the EFG, the WCEP construction as well as the
I-cache content selection are described in the following.

The WCET analysis described in Section 2.2 considers different calling contexts
for functions. Example 5.1 shows a conventional call graph where function c is called
from a and b. The WCET analyzer a+T distinguishes two calling contexts for ¢ and
d. The first one is for the call from a and the resulting path main—a—c—d. The
second one is for the call from b for the path main—b—c—d. Such contexts cannot
be represented by means of a call graph.

Example 5.1 (CG Contexts)

For the following call graph, structural dependencies can be hidden within func-
tions:
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It cannot be distinguished if main calls a and b sequentially (code: aQ); bQ3;).
Instead, they could be called mutually exclusive by main as well, resulting in the
same CG (code: if(x) a(Q); else bQ);).

To model structural dependencies within functions as well as calling contexts
which cannot be modeled using a CG, the concept of the ezecution flow graph has
been developed:

Definition 5.1

An ezxecution flow graph is a weighted graph G = (V, E, w,,w.). V represents
the set of context-specific functions whereas £ C V' x V is a set of edges which
connect two nodes: (v;,v;) € E. The node weight w, represents the context-
specific WCET of a function v for a single execution of v. The edge weight
we = w(z,y) denotes an upper bound on how many times the execution flow
passes from z to y in the considered context. The edges are created such that
a path from the source node to the sink in the EFG corresponds to the ways of

passing the control flow between functions.

A modified Dijkstra algorithm is applied to find all paths inside the CG in order
to create the non-cyclical EFG. Unfortunately, such an explicit path enumeration
can cause the FFG to grow exponentially with the size of the CG.

Example 5.2 (EFG Creation)

To transform the left CG in Example 5.1 into an EFG, the graph shown on the
left-hand side below is created for the code a(); b(); in main. If the code is
if(x) aQ; else b(Q);, the following right-hand side graph is created:

-8
B
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On the one hand, the graphs are able to model the structural dependencies within
functions — here whether b is called in sequence with a or mutually exclusive.
On the other hand, calling contexts of functions can be distinguished. Functions
c and d both have two different contexts — one for the path main—a—c—d and
one for the path main—b—c—d.

The EFG of a program is annotated with a profit value for each function f which
is equal to the WCET reduction in cycles if f is locked into the cache. Therefore, the
static timing analyzer a:T has to be invoked twice; once to determine the WCET
if f is executed from main memory and once to determine the WCET if f is locked
into the cache.

The function-based cache locking approach was not integrated into a sophisti-
cated compiler framework with a tight coupling of a WCET analyzer. Without an
interface to a:7’s CRL2 representation, only the WCET of functions on the WCEP
can be determined. Thus, for each concurrent path, two separate WCET analyses
have to be invoked in order to determine the WCETSs of functions on this path.

To select functions to be locked into the cache, the function with the highest
profit on the actual WCEP has to be determined. Since each leaf in the EFG
represents the end of one path in the CFG of a program, only the profit for all
nodes from a leaf to the root (usually the function main) have to be summed up to
determine the length of the path. If the most promising function f is locked into
the cache, its profit becomes zero for all calling contexts and the lengths of all paths
including a call to f have to be recomputed.

5.5.4 ILP-based static I-Cache Locking

Locking cache content based on entire functions can have the disadvantage that
unused code blocks occupy useful cache memory. Parts of locked functions which
are not part of the actual WCEP do not contribute to the WCET but waste cache
memory. Therefore, this section proposes an ILP-based cache content selection
algorithm which is not limited to function boundaries but locks content based on
the cache’s way size.

For an n-way set-associative cache with a size of S.cpe bytes and a line size of
Sline bytes, each way consists of [ cache lines:

| — Scache
1% Sline

Each way comprises Syqy bytes:

Sway = Scache/n

Due to the modulo addressing function of cache controllers, memory addresses
addr mod Syqy = 0 are mapped to the beginning of a cache way. Thus, the main
memory can be divided into memory blocks mby...mb,, with a size of S,y bytes
(cf. Figure 5.6) for which each block can be entirely locked into a single cache way.
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Figure 5.6: Memory layout divided into blocks with the cache’s way size

For a way-based lockdown of cache content as supported by the ARM926EJ-S,
only memory blocks with a granularity based on such a partitioning can be locked
into the cache. Loading content from the main memory and locking it into a single
cache line causes some costs Cpne. Thus, the costs for locking a complete way
consisting of L cache lines are as follows:

Clock = L * Cline (51)

In order to support an automatic lockdown of instruction caches to reduce the
WCET, possible WCEP switches have to be recognized and handled which makes
optimization challenging. The following sections present the novel ILP-based op-
timization technique which is capable of modeling a program’s control flow and
thereby ensures that optimizations are always performed along the WCEP. It de-
termines an optimal set of memory blocks to lock into the cache w.r.t. the WCET
of a program. Only two WCET analyses are required and the influence of locked
cache lines on the execution time of a basic block is considered within the ILP.
The following Section 5.5.4.1 models the costs for the locking of cache lines. Sec-
tion 5.5.4.2 introduces basic block costs representing their execution times, whereas
5.5.4.3 describes the modeling of a function’s control flow in the ILP. Afterwards,
Section 5.5.4.4 models the global control flow whereas Section 5.5.4.5 describes the
ILP’s objective function.

