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Motivation 
Most simulations of Electromagnetic Forming / 
High Speed Forming are carried out prior to a real 
forming process. 
The simulations have to be accurate for the real 
forming process. 
The simulations need an accurate model to 
predict deformation of a process material. 
Difficulties in selecting an appropriate  model… 
Too many models. 
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Strain rate effect in high speed forming 
Strain rate effect in high speed forming process is 
significant because the dynamic response of metals differs 
considerably form static response 
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Engineering strain

 Hardening properties of metallic materials are 
remarkably changed by the level of the strain rate 
 

 Accurate understanding of material properties at 
various strain rates is necessary to guarantee the 
reliability of the high speed forming analysis 

Maximum strain rate 
: 118/s 
(Punch velocity: 2 m/s) 
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Material properties of metallic materials with 
the variation of strain rate 

Initial yield stress and strain hardening are changed by the 
level of strain rate 
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 Initial yield stress and strain hardening with respect to the strain rate are 
regarded as the inherent characteristics of the material 

Change of initial yield stress (4340Steel) Change of strain hardening (4340Steel) 
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Representation of dynamic hardening 
properties using hardening equations 

Dynamic hardening properties of materials can be 
represented as the one simple equation by using the 
dynamic hardening equation 
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 There is no unique equation which can represent the dynamic hardening 
characteristics of all kinds of materials 

 It is important to select and use the most applicable equation which can 
represent the dynamic hardening characteristics of the material 

Example of Zerilli-Armstrong model for 4340Steel 
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Research scope 
Understand the characteristics of some of the famous 
dynamic hardening equations by reviewing of those 
Suggestion of new dynamic hardening equations for more 
accurate representation of dynamic behavior of materials 
Uniaxial tensile and SHPB tests of three kinds of materials 
to obtain stress–strain data at various strain rate conditions 

4340Steel (BCC) 
OFHC (FCC) 
Ti6Al4V (HCP) 

Quantification of test results using six kinds of the dynamic 
hardening equations 

Suggestion of the most applicable model for each material 

8 



ICHSF2012 INTERNATIONAL CONFERENCE 
ON HIGH SPEED FORMING 

Computational Solid Mechanics and Design Lab.  9 

Review of Dynamic Hardening Equations 

• Johnson–Cook model 
• Zerilli–Armstrong model 
• Preston–Tonks–Wallace model 
• Modified Johnson–Cook model 
• Modified Khan–Huang model 
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Dynamic hardening equations 
Representative well-known dynamic hardening equations 

Johnson–Cook model (1983) 
Zerilli–Armstrong model (1987) 
 for BCC  
 for FCC 

Preston–Tonks–Wallace model (2003) 
 
Dynamic hardening equations suggested 

Modified Johnson–Cook model (1999) 
Modified Khan–Huang model (2006) 
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Johnson–Cook model 
 
 
 
The most widely used rate and temperature dependent 
model due to its simplicity 
Purely empirical model 

Model is developed by expressing experimental tendency 
Coefficients can be determined by fitting the experimental 
results 

Cannot represent the strain hardening change as strain rate 
changes 
Strain rate hardening is expressed as a linear function of 
the logarithm of strain rate 

11 

*G.R. Johnson et al., “A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures”, in 
Proceedings of the Seventh International Symposium on Ballistics, 1983. 
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Zerilli–Armstrong model 
 
 
The most widely used physically based model 

Based on simplified dislocation dynamics 
Different type can be used for BCC and FCC materials 

C2=0 for BCC 
 
 

 Constant strain hardening as strain rate changes 
 Cannot represent hardening change as strain rate changes 

C1=C5=0 for FCC 
 
 

 Strain hardening increases as strain rate increases 
 Constant initial yield stress as strain rate changes 
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[ ]0 1 2 3 4 5exp ln nC C C C T C T Cσ ε ε ε = + + − + +  

[ ]0 2 3 4exp lnC C C T C Tσ ε ε= + − + 

[ ]0 1 3 4 5exp ln nC C C T C T Cσ ε ε= + − + +

*F.J. Zerilli et al., “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, J. Appl. Phys., 1987. 
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Preston–Tonks–Wallace model 
 
 
 
 
 
 
Physically based model 
Valid for the largest range of strain rates (~1012/sec) 

Extended to plastic deformation in overdriven shock regime 
Only thermal regime will be considered in this research 
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Modified Johnson–Cook model 
 
 
Linear expression of strain rate hardening term in 
Johnson–Cook model is substituted by the exponential 
expression 
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*W.J. Kang et al., “Modified Johnson-Cook Model for Vehicle Body Crashworthiness Simulation”, Int. J. Vehicle Design, 1999. 