5.5.4.1 Lockdown Constraints

In the following, ILP variables are represented using lowercase letters whereas con-
stants are represented by uppercase letters. For ILP-based cache locking, the code
of a program to be optimized has to be considered as m memory blocks with a size
equal to the cache’s way size Syqy. The blocks start at memory addresses which are
mapped exactly fitting into cache ways (cf. Section 5.5.4 as well as Figure 5.6).
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For each of these blocks, a binary decision variable x; decides whether memory
block mb; is locked into an arbitrary cache way:

(5.2)

€Tr; —

B {1, if memory block mb; is locked into the cache

0, else

An n-way set-associative cache can keep copies of up to n such memory blocks
at the same time since ways can only be locked entirely. Thus, a constraint has
to be formulated to ensure that the size of the content to lock does not exceed the
cache size:

ixi <n (5-3)
i=1

5.5.4.2 Basic Block Costs

The time for a single execution of a basic block b; is represented by C’]’-”‘”” if b; is
entirely executed from main memory whereas C;“Ch@ is the execution time if the
block is locked into the cache. s; is the size of basic block b; in Figure 5.6 in
bytes and s? is the amount of bytes from basic block b; overlapping with memory
block mby. Then, p? is the runtime reduction in cycles if parts of basic block b;
located in memory block mby are fetched from the cache due to a lockdown of mbs.
Generalized, the profit of basic block b; for locking a memory block mb; can be
calculated as follows:
o st :
p; — i % (C}nazn _ quache) (54)
Each basic block b; of a function F' causes some costs ¢j. These costs represent
the WCET of b; depending on the memory from which b;’s instructions are fetched.
If b; or parts of it are locked into the cache, the execution time decreases by p§~
cycles:

m
cj = C"m =N " aixp) (5.5)
=1

5.5.4.3 ILP Model of the Control Flow of Functions

Modeling of control flow paths inside an ILP is performed similar to the modeling
in Section 3.3.3.3. Thus, only a short recapitulation is provided at this point. For
a basic block beLm-t being the exit node of a loop L, its WCET weint is equal to its
costs:

L _ L
Wegit = Cexit
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The WCET of a path leading from a node b; # bL ., in L to one of the exit nodes
bém must be greater than or equal to the WCET of any successor bgye. of bj in L,
plus the costs ¢; of b;:

Vb € V\ bkt o V(bj, bsuce) € B : (5.6)

wy 2> Wsyee + Cj

In order to model multiple executions of L, all contained nodes are represented
by a super-node vy. The costs of vy are the product of L's WCET for a single
execution and L’s maximal loop iteration count:

_ ..L L
CL = Wepgpy * Count,; .

5.5.4.4 ILP Model of the Global Control Flow

F
entry

denotes

The global control flow of a program is modeled within the ILP as follows: b is
assumed to be the entry basic block of function F'. The ILP variable wgm,y
the WCET of any path starting at bantry for a single execution of F'.
F’s WCET represented by variable w;try has to be added to the WCET of each
block b; calling F.
Vbj € V\ {bli} by calls F i V(b), boyee) € E - 57
wy 2 Wsycee + ¢+ wgmy '

5.5.4.5 Objective Function

The overall goal of the ILP is to minimize a system’s WCET by locking memory
blocks into cache ways. Due to the nature of Equations (5.6) and (5.7), variable
wfntw corresponds to the WCET of function F including the WCETs of all functions
called by F. Function main is the unique entry point of an entire program; hence,
variable ng‘;i?’}y denotes the WCET of the program.

Since the cache has to be filled with code and locked in advance, overhead in
the form of execution cycles arise before the program’s execution. For a cache with
ways composed of L cache lines, Equation (5.1) is extended to model the overall

lockdown overhead:
m
Olock — Z T * L * Clme (5.8)
i=1
This overhead has to be added to main’s WCET to obtain the overall WCET of
a system:

main
Wsystem = Wentry + Olock (59)

Finally, the value of this variable has to be minimized by the ILP:

Wystem ~ MAN. (5.10)
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5.5.5 Evaluation

In order to demonstrate the effectiveness of the novel WCET-aware cache locking
technique, the approach is applied to a set of real-life benchmarks. In Section
5.5.5.1, the experimental environment is described which is employed to perform
the evaluations. Section 5.5.5.2 discusses the WCET.s reductions achieved by
our cache locking described in Section 5.5.4, whereas Section 5.5.5.3 discusses the
required optimization runtime. Finally, Section 5.5.5.4 draws a comparison between
our new optimization with the existing, function-based WCET-aware cache locking
technique presented in Section 5.5.3.

5.5.5.1 Experimental Environment

For benchmarking, the ARM926EJ-S processor was employed which is equipped
with 1 MB ROM as main memory from which content can be fetched within 6 cycles.
The processor integrates a 16 kB I-cache with 32 bytes line size, least recently used
(LRU) replacement strategy and a configurable associativity of 2 or 4. Content which
is available in the cache can be accessed within 1 cycle whereas an access to the main
memory constantly requires six cycles. The cache supports way-based cache locking
for which Equations (5.1) — (5.10) are tailored. As stated in [36], loading and locking
a single cache line of 32 bytes requires 47 cycles. These 47 cycles are used as constant
Cline in Equations (5.1) and (5.8).

Uniformly, the optimization level O3 is used for which the WCC compiler (cf.
Figure 5.1, p. 117) applies 33 different optimizations in order to evaluate the per-
formance of our new algorithms on highly optimized code. Refer to Section 2.4.7
for a detailed overview of applied optimizations.

For all evaluations, 100 benchmarks were used stemming from the benchmark
suites DSPStone [130]|, MediaBench [65], MRTC [46] and UTDSP [115]. Addition-
ally, a set of miscellaneous benchmarks was added referred to as misc. The code
size of the benchmarks ranges from 100 bytes (matriz_ 123) up to 20kB for the gsm
benchmark.

As stated in Section 3.4.4, p. 65, the cache sizes are artificially limited to 10, 15
and 20% of the program’s overall code size. This guarantees that a similar ratio of
cache size to program size is used for all optimizations and static WCET analyses as
found in current embedded systems. In this way, results which are comparable to the
other cache and SPM-based optimizations presented in this thesis can be gathered.
If the cache would be large enough to store large parts of the program, it would
make more sense to use a scratchpad memory — which is fully predictable — instead.
But for the sake of completeness, cache sizes of up to 100% of the program size are
considered for a regular cache in order to explore the best possible reductions of the
WCET 4.

For solving the ILP model generated by the algorithm in Section 5.5.4, IBM
ILOG CPLEX |56] is utilized which is a sophisticated solver for integer-linear pro-
gramming problems.
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Figure 5.7: Relative WCET s for a 2-way set-associative cache

5.5.5.2 WCET Estimations

Figure 5.7 depicts the results achieved by the static cache locking algorithm if applied
to the considered 100 benchmarks for a system equipped with a 2-way set-associative
cache. The 100% reference line is equal to the estimated WCET of the benchmarks
compiled with the optimization level O3 executed in a system without any cache.
For each benchmark suite, the left three bars represent the results achieved by the
presented static cache locking technique if the cache amounts to 10, 15 and 20% of
the overall program size. These resulting WCET s already include the overhead
for loading and locking parts of a program’s code into the cache before its execution.
In order to assess the efficacy of static cache locking compared to a regular cache,
the right bars represent the results if the benchmarks are executed on a system with
a regular cache. All bars depict the average WCET .5 of the optimized programs
of each benchmark suite computed by the static WCET analyzer as percentage of
its “uncached” version.

By locking content into the I-cache, the ILP-based optimization is able to reduce
the WCET,g of the programs by up to 35.4% for 10% cache for the misc bench-
marks. For the same benchmark set, the WCET . is reduced by up to 37.7% and
40.8% for 15% and 20% cache size, respectively. A system with a regular cache is
able to achieve WCET.; reductions of up to 32.7% for the MediaBench suite and
10% cache size. If the cache amounts to 15% and 20% of the overall program size,
the WCET.4 is reduced by up to 36.2% and 37.8%, respectively.

On average over all considered 100 benchmarks, WCET . reductions of 27.1%,
31.2% and 34.3% can be achieved for 10%, 15% and 20% cache size if the novel ILP-
based cache locking technique is applied. For a regular cache, however, only average
WCET,., reductions of 3.3%, 12.3% and 19.5% can be registered for 10%, 15% and
20% cache size. Here, the ILP-based cache locking optimization outperforms the
regular cache by 23.8%, 18.9% and 14.8% for 10%, 15% and 20% cache size.
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Figure 5.8: Relative WCET s for a 4-way set-associative cache

If the cache size of a system without cache locking is increased up to 100% of the
program size, the WCET,; is decreased by up to 59.7% for the misc benchmarks.
Since the benchmarks which are gaplessly arranged in memory entirely fit into the
cache, no cache misses due to evictions can occur. Thus, the achieved results rep-
resent the highest possible WCET .4 reductions for a regular cache as well as for a
statically locked cache. On average, WCET.4; reductions of 50.3% for 100% cache
size can be documented.

Although larger caches can keep copies of more instructions, it can happen that
smaller caches achieve lower estimated WCETs due to less cache misses. For in-
stance, a system executing the MRTC benchmark suite which is equipped with a
cache of 70% size has a lower WCET.,; than with 80% size. This behavior is caused
by the fact that by increasing the cache size, the mapping of memory blocks to cache
lines is changed due to the modulo addressing function. Perhaps, other blocks now
compete for the same cache lines resulting in a completely different eviction behavior
and possibly increased WCET ;. For the cases where the capacity of a cache with
[ lines is doubled, consistently lower WCET4s can be observed: the set of memory
blocks mapped to the same cache line n is bisected into the blocks which are still
mapped to the same line as before and the set of blocks which are mapped to cache
line [ + n. This can only lead to a reduction of cache misses which are induced by
conflicts.

Even if static cache locking outperforms a normally operating cache in most of
the cases, a normally operating cache performs better for the MediaBench suite.
Since the content of a statically locked cache is not changed during the program’s
execution, the dynamic behavior of the cache gets lost. The benchmarks exhibit
a number of computation kernels which cannot be locked simultaneously into the
restricted cache. In contrast, the normally operating cache can exchange the content
during execution of the program and always stores the kernel currently executed.

For caches with larger associativity, a memory block can be mapped to a larger
amount of cache ways and thereby, the number of conflicts tends to be decreased.
Figure 5.8 depicts the results if a 4-way set-associative cache is employed. Both
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the system with a regular cache and a system with cache content locked by the
optimization algorithm perform better than for a 2-way set-associative cache.

The novel ILP-based cache locking optimization is able to decrease the WCET 4
compared to a system without cache by up to 35.4% for 10% cache size. For cache
sizes of 15% and 20%, WCET,.s reductions of up to 46.1% and 48.2% can be
achieved for the misc benchmarks, respectively. Especially for small cache sizes of
10%, the regular cache significantly profits from a larger associativity and achieves
WCET,s reductions of up to 35.5%. For caches with larger capacities of 15% and
20%, even higher WCET,g; reductions of up to 38.9% and 38.8% are achieved,
respectively.

Even though the regular cache outperforms the statically locked cache for Me-
diaBench, the WCET.4 reductions averaged over all benchmark suites are worse:
The ILP-based cache locking decreases the WCET.s; by 29.5%, 37.4% and 39.6%
for 10%, 15% and 20% cache size, whereas the regular cache can only decrease the
WCET,.s by 19.8%, 25.0% and 29.2% for the same cache sizes.

5.5.5.3 Optimization Time

An Intel Xeon E5506 (2.13 GHz) was utilized to determine the time required for
optimization of the benchmarks in Section 5.5.5.2. Most of the time necessary
for WCET-aware static I-cache locking optimization was consumed by the WCET
analyses using a¢T which is always executed on a single CPU core.

For a single WCET analysis for a system without cache, up to 90 CPU minutes
are required for the latnrm_ 32 64 benchmark stemming from the UTDSP bench-
mark suite. Thereby, an optimization run spends up to 3 hours for the two required
WCET analyses to determine the constants C]m“m and C;‘whe (cf. Section 5.5.4.2).
But more than 90% of the considered benchmarks are analyzable within 2 minutes.
This is still suitable for most application scenarios since the optimization essentially
doubles the compilation time.