0

1 ln 1
m

n r

m r

T TA B C
T T

εσ ε
ε

    −   = + + −    −     



 0

1 ln 1
p m

n r

m r

T TA B C
T T

εσ ε
ε

      −     = + + −     −         





Expression of initial yield stress of 4340Steel 
using Johnson–Cook model 

Expression of initial yield stress of 4340Steel 
using modified Johnson–Cook model 
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Modified Khan–Huang model 
Khan–Huang model (1992) 

Represent strain hardening change (increase or decrease) as 
strain rate changes 
 Strain hardening term in first bracket is described by 

function of strain and strain rate 
 
 
Modified Khan–Huang model (2006) 

Modify strain rate hardening term in Khan–Huang model as 
done in modified Johnson–Cook model 
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*A.S. Khan et al., “Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Change 10-5-104s-1”, Int. J. 
Plast., 1992. 
*H.J. Lee et al., “Dynamic Tensile Tests of Auto-body Steel Sheets with the Variation of Temperature”, Solid State Phenomena, 2006. 
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Summary of dynamic hardening equations 
Dynamic hardening equations used in this research 

 
 
 
 
 
 
 
 
 
 
 
 

Material 
 4340Steel(BCC), OFHC(FCC), Ti6Al4V(HCP) 
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Characteristics 

Yield stress 
representation 

Strain hardening 
representation 

Representative 
dynamic 

hardening 
equations 

Johnson-Cook model Linear increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Zerilli-Armstrong 
model 

BCC model Exponential increase 
as strain rate increases 

Independent on 
strain rate (constant) 

FCC model Independent on 
strain rate (constant) 

Increase 
as strain rate increases 

Preston-Tonks-Wallace model Error function increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 

Modified 
model 

suggested 

Modified Johnson-Cook model Exponential increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Modified Khan-Huang model Exponential increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 
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Experiments 

• Uniaxial tensile tests  
        at quasi-static and intermediate strain rates 
• Hopkinson bar tests at high strain rates 
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Material test with the variation of strain rate 
Strain rate: strain per unit time (unit: /sec) 
Material tests at the strain rate ranged from quasi-static to 
thousands/sec 

18 

Hopkinson bar Instron(static) 

1E-3 0.01 0.1 1 10 100 1000
0

100

200

300

400

500

600

Tensile Tests
at the Intermediate Strain Rate

Yi
el

d 
St

re
ss

 (M
Pa

)

Strain Rate (/sec)

SPCD
 Experimental Results
 Fitted curve

Quasi-static Tests

Hopkinson Bar
Tests

High speed material testing machine 

Creep 

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 

Quasi-static Intermediate 
strain rate 

Bar 
impact 

High-velocity 
plate impact 

Constant load 
machine 

Hydraulic or screw 
machine 

Hydraulic, pneumatic or 
mechanical machine 

Hopkinson bar 
testing machine Plate impact Method of 

loading 

Strain rate [/sec] 



ICHSF2012 INTERNATIONAL CONFERENCE 
ON HIGH SPEED FORMING 

Computational Solid Mechanics and Design Lab.  

Necessity of material properties at 
intermediate strain rates 

Accurate understanding of material properties at wide 
range of strain rates 
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High speed material testing machine 
Dynamic material properties at intermediate strain rates 
Range of strain rate: 0.1 ~ 500/sec 
Servo-hydraulic system 
Max. speed: 7,800 mm/sec 
Max. load : 30 kN 
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Testing Machine Hydraulic Unit 
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Split Hopkinson pressure bar 
Dynamic material properties at high strain rates 
Range of strain rate: 1,000 ~ 10,000/sec 
Pneumatic system 
Max. speed: 35,000 mm/sec 
Striker bar(tube), incident bar, transmitted bar (Φ20) 
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Tension Split Hopkinson Bar Split Hopkinson Pressure Bar 
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Dimensions of specimens for tests 
Specimen for tensile tests 

Cylindrical type tensile specimen 
 Determined from finite element analysis for the gauge section to 

be uniformly elongated at intermediate strain rate 
 
 
 
 
 
Specimen for SHPB tests 

Cylindrical type specimen 
 Determined to induce force equilibrium during the tests 
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Experimental results 
Dynamic material properties for 3 kinds of materials 

Initial yield stress and flow stress of 3 kinds of materials 
increase as strain rate increases 
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Initial yield stress 

Flow stress 
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Evaluation and Comparison of 
Selected Models Constructed 



ICHSF2012 INTERNATIONAL CONFERENCE 
ON HIGH SPEED FORMING 

Computational Solid Mechanics and Design Lab.  