The complexity of solving the ILPs generated by the optimization discussed in
Section 5.5.4 is of no practical relevance. For a CFG with n nodes, the ILP has a size
of O(n?) constraints. For a program consisting of m memory blocks of size Sway:
the ILP contains O(n? + m) variables. The employed ILP solver CPLEX takes up
to 1 CPU minute (Imsfir_32_ 64 from UTDSP) but mostly terminates within a few
seconds for the considered benchmarks. Compared to the WCET analyses required
to determine the cost constants C’]mam and C;‘whe for each basic block, these values
are negligible.

5.5.5.4 Comparison with existing optimizations

Besides the considerable performance gain compared to a regular cache, the algo-
rithm presented in this chapter also outperforms state-of-the-art optimizations for
instruction cache locking. The algorithm introduced in Section 5.5.3 as well as the
optimization presented by Liu [72] are only able to lock complete functions. Their
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Figure 5.9: Relative WCET s compared to function-based locking

disadvantage is that if an entire function is locked into the cache, code blocks which
are not part of the WCEP are locked into the cache as well. This wastes cache
space and thereby optimization potential. Even so, it cannot be determined how
much unused blocks are locked into the cache: for example, a block on the WCEP
which eminently contributes to the WCET is locked into the cache. If, as a result,
a WCEP switch occurs, it is possible that the locked block is no longer part of the
new WCEP. Thus, only counting the locked instructions of the optimized program
which are not part of the final WCEP cannot answer the question how many unused
content is locked. Generally speaking, this observation applies for all cache locking
based optimizations — also for the one presented in this chapter.

In the following, the ILP-based cache locking is compared to the EFG algorithm
from Section 5.5.3 which is only marginally outperformed by Liu’s improved ap-
proach. It turned out that function-based locking techniques are not well suited
to handle small caches. If, for instance, cache sizes of 10% of the overall program
size are considered, there are cases where no promising function fits into the cache.
Thus, the function-based approach was extended such that if the most promising
function does not fit into the remaining cache, only the beginning of this function
is locked into the free cache memory.

Figure 5.9 shows the results achieved by applying the EFG algorithm compared
to the ILP-based optimization presented in this section if a 2-way set-associative
cache is considered. The new optimization outperforms locking techniques based on
functions by up to 33% for the MediaBench suite. The EFG algorithm performs
badly in this case, since most benchmarks have only few functions but monolithic
computation kernels. The only locked functions do not entirely fit into the cache
and their hotspots are often located in the middle or even at the end of the function
which did not fit into the cache anymore.

But in most cases, the function-based locking profits from the applied mod-
ification which enables partial locking of promising functions into the remaining
cache. Nevertheless, the function-based cache locking technique is outperformed by
14.6%, 16% and 17.7% w.r.t. WCET.s reductions for 10%, 15% and 20% cache
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size averaged over all considered benchmarks. This underlines the predominance of
fine-grained cache locking techniques based on memory blocks instead of on entire
functions.

Although an evaluation of the optimization runtimes was not performed, a quali-
tative statement can be made: to consider paths which are not the initial WCEP, the
EFG approach requires two analyses for each alternative path in order to compute
the gain of the functions on such a path. Since 97 of 100 considered benchmarks
have concurrent paths, the amount of required WCET analyses and thereby the
optimization runtime is at least doubled if the EFG algorithm is used compared to
the ILP-based optimization.

The techniques and results presented in this chapter were published in [92].

5.6 Summary

This chapter proposed techniques making the development of retargetable WCET
optimizing compilers possible. Based on WCC, extensions were developed which
enable an easy porting of the WCET compiler framework to new platforms by ex-
ploiting existing standard compilers for the target architecture. The transformation
of flow facts and WCET data between the abstraction levels was realized by an
approach exploiting debug information of the employed compiler. Finally, timing
estimations for arbitrary target platforms were made possible by a platform indepen-
dent interface to the static WCET analyzer aiT. The WCC compiler was exemplarily
ported to the ARM platform to demonstrate its capabilities.

Based on these extensions, a WCET-driven optimization technique for static
instruction cache locking was presented. It was shown that the WCET. g of a
program can be effectively reduced by locking parts of its code into the I-cache.
The locked content is preserved against eviction leading to an increased number of
cache hits and a decreased overestimation of its WCET.

Therefore, an ILP-based approach was presented which is tailored to select the
content of instruction caches during compile time w.r. t. the WCET . of a program
to optimize. The selected content is loaded and locked by the startup code before
the program’s execution. The overhead for loading and locking code into the cache is
explicitly considered in the ILP. Compared to existing approaches, repetitive time-
consuming WCET analyses are avoided by modeling the control flow of the program
in order to always optimize along a possibly switching WCEP.

It was shown that the novel cache locking algorithm was able to decrease the
WCET,.s of a set of real-life programs by up to 40.8%. On average over all consid-
ered benchmarks, WCET ., reductions between 27.1% and 39.6% were achieved for
cache sizes ranging from 10% up to 20%. A regular cache is outperformed by 9.7%
up to 23.8% and existing function-based cache locking techniques by 14.6% up to
17.7% for the same cache sizes, respectively.
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This chapter demonstrated that a WCET compiler framework can be ported
to other target architectures by exploiting standard components. Based on such
an architecture support, the development of WCET-driven optimizations is fully
supported with no additional effort. This is demonstrated by implementing an opti-
mization which also underlines that exploiting the memory system of an underlying
hardware platform can yield high WCET reductions. Furthermore, it was shown
that synergies in the development of WCET-driven optimizations can be exploited;
parts of WCC’s TriCore-specific scratchpad memory allocation, were reused for the
path modeling as part of the ILP of the static I-cache locking for the ARM platform.
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In this thesis, the optimization potential of the memory subsystem of embed-
ded/ cyber-physical systems used in the domain of real-time systems was examined.
Approaches to reduce the WCET of embedded applications by optimizing their
memory access patterns are presented. Evaluations underline the effectiveness of
the techniques presented in this thesis and demonstrate the high optimization po-
tential of real-time systems. All presented techniques allow an automated reduction
of the worst-case execution time of a system and thus improve the current state
of real-time system design. Up to now, well-established design methods were typi-
cally based on a manual and thereby time-consuming compilation and optimization
process.

To enable the development of some of the optimizations integrated into WCC,
the WCC framework was extended by capabilities for the compilation and optimiza-
tion for multi-task systems. Furthermore, approaches were presented to retarget
the WCET-aware compiler to new architectures. Finally, some of the introduced
memory-based optimizations for single-task and multi-task systems underline the
capabilities of the presented WCC extensions.

The contributions of the techniques presented in this thesis are summarized in
Section 6.1. Finally, Section 6.2 concludes this thesis with a discussion on directions
for future work.

6.1 Research Contribution of this Thesis

In the domain of real-time systems, the correctness of computations does not only
depend on the results but also on the time interval within which these results can
be delivered. The knowledge on an upper bound of a program’s execution time, the
WCET, is therefore mandatory. Based on the estimation of the WCET derived by
static timing analyzers, it can be verified if tasks meet their deadlines.

With increasing computational power of processing units, memory subsystems
have been identified as a performance-limiting factor. Common techniques which
are employed to speedup memory accesses such as caches or branch prediction units
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can have a hardly predictable or even adverse effect on the WCET. Whenever the
actual behavior of the real hardware cannot be determined for a certain program
point, a static timing analyzer has to assume the worst case. This leads to an
undesired overestimation of the WCET.

This thesis introduces a number of optimizations which focus on increasing the
efficiency of the memory subsystem of embedded real-time systems. On the one
hand, the presented cache-based optimizations reduce the overestimation a static
cache analysis introduces by reducing uncertainty w.r.t. the number of occurred
cache hits and cache misses. On the other hand, all optimizations proposed in this
thesis also achieve a real performance gain by speeding up memory accesses.

In the following, an overview on the proposed optimizations is provided in more
detail — ordered by the closeness of the memories they are applied to. Starting
within a CPU core, the instruction fetch buffer is the most tightly coupled memory
which tries to provide the next few instructions to be executed. In this way, pipeline
stalls where the CPU would otherwise wait for the completion of memory accesses
should be avoided.

Branch Prediction aware Code Positioning, presented in Section 3.3, rear-
ranges the order of basic blocks in order to reduce the number of mispredicted
branches and to increase the utilization of the instruction fetch buffer. The num-
ber of unconditional jump instructions on the WCEP is reduced as well in order to
decrease the WCET of a program. An evolutionary approach explores the space of
achievable WCET reductions whereas an ILP-based approach achieves short opti-
mization times at marginally worse results.

If a memory access fetching the next instruction cannot be served by the instruc-
tion fetch buffer, a main memory access is initiated. Caches are located between
the CPU core and the main memory and store copies of recently used main memory
blocks for a faster access. The efficiency of caches highly depends on the memory
access pattern of the executed program.

Cache-aware Memory Content Selection, presented in Section 3.4, selects a
subset of a program’s functions to be cached. Only beneficial functions w.r.t. a
program’s WCET are placed into cached memories; less beneficial ones are moved to
non-cached memory areas and thereby cannot cause cache evictions. A lower WCET
is achieved by reducing the number of cache misses caused by mutual eviction of
functions.

WCET-aware Static Locking of Instruction Caches, presented in Section 5.5,
is another cache-based optimization. Memory blocks are loaded and locked into the
cache before a program’s execution in order to decrease the WCET by decreasing the
number of cache misses caused by evictions. In this way, the overestimation of the
WCET is reduced as well since a locked cache is fully predictable. An ILP-based



6.1. Research Contribution of this Thesis 141

approach selects the memory blocks to lock and ensures an optimization along a
possibly switching WCEP.

With growing demands on embedded/cyber-physical systems, the number of
tasks running on such a system grows as well. This entails increasing demands on
the memory subsystem since now a number of tasks compete for the same memories
such as caches.

WCET-aware Software Based Cache Partitioning for Multi-Task Systems,
presented in Section 4.4, is tailored to the optimization of multi-task sets. The
instruction cache is divided into disjoint partitions, and each task is exclusively
assigned to one of these partitions. One the one hand, predictability of the cache
behavior is achieved since no inter-task cache interference can occur. But on the
other hand, the performance w.r.t. the overall system’s WCET is increased. Based
on the task’s contribution to the WCET within a hyperperiod, the optimal partition
size is selected by an ILP-based approach.

However, caches always involve drawbacks in a real-time environment. Due to
their autonomous controller logic, their behavior is not fully predictable. If the cache
content is locked in order to eliminate such uncertainty, the controller logic becomes
superfluous. Then, the occupied chip area causes unnecessary energy consumption
and production costs. Therefore, scratchpad memories have been developed which
exhibit the same access times as caches and are also tightly coupled to the CPU
core.

WCET-driven Multi-Task Program Scratchpad Allocation, presented in
Section 4.5, achieved WCET reductions by allocating code blocks of multi-task sets
to scratchpad memories. An existing single-task PSPM allocation is extended by
multi-task capabilities. Therefore, one of three heuristics can be employed which
selects promising partition sizes for the tasks in a system based on different static
features with the objective of WCET reduction. Afterwards, an existing PSPM
allocation technique based on integer-linear programming performs the optimization
for each task and the determined partition size.

All presented optimizations were developed and applied separately so far. A com-
bined application of WCET-driven memory-based optimizations may be restricted
in terms of optimization potential caused by mutual interfering modifications.

Memory Architecture aware Compilation, presented in Section 4.6, considers
the impact of existing memory-based WCET optimizations on the memory layout
and structure of a program. Based on an analysis of the optimizations’ impact, an
interference minimizing optimization order is proposed for a combined application.
Furthermore, modifications are presented which exploit synergetic effects yielding
better performance w.r.t. achieved WCET reductions than a separate application.
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The presented optimizations are built in large part on infrastructure which can-
not be found in common optimizing compilers. Even the WCET-aware C Compiler,
introduced in Chapter 2, had to be substantially extended. Therefore, Section 4.3
introduces compiler extensions which enable an automated optimization of multi-
task real-time systems. A representation of task sets with their representations
at different levels of abstraction, scheduling parameters and an internal, common
memory layout were developed.