Model construction procedure 
1. Determine initial yield stress related parameters 

Initial yield stress is the most important to represent plastic 
deformation of materials since the initial yield stress indicates 
the onset of plastic deformation 
Example: Representation of initial yield stress change of 
4340steel with respect to the strain rate using six kinds of 
hardening models 
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Model construction procedure (Cont’d) 
2. Determine strain hardening related parameters 

Consider strain rate and temperature change during the tests 
for more accurate fitting 
 The strain rate changes during the tests continuously since the 

gauge length of the specimen changes 
 
 
 
 
 
 

 Temperature of the specimen changes during the tests 
– At high strain rate conditions                   , 90% of the plastic 

deformation energy is converted to heat energy 
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Model construction procedure (Cont’d) 
Experimental data when strain rate and temperature change 
are considered 
Example: experimental data of 4340steel at 10/s and 300K 
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Strain Strain rate 
[/sec] 

Temperature 
[K] 

Stress 
[MPa] 

0.000 10 300 599.56 
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Model construction procedure (Cont’d) 
Example of model construction procedure 

Construction of Zerilli-Armstrong BCC model for 4340steel 
 
 

 1. Determine the initial yield stress related parameters using the 
initial yield stress at the various strain rates 
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C0, C1, C3, and C4 
are determined 
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Model construction procedure (Cont’d) 
 2. Determine the strain hardening related parameters considering 

the strain rate and the temperature change 

29 

C5 and n 
are determined 

[ ]0 1 3 4 5exp ln nC C C T C CTσ ε ε= + − + +

 Strain hardening related parameters are determined by the least square 
method using all strain, strain rate, temperature, and stress data 

 The other models can be constructed using the same procedure 
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Evaluation of Selected Models (BCC) 
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Characteristics of model Characteristics of 
4340Steel 

Yield stress 
representation 

Strain hardening 
representation Yield stress Strain 

hardening 

Representative 
dynamic 

hardening 
equations 

JC model Linear increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Exponential 
increase 

as strain rate 
increases 

Decrease 
as strain rate 

increases 

ZA 
model 

BCC Exponential increase 
as strain rate increases 

Independent on 
strain rate (constant) 

FCC Independent on 
strain rate (constant) 

Increase 
as strain rate increases 

PTW model Error function increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 

Modified 
model 

suggested 

Mod. JC model Exponential increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Mod. KH model Exponential increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 
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Deviation for yield stress characteristics Deviation for strain hardening characteristics 

 JC and ZA FCC models show very poor results for the representation of yield stress 
 JC and Mod JC models show poor results for hardening characteristics 
 ZA BCC and Mod KH model are the best models for 4340steel 
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Characteristics of model Characteristics of 
OFHC 

Yield stress 
representation 

Strain hardening 
representation Yield stress Strain 

hardening 

Representative 
dynamic 

hardening 
equations 

JC model Linear increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Exponential 
increase 

as strain rate 
increases 

Increase 
as strain rate 

increases 

ZA 
model 

BCC Exponential increase 
as strain rate increases 

Independent on 
strain rate (constant) 

FCC Independent on 
strain rate (constant) 

Increase 
as strain rate increases 

PTW model Error function increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 

Modified 
model 

suggested 

Mod. JC model Exponential increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Mod. KH model Exponential increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 
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Deviation for yield stress characteristics Deviation for strain hardening characteristics 

 JC and ZA FCC models show very poor results for the representation of yield stress 
 PTW model is the best models for OFHC 
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Characteristics of model Characteristics of 
Ti6Al4V 

Yield stress 
representation 

Strain hardening 
representation Yield stress Strain 

hardening 

Representative 
dynamic 

hardening 
equations 

JC model Linear increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Exponential 
increase 

as strain rate 
increases 

Nearly 
constant 

as strain rate 
increases 

ZA 
model 

BCC Exponential increase 
as strain rate increases 

Independent on 
strain rate (constant) 

FCC Independent on 
strain rate (constant) 

Increase 
as strain rate increases 

PTW model Error function increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 

Modified 
model 

suggested 

Mod. JC model Exponential increase 
as strain rate increases 

Increase a little 
as strain rate increases 

(nearly constant) 

Mod. KH model Exponential increase 
as strain rate increases 

Increase or decrease 
as strain rate increases 
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Deviation for yield stress characteristics Deviation for strain hardening characteristics 

 ZA FCC model shows very poor results for the representation of yield stress 
 ZA BCC, PTW, Mod JC, and Mod KH models are the best models for Ti6Al4V 
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Conclusions 
Dynamic properties of the materials are the inherent 
characteristics of the material 
There is no unique equation which can represent the 
dynamic properties of all kinds of materials 
It is important to select and use the most applicable 
equation which can represent the dynamic hardening 
characteristics of material  

Accurate understanding of the dynamic material properties by 
using reliable testing procedure 
Accurate understanding of the characteristics of dynamic 
hardening models 

Modified Khan–Huang model, Preston–Tonks–Wallace 
model, and Modified Khan–Huang model show the best fit 
for 4340steel, OFHC, and Ti5Al4V, respectively. 
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Thank you for attention 
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