Furthermore, techniques are introduced in Section 5.3 which add retargetability
to the WCC compiler framework. The presented approach allows the compilation
and optimization for new architectures. Porting of WCET-driven optimizations
to new architectures as well as reusing existing data structures and optimization
modules is also supported.

6.2 Future Work

The optimizations and compiler extensions presented in this thesis tackle a number
of obstacles concerning the code generation and optimization for real-time systems.
Nevertheless, there is always room left for improvements. In the following, ideas for
future work are presented, grouped according to the corresponding chapters of this
thesis.

WCC - WCET-aware C Compiler The initially single-task based WCC frame-
work was extended by multi-task capabilities in the course of this work. However,
embedded/cyber-physical systems are no longer limited to the execution of tasks on
a single core. In recent times, multi-core systems are employed to satisfy demands
for more and more computational power. Besides predictability problems coming
along with multiple cores competing for the same resources such as level two caches
or buses, no compiler support for multi-core compilation and optimization exists.
Therefore, WCC should be extended by such capabilities in order to support the
design of modern embedded/cyber-physical systems.

Another interesting perspective would be the consideration of the underlying
operating system and its scheduling mechanisms during compilation. Up to now,
task sets are optimized without having influence on the utilized scheduling pol-
icy or scheduling parameters which are treated as constants during the compilation
process. Exchanging information between a WCET-optimizing compiler and the op-
erating system could help to tighten the WCET estimation and optimize scheduling
parameters for a lower system’s WCET.

WCET-aware Memory-based Optimizations The memory-based optimiza-
tions (cf. Chapter 3) presented in this thesis optimize the performance of instruction
fetches in different ways. Optimizations of data access in order to improve the data
cache behavior or other parts of the memory subsystem is a promising research area.
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Moreover, the presented branch prediction aware code positioning can be further
improved if a modeling of pipeline dual and triple issues is integrated into the ILP.

Another extension is imaginable for cache-aware memory content selection. The
granularity of code parts allocated to cached and non-cache memories could be
refined if moving of code is not only applied on functions level. Instead, basic blocks
as smallest unit should be considered.

Optimization of Multi-Task Systems The multi-task program scratchpad allo-
cation presented in Chapter 4 achieves significant WCET reductions. Nevertheless,
the optimization is based on heuristics which select a promising SPM partition size
for each task without having knowledge on the actual impact on the WCET. A simi-
lar partition size selection as employed for the cache partitioning optimization could
be beneficial. Therefore, SPM allocations for considered partition sizes should be
performed and analyzed w.r. t. the resulting WCET. An ILP could select the optimal
combination of partition sizes for the considered task set. To limit the optimization
time, the employed single-task SPM allocation would have to be extended to break
down the number of required WCET analyses which are responsible for the high
optimization time.

Both the multi-task PSPM allocation and the cache partitioning are restricted
to the optimization of program memory accesses. Since most embedded/cyber-
physical systems are equipped with data SPMs and data caches, respectively, the
optimizations should be extended to optimize data accesses as well.

Compilation and Optimization for Multiple Targets The presented support
for multiple targets including compilation and WCET analysis creates a basis for
comparing different architectures w.r.t. their computational power, code sizes or
flexibility of instruction sets. Based on acquired experience concerning the influence
of optimizations on different architectures, optimizations performing worse on a
certain architecture could be either improved or excluded from the optimization
process for this architecture.

Besides the support of multiple target architectures, the consideration of different
objectives in the context of code generation for embedded/cyber-physical systems
becomes more and more important. Thus, aiming at the optimization of single
objectives such as WCET or ACET no longer sufficient. The resulting code size and
energy consumption of such systems should be taken into account as well. Therefore,
the WCC should be extended by a multi-objective support considering at least the
objectives WCET, ACET, energy consumption and code size.

Finally, all optimizations presented in the course of this thesis could be extended
to be aware of different objectives besides the WCET. In this way, the optimization
of other objectives could be favored if the WCET of a task was reduced to the point
that the task meets all deadlines.






APPENDIX A

Appendix

A.1 Definitions

A.1.1 Basic Block

Definition A.1

A basic block [88, p. 173] at assembly level is a sequence of instructions with

maximum length which can only be entered by the first instruction and only be
left by the last instruction. The first instruction is also referred to as entry point
whereas the last instruction is also referred to as exit point

A.1.2 Control Flow Graph

Definition A.2

A control flow graph (CFG) is a directed graph representing all paths through a
function F' that might be traversed during its execution. The graph G = (V, E, s)

consists of a set of nodes V representing basic blocks and edges F C V x V
connecting two nodes: (v;,vj) € V iff node v; can be directly reached from v;,
thus v; can be immediately executed after v;. The entry node s € V, called
source, is the only node which has no incoming edges: fv € V : (v,5) € E.

A.1.3 Interprocedural Control Flow Graph

Definition A.3

An interprocedural control flow graph (IPCFG) |119, p. 89-90] is the represen-
tation of an entire application by a directed graph. The graph G = (V, E, s) is
created by combining all CFGs G; = (V;, E;, s;) of all n functions constituting a

program:

e V: set of nodes, union of all node sets of all G; = (V;, E;, s;)
V=V1ulhu..uV,

e E: set of edges, union of all edges of all G; = (V;, F;, s;) combined with
interprocedural control flow edges
E=F UFyU..UE, UECALL j gRET
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e (v;,s;) € ECALL: directed edge from the calling node v; of the caller
function to the source node s; of the called function

e (v;,v;) € EFET: directed edge from the sink node v; of the called function
to the calling node v; of the called function

e s: source node of the flow graph G = (V, E) which is the entry node of the
entire application (as a general rule the main function)

A.1.4 Knapsack problem

Definition A.4

Solving the knapsack problem means: Given n items, each with a certain benefit
v; and a weight w;, determine the optimal combination of elements which does

not exceed a limiting weight W but has a maximum overall benefit.

Formulated mathematically, the knapsack problem can be solved employing integer
linear programming. A binary variable x; decides whether item i should be placed
in the knapsack:

1, if item 4 should be placed in the knapsack
T =
‘ 0, else

A constraint is set up to limit the overall weight:

n
E T * W;
i=1

The objective function representing the overall benefit has to be maximized:
n
Z Ti % Vi ~> MAX.
=1

A.2 Integer Linear Programming

When using Integer Linear Programming (ILP) to solve optimization problems,
constraints of the following form have to be formulated:

a11x1 + ajpx2 < bl
a1 + agr2 < b2
<

as31r1 + asexr2 b3
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To support a sophisticated modeling of logical problem representations, the avail-
ability of further operators is required. In the following, operators and their model-
ing by ILP constraints are presented, which are employed in this work.

A.2.1 Not Equal Operator

To express that two variables a and b must not be equal, the following two constraints
can be formulated, where z is a binary variable within an ILP and C = oo is a
constant:

a<b+C(l—ux)

(A1)
b<a+Cx

A.2.2 Less-than Operator

Sometimes, it will be necessary to compare the value of two variables a and b and
use the result as binary variable  within an ILP:

z = (a<b)
1, ifa<b (A.2)
0, else

A constant C' = oo is required to model the less-than operator which is mapped to
binary variable x:

a<b-1+C(1—-ux)
a>b—Cx

A.2.3 Succeeding Operator

If the order of elements — e.g. basic blocks — should be modeled within an ILP, their
absolute position within a sequence of elements is represented by their decision
variable. To check whether two elements e, and e, are contiguously arranged, the
succeeding operator evaluates their decision variables a and b, respectively. The
result is mapped to binary variable x:

B {1, if b directly succeeds a < (a =b— 1) (A3)

10, else s (a#£b—1)

Again, the constant C' = oo is used to enable the modeling of the succeeding
operator. Two constraints are formulated which ensure that x = 0 for the case

a#b—1:

a—(b—1)<=C(1—=x)
b—1)—a<=C(1—2x)
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A helper variable y is introduced to model two mutually exclusive constraints
which ensure that z = 1 for the case a = b — 1:

a—(b—-1)<z+Cy
b-1)—a<z+C(1l—-y)

A.2.4 AND Operator

ILP-based Optimizations may require complex conditions which have to be mapped
to sets of constraints. In order to combine operators as the previously presented, a
logical AND operator can be defined. The value of two binary decision variables a
and b is evaluated and the result is mapped to a new binary variable x:

z = (aVb) (A4)

The necessary constraints are defined as follows:

r>=a+b—1
r<=aq
<=0

A.3 Flowchart Symbols

In the following, flowchart symbols used in this thesis should be explained.

A Data node represents input data such as a source file or a configuration file:

Collections of several data nodes are depicted as follows:

Data Nodes ||

A Tool Node stands for a binary program or compiler module which performs some
kind of processing:

Tool Node
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An IR Node represents an instance of an intermediate representation (e.g. of ANSI
C or assembly code):

IR Node

A.4 Additional Results

This section depicts additional results which were gathered as part of the evaluation
performed in Chapters 3 — 5.

100%
80%
60%
40% 8
20%

T

Relative WCET

T

| | | ’+CP+MCS+CP

| |
1% 3% 5% 10% 15% 20% 25%
Relative PSPM size

Figure A.1: Optimized WCET for cache-aware memory content selection and cache

partitioning applied to Set2

T T T T T T T

-, 100%
S 80% | .
= i |
. 60%
£ 40% | .
S 20% |-
A OZC | | | | | —a— CP —-e-MCS+CP

1% 3% 5% 10% 15% 20% 25%

Relative PSPM size

Figure A.2: Optimized WCET for cache-aware memory content selection and cache

partitioning applied to Setd



150 Appendix A. Appendix

Table A.1: Optimized WCET for MPSM allocation combined with CP applied to
Set3
spM/C | 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%

0% 100.0% | 100.0% | 100.0% | 65.3% | 57.2% | 57.1% | 56.0% | 55.3%
1% 100.0% | 100.0% | 100.0% | 57.6% | 57.2% | 57.0% | 55.8% | 55.0%
3% 571% | 57.1% | 57.1% | 57.1% | 56.6% | 56.3% | 55.6% | 54.9%
5% 55.0% | 55.0% | 55.0% | 54.7% | 54.4% | 54.1% | 53.5% | 55.0%
10% 54.4% | 54.4% | 54.4% | 54.2% | 53.8% | 56.9% | 53.0% | 52.5%
15% 54.0% | 54.0% | 53.9% | 53.7% | 53.4% | 53.3% | 55.9% | 55.0%
20% 54.0% | 53.0% | 53.6% | 53.3% | 52.4% | 51.7% | 52.1% | 50.9%
25% 53.0% | 53.0% | 52.7% | 52.7% | 52.3% | 51.7% | 51.3% | 51.1%

Table A.2: Optimized WCET for MPSM allocation combined with CP applied to
Setd
sPM/C || 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%

0% 100.0% | 100.0% | 99.0% | 96.9% | 92.0% | 87.5% | 87.3% | 83.4%
1% 100.0% | 100.0% | 99.0% | 96.9% | 92.1% | 87.4% | 87.3% | 83.4%
3% 100.0% | 100.0% | 99.0% | 96.9% | 92.1% | 86.8% | 86.7% | 83.2%
5% 90.7% | 90.7% | 87.7% | 85.6% | 82.9% | 77.3% | 77.1% | 75.4%
10% 78.1% | 76.7% | 76.5% | 74.5% | 71.9% | 67.0% | 66.8% | 66.0%
15% 72.2% | 70.8% | 70.7% | 68.7% | 66.1% | 65.7% | 65.5% | 65.6%
20% 70.7% | 70.7% | 69.7% | 68.2% | 65.7% | 65.6% | 65.5% | 65.4%
25% 69.4% | 69.4% | 66.2% | 66.0% | 65.7% | 65.6% | 65.4% | 65.4%

Table A.3: Optimized WCET for MPSM allocation, CP and MCS applied to Set3

SPM/C || 0% | 1% 3% 5% 10% 15% 20% 25%

0% || 100.0% | 100.0% | 99.5% | 59.0% | 57.2% | 57.1% | 56.0% | 55.3%
(100.0%) | (65.3%)
1% || 100.0% | 99.9% | 99.9% | 57.5% | 584% | 58.4% | 57.0% | 57.0%
3% 571% | 57.1% | 56.5% | 56.4% | 55.8% | 55.8% | 55.1% | 55.2%
(57.1%) | (57.1%) | (56.6%) | (56.3%) | (55.6%)
5% 55.0% | 55.0% | 54.4% | 54.3% | 53.7% | 53.7% | 53.0% | 53.0%

(55.0%) | (54.7%) | (54.4%) | (54.1%) | (53.5%) | (55.0%)
10% || 54.4% | 54.4% | 54.0% | 53.7% | 53.1% | 53.1% | 52.4% | 52.4%

(54.4%) | (54.2%) | (53.8%) | (56.9%) | (53.0%)
15% || 54.0% | 54.0% | 53.2% | 53.2% | 527% | 52.7% | 56.0% | 52.0%
(53.9%) | (53.7%) | (53.4%) | (53.3%) (0.0%)
20% || 54.0% | 52.9% | 52.5% | 524% | 51.5% | 51.7% | 52.1% | 50.9%
(53.6%) | (53.3%) | (52.4%)
25% || 53.0% | 53.9% | 53.3% | 53.0% | 52.2% | 51.7% | 51.3% | 51.1%
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Table A.4: Optimized WCET for MPSM allocation, CP and MCS applied to Set4

spM/C || 0% | 1% | 3% | 5% | 10% | 15% | 20% | 25%
0% 100.0% | 95.0% | 92.4% | 85.9% | 79.4% | 73.0% | 73.0% | 73.0%
(100.0%) | (99.0%) | (96.9%) | (92.0%) | (87.5%) | (87.3%) | (83.4%)
1% 100.0% | 95.0% | 92.4% | 85.9% | 79.4% | 73.0% | 73.0% | 73.0%
(100.0%) | (99.0%) | (96.9%) | (92.1%) | (87.4%) | (87.3%) | (83.4%)
3% 100.0% | 95.0% | 92.4% | 86.0% | 79.4% | 72.7% | 72.8% | 72.8%
(100.0%) | (99.0%) | (96.9%) | (92.1%) | (86.8%) | (86.7%) | (83.2%)
5% 90.7% | 86.5% | 84.0% | T7.5% | 72.0% | 66.9% | 66.9% | 66.9%
(90.7%) | (87.7%) | (85.6%) | (82.9%) | (77.3%) | (77.1%) | (75.4%)
10% 781% | 755% | 73.0% | 71.3% | 69.1% | 65.8% | 65.8% | 65.8%
(76.7%) | (76.5%) | (74.5%) | (71.9%) | (67.0%) | (66.8%)
15% 72.2% | 708% | 70.8% | 701% | 67.2% | 65.8% | 65.8% | 65.8%
20% 70.7% | 70.7% | 70.7% | 68.6% | 65.7% | 65.6% | 65.6% | 65.6%
25% 69.4% | 69.4% | 68.0% | 66.0% | 65.7% | 65.5% | 655% | 65.5%
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Memory-based Optimization Techniques for Real-Time Systems

Abstract:

Embedded /cyber-physical systems have become popular in a wide range of
application scenarios. Such systems are called real-time systems if they under-
lie strict timing constraints. To verify if such systems can meet their deadlines,
the knowledge of an upper bound for a program’s execution time is manda-
tory. This upper bound is also called worst-case execution time (WCET) and
is estimated by static timing analyzers.

Established optimizing compilers are not aware of the WCET as objec-
tive since they focus on the minimization of the average-case execution time
(ACET). To overcome this obstacle, this thesis presents memory-based opti-
mization techniques which focus on the reduction of the WCET of programs.
All presented optimizations are integrated into the WCET-aware C Compiler
(WCC) framework.

Since the memory interface of a system often turns out to be a bottleneck
which limits the performance of a system, the presented optimizations are
applied to different levels of the memory hierarchy of a system. Starting within
a CPU core, the instruction fetch buffer is the most tightly coupled memory
which tries to provide the next few instructions to be executed. Optimization
techniques are presented improving the efficiency of this buffer w.r.t. the
WCET of a system. Instruction caches placed between the CPU core and
the main memory try to speed up accesses to the main memory by storing
local copies in fast small cache memories. In order to improve the efficiency
of this part of the memory hierarchy, a memory content selection approach is
introduced which improves the WCET of a program by improving the cache
performance.

Due to the fact that multi-task systems are employed in almost all do-
mains, this thesis presents elaborate extensions to a compiler supporting the
compilation and WCET-aware optimization of multi-task systems. These ex-
tensions exploited to develop a number of novel optimizations for systems
running multiple tasks. As first optimization, a WCET-driven software-based
cache partitioning demonstrates the effectiveness of considering the WCET
for the optimization of a set of tasks. Furthermore, many embedded systems
integrate so-called scratchpad memories (SPM) as tightly coupled memories.
An optimization approach for SPM allocation in a multi-task scenario is pro-
posed. Besides, a holistic view of memory architecture compilation considers
a number of memory-based WCET optimizations and presents approaches for
a combined application.



Existing compiler frameworks which are able to consider the WCET dur-
ing optimization are limited to a particular hardware platform. In order to
support multiple platforms, this thesis presents techniques to extend an ex-
isting WCET-aware compiler framework. Based on these extensions, a novel
static cache locking optimization selects memory blocks which are statically
locked into the instruction cache driven by WCET reductions.

Applying these optimizations, the WCET of real-time applications can be
reduced by about 35% to 48%. These results underline the need for special-
ized WCET-driven optimization techniques integrated into a sophisticated
compiler framework. Otherwise, immense optimization potential would re-
main unused resulting in oversized and thus costly embedded /cyber-physical
systems.




